University of New BrunswickGeodesy and Geomatics Engineering

GGE Home

Welcome · Research · Publications · Software · SHGeo · Technical Reports

STOKES-HELMERT'S SOLUTION TO GEODETIC BOUNDARY VALUE PROBLEM

SEMINAL PAPERS

1. Stokes-Helmert technique

Vaníček P. and A. Kleusberg, 1987.
The Canadian geoid - Stokesian approach, Manuscripta Geodaetica 12, pp. 86-98.

Vaníček, P. and Z.Martinec, 1994.
The Stokes-Helmert scheme for the evaluation of a precise geoid, Manuscripta Geodaetica 19, pp.119-128.

2. Reference field

Vaníček P. and L.E. Sjøberg, 1991.
Reformulation of Stokes's theory for higher than second degree reference field and modification of integration kernels, JGR 96 (B4), pp. 6529-6539.

Vaníček, P., M. Najafi, Z. Martinec, L. Harrie and L.E.Sjöberg, 1996.
Higher-degree reference field in the generalized Stokes-Helmert scheme for geoid computation. Journal of Geodesy , 70 (3), pp. 176-182.

3. Topographical effects

Martinec, Z. and P. Vaníček, 1994.
The indirect effect of topography in the Stokes-Helmert technique for a spherical approximation of the geoid. Manuscripta Geodaetica 19, pp. 213-219.

Martinec, Z. and P. Vaníček, 1994.
Direct topographical effect of Helmert's condensation for a spherical approximation of the geoid. Manuscripta Geodaetica, # 19, pp. 257-268.

Huang, J., P. Vaníček, S. Pagiatakis and W. Brink, 2001.
Effect of topographical mass density variation on geoid in the Canadian Rocky Mountains. Journal of Geodesy, 74, pp. 805-815.

Vaníček, P., P. Novák and Z. Martinec, 2001.
Geoid, topography, and the Bouguer plate or shell. Journal of Geodesy, 75 (4), pp. 210-215.

4. Downward continuation

Martinec, Z., 1996.
Stability investigations of a discrete downward continuation problem for geoid determination in the Canadian Rocky Mountains, Journal of Geodesy, 70/11, 805-828.

Vaníček, P., W. Sun, P. Ong, Z. Martinec, M. Najafi, P. Vajda and B ter Horst, 1996.
Downward continuation of Helmert's gravity, Journal of Geodesy 71, pp. 21-34.

5. Stokes's integration

Vaníček, P. and W. E. Featherstone, 1998.
Performance of three types of Stokes's kernel in the combined solution for the geoid, Journal of Geodesy , 72, 12, pp. 684-697.

6. Far zone contributions

Novák, P., P. Vaníček, Z. Martinec and M. Véronneau, 2001.
The effect of distant terrain on gravity and the geoid. Journal of Geodesy , 75 (9-10), pp. 491-504.

Vaníček, P., J. Janák and W.E. Featherstone, 2003.
Truncation of spherical convolution integration with an isotropic kernel, Studia Geophysica et Geodaetica, 47 (3), pp. 455-465.

7. Accuracy

Najafi, M., P. Vaníček, P. Ong and M.R. Craymer, 1999.
On the accuracy of a regional geoid, Geomatica 53,3, pp. 297-305.

8. Results

9.Other topics

Vaníček P., Zhang Changyou and L.E. Sjøberg, 1992.
A comparison of Stokes's and Hotine's approaches to geoid computation, Manuscripta Geodaetica 17, pp. 29-35.

Martinec, Z., 1998.
Construction of Green's function to the Stokes boundary-value problem with ellipsoidal corrections in boundary condition, Journal of Geodesy, 72, pp. 460-472.

Vaníček, P.,J. Huang, P. Novák, M. Véronneau, S. Pagiatakis, Z. Martinec and W. E. Featherstone, 1999.
Determination of boundary values for the Stokes-Helmert problem. Journal of Geodesy 73, pp.180-192.

Vajda, P., P. Vaníček, P. Novák, and B. Meurers, 2004.
On the evaluation of Newton integrals in geodetic coordinates: Exact formulation and spherical approximation. Contributions to Geophysics and Geodesy, 34 (4), pp. 289–314.

Vaníček, P., R.Tenzer, L.E. Sjöberg, Z. Martinec and W.E.Featherstone, 2004.
New views of the spherical Bouguer gravity anomaly. Journal of Geophysics International 159(2), pp. 460-472.