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Abstract. In the paper, the classical as well as the
generalized Stokes techniques — in which use is made of a
higher-order reference spheroid defined by satellite
determined potential coefficients — are compared with
Hotine’s technique for geoid determination, While the
Stokes techniques use gravity anomalies, Hotine's
technique uses gravity distrbances.

Leaving out the complications, we can say that
computation of gravity anomalies requires the knowledge
of orthometric heights of individual gravity observation
points, while gravity disturbances require heights above the
reference ellipsoid. The vast majority of the millions of
gravity points on land have only the orthometric heights
associated with them, thus permitting an evaluation of
only gravity anomalies. A systematic use of gravity
disturbances on land would require the transformation
orthomeitric heights into heights above the ellipsoid —
barring a prohibitively expensive programme of
reobservation of the heights at all the gravity points, Such
a transformation would call for the geoid-ellipsoid
separation, the geoidal height, to be known, Here lies the
seeming self-contradiction of Hotine's technique as applied
on land: the geoid has to be known to be determinable.

We show that this seeming paradox does not render
Hotine’s approach meaningless. In our investigation, the
geoid (assumed known) is replaced by a higher-order
reference spheroid. Two approximate variations of
Hotine’s technique are then considered, and it is shown that
under specific circumstances both of Hotine’s variations
give more accurate results than the Stokes techniques.

Introduction

With the continuing improvements in accuracy of satellite
determined potential coefficients it has become a custom to
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us¢ the low-frequency satellite information together with
terrestrial gravity data for the computation of the geoid.
These combined approaches combine the advantages of the
two kinds of data to arrive at more equitable solutions:
more homogeneously accurate in low frequencies, and more
sharply defined in high frequencies.

These combinations can be produced by means of
different techniques. 1n this contribution, we are interested
in two such techniques: the Stokes technique and Hotine's
technique. More specifically, we are interested in the
generalized Stokes technique (Vanitek and Sjdberg 1991)
which has been specifically designed to accommodate the
two kinds of data, and in approximate Hotine techniques
which, unlike the original Hotine formulation, do not
require the knowledge of gravity disturbances. Two such
approximations arc considered in this paper. One may
argue that by replacing the requirement for gravity
disturbance with something else the formulation can no
longer be called a “Hotine” approach. Instead of coining
some new names, we decided to call the formulations
“approximate Hotine” to help the reader bear in mind the
point of departure for their development,

The more narrow aim of this contribution is to show
the circumstances under which one of the approximate
Hotine techniques will give more precise (and more
accurate) results than the generalized Stokes technique, For
this goal, the expected biases of the approximate Hotine
solutions are investigated and the expected variances of the
different kinds of solutions are derived.

The comparison of precisions is carried out by means of
expected mean square errors. These turn out to be
functions of error degree variances of both the satellite-
derived gravity and terrestrial gravity as well as the gravity
degree variances which describe the average behaviour of
the magnitude of the harmonic coefficients of gravity.

The effects — and corrections for removal of these
effects — of both the spherical approximation and the
flaws in the modelling of the physics of the geodetic
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gravity features from satellite orbit analysis has become
quite accurate. For example, the error (standard deviation)
in the first (20, 20) geopotential coefficients of the GEM
T1 model {Marsh et al. 1988) is estimated 1o be only about
85 cm (Vaniek et al. 1990), certainly better than can be
obtained from observed terrestrial gravity.

It thus makes sense to replace the values of the first M
terms in equation (5), where the optimum choice of M
should be somewhere around 20, by the corresponding
values obtained from satellites. Denoting the satellite-
determined gravity spherical harmonics by ¥ we obtain a

different expression (N') for geoidal heights:
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where we have assumed that M > 8§, We note that if the
expected values E(YM) and E(gp) are equal forall n < M,
then the expected values of N and N' obtained from
equations (5} and (9), respectively, will be the same, as
they should be.

On the other hand, assuming again that equation (7) is
valid, denoting the satellite-determined gravity degree error
variances by o2(yM) and assuming Y uncorrelated with
gn we get from equation (9):
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Comparison with equation (8} shows clearly that if
VnsM : o2M)<oi(g) , (11)
then
S2(N') < 2(N) , (12)

as we have stated above.

Formula (9) can be rewritten in a closed form.
Denoting the satellite-determined (model) gravity by (Y)Mm
we have

M
M=% vh (13)
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and the spheroid of degree M, defined by the first M degree
potential coefficients is given as
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Now we can redefine the gravity anomaly as the difference

of actual gravity on the geoid, g, and the model gravity,
(Y)M, on the reference spheroid, ie.,

AgM =g - (DM - (15)
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We can write also

AgM = g6 - v - [(M - YE) = Ag - (AgIM . (16

where (Ag)yM is what one may call the satellite-determined
gravity anomaly. Finally, we get (see, e.g., Vanitek and
Krakiwsky (1986)):
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Realizing now that
NM=N - (N)m (19)

is the height of the geoid above the reference spheroid
(N)M, we can see that equation (17) can be used to evaluate
the geoidal height with respect to a reference spheroid of
degree M. Equation (17) looks much the same as the

ﬁ nal Stokes formula (1) with even the gravity anomaly

having a parallel meanmg with Ag. This is why we
call this approach a *“generalized Stokes approach ”
(Vanitek and Sjtberg 1991). Its accuracy is, of course,
described by equation (10} and we see that under the
assumption (11), the generalized Stokes approach is more
accurate than the classical Stokes approach.,

We note that the use of higher-degree gravity field
models such as, e.g., Rapp’s OSU’89 models (Rapp and
Pavlis 1990), arising from the combination of satellite and
terrestrial data as reference models, is not considered here.
The recason for this is that we do not wish to become
entangled in the discussion of correlations which would
appear once such a model is further combined with
terrestrial data — see, e.g., Vanitek and Sjsberg (1990).

The Hotine Approach

In the middle of this century, another Englishman,
cartographer Martin Hotine, formulated and solved the fixed
boundary value problem: Given the geoid and the actual
gravity on the geoid, determine the disturbing potential on
and above the geoid. His solution is subject to the same
qualifications as the Stokes solution described above.
Hotine’s formula (Hotine 1969),

N=x ﬁeHSgdtg . (20)
where
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is known as Hotine's function of a spherical distance and
8g=8c-1G » 22
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which is easily evaluated as
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This bias contains only higher frequencies — from wave
number M up — as one would expect from the
approximation of N by (N)yp in equation (26).
'The variance of N is easily derived from equation (28).
Considering again the y, componenis of normal gravity

" errorless, we obtain
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Taking the MSE (an error ‘centred’” on Q) as a more
appropriate measure of accuracy in the presence of a bias,
we get

MSE(N) = Bias?(@) + a2(N)
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where by ¢, = E2(g,) we denote the “degree variances”
(squares of values of spherical harmonics in the sense of
actual, physical averages) of gravity.

The Second Approximate Hotine Approach

As an alternative, let us take directly the value defined by
equation (30) from the previous paragraph and rewrite it as,

ﬁé(N)MmﬁgHMAgMde . (36)

Its expected value is, of course, the same as that of the first
approximation, i.e.,

EN)=E () 37
and so is therefore its bias
Bias (N) = Bias (N) . 38)

The speciral expression for §I is different, however, and
can be written right away as
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From the spectral form, we obtain the following
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expression for the variance
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which is also different from the variance of the first
approximation. The MSE of N is given by
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We can see that while both approximations should give
the same biased result, they have different error
characteristics. In the next paragraph, we shail atiempt to
compare the performance of both these approximate
techniques with the performance of the Stokes techniques.

Comparison of Stokes’s and Hotine’s

Approaches

Since both of Hotine's approximations, N and N, are
biased with respect to the correct Hotine approach and the
two Stokes approaches, we have to use the MSEs to
compare their respective accuracies. The method we shall
use will be to investigate the magnitude of the differences
of the MSEs, realizing that the biases in the two Stokes
techniques are both zero, making their MSEs equal to their
variances.

The difference between the errors in generalized Stokes's
formula and in the first Hotine approximation — it makes
no sense to evaluate errors in the accurate Hotine formula
since it cannot be used directly — is given by the difference
between equations (10) and (35). After a little
mathematical development, we obtain:
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Clearly, if A + A, is positive, then the first approximate
Hotine approach gives a smaller error than the generalized
Stokes approach.

If in equation (42} N is replaced by N, i.e., if the first
Hotine approximation is compared against the classical
Stokes approach, then the expression changes to

MSE(N) - MSE(N) = A; + A7 , (43)
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