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A b s t r a c t  

We investigate the stability of a discrete downward 
continuation problem for geoid determination when the 
surface gravity observations are harmonically continued 
from the Earth 's  surface to the geoid. The discrete form 
of Poisson's integral is used to set up the system of linear 
algebraic equations describing the problem. The posed- 
ness of the downward continuation problem is then ex- 
pressed by means of the conditionality of the matrix 
of a system of linear equations. The eigenvalue anal- 
ysis of this matr ix  for a particularly rugged region of 
the Canadian Rocky Mountains shows that the discrete 
downward continuation problem is stable once the topo- 
graphical heights are discretized with a grid step of size 
5 arcmin or larger. We derive two simplified criteria for 
analysing the conditionality of the discrete downward 
continuation problem. A comparison with the prop- 
er eigenvalue analysis shows that  these criteria provide 
a fairly reliable view into the conditionality of the prob- 
lem. 

The compensation of topographical masses is a pos- 
sible way how to stabilize the problem as the spectral 
contents of the gravity anomalies of compensated to- 
pographical masses may significantly differ from those 
of the original free-air gravity anomalies. Using sur- 
face gravity data from the Canadian Rocky Mountains, 
we investigate the efficiency of highly idealized com- 
pensation models, namely the Airy-Heiskanen model, 
the Prat t -Hayford model, and Helmert 's 2nd condensa- 
tion technique, to dampen high-frequency oscillations of 
the free-air gravity anomalies. We show that the Airy- 
tteiskanen model reduces high-frequencies of the data in 
the most efficient way, whereas Helmert 's 2nd condensa- 
tion technique in the least effÉcient way. We have found 
areas where a high-frequency part of the surface grav- 
ity data has been completely removed by adopting the 
Airy-Heiskanen model which is in contrast to the nearly 

negligible dampening effect of Helmert 's 2nd condensa- 
tion technique. Hence, for computation of the geoid over 
the Canadian Rocky Mountains, we recommend the use 
of the Airy-Heiskanen compensation model to reduce the 
gravitational effect of topographical masses. 

In addition, we propose to solve the discrete down- 
ward continuation problem by means of a simple Jaco- 
bi's iterative scheme which finds the solution without 
determining and storing the matr ix  of a system of equa- 
tions. By computing the spectral norm of the matr ix of a 
system of equations for the topographical 5 ~ x 5 t heights 
from a region of the Canadian Rocky Mountains, we 
rigorously show that Jacobi's iterations converge to the 
solution; that the problem was well posed then ensures 
that  the solution is not contaminated by large roundoff 
errors. On the other hand, we demonstrate that  for 
a rugged mountainous region of the Rocky Mountains 
the discrete downward continuation problem becomes 
ill-conditioned once the grid step size of both the surface 
observations and the solution is smaller than 1 arcmin. 
In this case, Jacobi's iterations converge very slowly 
which prevents their use for searching the solution due 
to accumulating roundoff errors. 

1. I n t r o d u c t i o n  

The problem of downward continuation of the gravity 
field from the Earth's surface to the geoid arises from 
the fact that  the solution to the boundary value prob- 
lem for geoid determination is sought in terms of the 
gravitational potential on the geoid but that  the grav- 
ity observations are only available on the Earth 's  sur- 
face. Unfortunately, the Earth 's  surface for continental 
areas differs significantly from the geoid, and thus the 
geoid potential parameters must be derived from sur- 
face gravity functionals smoothed or damped to some 
extent. The downward continuation of the gravity field 
not only from the Earth 's  surface to the geoid but also 
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from the satellite or aerial altitudes to the Earth's sur- 
face is one of the trickiest problem of physical geodesy 
since it belongs to the group of ill-posed problems. An 
extensive list of papers in the geodetic literature dur- 
ing the last three decades documentates this problem 
quite obviously: Pellinen (1962), Bjerhammar (1962, 
1963, 1976, 1987), Iteiskanen and Moritz (1967), SjSberg 
(1975), Rummel (1979), Moritz (1980), Cruz (1985), Ilk 
(1987, 1993), Wang (1988, 1990), Engels et al. (1993), 
VaniSek at al. (1995), among others. Despite some 
advancements, further efforts would be necessary to solve 
the unanswered questions related to this problem. 

The downward continuation of gravity data is an ill- 
posed problem in the sense that the results (on the grav- 
itational potential) do not continuously depend on the 
observations. The consequence is that error - contami- 
nated data together with roundoff errors result in high- 
frequency oscillations in the solution. To get a stable 
solution, some regularization approach is to be applied. 
A common technique of regularization in the context, of 
geoid determination, used, e.g., by Wang (1988, 1990) or 
Sideris and Forsberg (1990) has been suggested by Molo- 
denskij et al. (1960) and improved by Moritz (1980, 
Sect.45). In this technique, the Taylor series expansion 
transforms the gravity anomalies from the Earth's sur- 
face to the geoid. The Taylor series expansion is usually 
approximated by the first term gl only (Moritz, 1980, 
Sect.47). To avoid the problem with the ill-posedness, 
the term gl is not evaluated properly; it is assumed that 
the gravity anomalies are linearly dependent on topo- 
graphical heights, and the integration for the term 91 is 
taken over topographical heights and not over surface 
gravity data. However, the linear relationship between 
free-air gravity anomalies and topographical heights in- 
troduced by Pellinen (1962) holds only approximately 
(Heiskanen and Moritz, 1967, Figure 7-6). The question 
that remains to be answered is, how large are the errors 
of geoidal heights due to adopting this approximation? 

The downward continuation problem of the gravita- 
tional field is governed by Predholm's integral equation 
of the 1st kind, symbolically written as 

K u  = f , (1) 

where K is an integral operator, f is a known function, 
and function u is to be determined. To regularize the 
solution of this equation, Schaffrin et al (1977), Ilk 
(1987, 1993), or Engels et al. (1993), suggested that 
Tikhonov's regularization method be applied to eqn.(1), 
and solve Fredholm's integral equation of the 2nd kind, 

( I f  + c~L)u = f ,  (2) 

where L is a regularization operator and a is a regular- 
ization parameter. The choice of an optimal regulariza- 
tion operator L and an optimal regutarization parame- 
ter a is the main problem of Tikhonov's regularization 
technique. For instance, if L is the identity operator 

and a is too large, then the error due to regularization 
will be too large, and the solution will be too smooth. 
The consequence is that information contained in obser- 
vations will be lost adequately. On the contrary, if a is 
chosen too small, then data errors will be amplified too 
large, and the norm of an approximate solution will be 
extremely large. 

Bjerhammar (1962, 1963, 1976, 1987) was one of 
the first geodesists to begin to deal with the discrete 
downward continuation problem by claiming that grav- 
ity observations do not cover the Earth's surface con- 
tinuously, but, in practical applications, they are known 
in discrete points only. He discretized Poisson's inte- 
gral postulating that gravity anomalies are harmonic in 
space between the Earth's surface and a fully embedded 
sphere. The established system of linear equations was 
solved for gravity anomalies on the embedded sphere. 
Cruz (1985) applied his technique, called the Dirac ap- 
proach, for continuing the surface 2 ° x 2 ° and 5 ~ x 5 ~ 
gravity anomalies (from the area of New Mexico) down 
to the embedded sphere. He demonstrated that iter- 
ations of the Dirac approach converge faster than the 
least-squares collocation method. However, this result 
does not necessarily mean that the Dirac approach was 
well-posed in those particular cases. 

In VaniSek et al. (1995) we have independently pro- 
posed a very similar technique to the Dirac approach for 
finding the solution of the downward continuation prob- 
lem occurring in the geoid height determination prob- 
lem. By removing the gravitational effect of topographi- 
cal masses from the surface gravity data using Helmert's 
condensation technique, the gravitational field in space 
above the geoid becomes harmonic, and the relation- 
ship between IIelmert's gravity field on the Earth's sur- 
face and the geoid is expressed by Poisson's integral. 
That is why we discretized Poisson's kernel in a regu- 
lar 5 ~ x 5 ~ grid, for which mean topographical heights 
and mean surface gravity anomalies were at our dispos- 
al, and solved a large system of linear algebraic equa- 
tions for gravity data selected from the rugged terrain 
of the Canadian Rocky Mountains. We did not use any 
kind of regularization other than integral averaging over 
geographical cells. 

In this paper, we are aiming to investigate the stabil- 
ity of the discrete downward continuation problem in a 
rigorous way. We particularly intend to give an answer 
to the following problem. An unstable character of the 
continuous downward continuation problem is stabilized 
to some extent by a spatial discretization of the solution 
because a high frequency part of the solution, the de- 
termination of which makes the problem unstable, is a 
priori excluded from the solution. The cut-off frequen- 
cy is given by the Nyquist frequency associated with a 
spatial grid step size. The question arises, what is the 
smallest spatial grid step size for which the solution to 
the discrete downward continuation problem still has a 
stable solution? 



We will proceed in the following way. We again em- 
ploy the discretized form of Poisson's integral to set up 
the system of linear algebraic equations describing the 
problem. In contrast to Vani~ek et al. (1995), we do not 
modify Poisson's kernel but assume that the contribu- 
tion of far-zone integration points to the Poisson integral 
is determined to a sufficient accuracy using one of the 
existing global gravitational models of the Earth. The 
eigeuvalue spectrum of the matrix of a system of linear 
equations and the spectral contents of surface gravity 
anomalies are two items controlling the stability of the 
discrete downward continuation problem. We will carry 
out the eigenvalue analysis of the matrix of a system 
of equations and analyse the extremal eigenvalues to 
express the conditionality of this matrix. The condi- 
tionality of the matrix will depend on the elevation of 
the Earth's topography above the geoid since the to- 
pographical heights enter the Poisson kernel. We will 
see that there is a principal difficulty in determining the 
minimum eigenvalue of this matrix since it is related to 
the spectral norm of the inverse matrix that we will not 
be able to construct. 

The compensation of topographical masses is anoth- 
er possible way how to stabilize the problem as the spec- 
tral contents of the gravity anomalies of compensated 
topographical masses may significantly differ from those 
of the original free-air gravity anomalies. Using surface 
observables from the Canadian Rocky Mountains, we 
will investigate the efficiency of highly idealized com- 
pensation models to dampen high-frequency oscillations 
of the free-air gravity anomalies. The maximum entropy 
spectrum method willhelp us to analyze the power spec- 
tral contents of the surface gravity observations. 

Having analysed the stability of the downward con- 
tinuation problem, we suggest a simple Jacobi's iterative 
scheme for solving linear equations. This enables us to 
find a solution to the problem without storing the ma- 
trix of a system of equations which indeed created some 
problems in our initial attempt (Vani~ek et al., 1995). 
Finally, the convergency of Jaeobi's iterations is checked 
by the spectral norm of the matrix of a linear system of 
equations which uniquely controls the convergency of 
the iterations. 

2. Formulation of the downward continu- 
ation problem for geoid determination 

To begin with, let us recall the formulation of Stokes' 
pseudo-boundary value problem for geoid determina- 
tion with a higher-order reference gravity field. This 
problem leads to finding an anomalous gravitational po- 
tential Th,~(r, ~) that satisfies the following linearized 
boundary-value problem (Martinec and Matyska, 1996; 
Martinec and Vani~ek, 1996) 

V = T  h'~ : 0 for  ,~ > ,-~(C~), (3) 
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= - a g  e , (4) OTh'e ~g(a)+H(a) 2Th 'e  
Or + ra ~g(a) 

~ ~ -~ ~ , (5) 

where the gaoid is described by an angularly dependent 
function r = rg(~), (r, a) being the geocentric spheri- 
cal coordinates, i.e., (rg(f~), f~) are points lying on the 
geoid. We will assume that function r = rg(f~) is not 
known. Function H = H(fl) is the height of the Earth's 
surface above the geoid reckoned along the geocentric 
radius. Unlike the geocentric radius of the geoid, we 
will assume that H(~2) is a known function. Since we 
intend to solve the problem of downward continuation of 
the gravity field from the Earth's surface to the geoid, 
we shall assume that H(f~) > Hmin > 0 throughout 
the paper. Once H = 0, the downward continuation 
problem has a trivial solution. 

The superscript 'h' at T h,g emphasizes that the po- 
tential is harmonic in space outside the geoid, and thus 
it differs from the traditionally introduced anomalous 
gravitational potential T (Heiskanen and Moritz, 1967, 
Sect. 2-13.) which is harmonic in space outside the 
Earth only. The harmonicity of T h,~ in space between 
the geoid and the Earth's surface can be achieved by re- 
moving the gravitational effect of topographical masses 
(masses between the geoid and Earth's surface) from the 
potential T. More specifically, topographical masses are 
compensated by an anomalous mass distribution below 
the geoid, and only the reduced gravitational effect of 
compensated masses is subtracted from the potential T. 
This procedure, described in sections 3 and 4, assumes 
that the density of the topographical masses is known. 

Asymptotic condition (5) states (which is also em- 
phasized by the second superscript g at T h'g) that only 
a high-frequency part of the gravitational potential T h,g 
is looked for by solving the problem (3)-(5). We thus 
assume that low-degree components of the gravitational 
field are prescribed a priori as the reference field. For in- 
stance, a satellite gravitational model cut approximate- 
ly at degree g = 20 can be taken as the reference. The 
right-hand sides of the boundary condition (4), gravity 
anomalies Ag ~, are assumed to be given continuously 
on the Earth's surface. They consist of high-frequency 
parts of the free-air gravity anomalies, the direct topo- 
graphical effect on gravity, and the secondary indirect 
topographical effect on gravity. We refer the reader to 
Martinec (1993), and Martinee and Vani~ek (1994a,b) 
for definitions and the numerical determination of the 
two topographical effects. 

Two approximations will be imposed on the boundary- 
value problem (3)-(5). First, we will assume that the 
radius of the geoid in the anomalous potential T h,~ may 
be approximated by a mean radius of the Earth, /~, 

~ ( a )  - R .  (6) 
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This spherical approximation of the geoid guarantees 
an accuracy better then 1.3 × 10 .3 . Since T h,l for 

> 20 contributes to geoidal heights by 8 metres at 
most (Vanf~ek and Kleusberg, 1987), the error of spher- 
ical approximation of the geoid does not exceed the 1 
cm level. This approximation is thus admissible in most 
practical applications and will be used throughout the 
paper. 

Inspecting boundary condition (4), we can see that 
the term OTh,*/Or is referred to the Earth's surface, 
whereas term 2Th'*/r is referred to the geoid. Hence, 
eqn.(4) represents a non-standard boundary condition 
with the unknown referred to the two boundaries cou- 
pled by height H(V~). In fact, there are at least three 
possibilities with which to treat such an unusual form 
of the boundary condition. The most common and also 
the easiest way, used, e.g., by Vani~ek and Kleusberg 
(1987), is based on a belief that the approximation 

c~T h,~ 0T h,~ 

0-7 N ,o (7) 

does not generate large errors in the resulting geoidal 
heights. The solution to the problem (3)-(5) is then 
easily found by employing Stokes' integration (Heiska- 
nen and Moritz, 1967, Sect.2-16.). However, Vani~ek et 
M. (1995) show that the approximation (7) may cause 
systematic errors in geoidal heights in magnitudes of 
several decimetres. 

The second possibility utilizes Poisson's integral for 
the radial derivatives c~Th'~/Or (Heiskanen and Moritz, 
1967, eqn. 1.93). A strong singular character of the 
integral kernel composed from the radial derivative of 
Poisson's kernel may cause instabilities in the numer- 
ical solution for short geoidal wavelengths. To avoid 
these instabilities and make the problem easier to com- 
pute, Poisson's integral is evaluated under the assump- 
tion that the gravity anomaly is linearly dependent on 
topographical heights (Moritz, 1980, Sect.48). This 
assumption holds only approximately for the Earth's 
body; an open question concerning the size of errors 
of this approximation remains to be answered. 

Perhaps the least drastic approximation is to refer 
the second term on the left-hand side of eqn.(4) to the 
Earth's surface. Formally, boundary condition (4) may 
be rewritten in the form 

cgTh'l r~-FH 2-F HTh'~ rg+g (Or + = - A g ~ . - D T  h'~ , (8) 
rg 

where 

DTh,~= 2__Th,~ " 9 Th,~ (9) 
r9 r~ rg -F H rg+H 

Let us make an estimate of the maximum size of DT h't, 

2 OT h'l H 
IDrh' l- N ,9+" H < 200-~ mGal_< O.25mOal, 

(10) 

where a high frequency part of the gravity disturbances 
cgTh'~/Or on the Earth's surface has been estimated by 
the value of 100 mGal, and the height H of the Earth's 
surface above the geoid has been estimated at 8900 me- 
tres. In most practical applications, the term DT h,* may 
be neglected because its maximum size is less than the 
accuracy of the gravity data available for geoid deter- 
mination. For instance, the accuracy of gravity anoma- 
lies available for determination of the gravimetric geoid 
in the territory of Canada varies from 0.5 mGM to a 
few milligals (Vani~ek, 1995, personal communication). 
When the accuracy of the gravity anomalies is better 
than 0.25 mGal, then the term DT h,l may be computed 
from existing models of the geoid, or the problem 
(3)-(5) may be solved iteratively starting with DTh,~=O, 
and improving it successively. 

In summary, the problem (3)-(5) may be reformu- 
lated in terms of function 7-~(r, ~2), 

6flTh,~ 
T~(r, i2) = r---~r + 2T  h'~ , (11) 

as 

V~r ~ = 0 for r > R ,  

r~lR+H(a) = f ( f2) ,  

f" "-'+ O0 , 

(12) 

(13) 

(14) 

where the geoid has already been approximated by a 
mean Earth's sphere, of. eqn.(6), and f (a )  stands for 
a known 'data' functional prescribed continuously over 
the Earth's surface. (An explicit form of f(f~) is 
derived in the next two sections.) Our goal is to solve the 
boundary-value problem (12)-(14) and find function r ~ 
in space outside the geoid. Particularly, we are looking 
for 7- ~ on the geoid, i.e., r~(R, 12). The last problem is 
often called the downward continuation of a harmonic 
function (in our case, function r e) since a harmonic func- 
tion is computed on the lower boundary (the geoid) from 
its value on the upper boundary (the Earth's surface) 
(Heiskunen and Moritz, 1967, Sect. 8-10.). 

3. I d e a l i z e d  c o m p e n s a t i o n  m o d e l s  o f  t o -  
p o g r a p h i c a l  m a s s e s  

Now, let us quickly discuss possible ways of compensat- 
ing the topographical masses for the purpose of geoid 
computation. Let us begin with Newton's integral for 
the gravitational potential Vt(r, f2) induced by the 
topographical masses, 

Vt(r ,a)  = G i n  fa+H(a') o(r',Q') r,2dr, dfl, (15) 
o L(r, ¢, r') 

where ~(r, ~2) is the (known) density of topographical 
masses, and L(r, ¢, r') is the distance between the com- 
putation point (r, fl) and an integration point (r', fY), 

n( r, ¢, r') = ~/r 2 + r '2 - 2rr' cos ¢ . (16) 
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It is a well-known fact that the equipotential surfaces of 
V t undulate by several hundreds of metres with respect 
to a level ellipsoid. The fact that  undulations of the ob- 
served geoid are significantly smaller than those induced 
by the topographic masses indicates that there must 
exist a compensation mechanism which reduces the grav- 
itational effect of the topographical masses. This mecha- 
nism is probably mainly connected with the lateral mass 
heterogeneities of the crust, but partly also with deep 
dynamical processes (Matyska, 1994). To describe the 
compensation mathematically, a number of more or less 
idealized compensation models have been proposed. For 
the purpose of geoid computation, we may, in principle, 
employ any compensation model generating a harmonic 
gravitational field outside the geoid. For instance, the 
topographic-isostatic compensation models are based on 
compensation by the anomalies of density distribution 
~(r ,  f2) in a layer between the geoid and the compen- 
sation level R - D(a) ,  D(a)  > 0, i.e., the gravitational 
potential 

(r ,  a )  = G o , : R - v ( a , )  L f f  , ¢ ,  r ' )  ' 

(17) 
reduces the gravitational effect of the topographical 
masses. 

In the past, two extremely idealized isostatic com- 
pensation models were proposed to cancel the effect of 
topographical abundances from the surface gravity ob- 
servations. In the Pratt-Hayford model (e.g., Heiskanen 
and Moritz, 1967, Sect.3-4.), the topographical mass- 
es are compensated by varying the density distribution 
within the layer of a constant thickness, D(D) = Do = 
const. The compensation density Oe is prescribed as 
~ ( a )  = ~oH(a) /Do,  where t)0 = 2.67 g/cm 3 is the 
mean crustal density. The Airy-Heiskanen model (ibid.) 
suggests that  the topographical masses are compensat- 
ed by the varying thickness D(a)  of the compensation 
layer. The density of the compensation layer is con- 
sidered constant equal to the density contrast AOMoh o 

(=const>0) at the Moho discontinuity, i.e., 0¢(f2) = 
A~Moho, and D(a)  = ooH(f2)/A~OMoho. The density 
jump at the Moho discontinuity will be taken accord- 
ing to Martinec (1994), A~Moho=0.28 g/era a. Both the 
models assume that  the compensation is strictly local 
and confined to the uppermost regions of the Earth's 
interior. 

In a limiting case of the Pratt-Hayford model, the 
topographic masses may be compensated by a mass sur- 
face located on the geoid, i.e., by a layer whose thickness 
is infinitely small. This kind of compensation, called the 
Helmert 2nd condensation (Helmert, 1884), is described 
by the surface Newton integral: 

£ V¢°'*dc'~(r'f2) = GR2 o L ( r , % R )  da'  " (18) 

where or(Q) is the density of a condensation layer. 

4. T h e  i s o s t a t i c  a n d  H e l m e r t ' s  g r a v i t y  
a n o m a l i e s  

Having introduced a compensation mechanism for the 
topographical masses, the associated compensation 
potential V c approximating the topographical potential 
V ~ reads 

V ~ = V i~°st or V ¢ = V ~°~d*'~ (19) 

for the respective isostatic compensation and Helmert's 
2nd condensation of topographical masses. Martinet 
(1993) shows that  the residual topographical potential 
6V, 

6 v  = v '  - v , (20)  

for both the isostatic compensation and Hehnert's 2nd 
condensation models contributes to the geoidal heights 
by at most a few metres in mountainous areas. 

By means of the residual topographical potential ~SV, 
we can write an explicit form of function f(f2) intro- 
duced on the right-hand side of eqn.(13) (Martinec et 
al., 1993): 

f ( a )  = - [ R  + H(f2)] [AaF,e(a) + fide(a) + 6Se(a)] 
(21) 

where AgF,e(a) is a high-frequency part of the free-air 
gravity anomaly, 6Ae(a) is a high-frequency part of the 
direct topographical effect on gravity at the Earth's sur- 
face, 6A(f2), 

6A(O) - 06V(r,cgr ~) r=R+H(a) , (22) 

and 8Se(f2) is a high-frequency part of the secondary 
indirect topographical effect on gravity at the geoid, 
eS(a),  

 s(a) =  6v(R, a). (23) 

The formulae suitable for calculating the topographi- 
cal effects fiA(a) and 6S(a) are presented in detail in 
Martinec (1993) and Martinec and Vanieek (1994a,b). 

5. P o i s s o n ' s  i n t e g r a l  

Let us turn our attention to the external Dirichlet's 
problem for the Laplace equation, 

V2T e = 0 for r > R ,  (24) 

/ [ R  = (25) 

. r ~ co , (26) 

where g is a known angularly dependent function. This 
problem may be thought of as opposite to the problem 
(12)-(14) since function T ~ is looked for outside the geoid 
(r = R) from its values g(a) on the geoid. In the geodet- 
ic literature, this problem is called the upward continua- 
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tion of a harmonic function (Heiskanen and Moritz, 1967, 
Sect.6-6.). 

In contrast to problem (12)-(14), the solution to the 
upward continuation problem can be found by a sim- 
ple integration. Writing the harmonic representation of 
function ~-*(r, ft), r > R, as 

/ ( r , a )  = (27) 
j-=l r n - - - - - j  

where Yjm(f2) are complex spherical harmonics and rfm 
are expansion coefficients to be determined, substitut- 
ing expansion (27) into boundary condition (25), and 
employing the orthonormality property of spherical har- 
monics, we get 

% = f~ g (a )~ ;~ (a )da  , (28) 
d ~ t  0 

where f~o is the full solid angle and the asterisk denotes 
a complex conjugation. By coefficients ~-fm and the 
addition theorem for spherical harmonies (e.g., Edmond- 
s, 1960, Sect.4.6.), the solution to the upward continu- 
ation problem may be expressed in terms of the well- 
known Poisson's integral (Kellogg, 1929, Sect. IX.4) 

1 (29) a) = 

with the kernel 

K e ( r , ¢ , R ) = E ( 2 j + I )  Pj(cos ¢ ) ,  (30) 
j=l 

where ¢ is the angular distance between the geocentric 
directions [2 and f~', and Pj (cos ¢) is the Legendre poly, 
nomial of degree j. Using the analogy of terminology in- 
troduced for Stokes' functions (VaniSek and Kleusberg, 
1987), we will call Ke(r, ¢, R) the spheroidal Poisson's 
kernel. This can easily be expressed by means of the 
(full) Poisson kernel K(r, ¢, R) as 

Ire(r, ¢, R) = K(r, ¢, R ) - E ( 2 j + I  ) 
j=o 

P (cos ¢) ,  

where (Heiskanen and Moritz, 1967, Sect. 1-16.) 

r 2 _ R 2 
K(r, ¢, R) = I~ L3(r ' ¢, R) ' (32) 

and L(r, ¢, R) stands for the spatial distance between 
points (r, f~) and (/~, ~'). 

The integration in Poisson's integral (29) is to be 
taken over the full solid angle. For regional geoid deter- 
mination, it is advantageous to divide the integration 
domain f~0 into near- and far-zone integration subdo- 
mains. The near-zone subdomain is created by a spher- 
ical cap (of a small radius ¢0) surrounding the compu- 
tation point, while the rest of the full solid angle forms 

the far-zone subdomain. The radius ¢0 of the near-zone 
spherical cap may be chosen in various ways; one choice 
is introduced in Appendix A by eqn.(A5). In Appendix 
B, we derive the contributions of particular integration 
sub-domains to Poisson's integral (29). Schematically, 
Poisson's integral (29) may be written as the sum of 
three terms having different origins, 

(33) 

where 7-0~(r, ft) expresses the contribution to Poisson's 
integral from the integration point being on the same 
geocentric radius as the computation point, eqn.(B16), 
~-~o (r, [2) expresses the contributions of integration points 
lying within the near-zone spherical cap of radius ¢0 
(except the point a ' =  a), eq. (BS), and 
expresses the contribution of far-zone integration points, 
eqn.(B28). As a matter of fact, Poisson's kernel 
Ke(r, ~, R) decreases rapidly with growing angular dis- 
tance ¢. The dominant behaviour of Poisson's kernel 
in the vicinity of point ¢ = 0 implies that T~(r, f2) and 
~'~o (r, [2) reach much larger values than Te_¢o (r, f~). For 
instance, in the Canadian Rocky Mountains, r~o(r,[2) 
and 7~o(r,Q) reach several tens of milligals, while 
T~_¢o(r , f2) reaches only a few hundreds of microgals 
(Vani~ek et al., 1995). Later on, this fact will be utili- 
zed to exclude the far-zone contribution r~_¢o (r, ft) from 
unknowns to be determined; v~_¢o (r, f~) will be deter- 
mined by using existing global models of the gravita- 
tional potential. 

6. A c o n t i n u o u s  d o w n w a r d  c o n t i n u a t i o n  
p r o b l e m  

Using the Poisson integral (29), the downward continu- 
ation problem (12)-(14) means to find function 7"e(R, f~) 
satisfying Fredholm's integral equation of the 1st kind, 

1 ~a re(R' f2')I(-~(R + H([2), ¢, R)d[2' = f(a) 
o 

(34) 
where known function H([2) > 0 is the height of the 
Earth's surface above the geoid reckoned along the geo- 
centric radius. (Note that once H(ft) = 0 in a particular 
direction f~, the Poisson kernel becomes the Dirac delta 
function, and eqn.(34) has a simple solution Te(R, [2) = 
f(a).) 

The solution of the integral eqn.(34) can be expressed 
in terms of the complete normalized system of eigen- 
functions {ui(f2)}, {vi(fY)}, and the eigenvalues {Ai} of 
Poisson's kernel. The eigenvalue expansion of K~(/~ + 
H([2), ¢, R) can be written as the following infinite sum 

oo  

Ke(R + H([2), ¢, R) = (35) 
i = 1  
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where the asterisk denotes a complex conjugation. The 
solution of eqn.(34) then reads 

rg(l~,[2') = £ ~ii vi([2') , (36) 
i = l  

where fl are the Fourier coefficients of the expansion of 
f([2) by means of ui([2), i.e., 

o~ 

f([2) = E fiui([2) . (37) 
i = 1  

Numbering ),i such that  they create a non-increasing 
series, ,~1 >_ ;~2 > ..., eigenvalues t i  of Poisson's kernel 
are non-negative and approach zero when i --~ oc, 

Ai >_ 0 , !im t i  = 0 . (38) 
i - - + o o  

For instance, if H(~2) = H0 = const. > 0 all over the 
full solid angle [20, then 

= , (39) 
~i R +-Ho 

and ui ([2), vi ([2') are complex fully normalized spherical 
harmonics. 

The series on the right-hand side of eqn.(36) con- 
verges (and, thus, represents the solution of eqn.(34)), 
if and only if the Picard condition holds (Groetsch, 1984, 
Sect. 1.2; Kondo, 1991, Sect. 6.9; Hansen, 1992): 

i =1  \ ,~i]  < o o  . (40) 

The Picard condition says that  starting from some point 
in the summation in eqn.(4O), the absolute value of 
Fourier coefficients fi must decay faster than the cor- 
responding eigenvalues A~. 

specifically, up to which cut-off degree is the solution of 
eqn.(34) still numerically stable. Since truncation in a 
spectral domain corresponds to a given resolution in a 
spatial domain, we may also look for the smallest spatial 
grid step Af~ for which a diseretized form of eqn.(34) 
still has a stable solution. 

To answer the above question, let us rewrite the in- 
tegral equation (34) in a discrete form and find a dis- 
crete solution. Let observations of boundary functional 
f([2) run over a regular angular grid with grid step 
A[2 = (Atg, A,~), where A~ and A)~ are grid steps in 
latitude and longitude, respectively. Let observations 
result in a finite set of discrete values fi = .f([2i), i = 
1, ..., N. The solution T~(R, [2) may then be parameter- 
ized by discrete values 7~(Ri, [2i), i = 1, ..., N, evaluated 
over the same angular grid as observations fi. Pois- 
son's integral on the left-hand side of eqn.(34) can be 
computed using a numerical quadrature with the nodes 
coinciding with grid intersections and weights wi. 

Moreover, in order to transform the integral equation 
(34) into a system of linear algebraic equations, we will 
use the decomposition of Poisson's integral into three 
constituents, see eqn.(33). The smallest constituent, the 
far-zone contribution T~_¢o (r, [2), is assumed to be com- 
puted in advance, before solving a discrete problem, and 
hence, v~_¢0 (ri, [2~) will appear on the right-hand side 
of eqn.(34). Such handling of the far-zone contribution 
is made possible by its small size compared to the near- 
zone contributions r0~(r, [2) and v~0 (r, [2). An outline of 

how to compute v~_¢o (rl, f21) employing existing global 
models of the gravitational field is given in Appendix B 
after eqn.(B5). 

The discrete form of Fredholm's integral equation 
(34) of the 1st kind then reads 

~=l AijT~(R, ftj) = f ( fh)  - T~_oo(ri,ai) (41) 

7. D i s c r e t i z a t i o n  

So far, the downward continuation problem has been 
formulated in a continuous way. This means that an 
infinite number of coefficients fi should be determined 
from boundary functional f ( f t )  given continuously at all 
points on the Earth's surface. In practice, however, the 
boundary functional f([2) is measured at discrete points 
only, and hence, the number of coefficients fi which can 
be determined from such discrete data is finite. The 
infinite series (37) must be truncated at some finite cut- 
off degree. Such a truncation represents a certain type of 
regularization because a high frequency part of ~'t(R, [2), 
the determination of which makes the problem unstable, 
is excluded from the solution. A question arises whether 
the regutarization of the solution by truncation of its 
high-frequency part is efficient enough to stabilize the 
solution of Fredholm's integral equation (34). Or, more 

for i = 1, ..., N, where the diagonal elements of square 
N x N matrix Aij are equal to 

1 
Ai i=  d£(ri,  ¢o, ]{) -- 

N 

E 
j = l  
j ¢ i  

(42) 

and d~(rl, ¢o, R) is given by eqn.(B17) taken at the i-th 
grid point. The off-diagonal elements Aij, i ~ j, read 

Aij = { lwiK~(ri'o V/ ij, R) , if ely < %, 

otherwise . 

(43) 

Furthermore, we have abbreviated notations introduc- 
ing ri = t{ + H([2i). 
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The Picard condition (40) for a discrete downward 
continuation problem becomes 

E < oo ,  (44) 
i = 1  

where hi are the eigenvalues of matrix A, and f i  are 
the Fourier coefficients of the expansion of f(f~) with 
respect to the eigenvector of matr ix A (do not change 
f~ with f(~2~)). From a purely mathematical  point, the 
discrete Picard condition (44) is always satisfied, and we 
need not bother with the stability of the solution. IIow- 
ever, the discrete problem suffers from a combination of 
measurement errors, discretization errors, and roundoff 
errors, and the solution to the discrete problem may 
become extremely sensitive to these errors. Hence, in 
practice, before solving the discrete downward continu- 
ation problem, it should be checked whether the Fourier 
coefficients f i  decay faster on average than the eigenval- 
ues hi for high frequencies i. 

8. Jacobi's i terations 

In our initial investigations (Vani~ek et al., 1995), we 
solved the system of linear algebraic equations (41) 
iteratively setting up and storing matrix A on a com- 
puter hard drive. This resulted in a very large matrix 
and, consequently, a huge amount of computer memory 
was required to solve eqns.(41). However, this obstacle 
may be overcome quite simply by employing Jacobi's (or 
Ritz's) iteration approach for solving a system of linear 
algebraic equations (Ralston, 1965, Sect. 9.7-1; Rek- 
torys, 1968, Sect.30.2). The basic idea behind Jacobi's 
iteration solution is quite simple, as this brief description 
shows. Let the matr ix  notation of a system of eqns.(41) 
be written as 

= y ,  (45 )  

where y is a known vector composed from the right-hand 
sides ofeqns.(41), and x consists of unknowns T~(R, ftj). 
Let matr ix A be arranged in the form 

A = I - B ,  

where I is the unit matr ix  of order N. 
eqn.(46) into eqn.(45), we arrive at 

(46) 

Substituting 

x = y +  B x  . (47) 

The system of eqns.(47) may be solved iteratively start- 
ing with 

x = x0 = y . (48) 

At the k-th stage of iteration (k > 0) we are carrying 
out x~ according to equation 

x~ = B ~ - I  • (49) 

When [x~ - x ~ - l l  is less than some tolerance c, we can 
stop iterating. The result of this operation yields the 
solution of eqn.(45): 

K 

= + ( 5 0 )  
k = l  

where K is the number of iteration steps. 
In the k-th stage of iteration, we have to compute the 

product Ba~k-1 which is nothing else but a discretized 
form of Poisson's integral (29) (with a slightly modified 
kernel for the diagonal elements) applied to xk-1.  Thus, 
employing Jaeobi's iterative approach there is no neces- 
sity to evaluate and store matr ix  A or B separately, 
but only Poisson's integral is to be carried o u t / ( - t i m e s  
by a method of numerical quadrature. Note that the 
above Jacobi iterative scheme is a discretized version of 
the iterative method proposed by tteiskanen and Moritz 
(1967, p.318). 

9. Numerica l  tests  

9.1. Analysis  of condit ional i ty  

The first problem we will investigate numerically 
concerns the conditionality of the matr ix  A. Judging 
from the unstable behaviour of the solution to the con- 
tinuous downward continuation problem, the matr ix  A 
may become fairly ill-conditioned or even singular. In 
such a case, the solution to the discrete problem would 
be unstable, and other types of regularization, more 
powerful than simply cutting the solution at the Nyquist 
frequency Tr/A~, Af2 being a grid step size, would have 
to be applied. 

To analyse the conditionality of matr ix  A, we will 
use the eigenvalue decomposition technique. According 
to this method, matr ix  A can be decomposed to produce 
three matrices 

A = U A V  T , (51) 

where matrices U and V are column-orthogonal (matrix 
V is also row-orthogonal), and the diagonal matr ix A 
consists of eigenvalues ,~i, i = 1, ..., N. If any eigenvalue 
is zero or very small, then the matr ix  A is singular or 
near to singular. As usual, we will measure the condi- 
tionality of a matr ix by the condition number ~, defined 
as the ratio of the largest of the hi's to the smallest of 
the ~i's (Wilkinson, 1965, Sect. 2.30): 

= lama=l/lam  l - ( 5 2 )  

A matrix is singular if its condition number is infinite. 
To make the decision whether a matr ix  is ill-conditioned, 
we should compare the reciprocal value of the condition 
number n with the machine's floating point precision c 
(for example, e --" 10 .6  for single precision), and say that 
problem is ill-conditioned if 1/n multiplied by a constant 
is comparable or less than the machine precision e. For 
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the constant one may choose a larger dimension of the 
matrix, or the square root of this number, or another 
constant; that  starts getting into a hardware-dependent 
question. 

The conditionality of our matr ix A, eqns.(42)-(43), 
was studied over an area 3 ° x 6 °, delimited by latitudes 
47°N and 50°N, and by longitudes 242°E and 248°E. 
This area covers a particularly rugged part of the Cana- 
dian Rocky Mountains, which is the Columbia Moun- 
tains chain. The mean 5 ~ x 5 ~ topographical heights 
range from 503. to 2425 metres. 

Figure 1 is a plot of eigenvalues ,~i of matr ix A or- 
dered according to their size. We can observe that the 
values decrease smoothly with the condition number 

= 2.05. This behaviour contrasts to that expected 
from the stability analysis of the continuous case, name- 
ly, matr ix A is well-conditioned. Unfortunately, the 
computation of eigenvalues could not be carried out for a 
larger area because of the huge computational time and 
memory demands; the above example consumed nearly 
45 hours of total CPU time on an HP-715 workstation 
with 64 MB of the internal memory. 

We shall thus a t tempt  to estimate the extremal eigen- 
values. In accordance with Gerschgorin's theorem 
(Wilkinson 1965, Sect.2.13), it holds 

N 

:~.~o~ <_ ~ax z IA~jl, (~3) 
j = l  

and 
N 

~ .  ~ min(A.- ~ IA~jl). (54) 
j = l  
j ¢ ~  

These estimates can readily be evaluated in the case 
that  Poisson's integration is taken over the full solid 
angle f~0, and the integration kernel is the full Poisson 
kernel K(r, ¢, R). In such a case the matr ix Aij takes 
the form 

N 
A~ R 1 

- r~ 4~ ~ ~t~'(~,¢~j, .~) ,  (55) 
j = l  
j ¢ i  

A~ - ~ j K ( ~ i , % , R ) ,  if iCY. (56) 

From these equations it immediately follows that 

N 

IA~jl = ~ , (57) 
/ ' i  j = l  

and, by eqn.(53), the upper limit of the eigenvalues of 
matr ix  A is 

;~mo~ < 1, ] (58) 

since ri > R for any i. The estimate (58) is in full agree- 
ment with the maximum size of eigenvalues of matr ix A 
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F i g u r e  1: Eigenvalue spectrum of matr ix  A for the 
region of Columbia Mountains (47 ° <_ (I) _< 50 °, 242 ° _< 
)~ _< 248 °) with the 5 ~ x 5 r grid of topographical heights. 

plotted in Figure 1 because the influence of removing 
long-wavelength harmonics j = 0, . . . , g -  1, from Pois- 
son's kernel K(r, ~, R) (in order to create the spheroidal 
Poisson kernel K*(r, ¢, R)) on the largest eigenvalue , ~ , ~  
is tiny. Similarly, the far-zone contribution to Pois- 
son's integral has a very small impact on the property of 
matr ix A (see the discussion after eqn.(33)), and there- 
fore, we can include it in estimates of the extremal eigen- 
values of A. 

To get the lower limit of the eigenvalues £i according 
to eqn.(54), we can proceed as follows: 

N N 

A . -  ~ [AIjI-  R 1 
j = l  j = l  
j # i  j # i  

_ tt. i /a  K(ri ,¢ ,  R )d~ ,  (59) 
ri 27t o\Co 1 

where spherical cap C¢1 surrounds the computation point 
and has the radius which is equal to the minimumof  grid 
step sizes A~ and A;~. With the help of eqn . (Bl l ) ,  we 
further have 

1 K( r i , ¢ ,R )d f~ -  R r i + R  1 
47r o\C¢ 1 ri 2ri ~i(91) ] ' 

(60) 
where distance ~ (¢1) ,  given by eqn.(B12), now becomes: 

! 

Substituting eqn (60) into (59), we get 

(61) 

N 

A i i -  E [Aijl= l ri + R v i -  R (62) 
"i ei(¢~) " 

j = l  
d # i  

Realizing that difference ri - R is the height Hi of the 
i-th surface point above the geoid (reckoned along the 
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geocentric radius), and putting approximately (ri+R)/ri 
- 2, we get 

N 

2 Hi (63) A . -  IA jI=I- 
j = l  
j # i  

In practical applications, ~1 is always a small angle. 
Therefore, we can apply the planar approximation (see 
Appendix A) to the last term, and write 

where 

Hi Hi 
gi(¢l----) ~ X/g02(¢l) + H~ = sin/?i , (64) 

e0(¢l) = 2Rsin ¢_2 (65) 
2 ' 

and /?i is the angle between the horizon and the line 
connecting the i-th point on the Earth's surface with its 
neighbouring point on the geoid. (Note that /?i is not 
the angle of inclination of the terrain.) Equation (63) 
can now be arranged in the form 

N 

A .  - = 1 - 2 sin/?  (66) D 

j = l  
j ¢ i  

To get the lower limit of eigenvalues of matrix A, we 
have to take the minimum of the expression standing on 
the right-hand side of eqn.(66), i.e., 

Amin > min(1 - 2 sin/?i) , (67) 

or equivalently, 

Ami~ _> 1 - 2max(sin/? d "1 (68) 

The last inequality is very helpful for estimating the con- 
dition number ~ of matrix A in the case when maxi (sin/?i) 
< 1/2, i.e., when max/(/?/) < 30 °. Then, inequality (68) 
estimates the minimum eigenvalue by a positive num- 
ber, and we can see whether /~rnin approaches zero or 
not, i.e., whether the condition number ~ significantly 
grows or not. Unfortunately, the criterion (68) is of lit- 
tle use once /?i > 30 o. Then, )~rni,~ is estimated by a 
negative number, and we cannot decide whether A,~i, is 
close to zero or not. 

Applying estimate (68) to our example shown in Fig- 
ure 1, we have 

2.425 
s in /? /<  

V/(2 x 6371 x sin 2.5' x cos 500) 2 + (2.425) 2 

- 0.377, (69) 

where 2.425 is the maximum topographical heights (in 
kilometres) in this region, 6371 is the mean radius of the 
Earth (in kilometres), 2.5 ~ is a half of the discretization 

step, 50 ° is the latitude of the most northern terrain 
profile. By means of eqn.(68), we have 

~.~i~ > 0.245. (70) 

This estimate is in full agreement with the minimum 
size of eigenvalues of matrix A plotted in Figure 1 since 
A.~i~ - 0.48. 

Next, we now attempt to provide another estimate of 
the condition number by analysing the stability of the 
solution to the discrete downward continuation prob- 
lem for a model with constant topographical heights, 
H(f~) = Ho =const. all over the world (see sect. 6). 
Assuming that data functional f(f2) is given only in dis- 
crete points of a regular angular grid with grid step size 
Aft, its spectral alias-free series is finite, truncated at 
degree j.~a~ 

jmax j 

f (e)  = E E fj.~}~.~(ft), (71) 
j = 0  m = - j  

where fj,~ are expansion coefficients, and j,~ax < 7~/Af2, 
where 7r/Af~ being the Nyquist frequency (e.g., Colom- 
bo, 1981). The solution to the discrete downward con- 
tinuation problem for our simple model of a constant 
height now reads (see eqn.(36)), 

+ f l o )  v*(R,[~) = fj.~Yjm(~) (72) 
j=g~ m = - j  

Hence, v~(R, f~) becomes unstable once 

- - ,  (73) 
C 

or equivalently, 

-- ~ - 74 
£ 

where e is a machine floating point precision or a con- 
stant chosen according to the remark after eqn.(52). 
Thus, the condition number ~ in this particular case 
can simply be estimated as 

R + H0)  ~/Aa 
(75) 

In the case when H is not constant over the region under 
study, we can replace H0 by the maximum topograph- 
ical heights Hrnax. Then, such an estimate obviously 
overestimates the actual condition number, i.e., it is too 
pessimistic, and hence it holds 

(76) 
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For the example in Figure 1, we have 

//6371 + 2_.425 ~ ls0x 12 
< \ 6371 / - 2 . 2 8 .  (7r) 

We have already learned that  the actual condition num- 
ber is ~ = 2.05, so that  criterion (76) estimates ~ fair- 
ly well. Let us consider another example and put the 
machine floating point precision e = 10 -a (a single pre- 
cision), and height H0 = 6 km. Then estimate (76) 
indicates that  the problem is unstable as soon as a dis- 
cretization step is smaller than Aft -" 50 arcsec. 

Summing up, the numerical example shown in Figure 
1 demonstrates that  cutting the solution to the down- 
ward continuation problem for the gravity field at the 
frequency prescribed a priori by the discretization step 
of gravity data and/or  topographical heights is a very 
powerful tool for the regularization of the solution. The 
discrete downward continuation problem may be well- 
posed even for very rough terrain such as the Rocky 
Mountains. Nevertheless, the posedness of the discrete 
downward continuation problem should be treated sep- 
arately for each specific case. Making a grid of topo- 
graphical heights denser and denser, there is a limit of a 
grid step size expressed by criterion (68) or (76) on the 
conditionality of the matr ix  A which breaks down the 
stable behaviour of the discrete downward continuation 
problem and the problem becomes ill-posed. Then some 
kind of regularization technique outlined in introduction 
must be applied. 

9 . 2 .  A n a l y s i s  o f  c o n v e r g e n c y  

Now, let us have a look at the convergency of aacobi's 
iterations (45)-(50). The necessary and sufficient condi- 
tion ensuring that  aacobi's iterative method converges 
is that the maximum eigenvalue of matr ix B ,  A , ~  (B),  
is less than 1 (Ralston, 1965, Sect. 9.7-1), 

~ , , ~ = ( B )  < 1 , (78) 

The largest eigenvalue of matr ix B can, for instance, 
be estimated by the Gerschgorin inequality (53). This 
estimate may be pessimistic yielding )~,~=(B) close to 
1. That  is why we shall determine )~m~(B)  precisely 
by an iterative process called the power method (Ral- 
ston, 1965, Sect. 10.2). The idea of this method is 
simple. Choose a vector v0 such that it has a non-zero 
component in the direction of the eigenvector associated 
with the maximum eigenvalue A,~=(B) (if we happen 
to choose vector v0 perpendicular to the eigenvector as- 
sociated to the maximum eigenvalue )~ma~(B) and the 
approach does not work, we repeat it starting with a 
different v0), and generate a set of vectors v~ according 
to the prescription 

ckv~ = B v ~ - i  , (79) 
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F i g u r e  2: Sequence of numbers ck, k = 1, 30, for our 
two areas. Figm'e shows that  the limit of c~ for k -+ oo 
is approximately equal to 0.67 for area A, and 0.98 for 
area B. 

where ck is equal to the component of vector B v ~ _ l  of 
the largest size. Numbers ck then converge to £,~a~ (B),  

l i r a  = • ( 8 0 )  
la ---+ o o  

In the k-th stage of iteration, we only need to compute 
vector Bv~  and not matr ix B separately. Again, as 
in the case of Jacobi's iterative approach, this leads to 
us carrying out a discretized Poisson integral (29) by a 
method of numerical quadrature. 

The maximum eigenvalue of matr ix  B has been de- 
termined for two areas. In area A, delimited by latitudes 
40°N and 76 ° N, and by longitudes 214°E and 258°E 
which covers the whole region of the Canadian Rocky 
Mountains, the topographical heights are sampled as 
means in 5 ~ by 5 ~ grid. The height ranges from 0 to 3993 
metres. The topographical heights in area B, delimited 
by latitudes 47°N and 57°N, and longitudes 238°E and 
248 °, are gridded much denser (30" by 60") than in area 
A. The height ranges from 0 to 3573 metres. This area 
covers a particularly rugged part of the Canadian Rocky 
Mountains, the Columbia Mountains chain. 

Figure 2 shows the result of iterations (79), i.e., the 
sequence of numbers c~, k = 1, ...30. The limit of c~'s 
yielding ;~,~a~ (B)  is approximately equal to 0.67 for area 
A, and 0.98 for area B. The Jacobi iterative scheme will 
undoubtedly converge in the case of area A, while for 
area B, with a very dense grid of topographical heights, 
Jacobi's iterations will converge very slowly since the 
maximum eigenvalue is very close to 1. Let us have a 
look at the condition number ~ of matr ix  A for area B. 
Criterion (68) yields 

3.573 
Ami~ > 1 - 2  

x/(2 × 6371 × sin 30" × cos 57°)  + (3.573)  

e - -0 .925,  (81) 

where 3.573 is the maximum topographical heights (in 
kilometres) in this region, 6371 is the mean radius of the 
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Earth (in kilornetres), 30" is a half of the discretization 
step in longitude direction, 57 ° is the latitude of the 
northernmost terrain profile. This is the case when the 
criterion (68) cannot help us to estimate the condition 
number g since we cannot decide how close .~,~i,~ is to 
zero. Let us at tempt to use criterion (76); for area B it 
reads 

(6371-~-3.573~180×120 
<- \ 6371 ] - 1.9 x 105 . 

(Note that this criterion gives n < 3.87(!) for area A.) 
Since 1.9 x 105 begins to approach the reciprocal value 
of machine floating point precision (for arithmetic oper- 
ations in single precision), the downward continuation 
problem for area B is ill-posed. Searching the solution 
to the discrete downward continuation problem for area 
B by Jacobi's iterative scheme, we can run into serious 
difficulties connected with accumulating roundoff errors 
(Ralston, 1965, Sect. 9.7-3). 

9.3. Power spectrum analysis of gravity 
anomalies 

For regional geoid computation, the downward continu- 
ation problem should be solved over as large an area as 
possible in order to minimize the margin effect of trun- 
cated Poisson's integration (Vani~ek et al., 1995). The 
discretization of the problem then leads to a matrix of 
huge dimensions, and, unfortunately, present-day com- 
puters are not able to carry out the eigenvalue analysis. 
Thus, at present, we cannot check directly the validity 
of the Picard condition (44) for a discrete downward 
continuation problem in geoid computation. 

Nevertheless, we can ask about the spectral property 
of function f(f~). Equation (21) shows that function 
f(f t) ,  and hence also its Fourier coefficients fi, depends 
on the method of compensation of topographical mass- 
es. For the purpose of geoid computation, we may, in 
principal, employ any compensation model the gravita- 
tional field of which is harmonic in the space outside the 
geoid. Thus, we may ask which model of the compen- 
sation of topographical masses reduces a high-frequency 
part of f(f t)  most efficiently? Such a model will be most 
convenient one for solving the problem of downward con- 
tinuation of gravity in geoid height computation because 
the discrete Picard condition (44) will be satisfied in the 
best possible way. 

As a matter of fact, by a suitable choice of the mass 
density of a compensation model, we can, in principle, 
achieve that  function f(f~) is identically equal to zero 
(Moritz, 1990, Sect.8.3), 

f(f~) _ O. 

The compensation density of such a model is looked for 
by the deconvolution technique leading to the necessity 
to solve a system of linear algebraic equation for the 

parameters of compensation density. We again run into 
the same problem as above, namely, having to solve a 
huge system of linear algebraic equations, particularly 
when a discretization step of f(f~) is tiny. We will thus 
not attempt to construct an 'ideal' compensation densi- 
ty, ensuring that eqn.(83) holds, but we will study the 
influence of some idealized compensation models with an 
easily constructed compensation density on the spectral 

(82) property of f u n c t i o n / ( a )  and at tempt to find a com- 
pensation model which reduces a high frequency part of 
f(f~) in the most efficient way. 

According to the method of isostatic compensation 
or the condensation of topographical masses (see sec- 
tion 3), function - f(•) /[R + H(f2)] will be called the 
Airy-tIeiskanen gravity anomaly, the Pratt-Hayford 
gravity anomaly, or Hehnert's gravity anomaly, respec- 
tively. To analyse the spectral contents of the respective 
gravity anomalies, we have calculated their power spec- 
tra by using the autoregressive spectral method, also 
known as the maximum entropy method (e.g., Marple, 
1987, Chapter. 8). The spectral power estimates car- 
ried out by this method have a better frequency resolu- 
tion and increased signal detectability compared to the 
classical power spectral estimation based on the peri- 
odogram. The 5 ~ by 5 / free-air gravity anomaly data and 
the 51 by 5 t topographical heights (needed for computing 
the topographical effects) have been considered for the 
rugged region of the Canadian Rocky Mountains delim- 
ited by latitudes ¢P = 40°N and 76°N, and longitudes 
h = 214°E and 258 ° (the area A from the preceding 
section). 

In order to show the resulting power spectra as trans- 
parent as possible, we have plotted them along chosen 
longitudinal profiles rather than as isolines or surface 
plots. Figures 3-6 show the input topographical and 
free-air gravity data, the tIelmert and Airy-tteiskanen 
gravity anomalies, and corresponding power spectral 
densities (including the power spectral density of the 
Pratt-Hayford compensation model) estimated by the 
maximum entropy method along four longitudinal pro- 
files crossing the Rocky Mountains. Inspecting these 
figures, and also the power spectra along other profiles 
(not shown here), we can deduce the following: 

• In all the cases we have investigated, the Airy-IIeiska- 
nan compensation model reduces high-frequency com- 
ponents of the free-air gravity anomalies in the most 
efficient way. 

• There are profiles (see, e.g., Figure 3 and 4), where 
ttelmert's 2nd condensation technique reduces a short- 
wavelength part of the free-air gravity anomalies 
only slightly, while the Airy-tteiskanen model removes 
this part of the spectra nearly completely. 

(83) • We can find the profiles (e.g., Figure 5) along which the 
Pratt-Hayford model has a similar damping effect on 
high-frequencies of free-air gravity anomalies as the 
Airy-Heiskanen model, but there are regions repre- 
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sented, for instance, by Figure 6, where the Airy- 
Heiskanen model reduces short-wavelengths more ef- 
ficiently than the Pratt-Itayford model. 

9 . 4 .  D o w n w a r d  c o n t i n u a t i o n  o f  g r a v i t y  
a n o m a l i e s  

Let us finally solve the discretized Fredholm integral 
equation (41) for the respective surface gravity anoma- 
lies, and determine grid values of function T(R, ~). We 
use a simple Jacobi's iterative scheme which enables us 
to find the solution without storing a huge matrix of the 
system of equations. We have learned that for a region 
of the Canadian Rocky Mountains with surface observ- 
ables diseretized in a 5' × 5 ~ grid, the matrix of a linear 
system of equations is well-conditioned (the condition 
number is equal to 3.9). Moreover, the matrix associat- 
ed with Jacobi's iterations is contractive with the largest 
eigenvalue equal to 0.67. These two facts imply that the 
Jacobi iteration process converges to the solution which 
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is not contaminated by large roundoff errors. To reach 
the absolute accuracy of the result of ~bout 0.1 regal, 
the number of iterations does not exceed 30. The result 
of this discrete downward continuation procedure will 
be presented by means of function DAg(~2), 

1 
DAg(O)  - Ft + H ( a )  [T(R, fl) -- f in)]  , (84) 

which can be understood to be a downward continuation 
of gravity anomalies. 

Figure 7 plots the downward continuation of the 
Helmert and Airy-Heiskanen gravity anomalies along 
the four longitudinal profiles shown in Figures 3-6. We 
can observe that most of the power of DAg(~) is of a 
very short wavelength. Moreover, as expected from the 
power spectral analysis, the amplitudes of DAg(~) for 
the Airy-Heiskanen gravity anomalies are smaller (often 
significantly smaller) than the corresponding amplitudes 
of DAg(f~) for the Helmert gravity anomalies. 
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Figure  7: The downward continuation (in milligals) of the ttelmert gravity anomalies (dotted lines) and the 
Airy-Heiskanen gravity anomalies (full lines) along four longitudinal profiles across the Canadian Rocky Mountains. 
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10 .  C o n c l u s i o n s  

A crucial point of Stokes's method for geoid computa- 
tion is to continue the gravity observations from the 
Earth's surface to the geoid. By solving this problem, 
high-frequency components of the surface gravity data 
are amplified which may make the problem unstable. 
The consequence is that error - contaminated data 
together with roundoff errors result in high frequency 
oscillations of the solution. This statement drawn for 
a continuous case is somehow weakened for a discrete 
downward continuation problem when surface observa- 
tions are given in discrete points only. Discretizing the 
solution with the same grid step as the observations then 
means that  a high frequency part of the solution, deter- 
mination of which makes the problem unstable, is ex- 
cluded from the solution; the cut-off frequency is given 
by the Nyquist frequency corresponding to a spatial grid 
step size. 

This paper was motivated by wondering what the 
smallest grid step size is by which the discretized down- 
ward continuation problem is still well-posed. Or alter- 
natively, we looked for the grid step size which surely 
breaks down the well-posedness of the problem. Note 
that there is a difference between these two questions 
since it is not possible to determine a sharp limit be- 
tween the well-posedness and ill-posedness of a problem. 
To answer these questions, we have discretized the Pois- 
son integral in a similar fashion to Bjerhammar (1987) 
or Vani~ek at al. (1995), set up the system of linear 
algebraic equations, and studied the conditionality of 
the system matr ix  for the particularly rugged terrain of 
the Canadian Rocky Mountains. 

The only reliable way to treat the conditionality of 
a matr ix is to investigate its eigenvalues and evaluate 
the  ratio of the largest to the smallest eigenvalues. We 
followed this hint and employed the subroutine SVD- 
CMP (Press et al., 1989) to carry out the eigenvalues 
of the matr ix  of a system of equations composed from 
discretized Poisson's kernel. In spite of this subroutine 
belonging to the most efficient technique for finding all 
eigenvalues of a matrix, it has to operate with a full-sized 
matr ix under study. This is a major  limitation to its use 
for exploring the stability of the discrete downward con- 
tinuation problem because this problem should be solved 
over as large an area as possible to minimize the margin 
effect of truncated Poisson's integration (VaniSek et al. 
1995). Thus the eigenvatue software package is forced 
to work with a matr ix  of huge dimensions, particularly 
when a discretization step is tiny. On an HP-715 work- 
station with 64 MB of the memory, we succeeded in 
carrying out the eigenvalue analysis of the system ma- 
trix for an area of 3 ° x 6 ° with topographical 5 ~ x 5 / 
heights (the dimensions of the matr ix to be analysed 
were 2592 x 2592). The result of the analysis plotted 
in Figure 1 is certainly a surprise; the condition num- 
ber is 2.05 which means that the matrix of a system of 

linear equations for the discrete downward continuation 
problem is fairly well-conditioned. 

The impossibility of carrying out the eigenvalue anal- 
ysis for the problem over a larger area with a denser 
grid step of topographical heights made us propose the 
simplified criteria (68) and (76) for making a decision 
whether the matr ix A of associated linear 
algebraic equations is well-conditioned or not. The price 
paid for their simplicity is  that  they yield more pes- 
simistic estimates on the conditionality of this matr ix  
than proper eigenvalue analysis. Nevertheless, these cri- 
teria provide a fairly reliable estimate on the condition 
number of matr ix A for our test area A. Realizing that 
the transition between the stability and the instability 
of the problem is rather broad, the simplified criteria 
(68) or (76) may give a fairly good view into the stabil- 
ity property and help us to decide whether the discrete 
downward continuation problem for geoid determination 
is stable or not. 

The second question we dealt with, which is closely 
related to the posedness of the downward continuation 
problem, concerned the convergency of Jacobi's iterative 
scheme suggested for searching the solution to the dis- 
crete downward continuation problem. Our analysis of 
the convergency was based on the fact that  the matr ix  
B mediating the iterative solution had to be contractive 
which means that its largest eigenvalue must be smaller 
than 1. We used the Gersehgorin estimate (53) of the 
maximum eigenvalue, but it yielded a pessimistic esti- 
mate equal to 1. Therefore, the largest eigenvalue of 
matr ix B was looked for by the power method. As a 
result, we found that  the largest eigenvalue of matr ix 
B is 0.67 for our test area A with topographical 5 / x 5 / 
heights. So, we can conclude that  Jacobi's iterations 
will surely converge in this case. Moreover, keeping in 
mind that the problem is well-posed, the result will not 
be contaminated by large roundoff errors. 

On the other hand, the analysis of the largest eigen- 
value of matr ix B established for area B with discretiza- 
tion 30 H x 60" shows that Jacobi's iterative scheme will 
converge very slowly. Using criterion (76) to test the 
conditionality of matr ix  A, we found that  the problem 
for area B is ill-posed. In such a case, searching the 
solution by Jacobi's iterative scheme may run into seri- 
ous difficulties because of the accumulation of the round- 
off errors. 

Finally, we can answer the two questions posed at the 
beginning. The discrete downward continuation prob- 
lem for geoid determination is undoubtedly well-posed 
and the solution may be looked for by Jacobi's iterative 
method once the grid step size of the surface observa- 
tions as well as of the discrete solution is not 
smaller than 5 arcmin. This conclusion drawn for the 
Canadian Rocky Mountains will be valid anywhere else 
in the world, with perhaps the exception of Himalayas, 
since the Rockies represent one of the highest and most 
rugged mountainous terrain patterns. On the contrary, 
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discretizing the same region with grid step size 30" x 60", 
we found that the downward continuation problem be- 
comes unstable. In addition, Jacobi's iterations con- 
verge very slowly and cannot, in fact, be used for search- 
ing the solution. 

One possible way to regularize the solution consists 
of smoothing and dampening high frequency oscillations 
of the data by compensating the topographical masses 
in an appropriate way. For a regional geoid computa- 
tion, present-day computers are, unfortunately, unable 
to construct an 'ideal' compensation model which would 
remove completely a high-frequency part of the surface 
gravity data. We therefore studied the effect of highly 
idealized compensation and condensation models on the 
spectral contents of the surface gravity data. We found 
that for the region of the Canadian Rocky Mountains, 
the Airy-Heiskanen model reduces a high-frequency part 
of the gravity data in the most efficient way. On the 
other hand, we have demonstrated that IIelmert's 2nd 
condensation technique reduces high frequency oscilla- 
tions in the least efficient way. We found areas (q5 = 
53 ° - 55°N, h = 231 ° - 243°E, and • = 65 ° - 66°N, 
h = 218 ° - 230°E) where the Airy-Iteiskanen method 
reduces the high frequency components of surface grav- 
ity fairly significantly in contrast to the very small re- 
duction effect of Itelmert's 2nd condensation technique. 
This is surely a consequence of the fact that the latter 
technique is a pure mathematical tool for the descrip- 
tion of compensation of topographical masses, whereas 
the Airy-Heiskanen model may, in some regions, approx- 
imate the actual compensation mechanism fairly well. 

So, we recommend that a spectral analysis of the 
respective gravity anomalies should be carried out be- 
fore choosing a model of compensation of topographical 
masses for geoid height computation. Our experience 
with the spectral analysis and the downward continua- 
tion procedure of the gravity observables from the Cana- 
dian Rocky Mountains indicates that the Airy-Heiskanen 
model rather than IIelmert's 2nd condensation tech- 
nique should be used to reduce the high-frequency 
oscillations of surface gravity data. 
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A p p e n d i x  A .  S p h e r i c a l  r a d i u s  o f  t h e  n e a r -  
z o n e  i n t e g r a t i o n  c a p  

In this appendix we will show a possible way to choose 
the radius of the near-zone integration cap. The idea 
is based on the effort to express Poisson's kernel in 
the far-zone domain as a product of the height of the 
computation point and an isotropic function. Such an 
expression is suitable for the numerical computation of 
Poisson's integral over the far-zone domain. 

Let us start with the planar approximation of the 
geoid. The planar approximation of distances (not to be 
confused with a planar approximation of the geoid), use- 
ful for the determination of the regional geoid, is based 
on the fact that  the ratio H/R never exceeds the value 
of 1.4 x 10 -a. This approximation is admissible because 
it produces an error of the same order of magnitude as 
the error of the spherical approximation of the geoid, see 
eqn.(4). Employing planar approximation of distances, 
quantities of the order of H/R are neglected with respect 
to 1. For instance, the planar approximation of the spa- 
tial distance L(R + H, ¢, R) between points (R + H, ft) 
and (R, a ' )  is simple to derive using eqn.(16): 

L ( R + H , ¢ , R ) ~ o + H  ~, (A1) 

where 

g0 = 2Rsin 2 (A2) 

is the (horizontal) spatial distance between points (R, a)  
and (R, fY). 

The radius ~b0 of a near-zone spherical cap will be 
chosen such that  the spatial distance L(R + H, ¢, R) 
outside this cap can be approximated by the distance go 
with an error being not larger than the error of the pla- 
nar approximation of distances. Writing approximately 
L(R + H,¢,R) ~ ~o for ~b > ¢0, we make an error of 
magnitude of H;/~. If we require that  this error should 
not be larger than H/R, i.e., 

H 2 H 
g02 < ~ , (A3) 

the radius ¢0 of the near-zone integration cap is given 
by the equation 

¢0 1 / - f f  
sin ~ -  = 2 Y ~  (A4) 

Since H/R << 1, we may put sin ~b/2 - ¢/2,  and the 
condition (A4) reduces to: 

¢0 --- (Ah) 

The near-zone is then defined by those ¢'s which are 
smaller than ¢0. The smaller the height of the compu- 
tation point, the smaller the near zone and the larger the 

far-zone. In the extreme case, when the computation- 
al point is on Mount Everest, the near zone extends to 
the angular distance of about ¢0 = 2 °, and the far-zone 
from 2 ° to 180 °. When H = 0, there is no near-zone. 

Under the condition (Ah), the Poisson kernel 
K(r, ~, R), eqn.(32), for integration points lying in the 
far-zone can be approximated as 

K(r, 2R2H ¢ , n ) -  for ¢ > ¢0 , (A6) 

making an error which does not exceed the error of the 
spherical approximation of the geoid. 

A p p e n d i x  B .  P o i s s o n ' s  i n t e g r a t i o n  o v e r  
n e a r -  a n d  f a r - z o n e s  

As already introduced for regional geoid determination, 
it is advantageous to split the integration domain f~0 
in the Poisson's integral (29) into near- and far-zone 
subdomains. The near-zone is created by a spherical 
cap surrounding the computation point, while the rest of 
the full solid angle creates the far-zone subdomain. The 
radius ~b0 of the spherical cap may be chosen in various 
ways; one possible choice is introduced in Appendix A 
by eqn.(Ah). 

Mathematically, splitting the integration domain fl0 
a s  

ao = u (do \ C ,o) , (B1) 

where C¢0 is a spherical cap of radius ¢0, the Poisson 
integral (29) reads 

/ ( , ,  a) = Ro(' ,  a) + a ) ,  

where the term 

1 /c vz(R' f2')KZ(r' ¢ '  R)df~' (B3) R°( r ' a )  = 

expresses the contribution of the integration points lying 
in the near-zone spherical cap, and 

1 ~ / ( R ,  e ' )K~(r ,  ¢, R)da '  

(B4) 
expresses the contribution of the far-zone integration 
points. The crucial point lies in the different ways of 
evaluating the particular contributions to Poisson's in- 
tegral. The near-zone term ~ 0 ( r ,  f~) will be evaluated 
under the assumption that  function 1r£(•, Q) is given 
continuously over spherical cap C¢o ; ~ o  (r, f~) will then 
be determined by computing the integral (B3) using 
some method of numerical integration. On the contrary, 
to determine the far-zone contribution r~_¢0(r , f~), we 
will assume that function ~-~(R, ~2) is approximated by 
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a finite spherical harmonic series of the form, 

j,~.= j 
re(R,,ft)= ~ ~ r jem~m(a) ,  (B5) 

j=g rn=-j 

where j , ~  is a finite cut-off degree; G_¢o(r, f*) will 
be determined by the summation of a corresponding 
harmonic series. We thus assume that an estimate of 
spherical harmonics 7fm is available. Inspecting the 
definition (11) of function r e, we can observe that vein's 
may be established by means of the spherical harmon- 
ics of potential T h'z. These harmonics can be set up by 
employing spherical harmonics of a global gravitational 
field and spherical harmonics of the Earth's topography; 
for details we refer the reader to Vani~ek et  al. (1995), 
and Martinec and Vani~ek (1996). 

B . 1 .  N e a r - z o n e  c o n t r i b u t i o n  

To begin with, let us evaluate the near-zone contribution 
~¢o(r, f*). An increase in magnitude of the spheroidal 
Poisson kernel Ke(r, ¢, R) when ¢ --+ 0 makes the nume- 
rical computation of the integral (B3) difficult. There 
are a variety of techniques on how to compute this inte- 
gral numerically (e.g., Shaofeng and Xurong, 1991; Gy- 
sen, 1994). The most straightforward way is to use the 
fact that 

K q r , ¢ , R , ) d a '  < (B6) OO 

¢o 

for R, 7~ 0 and r ¢ 0, and to remove a small neighbour- 
hood of the point ¢ = 0 from the integration domain of 
the integral (B3); the separate contribution of this area 
is then evaluated analytically. Formally, eqn.(B3) can 
be written as 

7-¢0 ( r ,  
v,0 

(B7) 
where 

= 1 £ [~(R,I a')  - / ( R , ,  a)] Kq~ ,  ¢, R)da'  
4r~ ¢o 

(B8) 
Let us investigate the limit for ¢ + 0 of the subintegral 
function in the angular integral (B8). When V5 --+ 0, 
then re(R, fY) -+ re(R., f~). It is reasonable ~o assume 
that function re(R, f~) is bounded. This assumption 
means that  there are no singularities of the gravitational 
field above the geoid. As the element df~' of the full solid 
angle in polar coordinates (¢, a) is dry = sin ededa, the 
limit for ~b ---+ 0 of the subintegral function in eqn.(B8) 
reads 

lim { [re(R, f}') - re(R, f2)] K*(r, ¢, R) sin ~b} = 
¢---* 0 

= re(R,,a) ~im ° [Ke(r, ¢, R,) sin ¢] - 

-re(R, f~) lira [Ke(r, ¢, R) sin ¢] = 0 (B9) 
¢--*0 

since we assume throughout the paper that  height H of 
the computation point is only positive, i.e., H > H,~,~ > 
0, and thus Ke(R+H, ¢, R,) < oo whenever R, > 0. This 
also means that lim¢~0 Ke(r, ¢, R,) < 0% and thus both 
constituents on the right-hand side ofeqn.(B9) are finite. 

Let us now evaluate analytically the incomplete an- 
gular integral of the spheroidal Poisson kernel occurring 
in eqn.(B7). As dry = sin ededa, we have 

ICe(r, ¢, R,)df~' = Ke(r, ¢, R,) sin ededc~ = 
¢o --0 = 0  

//°[ = 2rr =0 K(r,  ~b, R , ) -  

-~_, (2j+ 1) P~(cos¢) s i n C d ¢ ,  (B10) 
j = 0  

where we have substituted for Ke(r, ¢, R,) from eqn.(31). 
The first integral may be evaluated as follows. 

fc eo K (r, ¢, R) sin ~b&b = 
=0 

/~#o sin ¢&b 

= R, (,.2 _ R~) =0 [r~ + R2 _ 2,.R cos ¢]3/2 = 

= R, (r~ - R~) ~ o  [~ ~ + , e ~  - 2~R,~] 3/~ = 

_ r 2 - R 2 1 x l=cos 
r ~/r 2 + R 2 -- 2rRx ¢o = 

r + R, (1 r--R, 
= "77-7-7_ , ( B l l )  r g[~/)0) .] 

where 

g(~b0) = x/r  2 + R 2 - 2rR cos ¢0 • (/712) 

In the first step, we have substituted for Poisson's kernel 
K(r, ¢, R) from eqn.(32) and made the substitution x = 
cos ¢. Then we have found the primitive function to the 
indefinite integral over ¢, and, finally, have substituted 
the lower and upper limit. 

The second integral on the right-Mud side of eqn.(B10) 
reads 

j/¢ E ( 2 N  + 1) Pj(cos¢)sin~b&b -= 
=0 j = 0  

R [1  g -1  j-I-1 1 

- -  r o~¢o j= t  \ r /  gcos ¢o 

= -n l(  - cos ¢0) - ~ ( 2 j  + 1) R,;0(cos ¢ 0 ) ,  
r j_.=] 

(ma) 
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where Rjk(xo) stand for the incomplete integrals of the 
product of two Legendre polynomials (Paul, 1973, eqn. 
(5)), 

/ ] (  Rjk(xo) = Pj(x)P~(x)dx . (B14) 

Substituting from eqns.(B10)-(B13) into (B7), we 
obtain the final form of the near-zone term ~ o  (r, ft), 

~o(~, a) = ~0%, a) + go(r, ~), (ms) 

where 
reo(r, a) = de(r, ¢o, R)re(R, ft) . (B16) 

The first term on the right-hand side stands for 

de(r, ¢o, R) = ~ 1 

e - 1  

- /~(1  - cos ~bo' + E ( 2 j  + 1) ( -~ )  
r j = l  

j - b 1  

Rj0(cos ¢0) 

(B17) 
and r~0(r, t2)is given by eqn.(BS). 

B . 2 .  T r u n c a t i o n  c o e f f i c i e n t s  

Analogous to Molodensky's truncation coefficients for S- 
tokes' function (Heiskanen and Moritz, 1967, Sect. 
7-4.), we introduce the truncation coefficients for Pois- 
son's kernel K(r, ¢, R) and spheroidal Poisson's kernel 
Ke(~, ¢, R). 

Let us introduce an auxiliary function K¢°(r, ¢, R) 
a s  

0 if 0 _ < ¢ < ¢ 0 ,  
K~°(r,¢,R)= K(r,¢,I~) if ¢0 < ¢ _ < 7 r ,  

(B18) 
and expand the function K¢°(r, ¢, R) into a series of 
Legendre polynomials, 

o o  

K ¢°(r ,o ,R)  = E 2j + 1 -----~--qj(r, Oo)Pj(cos¢) , (B19) 
j=o 

where qj(r, Oo) are expansion coefficients to be deter- 
mined. Multiplying eqn.(B19) by Legendre polynomial 
P~(cos ¢) and integrating the result over all ¢'s, we get 

J¢ ~ K ¢° (r, ¢, R)P~(cos ¢) sin ¢d¢ = 
= 0  

~ 2 j + 1  ff¢~ 
= -T--q~(~, ¢0) ,,~ (cos ¢)Pk (co~ ¢) sin ¢d¢. 

j=0 =0 
(B20) 

Using the orthogonality property of Legendre polyno- 
mials and substituting for K¢°(r, ¢,/g) from eqn.(B18), 
the truncation coefficients qj(r, ¢0) for Poisson's kernel 
K(r, ~, R) read 

qj(r, ~b0) = K(r,¢,R)Pj(cos¢)sin~bd¢. (B21) 
o 
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Figure  8: Truncation coefficients qj(¢o) for ¢0 = 1 ° 
and 3 ° , and j = 0, 1,...,360. 

Provided that radius ~0 is chosen according to eqn. 
(Ah), the integration in eqn.(B21) is taken over the far- 
zone domain only. In this case, Poisson's kernel may 
be approximated by formula (A6), and truncation coef- 
ficients qj (r, ¢0) become 

qj(~,¢0)- R q~(¢°)' (B22) 

where 

f] 1 qj(¢0) = 4sin a ¢_Pj(cos¢)sin¢&b . (B23) 
0 2 

For example, 

(1) 
q0(¢0) = 2 sin~- 1 (B24) 

To get a rough view into the magnitude of truncation 
coefficients qj (¢0), Figure 8 plots qj (~b0) for ¢0 = 1 ° and 
¢0 = 3 °, and for j = 0, ..., 360. 

Employing the same procedure as above, we can 
introduce the truncation coefficients q5(¢0) for the sphe- 
roidal Poisson kernel Ke(r, ¢, R). After some straight- 
forward algebra, we get 

q~(r, ~o) = K~(r, ¢, R)Pj(cos ¢) sin ¢d¢ . (B25) 
o 

These coefficients can be expressed in terms of trunca- 
tion coefficients qj (r, ¢0) for Poisson's kernel K(r, ¢, R) 
and Paul's coefficients Rjk(cos¢o) as 

qJ(~, ¢0) = qj(~, ¢0) -  ~ ~j~(cos ~0) 
k = 0  

(B26) 
In turn, by means of the truncation coefficients q~(r, ¢0), 
we can express function Kg,¢°(r, ¢ ,R)  which is equal 
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to Ke(r, ~b, R) within the interval ¢0 _< !b < lr, and 
vanishes elsewhere, as 

2j ÷ 1 
¢, R) = )__2 2 j=0 

qS( , ¢ 0 ) 5 ( c o s ¢ )  (B27) 

B . 3 .  F a r - z o n e  c o n t r i b u t i o n  

Now, we are ready to give a spectral form of the far- 
zone term %e_¢o(r,a ). Inserting eqn.(B5) and (B27) 
into (B4) and interchanging the order of integration and 
summation, we obtain 

lJ-~x J 

j=g rn=-j 

(B2s) 
where truncation coefficients q~(r, VS0) are given by eqn. 
(B26). 

B . 4 .  S u m m a r y  

Let us summarize the formulae for the numerical compu- 
tation of Poisson's integral (29). Schematically, it may 
be written as a sum of three terms, 

/ ( r ,  a)  = ~0%, a)  + ~o(  ~, ~) + ~-¢o  (r, ~ ) ,  I (B29) 

where T0e(r,f}) expresses the contribution to Poisson's 
integral from the integration point being on the same 
geocentric radius as the computation point, eqn.(B16), 
r~o (r, f]) expresses the contributions of integration points 
lying within the near-zone spherical cap of radius ~b0, 
eqn.(B8), and r~_¢o(r , f~)expresses the contribution of 
far-zone integration points, eqn.(B28). 


