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Abstract

The direct topographical effect that arises when the Sto-
kes problem is treated by means of Helmert’s 2nd con-
densation technique has been a subject of several stud-
ies in the recent past. In this paper, we use a spherical
rather than planar model of the geoid, to derive more
accurate expressions for the effect. Also our expressions
are formulated so that the influence of lateral variations
of topographical density can be taken into account. As
a by-product of our investigation, we show that the inte-
grals figuring in the direct topographical effect arc only
weakly singular and we proceed to remove the singular-
ities by introducing spherical ” Bouguer” shells.

Introduction

The effect of terrain on the computation of precise geoid
undulations has been discussed by many geodesists (Hel-
mert, 1884; Heiskanen and Moritz, 1967; Wichiencha-
roen, 1982; Vaniéek et al., 1987; Vani¢ek and Kleus-
berg, 1987; Wang and Rapp, 1990, etc.). The problem
is that Stokes’ formula for gravimetric determination of
the geoid requires that there be no masses outside the
geoid and the gravity be referred to the geoid. These
assumptions require the real Earth’s topography to be
disposed of.

Another complication is that the topographical mass-
es, i.e., masses between the geoid and the topographical
surface, generate a strong gravitational field capable of
displacing equipotential surfaces, such as the geoid, by
as much as 10> m. Geoidal heights of this magnitude
are not observed in reality because the gravitational ef-
fect of the topographical masses is compensated very
efficiently by isostatically distributed masses within the
earth’s crust and lithosphere. Since the knowledge of
the topographical mass density is rather poor, the above
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fact points out that the gravitational potential of the to-
pographical masses cannot be evaluated directly (e.g.,
by means of the Newton integral) to a sufficient ac-
curacy if the geoidal height determination accuracy is
required to be of the order of centimeters.

It is much more convenient to approximate the actu-
al potential of the topographical masses by the potential
of a material single layer. This can be done provided
that the shape and surface density of the single layer are
chosen in such a way that the layer potential approxi-
mates the basic features of the topographical potential.
One way of doing it is by means of Helmert’s second
condensation technique (Heiskanen and Moritz, 1967,
sects. 3-7, 4-3), whereby the topographical masses are
condensed as a surface material layer on the geoid with
the surface density given as the product of the aver-
age column density of topographical masses with the
height of the topographical surface. Then the actual
topographical potential V* may be written as

Vi=Ve+6V, (1)

where V° is the gravitational potential of the material
layer on the geoid and 6V is the residual gravitational
potential. The potential V¢ has the desired properties:
it is harmonic outside the geoid as required in the Sto-
kes integration and it approximates the basic features
of the topographical potential. Thus V¢ can be added
to the potential generated by masses contained within
the geoid without destroying its harmonicity outside the
geoid. It is then the sum of these two potentials that is
solved for as the solution of the boundary value prob-
lem of geodesy (Heiskanen and Moritz, 1967, Chapter
2.) bypassing the necessity to evaluate V¢ from topo-
graphical mass density.

Compared with the topographical potential V*, the
residual potential 6V is a very small quantity generating
geoidal undulation changes of the order of 2 m. That
is why, 6V may be evaluated to a sufficient accuracy
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directly by the Newton integration using only a rough
information about the topographical density. By intro-
ducing the Helmert condensation layer the requirement
on topographical density accuracy is thus reduced by
about 2 orders of magnitude.

The gravitational attraction A, defined as the at-
traction difference between the topographical masses
and condensed topography,

t ]
g =0 O O 2)
dr ar ar
is sometimes called the ”direct topographical effect”
(Heiskanen and Moritz, 1967, p.145) and denoted by
—Ap + Ac, sometimes the ”attraction change effect”
(Wichiencharoen, 1982), or the ”topographical attrac-
tion effect” dgr (Vanicek and Kleusberg, 1987). Through-
out the paper we will refer to § A as the direct topo-
graphical effect on gravity. For the purpose of geoid
calculation the attraction of both the topography and
the condensed topography in eqn.(2) must be considered
on the topographical surface (Martinec et al., 1993).
Note that for quasigeoid determination the attraction
of the condensed topography must be considered on the
quasigeoid (Wang and Rapp, 1990; Heck, 1993).

This paper deals, once again, with the direct topo-
graphical effect, but the planar approximation of the
geoid is replaced by a spherical approximation. More-
over, the usual assumption of constant density of the
topographical masses (Moritz, 1968; Wichiencharoen,
1982; Vani¢ek and Kleusberg, 1987) is no longer need-
ed. We also find the formulae for the direct topograph-
ical effect which enable us to integrate over the topo-
graphical masses in the immediate neighbourhood of the
computation point as well as in the far-zone. Thus the
presented theoretical results are more general and more
accurate than those derived by Vanicek and Kleusberg
(1987).

The external gravitational poten-
tial of topographical masses

Let the topographical masses be bounded by the the
geoid with the geocentric radius r,(€2) and by the outer
topographical surface with the geocentric radius r,(Q2)+
H(€). This means that H(Q) is the height of the to-
pographical surface above the geoid reckoned along the
geocentric radius; this height, to a relative accuracy bet-
ter than 5 x 107°, is equal to the ordinary orthomet-
ric height. We shall assume throughout the paper that
H > 0. The argument 2 stands for a horizontal position
given by co-latitude 9 and longitude A. The gravitation-
al potential induced by the topographical masses at a

point (r, Q) is given by the Newton volume integral

ro(Q)+H(Q') '
Gf / p(t’ Q) fzdr!dﬂn‘ k
FJri=rg(Q) 11' —l‘l
3)

where p(r', Q') is the density of the topographical mass-
es, [’ — r| is the distance between the integration and
the computation points, and Q' is the full solid angle.

To decompose the potential V* according to eqn.(1),
we can proceed in at least two ways. Taking a suitable
analytical model for density p, the integral over r’ in
eqn.(3) may be evaluated analytically. Then the result
can be expanded into a series expansion with respect to
H in such a way that the first term is the potential V°.
We will follow the other possibility: we first expand the
reciprocal distance 1/[r' — r| in eqn.(3) by means of a
Taylor series expansion at a point on the geoid. This
ensures that the condensation layer will be on the geoid.
Integration over 7' will then show that the potential V!
may be decomposed according to eqn.(1).

In the formula for the direct topographical effect,
the gravitational potential V;(r, Q) and its radial deriva-
tive must be evaluated at a point on the topographical
surface (Martinec at al., 1993). Since the reciprocal dis-
tance becomes infinite at this point, we have to proceed
the following way: we first derive the gravitational field
induced by the topographical masses at an arbitrary
point above the topographical surface. Then the point
will be brought down to the topographical surface. We
will show that for this case the integration kernel of the
potential V* is weakly singular. The singularity can be
removed by subtracting and adding the gravitational
potential of a spherical Bouguer shell.

Let us emphasize that in this paper we will treat on-
ly the external gravitational field generated by topo-
graphical masses. The reason is evident: as mentioned
in the Introduction, the formulae are intended to be
used only at the earth’s surface. When the potential
V¥(r,Q) is evaluated outside the topographical masses,
i.e., for points r > rg(Q) + H(Q), the distance [r' — 1]
never goes to zero, and the reciprocal distance is thus
always bounded. The function 1/|r' — r| may be there-
fore expanded into a Taylor series. Denoting the kernel
of the Newton integral (3) by

Vi(r,Q)

2

J(T’,Q,TI,Q") = m f (4)

we have
e U e
= 13 J(r,Q, ", 4
= Zﬁ% [r' = ro(@)] +

i=0 L ri=rg ()

+ Rop1(r, 2,7, n) . (5)

The remainder of the Taylor series, R,,+1, may be writ-
ten in the Lagrange form

Rﬂ+1(rl Q) 7'!, Qf: 73'] ==



1 HLI(r Q)

STl ot A

"’:"g(nr}'i"?("’ _”'g(n'))
x [r' = rg(@)"* (6)

where the parameter n takes a value from the interval
(0,1). The (n+1)-¢h derivative of the kernel J(r, Q,r’, ')
with respect to r’ may be expressed as a finite pow-
er series of the reciprocal distance 1/|r' —r| (cf., eqn.
(A11) in the first Appendix). As explained above, the
reciprocal distance is always bounded, and so is the
(n + 1)-st derivative of the kernel J(r,Q,r',Q'). Math-
ematically, for each ' € (ry(),ry(') + H(Q')) and
r > rg(Q) + H(Q), it holds

n+1 Q ! Q"
or+iJ(r, +‘lr, ) <c,
ar'" ' :
r =r9(ﬂ’)+n(f‘ —rg(ﬂ'))
where C is a finite number equal to
n+41 ! !
C = max ( < J(:r;,nfi,lr 1) ;
3?‘ ,.:=,.g(g.r)

AL (e O (1
orntt ' ®)
r=rg () +H(Q')
Because of
A mn+l
Yoot st [ L) o 9)

n—og

(n+1)!

for each r’ € (ry(Q'), ry() + H(')), the limit of eqn.
(6) for n — co becomes

nl_ipgq Baaaly @, 58 Q5 1) = 0. (10)

This means that the Taylor series (5) converges and its
sum from i = 0 to i = oo yields r'*/|¢/ — r|.

Inserting series (5) for n — oo into (3), and inter-
changing the summation over i and integration over r’
and ' (which is admissible because of the uniform con-
vergence of the Taylor series (5)), we get

Vi) =D Vi(rnQ), (11)
i=0
where for all 7:
i (el
‘V,'(T',Q):_E/ 3,](1',9,.7',9) §
'!.! ] ar"! rizrg(n.r)
rg(Q )+ H(QY) :
X / p(r' Q) [ — (V)] dr'dQ . (12)
ri=r (1)

Let us have a look first at the potential V. Taking
into account the definition (4), eqn.(12) for 7 = 0 reads:

Vo(r, Q) =
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P2(Q)  [re(@)+HE)
— G| sl i vl OB
i (13)

Denoting the average density along the topographical
column of height H(Q') as

1 /"g(ﬂ’HH(ﬂ')

() = m p(r', )dr' | (14)

t=r,(Q)
the potential Vy takes the following form

r2(Q
Vo(r, Q) = G/m p(Q) H(Y) E;(QT(*)Z—ﬂdQJ . (15)

The potential Vj is the gravitational potential of a mate-
rial surface on the geoid with the surface density o(Q') =
p(Q) H(') and radius r4(£2). In the context of Stokes-
Helmert approach, this surface is the condensation lay-
er, and Vg is thus the potential V¢ defined in the In-
troduction. We have thus shown that if the Helmert
condensation layer has the density p(Q') H(Q'), where
p(Q') represents the mean actual value of topograph-
ical density along the column of height H (') in the
sense of eqn.(14), the external gravitational potential
of topographical masses V* can be written according to
eqn.(1). The residual potential 6V is given by a sum of
gravitational potentials V;, i = 1,2,...:

§V(r,Q) = iv;;(r, Q). (16)
i=1

As shown by Wichiencharoen (1982), Wang and Rapp
(1990), or Martinec and Vaniéek (1994), the equipoten-
tial surface undulations generated by the residual poten-
tial §V for a constant density of 2.67 g/cm?® are of the
order of 2 m. That is why, for the purpose of computing
the residual potential §V, the geoid may be modelled by
a sphere of radius R,

r () =K., (17)

where R is the mean radius of the Earth. This approx-
imation is justifiable because the error introduced by
this approximation is at most 3 x 10~% (Heiskanen and
Moritz, 1967, sect. 2-14.) which then causes an error of
at most 6 mm in the geoidal height.

For the same reason, the density of topographical
masses in the residual potential 6V may be modelled
by a mean value p(Q') of the actual density p(r',')
along the topographical column of height H(Q'),

p(r', Q') = p(Q') . (18)

Note that this assumption still allows us to consider
lateral density variations in topographical masses which
is a more general model than the usual assumption of
constant density (Wichiencharoen, 1982; Vanicek and
Kleusberg,1987).
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Under the assumptions (17) and (18), the potentials
Vi, 1=1,2, ..., acquire the following form

G g 2
Vi(r,Q) = ﬁ.[wﬂ(ﬂ )'5;,-' (m)

R+H(0) 3
X / [ — R]) dr'dQ¥’ . (19)
r'=R

x

r'=R

Performing the integration over ', we get

Vi(r, Q) =
r'=R

G N ritleof & v
. —(£+1)I fn,P(Q )H+ (Q)Br’j (lrrfrl)
~(20)

It is advantageous to re-arrange eqn.(20) in a different
form. Multiplying and dividing it by R'~2, we get

GR™i+?
Vi(r, Q) = D)L o

where the integration kernel M;, i > 0, is isotropic and
can be written as

i 12
M,:(T', Q! Ri QI) = Mi(r, ‘w) — Ré_za_ ( 5 )

ar’t \ e’ —r|

r'=R
(22)
As usual, 9 is the geocentrical angular distance between
the points 2 and Q.

As shown in the Appendix A, the integration kernel
M;(r,4), 1 = 1,2, ..., may be expressed in two different
ways: (i) in a spectral form as an infinite series of Leg-
endre polynomials in the variable cos ¥, cf. eqn.(A3),

me =53 (712) (B) "m0

or (ii) in a spatial form as a finite power series of the
reciprocal spatial distance 1/¢, cf. eqns.(A12)-(A13),

Mi(r, ) = FH(r¥) | (24)

where, for i > 1,:

i+l—s : o
Figl—s4t —s—=t)(i- 1"
XZ(_I} tioste (1+2—s— )i —s+1) g
t=0

G+2-s—D)tl

X (w)t ; (25)

The summation in eqn.(25) must be taken over such ¢’s
for which i — s+t +1 is an even number. The symbol ¢

ag’.

/ p(QYHTHQ YM;(r,Q, R, Q)dY
ni

denotes the spatial distance between points (r,2) and

(R, ), ie.,

¢=+/r2+ R2—2rRcos? . (26)

It is instructive to evaluate the first two integration
kernels M; explicitly. Performing the required differen-
tiation with respect to ' and putting 7' = R, eqn.(22)
(for i = 1) reads

My(r,¥) = %+ F(r—Reosy) . (27)

Putting ¢ = 2 in eqns.(24) and (25), we get

r?  3r2 5

My(r, ) = ='m + f—s(r—Rcos Y) (28)

The direct topographical effect on
the potential

Until now we have assumed that the point of interest
was outside the topographical surface. Let us now con-
strain the computation point to the earth surface so
that for any Q, r = 7(Q) = R+ H(Q). We note that
under this constraint we have

'})in}}H(Q’):H(Q):H ! (29)
The gravitational potential 6V (r, ) at a point on the
topographical surface (r = R+ H) will be called the
direct topographical effect on potential.

In the vicinity of a computation point at the sea level,
i.e., when 9 and H go to 0 simultaneously, i.e., also
£ — 0, the integration kernels M; grow beyond all limits.
To decide what kind of singularity we would be faced
with in eqn.(21), let us investigate the behaviour of the
product H*+'(Q')M;(r,v) at the point ¢ = 0. First
we transform the integration over spherical coordinates
Q' (eqn.(21)) to an integration over polar coordinates
(¥, @): :

Gl

T X

I’:‘(?’, Q) — m

27 T )
) HH v L
. /a:{] /:U P(‘l;{’, )H (l‘b’ O’)M,(r, 1:'!’) 7 d',!’)d 5

(30)
where the integration kernel M; has been expressed by
means of the reduced kernel M; (cf. eqn.(24)).

Eqns.(A15) and (A16) in the Appendix A show that

S r
lim () =147, @)
and
; =1 gl i
Vi> l: lim M,(r,¢}zzdss (H) » (32)



where H is the height of the computation point above
the geoid and the coefficients a;; are finite (given by
eqn.(A17)). Since the computation point is on the to-
pographical surface, then for ¢ — 0: H(¢,a) — H.
Thus we have

'}'imé H2(,0)My(r,¥) = H> +rH ,  (33)

and

Vi>1: lim HF (4, o) Mi(r, ¢) = r""lZa,s (g_) :

(34)
Since the height H is bounded, eqns.(33) and (34) show
that the function Hi*!M; is also bounded at the point
1 = 0. Moreover, it vanishes if H — (0. The ratio
sin/£ remains bounded if ¥ — 0. Thus the whole
integrand in the integral (30) remains bounded at the
point ¥ = 0. The integrals in eqn.(30) or (21) are ordi-
nary improper integrals: they are only weakly singular.
To remove the (removable) singularity at the point
1 = 0, let us transform the integral (21) to the following
form, by a simple algebraic operation:

GR—H—E

Vi>0: ey {/ﬂ [p(Q)H Q)

Vi(r,Q) =

o DH ] Mi(r, a4 oD [ M |

(35)
As shown in the Appendix A, for i=1,2 the integral over
M;(r, 1) is equal to 87/r, (eqns.(A22) and (A24)) and
vanishes for ¢ > 2. By summing up the potentials V;,
i=1,2,..., we get the direct topographical effect on the
potential in the following form:

V(r,Q) = §Va(r,Q) + Va(r,Q) , (36)
where
§Va(r,Q) = 47Gp(Q)H? (1 + %) e (37)
Rt ! i '
Sl GZ =y fn [ Q) H+ ()

—p(QH™] M;(r, ¢)dQ . (38)

The ” Bouguer term” éVp represents the potential of the
spherical Bouguer shell of density equal to topographi-
cal density p(Q) at the computation point and thick-
ness equal to the height H(2) of the computation point
(cf., Wichiencharoen, 1982), and the ” terrain roughness
term” 6Vg shows the contribution of the varying topo-
graphical heights and the effect of lateral variations in
topographical density.
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The direct topographical effect on
gravity

Differentiating 6V (r, Q) with respect to r and evaluating
the result at the point on the topography, we obtain
the change of the gravitational attraction caused by the
direct topographical effect (c.f. eqn.(2)):

1'%

(39)
ar r=R{H

§A(r,Q) =

Substituting for §V from eqn.(36), the attraction change
8 A may be split into two terms as

SA(r,Q) = 6Ap(r,Q) + 6AR(r,Q),  (40)

where the Bouguer term §Ap and the terrain roughness
term 6 AR are:

6Ap(r,Q) = —47Gp(Q)H? (1+%) R s (4)

§AR(r, Q) GZ a 1)|/ [p(Q)H+ () -

—p(Q)H*] Ni(r, $)dSY’ . (42)

Here, the integration kernels N;(r, ) are defined as the
radial derivatives of the M;(r, ¢) kernels:

GM,: (r, u’))
ar g

Using the recurrence relation (A8), the kernels N;(r, %)
may be expressed as

Vi>0: Ni(r,4) = (43)

Vi>0: N,‘(T‘, 1,1'1) g [M,+1 ?" TI)) + (1 3 1) ( ‘Ub)]
(44)
The interpretation of the terms in eqn.(40) is similar to
that for the direct topographical effect on potential.
Let us explore now the behaviour of theproduct
H*(Q')N;(r,¢) in the vicinity of the computation po-
int, i.e., when ¥ — 0. We will proceed the same way as
we did in the case of the direct effect on the potential.
We first introduce the reduced kernels N;(r,v) by the

prescription

Vi>0: Ni(r, ¥) = L Ni(r, ) (45)

and express them in terms of the reduced kernels M;(r, )

using eqn.(44):

: o 1~
Vi>0: Ni(ry)=—- [M,f“(r, %) + (i = DM(r, )]
10 (46)
We can now evaluate the limit of the kernel N;(r, ) for
1) — 0 by means of eqns.(31) and (46),

Yi>0: hm N, (r,¢)=—- [Za,_,_”(_)!.]-z s_+.
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e 1)25% (%)m_s} , (47)

where the coefficients a;; are given by eqn.(A17). Eqn.
(47) shows that if the height of the computational point
goes to zero, the integral kernel N;(r, %) goes to infinity
as 1/HHL.

Since the computation point is considered to be on
the topographical surface, then as ¢y — 0: H(Q') — H
., and we can write for all 7 > 0:

_ ’ ol FN AT
. i1 ! " N | : 2
i}l_r{})H (Q)Ni(r,¢p) = —r [E Qigl,s ( = ) =+

s=1

+(i— 1)£ia,-s (g)] . (48)

This relation shows that the product Hi+1(Q")N;(r, 1)
is bounded at the point ¢ = 0. Then also the product
H*Y(Q')N;(r,¢)sin1 is bounded at ¢ = 0 and thus
the integral (42) is regular.

The planar approximation

The general formulae (40)-(42), accurate to a spherical
approximation and using the mean radial topographical
density, can be further simplified by accepting certain
approximations permissible from the accuracy point of
view. One such approximation, useful for the regional
determination of the geoid is the planar approximation
based on the fact that the ratio H/R never exceeds the
value of 1.4 x 10~3. The planar approximation (not to
be confused with a planar model of the geoid) is accept-
able because it produces an error of the same order as
the relative error 3 x 10™3 of spherical approximation
used throughout the paper. Employing this approxima-
tion, quantities of the order of magnitude of H/R are
neglected with respect to 1. For instance, the planar ap-
proximation of the spatial distance £ between the points

(R+ H,Q) and (R, Y') is found to be (Moritz, 1966):
2+ H?, (49)

where 7
£y = 2Rsin 5 (50)

is the (horizontal) spatial distance between points (R, )
and (R, Q).

Let us look now for the planar approximation of the
direct topographical effect on gravity. The direct topo-
graphical effect on gravity éAp caused by a Bouguer
shell, cf. eqn.(41), reads in planar approximation:

H2
§Ap = —47er(Q)? ; (51)

To compare our result with those derived by other au-
thors, we shall take only the first term in the summation
(eqn.(42)) to represent § A and then carry out its pla-
nar approximation. We denote this term by 6 Ag; and
write

6A31 (‘J”, Q) =
= %GR/W [p(Q)VH?(Q') — p(Q)H?] Ny(r,9)dQ" |
(52)
where the kernel N;(r, 1) is given by eqn.(43) (fori = 1)
as
Ny, ) = 209 (53)

Differentiating My (eqn.(27)) with respect to r, we get

2
Ni(r, ) = ;,% [1 iy (r—_%ﬁﬂ) ] i (64

Using the relation

2

r—Rcos‘d):H—F%, (55)

which follows from eqns.(26) and (50), and substituting
for r = R+ H, the kernel Ny(r, %) may be expressed as

R H H*> _HE 3 a4
Nl(r’¢)_£?(1+"§) (1_35_2”3W_Z§5%5) -

(56)
Let us now take the planar approximation of eqn.(56),
1.e., we will neglect all the terms whose magnitude is of
the order of H/R or smaller with respect to 1. Under
this approximation, the second term in the first brack-
et and the third term in the second bracket (because
£o/€ < 1 for all ¥’s) on the right-hand side of eqn.(56)
may be omitted. We obtain

M~ g (1- (57)

H? 3 ¢4
e ZW)
Since the relative magnitude of the individual terms in
eqn.(57) depends on the distance £y between the com-
putation point and the integration point, we divide the
integration domain into two zones according to the mag-
nitude of the variables £y and H that affect the spatial
distance £ (cf. eqn.(49)).

(1) The near-zone covers the immediate neighbour-
hood of the computation point. Substituting for £ from
eqn.(49), the kernel N; (eqn.(57)) reads

H? 32 £ )

R
Nl(f‘,'q"))%f? (I_SET_Z_R_QI%-{-—H? (58)

To maintain the accuracy of the planar approximation,

the last term on the right-hand side may be neglected

when its magnitude becomes as small as H/R, i.e., when
£ H

E<§' (59)



Substituting for £y from eqn.(50), this condition reads

P e

sing < 54/ % - (60)
Since H/R < 1, we may put sin¢/2 = /2, and the
condition (60) reduces to:

P < fg. (61)

The near-zone is then defined by those 1’s that satisfy
the above inequality. Under this condition, the last term
in eqn.(58) can be also neglected, and we have

2
Ni(r,¥) = ei-; (1 - 3‘3—2) ; (62)

(2) The far-zone covers the area farther from the
computation point, for which €3 > H. In this zone, the
spatial distance £ is approximately equal to £y, and the
integration kernel (57) reduces to

R H? 303
Ni(r,¥) = a8 (1—32?—1§) : (63)

Let us look for a condition under which the second term
may be also neglected. To maintain the accuracy of
planar approximation, this term may be neglected if it

is as small as H/R, i.e., if
Hiw H
— < = 4
be. Taul (©1)

Substituting for £y from eqn.(50), this condition reads

: 3 H
smg > 5\/:, (65)

or, putting sin¢/2 = /2, we get:

¢>\/g. (66)

Under this condition, the second term in eqn.(63) can
be also neglected, and we have

R 3 £
Considering eqn.(50) we may also write
R
Ni(r, ) = — | 1 — 3sin® ¥ - (68)
£ 2

the integration kernel N in the far-zone is homogeneous
(as well as isotropic) because it does not depend on the
vertical position of the computational point.

The boundary between the near- and far-zones is
defined by the spherical distance g,

Yo = \/% . (69)
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The smaller the height of the computation point, the
smaller the near zone and the larger is the far-zone. In
the extreme case when the computational point is on
Mount Everest, the near zone extends to the angular
distance of about 9y = 2°, and the far-zone from 2° to
180°. When H = 0, there is no near zone.

Moreover, if on top of the planar approximation of
the integration kernel, the density of the topographical
masses is assumed to be constant, p(2) = po, the pla-
nar approximation of the direct topographical effect § 4
becomes

H2
SA(r,Q) = 6Ap(r,Q) + §Ap1 (r,Q) = —47Gpo—+

R
SO H2(Q’)—H2( H? h
= =i L g=— b0
+QGR £o C 73 3£2 +
SO T2
+/ M(l—ssin?f)dﬂf wiei(00)
a 3 2

where Qf denotes the near-zone and € the far-zone.
It is not known if eqn.(70) is a sufficient approximation
of the rigorous equation arising from the use of formule
(54) or (56). Thus, it should be pointed out that the
formula (52) based on (54) or (56) should be preferred
in practical computations.

Vani¢ek and Kleusberg (1987), for example, deter-
mined that the change of the gravitational attraction
due to the direct topographical effect is equal to (ibid.,

eq.(14))
g (11)

H2(Q) — HZ
bgr = 3@3290/ (—l___
2 Q £y

This formula was derived taking into consideration the
grid size of the then available gridded topography and
was really meant to apply only to £y 3> H. This implies
that only the effect of the far-zone has been considered
by the authors, as already noted by Heck (1993), and
eqn.(71) can thus be compared only to the 3rd term
in eqn.(70). Even then the correction term 3sin®1/2
revealed by the spherical model is missing in eqn.(71).
This, perhaps, is not a crucial omission since the correc-
tion term starts affecting the resulting geoid in the 0.5%
range only for ¢» > 4.7° at which distance the effect is
well subdued by the 1/£3 factor.

The effects of the near-zone and the Bouguer shell
are completely missing in eqn.(71). The first term, once
again, cannot be derived from a planar model because
it represents a correction for the sphericity of the geoid.
Yet, its magnitude is significant; in Canada, for exam-
ple, it may reach as much as 0.4 mGal, which cannot
be neglected when a precise geoid is to be determined.
We have not investigated numerically the magnitude of
the near-zone effect but from the shape of the formula
it is evident that it cannot be neglected either.
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Comparison of this result with the ”standard” ex-
pression, e.g., Wang and Rapp, (1990), Sideris and Fors-
berg (1990),

[H() - H?

\ 7 & D)

§A(r,Q) = %GR?po f

reveals even more serious problems. The derivation of
this formula necessitates that the Pellinen (1962) credo
of linear dependence of free-air anomalies on heights be
invoked. This makes the validity of eqn.(72) for comput-
ing the direct topographical effect in the context of geoid
computations questionable (Martinec et al., 1993).

Conclusions

This theoretical study was motivated by one of the fun-
damental assumptions of the Stokes technique for de-
termination of geoidal heights which requires that there
be no masses outside the geoid. We have discussed the
reason why the gravitational field of the topographical
masses cannot be evaluated directly (by, e.g., Newton
integration), and why it is advantageous to approximate
the gravitational field of the topographical masses by
that of the condensation layer - as originally suggested
by Helmert. We have shown that the Helmert conden-
sation layer may be introduced even if the. density of
the topographical masses is modelled as laterally vary-
ing. The condensation layer is placed on the geoid and
its surface density is equal to the average column densi-
ty of topographical masses multiplied by topographical
heights.

The external gravitational field of the topographi-
cal masses is described by the potential of condensation
layer and by a series of potentials that can be viewed as
potentials of multi-layered material surfaces with differ-
ent densities. We have found the spectral as well as spa-
tial representation of the integration kernels figuring in
these multi-layer gravitational potentials. It is still un-
clear under which circumstances the series of these ap-
proximating potentials converges, and how many terms
of the potential series are to be taken to approximate
the external gravitational field of topographical masses
with a sufficient accuracy. In contrast to the Moloden-
sky integral solution (Moritz, 1980, sect.43), the gravi-
tational attraction induced by the residual potential 6V
at the point on the topography is represented by weak-
ly singular integrals. The singularities can be easily
removed by adding and subtracting the Bouguer shell
to topographical masses.

Throughout the paper we have used the spherical
approximation of the geoid. This approximation en-
abled us to derive the direct topographical effect with
high enough accuracy to cause an error in geoidal height-
s of at most 6 mm. We have discussed the planar ap-
proximation of the general formula and concluded that

the standard expressions used for computing the topo-
graphical effect are of questionable accuracy because of
the planar model used for their derivation. As a result,
they are uniformly ’blind’ to all spherical effects.
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Appendix A:

Integration kernels M;(r, )

In this section we shall derive some useful properties
of the integration kernels M;(r,v), i =0, 1,2, ..., intro-
duced in eqn.(22).

Spectral form. Let us start by expressing the integration
kernel M;(r,v) as a series of Legendre polynomials in
cos 1. Because r > r'(= R), the Newton kernel may be
expanded into a uniformly convergent series as

Li 1shigling (’;)jpj(cow). (A1)

1=
v —r| r =

Multiplying eqn.(A1) by #'* and differentiating the re-
sult i-times with respect to r/, we get

& r'? il
e (m) =Ty e

hor r Jj+1
G+ DG -+ D) (5) T Beosy)

A2)
It is possible to change the order of summation(and
differentiation because the series on the right-hand side
is uniformly convergent. Inserting eqn.(A2) into (22),
we obtain for all ¢ > 0:

M,‘(T‘, 11{)) =
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> it
= LSS0 G- (B) T Piteosv) =

i=0

= —Z( b (E)m&(cow) L)

Recursive formula. The integration kernel M;(r, ¢) may
be obtained by means of a recursive formula. Multiply-
ing eqn.(A3) by r*~! and differentiating with respect to
r, we get

@ spusn A
6—7'(1" M;(r,9)) =

AN e a (RS
=—%" JZU( ; )(J+2—‘I) (}_) Pj(cos¥) .

(A4)
But, it can be shown that:

u(jj? )(j+2—i)=(i+1)!(§j:f) . (45)

and eqn.(A4) becomes

oo
g (rt_lMi(rs w)) =
i+ D [ j+2 BN
= —r R Z: i1 = Pj(cos ) .
=0
3 (46)
Taking into account eqn.(A3) (for i + 1), we get
. 1
Miya(r, ¥) = —;ﬁg“(f' ‘Mi(r, ) . (A7)
or
3M r
M) = = 250D 1) (a8)

The inital value for the recursive process is Mo(r, ).
Putting ¢ = 0 in eqn.(22), we have:

] 1
Mo(‘-‘"g 1!5) _— E 3 (Ag)
where £ is given by eqn.(26).

Spatial form. The integration kernels M;(r,) may be
further expressed as power series of the reciprocal dis-
tance 1/£. This representation is helpful for understand-
ing the behaviour of the kernel in the vicinity of the
computation point (¥ = 0). Applying the relation (A8)
i-times recursively, we get (for details see Appendix B)

i - tl(‘ T )
Mi(r ; i—s+1 '(m—-s—‘l)|(ar—1)T
s+1 3a!+1 SMO(P 1}5)

6?‘""'1 H (A]'O)
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We note that this expression is valid only for i > 2.
Taking into account (A9), the series in eqn.(A10) con-
sists of higher-order radial derivatives of the reciprocal
distance 1/£. These may be expressed as

g (1
7 (7) -
= st (k —t + D)(k 4+t — 1)L k! (r — Rcos ¥)?
=260 (k—t+ 1) FTRYTES
(A11)
where the summation must be taken over such t’s for

which k£ 4 ¢ is an even number. Inserting (A1l) into
(A10), we get

t=0

M.ﬁ(?', yﬁ) = %Mg(?’, 1‘{5) : (AIQ]
with
. : i=1 il(i — 2} Py i+l=s
Vi>1: Ms(r;ﬂb):Z(i_:E])g(i"l)! (E) x
s=1
G siti—ss (142 — s — t)N(i — s + 1)
X g (1)~ = ( (i.::g_)s-(-zt]!st!

r—Reost’
x( ‘ )

and i — s+t + 1 must be an even number. The last two
equations represent the integration kernels M;(r, ) as
finite power series of the reciprocal distance 1/¢.

(A13)

Singularity. An important property of the reduced in-
tegration kernel ﬂ};(r, ) is its behaviour in the vicinity
of the point ¥» = 0. At this point, the distance ¢ is
equal to the height H of the computation point above
the geoid,

flyo=r—R=H. (A14)

The integration kernel M;(r, 1) may. then be written as

i—1

- ryitl—s
Vi>1: Mi(r,0) =) ais (= , (Al5)
Se (7)
and B "
M (r,0) = 1+~}—[- : (A16)

where the coefficients a;; are readily obtained from eqn.
(A13) as

it 2ot DM uig
Y @i—s=1Dl(s—1)
i+l-s . .
Bifl-sit z+2—s—t)!!z—s+t!!
X Z (—l) = ( - = ( i ) .
o (F+2-s—-0)t!

(A1T)
The summation is again taken over those t’s for which
i—s+1t+1is an even number. Eqns.(A15) and (A16)

show that if the height of the computation point goes
to zero, the integral kernel M;(r,v¥) goes to infinity as
L HE:

Integrals. To remove the singularity of the integration
kernels M;(r, 1) at the point ¢ = 0, the angular inte-
grals

fm M;(r,4)dQ

are needed. Let us begin with ¢ = 1. Applying Poisson’s
integral (Heiskanen and Moritz, 1967, eq.(1-88)) to a
function R/r, we get

1 o0 : R J¥+1 . R
E/n,j;o(%Jrl)( ) P;(cos)dQ' = — . (A19)

r

(A18)

The angular integral (A18) may then be expressed in
terms of (A19) as

Mi(r, )d =
ﬂf
1 = R
=35 /n* > @i+1) (—r—) Pj(cos 1)dQ' +
j=0

3 & rRE ,
+ﬁ/ﬂ*§(?) Pj(cos ¢)dSY . (A20)

Since the series over j in the last integral is uniformly
convergent, we may change the order of integration and
summation. Then using the orthogonality relation for
the Legendre polynomials,

1

— [ Pj(cos9)dQ' = ;0 , (A21)
4 o

we get

87

/ My(r,$)dQ = — (A22)

It is possible to derive the angular integrals (A18)
for the other kernels M;(r, ) by means of the recursive
relation (A7). We obtain

1 gk
|, Moy der = ‘/n, =35y (T Mi(r,v)) Y

- 1 X ({=5 i /
= (r A M;(r, ) dQ) . (A23)
For i =1,2 eqn.(A23) reads
/ Ma(r ) a0l = =p2 ( Milr ¢)dgf) —on
el 31" o r
(A24)
/ Ms(r, ) dQY = o (r Ms(r,v) dﬂ') =i0s:
o 8?‘ o
(425)



Using successively eqn.(A23) we can see that the angu-
lar integral (A18) vanishes for all ¢ > 3 and we have

Mi(r,$)d =0, i3

nr

(A26)

Appendix B:

Proofs of eqns.(A10) and (A11)

In this section we show how eqns.(A10) and (All) are
derived. To do so, we employ mathematical induction,
an efficient and simple tool for demonstrating the valid-
ity of these relations.

Let us start with eqn.(A10): in the first step of
mathematical induction, we show that eqn.(A10) holds
for i = 2. For i = 2, eqn.(A10) reads

2 Mo(r,

My(r ) = T2

Substituting for My from eqn.(A9), we have

d [r— Rcost
e il —
Mg(?‘, ‘!I)) i i 8‘-“' [ £3 ] =
2 2

=f%+%(r—Rcos¢)2. (B2)

On the other hand, the kernel Mj(r, %) may be evalu-
ated from the recursive formula (A8):

raMl(r! ﬂf)) :

or L)

Mg(?‘, 1:{)) =i
Taking the radial derivative of eqn.(27) and substituting
it into eqn.(B3), we again obtain eqn.(B2). Thus we
have demonstrated that eqn.(A10) holds for i = 2.
In the next step, we assume that formula (A10) hold-
s for a particular value of i; we wish to prove that it is
also valid for 7 + 1. Assuming that eqn.(A10) is valid
for M;, we can substitute it into eqn.(AT7) obtaining

Miyi(r, ) =
(3 il(i — 2)! 3
T pi=2 S(BF1—8)i(i -0 l(s—1)!
4 2i— sa:+1 SMU( "@II))
o | [ —geeis |- (BY
Taking the radial derivative, we have
Miy1(r,¥) =
il(i — 2)!

N :+lz(z+1—s'(z-—s—1]|(s—1]X
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p1s 7S Mo (r,
x [(2i = s)r't!=® ar&lr;:(:‘ &
423 02 Mo(r, ¢
+:~"‘+2'—' 87‘i+20_(3 ] (85)

Let us now shift the summation index s in the first term
to s+ 1. We get:

Mg (r,¥) =

i e E-2)'(2i—s5+1) "
—{_1)-‘-]2(3'4.2_3)!(:'—-5}!(3-—2]!

pit2- saHEﬁMﬂ(r ¥)
grite—s

i+ (i - 2)!
: Z(z+1—s)(s—s—1)'(s—1)

+

3!+2_8M0(T, )
ar£+2—s
Writing separately the contribution with s = ¢ in the
first summation and the contribution with s = 1 in the
second summation, and summing the rest, we get

xpit2=s (B6)

Mit1(r,¥) =

. ] 2 T
—) {_I)H-l |:(3 —Ig—ll) T 8 -ﬂ’gﬂ(g "»b)

i1 &+ Mo(r, )
dritl

i il(i — 2)!
o HZ G PR ) g T
X[(s—1)(2—s+1)+(E—s+2)(i—s)] x

L ar‘f+2—s

The last expression may be arranged further as follows:
Miga(r,¢) =

= (-1 [(i;l) AZBC p

i (i + 1)1 - 1)
HEOE Z R TR FES Tk

i+2—s 3=+2—3M0(r, Ui’)
xrit? oriti-s
£ i+1 (i+ 1)1 — 1)t
) Zz+2_b)u—s)l(s—1)x

ar§+2—3 i

(B7)

i1 0T Mo (r, )
gritl

(B8)

Finally, comparing eqns.(B8) and (A10) we can see that
eqn.(B8) is equal to eqn.(A10) for subscript i+1, and we
have thus proved that eqn.(A10) holds also for M;41(r,v).
Concluding, eqn.(A10) is valid for an arbitrary integer
subscript 7, Q.E.D.
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Now, let us continue with proving eqn.(A11). We
will again use mathematical induction. In the first step,
we should prove that eqn.(A11) is valid for k£ = 1, but
since this is simple, we leave it to the reader. In the
next step, we assume that eqn.(A11) holds for subscrip-
t k and we show that it is also valid for subscript &+ 1.
Assuming that eqn.(All) is valid for the k-th radial
derivative of the reciprocal distance, we may take an-
other radial derivative of eqn.(A11) getting

gkt (LN
Ork+1 (E) &

k
= kge (k =t + )k +¢ — 1)!Ik! (r — Reos )~
Z ;H) (k—t+ 1)t -1)! e
k
e (B =t DIk + ¢+ 1)Uk (r — Reos )+
g( D (k—t+1)t! (ki3
(B9)

Let us change the summation index ¢ to ¢t —1 in the first
sum, and to ¢ + 1 in the second summation. We obtain

Frary
drk+1 (E) -

AR esg (k= 1k + DU R (r — Roos g’
= (-1) & =1) il E+i+2 PiE

_Z(_l)ﬁ-;;: (k—t+2)!N(k+t)!! k! (r— Rcosy)t
(k—t+2)! 1 TR ’
(B10)
where k + ¢+ 1 must be an even number. Writing sepa-
rately the term with ¢ = 0 in the first summation and
the term with ¢ = k£ + 1 in the second summation, and
summing the rest, we have

o]
okt \7 ) =
r — Rcos)k+!

k41 (k112
S e e e

k-1
ctesn (k= £+ 2)1(k + )1 k!
G E—til 0

x[(k—t+1)+t]%ﬁ%¢)t‘ (B11)

By simple manipulations, we finally get
T A
e () =
B e (k= t+ Uk + O (k + 1)!
=2 Do (k—t+2)! TR
(r — Rcos )
£k+t+2
Comparing the last equation with eqn.(A1l), we can
see that we have proved that eqn.(A11) holds also for

subscript k& + 1. Therefore, eqn.(A11) is valid for an
arbitrary integer number &k, Q.E.D.

t=1

t=0

(B12)



