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Abstract

It has been customary in Geodesy to evaluate the in-
direct effect that arises from mathematical removal of
the topography in solving the geodetic boundary value
problem using Stokes approach, by modelling the geoid
as a plane. In this contribution, we show that this pla-
nar model gives an incorrect result. Adopting a spheri-
cal model for the geoid, we derive a new expression for
the indirect topographical effect on potential.

Introduction

The effect of topographical masses on geoid height com-
putation has been discussed by many geodesists (Heiska-
nen and Moritz, 1967; Wichiencharoen, 1982; Vanicek
et al., 1987; Vanicek and Kleusberg, 1987; Heck, 1993,
etc.). The problem arises from the fact that Stokes’s
formula for geoid undulation assumes that there are
no masses outside the geoid and that the gravity mea-
surements are referred to the geoid. These assumptions
require the real Earth’s topography to be regularized.
Helmert suggested that the masses outside the geoid
be condensed as a surface material layer on the geoid
(Helmert, 1884). This condensation implies that ob-
served gravity on the Earth’s surface is to be correct-
ed by the so-called direct topographical effect on gravity
(Vanicek and Kleusberg, 1987). Furthermore, by con-
densing the masses, the original gravitational potential
of the Earth is also changed. The difference between
the gravitational potential of the actual topographical
masses and the gravitational potential of the condensed
masses referred to a point on the geoid is usually called
the indirect topographical effect on potential (Heiskanen
and Moritz, 1967, Sec. 3-6.).

The indirect topographical effect for Helmert con-
densation has been intensively discussed by Heiskanen
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and Moritz (1967), Wichiencharoen (1982), Vanicek et
al. (1987), Wang and Rapp (1990) and Heck (1993)
among others. They all employed the planar approxi-
mation of the geoid and assumed a constant density of
all the topographical masses. They determined the indi-
rect effect correction terms independently and obtained
the same result.

This paper also deals with the correction for the in-
direct topographical effect on potential, but the planar
approximation of the geoid is replaced by a spherical ap-
proximation. Moreover, the density of the topographi-
cal masses is assumed to be laterally non-homogeneous.
It is shown that the indirect effect term determined on
the basis of planar approximation differs significantly
from that resulting from the spherical approach; the dif-
ferences may reach up to 0.5 m in absolute value. Thus,
it is shown that the planar approximation of the geoid is
not adequate for the indirect topographical effect com-
putation when a precise geoid is to be produced.

Helmert’s decomposition of grav-
ity potential

Let us start with a decomposition of the gravitational
potential generated by the Earth. The gravitational
potential may be split into two parts:

V= VeEs, (1)

where V9 is the potential generated by the masses be-
low the geoid and V! is the potential generated by the
topographical masses (masses between the geoid and
the topographical surface). Helmert (1884) suggested
to decompose the potential of the topographical masses
as

Vi=Ve4sV, (2)
where V¢ is the potential of the masses condensed on
the geoid and 6§V is the residual potential.
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The gravity potential V9 4+ V¢ 4+ &, where @ is the
centrifugal potential of the Earth, may be written as
a sum of a normal gravity potential U, generated by
a geocentric biaxial ellipsoid spinning with the same
angular velocity as the earth, and a disturbing potential
TE

VI4Ve+@=U+T". (3)

Here we denote the disturbing potential by a superscript
h and will call it the ”Helmert disturbing potential”
to differentiate it from the usual disturbing potential
T. The important consequence of eqn.(3) is that the
Helmert disturbing potential 7" is harmonic outside the
geoid (Martinec et al., 1993)

Let us re-derive the Bruns formula (Heiskanen and
Moritz, 1967, Sec. 2-13.) for the case when the Helmert
decomposition (2) is employed. Let P, be a point on the
geoid and @ be the corresponding point on the reference
ellipsoid (lying on the same geocentric radius). Then
the actual gravity potential of the Earth at the point
on the geoid, Wp,, can be written as

We, = Wo = Up, + Tp, + 6Vp, . (4)
The normal potential on the geoid, Up,, can be expand-
ed into a Taylor series as:

Up —UQ+3—U VA (5)

Irlq

where N is the geoid-ellipsoid separation called geoidal
height. Since the normal potential is assumed to have
been chosen in such a way that it has the same value
on the reference ellipsoid as the actual gravity potential
has on the geoid, Ug = Wy, eqns.(4) and (5) may be
arranged to give the correct form of the Bruns formula
as

Moo % (Th, +6ve,) (6)

where v is the normal gravity and the terms of magni-
tude of the order of O(N?) have been neglected. The
term -
Tp,

: (7)
7Q

denotes the separation between the so-called co-geoid
(Heiskanen and Moritz, 1967, Sec. 3-6.) and the refer-

ence ellipsoid and the term

Nt =

5V,
5N = —2¢ (8)
7Q

describes the separation between the geoid and co-geoid;
it is the so-called primary indirect topographical effect
on potential divided by g (ibid.).

Gravitational potential of topogra-
phical masses

Let the topographical masses be bounded below by the
the geoid with geocentric radius r,(2) and above by
the topographical surface with geocentric radius r,(£2)+
H(€). This means that H(Q) is the height of the to-
pographical surface above the geoid, reckoned along the
geocentric radius. The argument ) stands for a horizon-
tal position given by co-latitude ¥ and longitude A. The
gravitational potential V* induced by the topographical
masses at an arbitrary point (7, ) is given by Newton’s
volume integral
Vi(r,Q) =

ro(V)+H(Q) .

= G/ f o(r', )L™ (r, 4, r')r'“dr'dQY’ |
ar Jri=r, ()

(9)

where G is Newton’s gravitational constant, o(r, Q) is
the density of the topographical masses, L=1(r, 1, ') is
the Newton kernel (reciprocal spatial distance between
the dummy point (r’,Q’) and the computation point

(r, Q)):

_1(1',1}.’),1’") = 1

H
V12 + % — 20! cos

(10)

1 is the angular distance between the geocentric direc-
tions 2 and @', and the integration in eqn.(9) is taken
over the full solid angle Q'.

Note that Newton’s kernel grows to infinity when the
dummy point (r/,Q') moves towards the computation
point (r,€2). But, the Newton kernel is only weakly
singular which means that for » # 0 (Kellogg, 1929,
Chapter VI):

[sing L71(r, ¢, 7)) = % <. (11)

—

r—r

Writing the element dQ’ of the full solid angle in polar
coordinates (1, &) as dQ' = sin ¢dypde, the weak singu-
larity property (11) is easily seen reflected also in the
corresponding integral form

f L7 (r 4, r")dQ < . (12)
nf

This inequality is valid for all non-zero radii » and '
Throughout the paper, the geoid will be approxi-
mated by a sphere of radius R:

rg(Q) =R, (13)

where R is the mean radius of the Earth. This approx-
imation to the geoid can be easily shown to be good
to about 0.5%, which represents the accuracy limit of
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our results. Furthermore, the actual density of the to-
pographical masses g(r,2) will be approximated by a
column average value 2(2):

R+H(Q)
P ﬁ / ey (9)

Under these assumptions, eqn.(9) takes the following
form:

R+H(Q') :
Vi(r,Q) = G/ E(Q’)/ L7, o, v ) “dr'dQ’ .

=R (15)

The property (12) may now be used for removing
the singularity of the Newton integral (15). Subtracting
and adding a term

R+H(Q) 2
VE(r,Q) = GE(Q) / f LY (r, 6, )2 dr'dgy
! Jri=R
(16)
to the potential V¥(r, Q), we get
Vi(r,Q) = VE(r,Q) + V(r,Q), (17)

where

R+H(QV) .
VE(r,Q) = G/ 2(Q) L™Y(r, o, v )" “dr'—
L r

=K

R+H(Q) :
_E(Q)‘/ L7Y(r, o, ") dr’jl doy . (18)
r'=R

The quantity VZ is easily recognized as the potential of
a spherical Bouguer shell of density g(€2) and thickness
H(Q). This potential is finite - due to the inequality
(12) - and is equal to (Wichiencharoen, 1982),
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masses and the heights of the earth’s topography are
finite). Then the limit for ¥ — 0 of the subintegral
function in eqn.(18) reads

R+H(Q) 5
'},in}] 2(Q) f L™Y(r, o, 7 )r'“dr'—

=R

R4+H(Q) ;
—E(Q)/ L™ (r,9,r")r'"dr'| sinyp =
r'=R
R+H(Q) ;
=3(Q) lim [L™%(r,%,7")sin ¥] r'dr'—
r'=R Y—=0

R+H(Q)
- E(Q)f lim [L=%(r,,7")siny] r'?dr' . (20)
r'=R ymdd
Since both functions (Q?) and H () are bounded and
the Newton kernel is weakly singular, see property (11),
both integrals on the right-hand side of eqn.(20) are fi-
nite and have the same value; their difference is thus
equal to zero. This means that the point ¥ = 0 can be
left out of the integration domain ' and the singulari-
ty of the Newton kernel at the point ¢ = 0 is removed.
This fact is important for the numerical computation of
the topographical potential V*(r, Q) because the formu-
lae (17) and (18) ensure that the numerical algorithm
is not forced to evaluate the undefined expression of the
type of 0/0 encountered in the original Newton integral

(15).

teds

-

47Go(Q)L [R*H(Q) + RH*(Q) + LH3(Q)] , r>R+H(Q),

VB(rQ)={ 27G3(Q) [(R + H(Q))? - 28 g#] ;

47Ge(Q) [RH(Q) + 1 H(Q)] ,
(19)

Since the actual earth’s surface deviates from the
Bouguer sphere (of radius R+ H(£2)), there are deficien-
cles and/or abundances of topographical masses with
respect to the mass of the Bouguer shell. These con-
tribute to the topographical potential V*(r,Q) through
the term VE(r, Q) — an analogy of the terain correction
(Heiskanen and Moritz, 1967, sect. 3-3.). We will call
VE(r,Q) the terrain roughness term. It depends chiefly
on the behaviour of the difference H(Q2) — H(Q').

Let us now investigate the limit for ¥ — 0 of the
subintegral function in the angular integral (18). When
1 — 0, then 2(Q') — 2(22) and H(Q') — H(Q). We will
assume, reasonably, that both the topographical density
? and the topographical height H are bounded (i.e., that
there are no mass-singularities inside the topographical

R<r<R+H(Q),

<R

Radial integral of Newton’s ker-
nel

The indefinite radial integral of the Newton kernel may
be evaluated analytically (Gradshteyn and Ryzhik, 1980,
pars. 2.261, 2.264) as follows:

/ L7(r, ¢, r')r"gdr’ = I’:‘:](r,tb, )+ C, (21)

r

where

IT:l(r, ¥, 7’) = %(r’ + 3rcosy)L(r, 9, r')+
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+ %(3 cos’y — 1) In|r’ — rcos¥ + L(r,9,r')| , (22)

and the ’constant’ C may depend on the variables  and
1 only. Using notation (21), the topographical potential
V't (cf., eqns.(17) and (18)) becomes

Vi(r,Q) = VE(r, Q)+

-2 : R+H(Q')
e [}_:T(Q’) L—l(r,¢,r)| =
o r'=R
pe R+H(Q)
—2(Q) L~ (r, 4, 1") o

r=.

] dok " ag)

Potential of the condensation lay-
er

As we have seen in the Introduction, the condensation of
topographical masses onto the geoid plays a fundamen-
tal role in the Helmert second condensation technique.
Provided that o(Q2) is a (surface) density of the con-
densation layer, the potential of Helmert’s condensation
layer may be expressed by Newton’s surface integral:

i

Ve(r,Q) = GR? f o)L (r,9,R)dQ . (24)

To remove the singularity of the reciprocal distance
1/L(r,4, R), we may proceed in a way analogous to that
for the potential V. Let us rewrite eqn.(24) as

Ve(r,Q) = Vi(r, Q)+

+ GR? La [O'(Q") 3 C"(Q)] L_l('f',‘lﬁ,R)dQ’ . (25)

Here the symbol V¥(r,Q) denotes the gravitational po-
tential of a spherical layer with density ¢(£2) and radius
R:

7 £ daq
Vi(r,Q) = GR a(Q)L T

The last integral may be readily evaluated yielding

(26)

fl?r(?c:r(Q)—“}f—3 o R
Vir,Q) = (27)
47Go(Q)R, r<R.

The density o(2) of condensed masses can be chosen
in a variety of ways. In this paper we will choose it ac-
cording to the principle of conservation of topographical
masses (Wichiencharoen, 1982), i.e.,

o(2) =2()7() , (28)
where
() = H(Q) (l + Eg}l + fig:)) : (29)

The indirect topographical effect
on potential

To find the expression for the indirect topographical ef-
fect on potential, the residual topographical potential
§V = V' — V° must be evaluated on the geoid (r = R).
Considering eqn.(23) for the topographical potential V*,
eqn.(25) for the condensation potential V¢, and replac-
ing r by R, we obtain

§V(R,Q) = 6VE(R,Q)+6VE(R,Q), (30)
where the ” Bouguer term” §VZ(R,Q) is given as

§VE(R,Q)=VB(R,Q)-V4R,Q), (31
and the ”terrain roughness term” §VE(R, Q) is equal to

R+H(Q')

SVR(R,Q) =G fﬂ : {ﬁ(ﬂ’) L-Y(R,4,r")

ri=R

R+H(Q)

—3(Q) L-(R, ¥, ) il
—R?[0(Q) —o(Q)) L™X(R, ¥, R) } dQ . (32)

Using the last of eqns.(19) and (27) valid for r = R,
and taking the condensation density ¢(2) according to
eqns.(28) and (29), the Bouguer term §VZ(R,Q) be-
comes

§VB(R,Q) = —2rGa(Q)H?*(Q) (1 + %f*r%) . (33)

Analysing eqn.(18), we have learned that there is no
need to evaluate the vertically integrated kernel
gty R4+H(Q)
iR,

ri=

0). Nevertheless, the kernel has to be evaluated in
the immediate neighbourhood of the computation point;
therefore, we have to investigate the type of singularity

A R+H(Q")
of the kernel L—1(R, w,r’)l sl at that point. Thus,

let us have a look at the behaviour of that kernel in the
vicinity of the point ¢ = 0. Using eqn.(22), we get

, at the computation point (¢ =

Lo R+H(Q')
L“'l(R,‘qu‘r") =
r'=R
= %(R+ H(Q)+ 3Rcosy)L(R,%, R+ H(Q'))—
—%(R + 3Rcos ¥)bo+

H() + & + L(R, ¥, R+ H(Q))

£2
-0
‘eO + R

2
+%(3c052w—1)ln

]

(34)
where
L(R,, R+ H()) =

=V(R+H())? + R2 — 2R(R+ H()) cos ¢ =




= \/fg + ——H(}? )Eg + H}(Q) , (35)
and £, is the spatial distance between points (R, ) and

(R, ), ie.,
t = L(R, ¥, R) = QRSm% A (36)

When the dummy point of integration comes close to
the computation point (¢ — 0 or {5 — 0), the first
term on the right-hand side of eqn.(34) becomes equal
to (4R + H(Q'))H(')/2; the second term goes to zero
and the last term grows to infinity. This term behaves
like In€y (we assume that H(Q') > 0). Because the
following limit is valid

iy ey (37)

1
£g—0 7

i R+H(Q)
the magnitude of the whole kernel L=1(R, ¢, r') e
grows to infinity more slowly than the recipro::ajl dis-
tance 1/£y, when 1 approaches zero. Therefore, the
numerical procedure of computing the Newton integral
(32), based on eqn.(22) is very stable even near the com-
putation point (3 = 0).

Other approximations

The general formulae (31)-(33) are accurate to a spheri-
cal approximation and use the mean radial topographi-
cal density. They can be further simplified by accepting
certain approximations permissible from the accuracy
point of view.

Constant density of topographical masses

The first approximation is based on the fact that the
density of topographical masses varies by about 10 -
20% around the mean crustal density go = 2.67g/cm3.
Martinec (1993) showed that these variations contribute
at most 1 m to the geoidal heights even in the highest
mountains. In the terrain with heights up to 1000 m,
the contributions to geoidal heights by lateral variations
of topographical density are below 1 ¢cm and may be
neglected. For such a case, the density of topographical
masses i1s modelled by the mean crustal density og.

Taking this approximation into account, i.e., putting
2(Q) = go, the general formulae (31)-(33) for the indi-
rect topographical effect on potential become

5V (R, Q) = —21GooH(Q) (1 i gﬁgﬂ) L

R+H(Q')

+Gog /g; [E‘H(R,w,r’)

r'=R+H(Q)
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_R? T(Q’)E_ 7(Q) aQ’ (38)

where we have used £ for L(R, ¥, R) - cf., eqn.(36).

Restricted integration

Martinec (1993) also showed that the kernel

=R HES ) (39)
) e
approaches the kernel

R [r(Q) - 7(Q] L™ (R, %, R) , (40)

when the integration point moves away from the compu-
tation point (and 7(2) is chosen according to eqn.(29)).
For instance, the difference between kernels (39) and
(40) falls 7 orders in magnitude when the integration

’point moves from 9 = 0 to ¢p = 1°. This confirms

the well-known fact that the gravitational potential of
topographical masses of a finite thickness behaves like
the potential of a thin layer when it is observed from
a larger distance. The integration over angular coordi-
nates ' may be thus limited to a small area (of radius
1) surrounding the computation point. To get a 1 cm
accuracy of the residual potential §V (R, ), it is suf-
ficient to integrate up to a distance 1o = 2° (ibid.).
The formula (38) for the indirect topographical effect
on potential then becomes

§V(R, Q) = —2rG oo H(Q) (1 s 3@) o

3 R
+GQO/
0
(@)= 7(0)
£y

where Qf is a spherical cap of radius 1y surrounding
the computation point.

As we will see later, the integration kernels in in-
tegral (41) will be expressed by the distance 4o, cf. e-
qn.(36), and heights H(2) and H()'). The restricted
integration over €2 will enable us to neglect terms of the
order of £3/2R? with respect to 1, because these terms
never exceed the value of 2 x 1073, This neglection is
acceptable because it produces an error of the same or-
der as the relative error of 3 x 102 of the spherical
approximation used throughout the paper.

R+H(Q')

r'=R4+H(f)

[F(R,w,r')

I
1

] aq’ | (41)

Planar approzimation of distances

The planar approximation of distances (not to be con-
fused with a planar approximation of the geoid) is based
on the fact that the ratio H/R never exceeds the value
of 1.4 x 1073, The planar approximation of distances
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is acceptable because it again produces an error of the
same order of magnitude as the error in the spherical
approximation of the geoid. Employing this approxima-
tion, quantities of the order of H/R are neglected with
respect to 1. For example, the planar approximation
of the spatial distance L(R,, H(Q')) between points
(R,Q) and (R + H(Q'),Q') is simple to derive using
eqn.(35):

L(R, %, R+ H(Q)) =~ /03 + H> () . (42)
Approximating the function 7(Q2) by H(), (') by
H(), the Bouguer term —27GgoH?(Q) (1 + %%ﬁ)

becomes —27G oo H%(2). Then the formula (41) reads
§V(R,Q) = —27Goo H*(Q)+

R4 H(Q)

ri=R+H(Q)

+GQU / I:‘E?:i(R) 'f): T")
2
R HE@) - H@)
£y
Let us find now the planar approximation of the inte-

R+H(Q')
(R, ¢,r") . Using eqn.(22),

r'=R+H(%)

] o’ . (43)

gration kernel y 7t

we have
R4 H(O)

LY(R,%,7")

_._(1 + % +3cosY)L(R, ¥, R+ H(Q'))-

.“123(1 2o @ +3cosy)L(R, ¥, R+ H(Q))+

rM=R4H(Q)

2
+RT(3 cos?p —1)x

R(1 —cos ) + H(Q) + L(R, ¢, R+ H(Q))

X T s ¥) + H(@®) + L(R, ¥, R+ H(Q)
44

Substituting for distances L(R, ¥, R+ H(Q')) and
L(R,%, R+ H(Q)) from eqn.(42), neglecting H(Q)/R
and H(Q')/R with respect to 1 in the first two terms,
and expressing the function 1 — cosv¥ by means of the
distance 4o, we get

i R+H(Q)
L-1(R,%,+)

r=R+H(Q)

: -g(l-{—Scoqu (\/E2+H2 @) - \/E2+H2(Q))

2+ H@) + B+ I@)
&+ HQ)+VB+ D

45
From eqn.(36), the function 1 + 3 cos® in terms of the
distance ¢ reads

2
+ %(3 cos’y —1)In

4
1+3costp = 4_2_R—5’ (46)

Because of restricted integration over ' in eqn.(43), we
may neglect the term £2/2R? with respect to 4 getting

1+3cosyp=4—0(5x107%) . (47)
Within the same accuracy, we may further write
3cos’p—1=2. (48)

Using approximations (47) and (48), we get the planar
approximation of the integration kernel

— : R+H(Q")
L7i(R, ,r )L:mm) as

R+H(Q")

r'=R+H(Q)

- 9R (\/eg + HY Q) — /8 + H2(Q)) o

+ RIn éﬂ + H®) + B+ HA@)
7%+ H(Q) + VB + HX(Q)

Finally, substituting the last formula into eqn.(43),
the indirect topographical effect on potential may be
approximated as

L-1(R,¢,7

(49)

§V(R,Q) = —27Goo H*(Q)+

2\/e + H2(Q) — /63 + H?( Q)+

+GR290 / R

-I—H(Q’ + /32 Hz(Q.r H(Qr)_

4+ HQ) + VE+ H(Q) b

i

HR)] o

(50)

Discussion

Using the planar approximation of the geoid, Heck (1993)
derived that the change of the gravitational potential
due to the condensation (for H > 0) is equal to (ibid.,
eqn.(9))

§V,(R,Q) = —mGoo H*(Q)+

160 |, [o 2O /ETEE

H(Q)+ V2 + H2(Q)

H(QY) - H(Q)
e

Comparing this equation with eqn.(50), we can see that
0Vp(R, 2) differs from 6V (R, ). Let us discuss the dif-
ferences. The Bouguer term —27G oo H?(Q2) in eqn.(50)
derived from a spherical approximation of the geoid has
a magnitude twice as large as the equivalent term in
Heck’s formula (51). The difference, —7Goo H%(Q), is
always negative and may reach up to -0.5 m in high

] s’ . (51)



mountains. Therefore, eqn. (51) derived from the pla-
nar approximation of the geoid is biased.

Equation (5§) also differs from eqn.(50) in the ter-
rain roughness term. We cannot neglect the term £3 /2R
with respect to H(Q) in the logarithmic function be-
cause for distances over 1° the magnitude of the term
£%2/2R may be comparable with H(Q2) or H(Q'). Nev-
ertheless, this difference is perhaps not crucial because
the terrain roughness term affects usually the geoid in
the range of one or two decimetres at most.

Conclusion

All existing theories of topographical effects in Helmert’s
second condensation technique are based on the concept
of planar approximation of the geoid. The geoid is con-
sidered as an infinite plane and topographical masses
are condensed onto this plane. This approximation de-
scribes the actual situation only very roughly.

This theoretical study was motivated by the above
inconsistency in the description of the problem. Mod-
elling the geoid by a sphere removes infinite potentials
and describes the actual situation much more accurate-
ly. Moreover, the density of topographical masses is
here considered laterally varying which enables to mod-
el it better (cf., eqn.(32) and(33)) than by a constant
value of 2.67 g/cm? used up to now.

We have derived the spherical formula for the indi-
rect topographical effect on potential, see eqn.(31)-(33).
Then we employed additional simplifications in order to
compare our results with those recently derived by Heck
(1993). We have shown that the planar formula is bi-
ased in a term corresponding to the indirect topograph-
ical effect of the Bouguer shell and that this bias may
reach -0.5 m in high mountains. We can conclude that
the expressions based on the planar model of the geoid
cannot be used for evaluation of the topographical ef-
fects if one-centimetre accuracy in geoid determination
is desired.
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Abstract. On. ..the. basis  wof .the
inversion theory of dynamic geodetic
data six kinds of inverse problems of
Solid Mechanics are proposed.
Numerical solutions for the nonlinear
inverse problems are discussed and a
parameter optimization method for
inversion of geodetic data is
presented. The feasibility of the
method is demonstrated by numerical
tests. Finally, by using the proposed
method and geodetic data, a general
method for the determination of
regional boundary forces and rock
medium parameters by inversion of
geodetic data is presented, and the
nonuniform rupture pattern of the
Tangshan earthquake fault is analyzed.
It 1is shown that, the parameter
optimization method for inversion of
geodetic data will improve the present
methods used in this field.

1. Introduction

Since 1970’ s the research for
inversion of dynamic geodetic data has
been greatly developed and many
achievements have been made (Matsu’ura
1977a; 1977b; Matsu’ura et al. 1986;
Segall and Harris 1986; 1987; Ward and
Barrientos 1986; Okada 1985). These
results are very useful for studies of
aseismic, preseismic, coseismic and
postseismic fault movements. However,
most of studies are based on the
dislocation theory. Because there are

some unreasonable assumptions in this
theory, e.g., assuming that the
dislocation components on each point
of the fault are equal, called usually
the uniform dislocation assumption,
the research of the seismic nonuniform
rupture can not be strictly proceeded
with the dislocation theory. Although
some authors obtained nonuniform slip
pattern on the earthquake fault by
inverting geodetic data (Ward and
Barrientos 1986; Barrientos 1988;
Yabuki and Matsu’ura 1992), these
results are still based on the elastic
dislocation theory, and further
research “Zind: tthigErufieldteiwilsl < She
confined by the elastic dislocation
theory. Therefore, it is necessary to
develop a general method for inversion
of dynamic geodetic data based on
mechanical models.

Theory for inversion of dynamic
geodetic data has been developed by
Zhao (1991; 1992). In this paper, six
kinds of the inverse problems of solid
mechanics are proposed, and their
solutions and properties are
investigated. With the finite element
method numerical solutions of the
inverse problems are investigated and
a parameter optimization method for
inversion of geodetic data is
presented. To demonstrate applications
of the method, some examples 1in
geodynamics and seismology are
discussed.

The proposed method in this paper
can be wused to -estimate regional
boundary forces and part rock medium



