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Abstract. Topography plays an important role in solv-
ing many geodetic and geophysical problems. In the
evaluation of a topographical effect, a planar model, a
spherical model or an even more sophisticated model
can be used. In most applications, the planar model is
considered appropriate: recall the evaluation of gravity
reductions of the free-air, Poincaré—Prey or Bouguer
kind. For some applications, such as the evaluation of
topographical effects in gravimetric geoid computations,
it is preferable or even necessary to use at least the
spherical model of topography. In modelling the topo-
graphical effect, the bulk of the effect comes from the
Bouguer plate, in the case of the planar model, or from
the Bouguer shell, in the case of the spherical model. The
difference between the effects of the Bouguer plate and
the Bouguer shell is studied, while the effect of the rest of
topography, the terrain, is discussed elsewhere. It is
argued that the classical Bouguer plate gravity reduction
should be considered as a mathematical construction
with unclear physical meaning. It is shown that if the
reduction is understood to be reducing observed gravity
onto the geoid through the Bouguer plate/shell then
both models give practically identical answers, as
associated with Poincaré’s and Prey’s work. It is shown
why only the spherical model should be used in the
evaluation of topographical effects in the Stokes—Helmert
solution of Stokes’ boundary-value problem. The reason
for this is that the Bouguer plate model does not allow for
a physically acceptable condensation scheme for the
topography.
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1 Introduction

Periodically, people discover that planar and spherical
models of topography give very different results for
Bouguer anomalies. Similarly, the results for the direct
and indirect topographical effects in the Stokes—Helmert
technique for geoid computations obtained by means of
the planar and spherical models are found to be quite
different. Some people claim that the planar model can
safely be used for “local work™ while the spherical
model has to be used for global work. Others still
maintain that all these questions have already been
sorted out and that they do not require any more of our
attention. So what is going on?

When looking into this problem (Vanicek and Novak
1999) we discovered an interesting story, which we will
try to recount here. To do so, we focus only on the
“infinite plate” and the “‘spherical shell”” models, leaving
out the terrain effects. The corresponding difference of
the planar and spherical models of terrain presents an-
other fascinating story which, in our opinion, requires a
separate and rather more extensive paper to deal with it
adequately. The main point of this “terrain story” is the
discovery that, contrary to popular belief, the spherical
model terrain effect has to be considered globally. This
point has been already discussed by Novak et al. (1998)
and by Novak and Vanicek (1999). A more formal and
complete paper on the subject of spherical terrain model
is under review (Novak et al. submitted). Once pub-
lished, it will complement the present paper.

In the present paper, we will focus our attention first
on the difference between the Bouguer plate and Bou-
guer shell effects on Bouguer anomalies. Then, we will
tackle another, more or less independent issue, that of
the difference between the two models in the gravimetric
geoid determination by means of the Stokes—Helmert
technique, where the use of the two models has pro-
found consequences. In fact, the planar model, the
Bouguer plate, cannot be used at all if we wish to use a
physically meaningful condensation scheme.



2 The story of Bouguer plate reduction

In order to see the pattern, let us show the gravitational
potential, the gravitational attraction (negative first
vertical derivative of the potential), and the vertical
gradient of gravitational attraction (negative second
derivative of the potential) of the topographical (Bou-
guer) plate and the topographical (Bouguer) shell side by
side. To keep things simple, let us assume a constant
density o (say, the usual 2670 kg m~3) and the same
thickness, H, for both the infinite plate and the shell of
the inner radius R. This is all shown in Fig. 1. The three
quantities of interest are computed at two points: one on
the top and one at the bottom of the plate/shell. In
addition, the second derivative, which is discontinuous
on the top (and also at the bottom) of the plate/shell, is
at this point computed in both directions: from above
and from below. The expressions for the plate are
derived from Egs. (3.5) and (3.7) in Heiskanen and
Moritz (1967) by simply extending the finite plate to
infinity. The expressions for the shell are derived directly
from the equations for the potential (of a spherical shell)
in Wichiencharoen [1982, Egs. (19), (24) and (25)].
Now, examining Fig. 1, how different really are the
results for the planar and spherical models? Starting from
the bottom, with the vertical gradient of attraction, and
neglecting the higher-order terms (of the order of H /R and
smaller) in the spherical model, the results are identical.
The attraction of the plate at its top is only one half of that
of the shell (at its top and neglecting the higher-order
terms), while the attraction at the bottom of the plate is
exactly opposite to that at the top. The attraction at the
downside of the shell is zero, as it should be (Kellogg
1929). Note that the change in the attraction when verti-
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cally traversing the plate or shell is the same, except for
higher-order terms. The situation for the potential is
naturally different: as the potential of the infinite plate is
infinite, we cannot make any direct comparison between
the two models. We can only observe that in the spherical
model, the potentials at the upside and on the downside of
the shell differ only by higher-order terms.

What does it all mean? We wish to address here only
the most interesting question of what this means in the
context of the (incomplete, i.e. without the terrain cor-
rection) Bouguer gravity anomaly. The incomplete or
simple Bouguer anomaly is computed from the follow-
ing formula:

Ag=g+A+48—» (1)

where ¢ is the observed gravity on the Earth’s surface (at
altitude H), 4 is the “free-air reduction” (to the geoid)
due to the Earth’s masses enclosed within the inner
radius of the spherical shell (including the latitude and
altitude terms), 4B is the “Bouguer reduction” (to the
geoid) due to the mass of the Bouguer plate, and y is the
normal gravity at the reference ellipsoid [Heiskanen and
Moritz 1967, Eq. (3.19)]. In this case, the so-called
Bouguer reduction is given by
A® = 2nGoH (2)
For the standard value of mean topographical density of
2670 kg m~3, the numerical value of the Bouguer
reduction is 0.1119 x H mGal.

Inspecting again Fig. 1, we can see rather easily that
AP is not the difference between the gravity values at the
top and the bottom of the infinite plate! It is not the
difference between gravity values on the upside and

plate. The symbols O;(H/R) de-
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downside of the spherical shell either! This difference, in
the planar case, is equal to

AP? = 4nGoH (3)

known in geodesy as the “Poincaré—Prey gravity reduc-
tion” [Heiskanen and Moritz 1967, Eq. (3.64)]. In the
spherical case the difference is the same except for the
higher-order terms, which we will neglect for simplicity.
(We note that we arrive at the stated conclusions, using
either the attraction or the vertical gradient of attraction
formulae, as we should.) For the standard topographical
density, the numerical value of the Poincaré—Prey
reduction is 0.2238 x H mGal.

The discrepancy between the planar and spherical
models was pointed out by Karl (1971). It should be
mentioned that planar and spherical terrain models
display the same discrepancy. Taking the observation
point to be located on top of a thin tower of height H, its
planar terrain correction will amount to —2nGoH, while
its spherical terrain correction will be —4nGoH (Novak
et al., submitted, 2000).

Now, the standard explanation of the Bouguer re-
duction is that it represents the effect of the removal of
the Bouguer plate, i.e. of a plate of infinite mass. This, in
physical terms, is rather an unsatisfactory manipulation.
On the other hand, inspecting again Fig. 1, we can see
that the operation of the removal of the Bouguer shell
(more satisfactory because of the finiteness of its mass)
results again in the Poincaré—Prey rather than Bouguer
gravity reduction. We note that in either case, the “re-
moval of the plate or shell” results in the fact that the
Bouguer anomaly refers to the point where the gravity g
has been observed, i.e. to the surface of the Earth.

There is an alternative possibility. If we wish to view
the Bouguer anomaly as being referred to the geoid
rather than the Earth’s surface, we have to understand
the Bouguer reduction 4% as being the vertical gradient
of gravity within the plate/shell between the geoid and
the Earth’s surface multiplied by the thickness of the
plate/shell. We obtain, up to the higher-order terms

s
or?

where the second derivative (negative attraction gradi-
ent) is evaluated at the top of the plate/shell. However,
according to Fig. 1, the gradient has at this point two
values, one in the limit taken from the outside and the
other in the limit taken from the inside towards the top
surface of the plate/shell. Thus, strictly speaking, the
gradient is at this point undefined! The ‘“Bouguer
gradient” in Eq. (2) is the average of the outside and
inside values, i.e. a mathematically and physically
meaningless quantity, as already pointed out by Vanicek
and Krakiwsky (1986). On the other hand, taking the
appropriate value of the gradient within the mass (i.e.
between the top and the bottom surfaces) valid for the
inside of the plate/shell, both models give the same
result, namely the Poincaré—Prey value discussed above.

The inevitable conclusion is that the apparently in-
correct Bouguer gravity reduction is not coming from

AB = H 4)

the use of the (physically less satisfactory) planar model
and that we should therefore obtain the ““correct” result
by using the physically more satisfying spherical model.
Rather, the Bouguer gravity reduction is the conse-
quence of the physically unsatisfactory “removal of the
Bouguer plate” of an infinite mass. Thus the Bouguer
gravity anomaly, useful as it is in many geophysical
applications, is really only an artificial construction. The
difference between using the planar and the spherical
model is of second order; it is the known spherical
correction to the Bouguer plate reduction [Vanicek and
Krakiwsky 1986; Eq. (21.43)]

HZ
048 = ~8nGo—- (5)

For the standard topographical density of 2670 kg m—3,
the numerical value of the spherical correction is
0.4476 x H>/R mGal. An interesting interpretation
may be offered for the standard Bouguer reduction 48,
if we wish to use the alternative interpretation of gravity
anomaly: it numerically reduces the observed gravity
from the surface of the Earth to the mid-point of the
infinite Bouguer plate, or the mid-point of the Bouguer
spherical shell. This is a result of a particular selection of
the value of the vertical gradient of gravity rather than
the selection of a particular (planar) model.

3 The direct and primary indirect topographical effects

Let us now turn our attention to the other issue which is
only loosely connected to the problem of Bouguer
reduction. Probably the most widely used technique in
North America for solving the boundary-value problem
of geodesy (leading to geoid determination from ob-
served gravity anomalies) is the Stokes—Helmert tech-
nique (Vanicek and Martinec 1994). The essence of this
technique is that topographical masses are replaced by a
condensed mass layer on the geoid surface, resulting in
the introduction of an abstract space, called Helmert
space (Vanicek and Martinec 1994), in which the
solution is sought. The main idea behind the technique
is that the disturbing potential 77 sought in Helmert
space is harmonic everywhere above the geoid. The
Helmert disturbing potential 7" is related to the real
disturbing potential T by the following equation:

™(r,Q) = T(r,Q) — V(r,Q) (6)

where the residual topographical potential V' is defined
as

V(r,Q) =V (r,Q)—VrQ) (7)

where V' denotes the potential of topographical masses
and V¢ stands for the potential of the (condensed) mass
layer. The symbols » and Q stand for the geocentric
distance and a spatial angle with components (0, 4) of
spherical co-latitude and longitude.

The transformation of observed gravity (at the sur-
face of the Earth) in the real space to its counterpart
(Helmert’s gravity) in the abstract Helmert space is



achieved by subtracting from it the “Direct Topo-
graphical Effect” (DTE) given by the following formula
(Vanicek and Martinec 1994):

ov(r,Q)
) )

r=r

DTE(Q) =

where the partial derivative (in units of acceleration) is
evaluated at the surface of the Earth, ie. on the
topography, for r(Q) =r/(Q). The transformation of
the resulting geoidal height in Helmert space (Helmert’s
co-geoidal height) to the real geoidal height (geoidal
height in the real space) is realized by adding to it the
“Primary Indirect Topographical Effect” (PITE) given
by the following formula (Vanicek and Martinec 1994)

V(rg, Q)
Y

where 7y is the normal gravity at the reference ellipsoid.
We note that PITE is evaluated at the geoid (in Helmert
space), i.e. for r(Q) = r,(Q), and is in units of length. It
is based on Bruns’ formula [Vanicek and Krakiwsky
1986, Eq. (21.4)], which links disturbing potential T to
geoidal height N. There is also another, much smaller
effect, called “Secondary Indirect Topographical Effect”
(SITE), which we will not discuss here as it can
be neglected under most circumstances (Vanicek

et al. 1999).
Let us now concentrate on the two terms DTE and

PITE. They can be evaluated by numerical integration
over topography, considering the real topographical
density o(r,Q), and using one of many possible mass
condensation schemes. We will deal with only the av-
erage topographical density of

PITE(Q) = 9)

o(r, Q) = g, = 2670 kg m > (10)

although a more realistic topographical density model
has to be used in accurate geoid determination (Marti-
nec 1993; see also Fraser et al. 1998; Tsiavos and
Featherstone 2000; Huang et al. submitted). Finally, we
will show the models for three different mass conden-
sation schemes:

(1) the mean density condensation, which gives the
condensation layer density o as

o(Q) = ¢y H(Q) (11)

where H is the orthometric height of the terrain
(Vanicek and Kleusberg 1987);

(2) the mass conservation condensation, which pre-
serves the total mass of the Earth when trans-
forming from the real to the Helmert space:

H(Q)  H(Q)

where R is the mean radius of the Earth (Wichien-
charoen 1982);

(3) the mass-centre conservation condensation, which
preserves the position of the centre of mass of the
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Earth in the transformation into the Helmert space
(Wichiencharoen 1982):

2 3
o(Q) = pH(Q) 1+3H2(I?)+H R(zg )+H;§§) (13)

We will consider both planar and spherical models here,
as the comparison of the two is our main objective.
Unfortunately, however, only the first condensation
scheme can be used in conjunction with the planar model;
the other two schemes do not make sense in their planar
form—Eqgs. (12)and (13)-have been derived for a spherical
model and their planar counterparts do not exist.

For any of the condensation schemes, both the DTE
and PITE can be expressed as a sum of the contribution
of the Bouguer spherical shell (or an infinite Bouguer
plate, in the case of the planar model) of thickness H,
plus the contribution of the real terrain on top of the
shell/plate. It turns out that the terrain contribution
(called the topographical roughness term by Martinec
and Vanicek 1994a, b) is not too sensitive to the selec-
tion of the mass condensation scheme. Once again, the
terrain contributions are dealt with by Novak et al.
(submitted) and here we will concentrate only on the
Bouguer shell/plate contributions and denote them by
DTE®(Q) and PITE®(Q). (We note that the Bouguer
shell/plate contribution is, mathematically speaking,
nothing other than the contribution of the singularity of
Newton’s integral at the computation point.) Table 1
gives an overview of the results for the three different
condensation schemes and for the two models.

What can we say about the individual contributions?
Is there, for instance, any indication that one conden-
sation scheme is better than the others? To answer this
question, we should evaluate the total topographical
effect for each of the condensation schemes and compare
them to establish whether the results are identical or not.
In order to evaluate the total topographical effect, the
DTE has first to be transferred from the Earth’s surface
to the geoid (downward continued), then convoluted
with Stokes, kernel, and finally added to the PITE.
Symbolically, we can write the following algorithm for
the total topographical plate or shell model effect
ONBul(Q) on the geoid:

DTE®(Q) = DTE®(r,,Q) — DTE®(r;, Q) — ON®(r,, Q)
= SNB(Q) (14)

oNBrtlQy — sNB(Q) + PITER(Q) (15)

The problem here is with the downward continuation
DTE®(r;,Q) — DTEB(r,,Q) of the DTE. A harmonic
function does have a uniquely defined downward
continuation, which can be obtained by means of
solving a boundary-value problem of Dirichlet type,
leading to the solution in the form of the Poisson
integral. However, the downward continuation of a non-
harmonic function cannot be evaluated through Pois-
son’s integral! It is easy to prove that the residual
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Table 1. Expressions (and re-

ferences) for the direct (DTE) Spherical model

Planar model

and primary indirect (PITE)
topographical effects for the
three most often used con-
densation schemes in spherical
and planar models

Mean-density condensation
DTEB(Q) = -4rnGoH*(Q)/R
(Martinec and Vanicek 1994b)
PITER(Q) = 2nGoH*(Q)/y
(Vanicek and Martinec 1994)

Mass-conservation condensation
DTERQ) = 0
(Martinec 1993)

PITER(Q) = —27GoHX(Q)/y
(Martinec and Vanicek 1994a)

DTER®Q) = 0

(Vanicek and Kleusberg 1987)
PITER(Q) = —nGoH*(Q)/y
(Vanicek and Kleusberg 1987)

Not defined

Not defined

Mass-centre-conservation condensation

DTE®Q) = -21GoH*(Q)/R
(Martinec 1993)
PITER(Q) = —4nGoH*(Q)/y
(Martinec 1993)

Not defined

Not defined

topographical potential ¥ is not a harmonic function
within the topography:

(1) the disturbing potential T satisfies the following
Poisson equation within the topography:

AT (r,Q) = —4nGo(r,Q), Vr, <r<r (16)
where A stands for the Laplacian operator;

(2) the Helmert disturbing potential 7", on the other
hand, satisfies the Laplace equation everywhere
above the geoid

AT"(r,Q) =0, Vr>r, (17)
(3) substituting for 7" in Eq. (17) from Eq. (6) and
considering Eq. (16), we obtain

AV(r,Q) = 4nGo(r,Q), Vry<r<r (18)
which concludes the proof. As ¥ is not harmonic,
there is no reason to believe that 7B is harmonic
either, and the downward continuation of VB, and
therefore even of the DTEB, cannot be evaluated
without bringing the density o(r,Q) into the dis-
cussion, which makes the proposition much more
involved.

We thus have to conclude that there is no simple way
of theoretically comparing the performance of the three
condensation schemes. All that can be ascertained is
that the first scheme changes both the mass and the
centre of mass, the second changes the centre of mass,
while the third changes the mass of the Earth in
Helmert space. Thus the resulting geoid in Helmert
space has to be corrected for scale, by subtracting
—4.9 cm from all the geoidal heights (Martinec 1998),
or for the shift of the geoid with respect to the centre
of mass (Hoérmander’s corrections), amounting to
(—=0.6,—1.5,0.2 cm) (Hoérmander 1976), or for both
(in the case of mean density condensation). From the
numerical point of view, the scheme that preserves the
mass of the Earth should be recommended because the
effects are the smallest and thus the easiest to evaluate
accurately.

Is there any indication that the spherical model in-
volving Bouguer’s shell gives significantly better results
than the planar model involving Bouguer’s plate? Not
from the discussion above! To begin with, when inves-
tigating the relative performance of the planar and
spherical models in the evaluation of DTE and PITE, we
can no longer disregard the terrain effect. However, our
numerical experiments, where we took both the plate/
shell and the terrain into account, have shown (Novak
et al., submitted, 2000) that significant differences are
encountered when spherical and planar models are used.
Since the spherical model is indubitably closer to reality
than the planar model, we conjecture, based on the
above discussion, that the spherical model is the theo-
retically more correct one and should be used whenever
a higher accuracy of results is desired. It may be argued
that the numerical evaluation of the spherical terrain
correction can be affected by systematic errors embed-
ded in global elevation data. This is obviously the
computational advantage of the planar model, which
also produces a smoother field more suitable for pre-
diction of gravity data. Most of these systematic errors
will, however, be cancelled out using Helmert’s con-
densation. For more details on this, see Novak et al.
(submitted, 2000).

4 Conclusions

The investigation of the difference between the Bouguer
plate and shell model effects has led to several rather
interesting discoveries. First, it became clear that the
choice of either the plate or the shell does not affect the
Bouguer plate reduction appreciably: the difference is of
second order compared to the reduction itself and is
described by the “‘curvature correction” as we might
have expected. Second, we have confirmed that the
physical interpretation of the Bouguer plate reduction is
not the removal of the effect of the plate/shell; rather it is
the removal of the effect of the upper half of the plate/
shell. Alternatively, the reduction can be viewed as
purely formal because it uses a value for the vertical
gradient of gravity that does not make physical sense.



In geoidal applications the differences between the
plate and the shell effects are more subtle, yet more
fundamental. First, we see that the planar model does
not allow us to use any of the physically meaningful
condensation models: the mass conservation condensa-
tion or the mass centre conservation condensation. This
alone, in our opinion, should disqualify the planar model
from use in geoidal studies. Even when the planar model
can be used, i.e. for the mean density condensation, the
effects appear to be quite different. For the reason of
having to downward continue a non-harmonic function,
it is impossible to compare the results from the two
models theoretically. We thus cannot show theoretically
the difference between the effects of the two models.
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