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A New Approach to an Old Problem

Carrier-Phase

cle Slips

Sunil B. Bisnath, Donghyun Kim, and Richard B. Langley

University of New Brunswick

High-precision GPS positioning and navigation requires that the data preprocessing stage cor-
rectly repair cycle slips in the carrierphase observations. A slip of only a few cycles can bias
measurements enough to make centimeter-level positioning or navigation difficult. Over the
past decade, researchers have developed numerous methods to detect and repair cycle slips.

Yet, invariably, a few cycle slips remain undetected or incorrectly repaired, requiring analyst
intervention to fully clean up the data. A perfectly operating, automated GPS data preprocessor
remains an elusive goal. However; two of my colleagues at the University of New Brunswick,
Sunil Bisnath and Donghyun Kim, have developed a technique that advances preprocessor
capability significantly, and they join me in describing their work in this month's column.
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Geomatics Engineering at the University of New Brunswick, where he is investigating the use of
GPS for precise low-earth-orbiter tracking. Dr. Kim is a postdoctoral fellow in the same depart-
ment, where he has been developing a new on-the-fly ambiguity resolution technique for long-
baseline kinematic GPS applications and software for a gantry crane auto-steering system using
the carrierphase observations of high-data-rate GFS receivers. He has a B.Sc., an M.S,. and a
Ph.D. in geomatics from Seoul National University. He has been involved in GFS research since
1991 and is a member of the International Association of Geodesy Special Study Group, “Wide

Area Modeling for Precise Satellite Positioning.”

To utilize the full measurement strength of
the GPS carrier-phase observable for precise
static or kinematic positioning, the integer
ambiguities in the phase data must be
removed. These ambiguities include both
the initial integer ambiguities and the addi-
tional integer ambiguities introduced by
cycle slips. For long-baseline kinematic data
processing (with baseline lengths of hun-
dreds or thousands of kilometers), it is very
difficult to estimate the initial integer ambi-
guities and, if the data set is sufficiently long,
researchers often leave them as real-valued
estimates with little degradation in accu-
racy. However, accurate positioning requires
the detection and full correction of cycle
slips. This task can be quite labor inten-
sive if using semi-automated techniques, or
can produce erroneous results if implementing
inappropriate automated techniques. Slip
detection and repair still represents a chal-
lenge to carrier-phase data processing even
after years of research, early on in which
it was predicted that cycle slips would in all
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likelihood not pose a problem in the future
due to receiver advances.

The majority of approaches involve form-
ing cycle slip-sensitive linear combinations
of the available observables. Researchers
have designed algorithms to detect, deter-
mine, and repair these cycle slips by fitting
functions to the linear combinations and by
observing differences between the functions
and the data combinations. These methods
invariably require user intervention for prob-
lematic cycle slips in portions of data,
tuning of input parameters to data, or intro-
duction of additional carrier-phase ambi-
guity-resolution parameters in the main data
processing when preprocessing cycle-slip
determination has failed.

In this article, we discuss the develop-
ment of a cycle-slip detection and correc-
tion technique designed to detect and cor-
rect cycle slips in dual-frequency carrier
phase data, in a fully automatic manner, uti-
lizing carrier phase and pseudorange mea-
surements in a postprocessing environment.

The prime objective of our work is to cor-
rectly detect and repair all cycle slips in the
data preprocessing stage (sometimes referred
to as the data editing stage), with straight-
forward algorithms independent of the qual-
ity of the input data.

Detection and Determination

We begin our discussion with a general review
of detection and determination philosophies,
then expand on specific methods and equa-
tions.

What is a cycle slip? Briefly, it is a sud-
den jump of an integer number of cycles
in the carrier phase observable, caused by
the loss of lock of a receiver phase lock loop.
The loss may be due to internal receiver track-
ing problems or to an interruption in the
antenna’s reception of satellite signals caused,
for example, by a temporary signal blockage.
Aloss of lock may be shorter than the time
interval between two adjacent data collec-
tion epochs or as long as the time interval
between many epochs, in which case the
term “data gap” may be in order. Correcting
a cycle slip involves detecting it, estimating
the exact number of L1 or L2 frequency cycles
that comprise it, and actually correcting the
subsequent phase measurements by this inte-
ger estimate.

For the most part, techniques used in the
detection and determination of cycle slips
have not changed significantly since the first
methods were devised in the early 1980s.
The focus has always been on attempting to
develop a reliable, somewhat automatic
detection and repair procedure. To detect a
slip, a method must in some manner test at
least one smooth (i.e., low-noise) quantity
derived from the observations for discon-
tinuities that may represent cycle slips.

The derived quantities usually consist of
linear combinations of the undifferenced or
double-differenced L1 and L2 carrier-phase
and, possibly, pseudorange observations.
Examples of combinations useful for kine-
matic data are the ionospheric phase delay,
the range residual, and the widelane phase
minus narrowlane pseudorange.

After producing the time series for the
derived quantities, one can initiate the cycle-
slip detection process. Of the various meth-
ods available, we will discuss here only four.

The most straightforward method is to
compute higher-order time differences of the
time series, which accentuate any discon-
tinuities. Many static GPS data processing
packages, including the University of New
Brunswick’s DIPOP (Dlfferential POsitioning
Program) software, use this approach. The
main disadvantages of this method are that
the user must set data-set-specific tolerance



values, and that kinematic data require geom-
etry-free linear combinations.

Another method is to fit a low-degree poly-
nomial over the time series and conclude
that any large discrepancy between the poly-
nomial and the time series represents a cycle
slip. This method is also hampered by the
number and size of slips altering the shape
of the fitting polynomial.

A popular method, especially for kine-
matic data processing, where such filtering
is used in the main processing stage, is Kalman
filtering. An adjunct to this technique is the
use of wavelets rather than Kalman filtering.
The predicted time series values estimat-
ed from the developed dynamic model in
the Kalman filter are compared with the actu-
al data time series. Any statistically signifi-
cant discrepancies are indicative of cycle
slips. However, choosing appropriate fil-
ter parameters for the data set requires filter
tuning and, if inappropriate parameter val-
ues are selected, the method can return
unpredictable results, at least with undif-
ferenced static data.

The final method we need to discuss con-
sists, in part, of applying a running aver-
age filter to a linear combination to improve
the estimate of the combination’s ambigui-
ty term. Cycle slips are detected by deter-
mining whether two consecutive unfiltered
data points are outside the confidence inter-
val of the running mean. This method and
the Kalman filtering approach have the advan-
tage of using statistical information from the
data themselves in the detection process.

After detecting cycle slips, one must deter-
mine the actual number of L1 and/or L2 cycles
that comprise each slip and then correct the
data. The latter is a simple enough task, but
the determination can require additional
information. If one uses single-frequency lin-
ear combinations resulting in integer ambi-
guity values, then one can directly estimate
the integer number of cycles attributable to
the slip. If one uses a dual-frequency com-
bination, then this single combination con-
sists of two unknowns: the slip in L1 and the
slip in L2. Therefore, solving uniquely for the
individual frequency slips requires a second
linear combination. This can be accom-
plished by using one of the detection meth-
ods on a second linear combination—not to
detect a slip, but rather to estimate the inter-
frequency slip. With this additional infor-
mation, one can uniquely determine the val-
ues of the L1 and L2 cycle slips. Various
techniques can fix the estimates to integers,
ranging from simple rounding to search-
ing for slip pairs that best fit the linear com-
binations in a leastsquares sense. If one can-
not determine viable integer combinations,

then one can introduce additional carrier-
phase ambiguity resolution parameters in
the main data processing.

Automatic Cycle Slip Correction
Our technique represents an evolution, from
static to kinematic and from semiautomatic
to fully automatic data handling in the DIPOP
preprocessors. After outlier detection and
time-tag correction, the procedure forms two
satellite-receiver, geometry-free linear com-
binations with the dual-frequency carrier
phase and pseudorange measurements,
for each baseline double-difference satellite
pair. Various tests filter the noisier of the two
combinations and detect cycle slips on each
combination. The filtered combination is
also filtered backwards and the data from
the two combinations are used in a least-
squares, polynomial fitting strategy to esti-
mate the magnitude and sign of the double-
difference L1 and L2 cycle slips in the time
series. The estimated slips are applied in a
correction routine. In order to verify correct
determination, the procedure must then run
a second round of identical detection. If it
detects any residual slips, it re-initiates
the determination and correction routines.

Detection observables. The detection observ-
ables are based on the double-differenced
carrier-phase and pseudorange observables.
For the L1 frequency, the double-differenced
observables are
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VAP =VAp+VAd,
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where VA is the double-difference operator;
&, and P, are the measured carrier phase
and pseudorange (in distance units); A, is
the carrier wavelength; ¢, is the measured
carrier phase (in cycles); p is the geometric
range from the receiver to a GPS satel-

We chose two detection observables with
minimal measurement noise and with the
property that they do not contain any com-
ponent of satellite-receiver range. Therefore,
the two linear combinations produce time
series that are relatively invariant to col-
lection time, baseline separation, and stat-
ic or kinematic data collection modes, with-
in the limits of the residual ionosphere,
multipath, and receiver noise. We chose the
geometry-free phase combination and the
widelane phase minus narrowlane pseudo-
range combination. We did not use the L1
and L2 range residuals, as the measurement
noise terms of these observables are greater
than that of the widelane phase minus nar-
rowlane pseudorange combination. Different
investigators have utilized both of the select-
ed combinations for cycle-slip detection for
undifferenced static data and for double-
differenced short baseline static and kine-
matic data.

Geometry-free phase. The first observable
is the geometry-free phase linear combina-
tion:

A VAQ -A,VAD,=(VAd ~VAd_ )
+ (7»1VAN . —}\.ZVAN 2) +(VAm 1—VAm 2) 3
+(Vae,-VAe)

This combination consists of inter-
frequency double-difference ionosphere, L1
and L2 double-difference integer ambigui-
ties, interfrequency double-difference phase
multipath, and interfrequency double-
difference receiver phase noise. A cycle slip
on the next (post-slip) epoch of this com-
bination would result in the ambiguities term
in Equation 3 being replaced with

A (OAN +n )= A, (OAN, +1n,) @)

where n, and n, are the double-difference
integer cycle slips (in cycles) on the L1 and
L2 frequencies.

Figure 1 illustrates the behavior of this
observable for a sample of data collected on

lite; IV, is the number of cycles by which
the initial phases are undetermined; d,,,,
and d,,, are the delays due to the tro-
posphere and the ionosphere; m,; and
M, represent the effect of multipath
on the carrier phases and the pseudo-
ranges;and &, and e, represent the effect
of receiver noise on the carrier phas-
es and the pseudoranges. We have
ignored satellite and receiver hardware
delays and other small effects, as they
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have negligible effect on data prepro-
cessing. A similar expression can be
written for the L2 frequency.

FIGURE 1 Variation in geometry-free phase
combination.
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a static baseline of approximately 200 kilo-
meters. In the figure, we have differenced
the geometry-free phase time series from the
integer value of its first data point to remove
the majority of the observable for which
the ambiguity bias is the main constituent.
We did this because the variation of the
combination is the important aspect in
this analysis. The variations are primarily
due to the ionospheric term in Equation 3,
whereas the phase multipath and noise terms
have much higher frequencies and lower
amplitudes.

Widelane phase minus narrowlane pseudo-
range. The second observable is the wide-
lane phase minus narrowlane pseudorange
linear combination:
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where
-1
A= ()\Il—)\ ;) =86.2 centimeters,  (6)

usually referred to as the widelane wave-
length, and

A= ()\1_ _ )\; 1) =10.7 centimeters  (7)
usually referred to as the narrowlane wave-
length.

This combination consists of the wide-
lane ambiguity, a residual multipath term,
and a residual receiver noise term;the iono-
spheric terms cancel (to first order).

Since the multipath and noise terms of
the pseudorange measurements are much
larger than those of the carrier phase mea-
surements, the fluctuations in this combi-
nation are mainly due to pseudorange multi-
path and pseudorange measurement noise.
The former of these error terms can cause
quasi-sinusoidal variations of many meters.
A cycle slip on the next (post-slip) epoch of
this combination would result in the term
with ambiguities being replaced with

Ay @®

(DAN1+n1)—(DAN2+n2)

The noise of this observable makes high
resolution cycle-slip detection unlikely.
However, use of a simple running average
filter makes this observable more useful.
This strategy is quite intuitive, since over

GPS World May 2001

differences of that series, since

Combination (meters)
o

-4

time differencing is analogous
to high-pass filtering. From
past experience with DIPOR
we implemented the compar-
ison of a set of four time dif-
ferences. The median time dif-
ference is differenced from the
time difference value being
tested. The absolute value of
this difference leaves a very
small component of the ionos-
pheric, multipath, and noise

41.5 42 425
Time (hours of GPS week)

40.5 41

terms, and an estimate of the
cyclesslip, if any, on this com-

43 43.5

FIGURE 2 Variation in widelane phase minus nar-
rowlane pseudorange combination. The smooth
line shows the running-average filtered values.

time one would expect the residual multi-
path and noise terms to average down to
near-constant values. The filter is an expand-
ing-memory, low-pass filter whose output is
identical to the recursive mean:

o 1 -
thxt—l+z(xt_xt—l) ®

where x is the observation, x is the mean of
X, and ¢t and ] represent the present and pre-
vious epoch counts, respectively.

Figure 2 depicts this combination for the
same data set used in Figure 1. The noise
level is substantially higher than for the first
combination, but this is tempered with
the filtering. The running-average filtered
results do not follow the raw data as well as,
for example, a moving-average filter, espe-
cially due to the large degree of multipath
at the start of the time series. But as long as
there are no cycle slips, the running average
is a better estimate of the ambiguity bias
given these large errors.

bination. The resulting value
is differenced from a slip tol-
erance. In some software, one
must select this tolerance on
a data set-by-data set basis. In
the new approach we removed this human
intervention by determining the time dif-
ference of the smallest type of cycle slip that
can be observed consistently with this com-
bination (from Equation 4), e.g.,

n1=5,n2=4$‘?»1n1—7»2n2‘ (10)
=~ 2.5 centimeters

We will say more about this slip pairing and
the choice of this pairing in the next
section.

If the procedure detects a slip, then it car-
ries out the second test. This test takes advan-
tage of a property of time differencing: a dis-
continuity at one epoch will appear in the
double time difference as two discontinu-
ities adjacent in time.

For the widelane phase minus narrowlane
pseudorange combination, the high noise level
of the combination requires a different approach,
namely a testing scheme modeled on one devel
oped for undifferenced static data. The procedure

Detection Tests o

Our procedure runs two dif-
ferent cyclesslip detection tests
on each time series of the cre-
ated combinations. It tests the
geometry-free phase combi-
nation first, since that com-
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Time difference of combination (millimeters per second)

bination has the lower noise. 00}
The first test investigates 0.2
the variation of the time-nor- 04}
malized, between-epoch time o6l
difference of the geometry-free
combination. Figure 3 illus- 08
trates this quantity with the '1-20 s

data from Figure 1. The prin-
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43.5

ciple used here is that a dis-
continuity in a time series is
more pronounced in the time

FIGURE 3 Time difference of geometry-free
combination.



filters the double-differenced measurements
and compares the unfiltered data points with +4or
of the filtered mean.

The recursive standard deviation is com-
puted as

2
2_ 2 1 - 2
of =0 (x5 ) ok, (D

where o is the biased sample standard devi-
ation and the other variables are the same
as those in Equation 9. The choice of the
a priori variance value is not critical, as the
recursive algorithm quickly determines vari-
ance values which are representative of the
data set being processed.

The meaning of this test is that any value
outside the expected ambiguity estimate
(the running average confidence interval)
at a data point represents a possible cycle
slip. Unfiltered data from the previous and
the subsequent epochs lying outside and
within, respectively, one cycle of such a data
point indicate a slip. One method of reduc-
ing the need for this second test could be to
use a moving average and associated mov-
ing standard deviation. While the moving
average would not be as good an estimate
of the ambiguity bias, the moving stan-
dard deviation would better tolerate the
effects of pseudorange multipath than the
running standard deviation. Another option
could be to utilize the receiver signalto-noise
values as an indicator of the combination
noise.

Figure 4 illustrates a test of this approach.
The unfiltered data are the same as in
Figure 2, and we have added to the plot
the +4o confidence intervals computed from
Equation 11.

Detection Insensitivity

Looking at Equations 4 and 8 individually,
we note that the detection algorithms could
miss many combinations of cycle slips (n;
and ny). However, the presented two-tiered
approach greatly reduces the number of slip
pairs to which both combinations are insen-
sitive. From experience, we know that the
geometry-free combination can be used
to consistently detect cycle slips as small as
a few centimeters, so we are concerned only
with the combinations in TABLE 1. Other
researchers have previously identified these

nlﬁl—nzxz (nl—nz)ﬁ4
n (centimeters)  (centimeters)
4 3 2.9 86.2
5 4 25 86.2
9 7 0.3 172.4

TABLE 1 Critical combination-insensi-
tive cycle-slip pairings.

situations, which represent

the rationale for the slip tol-
erance set in the geometry-free
phase detection tests. Later
in this article we will discuss
these slip pairs further.

Determination

In order to precisely estimate
the double-difference cycle
slips in the given combinations,

Combination (meters)
o

. 4t
we integrated the geometry-
free phase and widelane phase 5
minus narrowlane pseudor- 405

ange time series for each dou-

41 415 42

42.5 43
Time (hours of GPS week)

43.5

ble-difference pair in a
Chebyshev polynomial, least-
squares fitting scheme.

To utilize the widelane
phase minus narrowlane
pseudorange combination, the procedure
combines the forward and backward runs
of the filter to optimally smooth the time
series. The optimal smoothed estimate (unbi-
ased and of minimum variance) is

1

R -1 -1
% (1) =Cy|Cp %g{t)+Cp %t

(12)

-1 -1 -
C,=|Cp +Cy

where the subscripts £'B, and S indicate for-
ward filter, backward filter, and smoother,
respectively; % is the linear combination
estimate;and C'is the covariance matrix. The
covariances for the forward and backward
filters are estimated from Equation 11.

With noisier data we observed that the
smoothing produced roughness at either end
of the time series and on either side of detect-
ed cycle slips (the so-called “bow-tie” effect).
This could cause errors in the slip estima-
tion. To compensate for this, the procedure
uses only data from the forward filter before
a cycle slip and data from the backward
filter after the slip.

The next step is the polynomial fitting.
Chebyshev polynomial fitting was chosen
for DIPOP since it nearly completely mini-
mizes the maximum residuals in the fit, mak-
ing it a very robust technique. The proce-
dure computes the Chebyshev polynomials
on the basis of normalized time series time:

Tk(t) =cos|kcos” 1(t)

: (13)

where 7,,(%) is the kth Chebyshev polynomial
base function at time ¢. The procedure then
carries out a linear parametric least-squares
fit of the polynomials to each linear data
combination in order to estimate the
Chebyshev polynomial coefficients and more

FIGURE 4 Variations in widelane phase minus nar-
rowlane pseudorange combination with associat-
ed +40 confidence intervals.

importantly the estimates of the cycle slips
in each combination. This is represented by

cs(t) + é] Tk_ 1(t)Ck= obs(t), (149

where cs is a cycle slip, T'is a Chebyshev
polynomial term, C is a polynomial coeffi-
cient, and obs is the time series value. From
static DIPOP experience, one typically uses
a polynomial of approximately order 30, but
it may be appropriate to increase the order
by making it a function of the number of
epochs of data and the noise level of the
widelane phase minus narrowlane pseudo-
range combination. The procedure estimates
the combination cycle slips and the poly-
nomial coefficients in a parametric least-
squares adjustment along with the residuals
of the least-squares fit. It then combines the
combination slip estimates, the fit residu-
als, and the combination observations in
a weighted parametric adjustment to esti-
mate real-valued double-difference L1 and
L2 cycle slips. Next, these results are round-
ed to obtain integer estimates.

Figure 5 illustrates an example of the deter-
mination procedure for a one-cycle cycle
slip on L1. The differences in the fitted poly-
nomials before and after the slip for each
combination agree well with the theoretical
values: 19.0 centimeters for the geometry-
free phase and 86.2 centimeters for the wide-
lane phase minus narrowlane pseudorange.

Static Data Testing
In order to test the detection and determi-
nation strategy, we processed both static
and kinematic data. We present the former
here and the latter in the next section.

We deemed static data testing appropri-
ate, since it allows for a “truth solution”
to be determined with a semiautomated tech-

GPS World May 2001

49



Circle 23

o
IS

o
w
T

o
N
T

gf combination (meters)

o
OI—‘
=
o F
w
~F
o b
o F
<k
©

g
[=}

=
(3]
T

=
[=)
T

o
o

winl combination (meters)

o
[N

3 4 5 6 7 8
Time (minutes)
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FIGURE 6 Detected cycle slip in static data using geome-
try-free phase combination. The almost continuously
horizontal lines are the slip tolerances for the first geom-
etry-free phase detection test.

nique, using less noisy phase combinations in the cycle-slip cor-
rection process. The data set used is from a baseline of approximately
200 kilometers. The data contain a significant degree of multipath
(asseen in Figures 1 and 2), which stem from ground and wall bounce
multipath at one of the antenna locations. Such a corrupted data
set is representative of an extreme environment and therefore
provides a good test of robustness for our slip correction
technique.

The results using this strategy produced the same detected and
repaired cycle slips as with the manual processing strategy. The first
geometry-free combination test detects a number of cycle slips erro-
neously, but the second test indicates from differencing that these
apparent discontinuities are not true cycle slips. The widelane phase
minus narrowlane pseudorange test does not incorrectly detect any
slips, and the smoothing of these time series allows for precise
estimation of the L1 and L2 slips. Figure 6 shows an example of a
detected slip. The slip can be observed at approximately 40.4
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FIGURE 7 Detected cycle slip in kinematic data using

geometry-free phase combination.

hours on this time difference of the geom-
etry-free combination. The slip is equal to
two double-difference cycles on L1 and two
double-difference cycles on L2, and there-
fore is not detectable on the widelane phase
minus narrowlane pseudorange combina-
tion (see Table 1).

The above detection could become much
more difficult during periods of large ionos-
pheric fluctuations, when the ionospheric
term represents the main noise contribu-
tor in the geometry-free phase combination.
Others have indicated that a few-epoch mov-
ing average of the geometry-free phase com-
bination subtracted from the actual com-
bination can greatly reduce the effect of the
ionospheric term, as long as the multipath
is insignificant. Large discontinuities due to
the changing ionospheric conditions should
be avoided by using a high data collec-
tion rate.

Kinematic Data Testing

The kinematic tests involved a marine situ-
ation, in which the vessel data were col-
lected at an average distance of 40 kilome-
ters from the reference receiver. This data
set is representative of typical measurement
conditions. The “truth solution” was obtained
via a complex Kalman filtering procedure
with manual verification. The results using
the presented strategy compare favorably
with the Kalman filtering results in that both
processing techniques produce the same
results.

Given that Table 1 indicates various prob-
lematic cycle-slip pairs, slip pairs of this kind
were purposely injected into this kinematic
data set to test the technique’s sensitivity.
The results indicate that, with the tested data
set, the most sensitive pairings described in

We have developed a
completely automat-
ic cycleslip detection,
determination, and
repair technique to preprocess dualfrequency,
kinematic (and static) GPS data. The indi-
vidual algorithms stem from research per-
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formed by various authors and combined
here in a novel procedure. The technique
relies on the detection of cycle slips via two
geometry-free linear combinations of the
dual-frequency GPS measurements, namely
the geometry-free phase and the widelane
phase minus narrowlane pseudorange. A
number of geometric and statistical tests
detect slips for each combination. The results
of these tests, when combined, represent
a high-resolution, yet straightforward, method
for detecting cycle slips. The determination
of detected slips is performed by integrating
the two combinations in a Chebyshev poly-
nomial, least-squares fitting scheme.
Results using extremely noisy static and
typical kinematic data, with both actual and
simulated cycle slips, indicate that the tech-
nique is correctly detecting and repairing
cycle slips (and needs only marginally
increased processing time). Given that data
sets vary significantly in the number and size
of cycle slips and levels of ionospheric delay,
multipath and noise, only more testing
can further validate the performance of the
technique. Possible improvements to the
algorithms include the use of a moving stan-
dard deviation for detection on the wide-
lane phase minus narrowlane pseudorange,
and the use of receiver signal-to-noise val-
ues for the noise estimation. Determination
may be improved with the use of fitting poly-
nomials better tailored to the data and the
use of other geometry-free combinations.
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