
illustrated in Figure 1. This figure is based on
1,200 single-epoch experiments, each sepa-
rated by 3 seconds. The graph on the top pre-
sents a position scatter plot of the so-called
float solutions. Note the meter-level scale. Each
dot represents a computed position, based on
observations at a single epoch. For this graph,
the ambiguities were estimated as real (floating
point) variates. The graph on the bottom shows
the fixed solution based on exactly the same
observations, but using the fact that the ambi-
guities are integers and constraining the solu-
tion to these integer values. Note the scale
difference. Comparing the two graphs shows
that the integer-ambiguity information greatly
strengthens the data-processing model and
yields a much more precise solution.

For ambiguity resolution to be successful,
the ambiguities need to be estimated at their
correct integer values, as incorrect integers
generally bias the receiver coordinates con-
siderably. However, the integer values are
determined from noisy observations, and the
noise or uncertainty in the observations prop-
agates into the integer values for the ambigu-
ities, making them uncertain. Absolute certainty
about an ambiguity’s integer value is therefore
not possible. But if the uncertainty is too large,
there is a serious risk of ending up with severely
offset receiver coordinates. It is thus desirable
to achieve as high a degree of certainty as pos-
sible. And to effectively control this uncer-
tainty, it is desirable to have a mechanism for
assessing the probability of correctly estimat-
ing the integer ambiguities. After a more
detailed discussion of the resolution problem,
we will introduce a diagnostic tool that will
enable one to rigorously assess the reliability of
ambiguity resolution.

INTEGER AMBIGUITY ESTIMATION
For the purpose of ambiguity resolution, GNSS
data processing is usually carried out in three
sequential steps. In the first step, no distinc-
tion is made between the nature of the ambi-
guities and the other estimated parameters, like
receiver coordinates and atmospheric delays.
The parameter-estimation problem is solved
without taking into account the special integer
characteristic of the ambiguities. The result so
obtained is often referred to as the float solution

Global Navigation Satellite System (GNSS)
ambiguity resolution is the process of effec-
tively accounting for the integer property of
the unknown initial cycle ambiguities of carrier-
phase data, usually in the form of double dif-
ferences. It applies to a great variety of GNSS
data-processing models. This holds true not
only for the current Global Positioning Sys-
tem (GPS), but also for GLONASS, the future
modernized GPS, and the proposed European
Galileo system. The GNSS models range from
single-baseline models used for kinematic posi-
tioning to multibaseline models used as a tool
for monitoring and studying geophysical phe-
nomena such as plate tectonics and ionospheric
behavior. The models may have the relative
receiver–satellite geometry included (referred
to as geometry-based) or excluded (referred to
as geometry-free). 

The geometry is included through the unit
direction vectors in the model’s design matrix.
When the geometry is excluded, the receiver
baseline components are not involved as
unknowns in the model, but rather the
receiver–satellite ranges themselves. The mod-
els may also be discriminated as to whether
the remote receivers are in motion or not. 
When the receivers are moving, we solve for
one or more trajectories, because with the
receiver–satellite geometry included, we will
have new coordinate unknowns for each new
epoch. We may also discriminate as to whether
the differential atmospheric delays are included
as unknowns or not. In case of sufficiently short
baselines, these delays are often neglected.

Despite the differences in application of the
various GNSS models, their ambiguity-
resolution problems are intrinsically the same.
In all cases, the aim is to incorporate the inte-
ger property of the ambiguities into the least-
squares adjustment of the data so as to improve
the precision of the results. Once the integer
ambiguities are known, the corresponding car-
rier-phase measurements will act as if they are
high-precision pseudorange measurements,
thereby allowing the remaining parameters,
such as receiver coordinates or baseline com-
ponents, to be estimated with a comparable
high precision.

The improvement, obtained by exploiting
the fact that the ambiguities are integers, is

Fixing the Ambiguities
Are You Sure They’re Right?
Peter Joosten and Christian Tiberius Delft University of Technology

Fast and precise relative satellite position-
ing demands resolution of the integer cycle
ambiguities. Only then will the correspond-
ing carrier-phase measurements act as if
they were high-precision range measure-
ments, thereby allowing the receiver coordi-
nates to be estimated with comparable high
precision. 

Researchers have studied the GPS ambi-
guity problem for the past 20 years and have
proposed a wide variety of methods to
resolve ambiguities. So far, most of these
methods have concentrated on the estima-
tion of the ambiguities. The problem of
assessing the correctnessof the integer num-
bers obtained, often referred to as “ambigu-
ity validation,” has received considerably
less attention.

The “mission” of this article is to point
out that ambiguity resolution is not strictly a
matter of computing integer values for the
ambiguities.  Before really fixing or con-
straining the ambiguities to the computed
integers in a final baseline computation, we
should assess their accuracy. In other
words, we should ask ourselves “How sure
am I that these values are correct?” In this
month’s contribution, we will look at how
we might answer this question and discuss
some new developments in dealing with the
stochastic properties of the integer ambigu-
ity estimator. The ambiguity success rate is
presented as a tool for determining the
probability of correct integer estimation.

Our authors are Peter Joosten, who
holds an M.Sc. degree from the Delft Uni-
versity of Technology, and Christian
Tiberius, who holds M.Sc. and Ph.D.
degrees from that institution. Both are
employed at Delft University of Technol-
ogy’s Department of Mathematical Geodesy
and Positioning. This department is directed
by Professor Peter Teunissen, who authored
the LAMBDA method for ambiguity resolu-
tion in 1993. This method has found wide-
spread use around the world. Recently,
research has been extended to the stochastic
properties of the integer ambiguity estima-
tor, the topic of this month’s column.
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the inconsistencies in the data due to mea-
surement noise.

Two additional steps are necessary to exploit
the inherent integer nature of the ambiguities.
In the second step, the ambiguity float solu-

because the data-processing software estimates
the ambiguities as floating-point numbers. The
parameters are usually estimated using a least-
squares algorithm, which is commonly
accepted as the standard approach to deal with

I N N O V A T I O N

Figure 1. Relative positioning results on a short baseline are expressed in east,
north, and up components. Shown are 1,200 single-epoch solutions for the case
with ambiguities real-valued (top) and fixed (bottom). For the fixed solution, the
ambiguities are resolved correctly in all cases. Fixing the integer ambiguities incor-
rectly would generally shift the position solution by a decimeter or more. After suc-
cessful fixing, the precision of the coordinates is below the 1-centimeter level.
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manufacturers currently handle that
step in the process. 

The Aircraft Owners and Pilots
Association (AOPA)expressed con-
cern in 1997 about the cost of the com-
mercial data. As explained in an FAA
report completed in the fall of 1998, the
AOPA argued that, because the govern-
ment owns the core of the data and
because it mandates that updates be
handled electronically, government
sources should make the data available.
AOPA further pushed for the data to be
provided on a low- or no-cost basis. 

There is currently one main vendor
for the navigation databases, the Jep-
pesen Companyof Englewood, Col-
orado. Now a Times Mirror company,

The EU may be interested in devel-
oping a new signal standard in coopera-
tion with the United States, according
to Pietro Lo Galbo, head of the Navi-
gation Department of the European
Space Agency’s (ESA’s) European
Space Research and Technology 
Center, which performs the technical
work and management for ESA pro-
jects. Lo Galbo said such a signal
would not necessarily be the same as
that developed for GPS, but might
include more power, higher bandwidth,
or a different signal structure.

To devise a new standard, he said,
would require cooperation through a
joint technical group made up of 
European and U.S. experts. According
to several sources, the EU delegation
wanted to establish working groups
immediately. The United States
declined, however, but agreed to 
another meeting sometime in January. 

Despite the best efforts of the White
House, Department of Transporta-
tion (DoT), NASA, and Department
of Defense (DoD), Congresshas cho-
sen not to restore the $17 million need-
ed for work on the new civil GPS sig-
nals in fiscal year 2000. 

Officials had tried to get the funding
included in one of the spending bills
that kept Congress and the White
House wrangling until the end of
November — nearly two months after
the start of the fiscal year. Republican
pressure was on, however, to hold the
line on spending in preparation for next
year’s election campaign. As one insid-
er explained, the GPS modernization
funds were just another bill at a time
Congress was trying to trim the budget. 

Options to keep modernization on
track include reprogramming other DoT
funds or having DoD pick up the tab for
this year, with the latter tact appearing
more likely. The two agencies original-

December 10, 1999

For the Record

The EU may be interested in
developing a new signal stan-
dard in cooperation with the
United States . . . which would
not necessarily be the same as
that developed for GPS, but
might include more power,
higher bandwidth, or a differ-
ent signal structure.

Pietro Lo Galbo,
European Research and 

Technology Center

Flight Database Hurt by Cuts

European, U.S. Officials Meet

Cooperation Potential Explored

Efforts to Restore
GPS Funds Falter

Continued on page <None>

The United Statesand the European
Union (EU) held preliminary discus-
sions November 10 in Washington,
D.C., to investigate the possibility of
cooperation on the Galileo program.

Several sources familiar with the
talks said that the Europeans were seek-
ing a high-level agreement with the
United States; at least one knowledge-
able European source described the dis-
cussions as formal negotiations. A
State Departmentofficial described a
more low-key level of discourse, saying
that the talks begin a series of discus-
sions on principals for cooperation,
upon which an agreement could eventu-
ally be based.

Signal development is one of the
areas where the EU is seeking U.S.
cooperation. Sources confirm that the
EU delegation broached the idea of
overlaying the new Galileo signals on
frequencies at L1 and L2, where GPS
civil and military signals are located.

A proposed, low-cost government data-
base of navigation information for
pilots has fallen prey to the $31 million
in budget cuts that hit the Federal Avi-
ation Administration ’s (FAA’s) Wide
Area Augmentation System (WAAS)
this fiscal year. The budget shortage
stopped any further work on the data-
base, which was to be available by Sep-
tember of next year, the same time
WAAS was to be commissioned.

The proposed database would have
provided pilots with the minimum data
necessary to support Instrument Flight
Rules (IFR) operation in the United
States. The government currently sup-
plies the data in paper form, but these
must be hand-entered into an equip-
ment-friendly, electronic format. Pri-
vate vendors including GPS receiver Continued on page <None>

has a minimum of 24 satellites in the

constellation, that the system will be

modernized, what the nature of the aug-

mentations will be, and that the public

will be given ephemeris data. 
Once the document is finalized, the

agencies are to review the initial plan

for things that are missing and need to

be done, said Canny. Action items that

might be added at this point include an

advanced research effort, higher accura-

cy, and more precise timing.
Comments are due in the first half of

January. Canny noted that if they could

focus on what had to be done through

the Block IIF satellites, it would take

the community a long way. 

The Russian GLONASS satellite navi-

gation constellation has lost four more

satellites during the last two months.

Though one previously unstable satel-

lite was brought online during the same

timeframe, the constellation has only 10

operating satellites as of December 20. 

Information from the Interstate
Navigation & Information Center
(INIC) in Moscow and from the Coor-

dination Scientific Information Cen-

ter in the Russian Federation Min-
istry of Defense indicates that four
GLONASS satellites were withdrawn

beginning October 25, 1999. Three of

the recently withdrawn satellites are in

plane one of the three planes used by

the constellation. This leaves only three

of the 11 satellites in plane one opera-

tional. Fortunately these three satellites

were launched only a year ago on
December 18, 1998. INIC reports that there are nine oper-

ational satellites in the constellation

December 23, 1999

For the Record
As the holiday season zooms
by and we close out our ninth
year of publishing the GPS
World Newsletter, we would
like to take just a moment to
thank you, our readers, for
journeying through the world
of GPS with us. We wish you
the happiest of holidays and
all the best in the new year —
or is it century, or millennium,
or . . . .

The Staff,
GPS World Newsletter

Galileo Research Contracts Let

Draft Up for Interagency ReviewNational GPS Plan Taking Shape

GLONASS LosesMore Satellites

Continued on page <None>

The Interagency GPS Executive
Board (IGEB) has developed a Nation-

al GPS Plan that is being circulated in

draft form for interagency review. The

plan being developed is aimed at identi-

fying actions that need to be taken for

the long range health of the system after

the year 2010. According to Joe Canny,deputy
assistant secretary for navigation sys-

tems policy at the Department of
Transportation, the plan is being
developed in two phases. In the first

phase, it will summarize in writing
where the nation presently stands in

regard to GPS. For example, the draft,

he said, includes that the GPS system

The European Space Agency (ESA)

and the European Commission (EC)

have announced the award of the key

contracts for the definition phase of

Galileo, the proposed European contri-

bution to a Global Navigation Satellite

System (GNSS). Both ESA and the EC

had selected their preliminary
GalileoSat contract teams in November,

pending approval of ESA’s Industrial

Policy Committee (GWN,November
12, 1999).

On December 7, ESA signed a €20
million GalileoSat definition study con-

tract with a 50-company consortium led

by Italy’s Alenia Aerospazio to devel-

op the basic concept for a satellite con-

stellation and its ground systems. The

current vision for GalileoSat would
place at least 21 spacecraft in mid-Earth

orbit at an altitude of 24,000 kilometers

(nearly 15,000 miles), with a likely
complement of geostationary satellites

at 36,000 kilometers.Two days later, the EC announced

the award of four research contracts

totaling €37.5 million to teams led by

the British company Racal Electronics

and France-based Alcatel Spaceand
Sextant Avionique, a subsidiary of
Thomson-CSF. The primary contract,

called GALA (for GALileo overall
Architecture definition) and valued at

€27 million, went to a consortium head-

ed by Alcatel Space. GALA will define

the mission specification, global archi-

tecture, and system requirements.
The other three contracts address

service definition (GEMINUS, with a

team led by Racal), integration of the

European Geostationary Navigation

Overlay Service into Galileo (INTEG,

with an Alcatel-led consortium), and

Galileo standardization (SAGA, with

team leader Sextant).The current schedule for Galileo,

estimated to cost €2.7 billion, calls for

operations to begin in 2005 with a full

system in place by 2008. Essentially a

counterpart to the Global Positioning

System, Galileo is set to receive a final

European Union/ESA decision regard-

ing implementation by the end of this

year.
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tion is used to estimate the integer ambiguity
values. Here we could choose from a wide vari-
ety of integer estimation methods. These meth-
ods range from simple rounding schemes to
more advanced methods based on integer
searches. One popular approach is the
LAMBDA (Least-squares Ambiguity Decor-
relation Adjustment) method, developed at the
Delft University of Technology. With this
method, the ambiguities are estimated by means
of integer least squares using a very efficient
search procedure (see the sidebar entitled “The
LAMBDA Method” for further details). 

Finally in the third step, the computed inte-
ger ambiguities are used to improve the first-
step solution for the remaining parameters.
These parameters are recomputed, but this time
with the ambiguities constrained to the integer

integer ambiguities.
A single-frequency example based on the

geometry-free GNSS model is shown in Figure
2. The figure illustrates empirically how uncer-
tainty in the data (top left) propagates into the
ambiguity float estimate (top right) and finally
into the integer ambiguity estimate (lower left).
The correct integer for the ambiguity is known
to be four in this case, but as one can see from
the graph at the lower left, other integer val-
ues are frequently obtained.

To capture the integer-ambiguity uncer-
tainty, we have to treat the estimated integer
ambiguities as stochastic (random) variates.
This is not too different from standard adjust-
ment practice. In standard adjustments, where
all parameters are real-valued, we also propa-
gate the observational uncertainty to obtain the

values obtained from the second step. This final
result is referred to as the fixed solution, and it
generally inherits a much higher precision than
the previously obtained float solution, as was
demonstrated in Figure 1.

AMBIGUITIES ARE STOCHASTIC
When computing the fixed solution, the inte-
ger ambiguities are usually assumed to be
known with certainty. But how sure can we be?
After all, the integer ambiguities are determined
from noisy data. Only in the hypothetical case
of perfect observations, without any noise or
other errors, would the float solution always
yield the correct integer ambiguity values. In
reality, however, this is not the case. Any uncer-
tainty (noise) in the observations will propa-
gate and manifest itself as uncertainty in the

I N N O V A T I O N  
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The LAMBDA Method
To determine a fixed ambiguity solution from a float ambiguity vec-
tor (with n ambiguities), a mapping from the n-dimensional space
of reals Rn onto the n-dimensional space of integers Zn is necessary.
Although several approaches are available to achieve this, we rec-
ommend applying the least-squares criterion that leads to the inte-
ger least-squares estimator for the ambiguities. The solution is optimal
in the sense that it maximizes the probability that indeed the correct
vector of integer ambiguities is found. Considering the solution geo-
metrically, it minimizes the distance between the float ambiguity
vector (â) and the integer ambiguity vector (ă), where this distance
is measured in the metric of the ambiguity variance-covariance matrix
of the float solution. If the variance-covariance matrix of the ambi-
guities were to be diagonal, the float ambiguity estimates would be
uncorrelated and the fixed solution could be obtained by a simple
rounding of the float estimates. In general however, the estimates
will be correlated, and the fixed solution has to be identified by a

discrete search over a subspace of Zn, specifically, the ambiguity
search ellipsoid (see figure below).

In GNSS applications, the ambiguity search space is highly elon-
gated because of a usually high correlation between the ambiguity esti-
mates. It also stretches over a considerable range of wavelengths or
cycles as a result of the individual estimates’ usual low precision.
To improve the computational efficiency of the discrete search, the
LAMBDA method employs a decorrelating Z-transformation prior
to the search. This Z-transformation yields ambiguities  that are less
correlated and have improved precision, while retaining the integer
character of the minimization problem. The corresponding trans-
formed sphere-like search space allows a relatively efficient identi-
fication of the optimal integer least-squares solution.

In summary, the LAMBDA method largely decorrelates the ambi-
guities, whereafter it carries out a search procedure to efficiently
obtain the integer ambiguity vector that has shortest distance to the
float ambiguity, thereby maximizing the probability of identifying the

correct integer vector. For
more details about the
method, please consult
<http://www.geo.tudelft.nl/
mgp/>. Available on request
are a FORTRAN and a
MATLAB implementation
of the LAMBDA method.
Directly available for down-
load is an extensive descrip-
tion of the method and its
implementation in the report,
“The LAMBDA Method 
for Integer Ambiguity Esti-
mation: Implementation
Aspects.” The MATLAB
implementation comes with
a separate guide and also
includes a user-friendly
demonstration application,
which can be used for 
solving small problems 
interactively.

This figure illustrates an example of the search ellipse for two ambiguities showing the search
space shape before (left) and after (right) decorrelating the ambiguities by means of the Z-trans-
formation. The search space of the decorrelated ambiguities is clearly less elongated, which
allows for an efficient identification of the integer ambiguity solution. Note that the volume of the
search space is preserved by the transformation. The red star indicates the float solution, (â=
[3.875, 5.400], ẑ = [-1.525, 9.975]), and the green star the fixed solution (ă = [2, 4], z̆ = [–2, 10]).
The Z-transformation matrix is ZT = [1, –1; –3, 4]. Note that rounding the original ambiguities
would give a wrong result (â= [4, 5] ), indicated by a blue circle.
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one of these will affect the success rate. The
first two contributing factors reflect the data
model’s strength and they are given once the
measurement set-up is known. As to the method
of integer estimation, one has a variety of
options available. However, because different
methods of integer estimation will generally
result in different success rates, we might wish
to use the method that maximizes the success
rate. It has recently been proven that the inte-
ger least-squares estimator has the largest suc-
cess rate of all admissible integer estimators.
The success rate of the LAMBDA method is
therefore larger than, or at least as large as, any
other integer ambiguity estimator. 

A two-dimensional example will show us
how to determine the success rate of the inte-
ger least-squares ambiguities. Based on the
measurement precision and the assumed rela-
tionship between observations and unknown
parameters, we can obtain a probabilistic
description of the uncertainty in the float ambi-
guities. In this example, the uncertainty is given

example, one has about a 55-percent chance
of computing a wrong integer ambiguity. 

AMBIGUITY SUCCESS RATE
If we treat the computed integer ambiguities
as deterministic quantities, as we usually do in
practice, we will have to ensure that their uncer-
tainty is sufficiently small to be indeed
neglected. This is the case when the frequency
with which estimated integer ambiguity val-
ues coincide with the correct but unknown val-
ues is sufficiently large. This concept is
formalized in a probabilistic measure, referred
to as the ambiguity success rate. The success
rate is a number between 0 and 1, or 0 and 100
percent, and it expresses the chance, or prob-
ability, that the integer ambiguities are cor-
rectly estimated.

The ambiguity success rate depends on three
contributing factors: the observation equations
(functional model), the precision of the observ-
ables (the stochastic model), and the chosen
method of integer estimation. Changes in any
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uncertainty of the estimated parameters. This
uncertainty is then described by the probabil-
ity distribution of these parameters. The real
difference between a standard and an integer
adjustment lies in the type of probability dis-
tribution. In the standard case, the distribution
will be continuous, whereas in the integer case
it will be discrete as shown in the lower left
plot of Figure 2. That is, the distribution of the
estimated integer ambiguities will be a proba-
bility mass function. Such a distribution is also
obtained from other discrete phenomena such
as throwing a pair of dice. 

Without any knowledge of the probability
mass function of the integer ambiguities, we
have no way of knowing how often to expect
the computed ambiguity solution to coincide
with the correct but unknown integers. Is this
nine times out of ten, 99 times out of 100, or an
even higher percentage? In the example shown
in Figure 2, it is actually less than 45 percent.
This implies that when carrying out an exper-
iment according to the assumption made in the

I N N O V A T I O N
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Figure 2. Using single-frequency pseudorange and carrier-
phase data, the phase ambiguity of the geometry-free GPS
model is estimated in 1,800 single-epoch experiments at a
1-second interval. The histogram at the top left shows the
residuals of the (double-difference) pseudorange measure-
ments; the noise is at the decimeter level. The histogram at
the top right describes the float ambiguity. It is primarily the
noise in the pseudorange that is reflected in the noise of 
the float ambiguity, and as the L1 wavelength is about 2
decimeters, the corresponding uncertainty in the float 
ambiguity is at the one-cycle level. The top graphs also both
show the formal Gaussian probability distribution. Finally,
the integer ambiguity was computed for each experiment,
yielding the histogram at the lower left. In this case, the 
integer ambiguity is estimated correctly (four cycles) in only
43 percent of the experiments (indicated by base of arrow-
head).
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ambiguity pull-in region. It contains all loca-
tions of the float ambiguities which get pulled
to the correct integer solution when using the
integer least-squares principle. If we denote
the probability density function of the float
ambiguities aspa(x), and the pull-in region of
the correct integer ambiguity vector as Ra, the
ambiguity success rate can be written in equa-
tion form as 

Success rate = *
Ra

pa (x)dx. 

Some easy ways of computing or approxi-
mating this multiple integral are discussed in
the sidebar entitled “How to Compute Ambi-
guity Success Rate.” 

The ambiguity success rate can be evalu-
ated once the GNSS functional and stochastic
models are known. Similar to the usage of dilu-
tion of precision (DOP) measures, it can be
computed without having the actual measure-
ments available, that is, before actual field oper-
ations. By means of the success rate, the user
is given a rigorous way of assessing how often
he or she can expect ambiguity resolution to
be successful. Only when the success rate is
close enough to 1 is one allowed to proceed as
if the estimated integer ambiguities are non-
stochastic. How close to 1 does the success

by the Gaussian two-dimensional or bivariate
probability density function as shown in Figure
3. The standard deviations of the two ambigu-
ities are about 0.3 cycle. The corresponding
success rate follows, then, as the integral of
the probability density function over the area
shown in red. This area is referred to as the

rate need to be? This depends on the particular
GNSS application and the potential impact of
incorrectly fixing the ambiguities on the para-
meters being estimated. A smaller success rate
can be accepted in the instances where the
effect is small. 

The success rate depends of course, as any
other formal reliability measure does, on the
correctness of the assumptions that underlie
the model used. Incorrect specifications in the
model may lead to unrealistic values for the
success rate. For instance, even with a high
enough success rate, fixing to the wrong inte-
ger ambiguities is still possible when one or
more observations are grossly erroneous —
so-called outliers. A success rate close enough
to 1 therefore does not release us from the
obligation of performing statistical tests for
model validation. It does however make it
much easier to perform such tests. The higher
the success rate, the sooner one is allowed to
apply the classical theory of statistical hypoth-
esis testing and use, for instance, the common
F-test to spot any anomaly in the observations. 

CONCLUSION
In this article, we have shown that although
double-difference GNSS carrier-phase ambi-
guities are known to be integers, they are still

Figure 3. In this example of a joint probability density function for two float ambigui-
ties, the ambiguity values (in cycles) are along the horizontal axes and the probabil-
ity density along the vertical. The red area on the bottom of the graph indicates the
pull-in region, which is the float ambiguities area that is mapped onto the correct
integer ambiguity vector, in this case (0,0), using integer least-squares estimation.
By taking the integral of the probability density function over the pull-in region, the
success rate is obtained. It is the probability of correct integer estimation and about
85 percent in this example.
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remaining stochasticity; we can proceed with
the integer ambiguities as fixed quantities with
certainty.

The success rate is only a single number,
and there exists a valuable approximation 
that is easy (cheap) to compute. We there-
fore strongly advocate its evaluation by default
during any processing of GNSS measure-
ments in which ambiguity resolution is
involved. ■

MANUFACTURERS
The data used in Figures 1 and 2 were obtained
from Trimble (Sunnyvale, California) 4000
SSi receivers. 

stochastic variates. To safely neglect their
uncertainties, one must be very sure that the
integer ambiguities are indeed correctly esti-
mated. This probability is expressed by the
success rate.

Like any reliability measure, the success
rate should be used to establish the probability
of correct fixing. Since the success rate can be
computed prior to actual measurements being
made, we can ensure that the measurements
are collected in such a way that successful
ambiguity resolution will be feasible. In the
data processing stage, the success rate is essen-
tial as well, since only when this number is suf-
ficiently large, will it be safe to neglect

The ambiguity success rate is defined as
the probability of correct integer ambiguity
estimation, P(ă=a). It equals the integral
of the probability density function of the
float ambiguities pa(x), over the pull-in
region Ra. The pull-in region Ra equals the
region in which all float solutions are
pulled by the integer least-squares criterion
to the correct integer ambiguity solution.
The success rate is given as:

P(ă=a) = *
Ra

pa (x)dx. 

In the absence of any biases in the underly-
ing observations, the success rate corre-
sponds to the central and largest probabili-
ty mass of the ambiguity probability mass
function. The figure below shows, for a
two-dimensional example, the probability
density function of the float ambiguities on
the left and the corresponding discrete dis-
tribution of the integer least-squares ambi-
guities on the right.

Various ways of computing or approxi-
mating the success rate exist, two of which
will be given here. One way of obtaining
the success rate is by simulation. Using a
random number generator, we can obtain a
large number of real-valued ambiguity
vectors from the origin-centered probabili-
ty distribution pa(x) of the float solution.
For each of these generated vectors, we
then compute the corresponding integer
least-squares solution using the LAMBDA
method. The percentage of integer solu-
tions that coincide with the origin yields
the success rate. The number of generated
samples must be large enough to obtain a
close enough approximation to the success
rate. For example, to achieve a success rate
of 99.9 percent with a 0.1-percent uncer-
tainty would require between 100,000 and
1,000,000 samples. 

A second option for inferring the suc-
cess rate is to compute a sharp lower

bound of the probability of correct integer
least-squares estimation. A sharp and easy-
to-compute lower bound (LB) is given by: 

It equals a product P of n terms (the num-
ber of ambiguities). F is the standard nor-
mal cumulative probability distribution
and si|I is the standard deviation of ambi-
guity i, conditioned on all previous ambi-
guities, indicated by I . The conditional
standard deviations follow directly from
the triangular decomposition of the float
ambiguity variance-covariance matrix Qâ
=LTDL as the square root of the elements
of diagonal matrix D. This decomposition
is already made in the computations for the
LAMBDA method, and hence available at

no extra computational cost.
For this lower bound to be sharp, 

it is essential that the variance–
covariance matrix of the LAMBDA-
transformed ambiguities be used to
compute the conditional standard devia-
tions, as they have an improved preci-
sion and decreased correlation over the
original double-difference ambiguities.

This approximation of the success
rate can be computed in a straightfor-
ward manner and, if it is sufficiently
large, say 99 or 99.9 percent, it is guar-
anteed that the actual success rate of 
the integer least-squares method is at
least equally high and thus very close to
100 percent. As it provides a lower
bound, one can safely rely on this
approximation.

By taking the integral of the probability density function (on the left) over the pull-in
region for each integer vector, the probability that this vector will result as the  integer
least-squares solution is obtained. The probabilities are given on the right for the inte-
ger vectors between –1 and +1. The integral over the area for the correct integer vec-
tor, in this case (0,0), gives the success rate. It is about 85 percent in this example.
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