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Fast and precise relative satellite position-
ing demands resolution of the integer cycle
ambiguities. Only then will the correspond-
ing carrier-phase measurements act as if
they were high-precision range measure-
ments, thereby allowing the receiver coordi-
nates to be estimated with comparable high
precision.

Researchers have studied the GPS ambi-
guity problem for the past 20 years and have
proposed a wide variety of methods to
resolve ambiguities. So far, most of these
methods have concentrated on #séima-
tion of the ambiguities. The problem of
assessing theorrectnessf the integer num-
bers obtained, often referred to as “ambigu-
ity validation,” has received considerably
less attention.

The “mission” of this article is to point
out that ambiguity resolution is not strictly a
matter of computing integer values for the
ambiguities. Before really fixing or con-
straining the ambiguities to the computed
integers in a final baseline computation, we
should assess their accuracy. In other
words, we should ask ourselves “How sure
am | that these values are correct?” In this
month’s contribution, we will look at how
we might answer this question and discuss
some new developments in dealing with the
stochastic properties of the integer ambigu-
ity estimator. The ambiguity success rate is
presented as a tool for determining the
probability of correct integer estimation.

Our authors are Peter Joosten, who
holds an M.Sc. degree from the Delft Uni-
versity of Technology, and Christian
Tiberius, who holds M.Sc. and Ph.D.
degrees from that institution. Both are
employed at Delft University of Technol-
ogy's Department of Mathematical Geodesy
and Positioning. This department is directed
by Professor Peter Teunissen, who authored
the LAMBDA method for ambiguity resolu-
tion in 1993. This method has found wide-
spread use around the world. Recently,
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Global Navigation Satellite System (GNSSJllustrated in Figure 1. This figure is based on
ambiguity resolution is the process of effec4,200 single-epoch experiments, each sepa-
tively accounting for the integer property ofrated by 3 seconds. The graph on the top pre-
the unknown initial cycle ambiguities of carrier-sents a position scatter plot of the so-called
phase data, usually in the form of double diffloat solutions. Note the meter-level scale. Each
ferences. It applies to a great variety of GNS8ot represents a computed position, based on
data-processing models. This holds true natbservations at a single epoch. For this graph,
only for the current Global Positioning Sys-the ambiguities were estimated as real (floating
tem (GPS), but also for GLONASS, the futurepoint) variates. The graph on the bottom shows
modernized GPS, and the proposed Europe#ime fixed solution based on exactly the same
Galileo system. The GNSS models range frorabservations, but using the fact that the ambi-
single-baseline models used for kinematic posguities are integers and constraining the solu-
tioning to multibaseline models used as a todlon to these integer values. Note the scale
for monitoring and studying geophysical phedifference. Comparing the two graphs shows
nomena such as plate tectonics and ionosphetitat the integer-ambiguity information greatly
behavior. The models may have the relativstrengthens the data-processing model and
receiver—satellite geometry included (referregields a much more precise solution.
to as geometry-based) or excluded (referred to For ambiguity resolution to be successful,
as geometry-free). the ambiguities need to be estimated at their
The geometry is included through the unitorrect integer values, as incorrect integers
direction vectors in the model’s design matrixgenerally bias the receiver coordinates con-
When the geometry is excluded, the receivesiderably. However, the integer values are
baseline components are not involved adetermined from noisy observations, and the
unknowns in the model, but rather thenoise or uncertainty in the observations prop-
receiver—satellite ranges themselves. The modgates into the integer values for the ambigu-
els may also be discriminated as to whethaties, making them uncertain. Absolute certainty
the remote receivers are in motion or notabout an ambiguity’s integer value is therefore
When the receivers are moving, we solve fonot possible. But if the uncertainty is too large,
one or more trajectories, because with ththere is a serious risk of ending up with severely
receiver—satellite geometry included, we willoffset receiver coordinates. It is thus desirable
have new coordinate unknowns for each nevo achieve as high a degree of certainty as pos-
epoch. We may also discriminate as to whethsible. And to effectively control this uncer-
the differential atmospheric delays are includethinty, it is desirable to have a mechanism for
as unknowns or not. In case of sufficiently shorassessing the probability of correctly estimat-
baselines, these delays are often neglected.ing the integer ambiguities. After a more
Despite the differences in application of thaletailed discussion of the resolution problem,
various GNSS models, their ambiguity-we will introduce a diagnostic tool that will
resolution problems are intrinsically the sameenable one to rigorously assess the reliability of
In all cases, the aim is to incorporate the inteambiguity resolution.
ger property of the ambiguities into the least-
squares adjustment of the data so as to improWeTEGER AMBIGUITY ESTIMATION
the precision of the results. Once the integdfor the purpose of ambiguity resolution, GNSS
ambiguities are known, the corresponding cadata processing is usually carried out in three
rier-phase measurements will act as if they aequential steps. In the first step, no distinc-
high-precision pseudorange measurementton is made between the nature of the ambi-
thereby allowing the remaining parametersguities and the other estimated parameters, like
such as receiver coordinates or baseline comeceiver coordinates and atmospheric delays.

research has been extended to the stochastic ponents, to be estimated with a comparablEhe parameter-estimation problem is solved

properties of the integer ambiguity estima-
tor, the topic of this month’s column.
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high precision. without taking into account the special integer
The improvement, obtained by exploitingcharacteristic of the ambiguities. The result so
the fact that the ambiguities are integers, isbtained is often referred to as the float solution
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Figure 1. Relative positioning results on a short baseline are expressed in east, (Outside the U.S. call 1-218-723-9477)
north, and up components. Shown are 1,200 single-epoch solutions for the case .
with ambiguities real-valued (top) and fixed (bottom). For the fixed solution, the FAX:
ambiguities are resolved correctly in all cases. Fixing the integer ambiguities incor- 1_ 218 _723_9417
rectly would generally shift the position solution by a decimeter or more. After suc-
cessful fixing, the precision of the coordinates is below the 1-centimeter level. Mail: cPS World Newsletter
131 West 1st Street
because the data-processing software estimaté® inconsistencies in the data due to me Duluth, MN 55802-2065
the ambiguities as floating-point numbers. Thesurement noise.
parameters are usually estimated using a least- Two additional steps are necessary to explg AN ADVANSTAR ' PUBLICATION
squares algorithm, which is commonlythe inherent integer nature of the ambiguitie{  ©2000 dvanstar Communications, inc. Al Rights Reserved.
accepted as the standard approach to deal witihthe second step, the ambiguity float sall LDMAG
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The LAMBDA Method discrete search over a subspacg'gfspecifically, the ambiguity

To determine a fixed ambiguity solution from a float ambiguity vec-search ellipsoid (see figure below).

tor (with n ambiguities), a mapping from ttmedimensional space In GNSS applications, the ambiguity search space is highly elon-
of realsR" onto then-dimensional space of integét8is necessary.  gated because of a usually high correlation between the ambiguity esti-
Although several approaches are available to achieve this, we remates. It also stretches over a considerable range of wavelengths or
ommend applying the least-squares criterion that leads to the inteycles as a result of the individual estimates’ usual low precision.
ger least-squares estimator for the ambiguities. The solution is optim@b improve the computational efficiency of the discrete search, the
in the sense that it maximizes the probability that indeed the correEAMBDA method employs a decorrelating Z-transformation prior
vector of integer ambiguities is found. Considering the solution gecto the search. This Z-transformation yields ambiguities that are less
metrically, it minimizes the distance between the float ambiguitycorrelated and have improved precision, while retaining the integer
vector @) and the integer ambiguity vectar)(where this distance character of the minimization problem. The corresponding trans-
is measured in the metric of the ambiguity variance-covariance matrformed sphere-like search space allows a relatively efficient identi-
of the float solution. If the variance-covariance matrix of the ambification of the optimal integer least-squares solution.

guities were to be diagonal, the float ambiguity estimates would be In summary, the LAMBDA method largely decorrelates the ambi-
uncorrelated and the fixed solution could be obtained by a simplguities, whereafter it carries out a search procedure to efficiently
rounding of the float estimates. In general however, the estimatebtain the integer ambiguity vector that has shortest distance to the
will be correlated, and the fixed solution has to be identified by dloat ambiguity, thereby maximizing the probability of identifying the
correct integer vector. For
more details about the

B T T T T T T T T T T ] 1 O A method, please consult
] I <http://www.geo.tudelft.nl/

10 ] 1ol O mgp/>. Available on request
1 - are a FORTRAN and a
] [ MATLAB implementation

5 ] 5[ of the LAMBDA method.

Directly available for down-

] i load is an extensive descrip-
0 ; of tion of the method and its
] I implementation in the report,

“The LAMBDA Method

o5 T s T s 0 s o 5 1 15 | forinteger Ambiguity Esti-
mation: Implementation

This figure illustrates an example of the search ellipse for two ambiguities showing the search Aspects.” The MATLAB
space shape before (left) and after (right) decorrelating the ambiguities by means of the Z-trans-  implementation comes with
formation. The search space of the decorrelated ambiguities is clearly less elongated, which a separate guide and also
allows for an efficient identification of the integer ambiguity solution. Note that the volume of the  includes a user-friendly
search space is preserved by the transformation. The red star indicates the float solution, (A= demonstration application,
[3.875, 5.400], 2 = [-1.525, 9.975]), and the green star the fixed solution (& = [2, 4], Z = [-2, 10]).  Which can be used for
The Z-transformation matrix is Z" = [1, —1; -3, 4]. Note that rounding the original ambiguities solving small problems
would give a wrong result (&= [4, 5]), indicated by a blue circle. interactively.

tion is used to estimate the integer ambiguityalues obtained from the second step. This finalteger ambiguities.

values. Here we could choose from a wide varresult is referred to as the fixed solution, and it A single-frequency example based on the
ety of integer estimation methods. These metlgenerally inherits a much higher precision thageometry-free GNSS model is shown in Figure
ods range from simple rounding schemes tthe previously obtained float solution, as wag. The figure illustrates empirically how uncer-

more advanced methods based on integdemonstrated in Figure 1. tainty in the data (top left) propagates into the
searches. One popular approach is the ambiguity float estimate (top right) and finally
LAMBDA (Least-squares Ambiguity Decor- AMBIGUITIES ARE STOCHASTIC into the integer ambiguity estimate (lower left).

relation Adjustment) method, developed at th&Vhen computing the fixed solution, the inte-The correct integer for the ambiguity is known
Delft University of Technology. With this ger ambiguities are usually assumed to b® be four in this case, but as one can see from
method, the ambiguities are estimated by meakaown with certainty. But how sure can we bethe graph at the lower left, other integer val-
of integer least squares using a very efficierfter all, the integer ambiguities are determinedies are frequently obtained.
search procedure (see the sidebar entitled “THi@m noisy data. Only in the hypothetical case To capture the integer-ambiguity uncer-
LAMBDA Method” for further detail3. of perfect observations, without any noise otainty, we have to treat the estimated integer
Finally in the third step, the computed inte-other errors, would the float solution alwaysambiguities as stochastic (random) variates.
ger ambiguities are used to improve the firstyield the correct integer ambiguity values. IriThis is not too different from standard adjust-
step solution for the remaining parametergeality, however, this is not the case. Any uncement practice. In standard adjustments, where
These parameters are recomputed, but this tirteanty (noise) in the observations will propa-all parameters are real-valued, we also propa-
with the ambiguities constrained to the integegate and manifest itself as uncertainty in thgate the observational uncertainty to obtain the
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Figure 2. Using single-frequency pseudorange and carrier-
0.50 phase data, the phase ambiguity of the geometry-free GPS
045 | | model is estimated in 1,800 single-epoch experiments at a
' '\ 1-second interval. The histogram at the top left shows the
0.40 1 ] residuals of the (double-difference) pseudorange measure-
2 035} ; ments; the noise is at the decimeter level. The histogram at
§ the top right describes the float ambiguity. It is primarily the
2 030f S - . :
] YAN noise in the pseudorange that is reflected in the noise of
E 025} i the float ambiguity, and as the L1 wavelength is about 2
% 020} | decimeters, the corresponding uncertainty in the float
o ambiguity is at the one-cycle level. The top graphs also both
015} . LY .
show the formal Gaussian probability distribution. Finally,
010 1 the integer ambiguity was computed for each experiment,
0.05 l yielding the histogram at the lower left. In this case, the
£ ﬁ {} integer ambiguity is estimated correctly (four cycles) in only
0.0 1 > 3 4 5 6 7 43 percent of the experiments (indicated by base of arrow-
Fixed ambiguity (cycles) head).

uncertainty of the estimated parameters. Thisxample, one has about a 55-percent chanoae of these will affect the success rate. The
uncertainty is then described by the probabilef computing a wrong integer ambiguity.  first two contributing factors reflect the data
ity distribution of these parameters. The real model’s strength and they are given once the
difference between a standard and an integeMBIGUITY SUCCESS RATE measurement set-up is known. As to the method
adjustment lies in the type of probability disf we treat the computed integer ambiguitie®f integer estimation, one has a variety of
tribution. In the standard case, the distributioas deterministic quantities, as we usually do ioptions available. However, because different
will be continuous, whereas in the integer casgractice, we will have to ensure that their uncemethods of integer estimation will generally
it will be discrete as shown in the lower lefttainty is sufficiently small to be indeedresult in different success rates, we might wish
plot of Figure 2. That is, the distribution of theneglected. This is the case when the frequenty use the method that maximizes the success
estimated integer ambiguities will be a probawith which estimated integer ambiguity val-rate. It has recently been proven that the inte-
bility mass function. Such a distribution is alsaies coincide with the correct but unknown valger least-squares estimator has the largest suc-
obtained from other discrete phenomena suafes is sufficiently large. This concept iscess rate of all admissible integer estimators.
as throwing a pair of dice. formalized in a probabilistic measure, referred’he success rate of the LAMBDA method is
Without any knowledge of the probability to as theambiguity success rat&he success therefore larger than, or at least as large as, any
mass function of the integer ambiguities, weate is a number between 0 and 1, or 0 and 1@€her integer ambiguity estimator.
have no way of knowing how often to expecpercent, and it expresses the chance, or prob-A two-dimensional example will show us
the computed ambiguity solution to coincideability, that the integer ambiguities are corhow to determine the success rate of the inte-
with the correct but unknown integers. Is thisectly estimated. ger least-squares ambiguities. Based on the
nine times out of ten, 99 times out of 100, or an The ambiguity success rate depends on thregeasurement precision and the assumed rela-
even higher percentage? In the example shoveontributing factors: the observation equationsonship between observations and unknown
in Figure 2, it is actually less than 45 percentfunctional model), the precision of the observparameters, we can obtain a probabilistic
This implies that when carrying out an experables (the stochastic model), and the chosefescription of the uncertainty in the float ambi-
iment according to the assumption made in thmethod of integer estimation. Changes in anguities. In this example, the uncertainty is given
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FURTHER READING
For a thorough discussion of the carrier-
phase ambiguity, see

B “GPS Carrier Phase Ambiguity Fixing
Concepts” by P.J.G. Teunissen, Chapter
8 in GPS for Geodesy, 2nd edition, edited
by P.J.G. Teunissen and A. Kleusberg,
Springer-Verlag, Berlin, 1998.

For an introduction to the LAMBDA
ambiguity-fixing approach, see

m “A New Way to Fix Carrier-Phase
Ambiguities” by P.J.G. Teunissen, P.J. de
Jonge, and C.C.J.M. Tiberius in GPS
World, Vol. 6, No. 4, April 1995, pp.
58-61.

More information about the LAMBDA
approach can be found on the Depart-
ment of Mathematical Geodesy and
Positioning, Delft University of Technol-
ogy, Website:

m <http://www.geo.tudelft.nl/mgp/>.

For further details about the proba-
bilistic theory of ambiguity fixing and its
consequences, see

® “The Probability Distribution of the
GPS Baseline for a Class of Integer Ambi-
guity Estimators” by P.J.G. Teunissen, in
the Journal of Geodesy, Vol. 73, 1999,
pp. 275-284.

® “An Optimality Property of the Inte-
ger Least-squares Estimator” by P.J.G.
Teunissen, in the Journal of Geodesy,
Vol. 73, 1999, pp. 587-593.

For a discussion of the ambiguity
success rate, see

m “A Probabilistic Evaluation of Correct
GPS Ambiguity Resolution” by P.J.G.
Teunissen, D. Odijk, and P. Joosten, in
the Proceedings of ION GPS-98, the 11th
International Technical Meeting of the
Satellite Division of The Institute of Navi-
gation, Nashville, Tennessee, September
15-18, 1999, pp. 1315-1323.

To learn more about random
variables and probability distributions,
consult one of the classic books on
statistics, such as

m Introduction to Mathematical Statis-
tics, 5th edition, by R.V. Hogg and A.T.
Craig, Prentice Hall, Englewood Cliffs,
New Jersey, 1995.
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Figure 3. In this example of a joint probability density function for two float ambigui-
ties, the ambiguity values (in cycles) are along the horizontal axes and the probabil-
ity density along the vertical. The red area on the bottom of the graph indicates the
pull-in region, which is the float ambiguities area that is mapped onto the correct
integer ambiguity vector, in this case (0,0), using integer least-squares estimation.
By taking the integral of the probability density function over the pull-in region, the
success rate is obtained. It is the probability of correct integer estimation and about
85 percent in this example.

ambiguity pull-in regionlt contains all loca- rate need to be? This depends on the particular
tions of the float ambiguities which get pulledGNSS application and the potential impact of
to the correct integer solution when using thencorrectly fixing the ambiguities on the para-
integer least-squares principle. If we denoteeters being estimated. A smaller success rate
the probability density function of the floatcan be accepted in the instances where the
ambiguities ap,(x), and the pull-in region of effect is small.
the correct integer ambiguity vectorRgs the The success rate depends of course, as any
ambiguity success rate can be written in equather formal reliability measure does, on the
tion form as correctness of the assumptions that underlie
the model used. Incorrect specifications in the
Success rate ﬁ Pa (X)dX. model may lead to unrealistic values for the
Ra success rate. For instance, even with a high
Some easy ways of computing or approxienough success rate, fixing to the wrong inte-
mating this multiple integral are discussed irger ambiguities is still possible when one or
the sidebar entitled “How to Compute Ambi-more observations are grossly erroneous —
guity Success Rate.” so-callecbutliers A success rate close enough
The ambiguity success rate can be evalde 1 therefore does not release us from the
ated once the GNSS functional and stochastabligation of performing statistical tests for
models are known. Similar to the usage of dilumodel validation. It does however make it
tion of precision (DOP) measures, it can benuch easier to perform such tests. The higher
computed without having the actual measurehe success rate, the sooner one is allowed to
ments available, that is, before actual field opeapply the classical theory of statistical hypoth-

by the Gaussian two-dimensional or bivariatations. By means of the success rate, the ussis testing and use, for instance, the common
probability density function as shown in Figures given a rigorous way of assessing how ofteR-test to spot any anomaly in the observations.
3. The standard deviations of the two ambiguhe or she can expect ambiguity resolution to

ities are about 0.3 cycle. The correspondinge successful. Only when the success rate GONCLUSION

success rate follows, then, as the integral @fose enough to 1 is one allowed to proceed &s this article, we have shown that although
the probability density function over the areaf the estimated integer ambiguities are nondouble-difference GNSS carrier-phase ambi-
shown in red. This area is referred to as thetochastic. How close to 1 does the succegsities are known to be integers, they are still
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How to Compute Ambiguity Success Rate bound of the probability of correct integer
least-squares estimation. A sharp and easy-
The ambiguity success rate is defined as Various ways of computing or approxi- to-compute lower bound (LB) is given by:
the probability of correct integer ambiguity mating the success rate exist, two of which n
estimation,P(a=a). It equals the integral will be given here. One way of obtaining | =[] ch( 1 ) —1|< p(ﬁ:a)
of the probability density function of the the success rate is by simulation. Using ¢ 20,
float ambiguitiesp,(x), over the pull-in  random number generator, we can obtain
regionR,. The pull-in regionR, equals the large number of real-valued ambiguity ; 1 1.
region in which all float solutions are vectors from the origin-centered probabili- ~ with qn(x) :J = _@2°dz
pulled by the integer least-squares criteriorty distributionp,(x) of the float solution. \/ﬁ
to the correct integer ambiguity solution. For each of these generated vectors, we -
The success rate is given as: then compute the corresponding integent equals a produdt of n terms (the num-
P(3=a) = f Pa (X)X least-squares solution using the LAMBDA ber of ambiguities)® is the standard nor-
Ra method. The percentage of integer solumal cumulative probability distribution
In the absence of any biases in the underlytions that coincide with the origin yields and oy is the standard deviation of ambi-
ing observations, the success rate correthe success rate. The number of generateguity i, conditioned on all previous ambi-
sponds to the central and largest probabilisamples must be large enough to obtain guities, indicated by. The conditional
ty mass of the ambiguity probability mass close enough approximation to the successtandard deviations follow directly from
function. The figure below shows, for a rate. For example, to achieve a success ratiie triangular decomposition of the float
two-dimensional example, the probability of 99.9 percent with a 0.1-percent uncer- amblgwty variance-covariance matiQ¥;
density function of the float ambiguities on tainty would require between 100,000 and= LTDL as the square root of the elements
the left and the corresponding discrete dis-1,000,000 samples. of diagonal matrixD. This decomposition
tribution of the integer least-squares ambi- A second option for inferring the suc- is already made in the computations for the
guities on the right. cess rate is to compute a sharp lowel AMBDA method, and hence available at
no extra computational cost.

For this lower bound to be sharp,
it is essential that the variance—
covariance matrix of the LAMBDA-
transformed ambiguities be used to
compute the conditional standard devia-
tions, as they have an improved preci-
sion and decreased correlation over the
original double-difference ambiguities.

This approximation of the success
rate can be computed in a straightfor-
ward manner and, if it is sufficiently
large, say 99 or 99.9 percent, it is guar-
anteed that the actual success rate of
By taking the integral of the probability density function (on the left) over the pull-in the integer least-squares method is at
region for each integer vector, the probability that this vector will result as the integer least equally high and thus very close to
least-squares solution is obtained. The probabilities are given on the right for the inte- 100 percent. As it provides a lower
ger vectors between -1 and +1. The integral over the area for the correct integer vec-  bound, one can safely rely on this
tor, in this case (0,0), gives the success rate. It is about 85 percent in this example. approximation.

i=1

stochastic variates. To safely neglect theiremaining stochasticity; we can proceed wit
uncertainties, one must be very sure that thee integer ambiguities as fixed quantities witl
integer ambiguities are indeed correctly estieertainty.
mated. This probability is expressed by the The success rate is only a single numbe
success rate. and there exists a valuable approximatio
Like any reliability measure, the successhat is easy (cheap) to compute. We there
rate should be used to establish the probabilifgre strongly advocate its evaluation by defaul fundamentals of GPS
of correct fixing. Since the success rate can lmhuring any processing of GNSS measure : positioning. The column
computed prior to actual measurements beingents in which ambiguity resolution isis coordlnated by Richard Langley of the

“Innovation” is a regular
column featuring dis-
cussions about recent
advances in GPS tech-
nology and its applica-
tions as well as the

made, we can ensure that the measuremeimsolved.m Department of Geodesy and Geomatics Engi-
are collected in such a way that successful neering at the University of New Brunswick,
ambiguity resolution will be feasible. In the MANUFACTURERS who appreciates receiving your comments as

data processing stage, the success rate is esseme data used in Figures 1 and 2 were obtaineekll as topic suggestions for future columns. To
tial as well, since only when this number is suffrom Trimble (Sunnyvale, California) 4000 contact him, see the “Columnists” section on
ficiently large, will it be safe to neglect SSireceivers. page 4 of this issue.
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