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Of the two basic GPS observables, the

pseudorange and the carrier phase, the carrier

phase is by far the more precise. It has,
however, an Achilles” heel: the initial
measurements of the carrier phases of the
signals received by a GPS receiver as it starts
tracking the signals are undetermined, or
ambiguous, by an integer munber of carrier
wavelengths. A GPS receiver has no way of
distinguishing one carrier cycle from another.
The best it can do is measure the fractional
phase and then keep rrack of phase changes.
Therefore, the initial unknown ambiguities
miist be estimated from the GPS data, and the
correct estimates must be integers. There lies
the rub: what is the best way to determine the
correct integer ambiguities? Much research
has been performed to find the most efficient,
dependable, and accurate way 1o fix the
ambiguities at their corrvect integer values.

In this month's column, we will learn
of a new approach for ambiguity fixing: the
Least-squares Ambiguity Decorrelation
Adjustment method devised by a team of
researchers from the Delft Geodetic
Computing Centre and the Department of
Geodetic Engineering of the Technical
University of Delft in The Netherlands. The
team members are Dr. Peter Teunissen,
professor of geodetic engineering, and
rescarch assistants Paul de Jonge and
Christian Tiberius.

“Innovation” is a regular column in
GPS World featuring discussions on recent
advances in GPS rechnology and its applica-
tions as well as on the fundamentals of GPS
positioning. The column is coordinated by
Richard Langlev and Alfred Kleusberg of the
Department of Geodesy and Geomatics
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GPS double-difference. carrier-phase mea-
surements are ambiguous by an unknown
integer number of cycles. High-precision,
relative GPS positions can be obtained from
a short time span of data (from seconds to a
few minutes) if the integer double-difference
ambiguities can be determined efficiently
and reliably. We have developed a procedure
— the Least-squares Ambiguity Decorrela-
tion Adjustment (Lambda) method — that
can quickly and accurately estimate the inte-
ger ambiguities. In this article, we review our
method and its underlying principles and also
present some numerical results illustrating its
performance.

WHY FIX AMBIGUITIES?

High-precision, relative GPS positioning is
based on the least-squares adjustment of pre-
cise carrier-phase measurements. With short
observation time spans, however, if the ambi-
guities are treated as real-valued numbers (or

Sfleating-point numbers in computer par-

lance), they are difficult to separate from the
receiver baseline components. That is due to
the very high-altitude orbits of the GPS satel-
lites, which results in the relative positions of
the satellites with respect to the receivers
changing very slowly.

A least-squares adjustment that ignores
the intrinsic integer nature of the ambiguities
would, therefore, produce highly correlated
and imprecise ambiguity and baseline esti-
mates. To increase baseline precision, partic-
ularly for short observation time spans, we
can fix the ambiguities at their integer values;
this enables us to treat the carrier-phase mea-

surements as essentially pseudorange mea-
surements. As a result, we can estimate the
baseline coordinates with as much precision
as the carrier-phase measurements possess.

INTEGER LEAST SQUARES

To fix the ambiguities at their correct integer
values, we first need a criterion that deter-
mines which integer values are most likely
the correct ones. We generally assume that
we have obtained the most-likely real-valued
ambiguities from a least-squares adjustment,
the result of which is often called the floar
solution. It seems reasonable Lo consider inte-
gers that are nearest to the real-valued esti-
mates as most likely being the correct integer
values.

As a measure of nearness, we take
the weighted sum of squared differences
between the real-valued estimates and their
integer counterparts. The weighting takes
care of the existing correlation and varying
precision of the real-valued ambiguity esti-
mates. The mathematical formula for the
weighted sum of squares reads:
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in which @ denotes the vector of the n real-
alued, least-squares ambiguities: Q; denotes
the n-by-n variance—covariance matrix of @
(giving the uncertainty of each real-valued
ambiguity estimate and its correlation with
other estimated ambiguities): and a denotes
a vector that is allowed to range through
the n-dimensional space of integers Z". The
dimension n equals the number of double-
difference ambiguities. Hence, when m satel-
lites are tracked at two dual-frequency
receiver siles. the total number of double-dif-
ference ambiguities. n. equals 2(m — I).

In Equation 1. the vector @ and matrix Q;,
are known; they are obtained from the float
solution. The integer vector a, however, is
unknown. The most-likely integer ambiguity
vector is the vector @ that minimizes the
value of y?(a). We will denote it as d.
Because the minimization of y*(a) amounts
to a minimization of a sum of squares over
the set of integers, we will refer to the solu-
tion d as the integer least-squares estimate of
the ambiguities.

AN INEFFICIENT SEARCH

Computing the integer least-squares ambigu-
ities is not easy. Unlike with ordinary (real-
valued) least-squares problems, no standard
techniques are available for minimizing
,\"’(a): thus, one generally must resort to
methods involving a discrete search strategy.
As a first step, we can replace the whole



space of integers Z" with a smaller subset that
still contains the solution. For the subset. we
take all integer vectors a that satisfy the
inequality:

(a-4)TQ, '(a—4a) =y 2]

in which x is a suitably chosen positive con-
stant that ensures that the subset contains at
least one integer vector a.

Geometrically, the inequality in Equation
2 describes an n-dimensional hyperellip-
soidal region centered on d. We will refer to
this hyperellipsoidal (or just ellipsoidal for
short) region as the ambiguity search space.
Its orientation (rotation with respect to the
erid axes) and elongation (ratio of the largest
axis length to the smallest axis length) are
governed by Q.. and its size is controlled by
the value of x°. Figure | shows a two-dimen-
sional view of the ambiguity search space. As
the grid spacing in the figure equals one
cycle, the admissible locations for the integer
vector @ are given by the grid intersections
inside the ellipse.

To determine @, we must perform a search
through the ellipsoidal region. Different
search procedures are possible and have been
implemented in analysis software. Unfortu-
nately, they are all inefficient when applied
to rotated and extremely elongated search
spaces — spaces that are typical for GPS
double-differenced, carrier-phase data from
short observation sessions. For example, for
dual-frequency data collected over a 1-sec-
ond observation time span. an elongation of
the order of 3 X 10* is not uncommon.
Therefore, if the minor axis of the search
space is | centimeter long, its major axis
would be 300 meters long!

THE IDEAL SITUATION
To understand how we can lighten the burden
of the search, it helps if we first ask ourselves
the question, What should the structure of
‘yz(a) be to make the search as efficient as
possible? Clearly, the search becomes trivial
when all ambiguities are fully decorrelated.
In that case. the variance—covariance matrix
of the ambiguities, Qd. is diagonal, and X"(a)
reduces to a sum of independent squares.
That implies that we can find the minimum of
¥(a) by minimizing each of the n individual
squares in y’(a) separately. Therefore, the
integer least-squares solution follows simply
from rounding the individual, real-valued
ambiguity estimates 1o their nearest integers.
A diagonal matrix @, also implies that the
axes of the ambiguity search space are
aligned with the grid axes. One way we can
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Figure 1. In the simplified two-dimen-
sional case, the ambiguity search space
is an ellipse centered on the real-valued
estimates of the ambiguities 4, and 4.
The grid spacing is one carrier cycle.
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Figure 2. |f the search space is rotated
so that the axes of the search space are
parallel to the grid axes, the ambiguities
will be fully decorrelated. However, the
integer nature of the ambiguities is
destroyed in the process.

achieve that alignment is by rotating the
search space (see Figure 2). Computation-
ally, that would correspond to what is known
as an eigenvalue decomposition of Q. using
the matrix of normalized eigenvectors as the
rotation matrix. Unfortunately, such a rota-
tion destroys the integer nature of the trans-
formed ambiguities and cannot be used here.

DECORRELATED AMBIGUITIES

Instead ol using a rotation of the search
space, we can also achieve a full decorrela-
tion of the ambiguities by squeezing the
search space along the grid axes. Consider
the two-dimensional ambiguity search space
of original ambiguities @, and a,. This ellipse
will be elongated. and its principal axes will
not coincide with the grid axes (see Figure
Ja). But by pushing the two horizontal tan-
gents of the ellipse inward, while at the same
time keeping the area of the ellipse and its
two vertical tangents fixed, we will end up
with an ellipse that is perfectly aligned with
the grid axes. The transformed ambiguities

Figure 3. Full decorrelation of the ambi-
guities can also be achieved by pushing
tangents. In (a), the two horizontal
tangents are pushed inward; in (b), the
two vertical tangents are pushed inward.
This technique does not preserve the
integer nature of the ambiguities.

will then be fully decorrelated. and the trans-
formed ellipse will be less elongated than the
original one.

Instead of pushing the two horizontal tan-
gents, we can also work with the two vertical
tangents. In that case, the role of the two
ambiguities is interchanged. We can obtain
full decorrelation of the two ambiguities by
pushing the two vertical tangents of the
ellipse inward, while keeping the area of the
ellipse and the two horizontal tangents fixed
(see Figure 3b).

The aforementioned method will gener-
ally not preserve the integer nature of the
ambiguities, the same failing characteristic of
the transformation through rotation. This
dilemma indicates the great difficulties in
achieving a full decorrelation of the ambigu-
ities. while at the same time preserving their
integer nature. Therefore, in practice, we will
have to be satisfied with a less-than-perfect
result — a nonperfect alignment of the axes
of the transformed search space to the grid
axes.

Our idea is to use the integer approxima-
tion of the fully decorrelating transformation.
That approach works well, and we can signif-
icantly decrease the correlation, although not
completely.

The procedure that we follow is based on
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Figure 4. A modification of the pushing
tangents approach guarantees the
integer nature of the transformed
ambiguities. Shown here are the graphi-
cal and numerical results of a simple
example with two ambiguities. The
tangents are pushed inward in two
steps: first the vertical tangents (a),
then the horizontal tangents (b).

the approach of pushing tangents, as depicted
in Figure 3. But, to retain the integer nature
of the ambiguities, the tangents are not
pushed to the limit. Instead, the vertical tan-
gents are pushed inward to a position that
guarantees the integer nature of the trans-
formed ambiguities (see Figure 4a). As a
result of that transformation, we obtain a
less-elongated search space and two trans-
formed ambiguity estimates Z, and d, that are
less correlated.

Now that a, has been replaced by g,
through the pushing of vertical tangents, we
can continue in an analogous way and
replace a, with z, by pushing the horizontal
tangents (see Figure 4b). As a result, we
obtain the transformed ambiguity estimates
£ and Z,, which are much less correlated than
the original ambiguity estimates @, and 4,
and also have an ambiguity search space that
is more spherical.

For the two-dimensional example shown
in Figure 4, we have also given the vari-
ance—covariance matrix of the ambiguities
before and after the transformation, @ and
Q.. Note the improvement in precision (given
by the standard deviations, o) and the
decrease in both correlation (given by the
correlation coefficient, p) and elongation
(given by the ratio of the lengths of the
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largest to the smallest axes of the ellipse, e).
The elongation has been pushed toward its
minimum value of 1.0. With the new ambi-
guity estimates £, and Z, and their vari-
ance—covariance matrix (., we can now
perform the ambiguity search much more
efficiently.

THE N-DIMENSIONAL CASE

When the aforementioned principles are gen-
eralized to the n-dimensional case, the decor-
relation of the least-squares ambiguities
results in the following n-by-n transforma-
tion from the original ambiguity vector @ to
the new ambiguity vector Z:

(3]

The variance—covariance matrix of the trans-
formed ambiguities follows from the applica-
tion of the error-propagation law to Equation
3, resulting in:
Q»z =2 Q;,Z [4]
As a consequence, the original search space
represented by Equation 2 is replaced by the
transformed search space:
E-97Q, 'z-D<sx® 5]
We then use the search space represented by
Equation 5 to search for the integer least-
squares ambiguity vector. @; is much more
diagonal than the original variance-covari-
ance matrix Q;. so0 this search is much more
efficient than the search based on the original
search space. Because the decorrelating
transformation given by Equation 3 preserves
both the volume of the search space and the

integer nature of the ambiguities, the original
and transformed search spaces contain the
same number of grid points. Moreover, the
correspondence between the original and
transformed ambiguities is one-to-one, mak-
ing it easy for us to transform the solution
back to & in order to obtain the integer least-
squares solution for the original ambiguities.

TEST RESULTS

We analyzed the performance of our method
employing a representative example that
utilizes dual-frequency, carrier-phase mea-
surements taken from a seven-satellite con-
figuration. The sampling interval was |
second. The a priori standard deviation of the
phase observations was set to 3 millimeters.
In Figure 5, the elongation of the ambiguity
search space for this data set is given as a
function of the observation time span as it
ranges from | to 30 seconds.

Reduction in Elongation. For a |-second obser-
vation time span, the elongation is reduced in
the transformation by three orders of magni-
tude. Also. we can see that the elongation of
the transformed search space is nearly inde-
pendent of the observation time span,
whereas the elongation before the transfor-
mation decreases with an increase in obser-
vation time span. That characteristic is
caused by the change in receiver-satellite
geometric configuration. Even for a I-hour
observation time span, the elongation before
transformation is still more than twice as
large as the elongation after transformation.

Improvement in Precision. Figure 6 shows the
increase in the ambiguities” precision, which
occurs from using the transformation of
Equation 3. In Figure 6a, the standard devia-
tions, expressed in cycles, are given for the
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Figure 6. The precision of the 12 ambiguities estimated from a test data set before transformation (a) ranges from about 50 to
200 cycles for an observation time span of 1 second. The transformed ambiguities (b) have precisions ranging from 0.1 to 0.25

cycles for the same time span.

12 original double-difference ambiguities.
Figure 6b shows the precision of the trans-
formed ambiguities. Note the difference in
scale along the vertical axis.

For an observation time span of 1 second,
the transformation reduces the standard devi-
ations of the ambiguities from 50-200 cycles
to 0.1-0.25 cycles. Again, because of the
changing receiver-satellite geometric conlig-
uration, the standard deviations decrease as
the observation time span increases.

Efficiency. The ambiguity search space of
the transformed ambiguities z, realized by the
decorrelating transformation of Equation 3,
allowed us to estimate the integer ambigui-
ties very efficiently. To compare the search
before and after the decorrelating transforma-
tion properly, we searched the full ellipsoid
for the I-second observation time span. It
contained two candidate vectors. The com-
puter solved the transformed problem in 10
milliseconds, significantly less time than the
more than 3 hours it needed for the original
problem.

A Further Test. We analyzed another seven-
satellite case for its computational aspects.
The observation time span was only 1 sec-
ond. The timing was done on a 33-MHz, 486

Table 1. Ambiguity-fixing
performance characteristics
of a seven-satellite test case

Characteristic Before After
Elongation 340840 75
Precision (cycles).

minimum 71.0 017
maximum 223.8 0.24
Coopen
time (seconds) 13428 0064

personal computer with an optimized search
algorithm.

In Table I, the elongation of the search
space, precision of the ambiguity estimates,
and the computation times are given for both
the before and after transformation cases.

Further Reading

For a basic introduction to the carrier-phase
observable, see

m “The GPS Observables,” by R.B. Langley
in GPS World, Vol. 4, No. 4, April 1993,
pp. 52-59.

There is an extensive literature on carrier-
phase ambiguity fixing. For an introduction to
the subject, see

® “Robust Techniques for Determining
GPS Phase Ambiguities,” by C. Goad in the
Proceedings of the Sixth International
Geodetic Symposium on Satellite Positioning,
held in Columbus, Ohio, in March 1992,
pp. 245-254.

® “|nstantaneous Ambiguity Resolution,”
by R. Hatch in Kinematic Systems in Geodesy,
Surveying, and Remote Sensing, Proceedings
of IAG Symposium No. 107, held in Banff,
Alberta, Canada, in September 1990,
pp. 299-308.

For further details of the authors’ Lambda
method, see

® “|east-squares Estimation of the Integer
GPS Ambiguities,” an invited lecture pre-
sented by P.J.G. Teunissen in “Section IV,
Theory and Methodology,” at the International
Assaciation of Geodesy General Meeting, held
in Beifing, China, in August 1993. (Lecture
material available from the author.)

® “A New Method for Fast Carrier Phase
Ambiguity Estimation,” by P.J.G. Teunissen
in the Proceedings of PLANS '94, the IEEE
Position, Location and Navigation Symposium,
held in Las Vegas, Nevada, in April 1994,
pp. 562-573.

The computation time is the time needed for
computing the integer least-squares esti-
mates. Before transformation refers to the
time needed for the search based on the orig-
inal ambiguities a: after transformation refers
to the search based on the transformed ambi-
guities z. For the latter, the time needed for
constructing the transformation matrix Z is
included.

CONCLUDING REMARKS

Our Least-squares Ambiguity Decorrelation
Adjustment method very quickly estimates
integer least-squares ambiguities, particu-
larly for short observation time spans. For
example, typical computation times on a 486
personal computer are much less than 1 sec-
ond. Furthermore, the method can be applied
to data obtained from a wide variety of
receivers because, in principle, it is indepen-
dent of whether pseudorange data, in addition
to carrier-phase data, are available or whether
single- or dual-frequency measurements are
used. When dual-frequency data are used, the
method can be applied to other types of ambi-
guities, such as wide-lane ambiguities.

For more details on the Lambda method.,
readers should consult the references listed
in the sidebar. They may also contact the
Delft Geodetic Computing Centre by post:
Thijsseweg 11, NL-2629 JA Delft, The
Netherlands; by fax: 011 +31 (15) 783711 or
by e-mail: lgr@tudgv|.tudelft.nl. B
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