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FURTHER DEVELOPMENT AND PROPERTIES
OF THE SPECTRAL ANALYSIS BY LEAST-SQUARES

PETR VANICEK

Surveys and Mapping Branch, Dept. of Energy, Mines and Resources,
Ottawa, Ont,, Canadat

(Received 7 December, 1970}

Abstract. The concept of spectral analysis using least-squares is further developed to remove any
undesired influence on the spectrum. The influence of such a ‘systematic noise’ can be eliminated
without the necessity of knowing the magaitudes of the noise constituents, The technique can be used
for irregularly spaced as well as equidistantly spaced data, The response to random noise is found
to be constant in the frequency domain and its expected level is derived. Presence of random noise
in the analyzed time series s shown to transform the spectrum merely linearly, Examples of apphi-
actions of the technique are presented,

1. Xatroduction

The classical methods of spectral analysis are based on the assumption that the
analyzed time series ig stationary, i.e. that the average of the time series is not affected
by any translation of the time origin {see e.g. Blackman and Tukey, 1959, p. 4). Yet
the majority of time series encountered in geophysical sciences are known to be
non-stationary due to the very nature of the observed phenomena which may include
secular trends, long periodic influences and the like. It is understood that the more
the analyzed time series departs from stationarity, then the more disturbed the spectral
results are likely to be. There are techniques designed to overcome these difficulties,
but one feels that these approaches have only a limited power unless the composition
of the analyzed empirical function is well known beforehand.

The present method is the result of an attempt to avoid the described hurdles by
approaching the problem from a different angle. The method does not claim to be
either all powerful or trouble free, although the author would like to think that it
possesses some useful properties. Two such properties may be noted at this point.
Firstly, the method consists of a prescription for designing a spectrum of the given
time series which is insensitive to any particular systematic or random noise; and
secondly, a feature of the method is that it can be used for analyzing a time series
defined on rion-equidistant as well as equidistant time intervals. Unless otherwise
stated a general discrete time series is assumed, although the technique can easily
be extended to continuous time functions as well. _

Throughout our development we shalf be using the following notation:
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‘ “?forj the scalar product of any two furctions F,.G defined o A s, fye, 1}

nfe»
e (F)=<F, F> w2
fc;r A!hc norm of F, and
o(F, G}=p{F — G) 03

for the mean-quadratic distance betwaen 7 and G,

e(F£6)=e(F) £ 2¢F. 6™ = o) (1.4)

tc‘proof of which follows immediazsh sXpanding the right-hand side of (1.2)
ith F+ G instead of F.
ote a particular case of (1.4)

o(F)~a(F,G)=2<F, G} — v ) (1.5)

which is going to play an important tole in our problems.

g 2. Basic ldess
e .
%ix'ppgsc. we have an observed time series F (7). re (vt 1}= 4, where the only
fn't:"t_"}!‘_c_‘nown is that if contains an arbitrary constang due 10 the arbitrarily selected
t:lm for the observation. "Thus we shall roquire that the spectrum of F be, at the
m;,"g linear transform of the spectrura F+C for any number C. Further, we must
Eg;é that the ordinate of the Specirum represents the ‘contribution’ of the corre-
.pding frequency to the overall variance of Fsee €.g. Blackman and Tukey, 1959,
7). We shall show that these two requirements

are notencugh to specify a spectrum.

'Q(F, Ty= 3 (F()—- TV, 2.1)

te N,

T(t) = ¢, + ¢, cosw! + ¢, sineor. 2.2)

tan see that e(F, T} describes some linear transform of the variance of the
idual of F after subtraction of the trigenometric term 7. Thus ¢ defined as follows

o(F, T)=g(F)~o(F, T) (2.3)

describes the ‘contribution’ of the frequency ot o (£,

Bccause we have not asked for any particular ‘contribution’, the coefficients 1y €324
t" are not specified and ¢{F, T} is not unique. lntuitively, the most natural way to
Spe: f): them is to ask for the ‘maximum possible contribution” of @, a request which
e Immediately 1o the minimization. of e{F. 7). But the minimum of o(F, T)is

Yed for ¢, €2, 3 furnished by the set of normal equations (sce e.g. Berezin and
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12 PETR VANICEK

Zhidkov, 1962, I, p. 396 or Handscomb, 1965, p. 27), if they are solvable, Thus a(F,T)
for any given F becomes a function of w only, which may or may not be defined for
all we. Hence, o(F, TY=0{w)} | (with ¢, ¢;, ¢; computed from the system of
normal equations) equals the maximum contribution of the frequency e to a(F). It
was shown in Vanifek, 1969a, that the location of peaks and dips of ¢ is invariant
in the transformation F— F + C that satisfies our first requirement. This property is
due to the presence of ¢, in Equation (2.2).

Further, it was shown in the same paper that if we subtract from F defined on
equidistant 4", the mean F to get AF we can write ¢ in a simple form

olae{®) = p(o)( ZX 4F (1) coslcor)2 +r{w)( ), AF()sinwt)?, (2.4)

te A,

which is nothing else but the contribution of the frequency w to the n-times variance
of F. Here

plw)= II(Z cos® et — %(Z cos wt) ) r{w) = 1[2 sin” cot .

It is not difficult to see the similarity of ¢ given by Equation (2.4} with the Fourier

transform
R(w) = 3(( X F(1) cosmt)2 + ( Z F(t)sin coz)z) 2.5

164

(see e.g. Lanczos, 1957), and it can be shown that (@)= R{w) for w=k(n— )/n
k=0, 1,.... Thus, the functions p, r in Equation (2.4) may be regarded as corrective
terms in the Fourier transform responsible for the mentioned properties.

One more feature of ¢ is worth pointing out here. If Fis a simple sinusoidal wave
of say frequency y, then 6 () =o(F) is the only absolute maximum of ¢ on . This
suggests that the spectral image should be more or less correct, even for very low
frequencies,- if the function F has one predominant periodical comstituent in this
region. This statement cannot generally be said of the Fourier transform.

Having noticed the consequence of presence of the absolute term ¢y in Equation
(2.2), we will now show how it can be further exploited.

.
RIS

T
sonlBBE

3. Known Constituents - Systematic Noise

In geophysical applications we often have to analyze for unknown periodicities of
an observed non-stationary time series F (1), when some properties of the series are
aiready known, For example, it may be necessary to deal with a time serigs containing .
"d'theoretically predicted linear (quadratié; exporential, ) secular trend of unknown
magnitude, or to deal with a time series with a well established annual constituent
(of unknown magnitude), or again, a time series observed during different periods
related to different (unknown) datums. All these properties can be expressed as

intnorma s
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T) functions of time
for
cd(t ; 3.1
of (0 (3.1)
RS L with unknown magnitude ¢, and can be regarded as undesirable from the point of
ant view of spectral analysis. In other words, these constituents can be considered as
y is ‘systematic noise’ in the analyzed time series.
As stated in Section | there is an obvious danger in removing this noise when the
on magnitudes are not known.t Regardless of which technique is used, it is not possible

to compute the true values of the ¢’s exactly, unless the complete composition of F
is known. If the composition of F were known it would not be necessary to analyze
it for unknown periodicities. Determination of the ¢'s from the incompletely known
_ F can not only yield quite erroneous values, but can also influence the residue by
nee creating undesired false periodicities. On the other hand, it is usually equally detri-
mental to leave these constituents unattended, because they may distort the spectral
image of F to a considerable degree.

Therefore, it seems sensible to design a formula for the spectrum that would
account for this systematic noise without the necessity of determining the ¢’s. Such
an extension of the existing least-squares technique, described in the previous para-

2.4)

e graph, can be achieved relatively easily.
Let us consider a function F defined on /7, {or simply a time series {F, £;}) with
2.5) m ‘known’ constituents ¢, &,,..., ¢,,. To make the notation simpler let us have from
) now on
) @@ By (1) = cOS L, P4, (1) =sinot, and m +2=M,
1)/n
tive We can now consider the best fitting generalized polynomial Py to F,
M
rave Pu(f)= 3 ci(2), ¢2)
Fhis =t
low instead of the simple trigonometric term T given by Equation (2.2), writing for the
this spectrum
o o (F, Py) = 0 (F) — o (F, Pur)- (33
The M-tuple ¢;, i=1, 2,..., M, is for every we Q) obviously defined by the set of normal
equations
M
Y. (P, P ¢;=(F, &y =1 i=12,..,M. {3.4)
s of B e e e o
. are Note that assuming ®={®,, ®,, ..., Py} asubset of a complete orthogonat system,
ning ®*¢ say, on 4, we would obtain
own .
uent (P, @D ci=(F, P> I= L2, M (3.5)
tods t If the magnitudes were known then all the undesired constituents could be subtracted from F
1 as beforechand without any difficulty.

(-
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where the ¢'s would be the coelficients of the truncated Fourier series

M

Y b~ F

i=1
developed for the base ®°. In our development, however, © is not assumed to be
generally a subset of an orthogonal system so that the Equations (3.4} will not
generally collapse into Equations (3.5).

We shall be using a weaker assumption that the functions #; are linearly inde-
pendent on 4, for all concerned weQ<c[0, 4 (n—1)]t so that the Equations (3.4)
have a unique solution. Whether this assumption, equivalent to the assumption that
det (@, ;5| #0 (Gram’s determinant of @, ¢, ..., @), is satisfied or not has to
be established for each individual case because it depends on the selection of @ as
well as A7

4. The Generalized Spectrum and Its Basic Property

We can now write for the spectrum given by Equation (3.3) using the ideatity (1.5):
o =2{F, P> — ¢ (Pu)- (4.1)
Substituting for P from Equation (3.2) and making use of Equations (3.4) we acrive

at the well known formula

M

g = Z cili - !TC, (4'2)

i=1

derived for instance in Munk and Cartwright (1968) and referred to as ‘prediction

variance’. Let A ={|{®,, ¥,>] be the matrix of the normal Equations (3.4). Then (3.4)
become Ac=I, hence ¢==A4""'1, and we get for the spectrum

o=1"47". (4.3)

This formula represents the whole family of spectra varying from each other by the
choice of ®°={®,, &5,..., ,.}. We are going to prove that, providing @ is linearly
independent on 4, for all we, ¢ acquires only an additive constant when F trans-
forms to F' = F+ L, (not ideatically zero on A4",) where L,, is any linear combination

of the &, @°.
Let
L, = i A, (4.4)
and let - |
' Py=3 cd, (4.5)

i=1

be the best fitting polynomial to F'=F+L,, where the coeflicients ¢;, i=1,2,..., M,

t Here, we are deliberately limiting ourselves o the intecval used in the Fourier appréach to keep
the development as similar as possible.

§
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THE SPECTRAL ANALYSIS BY LEAST-SQUARES 15
are given by the set of normal equations
M
2 L, PR =LF,d>=1  i= L2,...,M, {4.6)
i=1
ad to be We can write
will not L= F, 0y + (L, ®> =1 + DAL by i=1,2,. M
=1
1y inde- and Equations (4.6) become
ms (3.4) M , m
ion that Y (e, bci=1+ Zl 4P > i=1,2,..M,
= “
t has to ! !
f @ as which can be rewritten as
oM
2AB Pyl =1, =42, M, 4.7
i=1
i where
y(1.5): /c,f—-li for igm
4.1 ¢t =
. ¢/ for i>m,
:arrive 2
But Equations (4.7) are obviously identical with Equations (3.4) so that
“.2) G=¢ i=54L2,.,M
@ @and we have
liction /c,- +A4 for ig<m
a(3.4) ¢ =\
< for i>m.
(4.3) Hence,
Py =Py + L,
3y the and
aearl ' pr
trans{ Ole = o (F', Py)
lation =e(F) o (F', Py)
=e(F+L,)~¢(F+1L,,Py+L,)
o= Q(F + Lm) — Q(F, PM).
4.4 Using the identity ( 1.4}, we can rewrite
TREF L) = 0(F) + 2F, Ly + o(L,)
{4.5) and we obtain finally
s M’ JFF‘ = GEF + 2<F3 Lm> + Q(Lm)$ (4’8)
K where the second and third terms are evidently constant (for constant L,), and the
eep

proof is thus concluded.

N
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5. The Optimum Generalized Spectrum and Its Basic Properties

We can now show that by using the same idea a spectrum with better properties ca
be derived. It is not difficult to see from Equation (3.3) that o|.¢[0, ¢(F)]. Let w
define a ‘normalized’ spectrum

e(F, Py) G
e(F) -
Its values lie in the interval {0, 1] and they show the proportionate contribution ot
cach frequency w to the overall spectrum of F, We can see that & transforms as
Q(F P, M)
o(F+ LY
when F transforms to £’ =F+ L.
This indicates that while the values &| ;. =&"(®) remain in [0, 1] all the differences

in the height of peaks and dips will be emphasized ¢ (F)/e (F+ L,,)-times, and for any
two m, w,e0 we get

& (w;) = &' (w,) =

dle=oldo(F) =1 -

{o(F +L,,,)aé0)

lpr =

e{F)

(F+ L )(U(COZ) U(ml))

which obviously represents a linear transformation of 6 in the frequency domain.

We can obtain the ‘optimum’ (most pronounced) spectrum by selecting L, so that
the ratio g(F)fe{F+ L,) becomes maximum; remember that we can select L,, in any
way without distorting the spectral image horizontally. But this again is equivalent
to the requirement that ¢ (F+ L,,) be minimum since ¢ (F) is constant. The minimumn
is achieved for L= — P, where P, is the best fitting {(in the least squares sense) poly-
nomial composed from only the known constituents ©°. Thus

=¥ o, 62
j=1
where the ¢s are given by the following system of normal equations

VoAb, Oy =1 i=1,2,..., m. (5.3)
i=1

Denoting the best fitting polynomial to F*=F—F, again by Py, we can write the

optimum spectrum as
Q(F - Pm: PM)
o(F,P)

g*!FmélF‘m i - (5.4:

It is evident that ¢*, besides being the most pronounced spectrum of F, is alsc
completely invariant in-any transform F-» F+L,. Thesimplication is-that by selecting
the appropriate optimum spectrum, ie. by selecting the right “known’ constituents
&y, b, ..., ¢, we are able to suppress any ‘systematic noise’ of the form L, withow
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being obliged to know the magnitudes of its individual constituents. This also allows

_ us to suppress the already known peaks in the spectrum in a search for as yet unknown
ican periodicities.

2t us One more distinct advantage is that we can easily treat data of a geophysical

phenomenon which has been observed during several disconnected time intervals and

is related to different arbitrary (unknown) datums. This can be achieved by con-

5.D sidering for each time interval, an additional function defined as follows:
I for tin the i-th interval,
nof S
(p:' (I) ”""\\
s 0 for f outside the i-th interval
the coeflicient- of which represents the datum for the i-th interval. By treating such
data as one ‘continuous’ time series, the separability of the long periodic constituents
is increased - see example No. 4 accompanying this paper.
aces
any 6. Development of a Simplified Formula for the Optimum Spectrum
Before showing the influence of random fluctuations in F on the optimum spectrum,
Jet us consider the computational aspects. By realising that all the coefficients of
P,. and Py in Equation (5.4) are to be determined from the appropriate systems of
1. normal equations, we can see that the problem of computing the values o* (w) is not
hat negligible. Fortunately, Equation (5.4) can be considerably simplified.

any@@ The coefficients ¢} of Py, are to be computed from the following system of normal

‘ent equations
um

M
)IY' Z <¢i’ ¢;> cr:!;k) =1, 2:-":M:
D
where
2) [=CF @) —(P, &) i=1,2,.,M.
i
Substituting for P,, from Equation (5.2) we obtain
) @, ¢y i=1,2,...M
.3) ah
and comparison with Equations (5.3) yields
4 NCF, B3~ (P by = (F% 0 15 m.
We can therefore denote the M-tuple {{},15,..., [%} by {0,0,.... ¢, n} and write for
50 the ‘plain’ spectrum (see formula (4.3)) of F*
02 Ol = ¥TATH*
1ts
ut where only the terms with i, j > m make any contribution. The optimum spectrum

& 3
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is then given by

*1F=—G£‘“‘ﬁ I et -1
e(F*) o(FY)

The process of computing ¢* must involve solving the system (5.3), which for
convenience we can rewrite here as

G

F

K,

Cj=[i i=1,2,...,m, : {61)
1

i

B

I

and computing the residual £*, It is not difficuit to see that 4~ ! becomes a function
of @ only. Provided we know the inverse K™' of K we can derive relatively simpi:
formulae for the elements of 47",

For simplicity let us denote the scalar products involving the variable periodic
functions @, ., {t) =coswt, ¥, () =sinet by

<‘pb ¢m+1>:‘-“h <(Di= Drv2) =1; i=1,2,..,m
and (6.2;
Bt tr Pms1? = S5 {Prsts Pere 2y = 82, {Bptzs P2 = S5,

all functions of « only, Then we can write the complete matrix 4 as

I
K, u v i .
s E ] ‘K, 7l
A= 'uT,ShSz =177 s’
ivT’SZ, Sa { ’

where K is an m x m matrix, Z is an mx 2 matrix, and § is'a 2x 2 matrix. To find
the needed inverse of A let us use the *method of partitioning’ (see e.g. Faddeyev and
Faddeyeva, 1964, p. 179; Thompson, 1969, pp. 64-6; Hohn, 1960, p. 82) which is
particularly handy in our case since the inverse K ~1 is assumed known from the
computation of P,. We can write

C, Bl
BT, D!

i

Al =

L3

where we shall further deal with D (2 x 2 matrix) only, since obviously

i*TA—!l* = (é, r]) D(ﬁ) .
For D we obtain
1S, — oKy, S,~u"K W
— AN Sl VA R ’ 2 :
b=1s-2'K""Z} ‘%SZ—VTKW“I, S;—vIK i

Singe K is symmetrical- we have u"K " 'v=yT K" 'u;and putting . .-

WK g U,
WK v=W, (6.3)
VK tv=V, '
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we have finally _
. \

D= 1 L S,V -—SZ+W*
5, =0 (55~ )= (S2= WP{~S;+ W, S, -U|

Hence we have derived the simplified formuta for ¢ of the form

o* = p&® + qbn + ry*, (6.4)
where

p= (S5 V)(Qe(F*)),

g =—2(S, — WH{(Qe(F")), (6.5)

r= (8, —U)(Qe(F)),

and @ =(S,~U) (S5— V)~ (8, W)*>0 for ® linearly independent on A",.

"The similarity between ¢* and the Fourier transform is apparent even in this
somewhat more complex form. The similarity becomes still more evident for @ all
odd or even when ¢ becomes identically zero for all we£2, as was the case for instance
in Section 2. Thus as noted in Section 2 the functions p, ¢, r can again be regarded
as corrective terms for the Fourier transform responsible for the described properties.

If for any we, ® is linearly dependent (this occurs, e.g. when we enforce some
trigonometric functions as the ‘known’ constituents with say a frequency p), o™ (1)
is not defined and ¢* becomes discontinuous on 2. However, we can use limits to
define an everywhere continuous function ¢** since the singularity at =y is remov-
able, satisfying o** (w)=o* () for w# u. Note that ¢** (g) is not necessarily zero as

@' é@he point (g, o** (1)) may lie on the slope of a nearby peak. We shall henceforth

assume that this continuation is carried out and write ¢** simply as o™.

From the computation point of view the evaluation of U, V, W, §,, S,, S5 Is the
most troublesome part, because it involves determination of the values of the scalar
products L.

Y @)@ {e),  i=1,2,.., M, j=mdlmtld
tef'n

However, if we limit ourselves to an .4, of equidistant points ¢, or equidistant points
with gaps, we are usually able to express the scalar products in a compact analytical
form that is more convenient for numerical evaluation. It is not the aim of this paper
to include these details. For some examples the reader is referred to Vanigek (1967,
Vanidek (1969a), Vanitek (1969¢), and Quraishee and Vaniek (1970).

7. Response to Random Noise "

In practical applications we may have to consider the influence of both the ‘systematic’
noise, and the noise due to random fluctuations in F, on the spectrum. To show how
the optimum spectrum ‘responds’ — a term borrowed from communication theory -
to such. fluctuations, let us consider a statistically independent random variable x{¢),
te. 4", with the mean & (x) =« =const. and the variance var (x) =& (x— £ (x) } =y* =
=const. #0. (For proper definitions the reader is referred to Wilks (1962, pp. 73, 74)).

8 3
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It was shown already (see Section 3) that the oplimum spectrum is invariant in an
transformation F~F4 L. Taking one of the ®° as a constant function we can forc
the mean, «, to be zero without altering the spectrum ¢*, hence yzné"(x"), Thi
assumption will simplify the forthcoming argument,

To avoid any later confusion, let us put x*=x— Py With p, =3"Tdd, as the bes
fitting polynomial to x, and Elem={x¥, cosd, nl, = {x*, sind. t Then we can write fo
the optimum spectrum of X,

o), = S = VY= 2(S, = W) &Ll + (S, — U nf?

: e 0 -
and we can prove that under the above assumptions its expected value & (a*],) is
constant.

To prove it let us begin with showing that £}, 5], are linear combinations of the
x(t), teA",. We have

o

5!.15 = <x’ COS> - <pm! COS>

= (X, CO8> — (i d, P, cosd
1

= (X, COsD> — i d; {D;, cosd>,
where, according to 6.2, {®;, cos) =u; and the &, must again satisfy the system of
normal equations
Kd=1_, (
similar to (5.3), where £,|, =¢(x, &>, Hence,
&l = ¢x, cosy —uTK ™1,
= {x, co8) — u K™ (x, )
= {x,cos —w K '®°).

Note that 'K~ '®°=p, is nothing else than the best fitting polynomial to coser

composed of all ®°={e,, ¢,, . ¢,.}- Therefore &, is the scalar product of x(¢)
and the residual «(7) of coser. Let us write it as

Se=<x, 00 =¥ x()a(s). (1.2)
Similarly we get
fle = {x, sin — v K 1@y |

where again vV K7'®° =P, is the best fitting polynomial to sinw? and the residual
can be denoted by yielding

= B=yxp. S x| B

t Notc that asterisks in these symbols have nothing to do with the convolution operator. Convolution
daes not enter explicitly into our argument,
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1any Evidently, ¢(x*) in Equation (7.1) is constant in the frequency domain. On the
force other hand, the rest of the right hand side of (7.1) are all varying with w. Thus o{x*)
This can be regarded as statistically independent of the rest in the frequency domain and
we can therefore write for the expected value of ¢*
_b,?(j; (o) = STV EQL) ~ 2(S, - W) & (ehrl,) + (5, ~ U) €nl?)
' i le(x*) 0
(7.4)
7.1) According to Wilks (1962, p. 83), we have for the expected values in the numerator
- remembering that the x(1), te A", are themselves assumed statistically independent
Jis
R = (") T (1),
H
t
he (D) =6(x*)Y 5 (1), (1.5)
14
Sl = € (x*) ¥ a (1) B(1).
t
Substituting for « we obtain
Ya* (1) =Y (coswt — P, (DY =g (cos, P.).
H H
of By taking, in Equation (3.3), cos instead of F, and m instead of M, we can write
@ @ o {cos, P.) = g(cos) — g (cos, P).
ST But from Equation (4.3}, for m replacing Af and writing, therefore, K instead of 4
we get
o (cos, P,) = {cos, ®°>T K~ {cos, P°)
=u'K g,
and combining the three last resujts we have finally
¢
)) 2. @ (1) = o (cos) — uTK 'y,
1
) If we use the notation of Section 6 this becomes
Y (=8, ~ U, (7.6)
]
Similarily, for ¥, #2 (+): we obtain
1
N =S5 (7.7)
!
! We are going to prove that analogously
o)) =5, - w. (7.8)
!

)

[
e

®
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It is

Ya(}B() =Y [(coswt — P.(1)) (sinwr ~ P.(1)]

[ 4 t

=), cossin—) P,cos— Y Psin+Y PP,
I H 4 I

where the first term is S, and cach of the other terms equals W, We have

Y. Picos =Y (vK ™' ° (1) cos rf)

t 1

= v K THP°, cos)

=vyTK 'y
= W
and similarty
Y Psin=Ww.

Denoting the elements (&, ¢ ;2 of K by K;;, the elements of K™f by Ki;' and making
use of the Kronecker 6 we can write ‘

SRA=T [ i (K 0) % (K, (r))]
= Z [Ki; 1":'Kkl_ lvk <¢‘js ‘15:)}

= Z {Ki; ‘uikakaKﬁ]

ikt
= Z;c {Kz; tuivkékf]
if
=) [K; 'uw)]
i
=W,
which concludes the proof.
Substituting (7.6), (7.7), (7.8) in (7.5) and (7.5) in (7.4) we obtain
28 (x*
266 19 |
(e (x*)) '

which is obviously constant for all @ and we have thus proved that the expected
response to the purely random noise is constant, ‘

To estimate the magnitude of this response let us establish the value of the denomi-
nator. It is

€M)=

¢(o(x") = ¢(e(x ~ p.))
= (e (x) ~ 2{x, p.d + 2 (pa)) N
=N + (=2 Ey Felp) T

= &(I) + &(11).




(N

The first term & (1) evidently becomes
Ele(x)) = né& (x%). (7.10)

We shall show that the second term, &(I1) equals ~mé (x?), with m being the
number of ‘known’ constituents, To prove this, we can use an argument similar to
the development of (7.6). We can write
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= 24x pud + 0(pn) = 0 (x, p) — 0 (x)
=~ (X, P)
== <x: (D°>T K_ ! <X, q)0>.
Rewriting this in a more elementary form we obtain

IL=-

1

i3

=

[<x, &y T K ¢x, eﬁ,->]
i=1

[Kf;l {x, &3 {x, ’ﬁj)J

Insk

aking Li=1
57 E e a) £ 6w o)
AECEO RGO}

e, The expected value of I thus becomes

e -
5 & () =~ g [€(x (1) x (1)) YK e () @ )R
&

i. © where

Ll

e T G

k,

Slx(n) x(1) = €(x*) 6,
since x{¢) are assumed statistically independent. Hence, we have
(1) = ~k21 [&(x*) INCORAALRN))
= 7
=-&(x)}. Y[y ;1) 6,(1)]
[ ¥

719

== €M) Y K7 P, 2,)] (7.11)
sted _ é‘(xz) Z K ‘KEJ,-
‘mi- .

_m'—rff(xz)igzll
m-é”(xz)m,

which was to be proved.
Substituting (7.10) and (7.1 1 in (7.9) we get

& (0™ = 2/(n — m); (7.12)

m'ﬂ’l‘!’-f‘.'l'mﬁ:tn:srl-wa-;;vn.«l.-,-np-‘.;‘;‘-,.;-,.,.‘..‘.,-,-v,,,,,.‘ P
T A It g taven d

SRR
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(A

Lt e

and the expected level of random noise in the spectrum, which corresponds to the
random noise in the analyzed time serics, is constant and is inversely proportionat
to the number of statistical degrees of freedom g~ m of the analyzed time series x — P
From our earlier discussions concerning the optimized spectrum, it is obvioys that
the same spectrum belongs to the noise X =L,+x.

it is felt that the investigation could be extended to establish the probabilities

statistical significance of individual peaks in a way similar to that used for the classical
methods. However, to indulge in such argument is beyond the scope of this paper,
The author believes that the examples attached to this paper should be sufficient at

&
23
[«
&
-
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R
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=
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3
g
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=5
5]
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=N
=
o
4]
=~
73
=]
=
(1]
=
13
[¢]
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-
=
3
=
&
-
3
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Q
—
&
1]
~
-
S
-]
g
S
e
g AR S s S g Ml{nwd_m A -

Remark - According to the argument in this section, we can interpret the formula
(6.4) in such a way that P, g, r can be regarded as functions of the residuals o (1), f(¢)
of cost and sinwt. We can write

p= Q(ﬁ)/(@ (F*) Q), : w
g =—2<a, B3/(e (F*) 0), th
r=e(0)f{o(F*) ), ;
2= o(x)e(B)~<a, B)*: {

If the pair of trigonometric functions cospt, sinpt is among the *known’ constituents .]' . &(
®° then obviously the residuals «, B go to zero for w—y for all 16 4 - Hence o (a), )
¢(B), {&, B>->0 for @-+ 4. At the same time even ¢le and 5, go to zero.

8. Influence of Noise on the Spectrum of 2 Time Series :

: P
It remains to be seen whether the spectral image of a time series F (1) is spoiled by pol:
the presence of the noise X. Let us consider a time series F with a noise x superimposed. | ‘use
Let us assume that the noise x has the same statistical properties as in Section 7. The _ fron
spectrum of such a time series £ = F 4 x will be given by elim
. ' t be
Tle = 2o+ 807 + g (&le + E) (rly 4+ 11,) + ¢ (le +al)% @1) isﬁf‘l
where again ¢, =Y F* (1) coset, analogously |, nle, 4l,, and p, g, ¢ are given by
P= (S5 - V)e(F*) ),
9="=2(8; — W)l(e(F*)Q), : A
. - - 3
r= (Si- Ue(F) ).

We can write

" Q(F’ Pm) ® Q(X, Do) *
[ R + e x
e £ o (F, P) !

G
. + Qo8le + anle) el Qenfie + qllynl,, 82) the ex
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3 the having denoted by P, P Py the best ﬁttmg polynomials o F F and 5 Tespectively,
onal If one of the ‘*knowp’ functions i, ®° g constant (which We can always ensure) we
=P, can again assume withoyy any loss of generality 1hqy & (x) =0, Since he last two
that terms in Equation (8.2) represent only a linear Combination of X’s, they disappear

when we tage the average of F*lp. We obtain

iiesg *
: e(F, P) Sle(x p,) o fx)
!”y é»(o'*“;-.) = % r}"*fF -i- ‘"--~~---—~‘,"'*'~T_~, . (8.3)
the (e (£, P1) Ele(F, F7)
cal It is not difficult to show using an argument simjjy, Lo the one ygeq 1n Section 4 __
er. that Py=p_ +2.. Further, making use of Equation (7.9 we have
at
W, &(o(x, Pw) ¥l = 28(x%) = 2y
fa For the denominato of Equation (8.
)

ond can pe I

EWritten as follgws
26’((‘? — Pm: X — pm.)) =2 E_j((Fb~ Pm)'éa(x - pm))!
4
Which goes 1, zero for & (¥)=0, since F(x)=0 implieg
I
’ gieé”(xmpm)mﬂ. Thus w,

¢(p,)=0, and, hence
¢ Can write Equation (8.3)

in the form
e(F, p,) 2y*
&(o*]) = e+ -___m-_«-_______ 8.4
©Ir) e(F, P,,,)wﬁ(nwm)yza le e(F, Py« (n ~m)y? 8.4
Now, the function F-p

ms L2, the residue of F after subtragy;
polynomia) COmposed of the ‘*known’ functiong D°, can pe
" In other words .. p is the function i

=¥
"

of view of spectra) analysjg .. bearing in mind th
because the whole Structure

intuitively regarded ag 4
which we are interesteq
pletely

h- va Aown. e e
| Guation (8.4) . . ance I3

eliminate the y
It becomeg nat
useful signap.

ndesired Constituents

of Fis not k

uld get
2(17 442 2
& (a* = L L ——
(@ leix) (r?+ Y (n < m) n n
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Introducing the ‘signal to noise ratio’
I=1TIfy, (8.6)
we can rewrite Equation {8.5) as
S 2
NEwRd iF+(J2+ Din—m)

é”(‘f*hr-) =

RN e D s,

Let us point out, for cotmparison, that if we apply a similar argument to the Fourier
transform R (see Equation (2.5)) we shall get

(R} =28 (x%). (8.8)
For the ‘normalized Fourier transform’ =R/o(x) we have
E(Rl) =2/n,

as compared to our Equation {7.12). If the presence of any ‘systematic noise’, L, say,
is suspected and its elimination is carried out, then this would introduce some linear
dependence of the treated x' and €'(x;, x;) would no longer equal to const. xd;. In
deriving Equation (8.8) we should have to write more generally

A RS e s,

AT e E Vb1, e

’
L ity -

&(x, X;) = cov (xi, X} + &7,
(see e.g. Wilks, 1962, p. 78) and & (Rl.-) would no longer be constant. An attempt
to eliminate a ‘systematic nojse’ will thus generally introduce false periodicities as we
have already mentioned. This results in a need to correct the spectrum while any
uncertainty in the elimination of ‘systematic noise’ remains.

9. Examples

To illustrate some of the points discussed in previous sections the following numerical
examples were computed on a Univac 1108 using a flexible program designed for the
technique.

Example No. 1 - 500 normally distributed pseudo-random numbers x; with mean
&(x)=15 and var (x)=1 were generated using the existing subroutines. Their
Spectrum ¥ is plotted in Figure 1. The best fitted mean and trend, Le. the coefficients
to the enforced constituents b (t)=1, ®,(t) =1, yielded values of 1.487 and 0.0005,
Within the used frequency span only one peak (for the frequency 12.9) surpasses 1%,
The whole spectrum Iooks fairly uniform and apparently has random fluctuations,
Comparison with the expected mean level, 0.401% in our case, seerus to support the . .
theotetical conclusions. The computation took approximately 15 sec.
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16 t5 20 25
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Fig. 1,

Example No. 2 .. A time series of the following form
F(t) =20+ 3t 4+ 0.6 cos(l.4(27r/50) t) — 1.8 sin (1.4(27:/50):)

was generated for 1=0.1,0.2,..., 50.0 ¥ (500 values). The frequency 1.4 corresponds
thus to the period 35.7143 ¥t and the linear trend 0 3 units per year. The graph of
the function js shown in Figuie 2.

It was again decided to enforce @, (1)=1,o, (¢)=t and their coefficients came oyt
to within 0.6% and 1177 of the generated values:

¢ =19.87, ¢, = 2967

The optimum Spectium 6* of Fis given in Figure 3. It can be seen that the main peak
is located as close to the period 35.7143 ¥r as the reading precision allows, This had
to be expected from the theory, even though the peak corresponds to a very low
frequency. The inevitable “side lobes’, familiar to the users of any spectral analysjs

[} 26 1yaars) i a0

Fig. 2.
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technique are, indeed, present. This phenomenon may be understood here - without
going into any detail - by realizing:that certain frequencies must exist that-are liable: -
to contribute more to the variance of a term ‘a cos pt + b sinpe” than other frequencies.
More will be said about this point after Example No. 4. The computing time was

approximately 15 sec.
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Example No. 3 - To illustrate the influence of

a random noise on the spectrum of
a time series we have generated a time series

Fr()y=19+3t+02 cos (1.4(2z/50)f) — 0.6 sin (1.4(2n/50)1),
t=0.1,0.2,...,50.0 yr,
very similar to the one used in Example No. 2 and added to it the pseudo-random

noise from Example No. 1. This ‘noisy” time series is presented in Figure 4, If the

theory holds the spectrum ¢* of £ should be similar to the spectrum of F from

Example No. 2. Due to the presence of noise we have (according to Equation (8.7))

to expect the spectrumi of F* to be diminished by the factor J?/(/*+1), where
J=TIfy. I'* in our case is given by

500
r= :

o }: (0.2 cos 1.4(2x/500) ¢ ~ 0.6 sin 1.4(21/500)1)* ~ 0.2158

t=]
and y* equals var (x) from Example No. 1 - Le., 1. We thus get

J? 2 0.2158

and the diminishing factor becomes approximately 0.1775. Hence we should have

g yx = 0.1775 *|, + 0.0033 .

e The values of the mean and trend were established as

¢y = 20444, ¢, = 3.030

within 2.2% and 1.0% of the true values. The actual spectrum o*{..,
Figure 5. We see that the main peak is again located, within the reading precision,
at the period of 35.7143 yr and its magnitude is rather close to the 17.75%, as predicted.
The side lobes are relatively higher. Otherwise, the spectrum looks very much like

is plotted in
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the one from Example No. 2. Except for three minor peaks reaching0.9%, 0.7%, 0.7%
that correspond to the similar peaks found in Example No. 1, the spectrum is well
below 0.57(. The persistence of the three minor peaks introduces the suspicion that
there may be some hidden periodicities in the generated series of pseudo-random
numbers. Computing took again approximately 15 sec.

Example No. 4 — In this example a rather more complex time series

L DN FONCON B o e

: 5
F(t) = C;+ 001t + ¥ (a;cospt + b, sinp;f)
P2 _

F)
has been generated for 16 Ay ={_J7. | A4, with

A ={0.1,02,...,10.0} yr,
My ={201,202,..., 250} yr,
My ={28.1,28.2,...,40.0} yr,
Ci=1, Cye=—1, Cy=3, ie.
. gen
ay= 05 b =-05, tect
a;=—025  by= 00 H tage
ay= 00 by= 10,

a;= L0, by= 035, .} 0

as= 05, b= 10, £

S

and u’s corresponding to 40, 16, 5.714, 3.636, 2.759 yr respectively. The graph of
F (t) is shown in Figure 6.
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19, 0.7%, 0.7% Ten ‘known’ constituents were selected as follows:
ectrum is well 1 . L ted,
suspicion that @, (1) = /
seudo-random \0 t¢. A,
1 ted,
®y(t) = <
\0 t¢ "43 *
L ted,
Dy (t) = <
. 0 I$ "fj ?
(1) =1, ;
@5 (1) =cospyt, (1) =sinpt,
Dr(t) =cospst, Py(t) =sinpu,t, l
‘I’g(t) mCOS,ust; qil()(t)zsﬂ'il‘[st! te‘/VZ"fO’ ;
» - i.e. the datums for the three individual intervals, the linear trend and three of the five ’ ‘
¢ generated trigonemetric terms. Their magnitudes computed by the least-squares i
: technique, were as follows (in brackets the differences from the true values in percen-
~ tages): 1
| il ep= 2312 (131.2%), ;
°;.| Le Cg == — 1.600 (-— 60.0%), 1
6= 2129 (—29.0%), '
. The graph of o= 0.064(540%),
: cs= 0.983(96.6%),
: cs =~ 0.229 (54.2%),

¢y = 0107 (- o),
o= 0912(—8.8%),
A o= 0.514(28%),
Gro = — 0.923 (1.7%).

J
|
/ The results are interesting because they show the order of inexactitude one can
encounter when trying to eliminate a systematic influence from an incompletely
/ known time series by using the least-squares technique. We have already pointed
out the danger of doing so in the introduction to this paper. It is worth noting that
the agreement is somewhat better for higher frequencies.
The optimum spectrum is drawn in Figure 7. We can notice that the dominant
- 1 peak is located within the reading precision limits of the period 3.636 yr showing a
R contribution to the variance of the order of 98.5%. The peak corresponding to the
second period (16 yi) bas been shifted to 14.6 yr, t.e. by approx. 8.8%, indicating a

€ e

R T
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Fig. 7.

contribution of about 5.5%, and making hence the ratio of the two contributions
close to 18. This corresponds roughly to the ratio of the squares of the amplitudes
of the constituents: (140.5%)/0.252 =20. Further, we can see that the contributions
of the remaining periods (40, 5.714 and 2.759 yr) are close to zero.

On the other hand, the side fobes are more pronounced than those found inq

Example No. 2. This is presumed to be due to the much more adverse shape of the
analyzed function, and therefore, to the more adverse structure of the transformation
(spectrum) needed. Besides, since there are several periodic terms involved we have
to expect the presence of peaks due to the mutual interference of such terms.

The author is inclined to believe that the difficulties with side lobes and interference
could be overcome to some extent by using following approach. Whenever a2 dominant
peak shows up on spectrum that could be associated with a known geophysical
phenomenon, and therefore attributed some physical meaning, the corresponding two
trigonometric constituents can be subsequently taken as two additional “known”
constituents and the process of analysis repeated. Thus we should eliminate the direct
influence, as well as the side lobes and interference. terms.arising from the presence
of the periodic term. The possibility cannot be ruled out that it might be feasible with
the method to use a technique similar to *hanning’ or *hamming” (see Blackman and
Tukey, 1959, pp. 14, 98, 171), to smooth the spectrum by removing the side lobes to
some degree. This again, however, is beyond the scope of this paper.
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