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Abstract. The least-squares spectral analysis method is
reviewed, with emphasis on its remarkable property to
accept time series with an associated, fully populated
covariance matrix. Two distinct cases for the input
covariance matrix are examined: (a) it is known absolu-
tely (a-priori variance factor known); and (b) it is known
up to a scale factor (a-priori variance factor unknown),
thus the estimated covariance matrix is used. For each
case, the probability density function that underlines the
least-squares spectrum is derived and criteria for the
statistical signi®cance of the least-squares spectral peaks
are formulated. It is shown that for short series (up to
about 150 values) with an estimated covariance matrix
(case b), the spectral peaks must be stronger to be
statistically signi®cant than in the case of a known
covariance matrix (case a): the shorter the series and the
lower the signi®cance level, the higher the di�erence
becomes. For long series (more than about 150 values),
case (b) converges to case (a) and the least-squares
spectrum follows the beta distribution. The results of this
investigation are formulated in two new theorems.
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1 Introduction

It is customary to expect that the researcher or engineer
has to deal with experimental time series with missing
data points. Occasionally, time series originating from
certain experiments, such as astronomical observations,
are inherently unequally spaced, or we may intentionally
introduce a variable sampling rate to avoid aliasing.
Furthermore, advances in instrument development and
our better understanding of the physical phenomena
result in improvements in the accuracy of the data.

Thus, time series collected over long periods will be non-
stationary by virtue of being unequally weighted.
Disturbances originating from instrument replacement
or repair may also introduce datum shifts (o�sets) in the
series.

Fashionable spectral estimation techniques have
been related almost entirely to fast Fourier transform
(FFT) algorithms for the determination of the power
spectrum. The FFT approach is computationally e�-
cient and produces reasonable results for a large class of
signal processes (Kay and Marple 1981). However, FFT
methods are not a panacea in spectral analysis. There
are many inherent limitations, the most prominent be-
ing the requirement that the data be equally spaced and
equally weighted (e.g. Press et al. 1992). Pre-processing
of the data is inevitable in these cases, it is unsatisfac-
tory and it performs poorly (Press and Teukolsky
1988).

Least-squares spectral analysis (LSSA) was ®rst de-
veloped by VanõÂ cÏ ek (1969, 1971) as an alternative to the
classical Fourier methods. LSSA bypasses all inherent
limitations of Fourier techniques, such as the require-
ment that the data be equally spaced (e.g. Press et al.
1992), equally weighted, with no gaps and datum shifts.
In Sect. 2, we revisit the LSSA, emphasising its remark-
able properties and focusing on the covariance matrix of
the input series in order to derive the probability density
function underlining the least-squares spectrum (Sect. 5).
We distinguish two cases regarding the input covariance
matrix: (a) it is known absolutely (a-priori variance
factor known); and (b) it is known up to a scale factor
(a-priori variance factor unknown), thus the estimated
covariance matrix is used. We formulate the criteria for
the determination of a threshold value above which the
least-squares spectral peaks are statistically signi®cant.
It is important to mention that in all of our derivations
the covariance matrix is assumed to be fully populated,
that is, the time series values need not be statistically
independent as it has been postulated in previous studies
(e.g. VanõÂ cÏ ek 1971; Lomb 1976; Steeves 1981a; Scargle
1982; Press and Teukolsky 1988).
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2 Least-squares spectral analysis

2.1 Preliminaries

An observed time series can be considered to be
composed of signal, a quantity of interest, and noise, an
unwanted quantity that distorts the signal. The noise can
be random or systematic. An idealised concept of random
noise is the white noise, which is completely uncorrelated,
possessing constant spectral density, and it may or may
not follow the Gaussian distribution. In practice we
usually deal with non-white random noise, a band-limited
random function of time. Systematic noise is noise whose
form may be describable by a certain functional form; it
can be periodic (coloured), or non-periodic. Non-periodic
noise may include datum shifts (o�sets) and trends
(linear, quadratic, exponential, etc.), and renders the
series non-stationary, i.e. it causes the statistical proper-
ties of the series to be a function of time.

LSSA (VanõÂ�cek 1969, 1971) is an alternative to clas-
sical Fourier spectral analysis, for it provides the fol-
lowing advantages: (a) systematic noise (coloured or
other) can be rigorously suppressed without producing
any shift of the existing spectral peaks (Taylor and
Hamilton 1972), (b) time series with unequally spaced
values can be analysed without pre-processing (Maul
and Yanaway 1978; Press et al. 1992); (c) time series
with an associated covariance matrix can be analysed
(Steeves 1981a); and (d) statistical testing on the signif-
icance of spectral peaks can be performed.

Promising and powerful as it may sound, least-
squares spectral analysis has received relatively little
attention. It has been applied successfully in its original
(VanõÂ cÏ ek 1971) or alternate forms by a number of re-
searchers in the ®eld of observational astronomy (e.g.
Lomb 1976; Scargle 1982; Press et al. 1992), or in the
®eld of geodetic science (e.g. Maul and Yanaway 1978;
Merry and VanõÂ cÏ ek 1981; Steeves 1981b; Delikaraoglou
1984; Pagiatakis and VanõÂ cÏ ek 1986).

2.2 Mathematical representation of the least-squares
spectrum

We consider an observed time series that is represented by
f�t� 2H, where H is a Hilbert space. The values of the
series have been observed at times ti; i � 1; 2 . . . m; here,
we do not assume that ti are equally spaced. We assume,
however, that the values of the time series possess a fully
populated covariance matrix Cf , that metricises H.

One of the main objectives of LSSA is to detect pe-
riodic signals in f, especially when f contains both,
random and systematic noise. Thus, time series f can be
modelled by g as follows:

g � Ux �1�
where U � �UsjUn� is the Vandermonde matrix and
xT � �xsjxn�T is the vector of unknown parameters.
Subscripts [s] and [n] refer to the signal and noise,
respectively. Matrix U speci®es the functional form of
both signal and (systematic) noise. We must emphasise

here that the distinction between signal and noise is
subjective; therefore, the partitioning of U and x is
arbitrary. We wish to determine the model parameters,
such that the di�erence between g and f (residuals) is
minimum in the least-squares sense. Using the standard
least-squares notation (e.g. VanõÂ cÏ ek and Krakiwsky
1986) we can write

r̂ � fÿ ĝ � fÿU�UTCÿ1f U�ÿ1UTCÿ1f f �2�
In the above equation, ĝ is the orthogonal projection of f
onto the subspace S �H generated by the column
vectors of U. It follows from the projection theorem
(Oden 1979) that r̂ ? ĝ. This means that f has been
decomposed into a signal ĝ and noise r̂ (residual series).
Equation (2) describes a linear weighted least-squares
regression. A simple (un-weighted) least-squares regres-
sion can be found for instance in Preisendorfer (1988
p. 322), with its geometrical interpretation given in
Fig. 9.1 of his work (Preisendorfer 1988, p. 324).

In order to ®nd something similar to spectral value,
we have to compare ĝ to the original series. This can be
achieved by projecting orthogonally ĝ 2 S back onto,
H, and comparing the norm of this projection to the
norm of f. Hence, we can obtain a measure (in terms of
percent) of how much of ĝ is contained in f. This ratio is
smaller than unity and can be expressed as follows:

s � hf; ĝi=jfjjfj � hf; ĝijfj2 �
fTCÿ1f ĝ

fTCÿ1f f
;2 �0; 1� �3�

where the symbols h i signify inner product. It is
interesting to note here the equivalence of Eq. (3) to
the regression hindcast skill as presented by Pre-
isendorfer (1988 p. 334). Using our notation, the
hindcast skill SH of the linear least-squares regression
[see Preisendorfer 1988, Eq. (9.48)] is SH � jĝj2=
jfj2: Since jĝj2�hf; ĝi2=jĝj2; then SH � hf; ĝi=jfj2 � hf; ĝi=
jĝj2 � hf; ĝi=jfj2 � s

So far, we have not speci®ed the form of the signal
through base vectors that form U. In spectral analysis, it
is customary to search for, among others, periodic sig-
nals that are expressible in terms of sine and cosine base
functions. Thus, we can assume a set of spectral fre-
quencies X � fxi; i � 1; 2; . . . kg, each de®ning a di�er-
ent subspace S spanned by U (Wells et al. 1985)

U � �cosxit; sinxit�; i � 1; 2; . . . ; k �4�
and the orthogonal projection of f onto S will be
di�erent for each xi 2 X. We must emphasise here that
each frequency xi 2 X, is tried independently from the
rest. Then the least-squares spectrum is de®ned by

s�xi� �
fTCÿ1f ĝ�xi�
fTCÿ1f f

; i � 1; 2; . . . ; k �5�

Equation (5) shows that the least-squares spectrum is a
special case of the hindcast skill of a linear regression
when the base functions of U are trigonometric.

At this point, it is expedient to re-examine Eq. (1) and
the partitioning of matrix U. Us may include trigono-
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metric base functions [Eq. (4)] to describe the periodic
components of the series, or others, such as random
walk, autoregressive (AR), moving average (MA), and
autoregressive moving average (ARMA) (Jenkins and
Watts 1968; Gelb 1974). When the calculation of the
least-squares spectrum is carried out, there will be a si-
multaneous least-squares solution for the parameters of
the process. This, indeed, is a rigorous approach to the
problem of hidden periodicities: the parameters of the
assumed linear system driven by noise are determined
simultaneously with the amplitudes and phases of the
periodic components, and with other parameters that
describe systematic noise.

We are now in the position to tackle the main subject
of this paper, that is, the derivation of probability dis-
tribution functions (pdf), which underline the least-
squares spectrum for the two distinct cases mentioned in
Sect. 1. In the next section, we present all relevant
lemmas and theorems needed to derive the probability
density functions.

3 Preliminary lemmas and theorems

Before deriving the pdf of the least-squares spectrum s, it
is expedient to refer to a number of useful lemmas and
theorems. We consider an m-dimensional stochastic
vector X with its associated covariance matrix Cx that
is, in general, singular. In addition, we assume, without
loss of generality, that X follows the central multidi-
mensional normal distribution. In the following, symbol
``�'' means follows, ``df '' denotes degrees of freedom,
``^'' indicates least-squares estimate, and ``ÿ'' means g-
inverse.

Lemma 1. Let X be an m-dimensional stochastic vector
from a multidimensional normal distribution n�0;Cx�,
where Cx may be singular. The random variable
Q � XTCÿx X is distributed as v2r where r � rank Cx and
Cÿx indicates g-inverse (Rao and Mitra 1971).

Lemma 2. Let X be an m-dimensional stochastic vector
from a multidimensional normal distribution n�0;Cx�,
where Cx may be singular. Let A be a symmetric matrix
and r � rankA. The random variable Q � XTAX is
distributed as v2r , if and only if �CxA�2 � CxA, that is,
CxA is idempotent (Rao and Mitra 1971, p. 171; Hogg
and Craig 1978, p. 413).

Lemma 3. Let Q1 and Q2 denote random variables,
which are quadratic forms in the items of a random
sample X of size m from a distribution which is n�0;Cx�.
Let A and B denote respectively, the real symmetric
characteristic matrices of Q1 and Q2. The random
variables Q1 and Q2 are stochastically independent if
and only if ACxB � 0 (Hogg and Craig 1978, p. 414).

Lemma 4. Let Q;Q1 and Q2 denote random variables,
which are quadratic forms in the items of a random
sample X of size m from a distribution which is n�0;Cx�.
Let Q1 and Q2 be stochastically independent and
Q � Q1 � Q2. Then df �Q� � df �Q1� � df �Q2� (Hogg
and Craig 1978, p. 417).

Theorem 1. Let X be an m-dimensional stochastic vector
from a multidimensional normal distribution n�0,
Cx � r2

0N
ÿ� where r2

0 is a known scale factor (a-priori
variance) and N may be singular of rank r. If the
random variable Q � XTCÿx X is distributed as the v2r
distribution, then the random variable Q̂ � �1=r�XTĈÿx X
will be distributed as Fr;m, where m � mÿ u are the
degrees of freedom used to obtain an estimate for r2

0 and
Ĉx � r̂2

0N
ÿ.

Proof. We know that Cx � r2
0N
ÿ and Ĉx � r̂2

0N
ÿ, where

N may be singular. Combining the above two relations,

we obtain Ĉÿx � r2
0=r̂

2
0C
ÿ
x . According to Lemma 1,

XTĈÿx X � r2
0=r̂

2
0X

TCÿx X � r2
0=r̂

2
0v

2
r . But mr̂2

0=r
2
0 � v2m

and �v2r=r�=�v2m=m� � Fr;m, thus �1=r�XTĈÿx X � Fr;m.

Theorem 2. Let X be an m-dimensional stochastic vector
from a multidimensional normal distribution n�0,
Ĉx � r̂2

0N
ÿ�, where r̂2

0 is the least-squares estimate of
r2
0 (a-priori variance) and N may be singular. Let

Q̂ � XTÂX be a random variable with Â � Ĉ
ÿ
x K where

K is an idempotent matrix. If the random variable
Q � XTAX, with A � Cÿx K and X � n�0;Cx � r2

0N
ÿ� is

distributed as the v2r distribution, then the random

variable Q̂ � �1=r�XTÂX will be distributed as Fr;m,
where r � rankÂ and m � mÿ u are the degrees of
freedom used to obtain the estimate for r2

0.

Proof. We consider an m-dimensional stochastic vector
X � n�0; Ĉx� and the random variable Q̂ � XTÂX, where

Â � Ĉÿx K, and K is an idempotent matrix. As in the
proof of Theorem 1, we can write Ĉx � r̂2

0=r
2
0Cx, which

leads to Q̂ � XTÂX � m=�mr̂2
0=r

2
0�XTAX. Combining

Lemma 2 and Theorem 1, we obtain the proof.

4 Least-squares spectrum revisited

So far, we have dealt with the determination of the least-
squares spectrum without evaluating the signi®cance of
the peaks. This is a very important issue since we need to
know which of the peaks are statistically signi®cant
and can be suppressed. Expression (5) is not very
convenient for the derivation of the pdf of s. We can
write Eq. (2) as

r̂ � �Iÿ J�f �6�
where I is the identity matrix and J is given by

J � U�UTCÿ1f U�ÿ1UTCÿ1f �7�

Substitution of Eq. (6) into Eq. (5) yields, after some
rearrangement

s � fTCÿ1f Jf

fTCÿ1f f
�8�

Deriving the pdf of the least-squares spectrum as a
ratio of two quadratic forms given by Eq. (8) is not
an easy task, since the two quadratic forms of the ran-
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dom variable f are not statistically independent, for
Cÿ1f JCfC

ÿ1
f 6� 0 (cf. Lemma 3). However, following

Steeves (1981a),we canwrite thedenominatorofEq. (8) as

fTCÿ1f f � fTCÿ1f Jf� fTCÿ1f �Iÿ J�f �9�

Equation (9) shows that the series quadratic form
(left-hand side, LHS) has been decomposed into the
signal (®rst term on the right-hand side, RHS) and the
noise (second term on the RHS). These two components
must now be statistically independent. Indeed,
Cÿ1f JCfC

ÿ1
f �Iÿ J� � 0 (cf. Lemma 3), for J is an

idempotent matrix (Mikhail 1976 p. 470). We note here
that the independence of the two quadratic forms is
retained regardless of the covariance matrix being
diagonal or fully populated. Substitution of Eq. (9) into
Eq. (8), and rearranging, yields

s � 1� fTCÿ1f �Iÿ J�f
fTCÿ1f Jf

" #ÿ1
� 1� Qn

Qs

� �ÿ1
�10�

Equation (10) gives the least-squares spectrum as a
function of the ratio of two stochastically independent
quadratic forms Qn and Qs. This ratio is the inverse of
the signal-to-noise ratio (SNR). It is important to note
that Eq. (10) allows us to determine the power spectral
density (PSD) of a series from the least-squares spec-
trum s (expressed in decibels, dB), by writing the SNR as
function of s, then taking the logarithm and multiplying
it by 10 to obtain dB

PSDLS � 10 log10
s

1ÿ s

h i
�11�

The PSD given by Eq. (11) is equivalent to the one
determined from the FFT method, when the series is
equally spaced and equally weighted. Evidently, Eq. (11)
can be used to calculate power spectra of any series,
without resorting to FFT and its stringent requirements.
In addition, Eq. (11) can be used to derive the pdf of the
power spectral density and identify signi®cant peaks
rigorously. However, this task is beyond the scope of
this paper.

At this point we are able to establish the link between
the SNR as contained in Eq. (10) and the canonic
hindcast skill QH of a linear regression analysis as de-
®ned in Preisendorfer [1988 p. 340, Eq. (9.66)]. As it has
been shown in Sect. 2.2, the least-squares spectrum s is
equivalent to the (classic) hindcast skill SH. Therefore,
Eq. (10) can be written as

s � SH � 1

1� SNRÿ1
� SNR

1� SNR
�12�

Comparing Eq. (12) and Eq. (9.68) of Preisendorfer
(1988, p. 340) we obtain that the SNR (as de®ned in this
study) is equal to the canonic hindcast skill QH of the
linear regression analysis. The SNR ratio q as de®ned in
Preisendorfer [1988, p. 341, Eq. (9.76)] thus di�ers from
ours by a factor equal to the degrees of freedom of the
regression analysis.

5 Signi®cance of least-squares spectral peaks

VanõÂ cÏ ek, (1971) derived the expected (mean) spectral
value of white noise in the least-squares spectrum,
assuming that the series consists of statistically indepen-
dent random values. He pointed out (VanõÂ cÏ ek 1971, p.
24) the possibility of deriving magnitudes (threshold
values) above which spectral peaks are statistically
signi®cant. Lomb (1976), Scargle (1982), Steeves
(1981a) and Press and Teukolsky (1988) derived signi-
®cant levels for the least-squares spectral peaks under
the assumption that the series comprises uncorrelated
(white) Gaussian noise.

In this paper, we postulate that series f has been
derived from a population of random variables fol-
lowing the multidimensional normal distribution. In
the following, we derive the pdf of the least-squares
spectrum for the two aforementioned cases regarding
the covariance matrix Cf . It is expedient to note here
that the derivation of the pdf is not limited to trigo-
nometric base functions only. Given the similarity of
the present development to the regression analysis
(Preisendorfer 1988 Sect. 9), the following statistical
tests can equally be applied to the linear regression
analysis of data series with a fully populated covari-
ance matrix.

5.1 A-priori variance factor r2
0 known

Postulating that series f has been derived from a
population of random variables following the multidi-
mensional normal distribution, each of Qs and Qn is
distributed as the chi-square distribution �v2�, with l
and m degrees of freedom, respectively. This is evident
from Lemma 2, since CfC

ÿ
f �Iÿ J� and CfC

ÿ1
f J are both

idempotent. As Qs and Qn are statistically independent,
their ratio is distributed as the F -distribution (Hogg and
Craig 1978).

Let us suppose that after a number of trials with
di�erent base functions we have selected correctly the
underlined process of the series, if any, and the form of
the systematic noise, both of which have been de®ned by
a set of base vectors of dimension u. We seek the spectral
content of the remainder of the series by successively
®tting base functions of the form of Eq. (4), with fre-
quencies xi in the spectral band of interest X. The
quadratic form of the residual series Qn will possess
m � mÿ uÿ 2 degrees of freedom, where ``2'' denotes
the additional two unknowns for the sine and cosine
coe�cients of the periodic constituent been forced. It is
reminded here that m is the number of data points in the
series. Since Q � Qs � Qn � fTCÿ1f f and Qs, Qn are sta-
tistically independent, then df �Q� � df �Qs� � df �Qn� �
df �fTCÿ1f f� � mÿ u (Lemma 4). Therefore, l � 2,
m � mÿ uÿ 2. From Lemma 2, Qn � fTAf � v2m , m � m
ÿuÿ 2, (CfA is idempotent). Similarly, Qs � fTBf
� v2l; l � 2, (CfB is idempotent). From the above we
conclude that �2=m�Qn=Qs � Fm;2.

At this point, it is necessary to recapitulate the null
hypothesis H0: The input time series values follow the
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multidimensional normal distribution n�0;Cf :�. H0 im-
plies that if Qn=Qs � �m=2�Fm;2;a, the series will comprise
statistically insigni®cant noise. The alternative hypoth-
esis will be H1: Qn=Qs < �m=2�Fm;2;a. It makes sense to
use only the lower tail end of F , since large values of
the ratio Qn=Qs (upper tail end of F ) imply that the
signal is signi®cantly smaller than the noise and
therefore is undetectable. Considering Eq. (10), statis-
tically signi®cant spectral peaks will satisfy the fol-
lowing inequality:

s�xi� � 1� m
2

Fm;2;a

h iÿ1
�13�

It is obvious from Eq. (13) that the least-squares
spectrum is distributed as the beta distribution (Hogg
and Craig 1978 p. 147) with parameters c � 1 and
d � �mÿ uÿ 2�=2 and, thus, the mean value of the beta
distribution is l � c=�c� d� � 2=�mÿ u�. This mean
value is the expected spectral value of the noise. We
note that this is identical to the mean spectral value of
white noise derived by VanõÂ cÏ ek (1971) and later by
Lomb (1976). Clearly, the assumption of no correlation
can be relaxed. This shows that the response of the least-
squares spectrum is constant (¯at) in the frequency
domain. In order to make the calculation of the critical
value more e�cient, without making use of statistical
tables, we recall the relation (Rao 1965)

Fm;2;a � F ÿ12;m;1ÿa �
2

m
�aÿ2=m ÿ 1�ÿ1 �14�

Substitution of Eq. (14) into the RHS of Eq. (13) yields
the critical value ca, above which H0 is rejected and the
spectral peaks are signi®cant. The above ®ndings can be
summarised in the following theorem.

Theorem 3. Let f be an m-dimensional stochastic vector
from a multi-dimensional normal distribution n�0;Cf �.
Let Cf � r2

0N
ÿ be the known covariance matrix, where

N may be singular. Let s�xi� represent the least-squares
spectrum given by Eq. (10), de®ned within the spectral
band of interest X. Let also ca be a critical value at the
signi®cance level a, given by:

ca 1� 1

aÿ2=m ÿ 1

� �ÿ1
; m � mÿ uÿ 2 �15�

where u is the number of unknown parameters estimated
by the least-squares procedure.
Then:
(a) the least-squares spectrum s�xi� follows the beta
distribution;
(b) if s�xi� � ca 8xi 2 X then f comprises statistically
insigni®cant information (noise) only, at the signi®cance
level a within the spectral band of interest,
(c) if s�xi� > ca, for at least one xi 2 X, then f comprises
statistically signi®cant component(s) at the signi®cance
level a, within X;
(d) the response of the least-squares spectrum to noise is
constant in the frequency domain and its expected
spectral value (mean) is 2=�mÿ u�.

5.2 A-priori variance factor r2
0 unknown ± r̂2

0 used

Very often in experimental sciences we obtain time series
whose covariance matrix is known up to a scale factor,
that is, we use the estimated covariance matrix by
scaling the inverse of the matrix of normal equations
with the a-posteriori variance factor. When r̂2

0 is an
estimate of r2

0 and f � n�0; Ĉf � r̂2
0N
ÿ�, neither qua-

dratic forms Qs and Qn will be distributed as the v2

distribution, by virtue of r̂2
0 being a random variable.

Equation (10) can still be used to evaluate the least-
squares spectrum by substituting the inverse covariance

matrix with its estimate Ĉ
ÿ1
f . We know that Qn � v2m ,

and according to Theorem 2, �1=m�Q̂n � Fm;m; rank
�Ĉÿ1f �Iÿ J�� � m � mÿ uÿ 2, since the df used to
estimate r̂2

0 are also m � mÿ uÿ 2. Likewise, since
Qs � v22, then �1=2�Q̂s � F2;m and Qn=Qs will be distrib-
uted as the ratio of two F distributions. The derivation
of the combined pdf of the ratio of two independent
random variables, each distributed as the F distribution,
can be found in Appendix 1, according to which, the pdf
of p � SNRÿ1 is given by

hm�p� � C�m�
C�m2�C�m2�

p�mÿ2�=2
Z 1
0

pm=2

�1� pq�m�1� 2
m q��m�2�=2

dq

�16�
The integral in Eq. (16) is a hypergeometric integral,
which can be written in terms of Gauss's hypergeometric
function 2F1 as (Gradshteyn and Ryzhik 1965 p. 299)

hm�p� � C�m�C�m�
C�m2�C�3m2 �

1

3p2

� 2F1�m=2� 1; m=2� 1; 3m=2� 1; 1ÿ 2=mp� �17�

= SNRp -1

0 1 2 3 4

f 15
0,

2

0

0.1

0.2

0.3

0.4

0.5

0.6

F
150,2,α

α

Fig. 1. Plot of f 150;2 showing the critical value F150;2;a at the
signi®cance level a
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In Gauss's hypergeometric series 2F1, there is a singu-
larity when the time series comprises pure signal only
�p � 0�. Furthermore, in order for the series 2F1 to
converge, the inequality jzj � j1ÿ 2=mpj < 1 must be
satis®ed (Luke 1969). As Fig. 2 shows, for small p and m
this does not hold true, rendering the series divergent
and making Eq. (17) unsuitable for numerical evalua-
tion. However, the hypergeometric integral in Eq. (16)
behaves much better numerically, thus Eq. (16) will be
used to calculate the probability integral. A plot of hm�p�

for various degrees of freedom m is shown in Fig. 3. As
the degrees of freedom increase (i.e. as the length of the
series increases), hm�p� converges to Fm;2. This occurs
when the series comprises more than about 150 data
points and the pdf of the least-squares spectrum
converges to the beta distribution (as in the ®rst case of
known r2

0.)
The probability integral, or cumulative distribution

function Hm, can be obtained by numerically integrat-
ing equation Eq. (16), the dummy variable being
p � SNRÿ1. Since hm�p� is the pdf of the inverse SNR,
we need to use only the lower tail end of hm�p�.
Therefore, the numerical integration can be carried out
from zero to a value ca, such that the integral equals a
speci®ed signi®cance level a. Fig. 4 (see also Appendix
2, Table 2) shows the percentage variance level above
which spectral peaks are signi®cant at a � 0:01, as a
function of the degrees of freedom. Similarly, Fig. 5
(see also Appendix 2, Table 3) shows the signi®cant
levels at a � 0:05. The di�erence between the two
cases, that is, r2

0 known or unknown, is signi®cant for
short time series of up to about 150 points, and it is
more so for decreasing signi®cant levels. It is also
pleasing to realise that when we lack exact informa-
tion about the accuracy of the input series (r2

0 un-
known) the levels of signi®cance are higher, indicating
that we must be stricter in identifying signi®cant
peaks. The above are summarised in the following
theorem:

Theorem 4. Let f be an m-dimensional stochastic vector
from a multi-dimensional normal distribution n�0; Ĉf �.
Let Ĉf � r̂2

0N
ÿ be the estimated covariance matrix,

where N may be singular. Let s�xi� be the least-squares
spectrum given by Eq. (10), de®ned within the spectral
band X. Then:

(a) the inverse of the least-squares SNR follows the
hypergeometric probability distribution function
given by Eq. (16),
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Fig. 2. Variation of z parameter of Gauss's hypergeometric function

2F1, as a function of the inverse of the signal-to-noise ratio for various
degrees of freedom m
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Fig. 3. The probability density function hm�p� as a
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for various degrees of freedom m. For
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(b) the critical percentage variance ca at the signi®cance
level a, above which least-squares spectral peaks are
statistically signi®cant, is determined by

ca � 1� m
2

Hm;a

h iÿ1
; m � mÿ uÿ 2 �18�

where Hm;a is the probability integral of hm�p�;
(c) ca converges to the critical value determined by Eq.

(15), when the series contains more than about 150
data points;

(d) if s�xi� � ca 8xi 2 X, then f comprises statistically
insigni®cant information (noise) only, at the signif-
icance level a, within X;

(e) if s�xi� > ca for at least one xi 2 X, then f comprises
statistically signi®cant component(s) at the signi®-
cance level a, within X.

6 Examples

To exemplify the capabilities of the LSSA technique and
the usefulness of the statistical tests in the search for
signi®cant peaks in the spectrum, we analyse two
representative real sample sequences. In the ®rst exam-
ple, we use the Kay±Marple real sample sequence (Kay
and Marple 1981), comprising 64 data points; the LSSA
analysis results are compared with the 11 spectral
methods summarised in their paper (Kay and Marble
pp. 1409±1411). In the second example we make use of
the Westford±Wettzell baseline length series from very

long baseline interferometry (VLBI) experiments as
obtained from the Crustal Dynamics Data Information
System (CDDIS 1998) of the National Aeronautics and
Space Administration/Goddard Space Flight Center
(NASA/GSFC).

6.1 The Kay±Marple example

In this example we make use of the 64-point real sample
sequence of Kay and Marple (1981, Table III, p. 1411).
The series is equally spaced and equally weighted with
no covariance information, thus we choose to perform
the statistical testing with an unknown a-priori variance
factor at the 99% con®dence level, which represents the
most stringent option.

In Fig. 6, the top panel shows the series under in-
vestigation, panels 1a±4a represent the least-squares
spectra of the series corresponding to a four-stage
analysis, while panels 1b±4b show the respective least-
squares power spectral density (PSDLS) in decibels (dB)
[cf. Eq. (11)].

Panel 1a (and 1b) shows the spectrum of the original
time series. Clearly, the peaks at frequencies of 0.20 and
0.21 are well resolved and they are both statistically
signi®cant. In the second stage of the analysis, we sup-
press both signi®cant constituents and the spectrum of
the residual series is given in panel 2a (and 2b). The peak
at frequency of 0.10 is now clearly present, though sta-
tistically insigni®cant. However, the peaks at frequencies
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Fig. 4. Critical percentage variance (%) as a function of degrees of
freedom at a � 0:01
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Fig. 6. The Kay±Marple example. The top panel shows the real
sample sequence. Panels 1a±4a show the least-squares spectra and
panels 1b±4b are the respective least-squares power spectral densities

(PSD) in decibels. The 99% con®dence levels correspond to unknown
a-priori variance factor (solid lines). Dashed lines indicate the 99%
level for known a-priori variance factor
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of 0.311, 0.368 and 0.402 are signi®cant at the 99%
con®dence level. In a third stage of analysis, the latter
three frequencies along with the former two (i.e. 0.20
and 0.21) are suppressed simultaneously and the spec-
trum of the residual series is given in panel 3a (and 3b).
In this residual series, the frequency of 0.10 is at the
threshold of the 95% con®dence level, while the peaks at
0.295 and 0.346 are signi®cant. In a fourth stage of
analysis, the latter two frequencies together with the
former ®ve are suppressed simultaneously and the
spectrum of the residual series is given in panel 4a (and
4b). It is interesting to note that the frequency of 0.10 is
now signi®cant at the 99% con®dence level. After sup-
pressing frequency 0.10, the resulting residual series
shows a signi®cant peak at 0.415, although of small
amplitude (spectrum not shown).

The results of the analysis are summarised in Table 1.
Comparison of the ®rst three frequencies and amplitudes
(Table1) with those from Table V of Kay and Marple
(1981, p. 1411) reveals that our frequencies (excludingNo.
3) and amplitudes are closer to the actual frequencies and
amplitudes of the signal (Kay and Marple 1981 p. 1409),
although the di�erences are within the error estimates.

6.2 Westford±Wettzell VLBI baseline

In this example, we use the Westford±Wettzell baseline
length series obtained from VLBI experiments. The data
were obtained from the Crustal Dynamics Data Infor-
mation System (CDDIS, 1998) of the NASA/GSFC
Internet site. The series comprises 823 unequally-spaced
and unequally-weighted observations. We perform the
analysis of the series to demonstrate the importance of
the variable weights. As the series is su�ciently long, we
do not distinguish between known and unknown
a-priori variance factors and we choose to work with
the 99% con®dence level for detecting signi®cant peaks.
We emphasise here that we do not intend to search or
comment on the causality of the spectral peaks, nor do
we strive for a complete analysis of the series, as this is
the subject of another investigation.

The top panel in Fig. 7 shows the baseline length
variation (millimetres) with the standard error bars.
Panels 1a and 1b show the least-squares spectrum and
the PSDLS respectively of the original but equally-
weighted series. Subsequently, we consider the series

values weighted by the inverse of their variance and the
spectrum is shown in panel 2a (and 2b). The threshold
value for detecting signi®cant peaks at the 99% con®-
dence level is 1.15% , thus many peaks can be declared
as signi®cant. However, we concentrate on the three
strongest peaks at periods of 365 days, 181.5 days and
62 days. It is evident from the two spectra (1a and 2a)
that the annual peak is much stronger in the weighted
spectrum, while the semi-annual and bimonthly peaks
are only present in the weighted spectrum. Similar
conclusions can be drawn from the analysis of Rich-
mond±Wettzell baseline length series (spectra not pre-
sented in this paper). The amplitudes of the annual peak
for Westford±Wetzzell and Richmond±Wettzell series
are 4:9� 0:4mm and 3:9� 0:4mm, respectively.

7 Discussion and conclusions

Very often in practice we need to analyse short time
series, whose values may be unevenly spaced and
weighted, with trends, gaps and datum shifts. Least-
squares spectral analysis o�ers an alternative to FFT
techniques in that it can be applied without pre-
processing the data. Furthermore, the capability of
analysing a series by taking into consideration its
associated covariance matrix is of great importance,
for we take into account the variable weights and
correlation between the values, as well as performing
rigorous statistical tests to identify stochastically signi-
®cant and thus suppressible peaks.

In this paper, we tackled the derivation of the prob-
ability density function of the least-squares spectrum for
two distinct cases: (a) the covariance matrix of the input
series is absolutely known; and (b) the covariance matrix
of the input series has an unknown scale defect. The
latter case implies that the covariance matrix is un-
known and its estimate is used in the determination of
the least-squares spectrum. We derived probability
density functions for both cases and formulated the
criteria of signi®cance of spectral peaks in Theorems 3
and 4. We found that the spectral peaks in the case of an
unknown covariance matrix must be stronger (higher)
than in the case of a known one, in order to be statis-
tically signi®cant. Figures 3 and 4 show that for short
series and low signi®cance level values, the distinction
between the two cases is important. We must emphasise
here that the case of an unknown covariance matrix
converges to the case of a known one for series longer
than about 150 data points. For example, when the se-
ries consists of 150 points, the di�erence in percentage
variance between the two cases is 0.3% at the 99%
con®dence level and drops to 0.1% when the series
comprises 170 points (Tables 2 and 3).

We established the relation between the least-squares
spectrum and the power spectral density in dB [cf. Eq. (11)]
and showed the equivalence of the least-squares spectrum
and the (classic) hindcast skill of a linear regression
analysis [cf. Eq.(12)] as used in the principal component
analysis in meteorology and oceanography (e.g. Prei-
sendorfer 1988). Furthermore, we obtained the

Table 1. The Kay±Marple real sample sequence analysis using
LSSA. Phases are with respect to t = 1. The standard errors are
formal estimates using the a-posteriori variance factor to scale the
inverse matrix of normal equations

No. Frequency Amplitude Phase

1 0.099893 0.0985 � 0.0286 356.91 � 1.61
2 0.199581 0.9720 � 0.0320 356.38 � 1.79
3 0.209728 0.9836 � 0.0317 0.41 � 1.82
4 0.295488 0.1291 � 0.0286 52.07 � 1.63
5 0.310720 0.2144 � 0.0285 155.75 � 1.64
6 0.346034 0.1506 � 0.0292 130.71 � 1.68
7 0.367541 0.2350 � 0.0293 163.30 � 1.66
8 0.401515 0.2818 � 0.0281 121.06 � 1.65
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equivalence of the least-squares signal-to-noise ratio and
the canonic hindcast skill of the linear regression analysis.

We substantiated our ®ndings with two characteristic
examples. With the Kay±Marple example we demon-
strated the capabilities of the LSSA and the usefulness of

the statistical tests in detecting signi®cant peaks in the
spectrum, especially when the series is short. The second
example showed the rigour of analysis of unequally
spaced and unequally weighted series without pre-pro-
cessing of the data.

Fig. 7. Westford-Wettzell baseline length analysis. The top panel
shows the evolution of the baseline in time. Panels 1a and 1b show the

spectrum of the series when all series values are equally weighted.
Panels 2a and 2b show the spectrum of the unequally-weighted series
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Table 2. Threshold values for various degrees of freedom at the
signi®cance level 0.01. Above the threshold values, spectral peaks
are statistically signi®cant

Degrees of
freedom

r2
0 known r2

0 unknown

Percentage
variance

dB Percentage
variance

dB

10 60.19 1.80 71.57 4.01
15 45.88 )0.72 55.09 0.89
20 36.90 )2.33 43.91 )1.06
25 30.82 )3.51 36.18 )2.47
30 26.44 )4.45 30.63 )3.55
35 23.14 )5.21 26.49 )4.43
40 20.57 )5.87 23.30 )5.18
45 18.51 )6.44 20.77 )5.81
50 16.82 )6.94 18.73 )6.37
55 15.42 )7.39 17.04 )6.87
60 14.23 )7.80 15.63 )7.32
65 13.21 )8.18 14.43 )7.73
70 12.33 )8.52 13.40 )8.10
75 11.56 )8.84 12.51 )8.45
80 10.88 )9.14 11.72 )8.77
85 10.27 )9.41 11.03 )9.07
90 9.73 )9.68 10.41 )9.35
95 9.24 )9.92 9.86 )9.61
100 8.80 )10.16 9.36 )9.86
105 8.40 )10.38 8.91 )10.09
110 8.03 )10.59 8.51 )10.32
115 7.70 )10.79 8.13 )10.53
120 7.39 )10.98 7.79 )10.73
125 7.10 )11.17 7.48 )10.93
130 6.84 )11.34 7.19 )11.11
135 6.60 )11.51 6.92 )11.29
140 6.37 )11.68 6.67 )11.46
145 6.15 )11.83 6.44 )11.62
150 5.96 )11.98 6.22 )11.78

Table 3. Threshold values for various degrees of freedom at the
signi®cance level 0.05. Above the threshold values, spectral peaks
are statistically signi®cant

Degrees of
freedom

r2
0 known r2

0 unknown

Percentage
variance

dB Percentage
variance

dB

10 45.07 )0.86 53.35 0.58
15 32.93 )3.09 38.27 )2.08
20 25.89 )4.57 29.49 )3.79
25 21.31 )5.67 23.88 )5.04
30 18.10 )6.56 20.02 )6.02
35 15.73 )7.29 17.21 )6.82
40 13.91 )7.92 15.08 )7.51
45 12.47 )8.46 13.42 )8.10
50 11.29 )8.95 12.08 )8.62
55 10.32 )9.39 10.99 )9.09
60 9.50 )9.79 10.07 )9.51
65 8.81 )10.15 9.30 )9.89
70 8.20 )10.49 8.63 )10.25
75 7.68 )10.80 8.05 )10.58
80 7.22 )11.09 7.55 )10.88
85 6.81 )11.37 7.10 )11.17
90 6.44 )11.62 6.71 )11.43
95 6.11 )11.86 6.35 )11.69

100 5.82 )12.09 6.03 )11.92
105 5.55 )12.31 5.75 )12.15
110 5.30 )12.52 5.48 )12.37
115 5.08 )12.72 5.24 )12.57
120 4.87 )12.91 5.02 )12.77
125 4.68 )13.09 4.82 )12.95
130 4.50 )13.26 4.64 )13.13
135 4.34 )13.43 4.46 )13.30
140 4.19 )13.59 4.30 )13.47
145 4.05 )13.75 4.16 )13.63
150 3.92 )13.90 4.02 )13.68

Appendix 2

Appendix 1

We consider two stochastically independent random
variables Qn and Qs distributed as Fm;m and as F2;m,
respectively. Here, Qn represents the quadratic form of
the noise and Qs the quadratic form of the signal. The
pdf of the ratio of the above two random variables is
derived similarly to the pdf of the ratio of two chi-square
variables (e.g. Hogg and Craig 1978, p.145). The F
density functions for the random variables Qn and Qs are
given by

f �qn� � C�m�
C�m2�C�m2�

q�mÿ2�=2n

�1� qn�m ; f �qs� � 1

�1� 2
m qs��m�2�=2

�A1�
We de®ne a new random variable P

P � Qn

Qs
�A2�

for which we need to ®nd the pdf hm�p�. The following
transformation:

p � qn
qs
; q � qs �A3�

maps the set A � f�qn; qs�; 0 < qn <1; 0 < qs <1g
onto the set B � f�p; q�; 0 < p <1; 0 < q <1g and
the absolute value of the Jacobian of the transformation
is jJj � q. Then, the combined pdf h�p; q� is given by

h�p; q� � jJjf �qn�
��
qn�pqf �qs�

��
qs�q �A4�

The marginal distribution hm�p� will be given by

hm�p� � C�m�
C�m2�C�m2�

p�mÿ2�=2
Z1
0

pm=2

�1� pq�m�1� 2
m q��m�2�=2

dq

�A5�
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