
- 1 - 

 

Least-Squares Spectral Analysis 
Theory Summary 

 

 

Reference: Mtamakaya, J. D. (2012). Assessment of Atmospheric Pressure Loading on the 

International GNSS REPRO1 Solutions Periodic Signatures. Ph.D. dissertation, Department 

of Geodesy and Geomatics Engineering, Technical Report No. 282, University of New 

Brunswick, Fredericton, New Brunswick, Canada, 208 pp. 

 

 

1. LEAST-SQUARES SPECTRAL ANALYSIS 

Least Squares Spectral Analysis is a powerful software developed at the University of New 

Brunswick, Fredericton. LSSA was first developed by Vaníček (1968, 1971) as an alternative to 

the classical Fourier methods (Pagiatakis, 1998). It has been revised by Wells, Vaníček and 

Pagiatakis in 1985 in order to eliminate certain “bugs” and to be more versatile (Wells, 1985). In 

this study version LSSA v. 5.02 is used developed by Spiros Pagiatakis.  

 

LSSA has several advantages over the commonly known Fourier transform. Table 1 summarizes 

these and also the limitations of the Fourier transform based on Pagiatakis [1998, 2008].  

 

Table 1. Advantages of LSSA in comparison with the classical Fourier transform 

 LSSA 
FOURIER 

TRANSFORM 

Time series with unequally spaced 

values can be analyzed without pre-

processing 

True False 

Time series does not have to be 

continuous (allowance of data gaps) 
True False 

Time series with an associated 

covariance matrix can be analyzed 
True False 

Time series can have datum shifts and 

trends 
True False 
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No limitations for the length of the 

time series  
True  False 

Higher accuracy achieved with longer 

time series 
True False 

Statistical testing on the significance 

of spectral peaks can be performed 
True False 

 

Perhaps the most essential advantage of LSSA is the allowance of data gaps in the observed time 

series, what is common in GPS pseudorange and carrier-phase observations. The original time 

series can be directly used without interpolating or adding artificial data to fill the data gaps, 

hence not degrading the results of the spectral analysis. LSSA also permits to add bigger weights 

to statistically more significant observations and smaller weight to the other ones. This can be 

useful in geodetic applications when analyzing pseudorange and carrier-phase observations, 

assigning more weight to the more precise carrier-phase and less weight to pseudorange 

observations.  Let us discuss the LSSA and the other great properties which this software offers 

in the next section. 

 

4.1 Theory of signal and noise  

The observed time series can be considered to be composed of signal, what we are interested to 

study, and noise which obscure the original signal. The noise can be random or periodic. 

Idealizing, we can think about the random noise as a white noise what is uncorrelated, has a 

constant spectral density, and it may or may not have a Gaussian distribution. Usually in practice 

we deal with a non-white random noise. Systematic noise is a noise what can be described by a 

certain functional form. It can be periodic (colored) or non-periodic. Non-periodic noise can be 

datum-shifts (offsets) and trends (linear, exponential, quadratic, etc.), and it causes the statistical 

properties of the series to be a function of time (Pagiatakis, 1998).  
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4.2 Mathematics of the least-squares spectrum 

Let us consider a discrete time series f(ti) in Hilbert space, (H) where ti is a vector of observation 

times and m,,,i 21 , m is the number of data points in the time series. We assume that a fully 

populated covariance matrix Cf is available for the time series. One of the main objectives of 

LSSA is to detect unknown periodic signals in f, especially when f contains systematic variations 

of unknown magnitude whose functional forms are known. After Vaníček (1971) we can call 

these known constituents systematic noise since their presence is nuisance from the point of view 

of detecting the unknown periodic signal (Vaníček, 1981).    

 

The idea is to approximate f with another function g using the least squares principle, so that the 

differences between f and g (the vector of residuals r) are minimum in the least-squares sense. 

Thus the time series f can be modeled by g as follows (Pagiatakis, 1998): 

 

xΦg  , (9) 

 

where x is the vector of unknowns and is the design matrix (matrix of normal equations) which 

consist of several column vectors: 12, …,m] called based functions, each of which is 

a know function of the same dimension as f (Wells, 1985). Matrix specifies the functional form 

of both signal and (systematic) noise. Using the standard least-squares notation we can write for 

the residual series (Pagiatakis, 1998).   
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In equation (10), ĝ is the orthogonal projection of f onto the subspace S (from Hilbert space) 

generated by the column vector of (see Figure 1 for illustration). It follows from the projection 

theorem that gr ˆˆ  . This means that f has been decomposed into a signal ĝ  and noise r̂ .  

 

Figure 1. Orthogonal projection of vectors ĝ and r̂  

 

In Figure 1 the red arrow represents the orthogonal projection of ĝ  into f. Then the inner product 

(dot product) of these two vectors is: 

 

cosˆˆ gfgf,   (11) 

 

and the orthogonal projection is then:  
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f

gf,
 . (12) 
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From equation (11) one can conclude that if the angle between ĝ and f is 0 degrees, then ĝ  fully 

represents f. Thus the ratio of the length of the orthogonal projection multiplied by 100% and the 

length of f tells how much the least-squares approximation of g represents f in terms of percent. 

The ratio is smaller than unity and can be expressed as follows: 
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where s is the least-squares spectrum in percentage ( 10  s ). The larger the s (closer to 1) the 

better is the least-squares fit to the data (Pagiatakis, 2008).  

 

In spectral analysis it is usual to search for periodic signals which can be expressed in terms of 

sine and cosine base functions. Specifically for LSSA we know f(t) and we use:  

 

 itjsin,itjcos Φ  (14) 

 

where j  is a spectral frequency  for which spectral values 















j

s   are desired. The vector of 

spectral frequencies can be written as:  j  where k,,,j 21  (Wells, 1985). The 

orthogonal projection of f onto S will be different for each j  and each j  is tried 

independently from the rest (Pagiatakis, 1998). For each j  for which we want   
js   we 

compute: 
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x̂  is determined from (Wells, 1985): 

 

  fCΦΦCΦx
1

f

T11

f

T ˆ . (16) 

 

Then the LSS is defined by  
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When calculating the LSS there is a simultaneous least-squares solution for the parameters of the 

process. This is a rigorous approach to the hidden periodicities: the parameters of the assumed 

linear system driven by noise are determined simultaneously with the amplitudes and phases of 

the periodic components, and with other parameters that describe systematic noise (Pagiatakis, 

1998).  

 

For example the approximating function can be a sine wave with known frequency: 

 

)cos(a j   2g  (18) 

 

where a is the amplitude and is the phase for a specific frequency j  which gives the best 

approximation (least-squares fit) to f. For different frequencies the LSS s varies (s is a function of 
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frequency) and so it becomes the representation of how well the sine wave fits the data f. The 

time series is best approximated when s equals to 1 for a certain predefined frequency j   

(Pagiatakis, 2008).  

 

4.3 Least-squares spectrum evaluation  

Table 1 also lists that LSSA allows performing statistical testing on the significance of spectral 

peaks. This is very important since we need to know which peak is statistically significant and 

which one can be suppressed. Vaníček [1971] derived the expected (mean) spectral value of 

white noise in the LSS for series consisting of statistically independent random values. He 

pointed out the possibility of deriving magnitudes (threshold values) above which spectral peaks 

are statistically significant (Pagiatakis, 1998). 

 

Postulating that series f has been derived from a population of random variables following the 

multidimensional normal distribution n(0, Cf). This null hypothesis (H0) implies that if: 

 

  ,,vsn FvQQ 22  (19) 

 

then the series will contain statistically insignificant noise. In equation (18) Q is a random 

variable with subscripts n and s referring to signal and noise, respectively; v is the degree of 

freedom and F stands for F-distribution and  is the significance level. The alternative 

hypothesis H1 is:  

 

  ,,vsn FvQQ 22 . (20) 
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It makes sense to use only the lower tail end of F, since large values of the ratio sn QQ (upper 

tail of F) imply the signal is significantly larger than the noise and hence can not be detected. 

Then the statistically significant spectral peaks will satisfy the following inequality (Pagiatakis, 

1998):  
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Once a statistically significant signal is detected it should be related to the physics of the 

observed system. Once it is understood the detected signal becomes systematic noise and then 

further hidden periodicities can be searched (Vaníček, 1981).   

 

4.4 Input and output parameters for LSSA 

The input parameters to compute the spectrum consist of the time series, the limits and density of 

the spectral band to be produced and the known constituents’ base functions (representing the 

systematic noise functional forms) (Vaníček, 1985). The input file, which contains the user-

defined parameters, is called lssa.in. There are eight blocks of parameters that need to be 

specified for the analysis of the series before each run. Let us shortly describe the parameters to 

be defined in lssa.in (Vaníček, 1985).   

 

First, the user must enter the name of the file to be analyzed, for example data_ser.dat, the 

number of data points, the units of time of the series and the units of the values of the series. The 
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first line in the data_ser.dat is a text line containing the name of the project, followed by three 

columns. The first column stands for the time of the series (years, days, seconds, etc.), the second 

column is the time series itself and the third column represents the standard deviation of the time 

series if known. If the standard deviations are unknown the user can replace them with values 

he/she may think are reasonable. The units of the standard deviations are the same as the units of 

the time series. 

Next, the user can identify the known constituents in the time series according to his/her best 

knowledge. There are four optional types of known constituents build in the algorithm. The 

software makes it possible for the user to specify his/her own functions as well. The known 

constituents build in LSSA are the follows: 

• Random constant (Datum Shifts).  

The user can specify the number of datum biases in the time series and the epochs when the shifts 

are suspected. The minimum number of shifts is one which represents the beginning of the time 

series. 

• Linear trend. 

The user can decide whether to calculate linear trend or not.  

• Periodic signals.  

Certain periodic constituents can be forced (fitted) to the series. The result is a sine wave given 

by its amplitude and phase, along with a statistical test on its significance. The user can enter the 

number of sine waves to be forced, the periods and names of each sine wave. 

• User specified 

If the user believes that some nonlinear trend (exponential, polynomial) exists he/she can specify 

it here. In general, a polynomial fit of maximum order 5 can be achieved.  
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The other parameters to be defined in lssa.in are: 

• Processes 

Certain random processes can be tried on the series. If an autoregressive (AR) process up to the 

order 5 is suspected then the user should switch to 1. In this case the coefficient of the AR 

process along with a statistical test is calculated. The latter indicates on output whether it is 

significant or not. In addition a statistical test is performed on the calculated coefficient to specify 

whether it is different from unity (random walk). If the coefficient is statistically equal to unity 

then it is a random walk.   

• Characteristics of series 

This block gives information about the covariance of the series.  Only a diagonal covariance 

matrix is accepted. If the a-priori variance factor of the input series is known the user should 

switch to 1. If so, the values of the series are considered equally weighted and the weight is set to 

unity. Otherwise the weight of each value of the series is calculated as the inverse of the variance. 

As mentioned above the standard deviations of the time series are given in the 3rd column of the 

input series. 

• Spectrum characteristics 

The user can define the output spectrum, as well as the number of spectral values in each band. 

The user should keep in mind that the spectrum is band limited between the fundamental 

frequency and the Nyquist frequency.  

• Statistics 

The user can define the critical level for statistical testing. Usually values =0.05 or=0.01 

are used for critical levels to detect significant peaks in spectrum.  
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After executing LSSA using the input file lssa.in with properly defined parameters, several 

output files are created. These are: lssa.out, residual.dat, spectrum.dat and hist.dat.  

 

Lssa.out contains the summary of results together with the statistical tests. The spectrum is 

described in three different forms: percentage variance (least-squares spectrum), power spectral 

density in dB (what is identical with the Fourier transform when the series is equally spaced), and 

power spectral density in unit2/frequency (where unit is the unit of the time series e.g. cycles/day 

etc.).  

 

The resulting spectrum is given in six columns which list the period of spectrum in units of the 

time series, frequency in cycles/unit time, fidelity (in units of time). If a significant peak is 

present in the spectrum it shows up in this column. The 4th column stands for the least-squares 

spectrum in percentage variance, next follows with the power spectral density in dB and last, the 

power spectral density in unit2/frequency is given. The spectrum is also printed with asterisks for 

quick identification of peaks 

 

Residual.dat lists the input and residual series. There are four columns which contain the time, 

the input time series, normalized residual series (after removing trends, periods, processes, etc.) 

and the standard deviation of the residuals. 
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Spectrum.dat contains the aforementioned 6 columns of the output spectrum as described in 

lssa.out. This file can be easily exported into Matlab or other mathematical package  used for 

plotting or any other further analysis.  

 

Hist.dat contains the histogram of the normalized residual series. 

 

 


