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ABSTRACT

To realize the full potential of increasingly more accurate measurements, scientists

are now faced with the task of modelling ever smaller effects on their observations to

improve their results.  The problem, however, is that there is often little understanding of

the cause and effect relation between these so-called systematic effects and the

measurements.  Spectra and autocorrelation functions can be used to help diagnose and

improve the modelling of these systematic effects in measurements.  However, standard

techniques for computing spectra and autocorrelation functions require the data to be evenly

spaced, which is often not satisfied in practice.

The approach taken here is to develop a general technique for determining

autocorrelation functions for data which are unevenly spaced.  This is an indirect method

whereby the systematic effects, represented by the residuals from an incomplete a priori

deterministic model, are transformed into a power spectrum and then into an autocorrelation

function.  To accommodate unevenly spaced data, a general least squares transform and its

inverse are developed.  The inverse transform is used to obtain the autocorrelation function

from the least squares spectrum originally developed by Vaníc˘ek [1971].  This formulation

can accommodate unequally spaced data, random observation errors, arbitrary frequency

selection, arbitrarily weighted and correlated observations, as well as the presence of any a

priori deterministic model.  The conventional Fourier transform and spectrum are shown to

be just special cases of this more general least squares formulation.  It is also shown how

the individual spectral components in the least squares spectrum and inverse transform can

be estimated either independently of or simultaneously with each other.

The advantages and limitations of the least squares transforms and spectra are

illustrated through tests with simulated data.  The technique of using autocorrelation

functions to model systematic effects is also illustrated with two real applications; one
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based on the precise measurement of the extension of a baseline spanning the San Andreas

fault in California, and another based on the measurement of ellipsoidal heights using a

GPS receiver under the influence of the effects of Selective Availability.  These tests show

that the use of fully populated weight matrices generally results in an increase in the value

of the standard deviations of the estimated model parameters, thereby providing more

realistic estimates of the uncertainties.  On the other hand, the effect of correlations among

the observations on the least squares estimates of model parameters was found not to be

very significant.
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Chapter 1
Introduction

Recent advances in technology have produced extremely precise and accurate

measuring systems that are affected by even the smallest effects that were once much too

small to be noticed.  In the past these effects were considered to be random noise to be

averaged out.  To realize the full potential of their measurements, scientists are now faced

with the task of modelling these small effects in order to improve their predictions.  The

problem, however, is that there is often little understanding of the cause and effect relation

between these so-called systematic effects and the measured observables.

There are basically two approaches to describing or modelling the measured

observations.  Deterministic models are used to explicitly describe the behaviour of the

observations in terms of a mathematical model of the physical process.  These deterministic

models consist of constants and parameters to be estimated.  Often, however, there is little

understanding of the physical processes underlying the behaviour of the measurements.  In

the other approach, stochastic models treat the measurements, or what remains after

removing a deterministic part, as unpredictable random (i.e., stochastic) quantities.

Stochastic models describe the dependencies between the data and the incomplete

deterministic model in terms of mathematical correlations.  These correlations can be

represented by filters, polynomials, correlation functions and spectral density functions.

Because deterministic modelling is usually the preferred approach, correlations are often

used to help diagnose and improve the deterministic model.  In cases where this is not

possible, the correlations, if carefully constructed, can be used to help describe the residual

systematic effects within the deterministic model.
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The least squares estimation technique is primarily used for fitting deterministic

models to the measurements.  However, it is also able to accommodate stochastic models

through the use of a fully populated covariance matrix for the observations.  There are

different methods of determining the variances and covariances that form the observation

covariance matrix.  The most direct method involves determining an autocovariance

function that describes the behaviour of various systematic effects.  The problem with this,

and the main motivation for this work, is that traditional techniques for computing

autocorrelation functions require the data to be evenly spaced.  This may not be the case,

especially when looking for correlations with some (physically meaningful) parameters

given as numerical functions.  In practice such functions are often known only for values

of the argument that are unevenly spaced.

The usual way of handling unevenly spaced data is to interpolate or approximate the

original series to get an evenly spaced one.  Because this approach tends to model the lower

frequency content in the data, the low frequency behaviour of the measurements must be

known.  Moreover, the high frequency components can be lost by the smoothing effect of

the interpolation or approximation.

The approach taken here is to develop a more general technique for determining

autocorrelation functions for data which are unevenly spaced with respect to quantities

describing the systematic effects.  As will be seen later, there are two basic approaches to

estimating autocorrelation functions.  The most direct is to compute the autocorrelation

function directly from the data.  In this case, however, there is no satisfactory method of

handling unevenly spaced points.  There are methods based on averaging over larger,

evenly spaced intervals or bins, but using these results in a loss of resolution.

The alternative approach is to estimate the autocorrelation function indirectly by first

representing the systematic effects in terms of a power spectrum and then transforming this

into an autocorrelation function.  This is the approach taken here.  Again the problem is that

most techniques for computing the power spectrum require evenly spaced data as do those
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for transforming the power spectrum to the autocorrelation function.  The aim here is to

find a more general technique that does not require evenly spaced data.  To this end, a

general least squares transform is developed.

Other methods are also available for determining the variances and covariances of

the observations.  The most popular of these are the methods of analysis of variance and

variance-covariance component estimation.  The “analysis of variance” (ANOVA) method

(also called factor analysis in statistics) can be found in most standard texts on statistics.

Geodetic applications of the technique are described in detail by Kelly [1991] and in a

series of articles by Wassef [1959; 1974; 1976].  Essentially the aim of the method is to

divide the measurements into separate groups (factors which contribute to the overall

variation in the data) and to estimate the variance components for each.  The difficulty in

applying the method is defining a scheme of dividing the observations into separate groups

which characterize some behaviour of the systematic effect being modelled.  Often, the

factors describing the systematic effect cannot be so discretely defined, rather they are often

of a continuous nature that precludes lumping them together into separate and distinct

groups.

Variance-covariance component estimation, on the other hand, is based on

modelling deterministically the residual variation in the measurements.  The variances and

covariances are expressed in terms of linear models relating these components to various

factors describing the systematic effect.  The coefficients (variance and covariance

components) in the variance-covariance model are estimated together with the parameters in

a least squares solution.  The technique is described in detail in Rao and Kleffe [1988] and

has been applied to many geodetic problems (see, e.g., Grafarend et al. [1980], Grafarend

[1984], Chen et al. [1990]).  It can be shown that the analysis of variance method is just a

special case of this more general approach [Chrzanowski et al., 1994]  The problem with

applying the method is that the estimation of the variance-covariance model coefficients

usually needs to be iterated which can result in biased estimates of the variances and
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covariances [Rao and Kleffe, 1988].  This can lead to negative variances, which is

unacceptable.

The approach taken here is to model any residual systematic effects remaining after

removing a deterministic model, using autocorrelation functions derived from a power

spectral density function of the residuals.  This idea was first proposed by Vaníc˘ek and

Craymer [1983a; 1983b] and further developed by Craymer [1984].  To accommodate

unevenly spaced data, the least squares spectrum, developed by Vaníc˘ek [1969a], was used

and converted to an autocorrelation function using the inverse Fourier transform.

However, the inverse Fourier transform is not completely compatible with the more general

least squares spectrum.  Consequently, a more general least squares transform and its

inverse are developed here which are completely compatible with the least squares spectrum

and can provide correct autocorrelation functions for data that are unevenly spaced.

Although applied only to geodetic problems here, this technique should have wide

application in many areas of science where one needs to model or analyze measured data.

Before describing the technique, a review of the basic concepts of stochastic

processes and the conventional Fourier transform and spectrum are given.  This is followed

by the development of a new “least squares” transform and its inverse, and the

reformulation of the least squares spectrum, originally developed by Vaníc˘ek [1969a;

1971], in terms of this new transform.  It is then shown how an autocorrelation function

can be derived from the least squares spectrum using the inverse least squares transform,

and how this can be used in a procedure for stochastically modelling residual systematic

effects.  These developments are followed by tests with simulated data to examine

numerically some of the limitations of the technique.  It is also applied to a couple of

examples in geodesy; the modelling of residual systematic effects in electronic distance

measurement (EDM) data and point positioning data from the Global Positioning System

(GPS).  Finally, conclusions and recommendations for further investigations are given.
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Throughout the sequel the following notation is used:

variables/observables italic

vectors lower case, boldface letters

matrices/operators upper case, boldface letters

functions upper or lower case letters, no boldface
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Chapter 2
Basic Concepts of Stochastic Processes

2.1  Types of Processes

A process can be considered to be any kind of physical phenomenon that varies in

some way.  We examine such processes by taking measurements of them; i.e., by

describing their physical behaviour in terms of numerical quantities that can then be

analysed mathematically.  These processes are most commonly represented as series of

measurements (observations), often taken with respect to time (time series) or space (spatial

processes).  When regarded more generally as series with respect to any other argument,

these processes are referred to here as simply data series.

Processes φ(t) are usually thought of as one-dimensional; that is, varying with

respect to a one dimensional argument (t) such as time.  However, a process may also be

multidimensional; i.e., a function φ(t) of a vector of arguments (t) — e.g., processes φ(t)

which are functions of three-dimensional position (x) in space or four-dimensional position

in space-time.  One may also encounter multiple processes φφ(t) of multiple arguments (t).

Processes can be classified as either continuous or discrete.  Examples of

continuous processes are the crustal motions of land masses due to tectonic deformations or

the motions of satellites in orbit about the Earth.  On the other hand, the accumulated errors

from point to point in a geodetic network would be classified as a discrete process (in

space).  Generally, one is only able to obtain discrete samples of continuous processes,

primarily due to the nature of data acquisition systems.
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2.2  Deterministic and Random Processes

Processes can also be classified as deterministic and random.  What is random?

“Everything and nothing” according to Kac [1983, pp. 405-406].  There is no one test for

determining whether a process is either random or deterministic.  The definitions most

often used are only subjective or heuristic and a matter of philosophical debate.  One person

may consider a process to be random noise to be filtered out while another may consider

the same random process to be a deterministic signal to be modelled.

The most straightforward definition is that deterministic implies predictability while

random implies unpredictability.  Thus what is considered deterministic and what is

considered random depends on what one wishes to model .  The deterministic part is what

is being predicted or estimated exactly while the random or stochastic part is that which one

can only predict or estimate with some degree of uncertainty.  In the last century,

instruments had rather limited precision and much of the variability in a process was

considered to be random or stochastic, so that one could only predict with a great deal of

uncertainty.  More recently, however, new measuring techniques have become more

precise so that it is now possible to attempt to model ever smaller variations in the data in an

effort to improve the prediction power of the deterministic model.

2.3  Stationarity and Egodicity

Different realizations of a random process will, in general, not be identical.  A

single realization of a process is called a sample record.  The collection or ensemble of all

sample records is called a random or stochastic process (see Figure 2.1).  In a random

process, all sample records are different while in a deterministic process all samples are

identical.
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Figure 2.1:  A single random process consisting of an ensemble of 4 sample records (A,

B, C, D).  There are 100 values of the argument ranging from 1 to 100.  Ensemble or

sample averages are taken over the four different sample records for each value (e.g., t or

t+τ) of the argument; i.e., there are 100 sample averages.  Argument averages are taken

over the arguments for each sample record; i.e., there are 4 argument averages.
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Random or stochastic processes can be classified as being either stationary or non-

stationary.  A process is stationary if the statistical properties of the process, defined over

the ensemble, are independent of the argument(s) (usually time or space).  That is, the

statistical moments over all realizations (e.g., ensemble or sample averages) are the same

for all values of the argument.  A non-stationary process is one for which this property is

not satisfied.  Such processes require special techniques to model their behaviour (see,

e.g., Bendat and Piersol [1971] and Priestley [1981]).

In practice, different degrees of stationarity exist.  If the complete statistical

description of the process (i.e., all possible statistical moments) is independent of the

argument, the process is said to be completely stationary.  If only the first few moments are

independent of the argument, the process is considered to be weakly stationary.  Processes

with a Gaussian probability distribution are completely described by only the first two

moments.  In this case, stationarity in only the first two moments infers complete

stationarity.

Stationarity can be further classified on the basis of ergodicity.  A process is

ergodic if the statistical properties taken over the argument (e.g., time averages) are

identical to the statistical properties taken over different realizations (e.g., ensemble or

sample averages).  The assumption of ergodicity allows for a considerable reduction in the

number of observations and computations required to determine the statistical properties of

a random process.  For the sake of simplicity, convenience and, most importantly, costs,

most random processes are assumed to be ergodic in practice, even though there may be

evidence to the contrary.

When dealing with multidimensional (i.e., multi-argument) spatial processes φ(x)

whose arguments (x) define location and orientation in space, stationarity is often

considered in terms of homogeneity and isotropy.  A process is homogeneous if it is

invariant with respect to its location in space and isotropic if it is invariant with respect to its

orientation [Grafarend, 1976].
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Throughout this work all processes are assumed to be stationary and ergodic.  Any

nonstationarity and nonergodicity is assumed to be explicitly modelled deterministically and

is assumed to disappear when the model is selected properly.

2.4  Statistical Moments

The properties of a random processes can be described by the statistical moments of

their probability density functions.  For a single continuous random process (or variable)

φ(t), at a particular argument t (hereafter called time for convenience), the kth-order moment

is given by

E[ ]φ(t)k   = ∫
–∞

∞

φ(t)k P(φ(t)) dφ ,     ∀ t ∈ (–∞,∞), (2.1)

where E[•] is the mathematical expectation operator and P(φ(t)) is the probability density

function of the random variable φ at time t.  The integration is performed over all sample

records at time t.  This implies that φ(t)k ∈ (–∞,∞) must be integrable.

Generally, only the first two moments are useful in practice.  The first moment or

mean value is the simplest and most common measure of a random process.  It provides a

measure of the central tendency in the data series.  For random processes with discrete

sample records φi(t) , i=1,...,n, the mean µ(t) at argument t is defined by

µ(t)  =  E[ ]φ(t)   =  lim
n→∞  

1
n ∑

i=1

n
 φi(t) ,     ∀ t ∈ (–∞,∞), (2.2)

where n is the total number of sample records (infinite in the limit).
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The second-order moment is a measure of the variation in the random process and

is defined by

E[ ]φ(t)2   =  lim
n→∞  

1
n ∑

i=1

n
 φi(t)2 ,     ∀ t ∈ (–∞,∞). (2.3)

The second-order central moment is a measure of the variation about the mean and is also

called the variance σ(t)2.  The discrete form of the variance can be written as

σ(t)2  =  E[ ]( )φ(t)–µ(t) 2   =  lim
n→∞  

1
n ∑

i=1

n
 ( )φi(t)–µ(t) 2 ,     ∀ t ∈ (–∞,∞). (2.4)

2.5  Covariance and Correlation Functions

Covariance and correlation functions are generic terms for the more general second-

order moments which provide a measure of the linear dependence between observations at

different values of the argument t.  Autocovariance and autocorrelation functions represent

the linear dependence within a single random process.  Cross-covariance and cross-

correlation functions represent the linear dependence between a pair of different random

processes.

The autocovariance function C(t,t') is defined by

C(t,t')  =  E[ ]( )φ(t)–µ(t) ( )φ(t')–µ(t')   =  lim
n→∞  

1
n   ∑

i=1

n
 ( )φi(t)–µ(t) ( )φi(t')–µ(t')  ,

∀ t,t' ∈ (–∞,∞). (2.5)
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When the times are the same (i.e., t=t' ), eqn. (2.5) reduces to the variance σ(t)2.  The

cross-covariance function Cφγ between two random processes φ(t) and γ(t) is defined

similarly as

Cφγ(t,t')  =  E[ ]( )φ(t)–µφ(t) ( )γ(t')–µγ(t')   =  lim
n→∞  

1
n   ∑

i=1

n
 ( )φi(t)–µφ(t) ( )γi(t')–µγ(t')  ,

∀ t,t' ∈ (–∞,∞). (2.6)

The autocorrelation function R(t,t') is defined as the normalized autocovariance

function; i.e.,

R(t,t')  =  
C(t,t')

√C(t,t) C(t',t')
  =  

C(t,t')

σ(t) σ(t')
 ,     ∀ t,t' ∈ (–∞,∞). (2.7)

Similarly, the cross-correlation function Rφγ(t,t') is the normalized autocorrelation

function:

Rφγ(t,t')  =  
Cφγ(t,t')

√Cφγ(t,t) Cφγ(t',t')
  =  

Cφγ(t,t')

σφγ(t) σφγ(t')
 ,     ∀ t,t' ∈ (–∞,∞). (2.8)

The autocorrelation function is limited to the range

–1  ≤  R(t,t')  ≤  1 ,     ∀ t,t' ∈ (–∞,∞) (2.9)

for all t and t'.  When the times t and t' are the same, the autocorrelation function is equal to

one.  The same holds for the cross-correlation function.
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If the random process is stationary, the moments are independent of the value of the

argument.  Thus, in the above definitions, the expressions are dependent only on the time

difference or lag, τ=t'–t.  The moments then reduce to the follow forms:

µ  =  E[ ]φ(t)  ,     ∀ t ∈ (–∞,∞), (2.10)

C(τ)  =  E[ ]( )φ(t)–µ  ( )φ(t+τ)–µ  ,     ∀ t ∈ (–∞,∞), (2.11)

R(τ)  =  
C(τ) 
C(0)  ,     ∀ t ∈ (–∞,∞). (2.12)

Similar expressions to eqns. (2.11) and (2.12) can be written for the cross-covariance and

cross-correlation functions.

The following two properties of these functions are consequences of the

assumption of stationarity:

1. The auto/cross-covariance and auto/cross-correlation functions are even functions

of τ; i.e.,

C(τ)  =  C(–τ) , (2.13)

R(τ)  =  R(–τ) . (2.14)

2. At lag τ=0 the autocovariance function is positive and the autocorrelation function is

equal to one; i.e.,

C(0)  >  0 , (2.15)
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R(0)  =  1 . (2.16)

Ergodicity is probably the most important and often used assumption in practical

data analysis applications, even when the process is known to be non-ergodic or even non-

stationary.  This is done to simplify the data acquisition and handling procedures.

Stochastic processes are ergodic if their sample moments (e.g., mean, autocovariance, etc.)

can be determined from averaging over the argument (e.g., time) instead of averaging over

the sample records (see Figure 2.1).  For the mean and autocovariance function,

µ  =  E[ ]φ(t)   =  ∫
–∞

∞

 φ(t) P(φ) dt  , (2.17)

C(τ)  =  E[ ]( )φ(t)–µ  ( )φ(t+τ)–µ    =  ∫
–∞

∞

 ( )φ(t)–µ  ( )φ(t+τ)–µ  P(φ ) dt  . (2.18)

The discrete forms of these expressions (for discrete random processes) are given by:

φ–  =  
1
n ∑

i=1

 n
φ(ti)  , (2.19)

C(τk)  =  
1

n–k ∑
i=1

n–k

( )φ(ti)–µ ( )φ(ti+τk)–µ  , (2.20)

where lag τk = k ∆t and ∆t is the sampling interval.  This expression gives an unbiased

estimate of the autocovariance function.  Although unbiasedness is desirable, this function

is not positive definite.  Constructing covariance matrices from this leads to singular

matrices.  It also exhibits so-called “wild” behaviour at large lags.  For these reasons, the

biased estimate is recommended by Bendat and Piersol [1971, pp. 312-314] and Priestley
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[1981, pp. 323-324], where the denominator n–k in eqn. (2.20) is replaced by the constant

n.  This results in a function that tapers off as the lag increases.  An example of this is

given in the numerical simulations in Chapter 7.

Similar expressions can also be written for the cross-covariance functions.  Note

that the integrations and summations are performed over the argument t rather than over the

sample records; i.e., under the assumption of ergodicity the moments can be computed

from a single sample.

2.6  Decomposition of the Observable

In the real world, processes cannot be modelled as purely deterministic or

stochastic.  Instead, one is faced with a mixture of both.  Clearly, there are many factors

which prevent us to model in a deterministic way.  Most are due to either measurement

errors or systems that are simply too complex to be modelled entirely deterministically.

According to Priestley [1981, p. 14] “almost all quantitative phenomena occurring in

science should be treated as random processes as opposed to deterministic functions.”

The expected value of a random process may be computed from some deterministic

model describing the expected behaviour of the series.  However, this model will probably

not describe the series exactly as mentioned above.  A stochastic model may then be used to

account for the resulting lack of fit.  It is therefore convenient to decompose the observable

φ(t) into a deterministic or trend component φ̂(t) and a random or stochastic component e(t);

i.e.,

φ(t)  =  φ̂(t) + e(t) ,     ∀ t ∈ (–∞,∞). (2.21)

The random component e(t) may also be decomposed into two components:
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e(t)  =  s(t) + ε(t) ,     ∀ t ∈ (–∞,∞). (2.22)

where s(t) is a statistically dependent (correlated) component and ε(t) is a statistically

independent (uncorrelated) component.  The observable may then be represented in the

form

φ(t)  =  φ̂i + s(t) + ε(t) ,     ∀ t ∈ (–∞,∞). (2.23)

The statistically dependent component is often due to effects neglected or incompletely

accounted for in the deterministic model defined by φ̂.  Both random components are

assumed to have a zero mean.  This is enforced when the trend component is estimated by

least squares.  However, due to the statistical dependence, there is a correlation among the

s(t) components.  This statistically dependent component can be thought of as the residual

deterministic part remaining after removing the postulated deterministic model.  Thus, this

component is often referred to as a systematic error or systematic effect.
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Chapter 3
The Fourier Transform and Spectrum

3.1  Fourier Series and Integrals

It is well known in mathematics that any continuous, periodic function can be

represented by an infinite series of trigonometric functions, called a Fourier series.  If φ(t)

is a function of period T, it can then be expressed in the form

φ(t)  =  
1
2a0 + ∑

i=0

∞
 ( )ai  cos 2πfi t + bi  sin 2πfi t  , (3.1)

where ai and bi are the Fourier coefficients corresponding to frequency fi.  The frequency fi

can also be expressed in terms of the natural or fundamental frequency fo as fi=if o, where

fo=1/T.  Note that if angular frequencies (ω) are to be used, ωi (in radians per unit of t)

should be substituted for 2πfi.

Using the fact that the cosine and sine functions form an orthogonal basis over the

interval (–T/2, T/2), the Fourier coefficients for all i = 0,...,∞ are given by [Priestley,

1981, p. 194]

ai  =  
2
T ∫

–T/2

T/2

 φ(t) cos2πfit dt , (3.2)

bi  =  
2
T ∫

–T/2

T/2

 φ(t) sin2πfit dt . (3.3)
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If φ(t) is an even function, i.e., φ(t) = φ(–t), the bi coefficients are zero.  When φ(t) is an

odd function, i.e., φ(t) = –φ(–t), the ai coefficients are zero.  Note that writing the constant

term in eqn. (3.1) as 1
2
a0 rather than as a0 makes the expressions (eqns. (3.2) and (3.3)) for

the coefficients valid even for i=0.

For non-periodic functions, there is no such Fourier series representation.

However, according to Priestley [1981, pp.198-200], a new periodic function may be

defined which is the same as the non-periodic one over a finite interval, say, (–T/2, T/2)

but repeats itself and is thus periodic outside this interval.  This new function will have a

period T and can now be represented as a Fourier series.  By letting T→∞, the discrete set

of frequencies in the Fourier series becomes a continuous set of frequencies; i.e., an

integral.  The non-periodic function can then be represented by the so-called Fourier

integral which has the form [Priestley, 1981, pp. 198-199]

φ(t)  =  ∫
–∞

∞

 (a(f) cos 2πft + b(f) sin 2πft ) df ,     ∀  t , (3.4)

where the Fourier coefficients over the continuous range of frequencies are defined by

a(f)  =  
2
T ∫

–∞

∞

 φ(t) cos 2πft dt  ,     ∀  f , (3.5)

b(f)  =  
2
T ∫

–∞

∞

 φ(t) sin 2πft dt  ,     ∀  f . (3.6)

This representation of a non-periodic function in terms of a continuous set of frequencies

holds only when the function is absolutely integrable over the infinite interval (–∞, ∞)

[Priestley, 1981, p. 200]; i.e.,
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∫
–∞

∞

 |φ(t)| dt   <  ∞ ,     ∀  t . (3.7)

This happens when φ(t) decays to zero as t goes to infinity.

So far only periodic and non-periodic deterministic functions have been considered.

However, in practice one usually deals with random or stochastic functions (processes)

where the application of the above representations is not so apparent.  Clearly, stochastic

functions may not necessarily be periodic and thus they cannot be represented by Fourier

series.  Furthermore, stochastic functions are not absolutely integrable since, by the

definition of stationarity, they do not decay to zero at infinity.  It would then appear that we

cannot represent them as Fourier integrals either.  Nevertheless, according to Priestley

[1981, p. 207] it is possible to circumvent this problem by simply truncating the stochastic

process at, say, –T/2 and T/2 as done for non-periodic functions.  Outside this interval the

function is defined to be zero, thereby satisfying the absolutely integrable condition.  As

long as the stochastic function is continuous, it can be represented by the Fourier integral as

in eqn. (3.4) but with coefficients defined by finite Fourier integrals using integration limits

(T/2,–T/2) instead of (–∞,∞); i.e.[Priestley, 1981, p. 207],

a(f)  =  
2
T ∫

–T/2

T/2

 φ(t) cos 2πft dt  ,     ∀  f , (3.8)

b(f)  =  
2
T ∫

–T/2

T/2

 φ(t) sin 2πft dt  ,     ∀  f . (3.9)

Unfortunately, we cannot take the limit T→∞ as before since, by the property of

stationarity, the above integrals would not be finite.
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Although all of the expressions for the Fourier series and integrals were given in

terms of trigonometric functions, it is more common to use complex notation for a more

compact representation of the series and integrals.  Assigning the cosine term to the real

component and the sine term to the imaginary component, each trigonometric term can be

replaced by a complex exponential function using Euler's formula [Bronshtein and

Semendyayev, 1985, p. 474]

cos 2πft + j sin 2πft   =  ej2πft , (3.10)

where j=√–1 is the imaginary unit.

Using this notation, the Fourier series in eqn. (3.1) can be re-written as [Priestley,

1981, p. 199]

φ(t)  =  ∑
k=–∞

∞
 Ak ej2πfkt  , (3.11)

where

Ak  =  

 î



 

 
1
2(a |k |– jb |k | ) ,      k  >  1  

 
1
2a0 ,      k  =  0  

 
1
2(ak+jb k ) ,      k  ≤  – 1

 (3.12)

Substituting for ak and bk, using eqns. (3.2), (3.3) and (3.10),

Ak   =  
1
T   ∫

–T/2

T/2

 φ(t) e–j2πfkt dt  . (3.13)
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Putting this in the Fourier series in the continuous form of eqn. (3.11) and letting T→∞

gives the so-called Fourier integral over a continuous range of observations; i.e.,

φ(t)  =  ∫
–∞

∞

 F(f) ej2πft df , (3.1614

where

F(f)   =  

 î



 

 ∫
–∞

∞

 φ(t) e–j2πft dt   for non-periodic functions 

 ∫
–T/2

T/2

 φ(t) e–j2πft dt   for stochastic functions 

 . (3.15)

3.2  Fourier Transform

Given the Fourier integral representation of a non-periodic or stochastic function,

the transformation from φ(t) to F(f) in eqn. (3.15) is called the (direct) Fourier transform,

or the finite Fourier transform if dealing with stochastic functions.  The transformation

from F(f) to φ(t) in eqn. (3.14) is called the inverse Fourier transform.  φ(t) and F(f) are

referred to as a Fourier transform pair, denoted by φ(t) ⇔ F(f).  Note that the complex

conjugate form is used in the direct transform and not in the inverse transform.  In some

texts (e.g., Press et al. [1986]), the conjugate form is used in the inverse transform and not

in the direct transform.

In practice one rarely deals with continuous stochastic processes of infinite length

but rather with actual discrete processes or discretely sampled data from continuous

processes of finite length.  Although such discrete samples are often evenly spaced in time

(or any other argument), this may not always be the case.  Nevertheless, the application of
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traditional Fourier transform techniques requires the processes to be discretely and evenly

sampled.  This is because the trigonometric functions are not orthogonal over an unevenly

spaced domain.

For a discretely and evenly sampled stochastic process or data series {φ(ti),

i=0,1,...,n–1}, the discrete Fourier transform is obtained by approximating the Fourier

integral in eqn. (3.15) with a summation; i.e.,

F(fk)   =  ∫
–∞

∞

 φ(t) e–j2πfkt dt   ≅   ∆t ∑
i=0

n–1

φ(ti) e–j2πfkti  , (3.16)

where n is the number of “observations” (samples), ∆t is the sampling interval and fk is one

of the frequencies belonging to the set of frequencies estimable from the discrete process

(see below).  Note also that the summation index extends from 0 to n–1 (instead of 1 to n)

following the usual convention.  If T=n∆t  is the length of the data series, the discrete set of

frequencies are given by

fk  =  
k
T    =  

k
n∆t   =  kfo ,   ∀  k=–

n
2 ... 

n
2 , (3.17)

where fo=1/T=1/(n∆t) is the fundamental frequency.  To make matters simpler, n is

assumed to be even (the data series is truncated to an even number of points).  This set of

integer multiples of the fundamental frequency will be simply called “Fourier” frequencies

here because they are always used in the Fourier transform and Fourier spectrum.

By convention, it is only the final summation in eqn. (3.16) (without the ∆t in

front) that is commonly referred to as the discrete Fourier transform, denoted by Fk for

frequency fk.  The discrete Fourier transform (DFT) is then defined by
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Fk   =  ∑
i=0

n–1

φ(ti) e–j2πfkti  ,     ∀  k . (3.18)

The inverse discrete Fourier transform is obtained similarly by approximating the integral in

eqn. (3.14) with a summation and substituting for the discrete Fourier transform. This

gives

φ(ti)   =  
1
n ∑

k=0

n–1

 Fk ej2πfkti  ,     ∀  i  . (3.19)

The discrete sampling of a stochastic process has an important consequence known

as the aliasing effect, whereby some high frequency information will be lost or, more

precisely, hidden (aliased) in the lower frequencies.  This can be seen by examining the

exponential term in eqns. (3.17) and (3.18) as a function of the discretely sampled process

φ(ti), i = –∞,...,∞, where ti = i ∆t and ∆t is the sampling interval.  Re-writing the

exponential function as

ej2πfti  =  cos 2πfti + j sin 2πfti  , (3.20)

the effect of discrete sampling on each sine and cosine term can be seen.  For example,

substituting i∆t for ti in the cosine term gives

cos 2πfti  =  cos 2πif∆t . (3.21)

The same can be written for a new frequency f+∆f;

cos 2π(f+∆f)ti  =  cos(2πif∆f + 2πi∆f∆t) . (3.22)
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These two cosine terms are equivalent only if 2πi∆f∆t is an integer multiple of π.  This

occurs when ∆t is an integer multiple of fN = 
1

2∆t , called the Nyquist or critical frequency.

Thus the cosine terms will look the same for frequencies f±
k

2∆t , f±
2k

2∆t , ...  All appear to

have frequency f.  The same holds for the sine terms.  All frequencies outside of the

Nyquist frequency range (–fN,fN) will be aliased to (i.e., moved to and superimposed on)

frequencies in this range.  If possible, ∆t should be chosen small enough to avoid aliasing.

However, this requires a knowledge of the upper frequency limit of the information

contained in the process being sampled or, at least, knowledge that only negligible

information exists beyond the Nyquist frequency and our willingness to neglect this

information.

There are some special properties of Fourier transforms that are of particular

importance.  These are summarized as follows (* indicates the complex conjugate

operator):

φ(t) is real F(–f) = F(f)*  , (3.23)

φ(t) is imaginary F(–f) = –F(f)* , (3.24)

φ(t) is even F(–f) = F(f)  (i.e., F(f) is even) , (3.25)

φ(t) is odd F(–f) = –F(f)  (i.e., F(f) is odd) . (3.26)

Note that when dealing with real functions, the series of trigonometric terms of cosines and

sines reduce to a series of only cosine terms; i.e., by eqn. (3.19) the sine terms are all zero.

In this case the Fourier transform reduces to the so-called cosine transform.

The following are some other properties of the Fourier transform (from Press et al.

[1992, p. 491]).  Recall that φ(t)⇔F(f) indicates that φ(t) and F(f) are a Fourier transform

pair.
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Time shifting φ(t–to) ⇔ F(f) ej2πfto , (3.27)

Time scaling φ(at) ⇔ 1
|a | F 


 
f

a  , (3.28)

Frequency shifting φ(t) e–j2πfot ⇔ F(f–fo) , (3.29)

Frequency scaling
1
|b| φ 


 
t

b ⇔ F(bf) . (3.30)

3.3  Fourier Spectrum

The representation of functions in terms of Fourier series has a special physical

interpretation in terms of power (cf. Priestley [1981, p. 194-195] and Press et al. [1992, p.

492]).  Consider an absolutely integrable non-periodic function f(t).  The total “power” of

φ(t) is customarily defined by

Total power  =  ∫
–∞

∞

 φ(t)2 dt  . (3.31)

Substituting the inverse Fourier transform in eqn. (3.14) for one of the φ(t) gives

∫
–∞

∞

 φ(t)2 dt   =  
 ⌡

⌠

–∞

∞

 φ(t) 
 



 



∫
–∞

∞

 F(f) ej2πft df  dt  . (3.32)

Interchanging the order of the integrals and substituting for the direct Fourier transforms

results in

∫
–∞

∞

 φ(t)2 dt =  

 ⌡


⌠

–∞

∞

 F(f)  
 




 




∫
–∞

∞

 φ(t) ej2πft dt  d f  
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=  ∫
–∞

∞
 F(f) F*(f) df (3.33)

=  ∫
–∞

∞

 |F(f)|2 df ,

where F*(f)  denotes the complex conjugate of F(f).  The total power can therefore be

expressed either in terms of the integral of the original function or its Fourier transform;

i.e.,

Total power  =  ∫
–∞

∞

 φ(t)2 dt   =  ∫
–∞

∞

 |F(f)|2 df  . (3.34)

This is known as Parseval's relation [Jenkins and Watts, 1969, p. 25; Priestley, 1981, p.

201] or Parseval's theorem [Press et al., 1992, p. 492].  Note that the total power is equal

to n times the variance σ2.

It can be seen from eqn. (3.34) that the total power is divided among a continuous

set of frequencies in the representative Fourier integral.  Each term |F(f)|2df  represents the

contribution to the total power in φ(t) produced by the components with frequencies in the

interval (f, f+df).  The so-called power spectral density s(f) for frequency f is thus defined

by

s(f)  =  |F(f)|2 . (3.35)

The plot of s(f) versus frequency f is also called the power spectrum, or simply the

spectrum.  Theoretical power spectral density functions for some special functions are

illustrated in Figure 3.1.
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Figure 3.1:  Autocorrelation functions (ACF) and power spectral density functions (SDF)

for some special functions.
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For periodic functions, the total power over the entire interval (–∞, ∞) is infinite

[Priestley, 1981, pp. 195,205].  Although it is only needed to describe the power over the

finite interval (–T/2, T/2) in order to characterize it for the entire infinite interval, it is

usually more convenient to use the total power per unit of time over the finite interval.  This

is obtained by dividing the total power by the period T; i.e.,

Total power per unit of time 
 


 
–

T
2 ,  

T
2   =  

Total power 
 


 
–

T
2 ,  

T
2 

T

=  
1
T  ∫

–T/2

T/2

 φ(t)2 dt   (3.36)

=  
1
T    ∑

k=–∞

∞

 |F(fk)|2 

=  ∑
k=–∞

∞

 s(fk)   .

The total power over (–T/2,T/2) is divided among the infinite set of discrete frequencies in

the representative Fourier series.  The contribution s(fk) to the total power per unit of time

of each “Fourier” frequency fk=
k
T   is called the spectral value for frequency fk and is

defined by

s(fk)  =  
1
T   |F(fk)|2 . (3.37)

Similarly, for stationary stochastic functions (random processes), the total power is

also infinite by the definition of stationarity (i.e., a steady state process from t = –∞ to ∞

requires infinite energy or power).  Using again the truncation approach, stochastic

processes can also be represented by finite Fourier integrals in the finite interval(–T/2, T/2).

The total power in this finite interval will then be finite.
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For both non-periodic and stochastic functions over a finite interval (–T/2, T/2), it

is generally more convenient to also use the power per unit of time.  As for periodic

functions, the power per unit time is obtained by dividing the total power over the finite

interval by the length of the interval; i.e.,

Total power per unit of time 
 


 
–

T
2 ,  

T
2  =  

Total power 
 


 
–

T
2 ,  

T
2 

T

=  
1
T  ∫

–T/2

T/2

 φ(t)2 dt   (3.38)

=  
1
T  ∫

–∞

∞

 |F(f)|2 df 

=  ∫
–∞

∞

 s(f) df  .

Here s(f) represents the power spectral density function.  For a process of finite length T it

is defined by

s(f)  =  
1
T |F(f)|2 . (3.39)

The spectrum defined above is a function of both positive and negative frequencies

and is called  a “two-sided” spectral density function.  However, one does not usually

distinguish between positive and negative frequencies.  Moreover, when φ(t) is real, the

Fourier transform is an even function; i.e., F(f)=F(–f).  It is therefore customary to express

the spectrum as a function of only positive frequencies.  Such a spectrum is called a “one-

sided” spectral density function.  Because the total power in the process must remain the

same, the spectral values for the one-sided spectrum are defined as

s(f)  =  |F(f)|2 + |F(–f)|2 ,   ∀   0 ≤ f < ∞ . (3.40)



30

 For real φ(t), F(f) = F(–f)  and

s(f)  =  2|F(f)|2 ,   ∀   0 ≤ f < ∞ . (3.41)

Hereafter, the one-side spectral density function will be used since only real φ(t) will be

considered.

It is also convenient to normalize the spectral values so that they express the

percentage of the total power or variation in the process contributed by each frequency.

The normalized spectral values s~(f) are given by

s~(f)  =  
s(f)

∑
k=0

n–1
 s(f)

 . (3.42)

A couple of important properties for power spectra are obtained from the properties

of Fourier transforms.  One of the most important is the invariance of the spectrum to time

shifting.  Given a process φ(t) shifted by to, the new Fourier transform is

F'(f)  =  ∫
–∞

∞

 φ(t+to) e–j2πf(t+to) dt

=  e–j2πfto ∫
–∞

∞

 φ(t+t o) e–j2πft dt (3.43)

=  e–j2πfto F(f) .

The spectrum s'(f) for this process is then given by

s'(f)  =  F'(f) F'*(f)   =  F(f) F*(f)   =  s(f) , (3.44)
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which is identical to the spectrum of the original series.  Note that the constant exponential

term in eqn. (3.43) cancels with its complex conjugate.

The spectrum is not invariant with respect to time scaling, however.  Intuitively,

expanding time effectively results in shrinking frequencies, and vice versa.  The relation

between two spectra with different time scales can be obtained from eqn. (3.28).  Given a

function φ(at) which is scaled in time by a factor a, the new Fourier transform F'(f') is, by

eqn. (3.28),

F'(f')  =  ∫
–∞

∞

 φ(at) e–j2πfat dt  =  
1
|a| F 


 
f

a (3.45)

where f' = 
f
a .  The spectrum is then given by

s'(f')  =  F'(f') F'*(f')

=  
1

|a|2
 F

 


 
f

a  F*
 


 
f

a  (3.46)

=  
1

|a|2
 s

 


 
f

a  .

This results in both a scaling of the frequencies as well as the Fourier transform and

spectrum.

For discretely sampled, infinite length processes, the Fourier transform and spectral

values are defined only for the discrete set of “Fourier” frequencies fk = 
k

n∆t, k =

–n/2,...,n/2 (see discussion of discrete Fourier transform).  The discrete form of Parseval's

relation for the total power in a process is obtained in the same way as for the Fourier

integral except that the discrete Fourier transform is used instead.  Following the same

substitution and reordering of summations in eqn. (3.33) gives [Press et al., 1986, p. 390]
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Total power  =  ∑
k=0

n–1

φ(t)2  =  
1
n ∑

k=0

n–1

|F(fk)|2  =  ∑
k=0

n–1

s(fk)  . (3.47)

The individual spectral values s(fk) for the power spectral density function are then given

by

s(fk)  =  
1
n |F(fk)|2 . (3.48)

The normalized spectral values are obtained by dividing by the total power as in eqn.

(3.42).  For the discrete case, this gives

s~(fk)  =  
s(fk)

∑
k=0

n–1

 s(fk)

 . (3.49)

Realizing that the variance σ2 is the total power divided by n (σ2 = 
1
n∑

i=0

n–1

φ(ti)2), the

normalized spectral values can also be written as

s~(fk)  =  
  s(fk)

∑
k=0

n–1
 s(fk)

  =  
  s(fk)

∑
k=0

n–1

 φ(tk)2

  =  
|F(f)|2

n2σ2
 . (3.50)

Sample estimates of the spectrum can be obtained by evaluating the discrete Fourier

transform for frequencies fk = 0,...,
1

2∆t  and computing the spectral values s(fk) using

eqns. (3.48) or (3.49).  It is important to note for later that this is equivalent to (i)

evaluating the Fourier coefficients ak and bk for the discrete frequencies fk  using least

squares estimation and (ii) computing the (amplitude) spectrum from (ak2 + bk2).  For real-

valued functions, only positive frequencies need be considered because the negative
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frequency part of the spectrum is the mirror image of the positive part.  However, the

negative frequencies will be aliased as positive ones and, combined with the (identical)

positive ones, will result in spectral values twice those computed using eqn. (3.48), except

for the zero frequency.  This gives the one-side spectrum rather than a two-sided spectrum.

The spectrum computed in this manner is generally referred to as the periodogram

[Priestley, 1981, p. 394; Press et al, 1986, p. 421] and forms the basis of the least squares

spectrum.

3.4  Convolution and Correlation

Another application of Fourier transforms is in the concept of convolution and

correlation.  Given two functions φ(t) and γ(t) and their Fourier transforms F(f) and G(f),

we can combine these two functions together in what is called a convolution.  For the

continuous case the convolution of φ(t) and γ(t), denoted φ(t)*γ(t), is defined by

[Bronshtein and Semendyayev, 1985, p. 582]

φ(t) * γ(t)   =  ∫
–∞

∞

 φ(τ) γ(t–τ) dτ   ,     ∀  t ∈  (–∞,∞), (3.51)

where τ is thought of as an argument (time) difference or lag.  The convolution theorem

then states that the Fourier transform of the convolution of two functions is equal to the

product of the Fourier transforms of the individual functions [ibid, p. 582]; i.e.,

φ(t) * γ(t)   ⇔  F(f) G(f) . (3.52)
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where the symbol ⇔ again signifies that the functions on either side are Fourier transform

pairs.  The Fourier transform is used to go from left to right while the inverse transform is

used from right to left.

For discretely and evenly sampled processes φ(ti) and γ(ti) , i = –n/2,...,n/2, the

discrete convolution is defined by

φ(ti) * γ(ti)   =  ∑
k=–n/2+1

n/2
 φ(ti) γ(ti–k)  ,     ∀  i ∈  (0,∞), (3.53)

where the lags ti–ti–k are evenly spaced.  The discrete version of the convolution theorem is

then

φ(ti) * γ(ti)   ⇔  Fk Gk . (3.54)

for frequencies fk, k = 0,...,n–1.

Closely related to the convolution theorem in eqn. (3.51) is the correlation theorem.

It can be shown that the product of a Fourier transform with the complex conjugate of

another Fourier transform can be reduced to the form [Priestley, 1981, p. 211]

F(f) G*(f)  =  ∫
–∞

∞

 K(τ) e–j2πfτ dτ  ,     ∀  f ∈  (–∞,∞), (3.55)

where K is called the kernel:

K(τ)  =  ∫
–∞

∞

 f(t) g(t–τ) dt ,     ∀  τ ∈  (–∞,∞). (3.56)
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In the context of spectral analysis, the kernel K(τ) represents the cross-covariance function.

Multiplying the Fourier transform by its own complex conjugate gives the autocovariance

function C(τ) (cf. Section 2.5) as the kernel; i.e.,

F(f) F*(f)   =  ∫
–∞

∞

 C(τ) e–j2πfτ dτ  ,     ∀  f ∈  (–∞,∞), (3.57)

Realizing that this multiplication gives the spectral value for frequency f, the covariance and

the spectrum function can be expressed as a Fourier transform pair; i.e.,

C(t) ⇔ s(f) . (3.58)

This is known as the Wiener-Khinchin theorem.  Furthermore, the normalized spectrum

s~(f) is the transform pair of the autocorrelation function R(t) (cf. Section 2.5) so that

R(t) ⇔ s~(f) . (3.59)

When computing the convolution of two functions care must be exercised to avoid

so-called “end effects” or “wrap around effects” caused by assuming the functions to be

periodic.  For example, when convolving a function with itself (i.e., autocorrelation), data

from the end of the series are effectively wrapped around to the beginning of the series

thereby forming a periodic function with period T.  This can have adverse effects but can

be prevented by simply “padding” the data series with enough zeros to avoid any overlap of

original data.  To estimate all possible frequencies up to the Nyquist frequency (defined in

Section 3.2), a data series of n points must be padded with n zeros to completely avoid any

wrap around affect.  There is a trade off when doing this, however; the more zeros
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appended to the series, the greater the errors in the sample estimates of the Fourier

transforms.  See Press et al. [1992, pp. 533] for more information on end effects.

These indirect expressions in terms of the spectrum are often used as the basis for

the efficient computation of autocovariance and autocorrelation functions using the FFT.  It

will also be used as the basis for developing autocovariance functions for unevenly spaced

data to provide objective a priori estimates of covariances and weights that account for

residual systematic effects in least squares modelling.  However, it must be realized that

this indirect procedure gives the biased estimate of the autocovariance and autocorrelation

functions [Bendat and Piersol, 1971, pp. 312-314; Priestley, 1981, pp. 323-324].

3.5  Fast Fourier Transform

Any discussion of the Fourier transform would not be complete without mentioning

the so-called Fast Fourier Transform (FFT).  Although the term is often used

synonymously with the Fourier transform itself, it is really only a numerical algorithm used

to compute the discrete Fourier transform (DFT) in an extremely efficient manner.  The

algorithm, popularized by Cooley and Tukey [1965], revolutionized the way in which the

DFT had been used.  Up to that time the DFT was restricted to only small data sets.  With

the advent of the FFT algorithm, however, it was quickly employed in a multitude of

applications.

The basic idea behind the FFT is a bisection and recombination process.  First the

data is repeatedly bisected into pairs of points by recursively dividing the data into odd and

even numbered points.  The Fourier transforms are then computed for each of these pairs

of points and subsequently recombined to form the Fourier transform of the entire data

series.  Because the Fourier transform of a pair of data points is a trivial and very fast

computation (no multiplications are needed), the algorithm results in a dramatic increase in

computational efficiency, especially for large data sets.  The number of (complex)
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multiplications involved in the direct evaluation of the discrete Fourier transform is of the

order of n2 whereas the number of such operations in the FFT algorithm (in the

recombination of the individual transforms) is only of the order of n log2n [Press et al.,

1992].  This general strategy was first used by Gauss to reduce the computational effort in

determining planetary orbits and also derived by as many as a dozen others since (see

Brigham [1974] and Bracewell [1989] for more information).

The main limitation of both the discrete Fourier transform and its FFT algorithm is

that the data must be equally spaced.  The expression for the Fourier coefficients, and thus

the Fourier transform, are valid only for equally spaced data.  Moreover, the FFT algorithm

uses certain properties of the sine and cosine functions for evenly spaced data to reduce the

number of terms that need to be evaluated.  For the investigation of systematic effects

which can be functions of many different kinds of arguments that are usually very

irregularly spaced, this precludes the use of the FFT, at least in the computation of the

discrete Fourier transform.  A similar problem also arises when there are large gaps in an

otherwise equally spaced data series.

To circumvent the problem of unevenly spaced or “gappy” data, interpolation

schemes are sometimes used where the original data are interpolated to give an evenly

spaced series.  This then allows one to use traditional techniques such as the FFT.

However, the accuracy of the interpolating function to represent the original data series

depends on the form of the interpolating function, the smoothness of the original data series

and the presence of large gaps in the data.  This presents a dilemma since in order to

properly interpolate the data we must have a good knowledge of their behaviour, but the

lack of this knowledge is usually the reason for computing FFTs in the first place.  Another

problem with interpolation is that in the presence of large gaps, they often result in

disastrous results.

A second limitation of the FFT is that the number of data points to be transformed

must be a power of 2 for the FFT to be most efficient.  Alternate and mixed radix
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formulations of the FFT also exist but they are much less efficient.  The conventional

method of dealing with a number of points that are not a power of two is to again “pad” the

data series with enough zeros to obtain the required number of points for the FFT.  This

clearly inflates the number of points to process thereby increasing not only processing time

but also storage requirements.  It is most inefficient when dealing with large data sets.  In

these cases, one usually only takes the first power of two number of points and omits the

rest.  More importantly, zero padding also increases the error in the FFT with respect to the

continuous Fourier transform.

One more limitation of the FFT is that it is restricted to only the set of “Fourier”

frequencies.  If frequencies other than these standard ones are present, a phenomenon

known as spectral leakage can degrade the results .  To compensate for this, so-called

window functions are employed to reduce this leakage by convolving a tapered Gaussian-

like function with the data series in the Fourier transform.  For more on window functions

see, e.g., Priestley [1981, Chapter 7] and Press et al. [1992, Chapter 13.4].

3.6  Other Transforms

The preceding developments have been based on the use of Fourier (trigonometric)

series to approximate functions and stochastic processes.  The advantage of using Fourier

series is that the periodic terms are usually easier to interpret physically.  Nevertheless,

other approximation or basis functions can be used.

One popular alternative approximation function is the so-called “cas” function

which forms the basis of the Hartley transform [Hartley, 1942; Bracewell, 1986].  This

function is defined as

cas2πft  =  cos2πft + sin2πft , (3.60)
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and is used in place of ej2πft = cos2πft – j sin2πft in the usual Fourier expressions.  Note

that the difference between the two is that the Fourier expressions separate the cosine and

sine terms while the Hartley expressions combine them.

In spite of the different functions used in the Fourier and Hartley transforms, they

are similar in shape.  In fact, the Fourier transform can be deduced from the Hartley

transform, although this is considered unnecessary because either transform provides a pair

of numbers at each frequency that represents the oscillation of the series in amplitude and

phase [Bracewell, 1989].  Moreover, the amplitude and phase spectra obtained from either

transform are identical, although they are derived in a slightly different manner [ibid.,

1989].

As for the Fourier transform, Bracewell [1986] has also developed a fast Hartley

transform in much the same way as the FFT.  The advantage is that the fast Hartley

transform has been shown to be twice as fast as the FFT and uses half as much computer

memory [O'Neill, 1989].
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Chapter 4
The Least Squares Transform

4.1  Introduction

A significant limitation of the traditional techniques for the estimation of

autocorrelation functions, either directly or indirectly via the inverse of the Fourier

spectrum, is that they always require the data to be equally spaced in the argument.

Although the data might be evenly spaced with respect to some basic sampling parameter

such as time, it will generally not be evenly spaced with respect to other parameters that

may better characterize the behaviour of any systematic effects to be modelled by

correlation functions.  Some typical parameters that might be used to model such systematic

effects in geodetic problems include spatial distance, satellite elevation angle, atmospheric

temperature, temperature gradient, pressure, etc.; cf. Vaníc˘ek and Craymer [1983a,b],

Craymer [1984; 1985], Vaníc˘ek et al. [1985], and Craymer and Vaníc˘ek [1986]  Clearly it

would be very difficult to obtain a data series evenly spaced in even some of these

randomly fluctuating parameters.

Other reasons for seeking alternative techniques are concerned with the limitations

of the discrete Fourier transform and FFT described in the preceding chapter.  These

include the use of only the set of standard “Fourier” frequencies (integer multiples of the

fundamental frequency), and the requirement of 2n data points for the FFT algorithm.  In

addition, a deterministic model is often estimated and removed from the data prior to any

spectral analysis.  Traditional spectral techniques do not consider any interaction  or linear

dependence (correlation) between the a priori deterministic model and the implied periodic
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components modelled in the spectrum and in the correlation function.  Moreover, the data

cannot be weighted in the Fourier transform computation in accordance with their assumed

probability density function.  Thus, some observations with relatively large random errors

will be treated the same as other observations that may be many times more precise.

The aim here is to formulate a more general transform that is capable of handling

such unevenly spaced arguments.  The transform is based on the least squares spectrum

computation developed by  Vaníc˘ek [1969a; 1971] and is referred to here as the least

squares transform and its inverse.  Note that this least squares approach is developed here

for real-valued data and, consequently, positive frequencies.  It cannot cope with complex

data or negative frequencies, which are useful in distinguishing between prograde and

retrograde motions.

4.2  Matrix Form of Fourier Transform

The basic form of the least squares transform can be derived by first expressing the

discrete Fourier transform (DFT) in terms of matrices of complex exponential functions.

Rewriting eqn. (3.18) in matrix form gives (the superscript “c” denotes a complex matrix)

Fk  =  Acfk
T φ ,   ∀  k = 0,...,n–1 , (4.1)

where

Acfk  =  e2πjfkt  =  

 


 


 e2πjfkto 
 e2πjfkt1 

 :  
 e2πjfktn–1 

 , (4.2)
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φ  =  

 




 


 φ(to)  

 φ(t1)  
 :  

 φ(tn–1) 

 . (4.3)

Note that the transpose in eqn. (4.1) is the complex conjugate transpose for complex

matrices (see Golub and Van Loan [1983, p. 9]); i.e.,

Acfk
T  =  [ ] e–2πjfkto  e–2πjfkt1  ...  e–2πjfktn–1  , (4.4)

This matrix form of the discrete Fourier transform can be written for each of the discrete

“Fourier” frequencies in eqn. (3.17).

Combining all frequencies together gives the simultaneous transform for all the

standard Fourier frequencies; i.e.,

Fc  =  AcT φ , (4.5)

where

Fc  =  

 



 

 F o 

 F1 
 :  

 Fn–1 

 , (4.6)

Ac  =  [ ]Acfo
 Acf1 ... Acfn–1   =  

 


 


 e2πjfoto  e2πjf1to  . . .   e2πjfn–1to 
 e2πjfot1  e2πjf1t1  . . .   e2πjfn–1t1 

 :   :   . . .   :  
 e2πjfotn–1  e2πjf1tn–1  ...  e2πjfn–1tn–1 

.(4.7)

The transpose in eqn. (4.5) again indicates the complex conjugate transpose where
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AcT  =  

 




 


 A cfo

T 

 A cf1
T 

 . . .  
 Acfn–1

T 

  =  

 


 


 e–2πjfoto  e–2πjfot1  . . .   e–2πjfotn–1 
 e–2πjf1to  e–2πjf1t1  . . .   e–2πjf1tn–1 

 :   :   . . .   :  
 e–2πjfn–1to  e–2πjfn–1t1  ...  e–2πjfn–1tn–1 

 . (4.8)

Note that Acfk in eqn. (4.1) is the k-th column of Ac corresponding to the specific

frequency fk.

The inverse discrete Fourier transform expresses each observation φ(ti) in terms of

the Fourier transforms Fk for all of the discrete “Fourier” frequencies fk = k/(n∆t),

k=0,...,n–1.  This can also be written in matrix form as for the direct transform.  Rewriting

eqn. (3.19) in matrix notation gives

φ(ti)  =  
1
n Acti F

c ,   ∀  i = 0,...,n–1 , (4.9)

where

Acti  =  [ ] e2πjfoti   e2πjf1ti   ...  e2πjfn–1ti   . (4.10)

Combining all observations together gives the simultaneous inverse transform; i.e.,

φ  =  
1
n Ac Fc , (4.11)

where Ac is defined as in eqn. (4.7) and φ is defined by eqn. (4.3).  Note that the design

matrix is not transposed in the inverse transform and a factor of 1/n is included as in the

complex form.  Expanding this in terms of the Fourier transforms for the individual

“Fourier” frequencies gives
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φ  =  
1
n ∑

k=1

n–1
 A cfk F ck . (4.12)

Before developing a more general least squares form of the above transforms, it is

necessary to replace these complex expressions with their real-valued trigonometric forms.

It will be shown later that this is because, for unequally spaced data, the real and imaginary

components can, in general, no longer be treated independently of each other.  Using

Euler's formula (eqn. (3.10)), the discrete Fourier transform in eqn. (3.18) becomes

Fk  =  ∑
i=0

n-1
 φ(ti) (cos2πfkti  – j  sin2πfkti ) ,   ∀  k = 0,...,n–1 (4.13)

and the inverse discrete Fourier transform is

φ(ti)  =  F0 (cos2πf0ti )  +  ∑
k=1

n-1
 Fk (cos2πfkti  + j  sin2πfkti ) ,   ∀  i = 0,...,n–1.(4.14)

Note that the sine term is zero for the zero frequency component (k=0) in the above

expressions.  Realizing that the real (cosine) and imaginary (sine) terms are two separate

quantities that are independent of each other, the complex expression can be rewritten as

two separate real expressions for each term.  That is, for the real term,

Re(Fk)  =  ∑
i=0

n-1

 φ(ti) cos2πfkti  (4.15)

and for the imaginary term,
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Im(Fk)  =  ∑
j=0

n-1

 φ(ti) sin2πfkti . (4.16)

The discrete Fourier transform in eqn. (4.1) can now be expressed in real matrix

notation using eqn. (4.1), with separate columns in the design matrix A for the real

(cosine) and imaginary (sine) terms.  The transform is then given by eqn. (4.1), where Fck

and Acfk are replaced with Fk and Afk, respectively, which are defined as

Fk  =   


 
 Re(Fk) 

 Im(Fk)  , (4.17)

Afk  =  

 



 

 cos2πfkto  sin2πfkto 

 cos2πfkt1  sin2πfkt1 
 :   :  

 cos2πfktn–1  sin2πfktn–1 

 . (4.18)

Note that for zero frequency (k=0), Im(Fo)=0 and all the sine terms in Afo are also zero, so

that

Fo  =  Re(Fk) , (4.19)

Afo  =  

 



 

 cos2πfoto 

 cos2πfot1 
 :  

 cos2πfotn–1 

 . (4.20)

The simultaneous direct and inverse Fourier transforms for all the “Fourier” frequencies are

then given by eqns. (4.5) and (4.11), respectively, with Fc and Ac replaced by,

respectively,
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F  =  

 



 

 F o  

 F 1  
 :  

 F n–1 

  =  

 


 


 Re(Fo) 
 Re(F1) 
 Im(F1) 

 :  
 Re(Fn–1) 
 Im(Fn–1) 

 , (4.21)

A = 
 




 


 cos2πfoto  cos2πf1to  sin2πf1to  . . .   cos2πfn–1to  sin2πfn–1to 

 cos2πfot1  cos2πf1t1  sin2πf1t1  . . .   cos2πfn–1t1  sin2πfn–1t1 
 :   :   :   . . .   :   :  

 cos2πfotn–1  cos2πf1tn–1  sin2πf1tn–1  ...  cos2πfn–1tn–1  sin2πfn–1tn–1 

 .(4.22)

Note that there are n observations and only n–1 coefficients to solve for.

4.3  Least Squares Transform

A more general least squares transform (LST) can be obtained from the above

matrix form of the discrete Fourier transform (DFT) by realizing that the DFT and its

inverse are equivalent to least squares interpolation or approximation using trigonometric

functions (i.e., Fourier series) as the basis functions (see, e.g., Vaníc˘ek and Krakiwsky

[1986, Chapter 12] for a detailed exposition of least squares theory).  Specifically, a vector

of observations φ can be approximated in terms of a Fourier series by eqn. (3.1), which

can be written in matrix notation as

φ  =  A x , (4.23)

where

x  =  

 


 


 ao 
 a1 
 b1  
 :  

 an–1 
 bn–1 

(4.24)
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is the vector of Fourier coefficients to be estimated and A represents the basis

(trigonometric) functions as defined in eqn. (4.22).  Note that for fo=0, there is no

imaginary term and thus no bo coefficient.  The Fourier coefficients x can be estimated by

solving for them using the least squares minimization criterion (cf. Vaníc˘ek and Krakiwsky

[1986, pp. 204-207]).  The solution is given by

x̂  =  N–1 AT φ . (4.25)

where N = AT A is the normal equation coefficient matrix.

Note that in the above equation ATφ is the matrix form of the (simultaneous)

discrete Fourier transform in eqn. (4.5).  Thus, the least squares transform for all

frequencies simultaneously is given by eqn. (4.5) and the transform for each frequency fk

by

Fk  =  Afk
T φ , (4.26)

where Ak that part of A corresponding to only frequency fk.

The estimated Fourier coefficients in eqn. (4.25) can then be written as

x̂  =  N–1 F . (4.27)

Substituting this in eqn. (4.23) gives the estimated observations

φ̂  =  A N–1 F , (4.28)
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which represents the simultaneous inverse least squares transform for all frequencies.  The

individual observations φ(ti) are then given by

φ̂(ti)   =  Ati  N
–1 F , (4.29)

where Ati  represents the i-th row of A corresponding to time ti.

The conventional Fourier transforms are just a special case of these more general

least squares definitions for equally weighted and equally spaced data.  Although the direct

least squares and Fourier transforms are equivalent by definition, the equivalence of the

inverse transforms is not easy to see from the matrix expressions.  This equivalence can be

shown by examining the elements of N–1.  Realizing that the Fourier expressions are valid

only for equally spaced data and the discrete set of “Fourier” frequencies, it can be shown

that the columns of A form an orthogonal basis under these assumptions.  The elements of

N (summations of trigonometric products) reduce to

∑
i=0

n–1

( )cos2πfkti  cos2πflti  = 
 î

  n for k= l=0 or n/2
 n/2 for k= l≠0 or n/2
 0 for k≠l

 , (4.30)

∑
i=0

n–1

( )sin2πfkti  sin2πflti  = 
 î

  0 for k= l=0 or n/2
 n/2 for k= l≠0 or n/2
 0 for k≠l

 , (4.31)

∑
i=0

n–1

( )cos2πfkti sin2πfkti  = 0 ,   ∀  k . (4.32)

Substituting these in N–1 in eqn. (4.28) and expanding in terms of the Fourier transforms

for the individual frequencies gives
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φ̂  =  
1
n Afo Fo  +  

2
n ∑

k=1

n/2–1
A fk F k  . (4.33)

The difference between this and the inverse Fourier transform in eqn. (4.11) is the use of

n/2 in place of n for non-zero frequencies (n is assumed to be even, otherwise n/2 is

truncated down to the nearest integer).  This is because for real data the transform for

negative frequencies is identical to that for positive frequencies.  The columns of A

corresponding to these frequencies will be identical thus making N singular when

simultaneously estimating all frequencies.  Including only the positive frequencies will

implicitly account for the identical response for both negative and positive frequencies,

thereby effectively doubling the least squares transform with respect to the Fourier

transform (i.e., it gives a transform which results in a one-sided spectrum as derived in the

next chapter) .  Note that the Nyquist frequency (at k=n/2) is also excluded from the

summation since this is aliased with the zero frequency.

It is important to realize that for unequally spaced data the inverse least squares

transform in eqn. (4.28) cannot in general be expressed as a summation of independent

contributions from individual frequencies.  This is because N in general contains off-

diagonal elements between frequencies and even between the sine and cosine components

for the same frequency; i.e., these Fourier components are mathematically correlated with

each other (i.e., they are no longer orthogonal or linearly independent).

4.4  Weighted Least Squares Transform

The above developments have implicitly assumed the observations to be equally

weighted.  A more general form of the least squares transforms can be derived by

weighting the observations using their associated covariance matrix Cφ.  This also allows

one to model any known correlations among the observations.  The general expressions for
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a weighted least squares interpolation or approximation are given by (cf. Vaníc˘ek and

Krakiwsky [1986, pp. 204-207])

x̂  =  N–1 u . (4.34)

φ̂  =  A x̂ , (4.35)

where N = AT P A  is the normal equation coefficient matrix, u = AT P φ, is the normal

equation constant vector and P = Cφ–1 is the weight matrix of the observations.

Following the same development as for the unweighted (i.e., equally weighted)

least squares transforms, the more general weighted least squares transform for all

frequencies simultaneously is given by (cf. eqn. (4.26))

F  =  u  =  AT P φ . (4.36)

and the transform for each individual frequency fk by (cf. eqn. (4.1))

Fk  =  uk  =  Afk
T P φ . (4.37)

Using this in the least squares estimation of the Fourier coefficient in eqn. (4.34) and then

substituting into eqn. (4.35) gives the inverse least squares transform (cf. eqn. (4.28))

φ̂  =  A x̂  =  A  N–1 F . (4.38)

The individual observations φ(ti) are then

φ̂(ti)   =  Ati  N
–1 F . (4.39)
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Although the symbolic form of these expressions are identical to those for the unweighted

inverse transform in eqns. (4.26) and (4.27), N and F are defined differently (they include

the weight matrix P).  Note that the inverse transform is essentially just a least squares

approximation of φ in terms of a Fourier series.

As stated at the end of Section 4.3, it is not possible in general to separately

estimate the individual Fourier transform values for different frequencies because of the

possible existence of mathematical correlations (non-orthogonality) among the Fourier

components (trig functions) due to unequal data spacing or correlations among the

observations.  If, however, the observations are equally spaced, equally weighted and

uncorrelated (i.e., P = I), and the set of “Fourier” frequencies are used, the normal

equation matrix becomes a diagonal (i.e., N = diag(n, n/2, n/2,...) and the direct and

inverse least squares transforms become identical to eqns. (4.26) and (4.33), respectively,

and are thus equivalent to the standard Fourier ones.  The Fourier transform is thus just a

special case of the least squares transform.

An attractive feature of the least squares transform is that the covariance matrix for

the Fourier coefficients and the inverse least squares transform are provided by the least

squares theory as by-products of inverting the normal equation matrix N (cf. Vaníc̆ek and

Krakiwsky [1986, pp. 209-210]).  The covariance matrix for the estimated Fourier

coefficients x̂ is given by

C x̂  =  N–1 (4.40)

while that for the inverse transform (interpolated/approximated observations) is

C φ̂  =  A Cx̂ AT . (4.41)
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It is recalled that only frequencies up to, but not including, the Nyquist frequency

should be included in the Fourier series in order to avoid singularities in N due to the

aliasing effect.  In addition, if the data are equally spaced, only the set of standard

“Fourier” frequencies should be used (see Section 3.2).  Moreover, if the data are real,

only the positive Fourier frequencies should be included (see property in eqn. (3.23)).

This then allows for a total of n–1 terms (n/2–1 cosines and n/2 sines) to be estimated from

n observations, which gives a nearly unique solution for the Fourier coefficients and

enables the observations to be reproduced exactly using the inverse transform.

In addition to accepting unequally spaced data, another advantage of the least

squares transforms are that they are not restricted to only the set of standard Fourier

frequencies fk = k/(n ∆t) = k/T for k=0,...,n–1.  Any set of frequencies in the range (0, fN)

can be used in the expressions.  However, only a maximum of n/2 frequencies (n Fourier

coefficients) can be estimated simultaneously from only n observations.  Moreover, some

serious repercussions can also arise if the selected frequencies result in some of the Fourier

components (trig functions) becoming nearly linearly dependent with each other, thereby

producing an ill-conditioned or near singular N.  To avoid such ill-conditioning it becomes

necessary to either select a different set of frequencies to be estimated (e.g., equally spaced

frequencies) or simply neglect the correlations in N (i.e., the off-diagonal blocks) and

estimate the inverse least squares transform separately for the individual frequencies using

eqn. (4.39).

Another problem in dealing with unequally spaced data is that the Nyquist

frequency is not well defined, if at all.  It was thought that, because a single cycle of a

periodic function can be defined with only 3 points, the smallest time interval of a triplet of

adjacent points would represent the smallest period which can be estimated.  Care would

also be need to ensure that no pair of points in the triplet are so close together that the triplet

is essentially only a pair of points for all practical purposes.  In practice, however, this

triplet interval does not appear to define a Nyquist frequency.  As will be shown in the
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numerical tests of Chapter 7, spectra computed to frequencies well beyond this implied

Nyquist frequency do not exhibit the expected mirror image about any Nyquist frequency.

4.5  Effect of Deterministic Model

So far it has been assumed that the original data is stationary and can be modelled

completely by a Fourier series.  In general this is hardly ever the case.  It is more common

to first remove the non-stationarity by modelling some known a priori deterministic trends

using, e.g., least squares fitting and to analyse the residual (stochastic) series using the

above techniques.  The problem, however, is that there may be linear dependence between

the deterministic model and the periodic components in the Fourier series (the stochastic

model) which may significantly affect the Fourier transform and spectrum.

To account for such effects, it is necessary to reformulate the preceding

developments to accommodate both the deterministic model as well as the stochastic model

(periodic Fourier series components) in the estimation of a least squares transform.

Partitioning A and x,

A  =  [ ]A D   A S  , (4.42)

x  =   


 
 x D  

 x S   , (4.43)

the data series (observation) vector φ is modelled in terms of both deterministic φD and

stochastic (Fourier series) φS components as

φ  =  A x  =  AD xD + AS xS  =  φD + φS . (4.44)
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For the deterministic model, AD is the design matrix and xD is the parameter vector to be

estimated, and for the stochastic (Fourier series) model, AS is the matrix of cosine and sine

basis functions as defined in eqn. (4.22) and xS is the vector of Fourier coefficients to be

estimated as defined in eqn. (4.24).  The aim is to account for the effect of estimating xD in

the estimation of xS.

The weighted least squares estimates of the combined parameter vector x̂ and the

approximated observation vector φ̂ are given by eqns. (4.34) and (4.35), where the

matrices are defined as above.  Substituting the above partitioned forms of A and x into

these expressions gives

 


 
 x̂ D  

 x̂ S 
  =   


 
 N D D   N D S 

 N S D  N S S 

–1
  


 
 u D  

 u S  , (4.45)

φ̂  =  [ ]A D   A S   


 
 x̂ D  

 x̂ S 
  =  AD x̂D + AS x̂S  =  φ̂D + φ̂S , (4.46)

where

NDD  =  AD
T P AD , (4.47)

NDS  =  AD
T P AS , (4.48)

NSD  =  AS
T P AD , (4.49)

NSS  =  AS
T P AS . (4.50)

uD  =  AD
T P φ , (4.51)

uS  =  AS
T P φ . (4.52)

Although, for stochastic modelling, we are really only interested in φS, it is

necessary to account for any effect of the deterministic model on the estimation of φ̂S by

x̂D.  This is obtained by making use of some well-known matrix identities in the evaluation
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of x̂S.  Specifically, the inversion of the normal equation matrix N can be written as

[Vaníc̆ek and Krakiwsky, 1986, p. 28]

 


 
 N D D   N D S 

 N S D  N S S 

–1
  =   


 
 M D D   M DS 

 M S D  M S S 
 , (4.53)

where

MDD  =  (NDD – NDS NSS
–1 NSD)–1

=  NDD
–1 + NDD

–1 NDS MSS NSD NDD
–1 , (4.54)

MDS  =  –MDD NDS NSS
–1  =  MSD

T , (4.55)

MSD  =  –MSS NSD NDD
–1  =  MDS

T , (4.56)

MSS  =  (NSS – NSD NDD
–1 NDS)–1

=  NSS
–1 + NSS

–1 NSD MDD NDS NSS
–1 . (4.57)

Substituting into eqn. (4.45) and gives for x̂S

x̂S  =  MSD uD + MSS uS (4.58)

=  (NSS – NSD NDD
–1 NDS)–1 (uS – NSD NDD

–1 uD)

where the so-called “reduced” normal equation matrix and constant vector are

N*   =  NSS – NSD NDD
–1 NDS , (4.59)

u*   =  uS – NSD NDD
–1 uD . (4.60)
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Defining the “reduced” weight matrix P*, which accounts for the effect of the

deterministic model, by

P*   =  P – P AD NDD
–1 AD

T P , (4.61)

the normal equations in eqn. (4.58) can be written in the same general form as that without

the deterministic model; i.e.,

x̂S  =  N*–1 u*  , (4.62)

C x̂S
  =  N* 1 , (4.63)

where

N*–1  =  ( )A S
T  P *  A S

–1 , (4.64)

u*   =  AS
T P*  φ . (4.65)

The simultaneous least squares transform F*  (for all frequencies simultaneously)

which accounts for the deterministic model is then defined in the same manner as in eqn.

(4.36):

F*   =  AS
T P*  φ . (4.66)

The transform for each individual frequency fk is then (cf. eqn. (4.37))
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Fk*   =  Afk
T P*  φ . (4.67)

Similarly, the inverse transform for all observations is defined by eqn. (4.38), using the

reduced forms of N and F, as

φ̂  =  A  N*–1 F*  , (4.68)

and for individual observations φ(ti) by

φ̂(ti)   =  Ati  N
*–1 F*  . (4.69)

The expressions for independently estimated frequency components are simply obtained by

ignoring the off-diagonal terms between different frequencies in N* and P*

When there is no deterministic model, AD = 0, P*  = P and the above expressions

reduce to the same form as in the previous section.  Note that the weighted inverse

transform is essentially just a weighted least squares approximation of φ in terms of the a

priori deterministic model and the individual periodic (Fourier series) components.

4.6  Vector Space Interpretation

The least squares transform can be more elegantly interpreted using the concept of

Hilbert spaces and commutative diagrams using the language of functional analysis.  The

fundamental component of functional analysis is the space, in which we want to work.

The elements in a space can be real numbers, complex numbers, vectors, matrices as well

as functions of these.  Here we consider the more restrictive case of vector spaces

consisting of sets of vectors which can be visualized as positions in the space.  A brief
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review of functional analysis as it applies to the geometrical interpretation of the least

squares transform is given.  For more on functional analysis see, e.g., Kreyszig [1978].

There are various classifications of spaces.  The most general type of space is the

metric space in which the concept of a distance (or metric) ρ(x,y) between two elements x

and y in the space is defined.  A normed space is a metric space in which a norm ||•|| may be

induced as the distance from the null element.  The norm ||x|| of a single element x is just its

length ρ(x,0).  A Hilbert space is a normed space in which a scalar (or inner) product

<x,y> for a pair of elements x and y may be induced by the relations

||x||  =  <x, x>1/2 , (4.70)

ρ(x,y)  =  ||x–y||  =  [ <(x–y), (x–y)> ]1/2 . (4.71)

There are many ways of defining a scalar product.  For vector spaces of finite

dimension the most common is the simple linear combination of vector elements; i.e., for

vectors x and y,

<x, y>  =  xT y  =  ∑
i

 
xi  yi  . (4.72)

For compact vector spaces the analogous form of the scalar product is

<x, y>  =  ∫ x(t) y(t) dt . (4.73)

A more general definition of the discrete scalar product, and the one used here, is the norm

defined by
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<x, y>  =  xT P y  , (4.74)

where P, the weight matrix for the vector space, is generally the inverse of the covariance

matrix of the vector elements.  This corresponds to a generalization of Euclidean space with

metric tensor I, into a Riemanian space with metric tensor P.  Note that for compact

matrices, the vectors and matrices will also be compact, and contain continuous functions.

An interpretation of basic least squares theory in terms of functional analysis is

given by Vaníc˘ek [1986].  The theory is interpreted using commutative diagrams which

describe the various transformations between probabilistic (Hilbert) spaces.  The same

diagram can be used to interpret the least squares transform.  In this diagram φ is the

observation vector belonging to the observation space ΦΦΦ, Cφ is the observation covariance

matrix (not necessarily diagonal) defining the scalar product (and norm and distance) in this

space, x is the parameter vector of Fourier coefficients to be estimated belonging to the

parameter space XXX and A is the design matrix transforming the observations to the

parameters, which contains the sines and cosines functions (basis functions).

The commutative diagram is set up by first defining the transformation (i.e., the

observation equations) φ=Ax from the parameter space XXX to the observation space ΦΦΦ.  The

weight matrices Px and Pφ define the transformations to the dual parameter space XXX ***  and

dual observation space ΦΦΦ*** , respectively.  The transformation from the dual observation

space ΦΦΦ***  to the dual parameter space XXX *** . is defined by AT.  Assuming the design matrix

A and covariance matrix Cφ are known, the remaining transformations can be obtained

from the commutative diagram using the following steps.

1. Pφ  =  Cφ−1 (4.75)

2. Px  =  AT Pf  A     ⇒      Cx  =  Px−1 (4.76)

3. A−  =  Cx AT Pφ  =  (AT Pφ  A)−1 AT Pf (4.77)

4. F  =  AT Pφ (4.78)
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5. F−1  =  A Cx  =  A (AT Pφ A)−1 (4.79)

These steps are illustrated in Figure 4.1.  Here, F is defined slightly differently than in the

preceding developments.  It represents the transform operator that acts on the observations,

and not the entire transform itself as defined in Section 4.3.  Similarly, F−1 is the inverse

operator.

It can be seen from the commutative diagram that the least squares Fourier

transform F is a transformation from the observation space ΦΦΦ to the dual parameter space

XXX ***  via the dual observation space ΦΦΦ* .  The inverse least squares Fourier transform F−1 is

then derived by proceeding from the dual parameter space XXX ***  to the observation space ΦΦΦ

via the parameter space XXX.

XXX
Parameter Space

Fourier Coefficients

LLL
Observation Space

XXX ***
Dual

Parameter Space

LLL ***
Dual

Observation Space

A

A −

A T

A
T

C
x

P
x

P
l

C
l

F

F

−

−1

Figure 4.1:  Commutative diagram for the direct and inverse least squares transform,

where F denotes the direct transform and F−1 the inverse transform.
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The design matrix A contains the trigonometric functions defining the Fourier series

representation of the observations.  The individual sine and cosine terms (columns of A)

form a basis for the observation space.  For the standard Fourier transform, the data are

equally spaced, equally weighted and uncorrelated so that the columns of A form an

orthogonal basis.  The normal equation matrix N = AT P A then becomes a diagonal

matrix as does the covariance matrix of the parameters.  In the more general least squares

transform, the base functions are not necessarily orthogonal, although, in practice, this is

usually the case even with unequally spaced data.

4.7  Applications

The above least squares transform can be applied in the same manner as the

traditional Fourier one, with the added advantage that they can be used not only for equally

spaced data series, but also for unequally spaced series and for any arbitrary set of

frequencies.  One of the most important applications (to be discussed in the next chapter) is

the determination of the power spectral density for unequally spaced data that also accounts

for a deterministic model.  In this case there is no need to determine a frequency response

function for the deterministic model in order to remove its effect from the spectrum of the

model residuals.  The correct spectrum is obtained directly when the deterministic model is

accounted for in the formulation of the spectrum.

Another important application of the least squares transform is the indirect

estimation of autocovariance/autocorrelation functions using the correlation theorem (see

Chapter 6).  Instead of transforming the effect of all the spectral values, a smoother

autocovariance function can be obtained by using only the significant spectral values.

Because these significant spectral components are not likely to be evenly spaced, it is

necessary to use the inverse least squares transform to convert them into an autocorrelation

function.
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The inverse least squares transform can also be used in data series approximation

and interpolation problems.  In these applications the direct Fourier transform is used to

estimate Fourier series coefficients, which are then used in the inverse transform to

approximate or interpolate the original series.  The degree of smoothing of the original

series can be increased by including only frequencies corresponding to highly significant

Fourier coefficients (or spectral peaks).
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Chapter 5
The Least Squares Spectrum

5.1  Introduction

As discussed in the previous chapters, traditional methods of determining power

spectral density and autocorrelation functions are significantly limited in their application

because they always require the data to be equally spaced in the argument.  Other reasons

for seeking alternative techniques are concerned with the limitations of the discrete Fourier

transform and FFT commonly used to generate spectra as well as autocorrelation functions

(transformed from the spectrum).  These include the use of only the set of “Fourier”

frequencies (integer multiples of the fundamental frequency), and the requirement of 2n

data points (for the FFT algorithm).  In addition, the traditional techniques do not consider

any interaction (correlation) between the deterministic model and the implied periodic

components modelled in the spectrum.  Moreover, the data cannot be weighted in the

transform computation in accordance with their assumed probability density function.

Thus, some observations with relatively large random errors will be weighted the same as

other observations that may be many times more precise.

Traditional methods of computing power spectral density functions from unequally

spaced data have often been based on interpolation or approximation.  That is, the original

unequally spaced data series was interpolated or approximated to an equally spaced series

for which the standard Fourier techniques could then be applied.  The problem, however,

is that this approach really creates a new data series that depends on the smoothness of the

original series, the presence of data gaps and the subjective choice of the interpolating or
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approximating function.  The interpolation also tends to smooth out any high frequency

components of the original data series.

To overcome these limitations and difficulties, Vaníc˘ek [1969a] developed a method

of spectrum computation based on least squares estimation.  This method was further

developed in Vaníc˘ek [1971], Steeves [1981] and Wells et al. [1985] and forms the basis

of other similar techniques in slightly different forms promoted by various authors since

(e.g., Rochester et al. [1974], Lomb [1976], Ferraz-Mello [1981], Scargle [1982], Horne

and Baliunas [1986]).  In this Chapter, the same basic least squares spectrum is

reformulated in terms of the newly developed least squares transform.  A new

“simultaneous” spectral estimation procedure, somewhat similar to that used by Rochester

et al. [1974], is also developed.

5.2  Matrix Form of Fourier Spectrum

Before giving the expressions for the least squares spectrum, the Fourier spectrum

is first expressed in matrix form.  This is done by simply using the matrix expressions for

the Fourier transform (eqns. (4.9) and (4.21)) in the definition of total power (eqn. (3.47))

and the individual Fourier spectral estimates (eqn. (3.48)).  Parseval's relation in eqn.

(3.47) can then be written in matrix notation as

Total power  =  φTφ  =  
1
n   F

TF . (5.1)

where

φTφ  =  ∑
i=0

n–1

 φ(ti)2  , (5.2)
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FTF  =  ∑
k=0

n–1

 FkTFk  =  ∑
k=0

n–1

 |F(fk)|2 . (5.3)

The individual spectral components for the two-sided power spectral density function (eqn.

(3.48)) are then given by

s(fk)  =  
1
n FkT Fk  =  

1
n |F(fk)|2 ,   ∀  k = 0,...,n–1 . (5.4)

The one-sided spectral density function is twice the two-side function and is defined by

s(fk)  =  

 î

  

1
n F kT  F k  =  

1
n |F( fk) |2    for k =  0  

  

 
2
n F kT  F k  =  

2
n |F(fk) |2    for k = 1...n/2–1  

 . (5.5)

5.3  Least Squares Spectrum

The least squares spectrum was originally developed by Vaníc˘ek [1969a; 1972] (see

also Steeves [1981] and Wells et al. [1985]).  The expressions for this form of the least

squares spectrum (referred to here as the “conventional” form) can be developed in terms of

the (unweighted) least squares transform.  First, the total power is given by

Total power  =  φT φ . (5.6)

Substituting for the inverse least squares transform in eqn. (4.28) results in

Total power  =  φT φ  =  FT N–1 F . (5.7)
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Note that, generally, the total power can not be expressed as a sum of individual

contributions from the different frequency components.  As with the inverse least squares

transform, the problem is that with unequally spaced data, N is not a diagonal matrix

because the Fourier components (trig functions) are not orthogonal to (linearly independent

of) each other.  As explained above, this problem is avoided by simply examining one

frequency at a time, independently (out of context) of the others.  This is equivalent to

ignoring the linear dependence between different frequency components in N and amounts

to defining the spectrum as the independent contribution of each frequency component to

the total power.

Following this approach, the spectral component s(fk) (for the one-sided least

squares power spectral density function) is defined by

s(fk)  =  FkT Nk–1 Fk , (5.8)

where Nk is the k-th diagonal block of N corresponding to frequency fk.  The normalized

spectral values s~(fk) are then

s~(fk)  =  
s(fk)

φTφ 
  =  

FkT Nk–1 Fk

φT φ 
 . (5.9)

The normalized spectrum represents the percentage of variation in the original data series

independently explained by each spectral component.  In its basic philosophy, this

corresponds to the R2 statistic in regression analysis [Draper and Smith, 1981, p. 33].

One of the most significant advantages of the least squares spectrum, other than

handling unequally spaced data, is the ability to estimate spectral components for any real

(arbitrary) frequency, not just the set of “Fourier” frequencies.  The expressions in eqns.

(5.8) and (5.9) essentially provide continuous estimates for any set of frequencies.  The
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usual procedure is to take a set of equally spaced frequencies between zero and the

estimated Nyquist or maximum frequency (note that the Nyquist frequency is undefined for

unevenly spaced data as discussed Section 4.4).  The precise frequency location of

significant peaks can then be determined by “zooming” in on that frequency area of the

spectrum.  This allows one to locate frequencies for significant peaks to any resolution,

within the limits of the data sampling.

5.4  Weighted Least Squares Spectrum

The more general weighted least squares power spectrum is obtained in a similar

way except that the general (weighted) least squares transforms are used in the above

developments.  In this more general situation of an observation weight matrix, the total

power is defined by the weighted sum of squares as

Total power  =  φT P φ , (5.10)

where P is the inverse of the observation covariance matrix.  Substituting for φ using the

weighted least squares inverse transform in eqn. (4.38) and noting that AT P A = N gives

Total power  =  φT P φ  =  FT N–1 F . (5.11)

Vaníc̆ek [1969a] defines the spectrum as the independent frequency contributions to

this total power (cf. eqns. (5.8) and (5.9)).  That is, each frequency component is

estimated independently, or out of context, of the others.  Steeves [1981] extends this

approach by incorporating the weight matrix (P) of the observations.  The independent

estimate of each spectral component is then obtained using the weighted least squares
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transform from eqn. (4.36) in the spectral estimates given by eqns. (5.8) and (5.9), where

the weighted normal equation matrix Nk for the k-th spectral component is defined by

Nk  =  AkT P Ak . (5.12)

This type of spectral estimation is referred to here as “independent” or “out-of-context”

spectral estimation.

An alternative approach to least squares spectral estimation can be developed in

which all spectral components are estimated simultaneously; i.e., in the context of the

others being present.  This approach takes into account the non-orthogonality (mathematical

correlations) between the spectral components.  It is effectively equivalent to the

geometrical projection of the total multidimensional quadratic form representing the total

power, onto the subspace for each individual spectral component.  This is analogous to the

way in which quadratic forms and confidence regions are defined for station coordinates in

geodetic networks.  This estimation method is developed by first realizing that in eqn.

(5.11) for the total power the inverse of the normal equation matrix N–1 is equivalent to the

covariance matrix Cx̂ for the simultaneously estimated Fourier coefficients (cf. eqn.

(4.40)).  The total power can then be written as

Total power  =  FT Cx̂ F . (5.13)

Substituting for the weighted least squares transform in eqn. (4.36), the total power can be

expressed in terms of the estimated Fourier coefficients:

Total power  =  x̂T Cx̂–1 x̂ . (5.14)
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The weighted least squares spectrum is defined as the contribution s(fk) of the

individual frequency components (Fourier coefficients) to the total power.  That is, the

quadratic form of the estimated Fourier coefficients for individual frequencies is

s(fk)  =  x̂kT Cx̂k
–1 x̂k , (5.15)

where Cx̂k is the k-th diagonal block of covariance matrix Cx̂.  Substituting back in the

weighted least squares transform in eqn. (4.37) for individual frequencies, gives the

weighted least squares spectral values

s(fk)  =  Fk
T Cx̂k Fk  (5.16)

which account for any non-orthogonality (mathematical correlations) among the different

spectral components.  Note that Cx̂k is not the same as Nk–1 in the expression for the

independently estimated (out-of-context) least squares spectrum.  Using the k-th diagonal

block from Cx̂k  is the same as extracting the k-th diagonal block from N–1 instead of from

N as in the conventional expressions (cf. Steeves [1981]).  Thus, eqn. (5.16) may also be

written as

s(fk)  =  Fk
T (N–1)k Fk  (5.17)

The normalized spectral value s~(fk) for frequency fk is obtained by dividing by the total

power; i.e.,

s~(fk)  =  
s(fk)

φTPφ 
  =  

FkT C x̂k F k

φT  P  φ 
  =  

FkT (N–1)k Fk

φT  P  φ 
 . (5.18)
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This type of spectral estimation is referred to here as “simultaneous” or “in-context”

spectral estimation.

All linear dependence (mathematical correlation) among the frequency components

are accounted for in this simultaneous estimate of the weighted least squares spectrum.

When the correlations between the frequency components are ignored, N becomes a

diagonal matrix of normal equation matrices Nk for each individual frequency fk and Cx̂k =

Nk–1.  The expressions given here are then equivalent to those in Steeves [1981], for the

independent estimation of spectral components where no deterministic model is considered.

When the data are also equally weighted, these expressions are identical to those in Vaníc˘ek

[1969a; 1972].  When the data are equally spaced and the set of “Fourier” frequencies are

used, N–1 = diag(2/n), and the weighted least squares spectral values are then equivalent to

the standard one-side Fourier ones given by eqn. (3.41).

Vaníc̆ek [1969a; 1972] also includes some simplifying trigonometric identities that

make the evaluation of the elements in N–1 more efficient for equally spaced data (see also

Wells et al. [1985]).  These have been omitted from the developments here for the sake of

simplicity, although any routine application of these should include these optimizations to

reduce the required computational effort.

This approach is also similar to that used by Rochester et al. [1974] in that

correlations between different frequencies are accounted for.  However, the correlations

among the coefficients for same frequency are implicitly ignored in their expressions

because of the use of complex notation.  The real (cosine) and imaginary (sine) terms for

the same frequency are treated independently.  Only when the data are equally spaced is

their approach equivalent to the preceding ones.

The same comments on the Fourier transform regarding frequencies greater than the

Nyquist frequency also apply here for the simultaneous estimate of the fully weighted least

squares spectrum.  Singularities in N−1 should be avoided by using only frequencies up to
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the Nyquist frequency.  Frequencies that are too closely spaced can also cause ill-

conditioning problems in the simultaneous estimation of different spectral values.

Finally, it should be emphasized that these definitions of the least squares spectrum

do not satisfy Parseval's relation.  That is, the sum of the these spectral values does not

equal the total power in eqn. (5.7).  Because of the correlation among the frequencies, there

is no equivalent to Parseval's relation for unequally spaced data.

5.5  Effect of Deterministic Model

In the developments thus far, the mathematical correlations (linear dependence)

between the spectral components and any deterministic model have been ignored, as they

are in the traditional Fourier method.  One of the most significant contributions of Vaníc˘ek

[1969a; 1972] was the incorporation of the effect of any a priori deterministic model in the

determination of the spectral values.  An important consequence (advantage) of this is that it

alleviates the need to determine frequency response functions for the deterministic model.

In the context of spectrum estimation, frequency response functions are used to account for

the effect of the deterministic model on the spectrum.  Here, the deterministic effects are

modelled explicitly in the formation of the expressions for the estimation of the spectral

components.

The effect of the deterministic model on the spectrum is obtained in the same way as

for the inverse least squares transform in the previous chapter.  The spectrum is defined as

the contribution of each frequency component to the total power.  This can be expressed in

terms of the quadratic form of the estimated Fourier coefficients x̂ as in eqn. (5.15).

However, to account for the effects of the deterministic model, the quadratic form must be

based on estimates from the combined deterministic and “spectral” model as explained in

Section 4.5.  That is, the spectral component s(fk) for frequency fk is given by
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s(fk)  =  x̂kT Cx̂k
–1 x̂k , (5.19)

where the matrix components for frequency fk are, from eqn. (4.62),

x̂k  =  N*–1 u*   =  N*–1 AS
T P*  φ , (5.20)

C x̂k  =  (N* –1)k . (5.21)

N*–1 and P*  are defined in eqns. (4.64) and (4.61), respectively.  Note that these

expressions are formally identical to those without a deterministic model, except that the

“reduced” weight matrix P*  in eqn. (4.61) is used in place of P.  The effect of the

deterministic model is therefore completely contained within P*.

Following the same substitution procedure as in the previous section, the least

squares estimates of the spectral values can be written in terms of the weighted least

squares transform F*k in eqn. (4.67) as (cf. Vaníc˘ek [1971, eqn. (2.4)])

s(fk)  =  F*kT C* x̂k F
*k  =  F*kT (N*–1)k F

*k . (5.22)

The normalized spectrum is defined as before to be the percentage of the variation in

the data explained by the each spectral component.  In the presence of an a priori

deterministic model, this represents the variance explained by each spectral component

which is not accounted for by the deterministic model.  The part that is not explained by the

deterministic model is just the residuals rD from the deterministic model alone. That is,

using the notation of Section 4.5,

rD  =  φ – AD x̂D , (5.23)
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where

x̂D  =  NDD
–1 uD , (5.24)

and NDD and uD are defined by eqns. (4.47) and (4.51), respectively.  Expanding rD and

rearranging gives

rD  =  (I – AD NDD
–1 AD

T P) φ . (5.25)

Substituting this in the quadratic form of rD and simplifying results in

rD
T P rD  =  φT (P – P AD NDD

–1 AD
T P) φ  =  φT P*  φ , (5.26)

where P* is the “reduced” weight matrix accounting for the deterministic model.  Dividing

the spectral values eqns. (5.22) by (5.26), the normalized spectrum that accounts for the

deterministic model is

s~(fk)  =  
s(fk)

φTP*φ 
  =  

F*kT C x̂k F*k

φT P *  φ 
  =  

F*kT (N*–1)k F*k

φT P *  φ 
 . (5.27)

The consideration of which frequencies to include in the weighted least squares

spectrum must be done very carefully when accounting for the effects of a deterministic

model (it is effectively undefined in the spectrum estimation).  This is especially important

if periodic trends are present in the deterministic model.  In that case, the spectral value for

the same frequency is undefined because it has effectively been accounted for in the

deterministic model and is therefore undefined in the least squares spectrum; i.e., the

periodic component in the deterministic model and the same component in the spectral
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model will be perfectly linearly dependent.  Evaluating spectral components for the same

frequencies as the periodic trends will result in a singular normal equation matrix N* .

Present algorithms for the least squares spectrum (e.g., Wells et al. [1985]) check for this

situation by inspecting the determinant of Nk*; a zero or near zero value indicates a

singularity and thus an undefined spectral value.

Ignoring correlations between spectral components is perfectly acceptable within the

context of improving the deterministic model.  In this case the objective is to iteratively

search for only the largest spectral component in a residual data series from a deterministic

model.  Any significant spectral values can then be incorporated into the deterministic

model, either explicitly as a periodic trend or implicitly as part of a more complex model of

the underlying physical processes.  In this way the method effectively accounts for the

correlations among only the most significant spectral components that are iteratively

included in the deterministic model.

5.6  Statistical Tests

Another great advantage of the least squares spectrum is that the significance of the

least squares spectral values can be tested statistically in a rigorous manner.  The following

statistical tests are based on Steeves [1981].

It is well known in statistics that a quadratic form has chi-square distribution with

degrees of freedom equal to the rank of the weight matrix.  Expressing the estimated

spectral values in terms of the quadratic form of the estimated Fourier coefficients x̂k in

eqn. (5.15), this quantity then has a Chi-square distribution χ2(u; 1–α) with u=2 degrees

of freedom (representing the rank of the covariance matrix Cx̂k for the two Fourier

coefficients for frequency fk) [Vaníc̆ek and Krakiwsky, 1986].  A statistical test of the null

hypothesis Ho: s(fk) = 0 can then be made using the decision function
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s(fk)  
 î

  ≤  χ2(2; 1–α ); accept Ho: s(fk) = 0 

 > χ2(2; 1–α ); reject Ho 
 (5.28)

where α is the significance level of the test (usually 5%).

If the scale (i.e., a priori variance factor σo2) of Cφ is unknown, the estimated

value σ̂o2  can be obtained from

σ̂o2  =  
r̂ T  P  r̂

υ
 , (5.29)

where υ = n–2 is the degrees of freedom (two degrees of freedom lost to the estimation of

the two Fourier coefficients).  This estimated variance factor is used to scale the covariance

matrix Cx̂k, which then has a Fisher distribution F(υ,u; 1–α) with υ=n–2 and u=2 degrees

of freedom.  A statistical test of the null hypothesis Ho: s(fk) = 0 can then be made using

the decision function

s(fk)  
 î

  ≤  F(υ ,2; 1–α ); accept Ho: s(fk) = 0 

 > F(υ ,2; 1–α ); reject Ho 
 (5.30)

The distribution of the normalized spectral values is obtained by first rewriting the

quadratic form φT P φ in terms of the residuals r̂ and estimated observations φ̂ from the

spectral model.  Realizing that

r  =  φ – A x̂  =  (I – A N–1 AT P) φ , (5.31)

the quadratic form of the residuals can be expressed as

rT P r  =  φT (P – P A N–1 AT P) φ  =  φT P* φ . (5.32)



76

Noting that P = Cφ and rearranging,

rT P r  =  φT P φ – (φ P A) N–1 (AT P φ)

=  φT P φ – x̂kT Cx̂k
–1  x̂k . (5.33)

Thus, the quadratic form of the observations is

fT P f  =  x̂kT Cx̂k
–1 x̂k + rT P r , (5.34)

which represent the total power.  The quadratic forms on the right side of eqn. (5.34) are

well known  (see, e.g., Vaníc˘ek and Krakiwsky [1986]).  The quadratic form x̂kT Cx̂k
–1

x̂k of the estimated Fourier coefficient has a Chi-square distribution with 2 degrees of

freedom (the number of Fourier coefficients for frequency fk).  The quadratic form rT P r

of the residuals has a Chi-square distribution with υ=n–u degrees of freedom, where u is

the total number of Fourier coefficients being simultaneously estimated (if the spectral

values are being estimated independently, then u=2).

Using eqns. (5.15) and (5.34) in the expression for the normalized spectral value in

eqn. (5.18) and rearranging gives

s~(fk)  =  
x̂kT  C x̂k

–1 x̂k

x̂kT  C x̂k
–1 x̂k  +  r T  P  r  

  =  
1

1  +  
rT  P  r

x̂kT  C x̂k
–1 x̂k

 , (5.35)

where the ratio of two quadratic forms in the denominator has the following Fisher

distribution
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rT  P  r
x̂kT  C x̂k

–1 x̂k
  →  

υ
2 Fυ,2; α . (5.36)

where “→” means “is distributed as”, and υ and 2 are the degrees of freedom of the

numerator and denominator, respectively.  Note the use of the α probability level instead of

1–α.  This is because of the inverse relation between this F statistic and the spectral value

(for which we want the 1–α probability level).  Given the distribution of the ratio of the

quadratic forms in eqn. (5.35), the distribution of the normalized spectral value is then (cf.

Steeves [1981, eqn. (3.19)])

s~(fk)  →   


 
1 + 

υ
2 Fυ ;2; α

–1
 . (5.37)

A statistical test of the null hypothesis Ho: s~(fk) = 0 can then be made using the decision

function

s~(fk)  

 î

  ≤   


 
1 + 

υ
2 Fυ ;2; α

–1
; accept Ho: s(fk) = 0 

 >   


 
1 + 

υ
2 Fυ ;2; α

–1
; reject Ho 

 . (5.38)

The above Fisher distribution can be simplified further using the inverse relation for

the Fisher distribution [Freund, 1971],

Fυ,2; α  =  F2,υ; 1–α–1 . (5.39)

When the first degree of freedom is two, this can be approximated by [Steeves, 1981],

F2,υ; 1–α  ≈  
υ
2 ( )α –2/υ  – 1  . (5.40)
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This results in a statistical test of the null hypothesis Ho: s~(fk) = 0 using the decision

function

s~(fk)  

 î

  ≤  ( )1 + ( )α –2/υ  – 1

–1 –1
; accept Ho: s(fk) = 0 

 > ( )1 + ( )α –2/υ  – 1
–1 –1

; reject Ho 
 . (5.41)

The statistical tests for spectral values that account for the presence of any

deterministic model are exactly the same as above, except that the “reduced” observation

weight matrix P* is used in place of the actual weight matrix P in the computation of the

quadratic forms.

The above tests are the so-called “out-of-context” tests, which test the individual

spectral components out of context of the others being estimated (see Vaníc˘ek and

Krakiwsky [1986, p. 229-231]).  They are identical to those in Steeves [1981] and apply to

the independent estimation of the spectral components, but not to the estimation of all the

spectral values simultaneously.  In that case the “in-context” test should be used which

takes into consideration the estimation of the other spectral components.  Two approaches

can be used in this regard.  The simplest one is to use the simultaneous confidence region

for all m frequency components being estimated.  This gives the same test as in eqn. (5.41)

except that 2m degrees of freedom is used in place of 2.  However, this approach usually

results in too pessimistic (large) a limit to be any real value.  A better approach is to use the

relation between the simultaneous probability α for the joint test of all spectral components

together and the “local” probability αo for the test of each spectral component separately.

Following Miller [1966], the relation is given to first-order approximation by αo ≈ α/m.

The in-context test is then obtained by using αo in place of α in the above tests.  Note that

Press and Rybicki [1989], Press et al. [1992, p. 570] also use the in-context test based on
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simultaneous probability.  However, they incorrectly apply it to the testing of the

independently estimated spectral components, where the correlations among the different

frequency components is ignored.  The in-context test should only be used for the

simultaneous estimates of the spectral values, where the correlations among all the

frequencies used is accounted for.

5.7  Estimation Algorithms

As stated at the beginning of this chapter, there have been a variety of papers since

Vaníc̆ek, [1969a, 1971] describing the same least squares spectrum (independently

estimated spectral components) in slightly different forms; e.g., Lomb [1975], Ferraz-

Mello [1981], Scargle [1982], Horne and Baliunas [1986].  It can be shown, however, that

under the same assumptions all of these are identical to Vaníc˘ek's more general approach.

The differences are only the use of slightly different normalization methods and different

numerical methods for solving the normal equations.

In Vaníc̆ek [1969a], the direct inversion of the 2x2 normal equation matrix is

optimized by using an analytical expression.  In addition to being the fastest algorithm, it

also accounts for the presence of a priori deterministic models and includes various

trigonometric identities for greater efficiency, especially for equally spaced data.  Compared

to the FFT, however, the least squares transform and spectrum are computationally much

slower.  Unfortunately, a direct comparison of computational speed could not be made

because of the software used.  All tests were performed using the MATLAB software,

which has a built-in (compiled) FFT function optimised for speed whereas the least squares

spectrum algorithm was implemented as an external (interpreted) function.  Because

external functions execute much more slowly than built-in functions, no fair comparison

between the FFT and least squares algorithms could be made in MATLAB.  Nevertheless,
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when confronted with unevenly spaced data, the least squares method is the only correct

approach to use.

Lomb [1975] and Scargle, 1982] solve the normal equations using an

orthogonalization (diagonalization) procedure based on time shifting (a different time shift

is needed for each frequency).  This approach is slower than the direct analytical solution of

Vaníc̆ek.  It also does not account for the presence of any a priori models, except for a

mean.  Ferraz-Mello [1981] uses Gram-Schmidt orthogonalization to diagonalize the

normal equations.  Again, this procedures is slower than direct analytical inversion and

does not account for the presence of any a priori deterministic models.

Recently, Press and Rybicki [1989] have developed a novel approach to the fast

computation of a least squares spectrum.  It is based on the concept of “extirpolation” and

the use of the FFT.  Basically, extirpolation gives an equally spaced data series that, when

interpolated to the original times, gives back exactly the original data series.  This is also

called reverse interpolation.  The FFT is used to evaluate the evenly spaced (extirpolated)

sine and cosine summations in the time-shifting algorithm of Lomb [1975].  The original

extirpolation algorithm used two complex FFTs.  The more efficient algorithm uses the

same trigonometric identities used by Vaníc˘ek [1969a] to reduce the computations to only

one FFT.  The biggest disadvantage of this method is that it's limited to only the set of

“Fourier” frequencies due to the use of the FFT.  It is thus not possible to “zoom in” on

significant peaks to better resolve the frequency.  The FFT also requires 2n data points,

which necessitates zero-padding the data series.  As for the other algorithms, the presence

of a priori deterministic models cannot be accounted for.  Finally, the extirpolation accuracy

depends on the “oversampling factor” used in the extirpolation to generate many more data

points than the original data series.  Greater oversampling of the extirpolated series

provides better accuracy but results in more computations.  In spite of the above

limitations, this algorithms works very well and very fast (on the order of n logn, instead

of n2).
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Chapter 6
Stochastic Modelling of Observation Errors

6.1  Introduction

The weighted least squares estimation model allows for the stochastic modelling of

residual errors through the use of a fully populated covariance matrix.  This can be used to

account for those systematic effects that have not been modelled explicitly

(deterministically) in the design matrix for the least squares model.  The problem with

using fully populated covariance matrices in this manner is the difficulty in determining the

covariance or correlations among the observations in an objective way.

There are a few methods that can be used to determine the variance and covariance

each with their own advantages and drawbacks.  One of the most popular of these are the

methods of analysis of variance and variance-covariance component estimation.  The

“analysis of variance” (ANOVA) method (also called factor analysis in statistics) can be

found in most standard texts on statistics.  Geodetic applications of the technique are

described in detail by Kelly [1991] and in a series of articles by Wassef [1959; 1974;

1976].  Essentially the aim of the method is to divide the measurements into separate

groups (factors which contribute to the overall variation in the data) and to estimate the

variance components for each.  The difficulty in applying the method is in defining a

scheme of dividing the observations into separate groups which characterize some

behaviour of the systematic effect being modelled.  Often, the factors describing the

systematic effect cannot be so discretely defined, rather they are often of a continuous

nature that precludes lumping them together into separate and distinct groups.
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Variance-covariance component estimation, on the other hand, is based on

modelling deterministically the residual variation in the measurements.  The variances and

covariances are expressed in terms of linear models relating these components to various

factors describing the systematic effect.  The coefficients (variance and covariance

components) in the variance-covariance model are estimated together with the parameters in

a least squares solution.  The technique is described in detail in Rao and Kleffe [1988] and

has been applied to many geodetic problems (see, e.g., Grafarend et al. [1980], Grafarend

[1984], Chen et al. [1990]).  It can be shown that the analysis of variance method is just a

special case of this more general approach [Chrzanowski et al., 1994].  The problem with

applying the method is that the estimation of the variance-covariance model coefficients

usually needs to be iterated which can result in biased estimates of the variances and

covariances [Rao and Kleffe, 1988].  This can lead to negative variances, which is

unacceptable.

The approach taken here is to model any residual systematic effects remaining after

accounting for a deterministic model, using autocorrelation (ACF) or autocovariance

(ACvF) functions derived from a power spectral density function of the residuals.  This

idea was first proposed for geodetic applications by Vaníc˘ek and Craymer [1983a; 1983b]

and further developed by Craymer [1984].  To accommodate unevenly spaced data, a

general least squares transform is developed to determine the normalized power spectrum.

The inverse transform is then used to convert this to an ACF which is converted to an

ACvF.

6.2  Direct Autocovariance Function Estimation

The autocovariance function of an equally spaced data series l(ti) can be estimated

directly using the expressions given in Chapter 2.  This gives the sample autocovariance

function
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C(τm)  =  
1

n–m ∑
i=1

n–m

( )l(ti)–µ ( )l(ti+τm)–µ  , (6.1)

where m = τm/∆t is the so-called lag number and ∆t is the data series spacing.  Note that, as

in eqn. (2.20), the summation is divided by n–m rather than by n, in order to provide an

unbiased estimate of C(τm).  The biased estimate is obtained by dividing by n.

For unequally spaced data which are relatively homogeneously distributed, an

averaging procedure can be used.  In this approach the unevenly spaced lags are divided

into equally spaced lag intervals or bins, similar to the way in which histograms are

constructed.  All lags within the lag interval are summed together in (6.1) to give an

average autocovariance for the lag interval.  This method gives a smoothed estimate of the

autocovariance function.  The problem is that if the data have large gaps, the lag intervals

may need to be relatively large, resulting in degraded resolution.  See Vaníc˘ek and Craymer

[1983a;b] and Craymer [1984] for more details of this technique.

6.3  Autocovariance Function Estimation via the Spectrum

The autocovariance function for an evenly spaced data series can be most

conveniently derived from the power spectral density function using the Fourier transform.

As discussed in Section 3.4, the autocovariance function can be expressed as the Fourier

transform pair with the spectrum, and the autocorrelation function R(t) as the transform pair

with the normalized spectrum.  These expressions in terms of the spectrum are often used

as the basis for the efficient computation of autocovariance and autocorrelation functions of

evenly spaced data using the FFT.  It will also be used as the basis for developing

autocovariance functions for unevenly spaced data to provide objective a priori estimates of
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covariances and weights that account for residual systematic effects in least squares

modelling.

As mentioned in Section 3.4, care must be exercised to avoid any “wrap around” or

“end” effects when computing the autocovariance or autocorrelation function from the

spectrum.  This is most easily achieved by simply padding the data series with zeros out to

double the length of the original series.  Furthermore, this indirect estimation via the

spectrum provides the biased estimate of the autocovariance/autocorrelation function.  As

recommended by Bendat and Piersol [1971, pp. 312-314] and Priestley [1981, pp. 323-

324], this should be used in preference to the unbiased estimate because the biased one is a

positive definite function which generates a positive definite covariance matrix.  The

unbiased ACF and ACvF are not positive definite and result in singular covariance matrices

that are not suitable for generating weight matrices for least squares models.

6.4  Iteratively Reweighted Least Squares Estimation

The covariance matrix generated from the autocovariance function is used to

stochastically model the residual errors in the deterministic least squares model.  The basic

idea is to begin with some a priori estimate of the covariance matrix, usually a diagonal

matrix of known variances.  A least squares solution is obtained for the deterministic model

and the observation residuals provide an estimate of the random observation errors.  The

autocorrelation function is determined for these residuals in order to obtain a more realistic

estimate of the correlations among the random observations errors.  This autocorrelation

function is then used together with the a priori variances to generate a new covariance

function for the observations which is included in a new least squares solution for the

deterministic model and new estimate of the residual observation errors.  Another

autocorrelation function is then computed and the whole estimation process is repeated

(iterated) until the solution for the deterministic model and covariance matrix converge to a
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stable form.  This is referred to an iteratively reweighted least squares estimation and is

identical to the iterated MINQUE technique except that a deterministic model is used there

to model the variances and covariances (see Rao and Kleffe [1988]).  The procedure is

illustrated schematically in Figure 6.1.

Covariance Matrix
from A Priori Variances

Weighted Least Squares 
Solution for Deterministic Model

Weighted Least Squares 
Spectrum of Residuals

ACF from Inverse LS Transform 
of LS Spectrum

Full Covariance matrix using 
ACF and A Priori Variances

Solution 
Converged?

No

End

Yes

Figure 6.1:  Iteratively reweighted least squares estimation process.
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Chapter 7
Numerical Tests

7.1  Introduction

In this chapter, various numerical tests of the least squares transform and spectrum

are given under a variety of different situations.  Throughout, the following terminology

and notation is used:

“Fourier” frequencies Set of integer multiples of the fundamental frequency

LST Least squares transform

ILST Inverse least squares transform

LSS Least squares spectrum

Independent LSS/ILST Independent estimation of the LSS or ILST frequency

components

Simultaneous LSS/ILSTSimultaneous estimation of the LSS or ILST frequency

components

Unweighted LSS/ILST Estimation of LSS or ILST using equally weighted

observations (no weight matrix P used)

Weighted LSS/ILST Estimation of LSS or ILST using weighted observations

(weight matrix P used)

ACF Autocorrelation function

Indirect ACF Indirect estimation of the autocorrelation function via the

ILST or the LSS
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The tests presented here are based on simulated data using a pseudo-random

number generator for normally distributed observation errors and uniformly distributed,

unequally spaced times.  Unless otherwise stated, these tests use a deterministic model

consisting of a periodic trend with period 10 (frequency 0.1 Hz).  All computations were

performed using the MATLAB numerical and graphical software system.

Tests were performed to ascertain the effects of the following on the LSS and

indirect estimation of the ACF:

•  random observation errors

•  correlations among observations

•  random sampling (unequally spaced data)

•  frequency selection

•  deterministic model

•  non-stationary random errors (random walk)

The effects on the LSS and ACF were determined by comparing the results to the known

theoretical form for both functions.

7.2  Effect of Random Observation Errors

To study the effect of random observation errors, three data series of 100 equally

spaced points were used.  Each was composed of a periodic trend of amplitude 1 and

period 10, i.e., frequency 0.1 Hz.  The first series contained no observation errors.  The

second series contained normally distributed random errors with a standard deviation of

1/3.  The third data series contained normally distributed random errors with a standard

deviation of 2/3.  The three data series are plotted in Figure 7.1.

The least squares spectra (for “Fourier” frequencies) of the three data series are

given in Figure 7.2.  Both the independently and simultaneously estimated spectral values
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will be identical in these tests because the data are equally spaced, equally weighted and the

set of “Fourier” frequencies is used.  The effect of random observation errors on the LS

spectrum is to reduce the magnitude of the largest spectral peak, which in all cases is

correctly located at the frequency of the periodic trend.  The larger the random error, the

greater the reduction in the spectral value for the significant peak.  The magnitude of the

reduction in the peaks is equivalent to the inverse of the square of the signal to noise ratio

(ratio of amplitude of periodic signal to standard deviation of noise).

The direct estimates of the autocorrelation functions for the three data series are

given in Figure 7.3.  These are unbiased estimates and were estimated using eqns. (2.20)

and (2.12).  The ACFs all exhibit the expected cosine form.  However, the functions all

display correlations larger than one at large lags, typical of the unbiased form.  As

explained in Section 3.4, this so-called “wild” behaviour is the main reason the unbiased

estimate is not used.

The biased estimates of the autocorrelation functions are given in Figures 7.4 to 7.6

for the three data series, respectively.  Both the direct estimate and the indirect estimate via

the inverse LS transform of the LS spectrum are given as well as the difference between the

two.  The indirect estimates were derived following the procedure described in Section 6.3,

where zero-padding is used to avoid any “wrap around” effects (see Section 3.4).  As

expected, all three ACFs exhibit the correct sinusoidal shape and tapering characteristic of

the biased estimate.  However, there is a reduction in the magnitude of the correlation as the

random error increases.  Although the differences between the direct and indirect estimates

get larger in direct proportion to the magnitude of the random error, they are negligible for

all three data series.
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Figure 7.1:  Periodic time series of 100 equally spaced points and period 10 (frequency

0.1 hz) with no observation errors and with normally distributed random errors (standard

deviations 1/3 and 2/3).
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Figure 7.2:  Least squares spectra of time series of 100 equally spaced points and period

10 (frequency 0.1) with no observation errors and with normally distributed random errors

(standard deviations 1/3 and 2/3).  The horizontal line indicates the 95% confidence limit

for statistically significant spectral peaks.
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Figure 7.3:  Direct estimation of unbiased autocorrelation functions of time series of 100

equally spaced points and period 10 (frequency 0.1) with no observation errors and with

normally distributed random errors (standard deviations 1/3 and 2/3).
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Figure 7.4:  Comparison of direct and indirect (via LS spectrum) estimation of biased

autocorrelation functions of time series of 100 equally spaced points and period 10

(frequency 0.1) with no observation errors.
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Figure 7.5:  Comparison of direct and indirect (via LS spectrum) estimation of biased

autocorrelation functions of time series of 100 equally spaced points and period 10

(frequency 0.1) with random observation errors (standard deviation 1/3).
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Figure 7.6:  Comparison of direct and indirect (via LS spectrum) estimation of biased

autocorrelation functions of time series of 100 equally spaced points and period 10

(frequency 0.1) with random observation errors (standard deviation 2/3).
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7.3  Effect of Correlated Random Errors

To test the effect of correlations among the random observation errors, it is

necessary to generate a correlated set of errors ε.  This can be accomplished by finding a

transformation L of a set of uncorrelated random errors η with diagonal covariance matrix

Cη, which, by the law of propagation of errors, gives a set of correlated random errors ε

with the desired covariance matrix Cε, i.e., for identically normally distributed random

errors (Cη=I),

Cε  =  L Cη LT  =  L LT . (7.1)

The above decomposition (factorization) of a matrix into another matrix times the transpose

of itself is known as Cholesky decomposition, where L is a lower triangular matrix called

the Cholesky triangle or square root [Dahlquist and Björck, 1974, p. 158; Golub and Van

Loan, 1983, pp. 88; Press et al., 1992, pp. 89].  Using the Cholesky triangle, the

transformed set of correlated random errors can then be obtained from

ε  =  L η . (7.2)

In the following tests, the periodic data from the previous section is used with a

standard deviation of 2/3.  A fully populated covariance matrix for the observations was

constructed from the autocorrelation function

ρ(ti,tj)  =  e–∆t2/25 . (7.3)

where ∆t = tj – ti = 1.  A plot of the time series and correlation function are given in Figure

7.7 using a standard deviation of 2/3.
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Three different types of least squares spectrum were computed for this data series:

(1) the unweighted independent estimate, (2) the weighted independent estimate, and (3)

the weighted simultaneous estimate.  The different spectra all provide good results, each

clearly identifying the periodic component correctly at frequency 0.1 (see Figure 7.8).

Although the unweighted independent LS spectrum displays slightly larger noise at the

lower frequencies than the other spectra, the noise is well within the 95% confidence

interval.  The weighted LS spectra provide almost identical results, although the peak at

frequency 0.1 is slightly larger.  These results verify the claim by Steeves [1981] that

correlations among the observations have little effect on the resulting spectra.

The direct and indirect (via the unweighted inverse LS transform of the unweighted

LS spectrum) estimates of the autocorrelation function are given in Figure 7.9.  The two

ACFs are identical and agree well with the expected form for the periodic data set (see

Figure 7.6), although those here display slightly larger correlations at lower frequencies

due to the a priori correlation function.  The weighted indirect ACFs are shown in Figure

7.10.  Both exhibit the correct shape for the periodic signal, but that based on the

independently estimated spectrum gives larger correlations than for the unweighted

estimates.  On the other hand, the ACF based on the simultaneously estimated spectrum

displays much smaller correlations and thus gives the poorest estimate of the ACF.

Another check on the estimation of the autocorrelation functions was performed by

computing the ACFs only for the correlated errors (the periodic signal was not included).

The ACFs should agree closely with the a priori one used in constructing the correlated

errors (see bottom plot of Figure 7.7).  Figure 7.11 shows both the direct and indirect (via

the unweighted inverse LS transform of the unweighted LS spectrum) estimates of the

biased autocorrelation function.  Both are identical and agree well with the theoretical

correlation function in Figure 7.7.  The departures from the true ACF are due to the

limitations of the random number generator.  The indirect weighted estimates via the

inverse weighted LS transform of both the independently and simultaneously estimated LS
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spectra are given in Figure 7.12.  All these ACFs display the same shape, except for the

weighted simultaneous estimate which has slightly larger correlations.
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Figure 7.7:  Periodic time series of 100 equally spaced points with period 10 (frequency

0.1) and correlated random observation errors (standard deviation 2/3).
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Figure 7.8:  Unweighted and weighted LS spectra (both independent and simultaneous

estimation) for periodic time series of 100 equally spaced points with period 10 (frequency

0.1) and correlated random observation errors (standard deviation 2/3).



99

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

Time Lag

C
or

re
la

tio
n

Direct Unweighted ACF (Biased)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

Time Lag

C
or

re
la

tio
n

Indirect ACF (Biased) via Unweighted Independent LSS

Figure 7.9:  Direct and unweighted indirect (via unweighted inverse transform of

unweighted LS spectrum) estimates of biased autocorrelation function for periodic time

series of 100 equally spaced points with period 10 (frequency 0.1) and correlated random

observation errors (standard deviation 2/3).
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Figure 7.10:  Weighted indirect estimates of biased autocorrelation function via weighted

inverse LS transform of both independent and simultaneously estimated LS spectra for

periodic time series of 100 equally spaced points with period 10 (frequency 0.1) and

correlated random observation errors (standard deviation 2/3).
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Figure 7.11:  Direct and unweighted indirect (via unweighted inverse transform of

unweighted LS spectrum) estimates of biased autocorrelation function for time series of

100 equally spaced points with correlated random observation errors only (standard

deviation 2/3).
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Figure 7.12:  Weighted indirect estimates of biased autocorrelation function via weighted

inverse LS transform of both independent and simultaneously estimated LS spectra for time

series of 100 equally spaced points with correlated random observation errors only

(standard deviation 2/3).
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7.4  Effect of Random Sampling

Random observation sampling results in an unequally spaced data series in which

case the conventional Fourier expressions are no longer valid.  This is the primary reason

for using the least squares transform and spectra.  To test the effect of random sampling on

the LS transform and spectra, unequally spaced periodic data series were constructed.

Different lengths of data series were used to examine the effect of the finiteness and

sparseness of the data.  The unequally spaced time arguments were created using a pseudo-

random number generator with a uniform distribution (see Press et al. [1991] for an

explanation of the uniform distribution).  Three unequally spaced (errorless) data sets with

a periodic trend of period 10 (frequency 0.1 Hz) were generated with 100, 60 and 20

points (see Figure 7.13).

The spectra were computed independently for integer multiples of the fundamental

frequency (0.01 hz), up to frequency 0.5 hz.  Because the Nyquist frequency is undefined

for randomly data spacing, the spectra were computed only up to an arbitrarily selected

frequency of 0.5 hz.  The absence of a Nyquist frequency is illustrated in Figure 7.14a,

which gives the spectra of the data series up to maximum frequencies of 0.5, 6 and 25 hz.

There is no evidence of a mirror image in these spectra that would indicate the presence of a

possible Nyquist frequency.  Also, because of the large correlations between the frequency

components, it is not possible to estimate the simultaneous inverse LS transform due to ill-

conditioning.  This will be investigated further in the next section.

The spectra for the three data series are given in Figure 7.14b.  The effect of

unequal sampling on the independent LS spectrum is negligible.  The spectral component at

frequency 0.1 is correctly located with a normalized spectral value of 1.  The correct

location of the spectral peak is also unaffected by the finiteness or sparseness of the data

series.  Even with only 20 points the LS spectrum is practically unchanged, except for

greater noise in the spectrum and a larger 95% confidence level.
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The indirect (biased) estimates of the autocorrelation function via the independent

LS spectrum are given in Figure 7.15 for the three data series.  Zero-padding was used

prior to computing the spectrum to which the inverse LS transform was applied.  All ACFs

display the correct shape and tapering for the periodic signal in the data series.  The effect

of the random sampling is to reduce the magnitude of maximum correlation for non-zero

lags (compare top plot in Figure 7.15 with Figure 7.4).  The maximum correlation is about

half of the theoretical ±1 value for all plots; i.e., the magnitude does not change as a

function of the finiteness or sparseness of the data.  The correct shape of the theoretical

ACF is also preserved even with only 20 points.

For comparison, Figure 7.16 gives direct estimates of the autocorrelation functions

computed for the same unequally spaced data series using the interval averaging method

described by Vaníc˘ek and Craymer [1983a; 1983b] and Craymer [1984].  All ACFs display

the same periodic component as the indirect estimates (overlay Figure 7.16 with Figure

7.15).  However, the direct ACF for the 100 point series clearly does not follow the

expected tapered shape (compare with Figure 7.4).  Instead, the correlations at both small

and large time lags are significantly attenuated, while correlations at the middle lags are

equal to one.  It appears more like a modulated unbiased ACF.  The other ACFs agree well

with both the indirect estimates; they are closer in magnitude to the theoretical ACF

(compare with Figure 7.4).
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Figure 7.13:  Periodic time series of different lengths of randomly spaced points

(uniformly distributed) with period 10 (frequency 0.1) and no random observation errors.
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Figure 7.14a:  LS spectra (independently estimated frequency components) up to

different maximum frequencies for periodic data series of unequally spaced points with

period 10 (frequency 0.1) and no random observation errors.
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Figure 7.14b:  LS spectra (independently estimated frequency components) for different

lengths of periodic data series of unequally spaced points with period 10 (frequency 0.1)

and no random observation errors.
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Figure 7.15:  Indirect estimates (via unweighted inverse LS transform of unweighted LS

spectrum) of biased autocorrelation functions for different lengths of periodic data series of

unequally spaced points with period 10 (frequency 0.1) and no random observation errors.
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Figure 7.16:  Direct estimates (via interval averaging) of biased autocorrelation functions

for different lengths of periodic data series of unequally spaced points with period 10

(frequency 0.1) and no random observation errors.
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7.5  Effect of Frequency Selection

The effect of different selections of frequencies for the simultaneous LS spectrum

was also examined.  Note that frequency selection only affects the simultaneous estimation

of the spectral components.  It has no effect on the independently estimated LS spectrum

where each spectral component is treated out-of-context of the others (no correlations arise)

and any set of frequencies may be used to correctly locate the significant spectral peaks in a

data series, within the limitations of the sampling theorem (see Section 5.3).  This

effectively provides a continuous spectrum, although spectral leakage may affect the result.

The significant spectral components can then be used in the indirect estimation of the ACF

via the simultaneously estimated LS transform or in an improved deterministic model.

On the other hand, the selection of frequencies is of critical importance for the

simultaneously estimated LS spectrum.  In this case the correlations among the spectral

components must be carefully considered, otherwise ill-conditioning in the normal

equations for the simultaneous solution of all spectral components can produce completely

wrong results.  For example, consider the same data series used in the previous section

(top plot in Figure 7.13), containing 100 unequally spaced (uniformly distributed) points

with a periodic trend of period 10 (frequency 0.1 Hz) and no random errors.  Using the

entire set of 50 “Fourier” frequencies in the simultaneous LS spectrum, results in an ill-

conditioned solution.  The resulting spectrum fails to detect the periodic trend at frequency

0.1 hz even with no random errors present (see top plot in Figure 7.17).

The correlations among the frequencies can be reduced and the ill-conditioning in

the spectral transform removed by decreasing the frequency sampling to only every other

frequency; i.e., 25 of the original set of 50 frequencies.  Although the periodic component

is now visible in the simultaneous LS spectrum, it is still relatively small and only just

statistically significant (see middle plot in Figure 7.17).  This is improved further by taking
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every 5th frequency so that only 10 of the original 50 frequencies are used.  The spectral

peak at 0.1 is now highly significant.

The same behaviour is also displayed by the indirect estimate of the autocorrelation

function.  Note, however, that the original data series needs to be zero-padded to avoid

“wrap around” effects in the ACF.  This doubling of the series length results in a

fundamental frequency that is half of that for the original series and twice as many

frequencies.  This results in even more severe ill-conditioning and a completely erroneous

ACF where correlations are much greater than 1 (see top plot in Figure 7.18).  Decreasing

the frequency sampling to only 50 frequencies improves the ACF but there are still some

correlations greater than 1 (see middle plot of Figure 7.18).  The situation is improved

when only 10 frequencies are used.  The ACF has the correct cosine form and the

maximum correlations are only slightly larger than 1 (they could be truncated to 1 in

practice).

The problem with decreasing the frequency sampling is that some peaks may be

missed.  Clearly, great care must be exercised when selecting the frequencies to use with

the simultaneous estimation of the LS spectrum and the inverse LS transform.  Note that by

reducing the number of simultaneously estimated frequencies, one is approaching the

method of independent estimation of the spectral components (the extreme or limiting case

of reducing the number of frequencies).

A better approach may be to instead search for and use only statistically significant

spectral components from the independent estimation of the LS spectrum.  These

frequencies can then be used in a simultaneous estimation of the LS spectrum and in the

simultaneous inverse LS transform for the indirect ACF.  The results following this

procedure are illustrated in Figures 7.19 and 7.20 for a randomly sampled data series with

two periodic components (frequencies 0.1 and 0.25 hz) and no random errors.  The

independent estimation of the LS spectrum correctly identifies the two periodic components

as shown in Figure 7.19.  Using only these significant periodic components in the
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simultaneous estimation of the spectrum and the subsequent simultaneous inverse

transform gives an indirect ACF that agrees with the theoretical form of the unbiased, rather

than the biased, ACF, rather than the biased  as shown in Figure 7.20.  On the other hand,

the ACF derived from the inverse transform of the entire independently estimated LS

spectrum provides the expected biased form ACF.  It appears that reducing the number of

frequencies in the inverse transform gives an ACF that more closely agrees with the

unbiased estimate.  The biased ACF can be obtained by simply using n in place of the

divisor (n–k)  in the expression for the unbiased ACF in eqn. (2.20).



113

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

S
pe

ct
ra

l V
al

ue
Weighted Simultaneous LS Spectrum (Normalized) - 50 Frequencies

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

S
pe

ct
ra

l V
al

ue

Weighted Simultaneous LS Spectrum (Normalized) - 25 Frequencies

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

S
pe

ct
ra

l V
al

ue

Weighted Simultaneous LS Spectrum (Normalized) - 10 Frequencies

Figure 7.17:  LS spectra for different sets of simultaneously estimated frequencies for

periodic data series of 100 unequally spaced points with period 10 (frequency 0.1) and no

random observation errors.
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Figure 7.18:  Indirectly estimated LS autocorrelation functions via the LS spectrum using

different sets of simultaneously estimated frequencies for periodic data series of 100

unequally spaced points with period 10 (frequency 0.1) and no random observation errors.
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Figure 7.19:  Periodic time series of randomly spaced points with frequencies 0.1 and

0.25 hz and no random observation errors (top), and independent estimation of the LS

spectrum (bottom).
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Figure 7.20:  Indirectly estimated ACF via the inverse LS transform of the independent

LS spectrum using all frequencies (top) and of the simultaneous LS spectrum using only

the two significant spectral peaks at 0.1 and 0.25 hz (bottom).
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7.6  Effect of Deterministic Model

The effect of the deterministic model on the LS spectrum and indirectly estimated

autocorrelation function is to absorb any spectral components that are highly correlated with

the deterministic model.  These spectral components are usually at the lower frequencies,

unless some high frequency periodic trends are included in the deterministic model.  The

deterministic model is accommodated by accounting for its effect within the estimation of

the LS spectrum and inverse LS transform following the approach described in Chapters 4

and 5.

To test the effect of a deterministic linear trend model, a 100 point equally spaced

data series consisting of a quadratic trend (1 + 0.02 t + 0.00005 t2) and a periodic residual

trend of frequency 0.01 hz was generated with no random errors (see top plot in Figure

7.21).  The quadratic trend will tend to alias as a long period trend which may result in

erroneous estimates of the spectrum of the residuals if the correlations with the quadratic

model are not accounted for.  This is evident in the middle plot of Figure 7.21, where the

LS spectrum displays a peak at 0.02 hz while the actual periodic signal should be at 0.01

hz.  There is also some spectral leakage into the neighbouring frequencies at 0.01 and 0.03

hz.  Accounting for the correlations with the deterministic model results in a spectrum that

correctly identifies the 0.01 hz peak and eliminates the spectral leakage (bottom plot in

Figure 7.21).
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Figure 7.21:  Quadratic trend time series with periodic component (frequency 0.01 hz)

and no random errors (top); LS spectrum of residuals from quadratic trend model (middle);

LS spectrum accounting for effects of quadratic model (bottom).
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7.7  Effect of Non-Stationary Random Errors (Random Walk)

Another kind of correlated error are non-stationary random errors.  One example of

this is the simple random walk model where the error εi at time ti is the accumulation of a

white noise process [Papoulis, 1965]; i.e.,

εi  =  ∑
j=1

i

ηj , (7.4)

where the ηi are normally distributed random variables with zero mean.  One such equally

spaced random walk data series with a unit standard deviation is displayed in Figure 7.22

(top plot).  This 100 point data series is actually a evenly sampled subset (every fifth point)

of a much larger 500 point random walk data series using a white noise process with unit

standard deviation.  The theoretical spectrum for such a process is inversely proportional to

the square of the frequency [Zhang et al., 1997].  The computed LS spectrum is given in

the middle and bottom plots of Figure 7.22.  The bottom plot uses a log scale for both axes

and exhibits a linear trend with a slope of about –2 corresponding to the expected f–2

relation for a random walk model.  The direct and indirect autocorrelation functions are

given in Figure 7.23.  The indirect estimate via the LS spectrum (zero-padding is used)

agrees well with the direct estimate.  The differences between them shown in the bottom

plot of Figure 7.23 increase in direct proportion to the lag.  The indirect ACF departs from

the direct ACF to about 0.5 at the highest lag.

To test the effect of the data sampling, an unevenly spaced random walk data series

was generated by randomly sampling the same 500 point random walk series used above

(see Figure 7.24).  (A uniform random number generator was again used to generate the

random selection of 100 points; see Section 7.4.)  The LS spectrum is given in the bottom

two plots.  The effect of the random sampling is to flatten out the spectrum at the higher
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frequencies.  The inverse square frequency relation only holds at the lower frequencies.

This behaviour was also found by Zhang et al. [1997].  The indirect estimate of the

autocorrelation function via the independent LS spectrum (with zero-padding) is also

significantly affected by the random sampling (see Figure 7.25).  It now drops off much

more rapidly in comparison to the direct estimate in Figure 7.23).



121

0 50 100 150 200 250 300 350 400 450 500
-10

-8

-6

-4

-2

0

2

Time

V
al

ue
Random Walk (Equally Spaced Times) - 100 Points

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

S
pe

ct
ra

l V
al

ue

Independent LS Spectrum (Normalized) - Random Walk

10-3 10-2 10-1
10-5

100

Log Frequency (Hz)

Lo
g 

S
pe

ct
ra

l V
al

ue

Independent LS Spectrum (Normalized) - Random Walk

Slope = -1.741

Figure 7.22:  Evenly sampled 100 point random walk time series (standard deviation 1)

(top) and its corresponding LS spectrum.
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Figure 7.23:  Direct (top) and indirect (bottom) autocorrelation functions for 100 point

random walk data series.
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Figure 7.24:  Unevenly sampled 100 point random walk time series (top) and its

corresponding LS spectrum.
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Figure 7.25:  Indirect estimate of autocorrelation via the independently estimated LS

spectrum for the unevenly sampled 100 point random walk time series.
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Chapter 8
Some Applications in Geodesy

8.1  Introduction

There have been many applications of time series analysis in geodesy to the study

of tide gauge data, gravity data and geodynamics.  In particular, the method of least squares

spectral analysis has been applied to studies of the Earth-pole wobble by Vaníc˘ek [1969b]

and Rochester et al. [1974].  However, there have been few applications of time series

analysis techniques to other kinds of geodetic data.  The few studies employing these

techniques have been mostly applied to levelling data (see, e.g., Vaníc˘ek and Craymer

[1983a, 1983b], Craymer [1984], Vaníc˘ek et al. [1985], Craymer [1985], Craymer and

Vaníc̆ek [1985, 1986, 1990]).  More recently time series analysis techniques have also

been applied to electronic distance measurement (EDM) data by Langbein et al. [1990] and

Langbein and Johnson [1997], and to Global Positioning System (GPS) data by El-

Rabbany [1994], King et al. [1995] and Zhang et al. [1997].  In El-Rabbany [1994], only

standard Fourier (and FFT) methods in the equally spaced time dimension are considered.

The study by King et al. [1995] also assumed equally spaced time arguments.  Only the

recent work of Langbein and Johnson [1997] and Zhang et al. [1997] have considered

unequally spaced data.  In particular, Zhang et al. [1997] have used the periodogram as

defined by Scargle [1982], which can be shown to be a special case of Vaníc˘ek’s original

method (see Section 5.7).  Estimation of covariance and correlation functions for stochastic

modelling of errors, however, was still based on traditional methods assuming equally

spaced data.
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The studies by Craymer et al. have applied time series techniques more generally to

arguments that are not necessarily equally spaced in order to search for systematic errors

that depend on these quantities.  All these studies have used the unweighted form of the

independently estimated least squares spectrum to search for systematic errors in precise

levelling.  Here, the weighted form of the least squares approach to spectrum and

autocovariance function estimation are applied to the stochastic modelling of errors using

two real examples:  estimation of the deformation of an EDM baseline across the San

Andreas fault using the same data as in Langbein and Johnson [1997], and GPS single

point positioning using pseudo-range observations (the typical positioning data used by

most handheld GPS receivers).

8.2  EDM Deformation Measurements

Electronic distance measurements (EDM) is the most precise distance measuring

technique at close to moderate ranges (about 1 km).  The most accurate EDM instruments,

such as the Kern ME5000, can routinely obtain submillimeter repeatability.  The most

accurate EDM instrument is based on dual frequency ("two-colour") lasers (see Slater and

Huggett [1976]).  The two measuring frequencies allow one to more directly determine and

correct for the refraction effect (which is a function of the frequency of the laser).  For this

reason, two-colour EDM instruments are often used in southern California by Earth

Scientists to monitor the crustal deformation around the San Andreas fault (see, e.g.,

Savage and Lisowski [1995]).

Here the least squares spectral analysis technique is applied to the same data used

by Langbein and Johnson [1997] to search for possible systematic signals in their two-

colour EDM data.  Traditional spectral techniques were used by Langbein and Johnson for

this purpose.  Because the observations are at irregular time intervals, some necessary

approximations, specifically interpolation, had to be made to estimate their spectra. No
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such approximations are needed for the least squares technique which is an ideal application

of this method.

The data used in this analysis are part of the Pearblossom network, near Palmdale

in southern California and were provided by J. Langbein (personal communication, 21

February 1997) of the U.S. Geological Survey, Menlo Park, CA.  The network is radial in

design, where all distances (baselines) are measured from Holcomb to twelve surrounding

monuments at distances from 3 to 8 km (see Figure 8.1).  Only the Holcomb-Lepage

baseline with a nominal distance of 6130 m was used in this analysis.  Initially the baseline

measurements at Pearblossom were made several times per week for 4 years (1980-1984).

Since about 1987 they have been reduced to about once every 3 or 4 months, although each

baseline is measured twice during each network re-observation.  In addition, different

instruments and monuments have been used over the years and there have been a number

of earthquakes.  Consequently, the data have been reduced to changes in baseline length

from the nominal value and grouped into sets sharing common EDM instrumentation and

monuments between earthquakes.  The time series of the Lepage baseline measurements is

given in Figure 8.2.  Note the different offsets between each data group and the consistent

linear trend (expansion of the baseline) for all groups.  The different datum offsets

represent biases in the measured differences due to the different instrument/monument

combinations or the occurrence of earthquakes.  It was also noted that several observations

were repeated within a couple of hours of each other (two within 15 minutes!).  To avoid

excessively large temporal correlations under these circumstances, only the second (repeat)

observations were used.

The different biases between measurement groups necessitate accounting for a

separate datum offset for each.  Likewise, the consistent trend for all groups necessitates

modelling a common linear trend for all groups.  Least squares estimates of these model

parameters are given in Table 8.1, where the datum offsets are all referenced to the first

measurement epoch.  The 1.72 ± 0.07 mm/year linear trend (extension of the baseline)



128

Figure 8.1:  Location of the Pearblossom network in California used to measure crustal

deformation with a two-colour EDM instrument and location of the Holcomb-Lepage

baseline spanning the San Andreas fault running through this network [after Langbein and

Johnson, 1997, Figure 1].
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Figure 8.2:  Changes in length of Holcomb-Lepage baseline.  Different observation

groups are denoted by different symbol colour/type combinations.
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Table 8.1:  Least squares estimates of linear trend and datum

offsets.

Estimate Std t Statistic

Offset #1 (mm) -2.3 0.1 22.4

Offset #2 (mm) -3.2 0.2 17.0

Offset #3 (mm) -4.2 0.2 17.5

Offset #4 (mm) -4.8 0.5 9.5

Offset #5 (mm) -15.4 0.4 35.0

Offset #6 (mm) -20.1 0.7 27.6

Offset #7 (mm) -7.1 0.4 20.3

Offset #8 (mm) -10.5 0.5 19.5

Linear Trend (mm/yr) 1.72 0.05 34.4

agrees well with the 1.67 value determined by Langbein and Johnson [1997].  In the least

squares solution, the data were weighted using standard deviations provided by J.

Langbein (personal communication, 21 February 1997).  All estimated model parameters

were statistically significant at any reasonable significance level and were removed from the

data leaving the residual series in Figure 8.3.  It is this data series that is used in the

following spectral analysis.

Before performing a spectral analysis, appropriate frequencies (i.e., frequency

spacing and range) must be chosen.  The total length of the data series defines the smallest

frequency spacing that can be resolved without  spectral “leakage” from adjacent peaks.

The frequency interval (∆f) is defined by

∆f  =  fo  =  
1
To

 , (8.1)
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Figure 8.3:  Comparison of residual baseline length changes after removal of estimated

distance offsets for each observation group and a common linear trend.  Different

observation groups are denoted by different symbol colour/type combinations.

where To = (tmax–tmin) is the fundamental period and fo is the fundamental frequency (see

Section 3.2, eqn. (3.17)).  The largest frequency that can be determined by the data series

is defined by the Nyquist frequency fN.  It corresponds to the time interval over a triplet of

adjacent points, the minimum number of points for the unambiguous determination of a

periodic component.

The Nyquist frequency is not clearly defined for unevenly spaced data.  For evenly

spaced data, it is simply twice the time interval between any pair of adjacent points (i.e.,

twice the sampling interval ∆t).  The Nyquist frequency is then defined as fN = 1 / (2∆t)

(cf. Section 3.2).  This represents the largest frequency (smallest period) the data series is

capable of reliably estimating without aliasing effects.  For unevenly spaced data series, the

distribution of possible triplets of points can vary significantly and thus there is no well

defined Nyquist frequency present.  In theory, the highest frequency (that can be estimated

from a data series) will correspond to the smallest point triplet interval.  This interval

corresponds to the smallest period (maximum frequency) that can possibly be determined
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from the data series.  However, in practice, the spectra generally exhibit no mirror image

about this or any other frequency when the data are unevenly and randomly spaced.  The

exception is when dealing with data that are regularly spaced as multiples of some common

interval or evenly spaced except for gaps.

For the baseline length residuals in Figure 8.3, the variation in possible Nyquist

frequencies is illustrated in Figure 8.4 in terms of histograms of the lengths (time intervals)

of all possible point triplets (“Nyquist periods”).  The smallest triplet interval is about 1 day

corresponding to a Nyquist frequency of 1 cy/day.  This is because the measurements were

collected on a regular daily basis in the beginning.  In the following analyses, spectra are

therefore estimated at integer multiples of the fundamental frequency up to a Nyquist

frequency of 1 cy/day.
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Figure 8.4:  Histograms of lengths of point triplets (“Nyquist periods”) corresponding to

possible Nyquist frequencies.  Bottom plot gives a more detailed histogram at 1 day.
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In the estimation of the weighted least squares spectrum of the baseline length

residuals, any linear dependence (mathematical correlation) with the estimated deterministic

model (distances offsets and linear trend) are taken into account as described in Sections

4.5 and 5.5.  The spectrum is plotted in Figure 8.5 with respect to period instead of

frequency for easier interpretation.  There are clear significant spectral components at

periods of 2 and 8 years, in addition to several peaks at periods shorter than a year.  The

lower plot in Figure 8.5 enlarges the short period range and shows significant spectral

components at periods of about 1, 100, 150 and 200 days.
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Figure 8.5  Weighted least squares spectra (independently estimated) of baseline length

residuals from the deterministic model in Table 8.1.  The horizontal line is the 95%

confidence interval for detecting significant spectral values.
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The 8 year period is interesting because it is also visible in the residuals between

about 1984 and 1996 (see Figure 8.3).  It was thought that this might be due to a possible

additional datum offset at about 1988.7 in the data group between 1984.2 and 1992.5 (see

Figure 8.2).  Apparently, the instrumentation had been taken down and set up again at this

time but it was thought that this was done accurately so as not to produce any additional

bias in the distance measurements (J. Langbein, personal communication, 21 March 1997).

To check for the significance of such a bias, an additional datum offset was estimated at

1988.7.  This resulted in replacing the 1984.2-1992.5 group (with datum offset #5) with

two new groups; 1984.2-1988.7 with datum offset #5 and 1988.7-1992.5 with new datum

offset #5a.  Figure 8.6 shows these two new groups together with the time series of length

changes.  The least squares estimates of the model with the additional offset (#5a) are given

in Table 8.2 and the residual series after removing the model is given in Figure 8.7.  It was

found that the datum offsets #5 and #5a for the two new groups were statistically different

from each other at any reasonable significance level (t statistic = 7.0) and both biases were

therefore modelled in the following analyses.
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Figure 8.6:  Changes in length of Holcomb to Lepage baseline with additional datum

offset in observation group from 1984 to mid-1992.  Different observation groups are

indicated by different symbol colour/type combinations.
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Table 8.2:  Least squares estimates of linear trend and datum

offsets, including additional datum offset (#5a).

Estimate Std t Statistic

Offset #1 (mm) -2.0 0.1 19.3

Offset #2 (mm) -2.8 0.2 15.1

Offset #3 (mm) -3.6 0.2 15.5

Offset #4 (mm) -4.2 0.5 8.7

Offset #5 (mm) -15.3 0.4 36.9

Offset #5a (mm) -12.6 0.6 21.9

Offset #6 (mm) -17.1 0.8 21.3

Offset #7 (mm) -6.2 0.4 17.4

Offset #8 (mm) -9.2 0.5 17.0

Linear Trend (mm/yr) 1.51 0.06 26.9
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Figure 8.7:  Comparison of residual baseline length changes after removal of estimated

datum offsets, including additional offset, for each observation group and a common linear

trend for all groups.  Different observation groups are denoted by different symbol

colour/type combinations.
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The weighted least squares spectrum for the residuals after removing the estimated

deterministic model with the additional datum offset is given in Figure 8.8.  The most

obvious difference from the previous spectrum is that the peak at 8 years has now been

significantly reduced by the introduction of the additional datum offset in the model.

However, there still remains a large peak at about 1000 days (2.5 years) that accounts for

15% of the noise in the residual data series.  One possible explanation for such an

interannual behaviour may be an El Niño warming effect, which has frequencies of

between 2 and 4 years during this time period.  The warming effect is generally
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Figure 8.8  Weighted least squares spectra of baseline length residuals from the

deterministic model with additional distance offset.  The horizontal line is the 95%

confidence interval for detecting significant spectral values.
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accompanied by more frequent and severe wet weather which could cause monument

motion due to higher levels of ground water.  In addition, the “piling up” of warmer waters

in the eastern Pacific could also possibly led to additional crustal loading on the western

seaboard of North America.   The other significant peaks are at short periods and are more

clearly identified in the lower plot of Figure 8.8.  The largest peaks in this frequency range

are at about 150 and 210 days.  Curiously, these peaks are symmetrical (±30 days) about

small central peak with a semi-annual period (180 days).  According to Vaníc˘ek [1969b],

this corresponds to a possible modulation of a semi-annual period by a 30 day period.  The

semi-annual period may be related to weather.  For example, it is well known that southern

California generally has wet spring and fall and a dry summer and winter which could

conceivably cause a semi-annual period in the presence of ground water, thus possibly

contributing to a semi-annual behaviour of the motions of the geodetic monuments. The 30

day period may be related to lunar tidal effects.  Other peaks evident in the spectrum are at

period of about 110 days and 1 day.  The diurnal period is believed to be a consequence of

the usual diurnal behaviour of many systematic effects related to atmospheric conditions,

such as atmospheric refraction and heating (expansion) of the ground and monuments.  The

other notable feature of the spectrum is the absence of an annual period.  In fact, the

spectral value for this period is almost exactly zero, indicating that such a period had

already been removed from the data.  This was denied by Langbein (personal

communication, 21 March 1997), however.

Langbein and Johnson [1997] also argue for the presence of a random walk signal

in the residual data series.  Their spectrum for the Holcomb-Lepage baseline was computed

by first interpolating the unevenly spaced measurement series to an evenly spaced one by

averaging the data spanning 15-35 days either side of the missing point.  White noise was

also added to their interpolated value.  The power spectrum was then computed using the

FFT technique and plotted against the log of the frequency (see Langbein and Johnson

[1997, Figure 3]).  Their plots display a clear trend proportional to 1/f–2 as expected for a
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Figure 8.9  Semi-log (top) and log (bottom) plots of weighted least squares spectra of

baseline length residuals from the deterministic model with additional datum offset.  The

straight line represents a –0.60 linear trend at low frequencies (f<4x10–2).

random walk process (see Section 7.7).  For comparison, the weighted least squares

spectra is displayed in Figure 8.9 (top plot) using the same semi-log frequency plot.  No

clear 1/f–2 trend is apparent in this spectrum.  The spectrum is also displayed in Figure 8.9

(bottom plot) using a full log plot, where the presence of random walk noise should

produce a negative linear trend at low frequencies, as discussed in Section 7.7.  A small

negative trend (–0.60 ± 0.08) is visible in the least squares spectrum at frequencies below 4
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x 10–2 cy/day, which grows even smaller for higher frequencies.  However, this linear

trend is proportional to 1/f–0.6, rather than 1/f–2 as characteristic of a random walk process.

The autocorrelation function for the observations was indirectly estimated from the

inverse least squares transform of the independently estimated, weighted least squares

spectrum following the iterative procedure outlined in Section 6.4.  The a priori standard

deviations of the data were used to generate a priori observation weights..  The data series

was also zero-padded prior to computing the spectrum to avoid any wrap around effects in

the autocorrelation function as described in Section 3.4.  The main difficulty encountered

was with the large number of possible time lags for which the autocorrelation needed to be

computed.  For unevenly and randomly spaced data, there are in general as many different

lags as there are combinations of observation pairs.  For the Holcomb-Lepage distance

measurements, there are 361 observations for which there are 65,341 unique possible time

lags (number of off-diagonal elements in the observation covariance matrix).  It was

therefore impractical to compute the autocorrelation function for all lags at once.  Instead,

the ACF was computed separately for the lags corresponding to each row of the

observation covariance matrix.  Only the autocorrelations for the upper triangular part of

each row needed to be computed.  The entire correlation matrix R for the observations was

assembled in this way and the full covariance matrix C was obtained using the a priori

standard deviations of the observations (which were also used in the computation of the

weighted spectrum); i.e.,

C   =  S R S , (8.2)

where S is a diagonal matrix of the a priori standard deviations.  The autocorrelation

function for is plotted in Figure 8.10 together with an enlargement at short lags.  Although

there is a periodic behaviour in the enlarged plot, the magnitude of the correlations are small

even for short lags.  No explanation was found for small correlation “spikes”.
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Figure 8.10:  Indirect ACF, and enlargement at short lags, estimated from zero-padded

time series of Holcomb-Lepage length changes with additional datum offset.

The deterministic model of the datum offsets and linear trend were re-solved using

the new full covariance matrix.  The solution is given in Table 8.3 with the additional

datum offset (#5a) at 1988.7 included.  Because of the small correlations, there is little

difference in the estimated offsets and trend between this solution and that based on only a

diagonal covariance matrix (Table 8.2); all are statistically compatible.  However, in most

cases the estimated standard deviations of the offsets and trend are larger when the full

covariance matrix is used, indicating greater uncertainty in the estimated parameters.
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Table 8.3:  Least squares estimates of linear trend and datum

offsets, including additional offset (#5a) and using estimated full

observation covariance matrix based on computed ACF.

Estimate Std t Statistic

Offset #1 (mm) -1.7 0.2 7.8

Offset #2 (mm) -3.6 0.2 16.2

Offset #3 (mm) -4.6 0.2 20.8

Offset #4 (mm) -4.1 1.0 3.9

Offset #5 (mm) -14.0 0.3 51.3

Offset #5a (mm) -11.9 1.0 12.3

Offset #6 (mm) -16.2 1.3 12.4

Offset #7 (mm) -5.8 0.6 9.3

Offset #8 (mm) -8.9 1.2 7.4

Linear Trend (mm/yr) 1.44 0.09 16.3

Specifically, the standard deviation for the linear trend is increased from 0.06 to 0.09

mm/yr.  This is thought to be caused by a slight reduction in the overall redundancy due to

the linear dependence (mathematical correlations) among the observations.  There were also

some significant differences in the correlations between the estimated parameters.  For

example, the correlation between offsets #5 and #5a was reduced from 0.75 to 0.44.  This

caused the difference between the two offsets to become less statistically significant (t

statistic reduced from 7.0 to 2.4).  Nevertheless, the difference is still statistically

significant at the 95% confidence level, leading us to still consider the possibility that the

addition datum offset is real.
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Table 8.4:  Summary of estimated linear trends with and without

extra offset and correlations.

Linear Trend ± Standard Deviation
(mm/yr)

Without Corr. With Corr.

Without extra offset 1.72 ± 0.05 1.61 ± 0.07

1.67 [Langbein & Johnson]

With extra offset 1.51 ± 0.06 1.44 ± 0.09

Finally, the estimated linear trends (baseline expansion) are summarized in Table

8.4.  The main difference with the estimate from Langbein and Johnson [1997] is due to

the use of the additional datum offset #5a.  When the offset is not used, the estimated trend

with or without the observation correlations is not significantly different from Langbein and

Johnson's.  The differences are well within the 95% confidence intervals.  When the extra

offset is used, the linear trends are reduced by about  0.2 mm/y with or without the use of

correlations.  These are significantly different at the 95% confidence level.  The standard

deviation of the linear trend is only slightly increased by the additional offset.

The use of observation correlations derived from the estimated autocorrelation

function also reduces the magnitude of the linear trends both with and without the extra

offset.  However, the reduction is only about 0.1 mm/yr in  both cases and is not

statistically significant at the 95% confidence level.  The correlations also increase the

estimated formal standard deviations of the linear trends by about 50%, even though the

magnitude of the autocorrelation is relatively small.  This increase is thought to be due to a

implied reduction in the total redundancy (the existence of correlations means there are

effectively fewer truly independent observations).

Finally, it is noted that the estimated linear trend (1.44 ± 0.09 mm/yr) with the extra

offset and correlations agrees better with the linear trend (1.46 mm/yr) estimated by
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Langbein and Johnson for the baseline from station Holcomb to station Bird, which is in

the same general vicinity and direction as station Lepage (see Figure 8.1).  The basel