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Abstract. The Stokes-Helmert scheme for precise 
geoid determination requires that Helmert’s gravity 
anomalies are first evaluated on the earth surface. 
Subsequently, these anomalies must be continued 
downward onto geoid, where they make the 
boundary values for solving the geodetic boundary 
value problem. The anomalies are continued 
downward using the Poisson integral; this can be 
done because the Helmert disturbing potential is 
harmonic everywhere above the geoid. Thus, the 
difference between Helmert’s gravity on the earth 
surface and on the geoid can be computed and the 
mean vertical gradient of gravity between the earth 
surface and the geoid can be obtained. 
 In this contribution we show a map of the mean 
gravity gradient for one particularly interesting area 
of the Rocky Mountains. We also speculate if these 
values can be used to make orthometric heights 
more precise. 
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1 Introduction 
 
 
This investigation had started as a by-product of our 
work on the Stokes-Helmert theory of precise geoid 
determination. In this theory the Helmert’s gravity 
anomalies are evaluated on the surface of the earth 
from the expression (Vaní�ek et al., 1999, eqn. 37) 
 
 

∆ ∆g g DTE corrective termsh FA= + + _ , (1) 
 
 

where ∆ g FA  is the free-air gravity anomaly and 
DTE is the direct topographical effect. We can 
regard the addition of the DTE and corrective terms 
as a transformation of the free-air anomaly from the 

real space to Helmert’s space. It has been shown 

that the product r gh∆  is a harmonic function 
above the geoid in the Helmert’s space, i.e., above 
the Helmert co-geoid. In the geoid evaluation the 
Helmert anomaly is needed on the Helmert co-
geoid, thus it has to be “continued downward” from 

the surface of the earth. As the product r gh∆  is 
harmonic (it satisfies the Laplace equation) above 
the co-geoid in Helmert’s space, its downward 
continuation can be carried out by means of 
Poisson’s solution of the Dirichlet boundary value 
problem (Vaní�ek et al., 1996). From this 
downward continuation it is possible to evaluate the 

change of ∆ gh  between the co-geoid and the 
surface of the earth, i.e., within the topography. The 

vertical gradient of ∆ gh  within the topography is 
then obtained by dividing this change by 
topographical height. 
 
 
2 Vertical gradient of actual gravity 
within topography 
 
First, we realize that the free-air anomaly is defined 
by (Vaní�ek et al., 1999, eqn. 37) 
 
 

∆ g gFA
t t z= − −γ ,  (2) 

 
 
where gt is the observed gravity at the earth surface, 
γt-z is the normal gravity at the appropriate normal 
equipotential surface. The “appropriate” normal 
equipotential surface (surface of the same normal 
potential as the actual potential at the earth surface) 
is vertically displaced by Z from the earth surface. 
Substituting eqn. (2) into eqn. (1), omitting the 
small corrective terms and differentiating with 
respect to r we obtain 
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Now, in eqn. (3) the expression on the left hand side 
is estimated by the Poisson downward continuation 
mentioned above and the second term on the right 
hand side can be replaced by the normal gravity 
gradient at the reference ellipsoid which can be 
calculated from the mathematical expression for 
normal gravity. The last term on the right hand side 
has to be evaluated from topographical masses 
which represents the main challenge here. The first 
term on the right hand side is the vertical gradient 
of actual gravity within topography that we wish to 
compute. 
 
 
3 Evaluation of the vertical gradient of 
direct topographical effect 
 
 
The direct topographical effect is a radial derivative 
of the residual potential δV, which is defined in 
(Martinec and Vaní�ek, 1994, eqn. 1) as follows 
 
 

δV V Vt c= − ,   (4) 
 
 
where Vt is the gravitational potential of the 
topographical masses and Vc is the gravitational 
potential of the topographical masses condensed 
into infinitely thin layer placed on the geoid. 
According this definition we can write (Martinec 
and Vaní�ek, 1994, eqn. 2) 
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After applying the Newtonian potential theory and 
assuming the spherical approximation of the geoid 
one can derive analytical expression for DTE 
(Martinec, 1998, eqn. 3.45) 
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where G is the Newton’s gravitational constant, ρ  
is the mean topographical density between the geoid 
and the earth surface along the column of height H 
and σ is a surface density of the condensed layer. 

The expression L−1  is a reciprocal distance 
between the point of computation and point of 

integration. Symbol 
~L−1  is an abbreviation for an 

indefinite radial integral (Martinec, 1998, eqn. 3.35) 
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The expressions L−1 , 
~L−1  as well as their radial 

derivatives are possible to evaluate analytically (see 
eqn. 3.53, 3.54 in Martinec, 1998). If r=R+H in 
equation (6), the DTE on the earth surface is 
computed. If r=R, the DTE on the geoid is 
computed. Then the average gradient of the DTE 
between the geoid and the earth surface is possible 
to estimate by dividing the difference between DTE 
on the earth surface and DTE on the geoid by the 
topographical height H. This process yields 
questionable results when topographical heights are 
small because of the division by a small number. 
The limit of the vertical gradient for H → 0 in 
undefined. 
 
 
4 Numerical results 
 
 
For one particularly interesting area in the Rocky 
Mountains, bounded by parallels 42° < latitude < 
61° and meridians 225°< longitude < 257°, the 
following maps are shown in an appendix: 
 
• mean heights 5′ × 5′  
• mean Poisson downward continuation of 

Helmert’s gravity anomaly  
• mean gradient of the Helmert’s gravity 

anomaly  



• mean gradient of the Helmert’s gravity  
• mean gradient of the actual gravity  
 
The minimum and maximum values are shown in 
tab.1. 
 
Tab.1. Minimum and maximum values of particular 
quantities  
 

 1  2  3  4  5  
min -232.2 -0.09 -0.23 -0.40 -0.180 
max 133.7 0.07 -0.11 -0.23 -0.010 
mean -0.4 - - - -0.087 

 
In tab.1 the particular columns mean the following 
quantities: 
 
1. mean Poisson downward continuation of 

Helmert’s gravity anomaly (mGal), 
2. mean gradient of the Helmert’s gravity 

anomaly (mGal/m), 
3. gradient of the direct topographical effect 

(mGal/m), 
4. mean gradient of the Helmert’s gravity 

(mGal/m), 
5. mean gradient of the actual gravity (mGal/m). 
 
Notice: the gradients were computed only for those 
points where the topographical height was over 100 
meters. This threshold value was chosen 
empirically. 
 
The expected average value of the real gravity 
gradient is Poincare-Pray gradient 0.0848 mGal/m 
(Vaní�ek, Krakiwsky, 1986, eqn. 21.37), computed 
for average topographical density 2670 kg/m3. Our 
result fits the expected value in average very well as 
it can be seen in tab.1. From the Poincare-Pray 
gradient we see that larger local density results in 
smaller (in absolute value) vertical gradient. 
Moreover between the density and the vertical 
gradient of the gravity exists an approximately 
linear relation. Therefore as the next step in the 
future we intend to compare our results with the 
topographical density model. 
 
 
5 Conclusions 
 
 
Described in this contribution are just the first 
results. Clearly, the whole process can be further 
refined if the circumstances would require it. But 
even these initial results look encouraging and seem 
to make a physical sense. The applicability of this 

technique in geophysical investigations should be 
fairly obvious. In geodesy, the resulting vertical 
gradients can be used to derive more realistic 
Helmert orthometric heights. 
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Appendix

Mean heights 5’ x 5’
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Mean Poisson downward continuation of Helmert’s gravity anomaly
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Mean gradient of the Helmert’s gravity anomaly, Hmin = 100 m
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Mean gradient of the Helmert’s gravity, Hmin = 100 m
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Mean gradient of the gravity, Hmin = 100 m
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