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1 - INTRODUCTION 
 
 In this contract, we were required to do the following: 
 "1) Review the state of the art methodology for geoid height determination 
and error estimation; 
 2) Propose viable options to facilitate relative geoid height determination 
anywhere in Canada with errors not exceeding 10 cm; 
 3) Develop numerical procedures and computer software to calculate geoid 
heights in selected regions of Canada and compare results with independent 
determinations; 
 4) Implement procedures and software for geoid height error estimation and 
demonstrate their validity on practical examples; 
 5) Document work and recommend possible options in progress reports to 
be prepared for regular contract reviews; 
 6) Prepare full report on methodology and software at the completion of the 
contract." 
 
 During the course of our investigation, it became very clear that existing 
theories for geoid determination are not accurate enough to meet the contract 
requirements, i.e., to demonstrate that the geoid can be in fact determined with a 
decimetre accuracy. To compute the geoid to a decimetre accuracy, the theory has to 
hold to the one centimetre level; yet many of the approximations used in the existing 
theories, are likely to be good only to the one metre level, justifiable by the accuracy 
achievable at the time these theories were formulated. Consequently, we had to do much 
pioneering theoretical work, enjoyable but very time consuming, and were not able to 
complete the development of the theory and thus even the methodology for geoid 
computation. Problems yet to be solved or solutions tested include: the atmospheric 
attraction (condensation) effect, topographic density effect on the geoid, density effect on 
orthometric heights and, in turn, their effect on the geoid. Other problems of a more 
minor nature and possible alternative solutions to those opted for by us, are listed in 
section 9. 
 
 Most of the theoretical contributions described herein have already been 
published by us in the open literature, or manuscripts describing the contributions have 
been either accepted or submitted for publication - see section 10. We believe that this 
represents the best reviewing process for any research because the reviewing is done by 
an international group of peer referees. Thus, wherever appropriate, we refer to these 
papers, which make an external appendix to this report. 
 
 When formulating the theory for this report, we have continued along the 
lines of research embodied in our previous involvement with geoid work. What we report 
on here is basically a further development of our technique which we call the 
"Generalized Stokes's Technique" [Vaníc̆ ek and Sjøberg, 1990; Vaníc̆ ek et al., 1992], in 
combination with "Molodenskij's modification of the integration kernel" used by Vaníc̆ ek 
et al. [1986] and the "Stokes-Helmert's scheme" investigated more recently by Vaníc̆ ek 
and Martinec [1994]. There have been in the recent years many new ideas and 
developments proposed by different research teams from various countries. Thus a 
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perfectly legitimate question may be asked: "Why did we not use any of these ideas and 
techniques in our approach?" The answer is: partly due to reasons described above, but 
mainly because most of the other teams are actually interested in the quasigeoid 
[Molodenskij et al., 1960], or "free-air geoid" (an equipotential surface of the external 
gravity field) [Vermeer, 1994]. The applicability of most of the developed methods to our 
goal, i.e., the determination of an equipotential surface of the internal gravity field, ranges 
from obscure to impossible. This statement should not be understood as a judgement on 
the merit of the alternative approaches. 
 
 Because, in spite of the time extension, we ran out of time (and of course out 
of funds) before we could solve all the theoretical problems, we have not attempted to 
compile the geoid over the whole of Canada. With some of the problems in the 
methodology still outstanding, it would not have made much sense. Instead, we have 
concentrated on a limited area 5 by 10 degrees (latitudes 49 to 54 degrees North, 
longitudes 236 to 246 degrees East) covering the south-eastern part of British Columbia 
and south-western part of Alberta. This area, specified by the contract Scientific 
Authority, Dr. A. Mainville, contains an important part of the Rocky Mountains and thus 
represents a challenging ground for testing the performance of the developed technique. 
The geoid in this area was computed on a 5' by 5' geographical grid. Thirteen GPS 
stations, whose orthometric heights were determined also by spirit levelling, were made 
avilable to us for comparisons. 
 
 

2 - GENERALIZED STOKES-HELMERT SCHEME 
 
 In this section we show the flow of the individual operations on both the 
satellite reference field and the terrestrial data and how these operations fit together. The 
following flowchart shows the whole methodology. Note that the boxes in dashed lines 
denote those operations that have not yet been implemented. We also point out, that 
operations relating to the various error estimation algorithms are not shown on the 
flowchart; the diagramme would become too clattered if we tried to show these as well. 
 
 In this diagramme, the circles stand for input. The individual input 
information is denoted thus: 
 I1 - the first 20*20 potential coefficients of the satellite determined reference 
field; 
 I2 - mean incomplete Bouguer anomalies for 5' by 5' geographical cells. We 
note that the production of mean 1° by 1° incomplete Bouguer anomalies is not shown 
on the flowchart. These, as well as the mean 1° by 1° corrections are evaluated simply 
by taking the averages of the 144 5' by 5' means; 
 I3 - global topography in a spectral form (spherical harmonics); 
 I4 - local detailed topography. The so called "1km by 1km topography" was 
used wherever available, the 5' by 5' topography was used everywhere else; 
 I5 - global gravity field model to whatever degree and order (smaller than 
360*360) is needed in the particular correction evaluation; 
 I6 - global atmospheric density model - not used in our computations; 
 I7 - normal gravity field and the corresponding reference ellipsoid to which 
the final geoid is to be referred; 
 I8 - topographical density model - not used in our investigations. 
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 The individual steps shown in the flowchart will now be discussed in detail in 
the following sections. It should be clear from the headings of these sections just what is 
described where. 
 
 

3 - REFERENCE GRAVITY FIELD AND REFERENCE SPHEROID 
 
 As explained by Vaníc̆ ek and Sjøberg [1991], the "Generalized Stokes 
Technique" consists of taking a higher than second degree gravity field and the spheroid 
generated by its equipotential surface of a prescribed potential value, as the reference 
field and the reference surface. This is an obvious generalization of the classical 
Somigliana-Pizzetti's concept of normal field of second degree and the reference 
ellipsoid associated with it. We have shown [ibid] that practically all the relations used in 
the classical Stokes technique are valid even for this higer order reference field and 
reference spheroid, except for the Stokes function itself (cf. section 4). 
 
 The advantage of using a higher order reference field has been recognized 
by most people who work with the earth gravity field and with the geoid in particular. 
Some researchers opt for using a reference field of an order as high as possible. The 
price one has to pay for a higher than some 20*20 reference field is that such a (global) 
field is by necessity constructed using the same terrestrial gravity data that one wants to 
use in computing the geoid referred to this reference field. Thus the same data are used 
twice, often without a proper account being taken of so introduced correlations - see, 
e.g., [Vaníc̆ ek and Sjøberg, 1991, eqns. (72) and (73)]. We thus prefer to use a 
reference field derived from independent data, namely satellite orbit analysis and have 
been doing it since the late 70's [John, 1980]. The additional advantage of a satellite-
derived field is its better spatial homogeneity compared with a combined field.  
 
 Once the decision to use such a field is made, one cannot go too high with 
its degree because the pure satellite-derived field is reliably known only to a degree and 
order 20*20, except for resonant frequencies [Vaníc̆ ek and Krakiwsky, 1986]. Thus our 
choice of using the purely satellite-determined reference field compels us to considering 
only relatively low degree and order fields and for the purpose of this investigation we 
decided to stay with our original choice of 20*20 [Vaníc̆ ek et al., 1986]. We have also 
decided to use the new European global satellite model GRIM4-S4P [Schwintzer, 1993] 
up to degree and order 20. Its plot for Canada (after the "Helmertization" described in the 
next paragrph) is displayed in Figure 3.1; the values range between  -47.60  and  +41.94 
metres. This field appears to have the smallest error (average error for Canada) of the 
new satellite fields that have become recently available, 11 cm  compared to, for 
instance  30 cm  for GEM-T3 [Lerch et al., 1992]. 
 
 In the context of the Stokes-Helmert computation scheme used by us, it is 
necessary to "Helmertize" the (satellite-derived) reference field by subtracting from the 
real field the direct topographical effect  V  on potential, as explained in [Vaníc̆ ek et al., 
1994(a)]. The direct topographical effect on the reference spheroid [ibid, eqn. (20)] for 
the whole of Canada is shown in Figure 3.2. We note that the effect is relatively small; 
its range for the whole of Canada being between  -9  and  +25 centimetres. The direct 
and secondary indirect topographical effects on the (satellite-derived) reference gravity 
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have to be also considered [ibid]. The former, for the territory of Canada, is shown in 
Figure 3.3, with the range being bertween -258 and +549 µGal. The latter effect is even 
smaller, ranging between -27 and +77 µGal for the whole of Canada and has not been 
considered in our computations. Its effect on the geoid would be of the order of a few 
millimetres in our area of interest. 
 
 The Helmert reference potential  Wh  has to be converted into Helmert's 
disturbing potential  Th  by subtracting from it the desired Somigliana-Pizzetti's ellipsoidal 
(2nd degree) normal field. The equations for this conversion are given in [Vaníc̆ ek and 
Kleusberg, 1987, eqn. (22) to (25)] and the conversion is done to refer the estimated 
quantity (Th) to a desired ellipsoidal (normal) reference field. Our choice here was the 
GRS 80 normal field and its reference ellipsoid - our results thus refer to GRS 80. The 
resulting expression for  Th  in spectral form must then be reduced to the geoid by 
applying the ellipsoidal correction [Vaníc̆ ek et al., 1994(a), eqn. (27)] that arises from the 
fact that the radial functions in the harmonic series must refer to the geoid rather than to 
a sphere. The amplitude of this correction is somewhat larger in our latitudes and for 
Canada it ranges between  -88  and  +  65 centimetres. The correction values for 
Canada are plotted in Figure 3.4. 
 
 Turning now to errors associated with the reference field, it is the 
commission error that we are, of course, interested in. The commission error can be 
evaluated from the standard deviations of potential coefficients following the procedure 
described in [Vaníc̆ ek et al., 1986, eqn. (2.36)]. From the standard deviations of GRIM4-
S4P's [Schwintzer, 1993] first 20*20 potential coefficients, we obtain the estimated global 
mean commission error equal to 11 cm. From the standard deviations of the potential 
coefficients we can also compute the commission error (standard deviation) of the 
reference gravity as follows 
 

 20
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Applying the law of propagation of errors and assuming that there is no longitudinal 
variation in the potential coefficient standard deviations σ, i.e., 
 

 ∀n,m: σn,m = σn  ,                       (3.2) 
 
we get the following expression for the global mean value 
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The value of the global mean for the GRIM4-S4P model is equal to  227 µGal. The mean 
value in Canada is  265 µGal. 
 
 To conclude this section, let us mention that no attempt has been made to 
implement the atmospheric attraction correction to the reference field. This correction 
was investigated by Harrie [1993], but has not been implemented yet. 
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4 -  STOKES'S INTEGRATION 

 
 The numerical integration technique used here is essentially the same as that 
used in our 1986 and 1990 geoid compilation [Vaníc̆ ek et al., 1986; Vaníc̆ ek et al., 
1990]. The notable difference is the treatment of the innermost zone integration. When 
looking into  this numerical problem, we realized that only a few percent of computation 
points have enough point gravity anomalies in their innrermost zone (10' by 10') to warrant 
the integration procedure that uses point values. Also, the (local) increase of accuracy 
gained by invoking this integration procedure is minimal in most of the cases. We have 
thus decided to eliminate this procedure systematically and by doing so, to eliminate the 
necessity of working with the point anomaly files at all. The 5' by 5' mean anomalies are 
now used even in the innermost zone integration, but the process is still kept different 
(more accurate) from the integration in the inner zone [ibid]. This leads to a substantial 
saving of computer processing time. The point anomaly procedure can be resurected in 
the future when more point anomalies become available to make it worthwhile. 
 
 Another improvement of the numerical integration process as implemented 
in our GIN program concerns the "tears". In our numerical integration process, the batch 
of 5' by 5' mean anomalies needed in the inner and innermost zone integration, is 
replaced by a new batch whenever the border line between the 1° by 1° mean anomalies 
is crossed [Vaníc̆ ek et al., 1986]. This discontinuity causes tears along the 1° 
boundaries in the inner and outer zone integration results. These tears in the geoid 
solution can and are now being repaired by distributing the percieved geoid hight 
difference (between two adjacent points that belong to two adjacent regions where 
different batches of 5' by 5' mean anomalies are used) to 4 points along the latitude or 
longitude profiles on each side of the 1° break. The following algorithm has now been 
implemented: 
 i) denote geoidal height values on one side of the break by  Ni, Ni-1, Ni-2, ..., 
on the other side of the break by  Ni+1, Ni+2, ... , indicating that the break occurs 
between  Ni  and  Ni+1; 
 ii) compute the third difference  �3 as 
 
 �3 = (-Ni-1 + 3Ni - 3Ni+1 + Ni+2) / 2 = D ;                                                (4.1)     
 
 iii) test if  D  is larger than a selected threshold value, e.g., 5cm. If it is, then 
this is an indication that a tear had developed and 4 values before and 4 values after the 
break are corrected; 
 iv) correct the 4 values immediately following the break by adding to them  
+0.395D, +0.222D, +0.100D  and  +0.025D respectively. The 4 values immediately 
preceding the break get the same corrections, but with negative signs. These corrections 
follow a "quadratic bent". 
We found out that setting the threshold value to  0 , i.e., smoothing the geoid 
indiscriminately across all the 1° lines, works the best. 
 
 Another modification to our GIN program that we have implemented is an 
added flexibility to select the area of integration at will. It is now possible to use the GIN 
program in a specified area and supply only the 5' by 5' and 1° by 1° mean anomalies 
pertaining to that area. 
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 Following the work by Martinec [1993], we adopted the approach, whereby 
we no longer neglect the error caused by the Stokes integration truncated to a spherical 
cap of a specific radius, i.e., the truncation error. We now evaluate the truncation error 
from a global gravity model; the new combined European model GFZ 93a [Gruber and 
Anzenhofer, 1993], complete to 360*360, is used in this investigation. It turns out that to 
compute the truncation error for the 6° spherical cap to  1cm  accuracy, only the first 
120*120 degrees and orders may be used. The range of the truncation error in Canada 
is between  -24  and  +36 cm (to an internally estimated accuracy of  3 mm!) and its plot, 
is shown in Figure 4.1. 
 
 We have elected to stay with the 6° integration cap, which we have used in 
all our computations till now, having had no compulsion to change it. Again, for reasons 
explained by Vaníc̆ ek and Krakiwsky [1986], the spheroidal Stokes function is used and 
the truncation error minimized by Molodenskij's modification [Vaníc̆ ek et al., 1986]. So 
modified a kernel is not "blind" to low frequencies in the integrated anomaly [Vaníc̆ ek 
and Sjøberg, 1991, eqn. (43)] and care must be taken to make sure that the anomalies 
are the least possible contaminated in the low frequency domain - see below. 
(Interestingly, Martinec [1993] found that the truncation error of a Molodenskij-like 
modified spheroidal kernel contains only frequencies above the wave-number equal to 
the maximum wave-number of the reference field, while Vaníc̆ ek and Sjøberg [1991, 
eqn. (42)] show presence of all frequencies.) There is generally still a room for 
improvement as far as the choice of integration kernel is concerned. The "strict frequency 
separation modification" discussed in [ibid], should be seriously considered. 
 
 The question that comes to mind at this point is: "Why to minimize the 
truncation error when it can be evaluated?" The minimization must be employed to 
ensure that the available global models are accurate enough to use for the actual 
evaluation of the error, i.e., that they give essentially the same results within reasonable 
limits. As an illustration, we give here a plot of differences in metres - Figure 4.2 - 
between the truncation error evaluated from the GFZ 93a and OSU 91a [Rapp et al., 
1991] global models. Even with the minimization of truncation error implemented, the 
differences range between  -5  and  + 6 centimetres, large enough values to compete 
with the random noise in measurements. This error will tend to become less significant 
with an improvement of global potential models. 
 
 Do we have to subtract the 20*20 reference field from the terrestrial 
anomalies before using them in the Stokes integration? Yes! Since the modified 
spheroidal Stokes kernel is not blind to low frequencies a reasonable effort must be 
made to drive the amplitudes of the low frequency constituents to zero. As we shall see 
in the next section, the evaluation of the "residual" Helmert anomalies on the geoid is 
caried out in a rigorous way so that, in absence of measuring errors, the terrestrially 
determined anomalies on the geoid match the satellite determined anomalies in the low 
frequencies. But there is indeed a potential source of error here and in the next iteration 
of Canadian geoid compilation a different modification should be tested as stated above. 
 
 

5 - MEAN HELMERT ANOMALIES 
 
 Since the Stokes integration is done numerically, it is the mean Helmert 
anomalies that are needed for the Stokes integration. In the innermost and inner 
integration zones, 5'*5' mean anomalies are used and it is these anomalies that we shall 
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talk about here and call them only "mean anomalies". The 1°*1° mean anomalies, used 
for the outer zone integration [Vaníc̆ ek et al., 1986], are obtained simply by averaging 
over the 144 5'*5' mean anomalies. Thus, in all our computations, we need only the 5'*5' 
mean anomalies and all the corrections that have to be applied to the mean anomalies 
(supplied to us by the GSD personnel) must be corrections to mean anomalies, i.e., 
mean corrections for the 5'*5' cells. This is advantageous in so far that the mean 
corrections are naturally smoother, but disadvantageous from the point of view of 
computation. In case the correction values vary videly within a cell, the mean correction 
has to be evaluated by actually averaging point corrections within the cell. 
 
 It was agreed in March 1994 [Véronneau, 1994], that the mean anomalies 
prepared for us by the GSD personnel would be the mean incomplete Bouguer 
anomalies computed from the following formula 
 

             mean(∆gt
B
) = mean(gt

* - 2πGρ0 H + 0.3086mGal/m H - γ0),                                       (5.1) 
 
where  gt

* is the observed gravity value at the earth surface corrected for atmospheric 
attraction effect. Note, that no terrain correction or the curvature effect are applied. On 
the other hand, the mean Helmert anomaly we need, is given by [Vaníc̆ ek and Martinec, 
1994, eqn. 39]:   
 
 

           
mean (∆gg

h
) = mean (gt

* + ŽV
Žr t

 + grad(γ)0 H + 2V
R g

 - Dg + Ds - γ0),
                           (5.2) 

 
where all the symbols are used in the same sense as in the cited paper: the second term 
on the right hand side is the direct topographical effect (DTE) on gravity at the earth 
surface, the fourth term is the secondary indirect topographical effect (SITE) at the geoid,  
Dg  is the downward continuation of Helmert gravity disturbance (cf. section 6), Ds  is the 
spherical approximation correction [ibid, eqn. 29] and the third term can be, to a sufficient 
accuracy, written as 
 

           grad(γ)0 H ≈ 0.3086mGal/m H + Le + Ae.                                                                 
(5.3) 
 
Here,  Le  stands for the "latitude effect" on normal gravity gradient (described in [ibid], by 
eqn. 22, which contains both the first and the second terms on the right hand side of the 
above equation) and  Ae  stands for the "altitude effect" on normal gravity gradient [ibid, 
eqn. 37].  
 
 The transformation formula between the mean simple Bouguer anomaly 
supplied to us and the mean Helmert anomaly we need in our computations, is thus as 
follows 

mean (∆gg
h
) = mean (∆gt

B
) + mean (2πGρ0 H + ŽV

Žr t
 + Le + Ae + 2V

R g
 - Dg + Ds).

                (5.4) 
 
We note that both the DTE and SITE, depend on the kind of Helmert condensation we 
prescribe. For the purpose of this contract, we had decided to use the condensation that 
preserves the mass, for which the Helmert model earth has the same mass as the real 
earth. For the discussion of this point see Wichiencharoen [1982] or Vaníc̆ ek et al. 
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[1994(a)]. Let us just point out, that the expression for the DTE under this condensation 
prescription is given in [Martinec, 1993, eqn. (4.22)]. The equation may be understood as 
reflecting the roughness of the terrain.  
 
 Martinec et al. [1994(a)] have shown that, unfortunately, the usual isotropic 
and homogeneous integration kernel obtained through the Taylor development of the 
Newton integral and used by many geodesists for computing this roughness term, is not 
good enough when heights are densly sampled - as they must be if the geoid is to be 
computed to a 1 centimetre accuracy. In addition, the integration extends all over the 
world but, fortunately, the (new non-homogeneous and anisotropic) integration kernel 
tapers off rather rapidly so that the integration can be limited to a spherical cap of a 
manageable radius. From numerical experiments, we had established that a spherical 
cap of a radius of  2.5°  gives a sufficient accuracy of a few tens of µGal. To speed up 
the computations, we use 2 integration zones: the inner zone, extending to a radius of  
40' and the outer zone from  40'  to  2.5°. In the inner zone we use the heights on the 1 
by 1 km grid, whenever these more densly sampled heights were available. In the outer 
zone, we use the heights given on the 5' by 5' grid. 
 
 The value of the integral depends strongly on the sampling step for heights 
as shown by Martinec et al. [1994(a)]. The grid step for heights used in this study is 
certainly not dense enough to ensure adequate accuracy in the DTE for the "1 
centimetre geoid" in the mountains. The height sampling step in the mountains should be 
further reduced (to 100 metres? to 30 metres?) for the evaluation of the ultimate geoid in 
Canada. 
 
 The SITE is nothing else but a re-scaled primary indirect effect (PITE) on 
Helmert's co-geoid - see [Vaníc̆ ek and Martinec, 1994, eqn. (40)]. Denoting the PITE on 
the Helmert co-geoid by  Vg/γ , cf. section 7, then  
 
 SITE � 2γ/R PITE  ,                                                                                            
(5.5) 
 
with a sufficient accuracy. It is thus advantageous, to compute the SITE simply from the 
PITE. For computing the PITE see section 7. 
 
 The derivations above have been all done for the "total" mean Helmert 
anomaly. Yet, our approach is that of generalized Stokes variety, as noted above, where 
only the high frequency part of mean Helmert anomaly on the geoid, i.e.,  
mean[δ(�ghg)20] , is used. So how should this problem be dealt with? In fact, the 
reference field is subtracted from  �ghg , i.e., from the Helmert anomaly reckonned on 
the geoid and all we have to worry about is to produce the reference Helmert gravity 
anomaly on the geoid. This we have already done in section 3: the DTE, SITE and 
spherical approximation correction, called the elliptical correction in the context of the 
reference field, have already been discussed. 
 
 The mean values of the above corrections for the 5'*5' cells, called for by our 
formulation can be replaced by point values (for the centre of the cell) if the correction is 
sufficiently smooth (long wavelength). This is the case with the spherical approximation 
correction  Ds  , as can be seen on Figure 8.4. The mean values of the Bouguer plate 
correction  (2�GρoH)  and the  Le  and  Ae  corrections are obtained simply by evaluating 
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these corrections for the mean height  mean(H)  of the cell. The DTE and SITE should 
be, of course, averaged from point values within the cell. This has not been done in this 
study for a lack of time and mainly for a lack of financial means. The production of both 
the  meanDTE  and the  meanPITE , needed as the first step to produce the  meanSITE 
, is very computer time intensive and would probably require the use of a supercomputer 
to accomplish sucessfully. The evaluation of the mean downward continuation correction  
Dg  is treated in section 6 and we will not discuss it here. 
 
 Our software produces standard deviations of the computed point geoidal 
heights, through a simple error propagation of standard deviations of mean anomalies 
[Vaníc̆ ek et al., 1986]. These latter standard deviations, computed from the expression 
developed by Marc Veronneau (and found by us to be correct) have been supplied to us 
by the GSD. We shall not discuss them here. We should mention however, that we feel 
the errors of all the applied corrections are significantly smaller than the error in the 
mean anomaly and can thus be neglected. This point though, may require further 
investigation. At present, we do not consider the contribution to the (high frequency) 
mean Helmert anomaly error due to the uncertainty of the (low frequency) reference field; 
it is very highly spatially correlated - as a matter of fact it is almost constant - and its 
introduction would require computations involving the correlation function of the 
reference field, which our software is not designed to handle. 
 
 

6 - DOWNWARD CONTINUATION OF MEAN HELMERT'S GRAVITY 
ANOMALIES 

 
 As has been experienced by various researchers, the downward 
continuation correction to gravity is a very difficult one to formulate - many have 
attempted and failed. It has been a very elusive quantity even in the Molodenskij 
concept, where downward continuation of external field is called for. In our previous 
geoid compilation, we assumed that this correction is equal to zero. This caused an 
exchange of opinions with Wang and Rapp [1990] and Sideris and Forsberg [1990] 
clarified finally in our paper Martinec et al., [1993] and acknowledged by Dr. Wang. The 
results presented here thus represent our attempt to do a better job this time around. 
 
 The theory of our approach to the problem and the numerical results for our 
area of interest are described in [Vaníc̆ ek et al., 1994(b)]. It has turned out, we think, 
that the problem can be attacked more easily in the context of Stokes-Helmert model 
than in the context of Molodenskij model. Even though we have not proved the 
convergence of our formulation theoretically, it is encouraging to see that the numerical 
process converges rather nicely in both investigated norms, yielding reasonable values. It 
appears fairly certain that the averaging process involved in producing the mean 5' by 5' 
anomalies is a natural smoothing process which ensures the existence as well as the 
uniqueness of the solution even in very rugged terrain. In all probability, the same 
conclusion could be reached for mean anomalies computed for much smaller 
geographical cells. Since only mean anomalies are used in the solution of the boundary 
value problem of geodesy, it then becomes pointless to worry about possible non-
existence of solution for point value anomalies and/or for anomalies given by a 
continuous prescription. 
 
 The differences between mean Helmert's anomalies on the earth surface 
and on the geoid - the downward continuation of mean Helmert's anomalies D∆gh - are 
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surprisingly large, reaching well over 100 mGal in both negative and positive senses, and 
shown in Fig.8.5. Their character is, however, very short wavelength and after a 
convolution with (modified spheroidal) Stokes's function one can see that they contribute 
to the Helmert co-geoid but a few decimetres, at most  90 cm in the Canadian Rockies 
[Vaníc̆ ek et al., 1994(b), Fig. 9], to be precise. Interestingly, the contribution due to the 
downward continuation is positive for all the points in the area. This is, of course, a 
natural consequence of the fact that the Helmert disturbing potential  Th  is harmonic 
between the geoid and the earth surface [Vaníc̆ ek and Martinec, 1994]; hence  Th  must 
increase downward from the earth surface along every vertical.  
 
 The evaluation of the downward continuation is a very computationally 
demanding process. The main reason for this are the very large dimensions of the 
systems of equations one has to deal with. These dimensions depend on the size of the 
area one wants to compute the effect for. For future use, various schemes can be 
designed and tested, to cut down on the computational requirements.  
 
 

7 - TRANSFORMATION OF HELMERT'S CO-GEOID INTO GEOID 
 
 As the final step, the Helmert co-geoid must be transformed into the proper 
geoid by adding to it the primary indirect topographical effect (PITE). The expression for 
this effect was derived by Martinec and Vaníc̆ ek, [1994(b), eqn.(50)] for the topographic 
column average condensation technique. For the condensation that preserves the  mass, 
i.e., the condensation technique used in our investigations here, the expression changes 
only so far as to the "Bouguer term" is concerned; this term becomes positive instead of 
negative as shown by Vaníc̆ ek and Martinec [1994, eqn. (48)]. The second, generally 
much smaller term, which can be called the "terrain roughness term", is not much 
affected by the condensation technique.  
 
 We note that the PITE represents a correction to point values of geoidal 
heights and is thus evaluated for the same locations as is the geoid, i.e., on a 5'*5' mesh. 
No averaging is involved here. The main contribution to the PITE comes from the 
"Bouguer term", which is nothing else than just the topographical height squared and 
scaled. If the topographical heights used in the evaluation of this term are smoothed (by 
such a process as averaging), then the computed values will be systematically smaller 
than they should be. For a discussion of this point see [Martinec, 1993]. 
 
 The "topographical roughness" term, cf. [Martinec and Vaníc̆ ek, 1994(b), 
eqn.(50)] consists of an integral over a fairly complicated sub-integral function of density 
and height The evaluation of this sub-integral function slows down the computation 
considerably. We have thus tried to simplify this function to expedite the computations. 
The simplified function we have derived reads as follows (we leave out the lengthy 
derivations that would only clutter this report): 
 

                GR2ρo { ln [(H' + �(lo2 + H'2) ) / (H + �(lo2 + H2))] - (H' - H) / lo } .           
(7.1) 
 
The accuracy of this approximation has been tested along two profiles across the 
Rockies and it was found that the error amounts to  4cm  or less - not good enough for 
the "one centimetre geoid" but adequate for the present study; we think that the accuracy 
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of point heights used for the evaluation of the "Bouguer term" cannot guarantee a better 
geoid accuracy either and this shortcut has been taken to save computing time.  
 
 Our numerical tests had shown that the integration area can be reduced to a 
spherical cap of a radius of about  2.5°, without affecting the centimetre level accuracy, 
see also [Martinec, 1993]. This is the cap that has been used in our study here. 
 
 

8 - NUMERICAL RESULTS 
 
 Since the "picture is worth a thousand words", we have decided to present 
the required numerical results in a graphical form. Herewith is a string of plots of the 
various quantities and corrections we have produced during this investigation. The actual 
numbers are contained in files described in the Appendix. As required, these files are 
being transfered to the Scientific Authority for inspection and testing. They are also 
available in the Department of Geodesy and Geomatics Engineering at UNB to anyone 
wishing to work with them.  
 
 The computer programs that have produced the results shown here are 
listed in the Appendix by names. They also have been transfered to the Scientific 
Authority for inspection and testing.  
 
 The mean direct topographical effect (DTE) is shown in Figure 8.1. This 
effect ranges from -54.26 mGal  (latitude 50.62, longitude 243.42) to +79.46 mGal  
(latitude 51.96, longitude 242.62), with a mean value of  +0.88  mGal. The effect is quite 
short wavelength and, as expexted, highly correlated with topography. As discussed in 
[Vaníc̆ ek et al., 1994(b)], the application of the DTE to free-air gravity anomalies, makes 
the latter smoother, making the Helmert anomaly a better choice for downward 
continuation. The application of the DTE to free-air anomalies in our area of interest has 
reduced the original range of (-143.62  mGal, +214.40 mGal) to (-134.17 mGal, +185.65 
mGal), a reduction of 40 mGal.  
 
 The mean secondary indirect topographical effect (SITE) is plotted in Figure 
8.2. It is 2 orders of magnitude smaller than the DTE, always negative, and ranges 
between  -0.47 mGal  (latitude 43.21, longitude 250.38) and 0 mGal , with a mean value 
of  -0.04  mGal. Once again, the effect is short wavelength and as such contributes very 
little to the final geoidal heights. But the effect would be systematically negative and 
since it reaches more than  0.01 mGal (in absolute value), it must be taken into account if 
the 1cm accuracy is the aim - cf. [Vaníc̆ ek and Martinec, 1994]. 
 
 The sum of mean latitude effect (Le) and the mean altitude effect (Ae) of the 
normal gravity gradient is plotted in Figure 8.3. It is always negative and ranges between  
-1.06  and  0  mGal, with a mean value of  -0.16 mGal. It being short wavelength, once 
more, the contribution to the resulting geoid is small but systematically negative. 
 
 The mean spherical approximation correction  (Ds) , evaluated from the 
global model GFZ 93a, is shown in Figure 8.4. It is, for our area of interest, even smaller 
than the SITE; it ranges between  -0.024  and  +0.001 mGal, with a mean value of  - 
0.009  mGal. Its contribution towards the geoid is of the order of a few millimetres. 
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 The mean downward continuation contribution  (Dg) is shown in Figure 8.5. 
Note the very high frequency character of this term and its very large values, ranging 
between  - 126.408 mGal (latitude 52.29°, longitude 242.71°) to  + 215.680 mGal 
(latitude 51.38°, longitude 234.79°), with the mean value of  0.387 mGal. Interestingly, 
when convolved with (modified spheroidal) Stokes's function, it gives a contribution to 
Helmert's co-geoid which is positive everywhere - for a detailed discussion see [ibid]. The 
truncation error correction to Poisson's integration has been evaluated from the global 
model GFZ 93a. 
 
 Figure 8.6 shows the high frequency mean Helmert's anomaly,  
mean(δ(�ghg)20 , referred to the GRIM4 -S4P global gravity model. For completeness 
sake, we give here the range ( from  -129.95  to  +168.28 mGal) and the mean value of  -
5.08 mGal. The standard deviations associated with this quantity range between  0.12  
and  46.60 mGal, with a mean value of  3.94 mGal. Their areal variations are shown in 
Figure 8.7  
 
 The primary indirect topographical effect  PITE is shown in Figure 8.8. It is 
always negative - has to be always subtracted from Helmert's co-geoid - and in our area 
of interest ranges between -104.5 centimetres (latitude 51.58, longitude 243.75) and 1  
centimetre (at latitude 50.08 and longitude 236.25; note that the small positive number is 
an error due to the approximation of the integration kernel, it must theoretically be 
negative), with a mean of  -23 cm. These are point values, computed by means of eqn. 
(7.1) using heights on the 1 by 1 km grid: the height value located the nearest to the 
geoid computation point is used as is, to avoid averaging, thus smoothing and making 
the geoid error systematic. Since these heights are, as we understand, somehow 
averaged, the real values of the PITE are probably somewhat larger (in absolute value) 
than those presented here.  
 
 Figure 8.9 shows the plot of the geoid produced under this contract for the 
required area, called here the UNB 94 model. In the area of interest, it ranges between  -
23.86  and  -14.52 metres with a mean of  -18.34 metres. The computed standard 
deviations associated with this solution are plotted in Figure 8.10. They range between  
16  and  40 cm, with the mean value being  26 cm. These are relatively large values and 
they reflect the fact that collected gravity data are relatively sparse and uncertainties in 
heights are high. Corresponding errors in other parts of Canada would be somwhat 
smaller. It should be borne in mind, that the standard deviations presented here are quite 
highly correlated, particularly for short distances; treating them as independent would 
result in distortions of the error information contained in these deviations.  
 
 

9 - COMPARISON WITH GPS/LEVELLING RESULTS AND THE UNB 95 
SOLUTION 

 
 GPS determined positions of thirteen points have been given to us together 
with their orthometric heights, as external test data. These data are recapitulated in   
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Station  
name 
50C9501 
19713 
77C048 
83C174 
61C028 
59C037 
58C144 
60C004 
887006 
68C026 
68C047 
68C129 
68A050 
 

h (m) 
 
-14.4723 
-16.2893 
-0.6864 
19.8064 
1048.5298 
638.8256 
723.8253 
336.5755 
541.7580 
404.4994 
339.7462 
787.5272 
1395.3611 

H (m) 
 
5.633 
4.908 
19.110 
37.980 
1065.294 
655.908 
740.974 
354.009 
559.603 
422.300 
357.014 
802.817 
1411.067 

h-H (m) 
 
-20.105 
-21.197 
-19.796 
-18.174 
-16.764 
-17.082 
-17.149 
-17.434 
-17.845 
-17.801 
-17.268 
-15.290 
-15.706 

UNB94 (m) 
-22.305 
-23.008 
-22.311 
-21.080 
-19.306 
-19.260 
-19.310 
-19.522 
-19.856 
-20.004 
-19.558 
-17.981 
-17.302 

(h-H) -
UNB94 
2.200 
1.811 
2.515 
2.906 
2.542 
2.178 
2.161 
2.088 
2.011 
2.203 
2.290 
2.691 
1.596 

 
Table 9.1 - UNB 94 geoid versus GPS and orthometric height comparison 

 
 
Table 9.1. Also shown in this table are the geoidal heights from our solution (UNB 94) 
and the differences between GPS/levelling and UNB 94 values. 
 
 At this point we have realised that there was something drastically wrong 
with this solution and started to check our procedures. First we looked into the reference 
field GRIM-S4P to see if it could possibly explain the large distortion of the UNB 94 
geoid. Comparison of this field with GEM-T3 taken to degree 20 and properly referred to 
GRS 80, shown in Figure 9.1 for the whole of Canada, convinced us that the reference 
field could not be responsible for the distortion. The differences between the two fields in 
our area of interest are at most of the order of 30cm. Moreover, this experiment shows 
just how good the satellite derived fields have become. 
 
 The totality of terrain related corrections, the DTE, PITE, the downward 
continuation and the PITE, contribute between 60 and 180 cm to geoidal heights at the 
GPS points. We thus did not suspect that the main problem was with these corrections. 
We tested them nevertheless and found error in neither the formulation, nor the code, 
nor the results. We have also checked all the other corrections and found no fault with 
any of them. 
 
 We then turned our attention to the Stokes integration. We completely re-
wrote the GIN program, which is now completely flexible. It now allows to vary the size of 
the innermost and inner zones, the computation of geoidal heights on a grid, on a string 
of points (a profile), or on individual points, and a much more efficient handling of the 5' 
by 5' mean anomaly files. This re-write resulted in a much faster running program, which 
we call "GIN 95". We have tested this new integrator on data generated from a global 
model taken to degree and order 360, 360, producing geoidal heights both directly from 
the potential coefficients as well as by integrating over similarly generated anomalies 
(and correcting for the truncation error). The two solutions agree to a few centimetres 
and we can thus conclude that the new integrator works as well as can be possibly 
expected.  
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 As a by-product of this testing, we have learnt that the discretisation error in 
the integration does not exceed 6 centimetres in either positive or negative sense. We 
have also discovered that somewhat more accurate results can be obtained when the 
inner zone is extended from the 2° in latitude by 2° in longitude to 4° by 4°. We have also 
enlarged the innermost zone to 10' in latitude by 15' (or larger in higher latitutes) in 
longitude. In spite of all these changes, the solutions we were getting showed only slight 
differences from the original, apparently drastically wrong solution (cf. Table 9.1). 
 
 The only remaining explanation was that the mean simple Bouguer 
anomalies we were using were in error. To check this last possible explanation, we 
asked the Scientific Authority for the permission to use the "mean Helmert anomalies" 
used by the GSD personnel in their compilation of the GSD geoid, which shows a much 
better agreement with the GPS/levelling derived geoidal heights on the 13 test points 
than our UNB 94 geoid does. Since in the compilation of these Helmert anomalies the 
DTE had somehow been already included, we have not used our own DTE. We have, 
however added all the other corrections as described in this report, including a 
recomputed downward continuation shown in Figure 9.2. This figure should be 
compared with Fig. 8.5. Note again the very high frequency character of this term and its 
very large values, ranging between  - 133.036 mGal  (latitude 43.96°, longitude 258.62°) 
to  + 234.090 mGal  (latitude 46.88°, longitude 238.21°), with the mean value of  0.640 
mGal. 
 
 The use of these GSD Helmert anomalies, plus all our corrections, resulted 
in the UNB 95 geoid shown in Figure 9.3. The estimated standard deviations of this 
geoid could not be plotted because the "Helmert anomaly" file given to us did not contain 
the requisite standsrs deviations. 
 
 Comparison of the UNB 95 geoid with the GPS/levelling derived geoidal 
heights for the 13 test points is shown in Table 9.2. For completeness, the GSD geoidal 
height are also listed. From this Table we can see that the UNB 95 fits much better to the 
external standard. The difference between the UNB 94 and UNB 95 geoids on the 13 
GPS points reaches about 3 metres, a difference caused solely by using a different set 
of mean anomalies. In addition, our results appear to be somewhat closer to the external 
standard, than the GSD results. This should not be immediately interpreted as a proof 
that our solution is better than the GSD solution; it merely shows that our technique 
seems to work as designed. Let us remark here, that a positive difference between the 
geoid and the GPS/levelling results is to be expected. The orthometric heights in western 
Canada are probably too large by more than a metre due to systematic errors in levelling 
[Zilkoski et al., 1992; Mainville, 1994]. 
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Station  
name 
50C9501 
19713 
77C048 
83C174 
61C028 
59C037 
58C144 
60C004 
887006 
68C026 
68C047 
68C129 
68A050 
 

h (m) 
 
-14.4723 
-16.2893 
-0.6864 
19.8064 
1048.5298 
638.8256 
723.8253 
336.5755 
541.7580 
404.4994 
339.7462 
787.5272 
1395.3611 

H (m) 
 
5.633 
4.908 
19.110 
37.980 
1065.294 
655.908 
740.974 
354.009 
559.603 
422.300 
357.014 
802.817 
1411.067 

h-H (m) 
 
-20.105 
-21.197 
-19.796 
-18.174 
-16.764 
-17.082 
-17.149 
-17.434 
-17.845 
-17.801 
-17.268 
-15.290 
-15.706 

UNB95 (m) 
-18.909 
-19.928 
-18.529 
-17.075 
-15.608 
-15.776 
-16.001 
-16.255 
-16.483 
-16.787 
-16.170 
-14.449 
-15.390 

(h-H) -
UNB95 
-1.196 
-1.269 
-1.267 
-1.099 
-1.156 
-1.306 
-1.148 
-1.179 
-1.362 
-1.014 
-1.098 
-0.841 
-0.316 
 

Table 9.2 - UNB 95 geoid versus GPS and orthometric height comparison 
 

10 - CONCLUSIONS AND RECOMMENDATIONS 
 
 The main conclusion of this report must be that we must take a closer look at 
the procedures used for the evaluation of mean gravity anomalies. The original set of 
mean 5' by 5' simple Bouguer anomalies was clearly burdened by a large and systematic 
error. The reason for this error is, however, not known to us. Possibly, the averaging 
procedure used by Mainville and Véronneau [1989] does not work very well, because the 
simple Bouguer anomalies are not smooth enough. But this explanation is somewhat 
improbable; even averaging free-air anomalies, which are much more variable than the 
simple Bouguer anomalies in the mountains, does not produce errors of the magnitude 
encountered here.  
 
 We understand that about 3/4 of the "mean anomalies" had to be actually 
predicted from surrounding values due to the very low density of point gravity 
observations, rather than evaluated through averaging [Mainville and Véronneau, 1989]. 
Possibly, the employed prediction procedure (the least squares collocation) may 
introduce systematic errors if certain type of anomaly is used? In any case, it is very 
troubling to see the magnitude of the geoid distortion caused by those unexplained error. 
Unless we come to a thorough understanding of how the mean anomalies should be 
properly averaged and/or predicted, we cannot aspire to compile a geoid to a 1 metre 
accuracy, never mind 1 centimetre. We could not address this problem at all, since we 
have run out of time long before we have even learnt that this problem exists. 
 
 Assuming that the problem with mean anomalies can be sorted out, there 
are other problems to be sorted out. Nowhere in this report, other than in section 8 which 
describes the actual results, do we speak either of the accuracy of Canadian gravity 
data, or their spatial distribution. We have considered the gravity data distribution and 
accuracy to be beyond the scope of our investigation for the following reason: we feel 
that in order to pass any judgement on our gravity data we must first make sure that our 
theory is accurate enough  to handle the data adequately. We think we have now almost 
reached this point and one of the main goals for the not-too-distant a future should be to 
look seriously at the accuracy limits imposed on us by the existing gravity data set. Our 
conviction is that some 5cm geoid accuracy is possibly the best we can expect. Any 
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recommendations for the improvement of gravity data accuracy and/or distribution must 
await the results of such an investigation. 
 
 If the "1cm Canadian geoid" (actually even a "decimetre geoid"!) is to be 
ever compiled, the topographical density correction discussed in [Martinec, 1993; 
Martinec et al., 1994(b)] must be considered in the final computation. (We note in 
passing that, of course, the determination of quasi-geoid does not require any knowledge 
of topographical density.) A geologist/geophysicist should be recruited to help with the 
density data acquisition and we propose that the Canadian Geoid Committee become 
involved in organizing this effort. 
 
 Atmospheric (Helmert) condensation - similar to topographic condensation - 
must be properly formulated and implemented in the final computation. Only the mean 
anomalies given to us by GSD had been corrected for atmospheric attraction. The total 
effect of atmosphere on the geoid amounts to a few decimetres and as such must be 
considered. We have made a first attempt in [Vaníc̆ ek and Martinec, 1994] and [Harrie, 
1993] but more work is required to convert these attempts to meaningful algorithms. In 
this contract, we simply ran out of time and funds, to do so. 
 
 Mean values of the direct topographical effect (and perhaps the secondary 
indirect topographical effect, but this would not be crucial) must be used in the geoid 
computation. Their evaluation is computationally very intensive and may require a 
supercomputer to accomplish. They have not been used by us because of lack of funds 
and time and this may have resulted in errors, hopefully not systematic, in mean 
Helmert's anomalies of several mGal and errors in the resulting geoid of several 
centimetres, even decimetres. Worse, the DTE employed in the computation of the 
"mean Helmert anomalies" we used in compiling the UNB 95 geoid may not be 
compatible with the DTE that we employ; a different model for Helmert condensation 
may have been used. We have not had the time to enquire into this potential problem 
and cannot offer any estimates as far as the potential effect such incongruency may 
have had.  
 
 Which brings us to heights. A denser than 1 by 1 km height sampling must 
become available in the mountainous areas of Canada for a more accurate evaluation of 
topographical effects that depend on either point or mean heights. We think that the use 
of the 1 by 1 km sampling grid may have introduced errors of several decimetres in the 
primary indirect effect and thus in the resulting geoid. The existing height file for the 30 
metre grid (with somewhat restricted availability) would be adequate, if it were not for the 
large errors associated with these heights. The construction of such a topographical file 
is, we feel, another issue with which the Canadian Geoid Committee should get involved. 
There is certainly a lot of room for improvement in this "department". 
 
 Corrections to orthometric heights due to topographic density variations 
should be evaluated, once the downward continuation is well understood and 
topographical density variations estimated. This will have also a second order effect on 
the computed geoid. The problem can be formulated as follows: the Poincaré-Pray 
gravity gradient (0.0848 mGal per metre) is used in the definition of Helmert's orthometric 
heights. This gradient value is derived from the exact Bruns formula [Vaníc̆ ek, and 
Krakiwsky, 1986 (eqn. 21.26)] , by adopting the simplified assumption that crustal density  
ρ  is constant and equals to 2.67 g cm-3. The denominator in the defining equation for 
orthometric height  H  is given as [ibid ,eqn.(16.97)]: 
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mean g' = 0.3086 mGal / m − 4πGρ( )H

2 ,                (10.1) 
 
and the change of orthometric height with density is then 
 

 

∂H
∂ρ

≈ 0.114 *10−6m−1
2H

ρ .                 (10.2) 
 
 
It is easily seen that even modest changes in topographical density cause centimetre 
and decimetre errors in orthometric heights. 
 
 Although a lot of effort went into a better estimation of errors in mean 
anomalies, a  more thorough error analysis to accompany the developed methodology is 
called for. How should the uncertainty in the reference field be accounted for? Are all the 
corrections really determined so much better than the mean anomalies themselves? How 
are the estimated (random) errors in geoidal heights correlated? Such an anlysis 
represents a substantial investigation and a substantial time and financial investment. 
 
 Different Stokes's kernel modification schemes should be investigated and 
tested. The Molodenskij modification employed by us has worked quite well but, for 
reasons described in section 4, it may not be the optimal technique to use. Our 
suggestion is to make some experiments with the "strict frequency separation kernel" as 
discussed earlier. 
 
 The primary indirect topographical effect may be recomputed using a more 
accurate integration kernel. This again is a computationally very intensive proposition 
and may require the use of a supercomputer. It would be essential, however, for 
producing the ultimate "1 centimetre geoid". 
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13 - APPENDIX 
 
 
1)  Program name:  general5.for 
 This program computes the roughness term of the direct topographical 

effect (δVR(r, Ω)) to the gravity.  The equation used here is shown in  
[Martinec and Vaníc̆ ek, 1994(a), eqn.(42)]. 

Input data:   The 5min. and the 30"*60" DEM  files whose names are introduced into an 
option file called  optgeneral5.inp. 

Output data: δVR(r, Ω) in mGal computed and stored into a new file the name of which 
is specified in the option file. 

 
2)  Program name:  bougdte5min.for 
 This program computes the "Bouguer" term of the direct topographical 
 effect (δVB(r, Ω)) to the gravity.  The equation used here is shown in 
 [Martinec and Vaníc̆ ek, 1994(a), eqn.(41)]. 
Input data:   The coordinates and heights of computation points as an input file whose 

name is given into an option file called optbougdte5min.inp. 
Output data: δVB(r, Ω) in mGal computed and stored into a new file specified in the 

option file. 
 
3)  Program name:  pvker_1.for 
 This program computes the roughness term of the primary indirect 

topographical effect (δVR(R, Ω)) to the geoid.  The equation used here is 
shown in [Martinec and Vaníc̆ ek, 1994(b), eqn.(50)] 

Input data:   The 30"*60" DEM file and a file containing coordinates and heights of 
computation points  whose names are given into an option file called 
optpvker_1.inp. 

Output data: δVR(R, Ω) in metres computed and stored into a new file specified in the 
option file. 
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4)  Program name:  ptbougpite.for 
 This program computes the "Bouguer" term of the primary indirect 

topographical effect (δVB(R, Ω)) to the geoid.  The equation used here is 
shown in equation (48) [Vaníc̆ ek and Martinec, 1994, eqn.(48)]. 

Input data:   The coordinates and heights of computation points a file whose name is 
given into an option file called optptbougpite.inp. 

 
Output data: δVB(R, Ω) in centimetres computed and stored into a new file specified by 

the option file. 
 
5)  Program name:  sphelm.f 
 This program computes a Helmert reference spheroid of degree L , [Vaníc̆ 

ek et al., 1994(a), eqn. (2)], the direct topographical effect to the reference 
spheriod, and the direct topographical effect to the reference gravity 
anomalies [Vaníc̆ ek et al., 1994(a), eqn. (18)], and the reference SITE. 

  
Input data:   Global satellite potential coefficients (20, 20) and the height squared 

coefficients (derived from TUG87 (90, 90)) files called GRIM4.s4p and 
TUG87.hsq. 

Output data: Spheroid of degree L in metres, the direct topographical effect to the 
reference spheroid in metres, and the direct topographical effect to the 
reference gravity anomalies in mGal, and the reference SITE in mGal 
computed and stored into files called sphelm.mape, sphelm.dtes, 
sphelm.dteg, and sphelm.site respectively. 

 
6)  Program name:  hgrvan.f 
 This program computes reference gravity anomaly, Helmert reference 
                           gravity anomaly of degree L, employing  ellipsoidal approximation, and 
                           vertical gradient of the reference gravity anomaly of degree L.   
                           The equation used  here is shown in [Vaníc̆ ek and Krakiwsky, 1986,  
                            eqn. (23.60)]. 
Input data:   Global satellite potential coefficients (20, 20) and the height squared 

coefficients (derived from TUG87 (90, 90)) files called GRIM4.s4p and 
TUG87.hsq. 

Output data: Reference gravity anomalies, Helmert reference gravity anomalies in 
mGal, direct topographical effect to the reference gravity anomalies in 
mGal, and vertical gradient of the reference gravity anomalies in mGal/m 
computed and stored into the files called grvanm.map, hgrvan.map, 
hgrvan.dte, and hgrvan.grd respectively.   

 
7)  Program name:  dsterm.f 
 This program computes the spherical approximation effect  The equation 
 used here is shown in [Vaníc̆ ek and Martinec, 1994, eqn.(29)]. 
Input data:   Global potential coefficients (360, 360 field) called gfz93a. 
Output data: Ds  gravity anomalies in mGal computed and stored into the file called 

dsterm.map.   
 
8)  Program name:  trnerr.f 
 This program computes the truncation error  The equation used here is 
 shown in [Martinec, 1993, eqn.(6.28)]. 
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Input data:   Global satellite potential coefficients (360, 360 field) file called gfz93a. 
Output data: Truncation errors (metres) computed and stored into the file called 

trnerr.map.   
 
9)  Program name:  hdelgtr.f 
 This program computes some of the quantites in eqn 5.4: the Bouguer 

term, latitude effect, altitude effect and combines them with other 
quantities: the simple Bouguer anomalies and the vertical gradient the 
residual topographical potential evaluated on the topography, i.e.,  except 
the last three terms. After subtracting the helmert reference gravity 
anomaly, computed on the topography, the program builds up the residual 
Helmert  gravity anomaly on the topography, to be ready for the down-
ward continuation.  

Input data:   Mean incomplete Bouguer anomalies, mean direct topographical effect on 
gravity, reference gravity anomalies, and gradient of the reference gravity 
anomalies  stored into old files whose names should be given by the 
option file called hdelgtr.opt 

Output data: The residual (high frequency) mean Helmert anomalies on the topography 
in mGal computed and stored into a new file specified by the option file. 

 
10) Program name:   GIN95.f 
 This program evaluates numerically the spheroidal modified Stokes's 
 convolution integral as described in this report. 
Input data: Residual mean Helmert gravity anomalies on the geoid as a 5'*5' grid  
                           covering the required data area and 1*1 Deg. file, averaged out of the 
                           5'*5' file, for the same area whose names should be given into the input  
                           option file called GIN95.opt. 
Output data: Partial geoidal height and the corresponding accuracies for the 
                           computation area computed and stored into a new file called  
                           GIN95.map. 
 
11)  Program name:  GINsmth.f 
 This program smoothes the tears in the geoid solution along the 10 
 boundaries in the inner and outer zone integration. The formula is that  
 coded in  equation (4.1).   
Input data:   The partial Stokes's solution file. Any arbitrary name of this file, name of 

the output file, and the boundaries of the area covered by the solution 
should be  given into an option file called GINsmth.opt as an input file. 

Output data: The smoothed partial Stokes's solution stored into a new file prescribed 
into the option file. 

 
The following suits of  programs are needed to compute the downward continuation of 
Helmert's gravity anomalies for the area of interest to this contract.  
 
12) Program name:  ktable.for  
 This program computes the table of the  k  coefficients as described in 
 [Vaníc̆ ek et al., 1994(b)]. 
Input data:  Modification coefficients of the Poisson kernel given in [Vaníc̆ ek et al., 
 1994(b)]. 
Output data:  The k-table in file ktable.dat.  
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13) Program name: kreform.for  
 This program reformates the k-table so that one can calculate the A-
 matrix as described in [Vaníc̆ ek et al., 1994(b)]. 
Input data:  The k-table in file ktable.dat. 
Output data:  The reformatted  k-table in file  kreformd.dat.  
 
14) Program name: amatrix.for  
 This program computes the A matrix (filter) for downward continuation of 
 gravity anomalies or disturbances described in [Vaníc̆ ek et al., 1994(b)]. 
 Note: this program should be run on the IBM mainframe (TSO). 
Input data:  The reformatted k-table in file kreformd.dat and height data in the area 
 of interest in file height.dat. 
Output data:  The A matrix in file amatrix.dat. 
 
15) Program name: dgt.for  
 This program computes the truncation error of Poisson integration, using 
 a global potential model [Vaníc̆ ek et al., 1994(b)]. 
Input data:  Global potential coefficients, modified Poisson kernel and the height data 
 in the area of interest. 
Output data:  the truncation error in file dgt.dat.  
 
16) Program name: dcont.for  
 This program evaluates the downward continuation of the input data by 
 iterations as described in [Vaníc̆ ek et al., 1994(b)]. Note: because of the 
 large memory requirements this program should be run on IBM 
 mainframe (TSO) . 
Input data:  The initial input vector for iteration in file  ini.dat (here the high frequency 
 Helmert's gravity anomaly on topography minus the truncation error) and 
 the A matrix in file amatrix.dat. 
Output data:  Downward continuation of Helmert's gravity anomaly in file delggh.dat. 
 
 


