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ABSTRACT

Analytical continuation of gravity anomalies
and height anomalies is compared with
Helmert's second condensation method.
Assuming that the density of the terrain is
constant and known the latter method can be
regarded as correct. All solutions are limited to
the second power of H/R, where H is the
orthometric height of the terrain and R is mean
sea-level radius. We conclude that the predic-
. )on of free-air anomalies and height anomalies
by analytical continuation with Poisson's for-
mula and Stokes's formula goes without error.
Applying the same technique for geoid deter-

mination yields an error of the order of HZ,
stemming from the failure of analytical con-
tinuation inside the masses of the Earth.

1. Introduction

Analytical continuation is frequently used to
solve Molodensky's boundary value problem in
physical geodesy. In this way the gravity po-
tential and gravity itself can be estimated on
and outside the surface of the Earth from grav-
ity related data on and outside the irregular
surface of the Earth. Downward continuation of
the data to the Earth's surface is most essential
in the application of sateilite and airborne
techniques for gravity field determination.

Jhe analytical continuation of a gravity related
__Auantity means that it is continued downward

or upward in free-air, i.e. the Earth's topography
is disregarded. This approach permits the use of
classical formulas, such as Poisson's and
Stokes's formulas, to solve the modern Molo-
densky's problem for the irregular surface of the
Earth. For details see Bjerhammar (1963),
(1964), (1969) and (1975), Moritz (1966 a, b)
and (1980), Heiskanen and Moritz (1967) and
Bjerhammar and Svensson (1979).

Frequently analytical continuation is justified
by reference to the approximation theorems of
Krarup-Runge (Krarup, 1969) and Keldysh-
Laurientiev (Bjerhammar, 1975). However,
although these theorems postulate that analyti-
cal continuation is possible, they do not provide
the tool for it. Thus it is still an open question
whether Bjerhammar's method and/or least-
squares collocation yield such approximations.

A major problem with the analytical continua-
tion is that the method can hardly be applied in
a strict sense, as the downward continuation
may not converge at or below the Earth's sur-
face. This problem may partly be circumvented
by a suitable approximation of the strict ana-
lytical ~continuation. Bjerhammar (1963),
(1964) and (1969) emphasized that there are
merely a finite set of observations, and the
corresponding system of discretized integral
equations can always be solved. In one way or
another the analytical coninuation necessitates
that the external gravity potential is represented
by a smoothed approximation. The problem is
solely due to the contribution of the Earth's
topography. The problem was recently studied
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by Wang (1995), who gave an example of a
uniform approximation under planar approxi-
mation. Cf. also Wang (1990).

Our approach to study the error of the analytical
continuation is the following. We assume that
the density of the terrain is constant and known.
Then we can solve Molodensky's problem by
Helmert's second condensation method. By
comparing this solution with that of the
analytical continuation we get the possible
error. The study is limited to the second order
approximation, i.e. the reciprocal distance is
expanded in a Taylor series to second power of
terrain elevation. This implies that the terrain is

smoothed to have slopes within 45°.

2. The analytical continuation approach
Consider Poisson’s integral equation:

_R%(E-RY) Agg

Ag
P 4zrp s rgQ

dog. (1)

which relates gravity anomalies Ag* on a
sphere of radius R to gravity anomalies Agp at

radius rp >R, obeing the unit sphere and

rpq the distance from point Q on the sphere to

P. This formula is strictly valid in free-air, i.e.
if there are no masses outside the sphere of
radius R. Bjerham-mar (1962), (1963), (1964)
and (1969) considered Poisson's formula with
the sphere of radius R ("the Bjerhammar
sphere”) embedded in the Earth. In that case

Ag* is the downward continued, fictitious
gravity anomaly. Then the strict solution for

Ag*, of the integral equation (1), i.e. the

downward continuation of Ag, is most doubt-

ful, being dependent on the smoothness of the
terrain and the gravity anomaly. However,
Bjerhammar emphasized, that in practice there

is only a limited set of observations Ag, and

in.this discrete case a solution to Ag* (not
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necessarily unique!) always exists. In this case
eqn. (1) can be approximately solved
iteratively. See for example Bjerhammar
(1969), Moritz (1966 a, b) and Heiskanen and
Moritz ( 1967, ch. 8).

* . . , .
Once Ag is determined it can be used in Pois-

son's integral (1) and the extended Stokes's
formula for upward continuation of the gravity
anomaly and the disturbing potential (T),
respectively, to any external point P. In particu-
lar, the latter formula, combined with Bruns's
formula, yields the height anomaly

R *
=——I|} S(rp,y)Agp do (2)
Cp 4TEY£ 1p, Y)Agq dog

where

S(rp,¥) = extended Stokes's function

¥ =normal gravity at the normal
height of P.

In formulas (1) and (2) we should regard Ag

* . -
and Ag as free-air anomalies.

3. Helmert's condensation approach

In Helmert's second condensation method
(Helmert, 1884) the terrain is condensed into a
surface layer at sea-level. The free-air gravity
anomaly corrected for its direct terrain

(reduction) effect (8Ag) we call the Helmert
anomaly

AgP = Ag+8Ag . (3)

As the terrain is reduced to sea-level, the
Helmert anomaly strictly obeys Poisson's for-
mula (1):

202 2 H+y*
AgHZR (rP—R)H(Ag )Q

do,. 4
arr, o I ¢ @
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where Ag is the downward continued free-air
anomaly.

Formula (6) shows that 8Ag is of order H2.
Moreover, considering that

6Ag=8A+25T\:I , (N

where 8A is the direct gravity effect and dVj
is the indirect effect on potential, with

aov
8A = ——L | 12
H (12)
one obtains
d d 2
—dAg=—038A—-—0A 13
o E TR (1)

From Sjoberg {1995a, formulas (A.6), (21) and
(23)} follows that for each point Q at the
Earth's surface it holds that

(BSA

2 = 2 14
aH)Q O(H?) , (14)

implying that

Jd 2
= 15
( M SAg)Q O(Hg) (15a)

and

32 )
—SAg =0(Hg). (15b)
3 Q
(aH o

Inserting formulas (15) into (10} we finally ar-
rive at the following relation between the
downward continued Helmert and free-air

anomaly (to order H? ):

(agM)’ = Ag” +8Ag +O(H?) | (16)
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where 8Ag is applied at the Earth's surface.

Inserting (16) into formula (4) we get (to order
H?)

Agp =
_R¥ —RZ)H Ag +8Ag, _sag, (170
411: rp p ]‘SQ Q P
or
Agp =
2,2 p2 *
_R'(p-R )J'J- A3g 46 +BAg, 1y (P), (17b)
415['1;\ o rPQ
where
SAglolal (P) =
R*(r: —R?) . 8A ) (17¢)
=8 Agy+— L if r3gd0'
P g PQ

OAgoa) 15 the total correction to Poisson's
formula (1).

Rewriting Poisson's kernel in the form

R*(r; -R?)

T 1'3
. (18)

3 n R
:go =E_ [—

Tp

) Y, (P)Y,,(Q)

and inserting formula (6}, (17c) becomes

OAY a1 (P) = (192)

__2m = {(ﬂ+2)(l‘l—1)} R \na 2
R % "~ 2n+1 {(rp] ~ 1}(1{ on
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Adding (25) and (27) we thus obtain

8Iqtol:ll :_u—ui (Hz)n =
, v w2 (28)
__ ‘W
¥

¥

where H? was defined in (9). This means that

formula (23) is in error by 2np fi? /y.
This result agrees with Wang {(1990), eq.
“41n}.

6. Concluding remarks

We have shown that the error of analytical

continuation is of order less than HZ /R for
gravity anomaly and height anomaly estima-

tion, while the error is of order H2 for the
geoid. The reason that the analytical continua-
tion fails for the continental geoid is, of course,
that the continuation procedure provides merely
fictitious values inside the terrain. The above
results are in agreement with the downward
continuation of a satellite derived geopotential
harmonic series as presented by Sjoberg (1994)
and (1995 b).

Our study suggests that geoidal undulations are
estimated by the formula

N= R [[S(y)Ag'do+8N,, , (29)
41Ty 5

where the integral is the outcome of the ana-

lytical continuation and 8N, 18 a correction

given by formula (28). Subsequently the fre-
quently applied remove-restore technique of the
terrain appears obsolete. However, the latter
technique might be justified from a numerical
point of view, as the removal of the terrain

stabilizes the solution for Ag*.
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As a final remark we like to point out that the
direct gravity anomaly effect {formula (5) or
(11)} is the sum of the direct gravity effect and
the so-called secondary indirect effect. How-
ever, as these effects are applied at the Earth’s
surface (and not at the geoid), it implies that the

secondary indirect effect includes 8&; and not

8N | , as usually suggested in the literature. The

latter choice of the effect would cause a
significant error both in geoid and height
anomaly determination.
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