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Summary: Stokes’s kernel used for the evaluation of a gravimetric geoid is a function of the
spherical distance between the point of interest and the dummy point in the integration. lts values
thus are obtained from the positions of pairs of points on the geoid. For the integration over the
near integration zone (near to the point of interest), it is advantageous to pre-form an array of
kernel values where each entry corresponds to the appropriate locations of the two points, or
equivalently, to the latitude and the longitude-difference between the point of interest and a dummy
point. Thus, for points of interest on the same latitude, the array of the Stokes kernel values remains
the same and may only be evaluated once. Also, only one half of the array need be evaluated
because of its longitudinal symmetry: the near zone can be folded along the meridian of the point of
interest.

Numerical tests show thar computation speed improves significantly after this algorithm is
implemented, For an area of 5 by 10 arc-degrees with the grid of 5 by 5 arc-minutes, the
computation time reduces from half an hour to about I minute. To compute the geoid for the whole
of Canada (20 by 60 arc-degrees, with the grid of 5 by 5 arc-minutes), it takes only about
17 minutes on a 400MHz PC computer.

Compared with the Fast Fourier Transform algorithm, this algorithm is easier to implement
including the far zone contribution evaluation that can be done precisely, using the (global) speciral
description of the gravity field.
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1. INTRODUCTION

Stokes’s integral for evaluating the geoid undulation at a point on the geoid can expressed as
(Stokes, 1849; Vanicek and Krakiwsky, 1986)

R
N=—[ AgS(y)do , 1)
4ry o

where R is the mean earth radius, y the normal gravity, o the sphere of integration, Ag the gravity
anomalies reduced to the geoid, and S(y) the Stokes function of spherical distance y, which is
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a function of the latitudes of and longitude difference between the point of interest and a dummy
point:

Sy) = Z%”il B (cosy) . 2
n=2

In this context, by a point of interest we mean the point where the geoid height is evaluated, and by
a dummy point, the running point in the integration.

In practice, the global integration domain is divided into two parts: the near zone and the far
zone. The near zone contribution is evaluated from regional gravity anomalies, and if it is chosen as
a spherical cap then the far zone contribution can be estimated from a global geopotential model.
Equation (1) becomes (Molodenskii et al., 1962)

R R <
N=-—"of AgS(w)do+— Ag, 3
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where oy stands for the near zone cap, and

n
Vo=2,.:0,(¥gy)= JS(!//) P, (cosy)siny dy 4)
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are the Molodenskii truncation coefficients. The second term in Eq. (3) represents the far zone
contribution,; it is sometimes called the truncation error.

Furthermore, it has become a standard practice to use a global geopotential model up to a certain
degree L as a reference field. This reference field generates the reference spheroid to which the
residual geoid is referred. The geoidal heights above the reference spheroid are called residual
geoidal heights. The far zone contribution should be reduced as much as possible to eliminate the
dependency of the residual geoidal height on the global geopotential model. Equation (4) shows that
the far zone contribution is a function of the truncation coefficients which are functions of Stokes’s
kernel. To reduce the effect of the far zone, various modification techniques to the Stokes kernel
have been suggested and used (Molodenskii et al., 1962; de Witte, 1967, Wong and Gore, 1969,
Meisst, 1971; Jekeli, 1981, Sjoberg, 1984, 1986, 1991; Vanicek and Kleusberg, 1987; Vanidek and
Sjoberg, 1991; Vanicek and Featherstone, 1998; Featherstone et al., 1998).

The near zone contribution can be evaluated as precisely as needed by numerical integration.
From the programming point of view, numerical integration is easily implemented. The only
drawback is its slowness. In this contribution, a faster algorithm is developed to improve the speed
of the numerical Stokes integration over the near zone.

2. AFASTER ALGORITHM FOR THE NUMERICAL STOKES INTEGRATION

Stokes’s kernel S() is a function of the spherical distance which can be expressed as
= arccos[sin ¢ sin ¢' + cos¢ cos ¢’ cos(1' - 1)] , (5)

where ¢ and A are the latitude and longitude of the point of interest, ¢' and A’ are the
latitude and longitude of the dummy point. It can be seen that the spherical distance does
not depend on longitudes of the point of interest and dummy point: it only depends on the
longitude difference between the two points. This means that kernel values computed at
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one point of interest can be used at other points of interest on the same latitude. In other
words, all points of interest at the same latitude use the same set of kernel values. Further,
the kernel values are symmetrical with respect to the meridian of the point of interest and
only one half of the kernel values need be thus evaluated. In addition. for fixed grid steps
dA', d¢', the surface element do=cos¢@'dA'd¢’ depends evidently only on the dummy
latitude and it needs be computed only once for each dummy latitude.

Any modified Stokes’s kernel, like the original Stokes kernel, is still a function of the
spherical distance between the point of interest and the dummy point, and it thus
possesses the same isotropy and symmetry with respect to longitude as the original Stokes
kernel. For instance, the modified spheroidal Stokes kernel (Vanicek and Sjoberg, 1991)

2n+1

L
vM,L>1:5M ) -

n=2

tn(l//O) Pn(COSl//) s (6)

shows quite clearly its isotropy resulting in longitudinal symmetries. The ellipsoidal
Stokes kernel with a relative error of the order of the square of the flattening of the Earth
can be written in the following form (Martinec and Grafarend, 1997):

Se”(Q, Q') =sin & (cos @siny cosy cosa ~sin cos? W cos® a +
+sin 9sin? a)K,(cost//) + (] —sin? g sinza) K, (cosy) -

—sin @ cosa (cos Fsiny —sin & cosy cos) K3(cosy) — Ky(cosy) , (7)
where the azimuth
o = arccos [esc i (sin & cos ¢ —cos sin & cos (A -AN] . 8)

Q is the full solid angle, Q = (4 4). 9 is the complement of the reduced latitude. This
kernel, once again, shows that the isotropy applies. It is thus easy to see that the
longitudinal symmetries present in the original Stokes kernel are also present in all the
kernels used in practical computations. These symmetries can now be exploited to speed
up the integration process.

A new algorithm has been designed to exploit the kernel symmetrical properties. The
main difference between the new and the standard algorithms is in the evaluation of kernel
values S(y) = S(4,4; ¢, A): for the standard algorithm, the evaluation of the kernel is
placed within the ‘longitude loop’; in the new algorithm it is placed outside the ‘longitude
loop’ and inside the ‘latitude loop’. Therefore, the kernel values are only computed once
for any latitude of interest. For example, Canada spans about 60 arc-degrees in longitude.
Assuming the geoid to be computed in 5 arc-minute step in longitude, the kernel values
have to be evaluated 720 times by the standard algorithm compared to only once by the
new algorithm. This change significantly reduces the time of kernel evaluation, which
operation takes most of the CPU time. Furthermore, by making use of the longitudinal
symmetry of the Stokes kernel, only about one half of the kernel values are evaluated in
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the new algorithm; the integration area is ‘folded’ along the meridian of the point of
interest.

A simple time analysis can show the theoretical efficiency of the new algorithm with
respect to the standard algorithm. The minimal number of computational steps to evaluate
a kernel value is about 20. This count varies with the type of the Stokes kernel. Assuming
n and m to be the number of points of interest along the meridian and along the parallel,
and 2k and 2/ the number of rows and columns of the matrix of dummy points in the near
zone, then the computational step count is 22*n*m*2k*2! for the standard algorithm
and 20*n*2k* (I+1)+n*m*2k* (I+1) *3 for the new algorithm. The ratio of
computational steps between the standard and the new algorithms can be written as

88nmkl L 44m
A0nk(] + 1)+ 6nmk(l +1)  20+30m

€))

The efficiency is thus increased about 14 times for m > 120. This represents a lower
bound estimate: if the modified Stokes kernel is used, the efficiency is higher than 14. On
the other hand, for the geoid evaluation at one point only, or at a string of points in
different latitudes, both the standard and the new algorithms have the same computation
speed.

Numerical tests have been carried out to measure the actual efficiency of the new
algorithm. They were run on the Dell Optiplex GS1p PC with 400MHz CPU and the
Linux operating system. The programming language was Fortran77. The spherical and the
Molodenskii modified spheroidal Stokes kernels (Vanicek and Kleusberg, 1987) were
used in the tests. Table 1 shows the CPU time of the near zone integration (a spherical cap
of 6 arc-degrees) for the standard and the new algorithms. The speed of the new algorithm
is about 20 times faster when using the spherical Stokes kernel, and 45 times faster when
using the modified spheroidal Stokes kernel. For the whole of Canada, it takes about
5 hours of the CPU time using the spherical Stokes kernel, and 14 hours of the CPU time
using the modified spheroidal Stokes kernel to compute the geoid by the standard
integration algorithm, and only about 17 minutes by the new algorithm. Further, the speed
of the new algorithm depends less on the complexity of the used kernel than that of the
standard algorithm since the kernel evaluation accounts only for a smaller portion of the
CPU time in the new algorithm.

Table 1. The CPU time needed when using the standard and new algorithms.

Area Standard (min.) New (min.) Kernel

5° % 10° 11.60 0.57 spherical

23° x 60° (Canada) 319.29 14.63 spherical
5°x 10° 30.16 0.72 modified

23° x 60° (Canada) 841.11 17.75 modified
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3. A COMPARISON OF THE NEW INTEGRATION ALGORITHM AND THE FFT METHOD

A particularly popular method for the Stokes integration is the Fast Fourier Transform
(Schwarz et al., 1990, Strang van Hees, 1990). It is the most time efficient procedure to
evaluate convolution integrals with. But for both the planar and the spherical 2-D FFT
methods, approximations are introduced in the kernel function, and consequently only
approximate results can be obtained (Haagmanns et al., 1992; She, 1993). Grafarend and
Krumm (1996) show that the planar approximation with only the first order terms in the
Stokes function used may introduce a relative error of the order of 50% into the Stokes
integral. For the 1-D FFT method, however, the exact kernel can be used and the accuracy
of this method is thus comparable with the numerical integration that we have introduced
here (Haagmanns et al., 1992; Novdk et al., 1999).

As far as the computational speed is concerned, Haagmanns et al. (1993) show that
the standard algorithm is about ten times slower than the 1-D FFT method for a region of
14 by 23 arc-degrees with 6 by 10 arc-minute grid. This implies that the presented new
algorithm possesses a comparable or even higher computational speed than the 1-D FFT
method.

In Table 2, three approaches for the evaluation of Stokes’s integral are compared in
terms of accuracy, far zone contribution, speed and implementation. Among these
approaches, the new algorithm appears quite competitive.

Table 2. A comparison of the new algorithm and the FFT integration.

Attribute New direct summation 1-D FFT 2-D FFT
Accuracy exact exact approximate
Far zone optimal optimal approximate
Speed fast fast very fast
Implementation very simple simple complicated
4. SUMMARY

In this work, a new algorithm for numerical Stokes integration is suggested. The new
algorithm is based on the isotropy and longitudinal symmetry of the Stokes kernel
function. For areas of 10° (and more) in longitude, its speed is about 20 times higher when
using the spherical Stokes kernel and 45 times higher when using the modified spheroidal
Stokes kernel than that of the standard algorithm. Using the new algorithm, it takes a fast
PC about 17 minutes to compute the geoid for the whole of Canada. The new algorithm
retains the attributes of the standard 2-D numerical integration, the exactness of results,
flexibility of combination with global geopotential models, simplicity of implementation,
and shows a satisfactory speed for the determination of geoid over large regions.
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