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Abstract

In this thesis, computational methods for the discrete Poisson downward continu-
ation of the Earth gravity are studied. In addition, the effect of the lateral topograph-
ical mass density variation on gravity and the geoid is systematically investigated.

A solution in the spherical harmonic form for the Poisson integral equation is
derived. It is pointed out that the solution of the discrete inverse Poisson problem
exists, but may not be unique and stable. For a small input error, 'a. large output
error is introduced. It is in this sense that the inverse Poisson problem is said to be
an ill-posed problem.

It is found that the modified spheroidal Poisson kernel reduces the ‘real’ far-zone
contribution with respect to using the spheroidal Poisson kernel significantly, but
it cannot perform better than the standard Poisson kernel in reducing it. A fast
algorithm is developed for the evaluation of the far-zone contribution.

Heiskanen and Moritz’s (1967) radius condition gives a critical radius of the near-
zone cap that is too small for the determination of the cm-geoid, while Martinec’s
(1996) condition gives an unnecessarily large radius. It is proposed that the critical
near-zone radius be determined as a function of the accuracy of the global geopotential
model from which the far-zone contribution is evaluated.

The combined iterative method is proposed to speed up the convergence of the
solution of the discrete inverse Poisson problem. The truncated singular value de-
composition method is introduced to solve the discrete Poisson integral equation that
may be ill-conditioned for a small discrete step.

The three discrete models for the Poisson integral, namely the point-point, point-
mean and mean-mean models are assessed against synthetic data. It is shown that
the mean-mean model can produce a sufficiently accurate solution when the so called

‘averaging error’ is properly corrected for.

=~}



Acknowledgements

I am grateful to my advisor and mentor, Prof. Dr. Petr Vanicek for his continuous
support and inspiring guidance when I was on and off the campus. The open-minded
discussions with him created a unique studying atmosphere. The experience of work-
ing with him is an invaluable asset for my career.

I am thankful to my advisor and supervisor, Dr. Spiros D. Pagiatakis at GSD.
His guidance and support were indispensable for the continuation and completion of
my studies. His knowledge, rigorousness, confidence, and ambition are beneficial to
me.

My appreciation is extended to Prof. Dr. Richard Langley, Prof. Dr. David
Wells, Prof. Dr. Larry Mayer and Prof. Dr. Alfred Kleusberg for their involvement
of supervision. I am indebted to Dr. Wenke Sun, Prof. Dr. Eric Grafarend, Prof.
Dr. Michael Sideris, Prof. Dr. Zdenék Martinec, Prof. Dr. Will E. Featherstone, Dr.
Martin Vermeer and Dr. R. O. Castle for the constructive discussions with them. I
wish to thank Prof. Dr. David J. Coleman and Ms. M. Wojnarowska for their help
with the GIS software, my colleagues at GSD Mr. Marc Véronneau and Dr. André
Mainville for sharing their knowledge with me, and Mr. Paul Collins for his time and
effort in improving English of this manscript.

My thanks go to Mrs. Linda O’Brien for all including helps, to my fellow graduate
and visiting students of the geodesy group at UNB, Mehdi Najafi, Pavel Novik, Jeff
Wong, Juraj Janik, Wilbert Brink, Mensur Omerbasi¢, and Roderick A. Schipper for

the weekly round-table discussions on geodesy with them.

iii



Finally, my wife Shen Chunlin and my son Kaiwen deserve more than thanks for

their love, patience, and encouragement.



Contents

Abstract ii
Acknowledgements iii
Table of Contents \
List of Tables ix
List of Figures Xii
List of Abbreviations Xv
List of Latin Symbols Xvi
List of Greek Symbols Xix
1 Introduction 1
1.1 The Geoid, Quasigeoid and Height Systems. . . . . .. .. ... ... 1
1.2 Geodetic Boundary Value Problems and Downward Continuations . . 4
1.2.1 The Stokes Solution . ... ................... 5
1.2.2 The Molodenskii Solution . . ... ............... 7
1.2.3 The Hotine Solution . ... ... ... ............. 9
1.3 Review . . . . . . L e e e e 10
14 Objectives . . . .. . . .. . .. e 15



1.5 Contributions . . . .. ... .. .. ... . ... ... ... 16
Basic Theory 19
2.1 Dirichlet’s Problem and Poisson’s Integral Equation . . . . . ... .. 19
2.2 The Inverse Problem and Downward Continuation . . . .. . ... .. 21
2.3 Solvability of the Poisson Downward Continuation . . . . . ... ... 23
24 Summary . . ... . e e e e e e e e e e e e e e e e e e 28
Discretization of Poisson’s Integral Equation 29
3.1 The Far-Zone Contribution . . . . . .. ... .............. 29
3.1.1 Formulation . . ... ............ ... ........ 30
3.1.2 Standard vs. Modified Kernels . . . . ... ... ........ 37
3.1.3 Determination of The Critical Angular Radius of the Near-Zone
Cap . . e e e e e e e e e e e 41
3.1.4 An Efficient Algorithm of the Far-Zone Contribution . .. . . 45
3.2 The Discrete Poisson Integral Equations . .. ... .......... 50
3.2.1 The Point-Point Model . . . .. ................. 53
3.22 The Point-MeanModel . . . . ... .. ... .. ........ 54
3.23 The Mean-Mean Model . . . .. ... .............. 55
3.2.4 Analysis of the Discrete Models . . . ... ... ... ..... 56
3.3 Summary . .. ... e e e e e e e e 59
Solution of the Discrete Poisson Integral Equations 62
4.1 The Combined Iterative Method . . . . . . .. ... .......... 63
4.2 Synthetic Geopotential Models . . . . . . ... ... .......... 65

4.3 Synthetic Tests of Discrete Models for Poisson’s Integral Equation . . 68

4.4 Some Numerical Characteristics of the Mean-Mean Model . . .. .. 74
4.5 Synthetic Test for The Critical Radius of the Near-Zone Cap . . . . . 76
46 Algorithm . . . .. .. ... ... e w



4.7 Implementation: DOWN’97 . ... ... ... ............. 81
4.8 The Truncated Singular Value Decomposition Method . . . . . . . . . 81
4.9 Summary . . . . . . i e e e e e e e e e e e e e e e e e e 83
Analytical Downward Continuation 85
5.1 Theory . . . . . . . i . i e e e e e e e e e 85
5.2 Computational Method . . . . . .. ... ... ............. 87
5.3 Numerical Comparisons with the Discrete Poisson Downward Contin-
uation . . . .. e e e e e e e e e e e e e e e e 38
5.3.1 Synthetic Comparisons . . . ... ... ............. 88
5.3.2 Comparisons Using the Helmert Gravity Anomaly . . . . . . . 93
5.4 Summary . ... . .. e e e e e e e e e e e e e e 99

Topographical Density Variation Effects on Gravity and the Geoid 104

6.1 Introduction . ... .. ... .. ... ... ... ... 104
6.2 Digital Topographical Density Model . . . .. ... .......... 106
6.3 Mathematical Formulation . . . .. .. ... .............. 108
64 NumericalResults. . . .. ... .. ..... . ............. 112
6.4.1 Mean Direct Density Effect . . . ... ... .......... 113
6.4.2 Primary Indirect Density Effect . . . . . ... ... ...... 118
6.4.3 Total Lateral Topographical Density Variation Effect on the
Geoid . .. .. ... . . . . e e 118
6.5 Summary . ... . .. ... e e e e e e e e e e 122
Conclusions and Recommendations 123
7.1 Solvability of the Discrete Poisson Downward Continuation . . . . . . 124
7.2 Discretization of Poisson’s integral . . . . ... ... .......... 124
7.3 Solution of the Discrete Inverse Poisson Problem . . . . .. ... ... 125
7.4 Analytical Downward Continuation . .. ... ... .......... 126



7.5 Topographical Density Variation Effects on

Gravity and Geoid

............................

7.6 Recommendations. . . . . . . . . o i v i i v e e e e e e e e
References
Vita

Main Publications

Main Conference Papers



List of Tables

3.1
3.2
3.3
4.1

4.3

4.4

4.5

4.6

4.7

The modified Poisson kernel coefficients t,,( H, 1°)

............

Statistics of the mean 5’ x 5" DEM in the test regions. Unit: m. . . .

Condition numbers in the test regions by using the mean 5’ x 5 DEM.

The 5’ x 5’ point-point downward continuation of the synthetic field of

degree 21 to degree 1800 derived from GPM98a. ¥y = 1°. Unit: mGal.

The 5’ x 5’ point-mean downward continuation of the synthetic field of

degree 21 to degree 1800 derived from GPM98a. ¥ = 1°. Unit: mGal.

The 5’ x 5" mean-mean downward continuation of the synthetic field of

degree 21 to degree 1800 derived from GPM98a. ¥y = 1°. Unit: mGal.

The 5’ x 5’ mean-mean downward continuation of the synthetic field of
degree 21 to degree 1800 derived from GPM98a with the correction of
the averaging error. Yo =1°. Unit: mGal. . . .............
The averaging errors and their downward continuation of the mean-
mean model for different grid steps. ¥g = 1°. Unit: mGal. . ... ..

The mean-mean downward continuation errors for different grid steps

with and without the correction of the averaging errors. ¥y = 1°. Unit:
mGal.

...................................

The 5’ x 5 mean-mean downward continuation errors of the synthetic

field of degree 21 to degree 1800 derived from GPM98a due to using

69

69

69

different DTMs for evaluating the coefficients B=,J Yo = 1°. Unit: mGal. 75

ix



4.8

4.9

4.10

5.1

5.3

5.4

5.5

5.6

5.7

5.8

5.9

The 5’ x 5’ mean-mean downward continuation errors of the synthetic
field of degree 21 to degree 1800 derived from GPM98a due to using
different grids of point values for evaluating the mean anomalies on the
Earth’s surface. Unit: mGal. . . . . .. . ... ... .. ... .....
The mean-mean downward continuation errors of the synthetic field of
degree 21 to degree 1800 derived from GPM98a due to using different
grids for evaluating the downward continuation. Unit: mGal. . . . . .
The point-point downward continuation of the synthetic field of degree
21 to degree 1800 derived from GPM98a for ¥y = 0.5°. Unit: mGal. .
The point-point DDC of the synthetic field of EGM96 (21-360) in the
test region. Unit: mGal. . ... ... ... ... .. ..........
The ADC of the synthetic field of EGM96 (21-360) in the test region.
Unit: mGal. . . . . .. ... .. .. . e
Accuracy of the point-point DDC and the ADC by using the synthetic
field of EGM96 (21-360) in the test region. Unit: m.. . . . . ... ..
The point-point DDC of the synthetic field of GPM98a (21-1800) in
the test region. Unit: mGal. . . .. .. .. ... .. .. ........
The ADC of the synthetic field of GPM98a (21-1800) in the test region.
Unit: mGal
Accuracy of the point-point DDC and the ADC by using the synthetic

field of GPM98a (21-1800) in the test region. Unit: m.

.................................

........

Statistics of the residual Helmert gravity anomaly above degree 20 of
EGM96 and the height data in the test region. . . . . . ... ... ..
The gravity results of the DDC and the ADC from the residual Helmert
gravity anomaly in the test region. Unit: mGal. . . .. ... ... ..
The geoid height results of the DDC and the ADC from the residual

Helmert gravity anomaly in the test region. Unit: m. . ... ... ..

75

76

90

90

90

94

94

95

99

99

100



6.1

6.2

6.3

6.4

Direct topographical lateral density variation effects on gravity at the
Earth surfaceinm@Gal. . . . .. .. ... ... .. ... ........
Direct and primary indirect lateral topographical density variation ef-
fects on geoid heights,incm.. . . . .. .. .. ... .o 0L
Topographic mass density variation effects versus the total topographi-
cal effects using the actual mean density value. (Note: DTE, SITE and
PITE by Vanic¢ek et al. are computed by using the constant density
267 g/emB) . .. e e

Distribution of the total effect values caused by the lateral topograph-

ical mass density variation

.........................



List of Figures

1.1
1.2
1.3

2.1
3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8
3.9

3.10
3.11

Geoid, quasigeoid and height systems.. . . . . ... .. ... .....
The real and the Helmert spaces. . . . .. . . ... .. ... .. ...
Moritz’s analytical downward continuation from the Earth Surface to
thepointlevel. .. .. ... ... ... ... . .. ... ... ...
A;' versusdegreen. H= 2km. ... .................
K, K"5and K"MSvs. ¢ (30’ —=60"). H=2km. . .. ........
K,K"%and K"MSvs, 4 (1°-180°). H=2km. ..........
The truncation error coefficients Q. ¥ =1°, H =2km. . . . .. ..

The far-zone contributions F, ggl vs. degree n. Yo = 1°, H =2 km. . .
The standard deviation m% vs. degree n. ¥ = 1°, H =2 km.

The far-zone contribution effect on geoid in the Rocky Mountains.
1¥o = 1°. Contour interval: 0.002m. . . .. ... ............
The truncation error coefficients @, of the standard Poisson kernel K
for different radii ¥o. H=2km.. . . . . . . . ... .. ... .....
The far-zone contributions F3) for different radii ¥o. H = 2 km.

The standard deviations of the far-zone contributions mg for different
radii . H=2Kkm. . .. ... . . . @ i i ittt
Calm,H,0) vs. H. . . . . . . i i e e e e e e e e e e e e e
Ca(m,H,0) vs. m. . . . . . . i e e e e e e e e e e

..

[ 8]

27
35
36
38
39
40



3.12 The singular value spectrum of the coefficient matrices for the point-

4.1

4.2

4.3
4.4

4.5
5.1

5.3

5.4

5.5

5.6

5.8

point model (solid lines), the point-mean model (dotdashed lines), and
the mean-mean model (dashed lines) of 3’ x 5. . . . . . .. ... ...
Anomaly degree variances o3 of the Tscherning/Rapp degree variance
model, EGM96 and GPM98a. . .. ... ... ... ..........
Error distribution of the downward continuation using the GPM98a
syntheticdata. . . .. ... ... ... ... . .. o o

The 3-D table for the doubly averaged kernel coefficients B;;

......

The block-wise approach

..........................

The geoid height error distribution for the DDC and ADC of the
EGM96 synthetic data.

The point-point DDC effect on the geoid from the synthetic gravity
data of EGM96 (21-360). Contour interval: 0.01 m
The ADC effect on the geoid from the synthetic gravity data of EGM96
(21-360). Contour interval: 0.0l m. . . . ... ... ..........

...........

The geoid height error distribution for the DDC and ADC of the
GPM98a syntheticdata. . ... ... ..................
The point-point DDC effect on the geoid from the synthetic gravity
data of GPM98a (21-1800). Contour interval: 0.01 m
The ADC effect on the geoid from the synthetic gravity data of GPM98a
(21-1800). Contour interval: 0.01 m.

..........

..................

The point-point DDC effect on the geoid, using the residual Helmert

60

67

70
78

79
80

91

92

93

95

96

97

gravity anomalies above degree 20 of EGM96. Contour interval: 0.1 m. 100

The ADC effect on the geoid, using the residual Helmert gravity anoma-
lies above degree 20 of EGM96. Contour interval: 0.1 m. . . ... ..

X1u

101



5.9

6.1

6.2

6.3

6.4

6.5

6.6

6.8

6.9

6.10

The difference between the DDC and ADC effects on the geoid, using
the residual Helmert gravity anomalies. Contour interval: 0.02 m. . .
The lateral topographical mass density map in the Rocky Mountains.

White areas indicate water bodies and geographical boundaries. Unit:

The standard deviation of the topographical mass density in the Rocky
Mountains. White areas indicate water bodies and geographical bound-
aries. Unit: gfem®. . . . .. ... . L
Geoid correction profiles due to the mean DDE computed from different

number of point values

...........................

The mean DDE §Ap on gravity at the Earth surface in the Canadian
Rocky Mountains in mGal. The solid lines delimit water bodies. .

The point standard deviation of the DDE 05,4 in the Canadian Rocky
Mountains in mGal. The solid lines delimit water bodies. . . . . . . .
The mean DDE §Ap on the geoid in the Canadian Rocky Mountains
in mGal. The solid lines delimit water bodies. . . . .. ... ... ..

The mean DDE on the geoid in the Canadian Rocky Mountains. Con-

tour interval: 1 cm

.............................

The PIDE 6 Np on the geoid in the Canadian Rocky Mountains. Con-

tour interval: 1 cm

.............................

..................................

The sum of the DDE and PIDE on the geoid in the Canadian Rocky

Mountains. Contour interval: 1 cm

....................

Xiv

102

109

115



List of Abbreviations

ADC
DDC
DDE
DTE
DEM
DTDM
EGM96
GBVP
GIS
GSD
GRS80
PIDE
PITE
RMS
StdDev
SIDE
SITE
SVE
SVD
TSVD

analytical downward continuation

discrete Poisson downward continuation

direct topographical mass density effect

direct topographical effect

digital elevation model

digital topographical mass density model

Earth Geopotential Model 96

geodetic boundary value problem

Geographic Information System

Geodetic Survey Division, Natural Resources Canada
Geodetic Reference System 1980

primary indirect topographical mass density effect
primary indirect topographical effect

root of mean squares

standard deviation

secondary indirect topographical mass density effect
secondary indirect topographical effect

singular value expansion

singular value decomposition

truncated singular value decomposition



List of Latin Symbols

cnm b dnm.

dCorm
de

Q

g?r?rb‘nl

spherical harmonic coefficients of gopotential

distance between two points on the sphere of radius R

the standard deviations of the geopotential model coefficients
the discretization error

the flattening of the Earth

parameter vector

observation vector

actual Earth gravity

term n in the analytical downward continuation

mean actual Earth gravity along the plumb line

geodetic height

the maximum degree being taken for evaluation of the far-zone contribution
the truncation parameter for the TSVD

order of spherical harmonics

the standard deviation of the far-zone contribution for K {
degree of spherical harmonics

the normal to the reference ellipsoidal surface

geocentric radius

geocentric radius of a point on the geoid

geocentric radius of the computation point on the Earth surface

geocentric radius of the integration point on the Earth surface



tn the modified Poisson kernel coeflicients

v domain of a harmonic function

B integral operator or coefficient matrix

B an approximation of B

B;; matrix coefficients for the point-point model

B;; matrix coefficients for the point-mean model

B=ij matrix coefficients for the mean-mean model

Cnm the fully normalized spherical harmonic coefficients of geopotential
DAg downward continuation of gravity anomaly

F the model space

Fag the far-zone contribution of Poisson’s integral

Fi/ the far-zone contribution of Poisson’s integral above degree | for K {
G universal gravitational constant

H height above a reference sphere of radius R

H° orthometric height

HN normal height

I superscript indicating the type of kernel in use

K the Poisson kernel

K the first [ degrees of terms in the Poisson kernel

K MS the modified spheroidal Poisson kernel

K4S the spheroidal Poisson kernel

c the data space

L distance between two points

L the integral operator for the analytical downward continuation
M mass of the Earth

M the total number of cells within the near-zone

N geoid height

N the tolal number of unknown parameters

.o

Xvii



NS

< S < 5

<

=

3

Helmert’s co-geoid height

Legendre’s polynomial of the first kind

associated Legendre’s function of the first kind
truncation error coefficients of Poisson’s integral
truncation error coefficients of Poisson’s integral for Kyss
truncation error coefficients of Poisson’s integral for Kg
the mean radius of the Earth

spherical Stokes’s kernel function

disturbing gravity potential

Helmert’s disturbing gravity potential

actual gravity potential

normal gravity potential

SVD matrices

harmonic function

surface spherical harmonic functions

mean surface spherical harmonic functions over cells



List of Greek Symbols

dAp
dND
i

ddc
N

normal gravity

mean normal gravity along the plumb line

normal gravity on the geoid

normal gravity on the reference ellipsoid

normal gravity on the telluroid

parameter error vector

gravity disturbance

the direct topographical effect on gravity (DTE)

the direct topographical mass density effect on gravity (DDE)
the primary indirect topographical mass density effect on the geoid (PIDE)
the geoid height error of the ADC

the geoid height error of the DDC

the secondary indirect topographical effect (SITE)

the secondary indirect topographical mass density effect (SIDE)
lateral density variation

observation error vector

height anomaly

geocentric co-latitude

geocentric longitude

geocentric longitude of the integration point

singular-values of degree n



03( 9,1 Q”)
0s5A

OsN

05._,

o

&

]

the normal to the telluroid

density of topographical masses

constant density 2.67 g/cm?®

cell mean density of topographical masses

degree variances

the surface spherical harmonic coefficients of a function

the standard deviation of the mean topographical mass density

covariance of the mean topographical mass densities between two points

the standard deviation of the DDE

the standard deviation of the PIDE

the standard deviation of the SIDE

the surface density function

geocentric latitude

geocentric latitude of the integration point

angular distance between two points

angular radius of the near-zone

the sampling step of data

the free-air gravity anomaly

the simple Bouguer gravity anomaly

the free-air gravity anomaly at a point level

Helmert’s gravity anomaly

gravity anomaly components above degree [

mean gravity anomaly components above degree [
integration surface elements

the data sampling step in the longitude direction

solid angle denoting the pair (8, \) for the computation point
solid angle denoting the pair (6’, \’) for the integration point

the near integration zone with the angular radius ¥,



Chapter 1

Introduction

1.1 The Geoid, Quasigeoid and Height Systems

The geoid is defined as an equipotential surface of the gravitational and rotational
Earth coinciding with the mean sea level of the oceans. It is a natural reference
surface for heights since it is horizontal everywhere. Its shape is roughly an oblate
ellipsoid with semi-axes 6378 and 6357 km, but may deviate locally from the best-
fitting ellipsoid in about value by as much as 100 m. The best-fitting ellipsoid is
usually considered as the geocentric ellipsoid that is closest to the geoid, with a mass
identical to that of the Earth. Its minor axis is always parallel to the Earth axis
of rotation. The normal potential U generated by the ellipsoid on the ellipsoidal
surface is equal to the actual potential W, on the geoid. The geoid height or geoid
undulation is defined as the distance of a point on the geoid from the best-fitting
ellipsoidal surface along the normal to the ellipsoidal surface, and is denoted by NV
(see Figure 1.1). The height of the natural surface of the Earth above the geoid
is called the orthometric height and is denoted by H°, while the height above the
ellipsoidal suface is called the geodetic height denoted by h. These three parameters



are related by (Vaniéek and Krakiwsky, 1986)

h=N+ HC. (1.1)

Figure 1.1: Geoid, quasigeoid and height systems.

A parallel concept to the geoid is the quasigeoid. It was defined by Molodenkii
et al.(1960). In the Molodenskii system, a conceptual surface called the telluroid is
introduced as the surface whose normal potential of any point is equal to the actual
potential at the corresponding point on the Earth surface. The distance between
the telluroid and the Earth surface along the normal to the telluroid is called the
height anomaly denoted by (. The quasigeoid is a surface that is displaced from the
reference ellipsoid by the height anomaly. Unlike the geoid, the quasigeoid is not an
equipotential surface but it coincides with the geoid in the open oceans. The height
of a point above the quasigeoid is called the normal height denoted by H™. The pair
(N, H?) is related to the pair (¢, HV) by

N+ H°= ¢+ HN. (1.2)



The height anomaly ( can be converted to the geoid height N by (Heiskanen and
Moritz, 1967)

N=(C+ 9—;—730, (1.3)
where g is the mean value of the actual gravity along the plumb line between the
geoid and the Earth surface, ¥ is the mean value of the normal gravity along the

normal to the reference ellipsoid from the telluroid. The conversion relation between

H° and H" can be obtained by substituting eqn. (1.3) into eqn. (1.2)
HN = HO + ?H". (1.4)

The orthometric height and the normal height systems are the most widely used
systems in the world. There exist other height systems: for example the dynamic
height doesn’t have geometrical meaning and can be derived from either the ortho-
metric height or the normal height (Vani¢ek and Krakiwsky, 1986). The orthometric
height (or the normal height) can be determined by traditional spirit leveling, a pre-
cise but inefficient method. An efficient alternative is satellite positioning. Satellite
positioning systems such as GPS, GLONASS and the upcoming GALILEO allow us
to determine geodetic heights with an accuracy of better than 1 cm. In order to derive
the orthometric height or the normal height from the satellite-determined geodetic
height without losing accuracy, the geoid (or quasigeoid) has to be known to the
same accuracy. The geoid (or quasigeoid) provides the means of converting geodetic
to orthometric heights for a number of satellite positioning applications such as to-
pographic mapping, GPS leveling, navigation, hydrographic surveying, oceangraphy

and others.



1.2 Geodetic Boundary Value Problems and Down-
ward Continuations

The geoid can be determined from the disturbing potential denoted by T, that is
defined as the difference between the actual gravity potential W and the normal
gravity potential U at a point

T(r,Q) =W(r,Q) - U(r,Q), (1.5)

where 2 is the solid angle denoting the pair (8, A), the spherical co-latitude and lon-
gitude, and r is the geocentric radius of the point. The disturbing potential T is
harmonic everywhere above the Earth surface (ignoring the existence of the atmo-
sphere).
If the disturbing potential T is known on the Earth surface, the height anomaly
¢ can be determined by using Bruns formula
_ T(r:, Q)
T

where r; is the geocentric radius of a point on the Earth surface, 47 is the normal

¢ (1.6)

gravity at the corresponding point on the telluroid.

If the disturbing potential T is known on the geoid, the geoid height NV can be
determined by using Bruns formula
IAV' = T(r.‘” Q)’
TE

where r, is the geocentric radius of a point on the geoid, vg is the normal gravity on

(1.7)

the reference ellipsoid.

Assuming the disturbing potential T is harmonic, i.e. it satisfies the Laplace

differential equation
AT =0, (1.8)

it can be determined by solving the boundary value problem (BVP) for the Laplace
equation which is called the geodetic boundary value problem (GBVP) in physical



geodesy. Three representive solutions for this equation are: the Stokes (1849), the
Molodenskii et al. (1962) and the Hotine (1969) solutions. Stokes and Molodenskii
et al. derive their solutions by solving the third boundary value problem, while the

Hotine solution is based on the second boundary value problem.

1.2.1 The Stokes Solution

The Stokes solution may be obtained by making use of the boundary condition

T (r, Q) 1 Oy
— | = =- 1.9
Bn r=rg YE 3nT(rg’ Q) Ag(r‘q,n)’ ( )
where
Ag(ry, ) = g(ry, Q) — v, (1.10)

is the gravity anomaly on the geoid, n is the normal to the ellipsoidal surface, g(r;, )
is the gravity on the geoid, and 4g is the normal gravity on the reference ellipsoid.
Then the solution for the disturbing potential T is given by the Stokes integral (Stokes,
1949)
R
T(re,®) = o [ S(¥)Ag(r,, Q)ae?, (1.11)

where R is the mean radius of the Earth, S(¢) is the spherical Stokes kernel ®.
Stokes solution to eqn. (1.8) is valid only when there are no masses outside the
geoid. The existence of topography and atmosphere violates this condition. The
removal of the masses above the geoid, one way or another, is necessary to fulfill this
condition. A number of reduction methods have been proposed for this purpose. In
Canada and the US, Helmert’s 2nd condensation reduction has been used to determine
the geoid (Vani¢ek and Kleusberg, 1987; Véronneau, 1996; Vanicek et al., 1999; Smith
and Milbert, 1999). Following this scheme, the topography and the atmosphere are

1The Stokes formula gives a spherical approximation to T'. A more accurate solution should take
the ellipsoidal correction into consideration (Sagrebin, 1956; Molodenskii, 1962; Bjerhammar, 1966;

Koch, 1968; Moritz, 1971; Martinec and Grafarend, 1997; Fei and Sideris; 2000, 2001; Huang et al,
2000)
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Figure 1.2: The real and the Helmert spaces.

condensed so as to form a surface layer just beneath the geoid. It is a limiting
case of an isostatic reduction according to the Pratt-Hayford system as the depth of
compensation D goes to zero (Heiskenan and Moritz, 1967). Vani¢ek and Martinec
(1994) define the Stokes problem with Helmert’s 2nd condensation as the Stokes-
Helmert scheme (see Figure 1.2). The principle of this scheme may be described as
follows (Vani¢ek and Sjoberg, 1991; Najafi, 1996; Vanicek et al., 1999):

1. Transforming the “observed gravity anomaly” Ag, on the Earth surface from the
real space into the Helmert gravity anomaly Ag?, referred to the same surface

in Helmert space,
2. Continuing Ag! downwards to the Helmert co-geoid,

3. Solving the boundary value problem in the Helmert space, i.e., solving for the

Helmert co-geoid using Stokes formula,



4. Transforming the co-geoid to the geoid by adding the primary indirect topo-
graphical and atmospherical effect (PITE and PIAE).

The first step (from real space to Helmert space) involves the removal and condensa-
tion of the topographical masses, which require the mass density distribution between
the geoid and the Earth surface. Since the density information for the whole topogra-
phy is difficult to obtain, a constant density (2.67g/cm?) is usually assumed in place
of the real one, introducing an error into the Helmert gravity anomaly and the geoid
solution. The unknown topographical mass density imposes theoretical and practical
challenges to the application of the Stokes-Helmert method because of the incomplete
removal and condensation of topography by using constant density in the first step.
One of the objectives of this research is to investigate the topographical mass density

’

variation effects on the geoid for the Stokes-Helmert method.

1.2.2 The Molodenskii Solution

In order to avoid the removal and condensation (or compensation) of the topograph-

ical masses, Molodenskii defines the boundary as the Earth surface in his solution to

eqn. (1.8), which is called the “modern” geodetic boundary value problem. The Molo-

denskii solution may be obtained by making use of the following boundary condition
on the Earth’s surface: (Molodenkii et al., 1960; Moritz, 1969; Sideris, 1987)

oT(r, Q) 1

ov T

r=re

%T(r.,ﬂ) = —Ag(r, N), (1.12)
where

Ag(re, ) = g(re, ) —yr (1.13)
is the gravity anomaly on the Earth surface, g(r:, ) is the actual gravity on the

Earth surface, and v is the normal to the telluroid. The solution for the disturbing

potential T may be given by the following series (Moritz, 1969)

R r o~ R 4
T(ro®) = = [ S@)agra M + 3. = [ Sw)gnd,  (114)

n=1



where g, are the analytical downward continuation terms.

U=Up
M
h
U=U,  J
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Figure 1.3: Moritz’s analytical downward continuation from the Earth Surface to the
point level.

The analytical downward continuation is used to reduce the gravity anomaly to
a level surface on which the Stokes integration can be carried out to compute the
disturbing potential T' (see Figure 1.3). Consider a point P at the Earth surface and
the equipotential surface U = Up passing through P (so-called “point level”). Then
the gravity anomaly Ag given at the Earth surface may be analytically continued to
that point level, yielding Ag’

Ag =3 on. (1.15)

n=0

Note that Ag’ refers to the level surface U = Up. Consequently, Stokes’s formula can
be applied to determine T on the Earth surface.

Sideris (1987) suggested a method to determine the downward continuation terms
gn by a two-step continuation procedure, in which the gravity anomalies are ana-
lytically continued from the telluroid down to the geoid as Ag®, then an upward
continuation of Agp to the point level finally provides Ag’.



1.2.3 The Hotine Solution

The Hotine solution to eqn. (1.8) can be obtained by using the boundary condition

on the geoid

oT(r,Q2
—-(37—) =) (1.16)
where
09(rg, ) = g(r4, Q) — 4 (1.17)

is called the gravity disturbance on the geoid, and 4, is the normal gravity on the
geoid.
The solution for the disturbing potential T' can be given by using the Hotine kernel

function H(vy) (Hotine, 1969, 29.17) 2

T(ry, ) = 1= [ H()69(rs, )Y, (L18)

Similar to Stokes’ solution, the Hotine solution also requires harmonicity of T
above the geoid. A similar reduction scheme to that of Stokes-Helmert is applicable
to the Hotine method as well. Accordingly, the downward continuation is also an
essential step to reduce dg from the Earth surface to the geoid. The Hotine kernel
function allows the gravity disturbance dg to contain the zero-order and the first-order
terms, while the terms of order 0 and 1 are considered as ‘forbidden’ as in the Stokes
solution. In other words, the reference ellipsoid may not be geocentric and may have
a different normal potential on the ellipsoidal surface from the actual potential on
the geoid if the Hotine solution is applied for geoid determination. Evaluation of
dg requires known geodetic heights for generating the normal gravity on the Earth’s
surface. This requirement has limited the application of the Hotine solution because
only the orthometric heights are available at most gravity points.

We have seen that the downward continuation is a fundamental step in deter-

mining the disturbing potential in all three solutions. The use of this technique is

2This solution represents a spherical approximation of 7', and an ellipsoidal correction is needed
to give a more accurate solution.



theoretically and practically necessary so that the Stokes formula and the Hotine for-
mula can be applied rigorously and so that the height anomaly can then be evaluated
efficiently by the Fast Fourier Transform (FFT) (Sideris, 1987), or by improved nu-
merical integration (Huang et al., 2000). However it is a. controversial issue whether
this step leads to a better geoid solution since the downward continuation is classified
as an ill-posed problem in geodetic literature. In other words, whether and how the
downward continuation can be applied to generate a centimeter-geoid is still an open
question. The main objective of this research is to study the downward continuation
method for the geoid determination, and answer this question.

The downward continuation is also an indispensable step for airborne gravimetry
(Schwarz, 1978; Forsberg and Kenyon, 1995; Novak et. al, 2000). Airborne gravime-
try has the advantage of allowing a rapid coverage of large regions of the world with
significant economy over other methods. It is particularly useful and necessary for
covering coastal, mountainous and polar regions. Since the data are collected at the

flight level, they have to be continued downward to the geoid for both geophysical

and geodetic applications.

1.3 Review

The downward continuation problem is classified as an ill-posed problem due to the
fact that a comparatively smooth function of the gravity anomaly is used to construct
a more detailed and therefore ‘rougher’ function of the gravity anomaly. Hofmann-
Wellenhof and Moritz (1986) show by a planar spectral analysis that there is an
exponential amplification of the gravity anomalies at high frequencies when continued
downwards. For satellite perturbation methods, the 300-th degree coefficients of the
gravity anomaly at an altitude of 150 km must be known with an accuracy of 1 ugal
(10~8ms~2) in order to recover 1 mgal (10~*ms=2?) accuracy at the Earth surface

(Jekeli, 1981). Milbert (1999) states: “One is faced with the ‘dilemma of downward
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continuation’. If one uses a coarse grid, one suffers from omission error in a geoid
product. If one uses a finer grid, one suffers from error and noise amplification.”

Schwarz (1978) summarizes numerical features of the ill-posed problem as follows:

(a) “The solution does not continuously depend on the given data, i.e., small changes

in the data may cause large changes in the solution.”

(b) “The matrices resulting from the discretization of the problem will be ill-conditioned,
i.e., the inverse matrices will strongly oscillate and the condition numbers will

be large.”

(c) “The accuracy of the solution does not increase with the grid density, i.e., as the

grid becomes smaller, any norm of the approximate solution typically becomes

large.”

A recent revisiting of the problem of downward continuation gives a different un-
derstanding to it. Vanicek et al. (1996) demonstrate that the determination of the
downward continuation of mean Helmert’s gravity anomalies on a grid of reason-
able step (5 arc-sec.) is a well-posed problem with a unique solution and can be
done routinely to any accuracy desired in the geoid computation. Martinec (1996)
shows that the problem is stable until the discretization step becomes smaller than 50
arc-seconds. Furthermore, Vanicek and Wong (1999) argue: “For Helmert’s gravity
anomalies, the answer to all three Hadamard’s conditions is affirmative, and we con-
clude that we are dealing with a well-posed problem. We note that the fact that small
changes in input data may cause large changes in solution, does not strictly violate
the third Hadamard condition as the solution is still continuous.” These results give
us new insight into the downward continuation problem that has traditionally been
classified as an ill-posed problem.

Regardless of the downward continuation being an ill-posed problem or not, the

commonly accepted fact is that it definitely amplifies the errors of the input data.
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How the effects of the random errors can be eliminated as much as possible, and to
what extent the random errors of the input data affect the determination of geoid
vis-a-vis the decreasing size of the grid, needs to be investigated.

Before attempting a solution, the Poisson integral equation has to be discretized.
Bjerhammar (1987) defines the discrete boundary value problem as: “A finite number
of discrete observations of the gravity anomaly are given on the surface of the Earth.
It is wanted to find a solution, that satisfy all given observations and be regular at
infinity.” He suggests a Dirac approach which postulates Ag = 0 for all points on the
Bjerhammar sphere with the exception of selected points, where the gravity anomalies
are unknown impulses on infinitesimal surface elements. These unknown impulses do
not correspond to the physical reality. Whether the Dirac approach can be applied
to determine the local geoid needs further research.

Vanicek et al. (1996) treat the gravity anomalies on the geoid as mean values over
regular cells in the near-zone, plus the far-zone contribution which can be evaluated
by a global geopotential model. The Molodenskii modification of the Poisson kernel
is applied in order to reduce the far-zone effect. Its formulation is based on grid-mean
values of the gravity anomalies on the Earth surface in order to smooth the gravity
field.

Martinec (1996) follows the same approach as Vanitek et al. but uses the spheroidal
Poisson kernel and discretizes gravity anomalies as point values. A comparison be-
tween the two approaches shows that the point-value solutions are up to five times
smaller than the mean-value solutions (Sun and Vanigek, 1998). This is due to the
fact that the use of the doubly averaged Poisson kernel in the mean approach makes
the Poisson kernel smoother but the solutions rougher. Since different kernels and
discretization methods have been proposed, the discretization of the Poisson integral
still needs to be studied systematically to find a discrete model most accurate and

most efficient from the computational point of view.
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The methods for the solution of ill-posed problems include the least-squares col-
location (Moritz, 1976, 1980; Rummel et al., 1979) and the regularization techniques
(Tikhonov and Arsenin, 1977; Schwarz, 1978; Rummel et al., 1979; Tarantola, 1987;
Xu and Rummel, 1992; Rauhut, 1992; Engels et al., 1993). The least-squares colloca-
tion technique generates a solution with the minimum norm in the solution space. Its
validity to gravity field estimation has been debated for some time because ergodic-
ity® could not be established. On the other hand, the solution through regularization
techniques usually introduces a bias since it strongly depends on the regularization
factor and the constraint function that can be chosen in different ways. Any regular-
ization technique aims to suppress or control the sensitive components of the system
to the input data and seek a smooth and stable solution, while the sought solution
may not possess inherently the property of smoothness and stability.

Martinec (1996) suggests ‘a physical regularization’ in which the high-frequency
components of the gravity signals are smoothed and dampened by compensating
the topographical masses in an appropriate way. He compares three condensation
models and finds that for the region of the Canadian Rocky Mountains, the Airy-
Heiskanen condensation performs best in reducing the high-frequency components,
while Helmert’s 2nd condensation performs the worst. The smooth condensation
model may relatively alleviate the ill-coditioning, but the problem may still be ill-
conditioned since random errors in observations affect the entire frequency spectrum.

On the error propagation of downward continuation, Milbert (1999) simulates how
synthetic random errors in input data are amplified in the solutions, while Vanicek
and Wong (1999) show how standard deviations of input data are amplified from
the Earth surface to the geoid. However, the available gravity anomalies we have
are usually correlated. The question is how correlated random errors in input data

are propagated through the downward continuation. The assumption of statistical

3A stationary random function is called ergodic if it has a normal probability function with zero
mean and a covariance function that converges to zero as the sampling interval increases indefinitely.
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independence may underestimate the errors in the solutions. However this issue is
outside the scope of this research.

As far as numerical computation is concerned, we are dealing with a huge system
of equations. For example, for an area of 10° x 10° and a grid of 5’ x 5', the total
number of equations is 14400. With a finer grid and a larger area, the computa-
tional difficulty becomes more serious even with the present-day advanced computer
systems. Therefore, an efficient algorithm is necessary for the realization of the down-
ward continuation.

In addition to the discrete Poisson downward continuation, the analytical contin-
uation has been widely used for the determination of the geoid associated with the
Molodenskii solution (Moritz, 1980; Sideris, 1987; Sideris and Forsberg 1990; Wang,
1988, 1990). It is based on the Taylor series expansion of the gravity anomaly along
the plumb line. One question arises: What is the relation between the Poisson con-
tinuation and the analytical continuation? Huang et al. (1998) compared the mean
Poisson downward continuation to the (point) analytical downward continuation. Nu-
merical results in the Canadian Rocky Mountains show that the analytical downward
continuation result differs significantly from that of the mean Poisson downward con-
tinuation (22 cm on average). Sideris et al. (1999) find that the differences between
the point Poisson and analytical downward continuation reach 25 cm on average for
the geoid in the same region. Further studies are needed to systematically compare
the two methods through a synthetic approach and establish the relation between the
two continuation methods.

Finally, the evaluation of the Helmert gravity anomaly is affected by topography.
The use of the constant topographical mass density introduces errors into the down-
ward continuation. Martinec (1993) suggests theoretically that the lateral density
variation of topographical masses may affect the geoid at the decimeter level. Pa-
giatakis et al. (1999) show that the effect can reach 10 c¢m in the Skeena Region

British Columbia, and several millimeters in New Brunswick where the terrain is
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moderate (hilly) when only the terrain correction is considered. During the period of
this research, Kuhn (2000) studied several isostatic compensation models by taking
real topographical mass density into account for the regularization of the Earth sur-
face. His numerical results for the area of Baden-Wiittemberg (South-West Germany)
show that the real mass density is needed for the cm-geoid modeling. A systematic
study of the effect of the lateral density variation on the downward continuation, and

consequently on the geoid is needed to establish a procedure to evaluate and correct

for the effect.

1.4 Objectives

The first objective of this research is to develop computational methods for the dis-
crete Poisson downward continuation of the Earth gravity to support the determina-
tion of a precise geoid. It is treated in chapters 2-5.

Chapter 2 introduces the basic theory behind Poisson’s integral including a de-
scription of Dirichlet’s problem, the theoretical definition of the downward continua-
tion problem and a discussion of its solvability. A solution in the spherical harmonic
form to the inverse Poisson problem is derived.

Chapter 3 addresses the discretization of Poisson Integral. It consists of two parts:
(1) the far-zone effect dealing with its formulation, kernel modifications, determina-
tion of the size of the near-zone cap and a fast algorithm of the far-zone contribution;
(2) discrete Poisson integral equations, discussing three discretization models, and
their stability using singular value decomposition (SVD).

Chapter 4 develops methods for stable solutions of the discrete Poisson integral
equations. Synthetic fields are used to identify the best discretization model, and to
quantify the validity of the regularization techniques. Finally an efficient algorithm

for the computation of downward continuation is proposed.
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Chapter 5 compares the discrete Poisson downward continuation with the analyt-
ical downward continuation. It aims to establish theoretical and numerical relations
between the two methods.

Chapter 6 investigates the effect of lateral topographical mass density variation on
the gravity reduction and the geoid. It is the second objective of this research. First,
the topographical mass density model is developed. Second, mathematical models
for the estimation of the direct topographical density effect, the primary indirect
topographical density effect and the secondary indirect topographical density effect
are formulated. Finally, numerical results over the Canadian Rocky Mountains are
presented and discussed.

Chapter 7 summarizes the conclusions drawn from this research. A computational
approach for the downward continuation is proposed. Recommendations are made

with regard to further studies.

1.5 Contributions
In brief, this research has contributed the following findings and aspects:

e A solution in the spherical harmonic form to the inverse Poisson problem was
derived. It is pointed out that the solution of the discrete inverse Poisson

problem exits, but may not be unique and stable.

o It was found that the modified spheroidal Poisson kernel significantly reduced
the real far-zone contribution over using the unmodified spheroidal Poisson ker-
nel. Furthermore, the standard Poisson kernel works as efficiently as the modi-

fied spheroidal Poisson kernel in reducing the real far-zone contribution.

e It was found that Heiskenan and Moritz’s (1967) radius condition for the deter-

mination of the cap size for downward continuation gives a critical radius of the
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near-zone cap that is too small for the determination of the 1-cm geoid while

Martinec’s (1996) condition gives a radius that is unnecessarily large.

An efficient algorithm for the evaluation of the far-zone contribution of the
Poisson integral was developed. The new algorithm is one order of magnitude

faster than the standard algorithm while providing a sufficient accuracy.

The combined iterative method was proposed to speed up convergence of the
solution of the discrete inverse Poisson problem. The truncated singular value
decomposition method was introduced to solve the Poisson integral equation.
It gives us a discrete solution from the spectral point of view establishing a link

to the continuous solution.

The synthetic tests carried out in this research showed that the mean-mean
discrete model of the Poisson integral produced a sufficiently accurate solution

when the averaging error was taken in account.

A block-wise technique was developed to solve the discrete Poisson equation

efficiently.

A software package was developed for the Poisson downward continuation com-
putation. The three discretization models (point-point, point-mean, mean-

mean) were implemented in the package.

Tests with synthetic data and the real Helmert gravity anomalies suggested
that the analytical downward continuation was in agreement with the discrete
Poisson downward continuation within 10% of the total downward continua-
tion effect. A fast algorithm with the corresponding software was developed to

evaluate the analytical downward continuation.

It was found that an ultra-high degree synthetic global geopotential model con-

strained to the Kaula-type degree-variance models was too smooth to simulate
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the Helmert gravity anomaly, especially in mountainous regions.

A procedure for the evaluation of the effects of the lateral topographical mass
density variation on gravity and geoid was established. Formulae for evaluating

standard deviations of the effects were derived.

Effects of the lateral topographical mass density variation on the geoid height
ranged from -7.0 cm to 2.8 cm with a mean of -0.7 cm and an RMS of 1.2 cm
in the Canadian Rocky mountains by using the 30” x 60” DEM. The software
for evaluating the topographical density effect on the geoid was developed.
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Chapter 2

Basic Theory

2.1 Dirichlet’s Problem and Poisson’s Integral Equa-
tion

A function V is called harmonic in a region v C R® bounded by S if it satisfies

Laplace’s equation

AV =0 (2.1)

at every point of v. The problem of finding the harmonic function from its bound-
ary values on S is called Dirichlet’s problem, or the first boundary-value problem.
Dirichlet’s principle states: for given boundary values on a Ljapunov surface S, there
always exists a harmonic function V that satisfies the given boundary values on S.
Furthermore Stokes’s theorem states that the harmonic function V outside the sur-
face S is uniquely determined by its values on S (Kellogg, 1929; MacMillan, 1930).
For example, the gravitational potential of the Earth outside the Earth surface is
harmonic. Therefore, the gravitational potential outside the Earth surface can be
determined uniquely, given the gravitational potential values at the Earth surface.
While Stokes’s theorem guarantees the existence of a unique harmonic function, it

doesn’t provide the method by which it can be determined from the given boundary
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values. In general, for an arbitrary boundary shape, it is difficult to find an analytical
form of the solution. A simple shape of a boundary is a spherical surface. An explicit
solution of Dirichlet’s problem for the exterior of the sphere can be expressed in terms
of Poisson’s integral. It has important applications in physical geodesy, especially in
the continuation of the Earth’s gravity.

Poisson’s integral can be written as (Heiskanen and Moritz, 1967, eqn. 1-89):

V(rQ) = Zl; /ﬂ K(r,%, R)V(R,Q')d (2.2)

where the Poisson kernel function is expressed as follows

R(r* — R?)
L3 ’

L = (r* + R? — 2Rr cos ¥)%, (2.4)

K(r,v,R) =

where L is the distance between (7, ) and (R, '), r is the geocentric radius of a point
outside the sphere, R is the radius of the sphere, and v is the angular distance between
geocentric directions (2 and €. In the Poisson integral, the following abbreviation is

used to represent the integration over the unit sphere.

/n, oY = A : /: _sing'dg'dX (2.5)

Poisson’s integral is a special case of Stokes’s theorem. In order to apply this
integral formula, the sought function must be harmonic above the spherical boundary.
In spherical approximation, the gravity anomaly can be expressed as (Heiskanen and
Moritz, 1967, eqn. 2-155; Rapp et al., 1991):

GM & R, =
Ag(r,Q) = R Y (n— 1)(-;) N CamYam(9) (2.6)
n=0

m=-n
where GM is the geocentric gravitational constant, C,,, are the fully normalized

spherical harmonic coefficients of the geopotential. In addition:

A >0
Yam(®) = Papmi(cos) { <7 I m20 (27)
sin|m|A if m<O0
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The Py,jmi(cos @) values are the fully normalized associated Legendre functions of the
first kind, n and m are the degree and the order of harmonic series, A and 6 stand for
longitude and co-latitude. It can easily be proven that rAg(r,) is harmonic outside
the sphere. Substituting it into eqn. (2.2), Poisson’s integral equation for the gravity

a-noma.ly can be expressed as
b 1 ’ ? b b 9

where Ag(r, Q) is the gravity anomaly at the point (r,2) outside the sphere whereas
Ag(R, (') represents the gravity anomaly at the point (R, ') on the sphere.

Eqn. (2.8) also holds true for the gravity disturbance dg (Hotine, 1969; Vanicek
et al.,1996; Sun and Vaniek, 1998). The conclusions drawn from this research will
be applicable to the downward continuation of the gravity disturbance dg as well.

Eqn. (2.8) is the basic formula for continuation of the gravity anomaly. This
equation tells us that the gravity anomaly outside the sphere is uniquely determined,
given its boundary values on its surface.

In eqn. (2.8), the boundary values Ag(R, ') are defined on a sphere of radius
R, while the boundary values in the geoid determination are needed on the geoid.
Therefore, the continuations on the basis of eqn. (2.8) provide spherical approx-
imation results. The maximum downward continuation effect on the geoid in the
Canadian Rocky Mountains is smaller than 2 m (Vanicek et al., 1996; Vanicek et
al., 1999). Considering the flattening of the Earth (f = 3 x 10~3), the spherical

approximation error for the downward continuation will not exceed 1 cm.

2.2 The Inverse Problem and Downward Contin-

uation

The Poisson downward continuation is an inverse problem that represents a cross-

disciplinary and challenging subject being encountered in mathematics, science, medicine,
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engineering and others. A variety of definitions have been given in outlining the in-
verse problem. A geophysical definition given by Tarantola (1988) may appropriately
be applicable for the Poisson downward continuation:
“Let S represent a physical system ( for instance the whole universe,
or a planet, or a quantum particle ). Assume that we are able to define a
set of model parameters which completely describes S. These parameters
may not all be directly measurable (for instance, the radius of the Earth’s
metallic core is not directly measurable). We can operationally define
some observable parameters whose actual values hopefully depend on the
values of the model parameters. To solve the forward problem is to predict
the values of the observable parameters, given arbitrary values of the

model parameters. To solve the inverse problem is to infer the values of the
model parameters from given observed values of observable parameters.”

Thus, the forward problem predicts specific facts from a well-defined model, while
the inverse problem determines the model from the observed facts. In geodesy, pre-
dicting atmospheric effects on GPS measurements from an atmospheric model is a
forward problem. Conversely, finding the atmospheric model from GPS measurements
is an inverse problem. Since the inverse problem is about the derivation of the sys-
tem model from specific observations, it is often under-determined due to insufficient
observations, instability of the system and experimental uncertainties.

In Poisson’s integral equation (2.8), the gravity anomaly anywhere outside the
sphere can be predicted, when the gravity anomaly values Ag(R, ) are known on
the surface of the sphere. It means that Ag(R, Q') can be chosen as model parameters
for that Ag(r, ) outside the sphere. The corresponding inverse problem of solving for
Ag(R,Y) from Ag(r, ) is called the downward continuation of the gravity anomaly
or the inverse Poisson problem. The Poisson problem is routinely used as a closed for-
mula, while the inverse Poisson problem involves the solution of an ill-posed problem.

The next section will detail the ill-posed problem.

22



2.3 Solvability of the Poisson Downward Continu-

ation

The generic form of the Poisson integral equation is called the Fredholm integral
equation of the first kind in mathematics, which may be ill-posed due to insufficient
data and experimental uncertainties. The concepts of the well-posed and ill-posed
problems (Hadamard, 1952; Tikhonov and Arsenin, 1977) can be used to describe

and testify to its solvability. Let’s consider the following system:

Bf =g, (2.9)

where B is an integral or matrix operator, f is an unknown vector of model parameters
in the model space F and g is the observation vector in the observation space £. The
problem of determining the solution f € F from the observation vector g € £ is said
to be well-posed on the pair of normed spaces (F, L) if the following three conditions
are satisfied (Hadamard, 1952; Tikhonov and Arsenin, 1977):

1. For every element g € L there exists a solution f € F.

2. The solution is unique.

3. The solution is stable on the spaces (F, £).

The problem of determining the solution f = B~!g in space F from the data g
€ L is said to be stable on the spaces (F, L), if and only if f + § = B~'(g + ¢€) such
that | |[If +4&}| — |If]| | < dy for | [|g +€]| — |Ig]| | < €1- €, €1, § and &, are sufficiently
small quantities. Problems that do not satisfy the three conditions above are said to
be ill-posed.

If the space £ is chosen in a “natural” manner for the problem in question, con-
ditions 1 and 2 characterize its mathematical determinacy. Condition 3 is connected
with the physical determinacy of the problem, as well as with the possibility of ap-

plying numerical methods to solve it on the basis of observations with random errors.
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The existence of the solution of the Poisson integral equation can be confirmed
from the physical point of view. The quantity being sought represents the gravity
anomaly Ag(R, '), whose existence is physically justified. From the mathematical
point of view, the Picard theorem (Sjoberg, 1979; Groetsch, 1984; Hansen, 1992;
Martinec, 1996) defines the condition of existence for the solution of the Fredholm
integral equation of the first kind in the continuous case.

The product of the Poisson kernel function of eqn.(2.8) and the term R/r can

be expanded into the spherical harmonics series (Heiskenan and Moritz, 1967, eqns.

1-82, 1-88).

-;'I-Z-K(r, Y, R) =) (2n+ 1)APa(cost) = Y An Y Yo (D) Yom (), (2.10)
n=0 n=0 m=-n
where
An = (-?)"""2 (singular — values). (2.11)

This expression is called the singular value ezpansion (SVE) of the Poisson kernel.

The Picard condition states that the Poisson integral equation has a solution if

and only if
(- 0.1’2'>
n% X < oo (2.12)
where
2= ¥ a2, (2.13)
o = —— [ Ag(r, @) Yam ()0 (2.14)
4r Ja ’ ’

o2 are the degree-variances of Ag(r,, Q) (Heiskanen and Moritz, 1967, p.259), r; is
the geocentric radius of the observation point on the topography, o, are the surface
spherical harmonics coefficients of Ag(r:, 2). Note that they differ from the spherical
harmonics coefficients Cy,, of the global geopotential model by definition. Coefficients
Onm are derived from the gravity anomaly on the irregular (Earth) surface while C,.
are derived from the gravity anomaly on the surface of a sphere. In other words,

Onm are referred to the natural Earth surface while C,,, are referred to a sphere with
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a chosen radius. Furthermore,the coefficients o, have units of acceleration [LT~?],
while coefficients C.,, are defined as unitless. Eqn. (2.14) can also be defined as
the spherical harmonic transform which transforms the gravity anomaly Ag(r,Q)
into the harmonic spectral form. Eqn. (2.12) is called the Picard condition in the
continuous case. To satisfy this condition, the degree-variances 02> must decay at a
rate which can compensate the attenuation of the squares of the singular values A2
so as to render the sum of eqn. (2.12) finite.

A solution of eqn.(2.8) in the form of the harmonic series can be easily derived as

AdR ) =3 3 Zmy (@) (2.15)
n=0m=-n ‘'n
This series diverges unless the Picard condition holds. It shows clearly that the
downward continuation makes the field rougher via an amplification of the spectral
components o, by a factor A;! (that is greater than 1). It is evident that the high-
frequency components of Ag(R, ') oscillate more strongly than those of Ag(r,, ).
The existence of a solution for the continuous Poisson integral equation is math-
ematically interesting. However, whether the solution exists is not so important in
practice as it is in theory. Bjerhammar (1964) pointed out that the assumption of a
complete continuous gravity coverage at every point of the Earth’s surface is unreal-
istic because we can measure gravity only at discrete points. For the discrete inverse
Poisson problem, the upper limit of the degree n in the Picard condition is a finite
number depending on the resolution of the discrete data. Thus, the Picard condition
is naturally satisfied. This assertion is clearly shown by eqn. (2.12). When n is finite,
the spherical harmonic expansion leads to a finite series. Under this circumstance,
only a partial solution corresponding to the lower frequency band is obtained.
Uniqueness is often questionable when a theoretical model is applied to solve prac-

tical problems even though it is guaranteed in theory. A numerical method associated

with a specific data set will produce an approximate solution to the true solution.
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The discrete solution depends not only on the data but also on the discretization pro-
cedures and solution methods. For example, the solution using mean observed values
is different from the one using observed point values. From the numerical point of
view, any discrete solution is an approximation of the inverse Poisson problem with
respect to a certain frequency band. For instance, the 30’ x 30’ sampling leads to
a solution of up to harmonic degree n = 360. The 5’ x 5 sampling can generate
a solution of up to harmonic degree n = 2160. For a given sampling step A, the
maximum distinguishable frequency band is bounded by X in terms of the sampling
theorem. However, it is still an open question as to which discretization scheme can
most closely approximate the physical reality of the gravity corresponding to a certain
frequency limit. It is one of the important issues to be treated in this research.

The stability problem arises from the fact that an approximate solution is sought
when the observation vector g is known only approximately and the operator B is
derived by a finite number of significant digits. Let § and B denote approximations
of g and B. Under these conditions, the approximate solution f = B~!'g depends
entirely on the condition of the operator B~!. As an approximate solution, f is
expected to be off by a small “distance” from f € F if g is off by a small “distance”
from g e L.

Frequently, operator B is derived such that the system is unstable for two rea-
sons. Either B becomes singular due to round-off errors, or the problem is physically
unstable. Under either condition, for a small change in input, we get a large change
in the output. One strategy to avoid the former is to increase the precision of the
arithmetic operations. There will still be a problem with the latter case that is, that
a small input error intrinsically leads to a large output error. The inverse Poisson
problem belongs to this class of problems. A small high-frequency error in the obser-
vations will be amplified by A;! into the solution of eqn. (2.15). For example, when
H = 2km and n = 2160 that roughly represents the 5’ x 5’ grid, the amplification
factor is about 2; when H = 2km and n = 5400 that roughly represents the 2’ x 2’

26



grid, the amplification factor becomes about 5. For the 30” x 30" grid and H = 2km,
the amplification factor reaches 880 which will result in a completely wrong result
when a systematic noise of high-frequency with a magnitude of 1 mGal is present in

the observations (see Figure 2.1). It is in this sense that the inverse Poisson problem

is said to be ill-posed.
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Figure 2.1: A;! versus degree n. H = 2 km.
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2.4 Summary

Poisson’s integral is a solution of Dirichlet’s boundary value problem with the bound-
ary values defined on a spherical surface. The generic form of Poisson’s integral is
called the Fredholm integral equation of the first kind in mathematics. The down-
ward continuation of a harmonic function is defined as the inverse Poisson problem.
A spherical harmonic form of solution for the continuous inverse Poisson problem was
given. The corresponding discrete solution exists, but is not unique or stable. For a
small error in input, we may get a large error in output. The high-resolution solution
may contain larger errors if high-frequency errors exist in the data. It is in this sense

that the inverse Poisson problem is an ill-posed problem.
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Chapter 3

Discretization of Poisson’s Integral

Equation

Discretization of Poisson’s integral equation is a process of approximating the contin-
uous Poisson integral with a discrete form that is expected to best use the available
data at discrete points and to efficiently eliminate errors and biases in the practi-
cal evaluation of the downward continuation. The discretization must consider the
following issues: a) evaluation of the far-zone contribution, b) modification of the
Poisson kernel, ¢) combination of terrestrial data with a satellite geopotential model,

d) truncation of the Poisson integral and, e) discretization of the Poisson integral in

the near-zone.

3.1 The Far-Zone Contribution

The Poisson integration converges rapidly with respect to the distance of the inte-
gration point from the computation point since its kernel is inversely proportional to
the cube of the distance. Its far-zone effect being very small can be evaluated sepa-
rately by using a global geopotential model. This section includes discussions on the

methods for evaluating the far-zone contribution (also called the truncation error),
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modification of the Poisson kernel, determination of the critical angular radius for the

near-zone cap and an algorithm for the evaluation of the far-zone contribution.

3.1.1 Formulation

By analogy to the treatment of Stokes’s integral (Molodenskii et al., 1956; Heiskanen
and Moritz, 1967; Vanitek and Sjéberg, 1991; Vanicek et al., 1996), the domain
of Poisson’s integral may be split into two parts: the near-zone and the far-zone.
The near-zone is routinely chosen as a spherical cap with an angular radius of q,
contributing the dominant part of the integral value. The far-zone covers the rest of
the spherical surface, merely accounting for a very small part of the integration value.

Then, the Poisson integral can be written as

Ag(r,Q) = 4—R— K(r Y, R)Ag(R,)dY + Fpy(r, ), (3.1)

nr

where

R e [ 14 5
FAg(rv ) m ar [\(7'7 ¥, R)AQ(R, Q )dﬂ . (32)

where  and ' — Qf indicate the near- and the far- zones, respectively. Eqn. (3.2)
represents the far-zone contribution. Due to the lack of global gravity coverage, it is
usually evaluated from a global geopotential model such as EGM96 (Lemoine et al.,

1998) by using the Molodenskii-type harmonic expansion technique

FAQ(r’ Q) 2_75‘0: I)Qn(Ha ¢0) Zn: Cannm(Q), (3.3)
where
Qu(H, o) = /; K(r,, R) Pa(cos ¥) sin dd (3.4)

are called the truncation error coefficients, and H =r — R.
Series (3.3) converges more rapidly than the harmonic series for the gravity anomaly
since the short-wavelength components are practically eliminated from it by sepa-

rating the near-zone, which mainly accounts for the short-wavelength components.
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Therefore, the far-zone effect may be estimated with sufficient accuracy by a global
geopotential model.

It has become standard practice to use the combined technique in the determi-
nation of the geoid, i.e., terrestrial data are used in combination with a satellite-
only geopotential model. The low-frequency part of the geoid is derived from the
satellite-only solution, while the high-frequency part of it is computed from the ter-
restrial gravity data. As a matter of fact, the satellite solution provides homogeneous
long-wavelength components but no local details, while the terrestrial data give the
local details but the long-wavelength components are biased because of the limited
regional distribution. The combination of the satellite solution with the terrestrial
gravity data promises the best solution for the geoid. Furthermore, the removal of the
low-frequency components from the gravity anomaly at the Earth surface significantly
reduces the far-zone contribution, which is dominated by long-wavelength components
for both the downward continuation and the subsequent Stokes integration. Using

eqn.(3.1), the high-degree (high-frequency) component of Ag can be written as
Adl(r,Q) = _l_%_/ K(r,¢, R)AG'(R,Q)dQY + F. (r,Q) (3.5)
’ Anr 96 1 ¥ 4] Ag\’ ?

where K corresponds to the standard Poisson kernel. Superscript { indicates compo-
nents above degree [ of geopotential harmonics. Similarly, the far-zone contribution

in eqn. (3.5), as it now contains only high-degree terms, can be written (cf. eqn.(3.3))

as
Pl ) =50 3 (= 1Qu(H b)) 3= ConYim (@), (36)
n={+1 m=-n

where the index n now starts from [ + 1.

One may notice from the spectral point of view that eqn. (3.5) is not correct as
the standard Poisson kernel K contains all frequencies while the quantities convolved
with, namely Ag'(R, ), are band-limited (high-frequency content).

Splitting the integral of eqn. (3.5) into two bands, gives

31



R 1 / ’ _ i { ’ ’

Anr Q! K(r v, R)Ag (R, )dQ = anr o Ki(r, ¢, R)Ag (R,)dQ

R '
+o fn s K'(r, ¥, R)AG'(R, ¥)dSY, (3.7)

where
{ R\
Qb R =Y +1)(T) Palcosw), (33)
n=0

Kl(ra ¢, R) = K(Y’, 1/1) R) - K((T, d)r R)~ (3.9)

If we want to be spectrally correct when using eqn. (3.5), only the second term on
the right-hand side of eqn. (3.7) should be used, which means that the first would be
arbitrarily set to zero which would violate the orthogonality relation. In eqn. (3.5),
the first ! degrees of terms of the standard Poisson K are orthogonal to Ag’ globally,
ie.,

i s i ' ’ i { ’ ’__
Jog il RIAG (R, )Y + 2= [ Kilr, 0, R)AG'(R, Q)2 = 0, (3.10)

4nr Tr
However, none of the terms on the left-hand side of eqn.(3.10) is equal to zero, and
both terms are included in the near-zone and the far-zone contributions. Therefore
eqns. (3.5) and (3.6) do not correspond to the ‘real’ (or pure) far-zone contribution
for Ag' from the spectral point of view.

Similar to the Stokes integral, the convergence of eqn. (3.6) strongly depends
on the truncation coefficients Q,, which are functions of the kernel K(r,, R) and
the angular radius of the near-zone cap ¥,. Several treatments to the Stokes kernel
have been proposed, firstly to make the far-zone effect disappear more rapidly, and
secondly to also eliminate the dependency of the far-zone effect on high degrees of the
erroneous geopotential coefficients (Molodenskii et. al, 1962; Meissl, 1971; Vanicek
and Kleusberg, 1987; Sjoberg, 1984, 1991; Vanicek and Sjoberg, 1991; Featherstone et.
al, 1998). Among various treatments, Vaniéek and Kleusberg’s (1987) modification
has been applied to Poisson’s kernel (Vanigek et al., 1996) to reduce the real far-zone
contribution by using the spheroidal Poisson kernel (Martinec, 1996).
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Following Wong and Gore’s (1969) idea, the spheroidal Poisson kernel can be
constructed as (Martinec, 1996)

K" S(r,%, R) = K'(r,v, R). (3.11)

This kernel can act as a filter to eliminate the long-wavelength residuals in Ag’ due

to exclusion of the first { degrees of terms of K. By using it, the far-zone contribution

becomes
Fkgs(r’ Q) = % z: (n - I)Qi(Ha 1pO) Z Cnm)/nm(ﬂ), (312)
n={+1 m=-n
where
QS(H, vo) = /w " K" S(r, 1, R) Pa(cos ¥) sin $dip. (3.13)

The F gf represents the real far-zone contribution for Ag' since the first [-degree
terms K; have been removed from the standard Poisson kernel K.
Using Vanicek and Kleusberg’s (1987) modification method, the modified spheroidal

Poisson kernel is written as (Vaniéek et al., 1996)

{

K" MS(r 4, R) = K(r,v¥, R) — 20 2"; 1tn(H, %o) Pa(cos 1). (3.14)
The far-zone contribution becomes
P =5 3 - DR (H) 3 Cuntin(@), (315)
where
QMS(H, o) = /; K" MS(r, 4, R) P, (cos %) sin . (3.16)

The modified spheroidal Poisson kernel K" M¥ is created to minimize the real far-

zone contribution F, kgs

for Ag' by introducing the modified Poisson kernel coefficients
t.(H, o) (Vanicek et. al, 1996). Table 3.1 lists the coefficients from degree 0 to degree
20. It can be found that the first ! terms of the standard Poisson kernel K are modified

by less than 4% at the most. This implies that the standard Poisson kernel K tends to
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Table 3.1: The modified Poisson kernel coefficients ¢,(H, 1°).

Degree | 1000 m 2000 m 3000 m 4000 m

0 0.183049E-01 | 0.365995E-01 | 0.548793E-01 | 0.731400E-01
1 0.179937E-01 | 0.359772E-01 | 0.539461E-01 | 0.718959E-01
2 0.176852E-01 | 0.353604E-01 | 0.530210E-01 | 0.706626E-01
3 0.173794E-01 | 0.347489E-01 | 0.521040E-01 | 0.694402E-01
4 0.170764E-01 | 0.341429E-01 | 0.511952E-01 | 0.682286E-01
5 0.167760E-01 | 0.335423E-01 | 0.502944E-01 | 0.670278E-01
6 0.164784E-01 | 0.329471E-01 | 0.494017E-01 | 0.658378E-01
7 0.161834E-01 | 0.323573E-01 | 0.485172E-01 | 0.646587E-01
8 0.158911E-01 | 0.317728E-01 | 0.476407E-01 | 0.634903E-01
9 0.156016E-01 | 0.311938E-01 | 0.467723E-01 | 0.623327E-01
10 0.153147E-01 | 0.306202E-01 | 0.459120E-01 | 0.611859E-01
11 0.150305E-01 | 0.300519E-01 | 0.450598E-01 | 0.600499E-01
12 0.147490E-01 | 0.294890E-01 | 0.442157E-01 | 0.589247E-01
13 0.144702E-01 | 0.289315E-01 | 0.433796E-01 | 0.578102E-01
14 0.141941E-01 | 0.283794E-01 | 0.425516E-01 | 0.567065E-01
15 0.139206E-01 | 0.278326E-01 | 0.417316E-01 | 0.556134E-01
16 0.136499E-01 | 0.272912E-01 | 0.409197E-01 | 0.545312E-01
17 0.133818E-01 | 0.267551E-01 | 0.401158E-01 | 0.534596E-01
18 0.131164E-01 | 0.262244E-01 | 0.393199E-01 | 0.523987E-01
19 0.128536E-01 | 0.256990E-01 | 0.385320E-01 | 0.513485E-01
20 0.125935E-01 | 0.251789E-01 | 0.377521E-01 | 0.503090E-01
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reduce the real far-zone contribution F 295

for Ag' as the modified spheroidal Poisson
kernel K* MS is expected to do.

Figures 3.1 and 3.2 show the three types of the Poisson kernel values against the
spherical distance ¥ over the near-zone and the far-zone. The differences between
K and K" MS are too small to be considered. On the other hand, K* 5 possesses

Kl, MS

considerably more power than K and over the far-zone.

1000 ; ! r ! !
800

600

H
o
o

Kernel Value

200

_zoop.‘sy. ................ O -

- -
-
-~

—
- .
—

400 ; 5 : : ;
30 35 40 45 50 55 60
v (arc—-minute)

Figure 3.1: K, K" S and K" MS vs. ¢ (30' — 60'). H =2 km.

The standard deviation of the far-zone contribution can be derived from eqns.

1Vaniéek, 2000. personal communication.
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(3.6),(3.12) and (3.15) by propagation of variance as

=

m(r, ) = 21 ( 5 (n— DAQLA(H, %) 3° dc,%mY:m) SR

n=I{+1 m=-—n

where [ indicate the type of kernel in use, and dC,,, are the standard deviations of

the geopotential model coefficients.

3.1.2 Standard vs. Modified Kernels

The modified spheroidal Poisson kernel has been constructed as an improvement
to the standard Poisson kernel in reducing the far-zone contribution. What is the
efficiency of the improvement?

Figure 3.3 shows the truncation error coefficients of degree 21 to degree 360 for
the standard, spheroidal and modified spheroidal Poisson kernels K, K* ¥ and K" MS
(Martinec, 1996; Vaniéek et al., 1996). In the computation, 1o = 1° and the 2
km height are assumed. The Q3 spectrum intersects with Q, and QM5 at about
degree 220. For degrees smaller than 220, the QS are significantly larger than QM.
It suggests that the modified spheroidal Poisson kernel does reduce the real far-
zone contribution for Ag', as expected. On the other hand, there are merely minor
differences between @, and QM indicating that the standard Poisson kernel performs
almost as efficiently as the modified spheroidal Poisson kernel in reducing the real
far-zone contribution for Ag'. Figure 3.4 further demonstrates that the far-zone
contribution of K displays an indistinguishable difference from the one of K" M5 At
the same time, the real far-zone contribution for Ag' is remarkably larger than the
minimized one. Therefore, in view of reducing the far-zone contribution, K* 5 should
be avoided, while the standard Poisson kernel K may be used as an alternative to
the modified spheroidal Poisson kernel.

Figures 3.4 and 3.5 also suggest that the far-zone contribution is precise enough

compared to its standard deviation. It means that the current available geopotential
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models are capable of providing an accurate estimation for the far-zone contribution
when the 1-degree cap is chosen for a point at an elevation of 2 km. In other words,
the far-zone contribution based on the current global geopotential model will improve
the accuracy of the downward and upward continuation computations. Furthermore,
the far-zone contribution displays a good convergence at lower degrees for all three
kernels. After about degree 180, it shows negligible changes suggesting that the far-
zone contribution can be evaluated from a global geopotential model taken to degree
180. This conclusion is consistent with Sun and Vanigek’s (1998) one based on the
results from GFZ93a.

Figure 3.6 shows the far-zone contribution effect on the geoid over the Rocky
Mountains. In this region, the far-zone contribution to the geoid varies from —1.1em

to l.1em in the geoid height.

3.1.3 Determination of The Critical Angular Radius of the
Near-Zone Cap

The number of non-zero coefficients in a discrete Poisson integral equation depends
on the spherical radius o of the near-zone cap. The larger the radius ty is, the larger
the number will be for a fixed grid step. Therefore, we wish to choose the spherical
radius of the cap to be as small as possible to reduce the number of coefficients to be
evaluated without compromising the accuracy of the downward continuation.

The criterion for determining the critical radius of the near-zone cap is that the
far-zone contribution be accurately evaluated or be small enough to be considered
negligible. If we assume Ag as the mean of the gravity anomalies over the far-zone,

then by substituting it into eqn.(3.2) the far-zone contribution reduces to

Faslrs ) = S22 [" K(r, %, R)sin . (3.18)
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We can easily get

H

oo LYo )

_ R(r—R) R+r
T or2 L(r, %0, R)

From this equation, it is easily seen that L (vs. eqn. (2.4)) must be chosen in such

1] Ag = (3.19)

a way that it makes the ratio of H to L a constant if we wish to keep the far-zone
contribution at the same small negligible magnitude at different elevations. On the
other hand, the global mean value Ag of the 1° x 1° free-air gravity anomalies used
in developing EGM96 (Lemoine et al., 1996) is -0.24 mGal. Vaniéek (2000, personal
communication) pointed out that the reference ellipsoid appears 80 cm smaller ren-
dering non-zero global mean. If this value is assumed for the far-zone, the far-zone
contribution is negligibly small when L is chosen as large as 10 times H°. When we
use the Poisson downward continuation, we must transform the gravity anomalies into
a model space such as the Helmert space where the disturbing potential is harmonic
above the geoid. If we transform the gravity anomalies in such a way so that their
global mean is close to zero, the far-zone contribution tends to be small enough to be
neglected. Otherwise, the far-zone contribution has to be taken into account.

An immediate question arises however: What is the critical ratio between the
elevation of the computation point and the cap radius when the far-zone contribution
needs to be evaluated? Heiskenan and Moritz (1967) suggest extending the integration
only as far as 10 times the elevation if an accuracy of 1mGal is targeted in the upward

and downward continuation. Martinec (1996) suggests that the ratio should satisfy

the following condition

H H\?
—_ — 2
L do B < ()" (3.20)
Condition (3.20) implies that the near-zone must extend to at least 1° in the Rocky

Mountains.
As shown in Section 3.1.2, the far-zone contribution must be taken into consid-
eration when a cm-geoid is targeted. Since the far-zone contribution is routinely

evaluated through a global geopotential model, its accuracy depends on the accuracy
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of the geopotential model. Therefore, the critical radius must be determined in terms
of the accuracy of the geopotential model in use, which in turn is determined by the
accuracy of the model coefficients and the maximum degree of it. Neither Heiska-
nen and Moritz’s condition, nor Martinec’s one take the accuracy of the model into
consideration. Thus, they may lead to a cap radius either too large, or too small for
evaluation of the far-zone contribution.

Presently, EGM96 (Lemoine, 1996) represents one of the best global geopotential
models available. Its maximum degree is 360. When EGM96 is used to estimate the
far-zone contribution, the critical radius must be determined in accordance with the
accuracy of the model. Eqns. (3.3) and (3.17) show that the far-zone contribution
and its standard deviation are dependent on the truncation error coeflicients @, the
coefficients Cy;, and their standard deviations dCpp,, and the maximum degree n.

Three different cap radii of 1°, 0.5° and 0.25° have been chosen to verify the
validality of Heiskanen and Moritz’s and Martinec’s conditions. The 1° cap corre-
sponds to the latter condition, while the 0.25° cap approximately meets the former
one. Figure 3.7 shows that the truncation error coefficients @, for the 0.25° cap are
significantly greater than @, for the 0.5° and 1° caps for n < 360. The coefficients
@~ for the 0.5° cap are larger than those for the 1° cap for n < 210. These features
imply that the far-zone contribution is quite sensitive to the cap radius even though
the ratio of the elevation to the cap radius is greater than 10. Figure 3.8 shows that
the far-zone contributions for the 1° and 0.5° caps approach constant values. Fur-
thermore, we find that the estimates of the far-zone contribution for the 1° and 0.5°
caps are precise while that for the 0.25° cap may be completely wrong (v.s. Figures
3.8 and 3.9). Therefore, when EGM96 is used to estimate the far-zone contribution,
Heiskanen and Moritz’s condition may give a radius too small for a 1-cm geoid. On
the other hand, Martinec’s condition may give a radius unnecessarily large. Figures
3.7, 3.8 and 3.9 also imply that the 0.5° may be chosen as the near-zone cap radius

in mountainous areas where the elevation doesn’t exceed 2 km.
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In Chapter 4, a synthetic test will be used to verify whether the 0.5° cap is large

enough for the evaluation of the far-zone contribution at an accuracy of 1 cm.

3.1.4 An Efficient Algorithm of the Far-Zone Contribution

Rizos (1979) devised an efficient computer technique for the evaluation of gravity
parameters such as T and Ag from a set of the spherical harmonic series. The
technique is applicable only when the geopotential is not a function of height. Since
the far-zone contribution under consideration refers to a point at the Earth surface,
it is height-dependent. Rizos’s technique is no longer applicable directly. An efficient
algorithm for the evaluation of the far-zone contribution is thus developed in the
sequel.

First, let us write the far-zone contribution in the spherical harmonic series form
with the maximum degree k,

k n
Faq(H,Q) = % 3 (n = 1)Qu(H, vo) Y (cum cosmA + dpyn sin mA) Py (cos 6).

n=2 m=0
(3.21)

By reversing the summation order, eqn.(3.21) can be expressed as

k k k
Fag(H, ) = %Y- Z [cos mA Z (n — 1)@ncnm Pam + sinmA 2 (n —1)Qndnm Pam| -
m=0
(3.22)
The longitude at all the points in a row of equally spaced points is given by

n=m n=m

A= Ao + JAA, (3.23)

where A\ is the grid spacing. Then we have
cos mA = cos mAg cos mjAN — sin mAgsinmjAN, (3.24)
sinmA = sinmAg cos mFAA + cos mAgsin mjAA. (3.25)

Substituting the two expressions above into eqn. (3.22), we get

k
Fag(H, Q) = 2L 3 [Co(m, H,0) cos mjAX + Ca(m, H,8)sinmjA)],  (3.26)

2r =
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where
k
Ca(m, H,0) = Y_ [(n — 1)Qn (cam Pam c0s mAg + dpm Pam sin mAo)] (3.27)

n=m

k
Cpg(m,H,0) = Z [(n — 1)Qn(—cnm Pam sinmAg + dnm Pam cos mAg)] . (3.28)

n=m

It is eqn. (3.26) that makes an efficient evaluation of spherical harmonics possible.
When H and 8 are both constant, the coefficients C, and Cjp are functions of the order
m, which is independent of longitude. Therefore, for points at the same latitude they
are only evaluated once. The double summation in eqn.(3.21) reduces to the single
summation in eqn.(3.26). The computational efficiency is one order of magnitude
higher than the standard method when a large number of points of the same latitude
need be evaluated.

For the evaluation of the far-zone contribution under consideration, both C,
and Cp are height-dependent. This means that they are implicit functions of lon-
gitude. For every point of a specific height, they must be re-computed. Instead of
re-computing them at each new point, we can pre-tabulate them for a number of
representative heights, then interpolate their values at the height of individual point
using the tabulated values. Simple linear interpolation can then be used to predict C,
and Cjp for a non-tabulated height with sufficient accuracy (see Figure 3.10). A nu-
merical test has shown that the maximum difference between the new algorithm and
the standard algorithm is smaller than 0.001 mGal in the Rocky Mountains. By using
interpolation, the improvement of speed is as good as that of the height-independent

problem. The following recursive formula by Rizos (1979) can further speed up the

summation.

acosm(jAMX) + bsinm(jAN) =2cosmAA[acosm(j — 1)AN
bsinm(j — 1)AA] — [acosm(j — 2)AX + bsinm(7 — 2)A)]. (3.29)

Figure 3.11 shows that the series C,(m, H,#) attenuates rapidly with respect to
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the order m revealing rapid convergence of the series (3.26) at the lower orders as

well.

3.2 The Discrete Poisson Integral Equations

The Poisson downward continuation can be considered as a ’projection’ in which the
gravity anomalies observed on the Earth surface are 'mapped’ to the geoid by satis-
fying the Poisson integral equation. The Poisson integral equation has no analytical
solution, therefore, the 'projection’ can be performed only by numerical methods that
require discretization of it. On the other hand, the gravity data are usually observed
at unevenly distributed discrete points. In the determination of the geoid, these data
are routinely interpolated on an evenly spaced grid for convenience in the numerical
computation. A variety of methods have been developed for the interpolation of grav-
ity data (Heiskanen and Moritz, 1967; Moritz, 1980; Vanicck and Krakiwsky, 1986).
The discussions of these interpolation methods are beyond the scope of this research.
Here, it is assumed that gravity anomalies are already available at the evenly spaced
node points representing either point values or mean values of their corresponding
cells on the Earth surface, while the gravity anomalies at the corresponding cells on
the geoid are sought. Consequently, the Poisson integral equation must be discretized
in consistency with the grid data.

For the determination of the geoid, the mean gravity anomaly values are routinely
evaluated at the Earth’s surface to smooth the gravity field and reduce the aliasing
error (Vanicek et al., 1996; Featherstone, 2000). Therefore, the Poisson integral equa-
tion should be discretized based on the mean values. However, discussions of models
based on the point values may give us a comprehensive insight on the downward
continuation problem. Further, the point models are more suitable for the downward
continuation of airborne gravity since these data are collected at regular spacing,

i.e. as point values. With the increasing use of airborne gravimetry, point models
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will be applied more frequently. Therefore, both the point and the mean models are

discussed in this research.

3.2.1 The Point-Point Model

The point-point model assumes that the gravity anomalies on both the Earth’s surface
and the geoid are taken as point values at central points of appropriate cells. Based

on this model, eqn. (3.5) is approximated by (Martinec, 1996)

M
Ag(ri, %) = 3 Bi;Ag (R, ) + FL (ri, ) + depy, (i =1,2,...,N),  (3.30)

i=1
where
A K T i'aR 3 i <
Vigj By={ " " (riythiis B) 2f is < o (3.31)
0 other,
R M
Bi; = —=d'(ri,¥0, R)— Y. Bj, (3.32)
r j=1, j#i
d'(r, o, R) = — [, K, Ry, (3.33)
] y 47r Qa 3 b}

The upper limit M represents the total number of cells within the near-zone cap.
The upper limit N stands for the total number of the unknowns on the geoid. The
weights w; are taken as areas of integration cells for simplicity. Martinec (1996) gives
d' for the standard and spheroidal Poisson kernels K and K* 5 as

¢oamm =52 (- g )] 339

2] r ~ L(r, %0, R)
{ n41

+2_(2n+1) (?) ' Rn(coswo)]- (3.35)
n=1

¢3R5 | (1- 225 E) - B - s
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For the modified spheroidal Poisson kernel K* MS dh MS cap be easily derived

d MS(r, o, R) = l[ﬂ (l = )_to([j;’¢°)(‘"°°s“’°)

2| r "~ L(r, %0, R)
l
+3 2_"2’*_1tn(1{, Yo) Ra(cos ¢0)] , (3.36)
where
Ra(@) = 57 [Pass(2) = Paca(a)]- (3.37)

The last term on the right side of eqn. (3.30) represents the discretization error. It

can be expressed as

M
= R . { N . N .. ! ’ ’
A = 3 G /. o (K, RYAG(R,Y) = Kri i R)AG'(R, )}
R . ! AN l / '
drr; AQ: K(T‘,, d’) R)[Ag (Ra Q ) Ag (R, Qt)]dﬂ . (338)

The point-point model has an obvious advantage for the evaluation of the coef-
ficients B;; because the appropriate kernel needs to be evaluated only once for each
coefficient. However, it is subject to an aliasing error due to a finite sampling step
of data. For a strongly variable gravity field, the presence of the aliasing error may
impose a serious difficulty in obtaining a reliable solution. Thus, it is necessary to
adopt the foregoing procedure to smooth the gravity field. For example, using a filter
or a proper condensation model reduces or eliminates the components beyond the

highest distinguishable frequency of data 7v/A, where A is the data sampling step.

3.2.2 The Point-Mean Model

Eqn. (3.5) can discretely be expressed as

M
Agl(r:, ) = > Bi; Agl(R, Q) + Fgg(r,-, ) +depm (1 =1,2,...,N), (3.39)

j=1
where
r.. { :l-gr. fAﬂ; K(ri7 ¢fj, R)dﬂl ‘if 'l")"j S ¢0,

B;; = (3.40)
0 other.
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The Ag' represent the ‘mean’ values for the corresponding cells on the geoid. The

discretization error in eqn. (3.39) can be written as

M
R
der = Z 47('1';

i=1

J.s, K(ret, BIAGH(R, @) - Bg(R, 0)lde. (3.41)

This model discretizes the gravity anomalies on the geoid as mean values but takes
the point gravity anomalies at the central points of the appropriate cells on the Earth
surface. Similar to the point-point model, its solution suffers from the aliasing errors
too. Preprocessing of data is required to smooth the gravity field.

The physical interpretation of this model is that it allows an upward continuation
of point values if the mean values Ag’ are known on the geoid. Conversely, the mean
values on the geoid can be determined by the downward continuation when the proper

preprocessing of the point values is done.

3.2.3 The Mean-Mean Model

By taking the average of both sides of eqn. (3.30) with respect to the cells AQ; on
the Earth surface, we get (VaniZek et al.,1996):

— M — —
Ag‘(r;, Q,‘) = Z B;j Ag‘(R, Qg) + F'Ag(r,-, Q;) + demm (i =12,.., N), (3.42)

Jj=1
where
Bg(r, ) = [ Ad(r,2)a, (3.43)
= 1 -
Bi=4 /A . Ba(r, 20, (3.44)
— 1
F(ra ) = [ Fi,(r,@)d0. (3.45)

A; are the areas of the cells on the Earth surface. The discretization error, or more

precisely the averaging error de;,, can be written as?

d __1 MR K RAIRQI PRQ;d,d
‘"‘"“X,./A Zm/m; (r,%, R)[Ag'(R, Q') — Ag!(R, Q})|dVdQ.  (3.46)

Q; j=1

2Vanicek, 2001, personal communication.
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In this model, both the known and unknown gravity anomalies are expressed as
the mean values over the cells on both the Earth’s surface and on the geoid. If the
mean gravity anomalies are used, this model is directly applicable. It is a model for

the upward and downward continuations from mean to mean values.

3.2.4 Analysis of the Discrete Models

The matrix coefficients for the three discrete models described above can be expressed
in spherical harmonic form. By substituting eqn. (2.10) into eqns. (3.32) and (3.31)

the coefficients of the point-point model can be written as

Biz=—3 2 3 Yam(Q)Fom (W) A,
471’ n=0 m=~-n
1o o o
Bij= =2 M 3 Yam(U)Yam(Q)w; if i # 3, (3.47)

n=0 m=-n

Whel’e
Yom (%) = ——/ Yim (£2)d2 (3.48)
Ak Ank ’ )

is called the mean of spherical harmonics in cells AQ;. By substituting eqn. (2.10)

into eqn. (3.40), the coefficients of the point-mean model can be written as

- 1 [ =) n
B, = Y Y Yam(0)Yam(R)A; (3.49)

n=0 m=-=n

By substituting eqn. (2.10) into eqn. (3.44), the coefficents of the mean-mean model

can be written as

—_— 1 [=2) n .
Bi=1-3 2 3 Yan(Q)Yam(Q)A;. (3.50)
n=0 m=-n

The mean of spherical harmonics Y,,,, are considerably smoother than Y, due to
the averaging which tends to suppress the high-frequency variation of Y,,,. Therefore,
the matrix coefficients for the mean-mean model are systematically smoother than
the matrix coefficients for both the point-point and the point-mean models because

of the double uses of the mean of the spherical harmonics. One would expect that
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the roughest continuation results be produced from the mean-mean model if the same
data are input into the three models. Accordingly, the point-mean model will generate
rougher results than the point-point model.

However, the degree of roughness by no means gives any information on the ac-
curacy of a model and its closeness to reality. From the spectral point of view, the
mean-mean model is preferable to the other two models since it tends to reduce the
high-frequency aliasing error being suffered by the other two models. In practice,
gravity anomalies used in the determination of geoid are often in the form of mean
values. If they represent true mean values, the mean-mean model will provide the
best solution theoretically. The practice of using the true mean values in the point-
point model, or the point-mean model brings biases into the solution because of the
misuse of the models.

Sun and Vanicek (1998) discuss numerical differences between the mean and the
point models. It deserves to be pointed out that their conclusions do not reflect the
discussions here since by the point model they use a different definition from either the
point-point model and the point-mean model introduced here. In Sun and Vani¢ek’s
discussions, the coefficients for the central cells are evaluated from the point kernel
values, while here they are evaluated from the mean kernel values in the point-point
model.

The above analysis is more or less heuristic, and does not answer the important
question: Are the coefficient matrices for the discrete models singular or close to being
singular? Alternatively, what is the condition of the coefficient matrices? A powerful
technique for dealing with sets of equations or matrices that are either singular or
numerically very close to being singular is known as singular value decomposition, or
SVD. It will not only diagnose the system, but it will also solve it. If the matrix B is

square, its inverse can be constructed as (Golub and Van Loan, 1983)

B'=vs T, (3.51)
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The matrices U and V are column-orthonormal. ¥ is a diagonal matrix with positive
or zero elements o;, called singular values. If one of o; is zero, or small enough to
be considered as roundoff error, the system becomes singular or extremely unstable.
The condition number of a matrix is defined as the ratio of the largest singular
value 0yq- to the smallest singular value opi,. A matrix is singular if its condition
number is infinite, and it is ill-conditioned if its condition number is so large that its

reciprocal approaches the floating-point precision of a computer system. The larger

the condition number, the less stable the system.

Table 3.2: Statistics of the mean 5’ x 5’ DEM in the test regions. Unit: m.

Region Min | Max | Mean | StdDev | RMS
A (49°N —52°N, 114°W — 119°W) | 459 | 2682 | 1599 | 431 1656
B (46°N — 49°N, 68°W — 73°W) 0 942 | 316 202 376
C (49°N —52°N, 104°W — 109°W) | 488 | 1122 | 684 122 694

Table 3.3: Condition numbers in the test regions by using the mean 5’ x 5 DEM.

Region | Point-Point | Point-Mean | Mean-Mean
A 2.612 3.146 6.483
B 1.315 1.409 2.219
C 1.396 1.514 2.436

We have selected three regions for analysis using SVD: region A covers the roughest
part of the Rocky Mountains, region B covers the southern part of Quebec, and region
C covers the southern part of Manitoba. The statistical information of the 5’ x 5'
DEM is shown in Table 3.2. The SVDCMP routine is used to compute the SVD of
the coefficient matrices (Press, et al., 1992).

Figure 3.12 shows the singular values spectrum of the three discrete models in the
test regions in ascending order. A common feature among the these regions is that

the mean-mean model possesses the biggest condition number tending to produce the
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roughest solution for each region, while the point-point model displays the smallest
condition number tending to produce the smoothest solution for each region (see
Table 3.3). Region A has the largest condition number for each discrete model,
implicating that the elevation is the dominant factor in determining the condition of
the coefficient matrix. Region B with more rugged relief but smaller mean elevation
than region C has a smaller condition number for each discrete model than Region
C. It implies that the mean elevation of the region rather than the relative relief
determines the condition of the coefficient matrix. These results also show that the

5 x 5’ downward continuation appears to be a stable problem in Canada regardless

of the discrete model being applied

3.3 Summary

Discretization of Poisson’s integral is a process of approximating the continuous Pois-
son integral in a discrete form that is expected to best use the available data and
to efficiently eliminate errors and biases in the evaluation of continuation. The dis-
cretization comprises the following issues: a) evaluation of the far-zone contribution,
b) modification of the Poisson kernel, ¢) combination of terrestrial data with a satel-
lite geopotential model, d) truncation of the Poisson integral, and e) discretization
of the Poisson integral in the near-zone.

The far-zone contribution was formulated by using the Molodenskii-type harmonic
expansion technique based on the standard, spheroidal and modified spheroidal Pois-
son kernels.

The efficiency of reducing the real far-zone contribution for the spheroidal Poisson
kernel was studied when the modified spheroidal Poisson kernel was adopted. The
numerical results showed that the modified spheroidal Poisson kernel significantly
reduces the real far-zone contribution. In the meantime, the standard Poisson kernel

performs as efficiently as the modified spheroidal Poisson kernel in reducing the real
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Figure 3.12: The singular value spectrum of the coefficient matrices for the point-
point model (solid lines), the point-mean model (dotdashed lines), and the mean-mean
model (dashed lines) of 5’ x §'.
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far-zone contribution.

The determination of the critical radius for the near-zone cap was discussed. The
results suggested that Heiskéna.n and Moritz’s condition gives a radius that is too
small for the determination of the l-cm geoid while Martinec’s condition gives a
radius that is unnecessarily large.

An efficient algorithm for evaluation of the far-zone contribution was developed.
The new algorithm is one order of magnitude faster than the standard algorithm
while providing sufficient accuracy.

The three discrete models for Poisson’s integral were formulated. The analysis
for these models indicated that the mean-mean model tends to produce the roughest
solution, while the point-point model tends to give the smoothest solution among
the three models. Furthermore, the topographical elevation rather than the relative
relief determines the condition of the coefficient matrix for a discrete model. The
numerical tests in different regions within Canada showed that the 5’ x 5’ downward

continuation is a very stable problem regardless of the discrete model used.
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Chapter 4

Solution of the Discrete Poisson

Integral Equations

There is a variety of methods for solving a linear system of equations. The most
straightforward method is by computing the inverse of a matrix, followed by multi-
plication by the data vector. Because of its inefficiency, this method appears more
frequently in theoretical formulation as a concise operator rather than in practical
computation. The most common method for numerical computation is known as
Gaussian elimination. It is the standard method for the geodetic least-squares ad-
Justment calculation. If the coefficient matrix has the properties of symmetry and
regularity, Gaussian elimination can efficiently solve the system of equations. Another
class of methods are the iterative ones. These methods are preferred to Gaussian elim-
ination for a sparse and ill-conditioned coefficient matrix. When the coefficient matrix
is sparse, computer memory requirements are more economical. Furthermore, they
may reduce the round-off error introduced by the elimination method. Because of the
sparseness and ill-conditioning of the coeflicient matrix of the inverse Poisson prob-
lem, the iterative approach is most suitable. It usually takes less time than Gaussian
elimination to lead to a solution. However, if the problem of interest is extremely ill-

conditioned, the iterative approach will fail to give a meaningful solution. In this case,
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the regularization technique is usually used to produce a reasonable approximation
to the true solution. Among various regularization techniques, the truncated singu-
lar value decomposition is superior to others for the Poisson downward continuation,
while mathematical similarity holds among them (Hansen, 1987, 1990, 1992).

In Chapter 3, the three discrete models were formulated and discussed. Each of
them introduces the discretization error (in the case of the mean-mean model, it is
specifically referred as the averaging error) into the appropriate model. It is necessary
to assess the numerical accuracy of these models. In other words, we expect to know
the accuracy of these models. A synthetic approach has been used to simulate and
assess the accuracy of the Stokes integration, and to simulate satellite gravity missions
(Novidk et. al., 2000; Jekeli et. al., 2000). In this research, we will use synthetic data
to study the accuracy of the three discrete models.

The coefficient matrix of the discrete Poisson equation is large and sparse. With
increasing resolution, difficulty of solving it becomes even more evident. An efficient
algorithm is needed to optimize the computational procedure.

In this chapter, the Combined Iterative method is suggested to deal with the
inverse Poisson problem. The synthetic approach is used to assess the accuracy of
Poisson’s integral equation solution for each discrete model, and to determine the
critical truncation radius of the Poisson integral. An efficient algorithm is developed
to perform the downward continuation computation. The truncated singular value

decomposition is introduced to solve the ill-conditioned system.

4.1 The Combined Iterative Method

The two most frequently used iteration methods are the Jacobi and Gauss-Seidel
methods. The Gauess-Seidel method converges more rapidly than the Jacobi method
(Faddeev and Faddeev, 1963; Gerald and Wheatley, 1994). In order to perform the

downward continuation computation more efficiently, a combined iterative method
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is suggested by associating the Jacobi iterative form with the Gauss-Seidel iterative
procedure.

Let B represent the coefficient matrix, g the gravity anomaly vector corrected by
the far-zone contribution on the Earth surface, and f the gravity anomaly vector on

the geoid. The discrete models can then be expressed as a linear system of equations.
Bf =g. (4.1)

By substituting B = I — A into eqn.(4.1), it is transformed into the Jacobi iterative

form.
f=Af+g. (4.2)

This equation means that the downward continuation solution f is equal to the cor-
responding known g plus a correction accounting for the change of g from the Earth

surface to the geoid. By following the Gauss-Seidel iterative procedure, the first

iteration is expressed as

fil= anf+ anfi+ asfi+ .. taafl +a
2= anfi+ anf] axnfi+ .. tanfl +g
fi= asn fl+ a:szfgl + assf;? +a3nf3 +g3 (4.3)

fl= G fi+ anafi+ anafst'*‘ o FnnfY +gn,

where f® = g. In the process of iteration, the most recent f-values are always used in
improving the subsequent f-values. The second and subsequent iterations follow the
same approach until the Tchebyshev norm of the difference between two consecutive
fvalues f@), f(+1) is smaller than a specified threshold value. Advantages of the
combined iterative procedure include a) no memory is needed to store the f-values
from the previous iteration, b) the data vector g remains unchanged through the

entire process, and c) a faster rate of convergence.
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4.2 Synthetic Geopotential Models

In Chapter 3, three distinct discretization models for the evaluation of the Poisson
integral were presented. Each of them can generate an approximation to the true so-
lution. However, we are not able to evaluate their accuracy because there is usually no
true solution available to compare it against. An experimental approach with regard
to the evaluation of their accuracy is the synthetic test for which a synthetic gravity

model is required. As a synthetic model, it must meet two essential experimental

requirements:

1. be a physically realistic representation of the real field;
2. provide means to evaluate all parameters mathematically.

For testing of the downward continuation methods, a spherical harmonic geopoten-
tial model with sufficiently high frequency components fulfills the requirements. By
‘sufficient’ we mean that the degree and order of the spherical harmonics must be
compatible with the sampling interval of data. According to the sampling theorem,
the spherical harmonic model of degree and order 360 matches the 30’ x 30’ data
spacing, and the spherical harmonic model of degree and order 2160 matches the
5 x &' data spacing.

The latest NASA global geopotential model - Earth Gravitational Model 1996
(EGM96) is complete up to degree and order 360 (Lemoine et al., 1997). It may be
used to test the 30’ x 30’ downward continuation. But it is too smooth to test the
5' x 5' downward continuation because of the absence of the high-degree components.
Wenzel (1998) developed two ultra-high degree geopotential models GPM98a and
GPM98b complete to degree and order 1800. Both models use EGM96 to degree and
order 20, whereas the rest comes from the mean 5’ x 5’ gravity anomalies. The differ-
ence between GPM98a and GPM98b is that different 5’ x 5’ data sets and different

computational procedures were adopted in developing them. The research group at
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the Curtin University of Technology, Australia, developed an approach to generate
a synthetic Earth gravity model complete up to degree and order 5400 (Holmes and
Featherstone, 1999). In this approach, all synthetic geoid heights and gravity anoma-
lies were referenced to the Geodetic Reference System 1980 (GRS80). Geopotential
coefficients for degrees n = 2 to 360 were taken from EGM96, while coefficients of
degrees n = 361 to 1800 were adopted from GPM98. For degrees n = 1801 to 5400,
the coefficients of EGM96 were repeatedly re-scaled and recycled to generate values
for all the high degree synthetic coefficients. Synthetic gravity anomalies of realistic
magnitude and variability were obtained by scaling the synthetic coefficients conform-
ing to Tscherning-Rapp model (1974) at the mean radius of the Earth. This model
has been used to test the performance of different modification methods to the Stokes
kernel (Holmes and Featherstone, 1999; Novik et al., 2001).

The anomaly degree variances of EGM96 and GPM98a are plotted in Figure 4.1
against Tscherning-Rapp’s anomaly degree variances. One would expect that syn-
thetic coefficients beyond degree 1800 conforming to Tscherning-Rapp’s degree vari-
ance model would add no significant contribution to the gravity field and the geoid
since the anomaly degree variances above degree 1000 would have been attenuated
to smaller than 1 mGal®. Therefore, GPM98a is an acceptable choice for the exper-
imental test of the downward continuation as it is a realistic geopotential model. In
this research, GPM98a was used to assess the discrete models of Poisson’s integral,
and to determine the critical truncation radius of the integral. It is acknowledged
that other synthetic models (eg. Haagmans, 2000) may better serve our purposes,

but they were not available when this research was done.
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Figure 4.1: Anomaly degree variances o2 of the Tscherning/Rapp degree variance
model, EGM96 and GPM98a.
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4.3 Synthetic Tests of Discrete Models for Pois-
son’s Integral Equation

In Chapter 3, the three discrete models for Poisson’s integral equation were formu-
lated: the mean-mean model, the point-mean model and the point-point model. This
section focuses on testing the three models against synthetic data generated from
GPM98a to learn how the discretization error affects accuracy of the downward con-
tinuation for each model, and to find the proper method to deal with it if necessary.

The test region is located in the Rocky Mountains, delimited by latitudes of 49°N-
52°N and longitudes of 114°W-119°W, where the mean 5’ x 5 heights range from 459
m to 2684 m with a mean of 1599 m and a standard deviation of 431 m. Two data
sets were generated from GPM98a: a) The mean 5’ x 5’ gravity anomalies on the
Earth’s surface and on the geoid were computed from point values evaluated on a
grid of 30” x 60”. The mean 30” x 60” DEM was used to represent the ‘true’ Earth’s
surface on which the 30” x 60” point gravity anomalies were evaluated; b) The point
5’ x §' gravity anomalies were computed on the geoid and on the Earth’s surface where
the mean 5’ x 5’ DEM was used. The statistical information of these synthetic data
is shown in the first rows of Tables 4.1-4.3.

Tables 4.1-4.3 show the test results for the GPM98a synthetic data. The over-bar
indicates mean value. Superscript ‘syn’ indicates synthetic data, ‘ddc’ shows the dis-
crete Poisson downward continuation, DAg is the downward continuation correction,
and ¢ indicates the error of the Poisson downward continuation. The mean 5’ x 5’
DEM was used for evaluating coefficients B;; and B;; of the point-point and point-
mean models, while the mean 30” x 60” DEM was used for evaluating coefficients -_B_T,—
of the mean-mean model. In other words, the same DEMs were consistently used for
both the synthetic data and the downward continuations to eliminate approximation

errors originated from the use of the DEMs.
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Table 4.1: The 5’ x 5 point-point downward continuation of the synthetic field of
degree 21 to degree 1800 derived from GPM98a. 1o = 1°. Unit: mGal.

Parameter | Min. Max. | Mean | StdDev | RMS.
Agi™ -12.109 | -0.901 | -7.624 | 2.244 7.947
Agee -12.108 | -0.887 | -7.622 | 2.242 7.945
DAg™ -1.260 | 0.135 | -0.233 | 0.242 0.335
DAg?* -1.218 | 0.113 | -0.231 | 0.234 0.328
T@ﬂ -0.103 | 0.052 | -0.021 | 0.034 0.041
) -0.042 | 0.022 | -0.002 | 0.010 0.010

Table 4.2: The 5’ x 5 point-mean downward continuation of the synthetic field of
degree 21 to degree 1800 derived from GPM98a. ¥ = 1°. Unit: mGal.
Parameter | Min. Max. | Mean | StdDev | RMS.

Ag -12.107 | -0.833 | -7.621 | 2.243 | 7.944
Agr© -12.109 | -0.929 | -7.622 | 2.244 | 7.946

3
DAg*"™ -1.143 | 0.090 | -0.230 | 0.216 0.316
DAg*** -1.295 [ 0.141 | -0.231 | 0.248 0.339
_IFZ?, -0.103 | 0.052 | 0.021 | 0.034 0.041
) -0.054 | 0.152 | 0.001 | 0.036 0.036

Table 4.3: The 5 x 5 mean-mean downward continuation of the synthetic field of
degree 21 to degree 1800 derived from GPM98a. 1, = 1°. Unit: mGal.

Parameter | Min. Max. | Mean | StdDev | RMS.
Ag -12.107 | -0.833 | -7.621 | 2.243 | 7.944
Ag* -12.172 | -1.109 | -7.623 | 2.241 | 7.946
DAg™™ |-1.240 |0.120 | 0233|0230 0333
DAg™™ |-1.375 |0.187 [-0.235 [ 0.283 | 0.368
| FD -0.103 | 0.052 | -0.021 [ 0.034 | 0.041
) -0.083 | 0.276 | 0.002 | 0.055 | 0.055
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Figure 4.2: Error distribution of the downward continuation using the GPM98a syn-
thetic data.
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Observing the results from these three discrete models, we can see that the point-
point model gives a result very close to the point-point synthetic solution, while the
mean-mean downward continuation result shows significantly worse conformity to the
mean-mean synthetic solution (see Figure 4.2).

There are four different sources that may have caused the downward continua-
tion errors shown in Tables 4.1-4.3: numerical errors related to the conditions of the
coefficient matrices, iterative errors, data errors and the discretization errors. The
downward continuation error for each model is independent from the condition of the
appropriate matrix because the 5’ x 5 downward continuation is a well-conditioned
problem regardless of the model used. It is also independent from the iterative errors
because the Tchebyshev norm of the solution differences between two consecutive
iterations was chosen as 0.001 mGal. As for the data errors, the DEMs were consis-
tently used for evaluating both the synthetic data and the downward continuation to
avoid the approximation errors from the uses of the DEMs, and the synthetic grav-
ity data were evaluated at an accuracy of 0.001 mGal. Therefore, the discretization
errors are the sources that render the downward continuation errors shown in Tables
4.1-4.3. This conclusion implies that the averaging error for the mean-mean model
affects the downward continuation more significantly than the discretization error for
the point-point model does. In order to verify this conclusion, the averaging error
for the mean-mean model (3.42) has been evaluated by using eqn. (3.46) from the
30” x 60" point synthetic data on the geoid, and shown in Table 4.4. After correcting
for this error, the mean-mean downward continuation error reduces to a level that
represents the numerical noise of the 30" x 60” point-point upward continuation. This
result confirms the implication above.

To further learn the characteristics of the averaging error and its effect on the
mean-mean downward continuation, synthetic tests with respect to different grid steps
have been conducted. In the tests, the mean 2’ x 5 and 2’ x 2’ synthetic data
were formed from the 30” x 60” point synthetic data on both the geoid and the
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Earth’s surface, respectively. Table 4.5 shows the averaging errors and their downward
continuations with respect to different grid steps. It is evident that the averaging error
decreases with the decreasing grid step. Table 4.6 shows the mean-mean downward
continuation errors with and without the corrections of the averaging errors with
respect to different grid steps. After correcting for the averaging errors, the downward
continuation errors for all grid steps reduce to the noise level of the 30” x 60” point-

point upward continuation.

Table 4.4: The 5 x 5 mean-mean downward continuation of the synthetic field of
degree 21 to degree 1800 derived from GPM98a with the correction of the averaging
error. P = 1°. Unit: mGal.

Parameter | Min. Max. | Mean | StdDev | RMS.
Ag, -12.107 | -0.833 | -7.621 | 2.243 7.944

Ag, " -12.101 | -0.839 | -7.618 [ 2.241 | 7.941
DAg™" | -1.240 [ 0.120 [-0.233 [0.230 | 0.333

DAg ™ |-1.242 [0.124 [-0.230 [0.239 | 0.332

F39 -0.103 | 0.052 | -0.021 | 0.034 0.041
demm -0.152 | 0.055 | -0.006 | 0.039 0.040
) -0.012 | 0.006 | -0.003 | 0.004 0.005

Table 4.5: The averaging errors and their downward continuation of the mean-mean
model for different grid steps. 1o = 1°. Unit: mGal.

Grid | Min. | Max. | Mean | StdDev | RMS. | Comment

5 x &' | -0.152 | 0.055 | -0.006 | 0.039 0.040 | on the Earth’s surface
2’ x 5' | -0.085 | 0.053 | 0.002 | 0.022 0.022
2’ x2'[-0.033 | 0.011 | 0.001 | 0.009 0.009
5’ x 5’ | -0.270 | 0.082 | -0.005 | 0.053 0.054 | continued on the geoid
2" x5'-0.140 | 0.115 | 0.003 | 0.032 0.032
2’ x 2’ 1-0.062 | 0.039 | 0.001 | 0.014 0.014

Even though the point-point model appears to be more accurate than the mean-

mean model, it is arguable that the point-point model leads to a better solution.
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Table 4.6: The mean-mean downward continuation errors for different grid steps with
and without the correction of the averaging errors. ¥ = 1°. Unit: mGal.

Grid Min. | Max. | Mean | StdDev | RMS. | Comment

5 x 5’ [ -0.083 | 0.276 | 0.002 | 0.055 0.055 | without the correction of de, .,
2’ x5 |-0.115 | 0.139 | -0.003 | 0.032 0.032
2’ x2'|-0.038 | 0.060 | -0.001 | 0.013 0.013
5 x5 |-0.012 | 0.006 | -0.003 | 0.004 0.005 | with the correction of de,p
2’ x 5 |-0.004 | 0.004 | -0.000 | 0.001 0.001
2'x2'1-0.013 | 0.014 | 0.000 | 0.004 0.004

When the point-point model is applied to the downward continuation of actual ter-
restrial gravity data, it will be seriously affected by the aliasing error in mountainous
areas (Featherstone and Kirby, 2000). For example, a point value at the central point
of a 5’ x &' cell often contains very strong high-frequency local signals produced by
the terrain near the point in mountainous area. When this point value is used as a
representative value of the cell, it introduces a quite large aliasing error into the solu-
tion. In practice, we use only the grid mean gravity anomalies for the determination
of the geoid, the mean-mean model should be used for the downward continuation
of the mean gravity anomalies from the Earth’s surface to the geoid. However, the
averaging error should be minimized and (or) accounted for to improve the accuracy
of the mean-mean model. From eqn. (3.46), we can observe that a smoother gravity
field tends to reduce this error and its effect on the mean-mean downward continu-
ation. On the other hand, when the point gravity anomalies from which the mean

anomalies are formed are available, they can be used to approximately estimate and

correct for the averaging error.
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4.4 Some Numerical Characteristics of the Mean-

Mean Model

There are four different grids involved in the solution of the mean-mean downward

continuation problem:

¢ Grid 1 is the grid on which mean anomalies on the Earth’s surface are given

(eg. 5’ x 5 in the section 4.3).

Grid 2 is the grid on which topographical heights are given (eg. 30" x 60” in
the section 4.3).

Grid 3 is the grid on which one generates the downward continued point anoma-

lies on the geoid (eg. 30” x 60” in the section 4.3).

Grid 4 is the grid on which one computes the mean anomalies ready for the

Stokes integration on the geoid (eg. 5 x 5’ in the section 4.3).

This section focuses on studying the effects of changing the steps of Grid 2, 3 and
4 on the downward continuation. Both the far-zone contribution and the averaging
error are taken into account in the computation to isolate the effect of interest.

Table 4.7 shows the mean-mean downward continuation errors caused by using
different DTMs for evaluating the coefficients B=,-,-, i.e. the effect of changing the
step of Grid 2. These results indicate that the mean-mean downward continuation is
sensitive to the DTM, and that the DTM corresponding to Grid 3 must be used to
give an accurate result.

Table 4.8 shows that the mean-mean downward continuation errors caused by
using different number of point values within each 5’ x 5’ cell to evaluate the mean
anomaly of the cell on the Earth’s surface, i.e. the effect of changing the step of Grid
3. The same 30” x 60” DTM was used in the computations. The results suggest
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Table 4.7: The 5’ x 5’ mean-mean downward continuation errors of the synthetic field
of degree 21 to degree 1800 derived from GPM98a due to using different DTMs for
evaluating the coefficients B;;. 1o = 1°. Unit: mGal.

DTM Min. | Max. | Mean | StdDev | RMS.
30” x 60” | -0.012 | 0.006 | -0.003 | 0.004 | 0.005
1'x1’ -0.012 | 0.007 | -0.003 | 0.004 0.005
2 x2 -0.056 | 0.051 | -0.003 | 0.014 0.014
5 x5 -0.099 | 0.124 | -0.004 | 0.027 0.027

that the mean anomaly of each cell be computed by as many point values as possible

within the cell to derive the accurate mean anomalies on the geoid.

Table 4.8: The 5’ x 5" mean-mean downward continuation errors of the synthetic field
of degree 21 to degree 1800 derived from GPM98a due to using different grids of point
values for evaluating the mean anomalies on the Earth’s surface. Unit: mGal.

No. of Point Values { Min. | Max. | Mean | StdDev | RMS.
50 (30” x 60") -0.012 | 0.006 | 0.003 | 0.004 0.005
25 (1’ x 1') -0.286 | 0.093 | -0.013 | 0.047 0.049
15 (1’ x 1'40") -0.261 | 0.098 | -0.012 | 0.049 0.050
9 (1'40” x 1'40") -0.274 { 0.111 | -0.013 | 0.054 0.055
4 (2.5 x 2.5') -0.378 | 0.221 | -0.004 | 0.078 0.078

Table 4.9 shows the errors of the downward continued mean gravity anomalies
between using two different continuation steps, i.e. the effect of changing the step of
Grid 4. The mean 2.5’ x 5’ and 2.5’ x 2.5’ mean gravity anomalies were derived from
the mean 5’ x 5 one by simple spatial reference, i.e. simply meshing the mean 5' x 5'
data into the 2.5’ x 5’ and the 2.5’ x 2.5’. The purpose of this test is to find the best
step of the mean-mean downward continuation if only the mean 5 x 5 anomalies
are available. Distinction must be made between the cases shown in Table 4.6 and
the cases here. The former uses the different means for the appropriate grid steps,

while the latter uses the same mean but meshes them into different grids introducing
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the aliasing error into the input data. The same 30” x 60” DTM was used in all
computations. The results show that a finer step significantly worsens the accuracy
of the 5’ x 5’ mean-mean downward continuation results. It means that the step of
the mean-mean downward continuation must be identical to that of the mean gravity
data (Grid 1) to avoid the aliasing error from misusing the ‘rougher’ mean as the
‘finer’ mean. In other words, when the mean 5 x 5’ anomalies are used to represent
the mean 2.5’ x 2.5’ on the Earth’s surface, the resulted downward contiuned mean

2.5’ x 2.5’ anomalies on the geoid are significantly aliased.

Table 4.9: The mean-mean downward continuation errors of the synthetic field of
degree 21 to degree 1800 derived from GPM98a due to using different grids for eval-
uating the downward continuation. Unit: mGal.

Step Min. [ Max. | Mean | StdDev | RMS.
(1) 5" x & -0.012 | 0.006 | 0.003 | 0.004 0.005
(2) 2.5 x5 |-0.105 { 0.633 | 0.013 | 0.089 0.090
(3) 2.5' x 2.5’ | -0.406 | 0.878 | 0.015 | 0.213 0.213

4.5 Synthetic Test for The Critical Radius of the
Near-Zone Cap

The same GPM98a synthetic data set as the one generated in Section 4.3 is used to
verify whether the 0.5° can be taken as the radius of the near-zone cap (when the
maximum mean height is 2 km). Table 4.10 shows the test results. In the test, the
far-zone contribution is evaluated from 0.5° to 180°, summing up the harmonic terms
in eqn. (3.6) to degree and order 360. We can see that the far-zone contribution
increases significantly with respect to the one for the 1° cap, but the error level is
comparable with the 1° cap results shown in Table 4.1. These results imply that a

radius of 0.5° for the near-zone cap may be chosen without affecting the accuracy of
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Table 4.10: The point-point downward continuation of the synthetic field of degree
21 to degree 1800 derived from GPM98a for 3 = 0.5°. Unit: mGal.

Parameter | Min. Max. | Mean | StdDev | RMS.
Ag¥™ -12.109 | -0.901 | -7.624 | 2.244 7.947
Agee -12.109 | -0.860 | -7.626 | 2.245 7.950
DAg*™ -1.260 | 0.135 | -0.233 | 0.242 0.335
DAg®* -1.192 | 0.105 |-0.235 | 0.227 0.327
F2 -0.277 [0.470 [-0.002 | 0.159 | 0.159
) -0.068 | 0.034 | 0.002 | 0.017 0.017

the downward continuation if the height of the computation cell is below 2 km.

4.6 Algorithm

The most time consuming part of constructing the linear system of equations is at-
tributed to the evaluation of the doubly averaged modified Poisson kernel in eqn.(3.42).
For each equation, there is an average of about 500 coefficients for a grid of 5’ x &,
corresponding to 500 evaluations of the kernel. Even for the elementary area of 3° x5°,
it takes about one week of CPU time using Sun Ultra 1 (clock frequency 168M Hz)
to evaluate the coefficients.

A more efficient method can be achieved by producing a three-dimensional table
for every grid line at the same latitude (see Figure 4.3). The vertical dimension
represents height. The doubly averaged kernel values in eqn.(3.44) at different heights
for the same latitude and longitude can be approximated by a low degree polynomial
with the relative accuracy of better than 1 x 10~ (cf. Figure 4.4 ). For the 5’ x 5’ grid,
six tables for the doubly averaged Poisson kernel evaluated at 6 heights (0.1km, 0.5km,
1.0km, 2.0km, 3.0km, 4.0km) are used to interpolate the doubly averaged kernel
values between these heights with the relative accuracy of 1 x 10~4. For each constant

height, there is a two-dimensional table. Each two-dimensional table contains at most
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23 x 28 entries for the 5’ x 5 grid, each of which is a product of the doubly averaged
modified Poisson kernel and the factor R/(4w(R + H)). The higher the latitude, the
larger the number of entries. This three-dimensional table is then used to compute
the coefficients of the system of equations for any height between 0 and 4 km at this
latitude by interpolation in real time. The number of the three-dimensional tables
is determined by the grid step in latitude and the range of latitude for the area of
interest. For example, if the area of interest ranges from 50 to 60 degrees, and the
step is §', the range of the tables will be from 49 to 61 degrees, resulting in 144 tables.

The additional two degrees are necessary to eliminate the edge effects on the northern

and southern borders.
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Figure 4.3: The 3-D table for the doubly averaged kernel coefficients ?:

The discretization of eqn. (3.42) yields one equation for each computation cell.
Thus the dimension of the system to be solved depends on the number of cells in
the area of interest. In the downward continuation for the geoid determination, we
usually deal with a large area and a large system of equations. For example, for an

area of 10° x 10° and a grid of 5’ x 5, the total number of equations is 14400. If
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each entry in the coefficient matrix were defined as a real type variable (4Bytes), the
memory size to store the matrix of the system of equations would be almost 800 M B.
Even when a compressing technique is adopted, the matrix is still enormous.

In order to avoid handling large matrices, a block-wise approach is adopted here.
A block of 3° x 5° is taken as the minimum required area of surface gravity data which
results in a block of 1° x 1° of downward continued anomalies. The one-degree border
in latitude and the two-degree border in longitude are used to shield the results in
the 1° x 1° blocks from the edge effect (Vanicek et al., 1996). The block then moves
1° at a time and goes through the whole area. (see Figure 4.5).

A

Figure 4.5: The block-wise approach.

For a block of 3° x 5° and a grid of § x 5’, 2160 linear equations have to be
solved. The coeflicient matrix of the system is sparse and non-symmetrical. A one-
dimensional array is used to store only the non-zero entries of this matrix. This

technique saves memory and speeds up computation.
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4.7 Implementation: DOWN’97

A software package, DOWN’97 was developed to compute the downward continuation
of the mean 5’ x 5’ residual gravity anomalies (n > 20) from the Earth surface to the

geoid. The package consists of five separate routines.
1. tj20.f (9KB) computes the table of the modified Poisson kernel coefficients.
2. mQj20.f (7KB) computes the table of the truncation error coefficients.

3. dakctbl.f (32KB) computes the tables of the doubly averaged modified Poisson

kernel.

4. tdgt.f (10KB) computes truncation errors and prepares the mean gravity anomaly

and height files for downward continuation.
5. down.f (1{KB) downward continues the mean gravity anomalies to the geoid.

The programming language is Fortran77, and a compiler in a UNIX operating system

was used to compile all routines during the development of the package.

4.8 The Truncated Singular Value Decomposition
Method

For a certain grid step, if the problem becomes ill-conditioned (Martinec, 1996), there
is always a way of “regularizing” the solution. There has been a great deal of work
devoted to regularization techniques (Tikhonov and Arsenin, 1977; Schwarz, 1978;
Rummel et al, 1979; Tarantola, 1987; Xu and Rummel, 1992; Rauhut, 1992; Engels
et al., 1993). One common feature among the various techniques is the enforcement
of constraints on the solution to produce a stable approximation. These constraints

serve as either mathematical conditions or as a-priori information for the solution
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being sought. If they are selected in such a way so as to conform to the physical reality,
the regularized solution will represent a good approximation to the true one. Another
common feature among these techniques is that they are formulated in combination
with the least-squares method to reduce random errors in data. For the downward
continuation of gravity we do not have redundant data, i.e., the degree of freedom
is zero. Thus, the least-squares method does not reduce data random errors in the
data, while it increases the mathematical complexity.

Hansen (1987, 1990, 1992) suggested another regularization method in his series of
papers. This method is called the Truncated Singular Value Decomposition (TSVD)
and is solidly based on both the Singular Value Expansion (SVE) and the Singular
Value Decomposition (SVD). The TSVD is particularly suitable for the inverse Pois-
son problem. The superiority of the TSVD is that it provides the best approximation
to the true solution from the spectral point of view, while taking into consideration
the data errors. It is the spectral property that makes this method theoretically and
practically more tangible than other methods for the application of the downward
continuation, because it makes regularization solution physically and mathematically

more meaningful.

Let B be a matrix of n x n, that has a singular value decomposition in the form

(Golub and Van Loan, 1989)

B=UxVT = > ouvyT, (4.4)

i=1
where the left and right singular vectors u; and v; are the orthonormal columns of
the matrices U € R™**™ and V € R™*", and the singular values o; are the elements
of the diagonal matrix ¥ € R™**. They satisfy oy > 02 > - -+ > o,. Then the

truncated singular value decomposition solution of the downward continuation can

be constructed as

fzz":<u'{,g>

\' i1=1,---,n; k<n, (4.5)
o3

=1
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where k is the truncation parameter. It is has a similar form to the truncated solution

of the continuous inverse Poisson problem

k k r
g(R,Q) — Z Z < Ynm(g)ag( aQ) >K1m(n), (4.6)

n=0m=-n A"

where <, > indicates the inner product.

The SVD of B is related to the SVE of the Poisson kernel K in the sense that
o; and < uf,g > correspond to A, and < Yum(f2),9(r, Q) >, respectively (Hansen,
1992). This similarity establishes a heuristic link between the discrete and continuous
inverse Poisson problems, and calls for a physical interpretation of the discrete Poisson
downward continuation problem. First of all, it means that larger o; correspond
to low-degree components, while smaller o; correspond to high-degree components.
Secondly, the small amount of information in g associated with all the small singular
values is lost due to the presence of errors. Hence, one can say that the system is
essentially underdetermined or ill-conditioned, because we are only able to recover the
information associated with the larger singular values of B. The truncation parameter
k is determined in such a way so that the noise-dominated high-degree components
are filtered out of the solution. Thirdly, the left and right singular vectors u; and v;
tend to oscillate more frequently with increasing :.

Therefore, the TSVD regularization provides a stepwise way to approach the true
solution from low-degree components to high-degree components. In practice, we

increase k until the residual quadratic norm is of the same size as the quadratic norm

of the errors ||e||2.

4.9 Summary

The inverse Poisson problem can be reduced to a linear system of algebraic equations
for a discrete model. The coefficient matrix of the system is large and sparse. The

iterative method is the most efficient to solve the system. The combined iterative
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method was proposed to speed up convergence.

The synthetic approach was used to evaluate the point-point, point-mean and
mean-mean models. GPM98a was adopted to generate synthetic data. The tests
showed that the mean-mean model gives a result sufficiently close to the mean-mean
synthetic solution when the averaging error is accounted for. Synthetic tests also show
that the 0.5° may be chosen as the radius of the near-zone cap when the maximum
elevation does not exceed 2 km.

A block-wise technique was developed to avoid solving a large system of equations,
and to improve the computational speed of the discrete Poisson downward continua-
tion. The coefficient interpolation method was implemented to reduce the CPU time
when evaluating the doubly averaged Poisson kernel.

The software package DOWN’97 was developed to evaluate the discrete Poisson
downward continuation of the mean 5’ x 5 gravity anomalies.

When the coefficient matrix is very close to singular, the iterative approach may
fail to give a useful solution. The truncated singular value decomposition (TSVD)
was proposed to provide an optimal solution from noisy data. The TSVD is superior
to other regularization methods since it makes the process of solving the system

physically and mathematically meaningful.
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Chapter 5

Analytical Downward Continuation

5.1 Theory

The analytical downward continuation (ADC) is based on the Taylor series expansion
of the gravity anomaly. One open question is whether it leads to a solution that is
as good as the discrete Poisson downward continuation (DDC) when the disturbing
- potential is harmonic in the domain above the geoid. In this chapter, a numerical
analysis is conducted to answer this question.

If Ag(rg, ) is known on the geoid at r, and has derivatives of all orders Agt™)(r,, Q)

in the closed interval [r,,r], then

= Ag™(r,, 0 "
Ag(r’ Q) = z ——g_—%_)'lr=rgﬂ . (5'1)
n=0 *

This series may be symbolically written as
Ag(r,Q) = UAg(ry, ), (5.2)

where the symbol U denotes the upward continuation operator which is applied to

the function Ag(r, Q) at r,.
Given Ag(r,, ) at the Earth surface, the solution of Ag(r,,Q) on the geoid can
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be expressed as follows (Moritz, 1980, section 45)

Ag(raa Q) = Z gn, (5.3)
n=0
where
go = Ag(f‘g, Q)v
= —H- Ll(go),
g2= —H-Li(q)— H?: L(g0), (5.4)
gn = -Z:=1 H"- Lr *Gn—r.
with an L operator
R? 9=09 ;0 1
L(g) = 5 [ 2240 - Zos, (5.5)
L, = —1-L" = -1-LL,,_1, (5.6)
n! n

and d = 2Rsin(1/2) is the distance between the computation point P and an inte-
gration point.

The operator L may be interpreted as a vertical gradient on a spherical surface
if the gravity anomaly is known on the surface. However, for the downward contin-
uation, it merely represents the first-order approximation to the gradient since the
gravity anomaly is known on the irregular Earth surface. Eqn. (5.6) shows that the
higher-order terms L, can be recursively evaluated from the lower-order terms L,_,.
This relation can be used in the computation.

The analytical downward continuation is a forward problem. It is divergent with
increasing resolution!. What kind of relation exists between the instability of the
inverse Poisson problem and the divergence of the analytical continuation is still
an open question. As far as the convergence is concerned, a deep and extensive
discussion can be found in the literature (Moritz, 1980; Jekeli, 1983). This issue will
not be discussed here. The main question to be answered by this research is whether

both methods are numerically equivalent.

1Vaniéek, 2000. personal communication.
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5.2 Computational Method

The analytical downward continuation requires a number of evaluations of the con-
volution integral (5.5) depending on the number of terms taken. If we take n up to
5, the integral (5.5) will be evaluated 15 times in the region of interest. Thus, an
efficient numerical algorithm is needed for its evaluation.

Similar to the Stokes kernel, the L operator kernel is a function of the spherical

distance ¥ which can be expressed as
¥ = arccos [sin ¢sin ¢’ + cos g cos ¢’ cos (X' — A)], (5.7)

where ¢ and A are the latitude and longitude of the computation point P, respectively,
¢’ and X are the latitude and longitude of the integration point, respectively. The
1-D FFT was applied by Sideris (1987) for the evaluation of the integral (5.5).
Recently, an alternative algorithm was suggested to evaluate this type of integral
(Huang et al., 2000). Its computational complexity is O(N) in contrast to O(N log N)
of the FFT. Its practical speed is comparable to the FFT technique. The basic idea is
to make use of the isotropic and symmetrical properties of the kernel with respect to
longitude. It can be seen that the spherical distance does not depend on the longitude
of the computation and integration points; it only depends on the longitude difference
between the two points. This means that the kernel values need only be computed
once for the evenly spaced points at the same latitude. In other words, all computation
points at the same latitude use the same set of kernel values. In addition, the kernel
values are symmetrical with respect to the meridian of the computation point, and
thus only one-half of the kernel values need be evaluated. Furthermore, for constant
grid steps dX', d¢’, the surface element do = cos ¢'d\'d¢’ evidently depends only
on the latitude of the integration point, and needs be computed only once for each
integration latitude. Compared to the 1-D FFT, this method is more straightforward
and suitable for the evaluation of the L integral. It has been implemented in a

computer software package for the evaluation of the analytical downward continuation
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in this research.

5.3 Numerical Comparisons with the Discrete Pois-
son Downward Continuation

The point-point model of the Poisson downward continuation is used for the com-
parisons to be consistent with the analytical downward continuation that is usually

formulated as the point-point model.

5.3.1 Synthetic Comparisons

Two synthetic data sets were generated from EGM96 and GPM98a, respectively,
on a 5’ x 5 grid as point values. The synthetic data from EGM96 were evaluated
from degree and order 21 to degree and order 360, while the synthetic data from
GPM98a were computed from degree and order 21 to degree and order 1800. Each
data set includes the synthetic gravity anomalies both on the Earth surface and on
the geoid. The synthetic data evaluated on the Earth surface were used as input to
the downward continuation computation, while the synthetic data evaluated on the
geoid were used to verify the accuracy of the computation. The first 20 degrees of
harmonic components were excluded from the computation by following the combined
technique shown in eqn. (3.5).

The test region covers the Rocky Mountains, delimited by latitudes 41°N and
62°N and longitudes 100°W and 138°W. The mean 5’ x 5' heights range from 0 m
to 3576 m with a mean of 711 m and a standard deviation of 622 m. The first rows
in Tables 5.1 and 5.4 contain statistical information of the two synthetic data sets on
the geoid.

Table 5.1 shows the point-point DDC results from the EGM96 synthetic data. In
the Table, superscript ‘syn’ indicates synthetic data, ‘ddc’ indicates discrete Poisson
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downward continuation, DAg indicates downward continuation contribution, and §
indicates the error of the downward continuation. From this table, we can see that
the DDC gives the results that agree with the synthetic data within (-0.15 mGal, 0.16
mGal).

After the downward-continued synthetic gravity anomalies are transformed into
geoid heights by Stokes integration, the maximum error of the geoid heights is about
0.3 cm, while the maximum downward continuation contribution is about 21 cm (see
Figure 5.1 and Table 5.3). Figure 5.2 shows the effect of the DDC on the geoid heights
in the Rocky Mountains. The geoid results are restricted to a region of 5° x 10° (49°N-
54°N, 114°W-124°W). Their spatial pattern is highly correlated with the geoid heights
in the region, characterized by dominant long-wavelength features.

Table 5.2 shows the ADC results. Superscript ‘adc’ indicates analytical downward
continuation. In the computation, the L integral was truncated to 6°. It can be seen
that the ADC demonstrates a rapid convergence to the synthetic data from the g, to
g3 term within an error range of (-0.48 mGal, 0.95 mGal). The maximum ADC error
on the geoid heights is about 2 cm, six times greater than the DDC one (see Figure
5.1 and Table 5.3). This error may be caused by the truncation of the series, the
truncation of the L integral and the ADC method itself. Figure 5.3 shows effects of
the ADC on the geoid in the Rocky Mountains. It is very similar to the DDC results
shown in Figure 5.2.

The same comparison was carried out using GPM98a up to degree 1800. In the
DDC computation, the far-zone contribution was summed up to degree 360 instead of
1800. The results (Tables 5.4, 5.5 and 5.6; Figures 5.4, 5.5 and 5.6) simply reconfirm
the conclusions drawn from the previous EGM96 comparison. The main reason for
the similar conclusions from both the EGM96 and GPM98a tests is that the higher
degree components of GPM98a do not produce a significant contribution to the Earth
geopotential. This is also the limitation of any synthetic geopotential model based
on the Kaula-type degree-variance models of the Earth gravity field (Kaula, 1966;
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Table 5.1: The point-point DDC of the synthetic field of EGM96 (21-360) in the test
region. Unit: mGal.

Parameter | Min. Max. | Mean | StdDev | RMS.
Agit -73.219 | 88.868 | 0.125 | 14.088 | 14.089
Ag5e -73.073 | 88.717 | 0.124 | 14.081 | 14.082
DAgv™ -4.851 |[8.732 | 0.051 | 0.515 0.517

DAg°® -4.705 | 8.576 | 0.051 | 0.504 0.506

Dgr -0.144 | 0.181 | 0.004 | 0.027 0.027

) -0.146 | 0.163 | 0.001 | 0.012 0.012

Table 5.2: The ADC of the synthetic field of EGM96 (21-360) in the test region.
Unit: mGal.

Parameter | Min. Max. | Mean | StdDev | RMS.

Agm -73.219 | 88.868 | 0.125 | 14.088 | 14.089
Agr*e -72.754 | 88.049 | 0.118 | 14.049 | 14.049
DAg*™ -4.851 |8.732 | 0.051 | 0.515 0.517
o -4.168 | 7.259 | 0.044 | 0.443 0.445
g2 -0.203 | 0.765 | 0.000 | 0.021 0.021

g3 -0.043 | 0.142 | 0.000 | 0.003 0.003
DAg* -4.386 | 7.868 | 0.044 | 0.461 0.463
) -0.480 | 0.952 | 0.007 | 0.056 0.056

Table 5.3: Accuracy of the point-point DDC and the ADC by using the synthetic
field of EGM96 (21-360) in the test region. Unit: m.

Parameter | Min. | Max. | Mean | StdDev | RMS.
N 0.015 | 0.209 | 0.064 | 0.030 0.071
aaee 0.000 | 0.003 | 0.001 | 0.001 0.001
a8ce 0.000 | 0.020 | 0.007 | 0.04 0.008
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Figure 5.1: The geoid height error distribution for the DDC and ADC of the EGM96
synthetic data.

91



A\ -- i

T T

123W 122'W 121'W 120'W 119'W 118'W 117°W 116'W 115'W

Figure 5.2: The point-point DDC effect on the geoid from the synthetic gravity data
of EGM96 (21-360). Contour interval: 0.01 m.
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Figure 5.3: The ADC effect on the geoid from the synthetic gravity data of EGM96
(21-360). Contour interval: 0.01 m.
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Tscherning and Rapp, 1974; Jekeli, 1978). For instance, these degree-variance models
may not be applicable as models for the gravity anomaly based on the Helmert 2nd
condensation. In the next section, the Helmert gravity anomaly will be used to further

study the relation between the two methods.

Table 5.4: The point-point DDC of the synthetic field of GPM98a (21-1800) in the
test region. Unit: mGal.

Parameter | Min. Max. Mean | StdDev | RMS.
Qg -69.692 | 124.378 | 0.176 | 13.986 | 13.987
Agie -69.268 | 124.096 | 0.175 | 13.971 | 13.973
DAg™ ™ -7.271 | 16.048 | 0.046 | 0.760 0.762

DAg®** -6.881 | 15.588 | 0.045 | 0.728 0.729

Dgr -0.196 | 0.192 0.003 | 0.026 0.026

) -0.726 | 0.726 0.000 | 0.046 0.046

Table 5.5: The ADC of the synthetic field of GPM98a (21-1800) in the test region.
Unit: mGal.

Parameter | Min. Max. Mean | StdDev | RMS.

Agi™ -69.292 | 124.378 | 0.176 | 13.986 | 13.987
Aga -69.263 | 122.935 | 0.170 | 13.929 | 12.931
DAg*™ -7.271 | 16.048 | 0.046 | 0.760 0.762
G -5.344 | 12.495 | 0.040 | 0.615 0.617
g2 -0.719 | 1.452 0.000 | 0.049 0.049

g3 -0.096 | 0.263 0.000 | 0.005 0.005
DAg*% -6.150 | 13.864 | 0.040 | 0.659 0.660
F} -1.288 | 2.324 0.006 | 0.110 0.110
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Table 5.6: Accuracy of the point-point DDC and the ADC by using the synthetic
field of GPM98a (21-1800) in the test region. Unit: m

Parameter | Min. | Max. | Mean | StdDev | RMS.
N 0.004 | 0.141 | 0.040 | 0.021 0.045
§5de -0.001 | 0.002 | 0.000 | 0.000 0.000
3%sc -0.003 | 0.013 | 0.003 | 0.003 0.005
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Figure 5.4: The geoid height error distribution for the DDC and ADC of the GPM98a
synthetic data.
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Figure 5.5: The point-point DDC effect on the geoid from the synthetic gravity data
of GPM98a (21-1800). Contour interval: 0.01 m.
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Figure 5.6: The ADC effect on the geoid from the synthetic gravity data of GPM98a
(21-1800). Contour interval: 0.01 m.
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5.3.2 Comparisons Using the Helmert Gravity Anomaly

Helmert’s 2nd condensation has been used in the practical determination of the geoid
(Vanitek and Kleusberg, 1987; Véronneau, 1996; Smith and Milbert, 1999). Following
this approach, the Helmert gravity anomaly needs to be downward continued from
the Earth surface to the geoid. The procedure and formulae for evaluation of the
Helmert gravity anomaly can be found in Vanicek et al. (1999). In this section, the
DDC and the ADC are compared by using the Helmert gravity anomaly.

The mean 5’ x 5" Helmert gravity anomalies were retrieved from the UNB Helmert
gravity data set in the same region as the one for the synthetic comparisons 2. The
mean 30" x 30" DEM data were used for the evaluation of the mean 5’ x 5' Helmert
gravity anomalies. Table 5.7 shows statistical information of the residual Helmert
gravity anomalies above degree 20 and the DEM data in the test region. Compared
to the synthetic data generated from the global geopotential models, the residual
Helmert gravity anomaly is significantly larger in both magnitude and RMS.

Table 5.8 shows the DDC and the ADC gravity results. In the DDC, the far-zone
contribution was neglected since it required the Helmertized global geopotential model
that was not available. This omission results in a larger DDC effect as expected. The
far-zone contribution from the non-Helmertized EGM96 is about 1 cm on average
in the test region as shown in Figure 3.6. Further work is needed to estimate the
far-zone contribution from the Helmertized global geopotential model. The ADC was
truncated up to the 5th term, displaying a rapid convergence. In the computation,
the L integral was truncated to 6°. Since the ADC is a forward problem, omission
of the far-zone effect may weaken the ADC effect, therefore, the ADC may appear
smaller than what it should be. The last row in Table 5.8 shows the statistics of the
differences between the DDC and ADC gravity results. It shows that the ADC is
about 10% smaller than the DDC on average.

Table 5.9 shows the effects of the DDC and the ADC on the geoid. It is noticeable

2Jandk, J. (2000). personal communication.
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that the ADC geoid result converges significantly faster than the ADC gravity one.
The terms above the 3rd are invisible in the geoid result at the millimeter level. The
DDC geoid result is 5 cm larger, on average, than the ADC one (see Figures 5.7, 5.8
and 5.9).

Table 5.7: Statistics of the residual Helmert gravity anomaly above degree 20 of
EGM96 and the height data in the test region.

Parameter | Min. Max. Mean | StdDev | RMS.
Agi(mgal) | -132.620 | 260.181 | -2.241 | 23.623 | 23.729
H(m) 0 3567 711 623 945

Table 5.8: The gravity results of the DDC and the ADC from the residual Helmert
gravity anomaly in the test region. Unit: mGal.

Parameter Min. Max. | Mean | StdDev | RMS.
DAg* -23.086 | 56.582 | 0.355 | 3.506 3.524
a1 -16.533 | 38.775 | 0.320 | 2.639 2.659
g2 -3.370 | 6.891 | 0.000 | 0.374 0.374
g3 -0.566 | 1.349 | 0.000 | 0.052 0.052
ga -0.112 |0.246 | 0.000 | 0.007 0.007
gs -0.021 | 0.039 | 0.000 | 0.001 0.001
DAg¥ -19.500 | 47.300 | 0.320 | 3.010 3.027
DAg®*-DAg** | -4.569 | 10.132 | 0.035 | 0.549 0.550

5.4 Summary

In addition to the discrete Poisson downward continuation (DDC), there exists a well-
developed method, called the analytical downward continuation (ADC) that is based
on the Taylor series expansion of the gravity anomaly.

The synthetic tests on the basis of EGM96 and GPM98a show that the ADC

introduces an error of about 10% of the downward continuation effect, while the
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Table 5.9: The geoid height results of the DDC and the ADC from the residual
Helmert gravity anomaly in the test region. Unit: m.

Parameter | Min. | Max. | Mean | StdDev | RMS.
Naac 0.175 | 0.798 | 0.542 | 0.124 0.556
Ng, 0.172 {0.703 | 0.494 | 0.103 0.506
Ng, -0.013 | 0.018 | -0.002 | 0.003 0.004
Ngs -0.002 { 0.003 | 0.000 | 0.000 0.000
Ngs 0.000 | 0.000 | 0.000 | 0.000 0.000
Ngs 0.000 { 0.000 | 0.000 | 0.000 0.000
Nage 0.171 | 0.712 | 0.492 | 0.109 0.504
Nade-Naae | 0.004 | 0.092 | 0.050 | 0.017 0.053
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Figure 5.7: The point-point DDC effect on the geoid, using the residual Helmert
gravity anomalies above degree 20 of EGM96. Contour interval: 0.1 m.
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Figure 5.8: The ADC effect on the geoid, using the residual Helmert gravity anomalies
above degree 20 of EGM96. Contour interval: 0.1 m.
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Figure 5.9: The difference between the DDC and ADC effects on the geoid, using the
residual Helmert gravity anomalies. Contour interval: 0.02 m.
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error of the DDC is smaller than 1 cm in the geoid height. The test using the
residual Helmert anomaly in the Rocky Mountains shows that the maximum difference
between the two methods can reach 10 mGal in gravity, and about 10 cm in the geoid
height. The DDC values are 5 cm larger than the ADC ones on average in the
geoid height. The difference accounts for about 10% of the downward continuation
contribution.

An ultra-high degree synthetic global geopotential model constrained to the Kaula-

type degree-variance models is too smooth to simulate the Helmert gravity anomaly,

especially in mountainous areas.
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Chapter 6

Topographical Density Variation
Effects on Gravity and the Geoid

6.1 Introduction

The existence of topography and atmosphere above the geoid violates the basic as-
sumption of the Stokes formula for the determination of the geoid. However, Helmert’s
2nd condensation method can be applied to satisfy the requirements of the Stokes
formula (cf. Figure 1.2).

Helmert’s 2nd condensation method has been used to determine the geoid in
Canada and the US (Vanicek et al. 1995; Véronneau 1996; Smith and Milbert 1999).

This approach conceptually consists of the following steps (Najafi, 1996; Vanicek et
al. 1999):

1. Transformation of the ‘observed gravity anomaly’ Ag, on the Earth surface from

the real space into Helmert’s gravity anomaly Ag#, in Helmert’s space.

2. Downward continuation of Ag? to the Helmert co-geoid.

3. Solution of the boundary value problem in Helmert’s space, i.e., solution for the
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Helmert co-geoid using the generalized Stokes formula (Vaniéek and Sjoberg
1991).

4. Transformation of the co-geoid (in Helmert’s space) to the geoid (in real space)

by evaluating the primary indirect topographical effect (PITE).

The transformation of the gravity anomalies from the real space to Helmert’s space

is given by (omitting atmospherical effects) (Vanicek et al. 1999)
5 .
Agh(r, Q) = Ag(R) + EH(Q)AQB(Q) + 8A(r., Q) + (e, ), (6.1)

where Ag is the free-air gravity anomaly, the second term is a correction for the
difference between the quasigeoid and the geoid, §A is the direct topographical effect
(DTE), év is the secondary indirect topographical effect (SITE), Ag® is the simple
Bouguer gravity anomaly. The DTE is a correction to gravity for condensing the
topographical mass to the Helmert layer. The SITE is a correction to gravity for the
change of the telluroid due to condensation of the topographical mass. Sjoberg (Egs.
(70)-(73), 2000) formulates an identical transformation to eqn. (6.1), but the second
term of eqn. (6.1) is not explicitly given.

In this approach, topography affects geoid modeling through the terms DTE,
SITE, and PITE. The evaluation of these terms requires a digital elevation model
(DEM) and a digital topographical density model (DTDM). While DTM of high res-
olution are readily available, this is not the case for the DTDM. This is the reason
the constant topographical density (2.67 g/cm3) has been used in practice to ap-
proximate the real density. The real density varies from 1.0 g/cm3(water) to 2.98
g/cm3(gabbro). The use of a constant density introduces systematic errors in the
reduced Helmert gravity anomalies, and consequently, in the geoid.

Martinec (1993) showed theoretically that the lateral demsity variation of the
topographical masses may introduce errors on the geoid at the decimeter level. Fraser

et al. (1998) developed a prototype GIS-based system to calculate terrain corrections
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using the real topographical rock density values. They showed that in the Skeena
Region of British Columbia, Canada, the terrain corrections to gravity can change
by a few mGals when real topographical density is used. Subsequently, Pagiatakis et
al. (1999) showed that the effect of lateral density variations on the geoid can reach
nearly 10 cm in the Skeena Region BC and several millimeters in New Brunswick,
where the terrain is moderate (hilly). However in their study they considered only the
effect of terrain corrections to gravity. Concurrently to this research, Kuhn (2000a,
2000b) studied the density effect on the geoid based on several isostatic models. His
results show that the anomalous density effect on the geoid can reach the decimeter
level in South-west Germany without taking the downward continuation with the real
gravity gradient into account.

In this work, the topographical mass density variation effects on the geoid are
systematically investigated by following Helmert’s 2nd condensation regularization.
The Canadian Rocky Mountains have the largest relief and density variations in
Canada. Thus, the determination of the geoid is affected by the topographical density
effects the most in this area: the results shown here represent the largest effects on

gravity and geoid in Canada.

6.2 Digital Topographical Density Model

A digital topographical density model (DTDM) is a representation of density dis-
tribution in the topography. Strictly speaking, a three-dimensional model would be
needed to represent real topographical density distribution. It would require that
a three-dimensional geological model of topography be available. At present, the
available geological information in Canada and the US comes from two-dimensional
geological maps and only lateral variation of density can thus now be modeled.

In 1997, the Geological Survey of Canada published the Digital Geological Map
of Canada, which displays bedrock formations at or near the Earth surface (Wheeler
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et al., 1997). The bedrock units are grouped according to composition and geological
age. The digital version of the geological map digitized from the paper geological
map of scale 1 : 5,000,000 facilitates its use greatly, by allowing a direct import
into a GIS. About 16,000 geometrical polygons are used to delimit bedrock units
over Canada. The area of individual polygons varies from 0.02 km? to about 800,000
km? depending on the geological complexity of the region. These polygons form the
fundamental density units. The U.S. Geological Survey published a similar geological
map in a digital version over the US in 1998.

Pagiatakis and Armenakis (1999) described the principles and the procedure of
generating the two-dimensional topographical mass density map using the digital

geological maps in a GIS. This procedure includes the following steps:

1. Compilation of topographical mass density tables in which each geological unit

is assigned a range of densities or a unique density value according to existing

geological studies.

2. Assignment of the mean value of the density range as a representative density

value to each geological unit.

3. Overlay of the topographical mass density tables onto the digital geological map

layer to generate the geological density map.

In this study, we used the density tables for Canada that were compiled by Fraser et
al.(1998) and an approximate density table over the north-west part of the US that
was compiled by R.O. Castle!

In order to characterize the errors inherent in the DTDM, a standard deviation
was associated with each representative density value. By assuming the uniform
probability distribution of densities over the assigned density range 2q within each

geological unit, the standard deviation o7 was estimated by the following formula

11998, personal communication.
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(Vanicek 1971 page 21):
o7 = q/V3. (6.2)

A DTDM and the associated standard deviations were generated on a 30" x 30"
geographical grid in the area of the Rocky Mountains by rasterizing the geological
maps of the density distribution and its standard deviation. This area covers the
North-west part of the US and the South-west part of Canada (49° — 62°N, 221° —
261°E, see Figures 6.1 and 6.2).

6.3 Mathematical Formulation

The more realistic topographical mass density can now be expressed as the sum of

the constant value po = 2.67g/cm® and the lateral variation §5(9):

P() = po + 6p(Q), (6.3)

where the over-bar indicates lateral variation of density. This equation means that the
topographical mass density varies only with respect to horizontal locations. Martinec
(1993) and Martinec and Vaniéek (1994a, 1994b) derived formulae for the quantities
of interest, namely the DDE, SIDE and PIDE defined as follows:

The direct density effect (DDE) - the part of DTE caused by lateral topographical
mass density variation with respect to the constant density can be written as

9K (r,,m)) 9K(r, 4, R)
or or

§Ap(r,Q) = G /ﬂ 5p(Y) [

~rer (o) 0B R)] ae, (6.4)
where
K(r,¢,r) = —;—(r' +3rcos®)L(r, ¥, 1) + (6.5)

2
+%(3 cos’y — 1) In|r' —rcosy + L(r,9,7")| + C,
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Figure 6.1: The lateral topographical mass density map in the Rocky Mountains.
White areas indicate water bodies and geographical boundaries. Unit: g/cm3.
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Figure 6.2: The standard deviation of the topographical mass density in the Rocky
Mountains. White areas indicate water bodies and geographical boundaries. Unit:

g/em3.
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r(H°) = H°. (6.6)

Here, K (r,,r’) is the primitive function of the Newtonian kernel L~ (r,9,r') with
respect to ', i.e. L™!(r,1,r") is a partial derivative of K(r,,r’), and 7 is a coefficient
function of the surface mass density for the Helmert layer.

The secondary indirect density effect (SIDE) - the part of SITE caused by lateral

topographical mass density variation with respect to the mean density reads

2G > -
b(ro ) = 5 | () [K(ro i) = K(re, ¥, R)
(]

—R*r(H ()L™ (re, b, R)| dOY'. (6.7)

The primary indirect density effect (PIDE) - the part of PITE caused by lateral

topographical mass density variation is 2

SNp(Q) = %J{z op(Q) [K(R,¥,71) — K(R, %, R)
—R*r(H(®))L™'(R, %, R)| de¥'. (6.8)

Integrals (6.4), (6.7) and (6.8) become singular when the computation point coincides

with the integration point, but the singularity is weak and removable (see Martinec
1993).

The errors of the derived DDE, SIDE and PIDE can be estimated from the errors
of topographical height and density data. Only the topographical density errors will
be considered here. The errors in the topographical heights may significantly affect
the DDE, PIDE and SIDE results. Their effect needs to be studied in the future. To

facilitate the derivation, let us write eqns. (6.4), (6.7) and (6.8) in their generic form:
§d(r:, Q) = c /ﬂ 8p()D(re, $,T5)deY, (6.9)

where D(r., v, ;) stands for the appropriate integration kernel. Then, the individual

2This equation is different from eqn. (6.10) by Martinec (1998) whose equation requires the
integration to be carried out globally to derive an accurate estimate of Np because the far-zone
contribution can reach the same magnitude as the near-zone contribution in his eqn. (6.10).
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error of any of these effects is given by

s(res @) =c [ ea(¥)D(re, 9, ri)ae¥, (6.10)

where €4(€2') stands for the error in the topographical density of the integration point.
The variance o of €5 can be expressed as (Heiskanen and Moritz; 1967, eqn. 7-74)

W) =¢ [ /Q R (@, Q) D(re, ', 74) Dlre, ", ) dEY, (6.11)
where o5(§),Q)”) is the covariance of the topographical density p(2) between two

integration points located at Q' and ", and 05(Q, Q) = o%(N).

The discrete form of eqn. (6.11) can be written as
0'?(7'2, Qi) = c? XJ:;/;AS; ./:AS,"’ "F(Q;" ,I:)D(rh £j1r:)D(rh :’;c?ril)dnndﬂ" (6'12)

where AS? and AS}{ represent the discrete surface elements around points ' and
Q", respectively. If the errors between two different discrete cells are assumed to be

independent, eqn. (6.12) becomes

2
oBr ) = & Sost ([ Dlruvhriart) (6.13)
i 3
Thus under the assumption that the errors between two different cells are uncor-

related, the variances of DDE, SITE and PIDE for discrete integral can be evaluated

using the following discretized equations:

e )= Yoy ([2Enbnr) K v, R)
i or or

- 2
_327(30(9;))‘9” l(gr¢‘f’R)] As;-) , (6.14)

r=re

2
) = () T o2 ([Reroisrt) — R(ro s, B
2

—RPr(HO(R)) L™ (re, i, R)| ASS)”, (6.15)
G\? . .
o2u() = (7) 3 o2(@) ([R(R, is, ™) — K(R, i1, B)

~R*r(H(2))L™ (R, ¥ij, R)| AS})". (6.16)
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6.4 Numerical Results

As in the case of the DTE and SITE, the DDE and SIDE should be added to the
Helmert anomalies at the Earth surface. If the mean Helmert anomalies are used, then
mean values of the DDE and SIDE have to be evaluated; they should be computed
for the cells of the same size as the mean Helmert anomalies represent. For Canada,
the mean Helmert gravity anomalies for 5’ x 5’ cells are being used to determine the
geoid. Thus the mean values of 5’ x 5’ DDE and SIDE must be evaluated and added
to the gravity anomalies.

The PIDE is the correction to the geoid height that is evaluated as the point value,
thus the point value of PIDE must be evaluated. In our computation, the 30” x 60"
DTDM and DEM are used as input data for the evaluation of the point PIDE in the
spacing of 5’ x 5.

As described in Section 6.2, the representative density value for each geological
unit is taken as the mean value of the density range. The standard deviations of the
DDE and PIDE are evaluated in this study, while the SIDE contribution is too small
to be taken into account. Its amplitude is about 2.5% of the SITE evaluated on the
geoid.

Numerical tests show that the density effects on the geoid heights evaluated from
integration over 1°; 2° and 3° caps differ by less than 1 mm in absolute value even
for an extreme density variation of 0.3 g/cm®. Therefore, a spherical cap with the
radius of 1° was used to evaluate the DDE and PIDE. The far-zone contribution of
the lateral density variation effects is not estimated due to lack of a global coverage
of density data. Since the mean global value of §p(f2) is 0, the far-zone contribution

is likely to be very small. Further studies are needed to evaluate the impact of the

far-zone.
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6.4.1 Mean Direct Density Effect

When a mean value of the DDE is evaluated in a cell, a certain number of point values
must be used to compute the average. For example, a mean 5 x 5’ cell value can be
evaluated by using 5, 10, 50 or more point values within the cell. The question is:
how many point values are required to give a sufficiently accurate mean value ? Since
the final product is the geoid, it is appropriate to set the criterion in terms of geoid
height accuracy. Figure 6.3 shows that for height data on a 30” x 60" grid, 50 points
regularly spaced within the 5 x5’ cell, will generate an accurate enough approximation
to the mean DDE of the cell. The maximum difference between the geoid heights
evaluated from the mean DDE values of 50 and 100 point values is 0.6 ¢m. The
test profile(49°N), which passes through the roughest part of the Canadian Rocky
Mountains, suggests that when the point values are evaluated at a step equal to, or
smaller than the input height step, the geoid height cannot be improved significantly.
In Figure 6.3, the numerical labels stand for the number of point values used to
evaluate the mean value.

The mean 5’ x 5' DDE values are summarized in Table 6.1. The DDE range is
about 5% of the DTE range, which is [—54.3,79.5] mGal (Vaniéek et al., 1995). The
DDE standard deviations were estimated only as point values based on eqn. (6.14)
because of the sheer volume of computation for the mean standard deviations. These
point values are theoretically greater than the standard deviations of the mean values.
In terms of the given standard deviations, the DDE estimates appear precise enough
(see Figures 6.4 and 6.5). On the other hand, these point values may overestimate
the accuracy of the point DDE because the topographical mass densities within the
same geological unit are correlated positively.

After performing the downward continuation to the geoid using the DOWN’97
software (Vanicek et al., 1997), the mean DDE on the geoid is between -12.7 mGal
and 9.8 mGal with the mean of -0.007 mGal (see Figure 6.6). More than 99% of
DDE values are within the range of [—4,4] mGal. After conversion to geoid heights
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Figure 6.3: Geoid correction profiles due to the mean DDE computed from different
number of point values.

Table 6.1: Direct topographical lateral density variation effects on gravity at the
Earth surface in mGal.

TERM MIN MAX Mean r.m.s.
DDE -4.5 23 0.0 0.3
StD 0.0 2.4 0.1
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Figure 6.4: The mean DDE 6Ap on gravity at the Earth surface in the Canadian
Rocky Mountains in mGal. The solid lines delimit water bodies.
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Figure €.5: The point standard deviation of the DDE o5, in the Canadian Rocky
Mountains in mGal. The solid lines delimit water bodies.
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Figure 6.6: The mean DDE §Ap on the geoid in the Canadian Rocky Mountains in
mGal. The solid lines delimit water bodies.

through Stokes’s integration, the effect on the geoid reaches a few centimeters with
short wavelengths being dominant (see Table 6.2 and Figure 6.7). The DDE displays
a high correlation with the topographical density as shown in Figure 6.1.

Table 6.2: Direct and primary indirect lateral topographical density variation effects
on geoid heights, in cm.

"TERM MIN MAX Mean r.m.s.
DDE 5.1 26 -1.0 1.3
PIDE 2.5 1.7 0.2 0.5
StD 00 05 0.0

Total Effect -7.0 2.8 0.7 1.1
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Figure 6.7: The mean DDE on the geoid in the Canadian Rocky Mountains. Contour

interval: 1 cm.
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6.4.2 Primary Indirect Density Effect

Similar to the DDE, the PIDE affects the geoid at the centimeter level. The PIDE
estimates are statistically precise as we can see from the comparison with their stan-
dard deviations (Figures 6.8 and 6.9). The range roughly corresponds to 5% of the
PITE range (Vanicek et al., 1995). While the PITE is always negative, the sign of
the PIDE changes between positive and negative due to the nature of the density

variation. The PIDE is mainly characterized by intermediate wavelength features

which correlate highly with topographical density.

6.4.3 Total Lateral Topographical Density Variation Effect
on the Geoid

The sum of both effects (DDE and PIDE) on geoid heights was evaluated, and is
presented in Figure 6.10. No significant cancellation between the PIDE and the DDE
can be detected in these results. Both short wavelength components from the DDE
and intermediate wavelength components from the PIDE have reinforced each other.
More than 99% of the values are between —3 and 3 cm (see Table 6.4). Only eight

values are larger (in absolute value) than 5 cm.

Table 6.3: Topographic mass density variation effects versus the total topographical
effects using the actual mean density value. (Note: DTE, SITE and PITE by Vanicek
et al. are computed by using the constant density 2.67 g/cm3.)

TERM MIN MAX RANGE
DTE(Vanicek et al., 1995) -54.3 mGal 79.5 mGal 133.8 mGal
DDE -4.5 mGal 2.3 mGal 6.8 mGal
SITE(Vanicek et al., 1995) 0 uGal 470 pGal 470 uGal
SIDE -8 uGal 5 uGal 13 uGal
PITE(Vanicek et al., 1995) -105 cm 1 com 106 cm
PIDE -2.5 cm 1.7 em 4.2 cm
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Figure 6.8: The PIDE dNp on the geoid in the Canadian Rocky Mountains. Contour

interval: 1 cm.

Table 6.4: Distribution of the total effect values caused by the lateral topographical
mass density variation.

Range (cm) Count % Range (cm) Count %

-7 to -6 4 0.06 -2to-1 1800  25.04
-6 to -5 4 0.06 -1to0 3779  52.57
-5 to -4 8 0.11 Otol 890 12.38
-4 to -3 51 0.71 1to2 159 2.21
-3 to -2 479 6.66 2to3 15 0.21
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Figure 6.9: The standard deviation of the PIDE o5y in the Canadian Rocky Moun-
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Figure 6.10: The sum of the DDE and PIDE on the geoid in the Canadian Rocky
Mountains. Contour interval: 1 cm.
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6.5 Summary

Formulae for estimating the standard deviation of the DDE, SIDE and PIDE have
been derived. A procedure for the evaluation of the density effects is proposed.

This investigation shows that the DDE and PIDE can reach about 5% of the DTE
and PITE, respectively. The SIDE is too small to be taken into account. Comparing
the DDE and PIDE with their standard deviations, their estimates appear to be sta-
tistically precise enough. The total density variation effect on geoid heights ranges
from -7.0 cm to 2.8 cm in the Canadian Rocky Mountains. It is evident that the
introduction of a digital topographical density model will significantly improve the
accuracy of the geoid. The results presented in this research may have underesti-
mated the effects because the mean DEM of 30” x 60” is not sufficient to model the
topography in the Canadian Rocky Mountains. Furthermore, a better density model

will be needed to estimate the density effects at the one-centimeter level of accuracy.
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Chapter 7

Conclusions and Recommendations

The downward continuation of the Earth’s gravity is an essential step in the gravity
reduction for solving the geodetic boundary value problem (GBVP) to determine a
gravimetric geoid. This step reduces gravity from the Earth’s surface, or a flight level,
to the geoid by taking the real gradient of the gravity into account. It can be carried
out either by the discrete Poisson downward continuation (DDC), or by the analytical
downward continuation (ADC). Nevertheless it is controversial whether or not this
step leads to a better solution for the geoid because the downward continuation of
the Earth’s gravity is classified as an ill-posed problem. The main objective of this
research was to develop computational methods for the discrete Poisson downward
continuation to support the determination of a precise geoid.

In the determination of the geoid based on Helmert’s 2nd condensation, the topo-
graphical mass must be completely removed and condensed on the geoid by evaluating
the direct topographical effect (DTE) on gravity, the secondary indirect topographi-
cal effect (SITE) on gravity, and the primary indirect effect (PITE) on the geoid. The
DTE, SITE and PITE are being routinely evaluated by taking the constant density
2.67g/cm? instead of the real topographical mass density. Another objective of this
research was to investigate the effect of the topographical mass density variation with

respect to the constant density 2.67g/cm?® on the geoid.
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7.1 Solvability of the Discrete Poisson Downward
Continuation

A spherical harmonic form of the solution to the continuous inverse Poisson problem
was derived. [t was pointed out that the corresponding discrete solution exists, but
may not be unique and stable. For a small error in input, we unavoidably get a
large error in output. The high-resolution solution may be completely wrong if high-

frequency errors exist in the data. It is in this sense that the inverse Poisson problem

is defined to be an ill-posed problem.

7.2 Discretization of Poisson’s integral

Since we only collect gravity data at discrete points, either on the Earth’s surface
or in the air, Poisson’s integral has to be approximated by a discrete form that best
uses available data and efficiently eliminates errors and biases. The discretization
of Poisson’s integral consists of the following problems: evaluation of the far zone
contribution; modification of the Poisson kernel; combination of terrestrial data with
a global geopotential model; truncation of Poisson’s integral and discretization of the
Poisson integral in the near zone.

The far zone contribution was formulated using the Molodenskii-type harmonic
expansion technique based on the standard, spheroidal and modified spheroidal Pois-
son kernels in conjunction with the combined technique in which terrestrial data and
satellite data are jointly used.

The efficiency of the modified spheroidal Poisson kernel in reducing the real far
zone contribution over using the unmodified spheroidal Poisson kernel was studied.
The numerical results suggest that the modified spheroidal Poisson kernel significantly

reduce the real far zone contribution but it cannot perform better than the standard

Poisson kernel.
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The determination of the critical radius of the near zone cap was studied. It
was found that Heiskenan and Moritz’s condition gives a radius that is too small
for the determination of the 1-cm geoid, while Martinec’s condition gives a radius
unnecessarily large. The critical radius must be chosen according to accuracy of the
adopted global geopotential model.

An efficient algorithm for the evaluation of the far zone contribution was devel-
oped. The new algorithm is one order of magnitude faster than the standard algorithm
with an accuracy of 0.001 mGal.

The three discrete models (point-point, point-mean and mean-mean) of Poisson’s
integral were formulated. The analysis of the three models suggested that the mean-
mean model tend to produce the roughest solution, while the point-point model tend
to give the smoothest solution among the three models. Furthermore, the topograph-
ical height rather than the relative relief determines the condition of the coefficient
matrix for a discrete model. The numerical tests in three different regions in Canada

showed that the 5’ x 5' downward continuation was a very stable problem regardless

of the discrete model used.

7.3 Solution of the Discrete Inverse Poisson Prob-

lem

The inverse Poisson problem can be reduced to a linear system of algebraic equations
for each discrete model. The coefficient matrix of the system is large and sparse. The
iterative method is the most efficient method to solve the system. The combined iter-
ative method was suggested to speed up convergence and eliminate round-off errors.
In the case of a singular coefficient matrix, the iterative approach may fail to give a

useful solution. The truncated singular value decomposition (TSVD) was introduced
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to provide a stable solution from noisy data. The TSVD is superior to other regu-
larization methods since it makes the process of solving the system physically and
mathematically meaningful.

The synthetic approach was used to evaluate the three discrete models. GPM98a
was adopted to generate synthetic data. The tests showed that the mean-mean model
produces a sufficiently accurate solution when the averaging error is corrected for.
Synthetic tests also showed that 0.5° may be chosen as the radius of the near zone
cap when the maximum elevation does not exceed 2 km, and EGM96 is adopted.

A block-wise technique was developed to avoid solving a large system of equations
and improve the computational speed of the discrete Poisson downward continuation.
The coefficient interpolation method was implemented to reduce the CPU time of
evaluating the doubly averaged Poisson kernel. A software package, DOWN97, was

developed to compute the discrete Poisson downward continuation.

7.4 Analytical Downward Continuation

The analytical downward continuation (ADC) is a method based on the Taylor series
expansion of the gravity anomaly. It was introduced as an improved method for
solving the Molodenskii boundary value problem. One open question may arise as
to whether it gives a solution as good as the one by the discrete Poisson downward
continuation (DDC).

The synthetic tests with EGM96 and GPM98a suggested that the ADC causes
an error about 10 percent of the downward continuation effect, while the error of the
DDC is smaller than 1 cm. The test result using the residual Helmert anomaly in
the Rocky Mountains show that the maximum difference between the two methods
can reach 10 mGal in gravity, and about 10 cm in geoid height. The DDC geoid
height results are 5 cm larger on average than the ADC one. The mean difference

also accounts for about 10 percent of the mean downward continuation effect.
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It was implied that an ultra-high degree synthetic global geopotential model con-
strained to the Kaula-type degree variance models is too smooth to simulate the
Helmert gravity anomaly, especially in mountainous areas. Therefore, the accuracy
assessment of a geoid calculation method, based on this type of synthetic geopotential
model, will not necessarily reflect the accuracy of a realistic geoid model computed

by the method even though errorless data are used.

7.5 Topographical Density Variation Effects on
Gravity and Geoid

In the Stokes-Helmert approach, the Helmert gravity anomaly is derived through re-
moval and condensation of the topographical mass. The use of a constant density
(2.67g/cm3) introduces errors in the reduced Helmert gravity anomalies, and conse-
quently, in the geoid.

Formulae for estimating the standard deviations of the DDE, SIDE and PIDE
were derived. This investigation showed that the DDE and PIDE can reach about five
percent of the DTE and PITE, respectively. The SIDE is too small to be taken into
account. Comparing the DDE and PIDE to their standard deviations, their estimates
appear to be statistically precise. The total density variation effect on the geoid
heighis ranges from -7.0 cm to 2.8 cm in the Canadian Rocky Mountains. It is evident
that the introduction of the digital topographical density model will significantly
improve the accuracy of the geoid. The results presented in this dissertation may
have underestimated the density effects because the mean DEM of 30” x 60” was not

sufficient to model the topography in the Canadian Rocky Mountains.
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7.6 Recommendations

This research establishes a few important research directions regarding the downward

continuation of the Earth’s gravity and the topographical density effect on the geoid:

1.

The present study discussed the Molodenskii-type modified Poisson kernel only.
Further developments with regard to the modification method in association

with accuracy of the global geopotential model to derive the far zone contribu-

tion more accurately are necessary.

. In Canada, the 5’ x5’ downward continuation was proved to be a stable problem.

To derive a higher resolution geoid model, the numerical stability and reliability

of higher resolution downward continuation must be studied.

. To facilitate the calculations, the gravity data to be downward continued were

assumed to be known at regular grid points, while the actual gravity data were
collected at unevenly spaced points. The error caused by interpolation was ig-
nored. The downward continuation method based on the arbitrary distribution

of the data should be developed to eliminate the interpolation error.

- A comprehensive synthetic global geopotential model should be developed in

simulating the regularized gravity field, such as the Helmert gravity anomaly,

to evaluate accuracy of the discrete models.

. A computational method of the analytical downward continuation accounting

for the far zone contribution should be developed to improve its accuracy.

. The topographical density effect was evaluated in this research based on Helmert’s

2nd condensation. Other isostatic compensation models, such as the Airy-
Heiskenan model, Pratt-Hayford model and the Moho model, should be studied
to find the best method to account for the topographical density effect.
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