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Abstract. This paper discusses theroretical problems
of the existence of downward continuation of Helmert's
gravity, singularity of the Poisson kernel and regularity of
the Poisson integral. We prove that the downward con-
tinuation of Helmert’s gravity converges and exists above
the geoid. Although the Poisson kernel is singular, the
Poisson integral is regular and can be evaluated every-
where without any difficulty. We also numerically inves-
tigate the edge effect and the area size limitation. The
results show that the edge effect is restricted to less than
1°. A large area can thus be decomposed into something
like 3° x 3° overlapping areas, taking only the results
from the internal 1° x 1°.

1 Introduction

"To determine the geoid by applying Stokes’s theory, dis-
turbing potential or observed gravity values have to be
reduced from the topographical surface to the geoid.
This reduction is the so-called downward continuation.
The disturbing potential or gravity values, however, can
not be easily reduced since they are not harmonic in the
space between the topographical surface and the geoid
because of the topographical masses. One way to over-
come the difficulty is simply declaring the topographical
masses to have a zero density, i.e., the free-air model
(Moritz, 1980; Bjerhammar, 1987). Another way to deal
with the problem is the Helmert’s condensation tech-
nique, which condenses the topographical masses onto
the geoid by means of one of the condensation techniques,
that may preserve either the total mass of the earth, or
the location of the centre of mass, or to be just an in-
tegral mean of topographical column density {Wichien-
charoen, 1982; Vanidek and Martinee, 1994; Martinec
and Vanidek, 1994). We are interested in the Helmert

model since it seems more physically reasonable than the
free-air model. However, does a downward continuation
of Helmert’s gravity anomaly exist in the Helmert space
between topography and the geoid? This is one of topics
to be discussed in this paper (section 2). Qur discussions
show that the downward continuation converges and ex-
ists above the geoid.

It is known that the Poisson integral encountered here
is a convolution of the Poisson kernel and the gravity
anomaly on the geoid. The Poisson kernel increases when
the angular distance goes to zero ( — 0), and it also
becornes infinit when the topographical height goes to
zero (H — 0) . This singular problem was discussed and
a variety of mumerical procedures was presented (e.g.,
Shaofeng and Xurong, 1991; Martinec, 1995). We inves-
tigate the problem in section 3 and show that although
the Poisson kernel is singular, the Poisson integral is reg-
ular and can be evaluated everywhere without any diffi-
culty.

Vanidek et al., {1996) have studied the downward con-
tinuation of 5’ x 5’ mean Helmert gravity anomaly. They
proposed an iterative scheme to perform the downward
contifiuation to obtain the Helmert gravity anomalies.
They claimed that the determination of the downward
continuation of mean 5° x 5’ Helmert’s gravity anoma-
lies is a well posed problem with a unique solution and
can be done routinely to any accuracy desired in the
geoid computation. However, since we have to perform
the downward continuation over a limited area, the Pois-
son integration along the area boundary is incomplete.
In practical calculations, this boundary effect has to be
considered. In the s:.ction 4, we investigate how far the
effect propagates into the area, and discuss the implica-
tions for the Poisson integration over 2 large area.
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2  Existence of downward continuation of
Helmert’s gravity anomaly

We know that Helmert's potential 7*is harmonic every-
where outside the geoid [Heiskanen and Moritz, 1967,
Le.,
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where a is the radius of Bjerhammar's sphere, r is the
radia] distance from the centre of the earth, r; is the
radial distance of the geoid, 2 stands for a geocentric
direction given by latitude ¢ and longitude A, and Y.,
are the scalar spherical harmonic functions which are ex-
pressed by spherical harmonic coefficients Crnm, Snm and

associated Legendre functions P,,, as

Yam(@, A) = (Cam cosmA + Spm sin mA) Py (sin ¢).  (2)

The series (1) is convergent.
To a spherical approximation, we have for the Helmert
gravity anomaly
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Specifically,
Ag() = Agh(r=r,Q), G
Ag:‘(ﬂ) = Agh(r =r,Q), (5)

are given by convergent series of the type (3). Thus the
difference DAg* = Ag;" — Ag!, which is nothing but
the downward continuation of Helmert's gravity anomaly
from the topographic surface to the geoid, gives
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In the following, we investigate the convergence of eqn.
(6), since convergence implies the existence of the down-
ward continuation. Eqn. (6) can be rewritten as

Yam(S2). (6)
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where ry = ry + H (H is the topographic height), and
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Since, for 0 < £ <9 km:
1

m; € (0.9985, 11, (10}
then we have
Vn: gn €[0,1). (1)

Let's write eqn. (3) forr =r, as
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Then eqn. (7) can be rewritten as:
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where

Vn: |gaBn(rg)l < [Ra(ry)| (14)

Since series (12) converges absolutely, so must series (13):
its coefficients are systematically smaller because of the
ever decreasing quotient gy,

Observe that for any finite n, Q, = gnRn(r,) is fi-
nite and series (7) truncated at arbitrary high n is finite.
Thus a discrete linear system of equations that discretize
the Poisson integral always gives a convergent solution,
because any cell size ! corresponds to a finite number N
(N = 180°/!), such that n < N. Therefore, the conver-
gent series (13) implies that the downward continuacion
of Helmert's gravity exists above the geoid. It may, how-
ever, be unstable, but that is a different question which
we will address in our next paper.

3  Singularity of Poisson kernel and regularity
of Poisson integral

To get the downward continuation of Helmert gravity
anomaly, we have to deal with the following Poisson in-
tegral

R
agt®) = o [ A@)K( R, (19
where
b . R i+l
T'J - R?
- [(Rz +r?—2Rrcos 1,(;)%
1 3R
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is the Poisson kernel, ¥ is the angular distance between
geocentric directions 2 and ' and P;(cos ) are the Leg-
endre functions [Heiskanen and Morits, 1967). However,
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the Poisson kernel K (r, ¥, R) is singular when r = R and

— 0 and we have to check theoretically whether or not
cqn. (15) can be integrated at the “singular” point; we
have to check whether the Poisson integral is singular or
regular. In the following H is the topographical height,
and H = r — R. Let us first consider the following four

cases:

1. H#A0,9#0:

Since H # 0and 4 # 0, eqn. (16) describes certainly
a regular kernel. Then the Poisson integral (15) is
regular everywhere.

L HA0,Y=0:
In this case, from eqn. (16) we have
22+ E 4+ %

HY3  (1+ &)
2R?

H3

K

4, (17)

which is finite (for H # 0). It means that integral
(15) is regular when H # 0.

.H=09#0:
In this case, the kernel K becor:es

—1 — 3cos ¢,

(18)

a well behaved function. Then eqn. (15) can be
integrated without any problem.

.H=0,9%=0:
As mentioned above, K is singular
26(v) - 4, (19)

where 8(¢) is the Dirac delta function. To discuss
the problem conveniently, we divide K into two parts

K

K = K;+ K (20)
Ks = 26(¢) (21)
Ko —4. (22)
We know that K, is only a constant and does not

cause any problem in integrating eqn. (15). As to
K, we have
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in which the reproducing property of é-function is
used
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The above discussion indicates that eqn. (15) can be

L. However,g integrated without much of a problem.

[
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Furthermore, when H = 0, Dég* vanishes, i.e.,

‘
= lim [@- H+ 3—3-2: E-z—
H~ol 9H? | dH? , 2
=0, (25)
Qr
lim g}Q) = g5(Q). (26)

This implies that there is no need to do any downward
continuation where we are already on the geoid. So we do
not have to actually consider the above cases 3 and 4 at
all. We therefore conclude that the Poisson integral (15)
is a regular problem and can be integrated everywhere
without any difficulty.

4 The boundary effect

Since we have to perform the downward continuation
over a limited area, the Poisson integration along the
area boundary is incomplete. This boundary effect has
to be considered in the computations. In the following,
we investigate how far the effect propagates into the com-
putational area, i.e., how much larger the data coverage
should be.

To do that, we can perform the downward continua-
tion for a large area and a small area, with the small
area being completely immerged in the large area. The
difference of the two results in the small area is due to
nothing else but the boundary effect. we have taken first
a small area of 17° x 22° in the Canadian Rocky Moun-
tains. Then we have extended the 17° x 22° area by 2° in
the north and south direction and by 7° in the east and
west direction, ending up in a larger area of 21° x 36°.
The mean 5 x 5’ heights in this large area are between 0
m and 3612 m. We have performed the downward contin-
uations for the two areas. Then subtracting the results
of downward continuation for the 17° x 22° area from the
results obtained for the 21° x 36° area, we get the differ-
ence showed in Figure 1 which represents the boundary
effect in the 17° x 22° area. The effect is also showed
in profiles at 10 latitudes (Figure 2). We see that the
effect is height dependent, but it is restricted to less than
1°. Figure 3 shows the relation between the maximum
(for the worst case) absolute effect and the distance from
the edge. Therefore the downward continuation is not
much of a problem as it can be computed for areas of
reasonably small geographical extent.

The point is that a large area, e.g., the whole of
Canada, can be decomposed into something like 3% x 3°
overlapping areeos, taking only the results from the inter-
nal 1° x 1° area. This approach significantly reduces the
size of the systems of equations that have to be solved
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Figure 1: Contour lines of the boundary effect in the 17° x 22° area, contour interval is 0.1 mGal _
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32

=
:

biference (maximum gosciuie value in mGal)
3 3

1

1 —

Figure 3:
ference an

[Vaniéek et
ation muct

5 Sum

Finally, we
We have t
ward cont:
of the Poi:
integral. \
tion of Hel
although t:
gral is reg
any difficul

We have
and the co.
indicate th
A large cor
something
results fror

We wis}
supported
and Petr *
Canada of
of the Geo:
the data u

6 Refer

Bjerhamm:
330, Dept.
State Univ



Ditletence (Maatmum alsolule value n mGal)

02

L

04

0.6 08
Distance trom border (degree)

Figure 3: Relation between the maximum absolute dif-
ference and the distance from the edge

1

1

[Vaniéek et al., 1996], which makes the numerical evalu-
ation much more economical.
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Summary and acknowledgments

Finally, we summarize the above discussions as follows.
We have theoretically discussed the existence of down-
ward continuation of Helmert’s gravity, the singularity
of the Poisson kernel and the regularity of the Poisson
integral. We -have proved that the downward continua-
tion of Helmert's gravity exists. Discussions showed that
although the Poisson kernel is singular, the Poisson inte-
gral is regular and can be evaluated everywhere without
any difficulty.

We have also numerically investigated the edge effect
and the computational area size limitation. The results
indicate that the edge effect is restricted to less than 1°.
A large computational area can be thus decomposed into
something like 3° x 3° overlapping blocks, taking only the
results from the internal 1* x 1°.
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