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0. ABSTRACT

This paper deals with the problem of applying satellite derived Earth gravity field models at
the geoid. Rigorously, the external harmonic series cannot be used inside the sphere
bounding all topographic masses. Its error for geoid computation is derived to the second
power of terrain elevation (H) in two ways: a direct approach and a Helmert terrain

condensation approach. Assuming a constant density p of the terrain both approaches lead
to the geoid error

M n
TS ()Y,
n=0 m=-n

for an Earth gravity field model complete to degree and order M. Here 11 = Gp, G is the
gravitational constant, y is mean sea-level gravity and (H? ). are the coeffients of the
terrain elevation squarred in terms of fully normalized spherical harmonics Y, . As aresult,
the limiting error of the above formula for M — o,

2npH? /y,

reaches 9 metres for M. Everest. The minus of the formula can be used as a correction.



1.  INTRODUCTION

Today the long wavelength features of the Earth's exterior gravity field are successfully
determined by dynamic satellite techniques. In the near future we can expect also interme-
diate wavelengths to be estimated through satellite gradiometry and satellite-to-satellite
tracking. The result of these efforts is the representation of the Earth's gravity field by an
exterior type of series of solid spherical harmonics truncated at some maximum degree and
order. Theoretically, such a representation is correct outside the bounding sphere enclosing
all mass of the Earth. As emphasized by Sjoberg (1977,1980 and 1985) the convergence of
such a series inside the bounding sphere is doubtful. Also Jekeli (1981 and 1982) studied the
downward continuation error of height anomalies and gravity anomalies. He concluded that
"the estimation of point or mean gravity anomalies and geoid undulations (height anomalies)
using the outer series expansion to degree 300 anywhere on the earth's surface is practically
unaffected by the divergence of the total series".

Grafarend and Engels (1994) presented a convergent series expansion of the gravitational
potential. In the topographic domain the series is consistent with the theory developed in
Sjéberg (1977).

Below we will firstly approach the downward continuation error following the line of 5j6-
berg (1977). Secondly we will use Helmert's second condensation method to reduce and
restore the terrain masses. Cf. Sjoberg (1993).

2. THE DIRECT APPROACH

The contribution to the geopotential at an arbitrary point P of the masses of the Earth's
topography above sea-level of radius R is given by

V'(P)= GL[ i[%r'dr do (1)
where
p = density of topographic mass
r, = Earth's surface radius; r, < R, = radius of bounding sphere.
r = radius of volume element under integral
G = unit sphere
0= (4 - 2nr)'”

t = cosy; W =geocentric angle.
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From now on we will restrict the presentation to the approximation p = Gp = constant.
Outside the bounding sphere enclosing all mass of the Earth (i.e. for r, > R,) formula (1)
can be expanded in a convergent exterior series of Legendre's polynomials P, (t):

vipy=t Z il f( —)"FdrP (t)do . (2)

pnO g

In practise such an exterior series V(P), truncated at some maximum degree M, is used to

represent the long wavelength geopotential also below the bounding sphere:
vﬂl(P) u M J-J- j-[ )n (3)
== r-drP (t)do.
Ip ; o AT

The correct representation between sea-level and the bounding sphere (i.e. R <r, <R,) is
(cf. Sjoberg 1993 and Grafarend and Engels 1994):

rp n T, n+l
Vi(P)=— {H j [ ) r*drP (t)do + jjj(—r-] r’dr P (t)do + HJ(E’—) rdr Pn(t)dcr},
Tp n=0 o, R Ip o r
(4)
where o, is that part of ¢ where r, <r, and 6. = 6 - &,. Hence the downward continution
error of V.
becomes

V)= V(®) -V =LY [ | {( ) [FT")M}Pn(t)do. (5)

P n=0 GI Tp
Inserting

-
P, (t)= E]le Y. (P)Y,.(Q) (6a)

where Y, is a fully normalized spherical harmonic, obeying



l‘” Y_ Y. do-= 1 ifn= n and m=m (6b)
4m-; 0 otherwise

and Q is the running point under the integral, one obtains (cf. Sjoberg, 1977, p. 16)

M
SV(P)=Y 8V,(P), (7a)
n=0
where
3V, (P)= Y 24 (1) Y (P) (7b)
H
a, (r,)= m[’j I(r,, )Y, do (70)
0 if rp 21
(/)™ =1 (r /1) -1 if
2 <r and n= 2
(h)=i{ n+3  n-2 s (7d)
%—fn(%/rp) if r, <r, and n=2
In Sjéi)erg (ibid) it was shown that formula (7d) can be expanded into the series
1 1aH a@+n(aRY
I, ) =CM+D(AH) {—+— + +...¢, (8a)
(T l's) ( J(AH) {2 3, 2.3.4 ( I ) } .
where
AH:{O Ifl’PZI"S (8b)
-1  otherwise

Using the well-known Bruns' formula, formula (6a), (7) and (8a) we thus obtain the
approximate downward continuation error for geoid estimation (with r, =R)
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n=0 m=-p
where
| , :
a_(R)=2np —J‘J‘ H'Y_ do=2mu(H%),, (9b)
4 o>

Letting M go to infinity we get the limiting downward continuation error for the geoid esti-
mate from a complete set of exterior type of coefficients:

2 i L ~ k)
5N, =%Z 3 (H),, Y, (P)= 2 e (10)
n=0 m=-n Y

This error is demonstrated in Table 1, revealing that the error may reach 9 metres for M.
Everest.

Table 1. The limiting downward continuation error for the geoid.
p=2.67g/cm’ y =981Gal.

H[km] |01 [0S |10 |20 |30 |40 |50 {60 [8.848

8Np[m] 0.001 [0.029 |0.114 0456 |1.027 |1.825 |2.852 |4.106 {8.93

Note that the finite error demonstrated in formula (10) and Table 1 is based on the omission
of all but the first term of eq. (8a). A more rigorous error estimate is obtained from formula
(7), if we allow p to vary laterally:

SN = i ” wI(r,, )P (t) do (11)
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3. THE HELMERT CONDENSATION APPROACH

In this section we will use the second condensation method of Helmert (1884) to reduce the
terrain. The reduction implies that the exterior harmonic series of the geopotential is valid
all the way down to sea-level. However, the reduction of the terrain necessitates a direct, a
first and second indirect effect be applied to correctly estimate the geoid.




3.1 The direct effect

At satellite altitude the exterior series (2) of the terrain potential is convergent. After inte-
gration with respect to r we get from (2)

o a-3 _ pa+d
Ve -ny —ff SR, (12)
n=0 o

l_n‘>]
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or, with r, = H+R and omitting terins of power (H/ R)’ and higher

V'(P) = HRZ( J ”{ JarzH }P (o (13)

This is the total terrain potential. The corresponding Helmert condensation potential for any
potnt r, > R becomes

VH(P) = IR® H %l-dc =uR}: (%) [[ P (1)do | (14)

Hence the direct effect of the Helmert condensation to the application of the external geo-
potential series to degree and order M becomes

Mo 1 RV, H __i'“ 2 __EEM n+2 Y (P
N = (Vi # Vi) =0 3 (142 f[WR(0do == ZE D, 5 B () Yoo P)

(15)

3.2 The primary indirect effect

For r, <R the convergent expansion of (1) is of the interior type:

Vi(Py= MZ H j [r—P)MrzdrPn(t)dc (16)

Pn'




-~ or, after integration

V'(P)= uﬂ{ 2rP(R'""—r;“‘:)Pn(t)—rst(t)Cn(r,/R)}do. a7

Inserting

=R+H

we obtain also {after omitting terms of power higher than (H/R)*}:

V'(P) = uRZ ('P) H {H———R—}P (1) do (18)

Subtracting the Helmert potential (14) we obtain the limiting primary indirect geoid effect
(forr, =R).

SN, =M Z(n-l)”H P (t)do = — 2““2 (H )ow Yo (P). (19)

3.3 The secondary indirect effect

Before applying Stokes' formula, the Helmert corrected gravity anomalies must be reduced
from the geoid to the cogeoid (Heiskanen and Moritz 1967, p. 142). This is done by free-air

reduction, i.e. by adding the correction ¢'8N, , where ¢ = R/(2v), to each gravity anoma-
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ly. This yields the secondary indirect effect on the geoid

— c -1
3N, = o ‘US(‘U) ¢ 8N, do, (20a)
where

2 2n+1

S(w)= Z

P (1). (Stokes' function) {20b)



Using formulas (6) and (20) we get

=__41tu i ) 21
3N, » > 2n+1(l—l Yo Yo (P) (21)

nm

This formula shows that the secondary indirect effect is significantly reduced for short
wavelength compared with the primary indirect effect.

3.4 The total effect

Disregarding the secondary indirect effect we get the following total correction to the geoid
for the Helmert reduction:

M M M 2T 2
8Ny, =8N, +8Nj, :‘—Z Z (H) g You (P), (22)

Y n=0 m=-n

which is the minus of the downward continuation error 8N} derived in section 2.

4. CONCLUSIONS

We have derived the error in the downward continuation of satellite derived harmonic coef-
ficients of the gravitational potential in two different ways. The first result, eqn. (5), 1s a
volume integral over all terrain masses located above the computation point. Expanding the
integrand of (5) as a power series in terrain elevation H over sea-level radius R, the first no-
zero term (H/R)* contributes by 2rp(H*) /v to the spectral geoid error. This implies
that the total geoid error 2ruH? /v may reach 9 metres. This shows that the error is most
significant for high mountain areas, being of the same order of magnitude as the indirect
effect in geoid computation. The minus of the error is useful for correcting geoid estimates
from satellite derived harmonic coefficients.




