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Abstract:

Themainproblem treated in this paper is thedeterminationof accuratemeanvalues of the topographical effects frompoint values known
on a regular geographical grid. Three kinds of topographical effects are studied: terrain correction, condensed terrain correction and
direct topographical effect. The relation between the terrain roughness and optimal density of the points to be used in the computations
is investigated in five morphologically different areas of Canada. The error of the geoid caused by the inaccuracy of the mean values
computed from a variable number of points in a cell is estimated. These errors are then compared against the one centimetre target to
give us the sufficient minimum number of points needed for the averaging. Themean terrain effects are computed from the point values
as a simple average over a particular cell. Point values are assumed to be errorless so that the accuracy of the mean values is a function
of the density of the point values only. The mentioned one centimetre criterion is applied in the sense of the Chebyshev norm. It has
been observed that the relation between the number of points needed for the averaging and the terrain roughness as quantified by
the terrain RMS is almost linear. After estimating the two parameters of this linear relation, seven minimally required grid densities are
suggested for different intervals of terrain roughness. The results are applied to produce maps of a minimal density of points needed for
sufficiently accurate determination of mean topographical effects for Canada.
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1. Introduction

In geodesy it is often necessary to integrate a function, given at

a number of discrete points, over the surface of the earth or over

someother surface. To evaluate such a surface integral a numerical

integration technique must be applied. It is intuitively obvious

that the larger the number of points, the better representation of a

continuous function we get. On the other hand, with the growing

number of point values the speed of computation goes down.

Let's start by writing the following equation:

y = ∫∫©
Ω0
x(Ω)dΩ, (1)

where the integration area can be divided into sub-areas Ci ≡
(∆φi . ∆λi) ≡ ∆Ωi belonging to the individual regular cells

Ci and write the above integral as a sum of integrals over all these

cells

y = n∑
i=1
∫∫
©
Ci

x(Ω)dΩ. (2)

This is an exact operation if the function x is integrable, which

we automatically assume here. We note that the integrals in this

equation are nothing else but mean values of x in the cells Ci
defined in an integral sense. Let us denote these integral averages

by x̄i ; in the above integrals they are multiplied by the area Ci .
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Substituting all this back into the Eq. (2) we get:

y = n∑
i=1 x̄iCi = n∑

i=1 x̄i∆Ωi. (3)

We note that this is again an exact equation. In our case, the

only approximation is that the integral average would be replaced

by an algebraic average. It is interesting that the last equation is

nothing else but a prescription for numerical integration bymeans

of finite elements.

Two questions arise: how to obtain the mean values and how

to make sure they are accurate enough for our purpose? The

usual way of determining the mean value is to apply the straight

algebraic average of all point values within a particular cellCi . The
accuracy of so determined mean value can be estimated only by

comparison with other mean values determined within the same

cell Ci that use either a larger or smaller number of point values.

Let us note that there are also other techniques that may estimate

the mean value, e.g. Gauss-Legendre quadrature, however they

are not treated in this paper.

It is a known fact that the terrain effects in flat areas are smooth

functions with small amplitudes. In the mountains, however, they

become more interesting as they somehow reflect the pattern

of the terrain itself (see Janák et al., 2006). Let us introduce

three terrain effects that we are focusing on in this paper: Terrain

correction, condensed terrain correction and direct topographical

effect. When doing so, we will follow the notation of Martinec

(1998) and Novák (2000), where Atr is the terrain correction

(or negative attraction of the topographical roughness), Actr is

the condensed terrain correction (or negative attraction of the

condensed topographical roughness) and the δAt is the direct

topographical effect on gravity.

Terrain correction Atr is well known and widely used in geodesy

and geophysics. It is usually defined on the Earth surface as

being the correction that removes the gravity effect of the surplus

masses above and mass deficiency within the Bouguer shell. It is a

part of the refined Bouguer reduction (Torge, 1989, Eq. (4.38)) or

(Heiskanen and Moritz, 1967, Eq.(3-21)). For geophysical purposes

it is usually computed over a spherical cap of radius 166.7 km,

as introduced by Bullard (1936) and recommended also by, e.g.,

Pick et al. (1961). In geodesy, however, especially for geoid

determination, we are interested in determining this and all the

other topographical effects from all around the Earth.

From a practical point of view the integration domain is split into

near-zone and far-zone. The near-zone integration involves Digital

Elevation Models (DEMs), both detailed and global, while the far-

zone effect can be estimated using global elevation coefficients,

e.g., TUG87 (Wieser, 1987). For precise geoid computation it is

suggested by Novák (2000) to choose the near-zone as a spherical

cap with the radiusψ of three degrees. This is also the integration

domain that is used for computing all the effects throughout this

paper.

Condensed terrain correctionActr is mostly used in geodesy in the

process called the regularisation of the geoid (Pick et al., 1973).

In analogy to terrain correction it can be defined as a correction

that removes the gravity effect of the excess mass above the

Bouguer shell as well as the mass deficiency within the Bouguer

shell both condensed into an infinitesimally thin layer. This

correction can be computed in an arbitrary point on or above the

''regularised geoid''. According to the choice of the condensation

method we can obtain different condensed terrain corrections.

One particular choice is the secondHelmert condensationmethod

(Helmert, 1884) where the condensation layer is located directly

on the geoid. Some discussions on how to optimally include this

correction into the geoid determination process can be found

in recent papers, (e.g., Vaníček and Martinec, 1994; Heck, 2003;

Ellmann and Vaníček, 2005). In this paper we investigate the

behaviour of Actr on the topographical surface generated by the

mass of the terrain roughness condensed according to Helmert's

second condensation method.

Direct topographical effect δAt is simply a difference between the

two previous corrections taken with a negative sign, hence the

difference between effects and corrections,

δAt = Atr − Actr . (4)

If we disregard the atmosphere, this effect can be viewed as a

difference between the gravity generated by the real Earth and so

called Helmert's gravity generated by the geoid regularised using

Helmert's condensation method. The direct topographical effect

is the largest effect in the compilation of the input gravity values

for precise geoid computation and therefore it is important to

compute it precisely and get rid of all possible systematic errors.

2. Design of the investigation

The basic aim of our investigation here is to find an empirical

relation between the terrain roughness, expressed, e.g., by the

root mean square (RMS) of elevations

RMS = √√√√ 1
m

m∑
i=1
(
Hi − H̄

)2
(5)

and the minimally acceptable density of the point values to be

used for the algebraic averaging for all theparticular terrain effects.

These point values of the terrain effects are computed by different

numerical integrations and, naturally, themorevalueswecompute

the longer it takes to compute them. Thus in any cell, for which

we want to determine the mean values of an effect, there should

be as few point values as possible, to make the computations as

fast as possible, yet there should be enough point values to make

sure that the algebraic averaging is a good enough approximation

of the integral averaging for the desired accuracy. The minimally
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acceptable number of points in a cell would generally be different

for each of the three effects.

The investigation was designed to conform to the following algo-

rithm:

1. Select several (L) areas of 2◦×2◦ , in our case in Canada, that

have different morphologies and thus different elevation

RMSs. As the three corrections/effects are on gravity, these

areas have to be actually larger (8◦×12◦) as wewant to see

how the geoid is affected.

2. For each topographical effect generate in all L areas several

(N) sets of point values on different regular geographical

grids (with different grid steps, see Table 2) and the corre-

sponding set of mean values using the simple (algebraic)

average of point values in each geographical cell of specific

dimensions, i.e., 5' by 5' in our case, in each of the L areas.

A detailed DEM with a resolution of 3``×3'' and the global

DEMGTOPO30with resolutionsof 30``×30'' and5'×5'were

used for the computation.

3. From N generated sets of mean values (for every effect in

each area) compute the N-1 sets of differences between

the sets referring to neighbouring grid steps.

4. Compile the N-1 contributions to the geoid caused by

particular differences for all L chosen geographical areas.

5. In each of the L areas, order the N-1 results (contributions

of differences to the geoid) in a descending order of step

size of the grid and compute the Chebyshev norm from

every resulting set, see Table 4. The Chebyshev norm of a

certain function u(x) in a domainD can be defined by the

formula
∥u∥C = max

x∈D̄
|u (x)| , where D̄ represents the

domainD together with the boundary.

6. For all L areas, apply the criterion that requires that themin-

imally acceptable density of point values of topographical

effects is the minimal density from which it is possible to

generate the geoid which will differ from the geoid com-

puted from themean values obtained from a grid one step

smaller by less than 1 cm at every point, i.e., in the sense

of the Chebyshev norm and construct a graph showing

dependency between the terrain RMS and optimal density

of point values.

7. The empirical dependency can be approximated using a

simple analytical function, the straight line in our case. This

allows us to generalize the experimental results for entire

world.

8. Once these minimally acceptable densities (computed

specifically for 5' by 5' cells) are determined for all the

L areas, with their attributed RMSs, these densities can be

normalised for cells of any size.

Figure 1. The computational scheme for estimation of optimal den-
sity of point values of the topographic effects for precise
geoid determination.

The computational scheme of the experiment is shown in Figure 1.

Let us now describe the experiment and its results in detail. We

first chose the L = 5 testing areas (2◦×2◦ each), with different

geo-morphological features, from flat to rugged high mountains

(Figure 2). Their geographical extent and RMSs are given in Table 1.

Figure 2. Topography of 5 testing areas (2˚×2˚) with different geo-
morphology chosen in Canada.

Foreveryarea thepoint valuesofAtr ,Actr andδAt werecomputed

on N = 6 geographical grids of different spacing, see Table 2. For

all the 576 5'×5' geographical cells within each of the 5 areas

the mean values have been computed. Thus, for every effect

we got 6 sets of 576 mean values; actually more (13824), as the

geographical coverage of these 5 areas had to be extended to

allow for the computation of the geoid. Consequently, the N-1=5

sets of differences were generated and all remaining work was

done with these 75 sets, 5 sets for 3 topographical effectsAtr ,Actr
and δAt in the 5 areas.

Subsequently, the contribution of every set to the geoid has been

estimated using a numerical integration of Stokes's formula up to
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Table 1. The geographical extent of the selected areas and elevation RMS computed from elevations for individual testing areas.

Area Boundaries RMS (m) Description

1 53˚N 6 φ 6 55˚N 272˚E 6 λ 6 274˚E 33.9 almost ideally flat area near the Hudson Bay
2 55˚N 6 φ 6 57˚N 243˚E 6 λ 6 245˚E 97.3 eastern foothills of Rocky Mountains
3 56˚N 6 φ 6 58˚N 239˚E 6 λ 6 241˚E 119.7 eastern foothills of Rocky Mountains
4 57˚N 6 φ 6 59˚N 233˚E 6 λ 6 235˚E 363.2 northern part of Rocky Mountains
5 50˚N 6 φ 6 52˚N 243˚E 6 λ 6 245˚E 492.4 central part of Rocky Mountains

Table 2. Different grid densities for the 5’ by 5’ cells used in our in-
vestigations.

Mode Number of point data Geographical grid step
to be averaged (∆φ × ∆λ)

1 1 5’×5’
2 4 2.5’×2.5’
3 10 1’×2.5’
4 25 1’×1’
5 50 0.5’×1’
6 100 0.5’×0.5’

spherical distanceψ = 3◦ . TheChebyshevnormof every resulting

set of geoidal contribution was computed and compared against

the 1 cm criterion. The computed 75 Chebyshev norms are listed in

Table 3. The norms below 10 mm that passed the test are bolded.

Table 3. The estimated effect of the number of points on the geoid
accuracy in terms of the Chebyshev norm. The values below
the limit (10 mm) are bolded.

Area Effect
Max. differences between the modes (mm)
1-2 2-3 3-4 4-5 5-6

1
Atr 1 1 1 1 1
Actr 3 1 2 1 1
δAt 3 2 2 1 1

2
Atr 4 2 1 1 1
Actr 26 13 5 3 1
δAt 23 11 5 3 1

3
Atr 8 2 1 1 1
Actr 43 28 8 8 2
δAt 46 29 8 8 3

4
Atr 69 24 12 11 4
Actr 498 160 60 49 8
δAt 477 148 56 40 5

5
Atr 150 54 23 10 7
Actr 627 131 79 47 16
δAt 604 109 72 40 13

3. Analysis of results

FromTable 3, aminimally acceptable point density for each testing

area can be estimated. Consider the contribution on the geoid

caused by the differences between the n-th and (n − 1)-th grid

densities, for, n = 2, 3, 4, 5, 6. If the Chebyshev norm of these

values in a particular testing area, see Table 3, is smaller than the

prescribed limit (10mm), then the (n−1)-th density is assumed to

be theminimally acceptable one. Otherwise,n has to be increased

by 1. If n = 6 and still the value in Table 3 is larger than the limit,

the n-th grid density is recommended for use.

Based on the experimental results shown in Table 3, it is also

possible to construct graphs where the Chebyshev norm of geoid

differences for certain area is plotted as a function of number of

points used for the averaging, see Figure 3.

Another interesting graph can be obtained when we plot the

dependence between the RMS of the terrain for particular testing

areasand theminimalacceptablenumberofpoints tobeaveraged,

see Figure 4. This graph is plotted only for the direct topographical

effect δAt , because this effect is the most important for the geoid

computation. The graph for Actr is exactly the same and the

requirements for Atr are less strict. We therefore suggest, in

order to stay consistent, to use the equation derived for the direct

topographic effect for the other two effects as well. Interestingly,

this relationship seems to be approximately linear, although it is

disputable because of very few testing areas, and it is therefore

easy to quantify it by an equation of the straight line

y = ax + b, (6)

where the coefficientsa, b are determined using the least-squares

linear regressiona = 4.6 m/point andb = 62.8 m, see Figure 4.

In Eq. (6) y represents the RMS of the terrain in metres and

x represents the minimally acceptable number of points. The

advantage of the analytical expression, Eq. (6), is that it allows an

extension of the empirical relation obtained from 5 testing areas

in Canada to any region of the world.

Also, in practice, one would want to be able to work with cells

of sizes different from the 5' by 5' that we worked with. Then

the equation can easily be transformed into another form that

deals with point density rather than the number of points in a cell.
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Figure 3. Dependency of the Chebyshev norm of the geoid differ-
ences (y-axis) on the number of points used for the aver-
aging of topographic effects within the 5’×5’ cells (x-axis).
Units in y-axis: mm

Dividinga by 25, we obtain an equation fromwhich theminimally

acceptable point density x ′ per (arc-minute)2 can be calculated

x ′ = 0.00870y − 0.54609. (7)

Where x ′ is in the units of point density, i.e., in number of points

per (arc-minute)2 and, y the elevation RMS, is in metres.

On the basis of Eqs (6) or (7), a step function can be constructed

which divides the terrain in 6 classes according to roughness

represented by the RMS. These classes can now easily be assigned

to theminimally acceptable number of points needed to construct

theaccuratemeanvalueof certain topographical effect. The results

for direct topographical effect δAt are given in Table 4.

Table 4 can be used as a guide for the time consuming compu-

tations of the mean values of topographical effects. The whole

Canada was divided in classes according to RMS of the terrain, see

Figure 5. This was done in 1◦×1◦ geographical rectangles.

Figure 4. The empirical dependency between the RMS of particular
testing areas (y-axis) and the optimal (minimal acceptable)
number of points used for the averaging of topographic ef-
fects within the 5’×5’ cells (x-axis). The black line shows
the approximate analytical dependency obtained by least-
squares linear regression.

Table 4. The optimal number of point values to be averaged within
a 5’x5’ cell and corresponding point densities per (arc-min)2
according to the particular intervals of the RMS of the terrain.

RMS (m) Optimal number Corresponding
of point values point density per (arc-min)2

[0,67] 1 0.04
(67,81] 4 0.16

(81,109] 10 0.4
(109,178] 25 1
(178,293] 50 2
(293,523] 100 4
> 523 > 100 > 4

4. Conclusions and recommendations

The dependence between the terrain roughness, represented by

the RMS of the terrain, and the optimal number of point values

of topographical effects necessary to obtain a sufficiently accurate

mean value within the 5'×5' cell was estimated. We found

empirically that this relation is almost linear. The numerical and

graphical tools were prepared in order to save the computation

time during precise geoid computations. All Canada was divided

into7zonesaccordingto thevaluesof terrain roughness. Eachzone

corresponds to a specific number of point values to be averaged

within the 5'×5' cell and this corresponds to the required point
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Figure 5. The area of Canada divided in classes with a 1˚×1˚ step ac-
cording to RMS of the terrain, indicating the optimal num-
ber of point values of topographic effects to be averaged
within the 5’×5’ cells.

density that can be used for computing the number of points

needed in cells of other sizes than just 5' by 5'.
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