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Abstract

In this paper we investigate the behaviour of Newton’s
kernel in the integration for topographical effects needed
for solving the boundary value problem of geodesy. We
follow the standard procedure and develop the kernel
into a Taylor series in height and look at the convergence
of this series when the integral is evaluated numerically
on a geographical grid, as is always the case in practice.
We show that the Taylor series converges very rapidly
for the integration over the ”distant zone”, i.e., the zone
well removed from the point of interest. We also show
that the series diverges in the vicinity of the point of
interest when the grid becomes too dense. Generally,
when the grid step is smaller than either the height
of the point of interest, or the difference between its
height and those of the neighbouring points. Thus we
claim that the Taylor series version of Newton’s kernel
cannot be used for evaluating topographical effects on
too dense a topographical mesh.

1. Introduction

The strong gravitational field induced by topographical
masses poses a difficulty in solving the geodetic bound-
ary value problem for geoid determination. One possible
way of considering this field is as follows (Moritz (1966,
1968); Wichiencharoen (1982); Vani¢ek and Kleusberg
(1987); Wang and Rapp (1990); Sideris and Forsberg
(1990); Heck (1992); Martinec and Vanicek (1993a,b)):
first, the Newton integral is formulated for the potential
of topographical masses. Then its kernel is expanded
by means of Taylor’s series with respect to the radial
coordinate at a point on the geoid. Then integration
over the vertical coordinate is carried out analytical-
ly. Finally, the singularity of each individual term of
Taylor series is removed. The zero-degree term of the
Taylor expansion corresponds to the potential of a single
material layer (in geodetic literature called the conden-
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sation layer). It describes the behaviour of the bulk of
the potential of the topographical masses and is usually
included into an unknown anomalous gravitational po-
tential (Martinec et al., 1993). The potential generated
by higher order terms of the Taylor series can therefore
be viewed as corrections to the condensation layer po-
tential; provided that the density of the topographical
masses is known, the Newton integral can be used to
compute this residual potential. This is the basic idea
of Helmert’s second condensation technique (Helmert,
1884).

A questionable point of the above procedure, point-
ed out, e.g., by Heck (1992), is whether the Taylor series
converges or not, and if so, how many terms of the se-
ries should be taken into consideration to describe the
gravitational potential with a prescribed accuracy. It
is the usual practice in geodesy (Moritz, 1968; Vanicek
and Kleusberg, 1987; Sideris and Forsberg, 1990; Fors-
berg and Sideris, 1993) to take only a few first terms of
the Taylor series (most often only the first three) and as-
sume that the rest of the series may be neglected. This
seems to be a good enough approximation for a flat ter-
rain when the topographical heights can be taken on
a grid of a large step size (e.g. 0.5 degree). Then the
dummy point in the numerical integration (of the New-
ton integral) never comes too close to the computation
point and the magnitudes of higher order terms of the
Taylor series remain small.

The problems appear when the gravitational poten-
tial of the topographical masses is computed in a rugged
terrain. For such a case, a grid of topographical heights
has to be fairly dense to express the ruggedness of the
terrain. The dummy point in the Newton integration
than comes close to the computation point and the mag-
nitudes of higher order Taylor terms increase faster than
the magnitudes of lower order terms. As a result, higher
order terms become dominant and the series no longer
converges.



residuals would indicate that our observations contain
distortions that have not been appropriately modelled.

The Case Involving Two Datums

Sometimes, geodetic work is done in an area referred to
two geodetic datums. The transformanon of positions r S
referred to the first datum to positions r % referred to the
second datum has to go through the CT-system. We thus
need two sets of transformation parameters: one set to
transform from G, to CT, and another to transform from
G, to CT, including their covariance matrices, and the two
network  distortion models. The transformation
r® — r% should be carried out in the following steps:

(1) The modelled systematic distortions of the network
referred to G, should be subtracted from the distorted
positions r% of base points to give undistorted
positions (4, )G;. This step will not be applicable if
the network distortions are not known.

(2) Horizontal undistorted (corrected for distortions)
positions (¢, )G, are then transformed to Cartesian
coordinates T°' (for h = 0) in the G;-system, using
equation (12), including their covariance matrices.

(3) Cartesian coordinates r° in the Gjp-system are
transformed into the CT-system using equation (10)
with the first set of transformation parameters
(@,,t), and their covariance matrix as well as the

covariance matrix of r.
(4) If the two involved geodetic datums have different
shapes and sizes, (a, b)] # (a, b)2, then the Cartesian

coordinates T°7 (and their covariance matrices) must
be transformed onto the second ellipsoid (a, b)2 by the
following transformations:

(61 [¢]
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(6) If the two datums have the same size and shape, then

“l;‘C T

(7) Cartesian coordinates ¥ ' and their covariance
matrices are then transformed into the second
geodetic coordinate system Gp using equation (11)
with the second set of transformation parameters
(@, , t),. taking into account their covariance matrix.

ST amn

=TT and no such transformation is required.
(013

(8) Cartesian coordinates r% and their covariance
matrix are now transformed to (¢, )G, using the
inverse of equation (1). We note that the resulting
height hG2 should automatically equal to zero.

(9) Finally, the modelled distortions of the network
referred to Go should be added to the transformed
(undistorted) positions (4, A)G, to give distorted
positions compatible with the positions of the points
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referred to G to begin with. Again, this step will not
be applicable if network distortion is not known.

We note that if we neglect to model network distortions
in the first, second, or both networks, we will end up with
very large estimated errors for the point positions.

Conclusions

Procedures for transforming coordinates between a
horizontal geodetic datum and the CT-system, and for
transforming coordinates from one geodetic datum to
another were given. The importance of clearly separating
these transformations (between coordinate systems) from
the treatment of systematic and random errors in network
coordinates was pointed out.
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In this paper, instead of expanding the Newton
kernel into a Taylor series and removing singularities of
each terms of the series separately, we remove the singu-
larity of the Newton kernel right in the definition of the
Newton integral. By subtracting and adding the value
of the Newton kernel at the computation point to the
Newton integrand, the singular computation point may
be left out from the integration domain, and the singu-
larity is thus removed. This necessitates the evaluation
of Newton’s integral over a fixed height and a fixed mass
density, which can be done analytically, resulting in the
gravitational potential of a spherical Bouguer shell.

All theoretical considerations are made under the
assumption that the density of the topographical mass-
es varies only laterally. This enables us to evaluate the
radial integral of the Newton kernel analytically yield-
ing an independent tool for investigating the conver-
gence of the Taylor series discussed above. We will
see that this series has the most unfavorable behaviour
when it is evaluated at a point on the geoid. There-
fore, the numerical tests will be carried out for points
on the geoid. This, incidently, corresponds to the eval-
uation of the so-called primary indirect topographical
effect on potential (Heiskanen and Moritz, 1967, sect.
3-6.; Wichiencharoen (1982); Martinec and Vanicek
(1993a)). This technique works, of course, the same way
for any other point and can thus be used in the evalua-
tion of the direct topographical effect as well elsewhere.

2. The gravitational potential of topo-
graphical masses

Let the topographical masses be bounded below by the
the geoid with geocentric radius r,(£2) and above by
the topographical surface with geocentric radius r,(€2)+
H(Q). It means that H(Q) is the height of the topo-
graphical surface above the geoid, reckoned along the
geocentric radius. The argument  stands for a hori-
zontal position given by co-latitude ¥ and longitude A.
The gravitational potential V' induced by the topo-
graphical masses at an arbitrary point (r,€2) is given
by Newton’s volume integral

Vi(r,Q) =

) +H(Q) )
“G/ f o', Y)Y L (r, o, ) 2drdQ
! Jri=re (V)
(1)

where ' is Newton’s gravitational constant, o(r,2) is
the density of the topographical masses, L=1(r, ¥, ') is
the Newton kernel (reciprocal spatial distance between
the dummy point (#/,Q') and the computation point

(r,2)):

L7\ (r,9,1) = -

\/?-.2 + T"Z e

1 is the angular distance between the geocentric direc-
tions 0 and €', and the integration over Q' in eqn.(1)
1s taken over the full solid angle.

(2)

2rr! cos ¥ '
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Let us now abbreviate the notation for the orthome-
tric heights H(Q) by dropping the argument €2; we will
use H instead of H () for the orthometric height of the
topographical surface in the direction 2 and H' instead
of H(Q') for the orthometric height of the topography
in the direction €',

Equation (2) shows that Newton’s kernel grows to
infinity when the dummy point moves towards the com-
putation point, i.e.,

— 0 . (3)

—

lim L™ (r, ¢, 1)
$—0

,...r

But, the Newton kernel is only weakly singular which
means that for » # 0 (Kellogg, 1929, Chapter VI):

siny < oo . (4)

e

g -1 !
ilg})L (r,¥,7")

Writing the element dQ)' of the full solid angle in po-
lar coordinates (i, @) as dQ' = sin ¢¥dipde, the weak
singularity property (4) is reflected also in the integral
form

/‘ L7Y(r, 4, v")dQY < o0, (5)

valid for all non-zero radii r and #'.

Further, throughout the paper, the radius of the
geoid 7,4(£2) is approximated by a mean radius of the
earth, R, and the actual density of the topographical
masses g(r,2) by a column average value g(f2) (the
arguments for such approximations are discussed by
Martinec and Vaniéek (1993a)), the potential V' takes
the following form:

R+H'

L™ (o, 0" )2 dr'dSY
(6)

The property (5) may now be utilized for removing
the singularity of the Newton integral kernel (6). Sub-
tracting and adding a term

VB(r,Q) = Ga(Q) fn /er

V=G | @(Q’)/

=R

(r, 9, )" dr'dQY

(M
to the potential Vi(r,Q), we get
Vi(r,Q) = VB(r,Q) + VE(r,Q), (®)
where
R+H' )
VEr,Q) =G @(Q’)/ L7, o, 7' ) “dr’
o r'=R
R+H
2@ [ Lt a . )

The quantity V' is easily recognized as the potential of
a spherical Bouguer shell of density g(£2) and thickness
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H. This potential is finite due to inequality (5) and is
equal to (Wichiencharoen, 1982),

47G(Q)L [R*H + RH? + JH?) |
r>R+H,

VE(r,Q)={ 21Ga(®) [(R+H)* -

| 47Ge(Q) [RH + 3H?]

Since the actual earth’s surface deviates from the
Bouguer sphere (of radius R + H), there are deficien-
cies and/or abundances of topographical masses with
respect to the mass of the Bouguer shell. These con-
tribute to the topographical potential V*(r,§2) by the
term VE(r, Q) — an analogy of the terrain correction
(Heiskanen and Moritz, 1967, sect. 3-3.). We will call
VE(r, Q) the terrain roughness term because it appears
due to the roughness of the terrain. It depends chiefly
on the behaviour of the difference H — H' and weakly
on the lateral density variations of 2(<2).

Let us evaluate the limit ¢ — 0 of the subintegral
function in the angular integral (9). If ¢y — 0 then
() — 2(Q) and H' — H. We will assume that
both the topographical density 7 and the topograph-
ical height H are bounded (i.e., there are no mass-
singularities inside the topographical masses and the
heights of the earth’s topography are finite). Then the
limit ¢» — 0 of the subintegral function in the angular
integral (9) reads

R+H' p
lim |2(Q") L, o, ") dr’'—
y—0 ri=R
R+H )
—E(Q)/ L=, o, 7"y’ dr' | sinyp =
ri=R

R+H 5
— E(Q)/ lim [L_l(r', ¥, ') sin t,b] ' dr' —
ri=R $—0

R+H
- E(Q)f lim [L=Y(r, %, ") sin¢)] P 2dr' =0 .
r=p ¥—0
(11)
Since both functions g(Q2) and H are bounded and the
Newton kernel is weakly singular, see property (4), both
the integrals on the right-hand side of eqn.(11) are finite
and take the same value; their difference is thus equal
to zero. This means that the point ¥» = 0 may be left
out of the integration domain Q' and the singularity of
the Newton kernel at the point ¢ = 0 is removed. This
fact is important for the numerical computation of the
topographical potential V*(r,Q) because the modified
formulae (8) and (9) ensure that the numerical algo-
rithm is not forced to evaluate the undefined expression
of the type 0/0 occurring in the original Newton integral

(6)-

3. The radial integral of Newton’s kernel
Analytical form

The indefinite radial integral of the Newton kernel may
be evaluated analytically (Gradshteyn and Ryzhik, 1980,
pars. 2.261, 2.264) as follows:

/L‘l(r,w,r’)r’zdr’=L-:1(r,¢,r’)+C, (12)
where

’-‘:1(7-, VT = %(r’ + 3rcos¥)L(r, ¢, r' )+

2
+ %—(3 cos?y — 1) In|r' —rcosy + L(r, ¢, 7")| , (13)

and the 'constant’ C' may depend on the variables r and
1 only. Using notation (13), the topographical potential
V| cf. eqns.(8) and (9), then becomes

Vir,Q) = VB, Q)+

i

PRl R+
+G [E(Q’) L-1(r,9,7) s
ol r'=R

R+
_Q(Q) (?"', 'P: ) =)

H] s’ . (14)

Taylor series expansion

There is another way of evaluating the radial integral of
the Newton kernel normally used in computing the gra-
vitational potential of topographical masses in Helmert’s
second condensation technique (Heiskanen and Moritz,
1967, sect. 3-7.; Vaniéek and Kleusberg (1987); Mar-
tinec and Vaniéek (1993 a,b)). The product of the New-
ton kernel L™ (r, ¢, ') with r'? as a function of the vari-
able ' is expanded into a Taylor series at a point on the
geoid. Martinec and Vani¢ek (1993b) showed that the
results can be written in the following forms

r’zL_l(r,w,r’)Ld:R_FH,— “‘Z (—) M;(r, ),

(15)
and

|R+H’

L=(r, ¢, 7' > Ki(r, %, H'),  (16)
i=0

where the Taylor series kernels K; read

3 iy i1
(f—l),(%) Mi(r,9) . (17)

The kernels M;(r, ) for the first few degrees are:

h’,ﬁ(?“, i,f), If’) =

M= % : (18)



rZz

1

Mi(r¥) =5+ 5 (19)

r2  3r2z?
My(r,¢) = @ (20)

37‘ 3rz 322  b5rZd
M3(r,9) = (1—3—2—*@—+£—4) b (21)
3r? 3r2  24rz 1222
My(r, ) = B (_4+ _éz_"" f_2 2k £—2—

40rz®  30r2z%2  35r2z%

_34_£4+£6)‘ (22)
where

z=r— Rcos , (23)

and the symbol £ denotes the spatial distance between
points (r,Q) and (R, '), i.e.,

= L(r,%,R) = /r2+ R —2rRcos ¢ . (24)

We note that M;(r,
i.e., on the geoid.

Martinec and Vanicek (1993b) also derived the
general formula for the higher degree (i > 1) integration
kernels M;(r,v):

il(i— 2 ryitl=s
fz(z—s—l'(.)s—l) (?)-H 8

) are singular at ¢ = 0if r = R,

siti—ste (i 42— s — N[ — s + )N z)f
x 2, (=173 (+2-s-)t! 3
(25)
The summation in eqn.(25) must be taken over such t’s
for which ¢ — s +1 + 1 is an even number.

4. Potential of the condensation layer

As discussed in the next section, condensation of topo-
graphical masses onto the geoid has a fundamental role
in Helmert’s second condensation technique. Provid-
ed that the condensation density () is chosen to be
equal to the product of g(€2) and H and the condensa-
tion layer has the radius R, the condensation potential
V¢ is given by formula (Heiskanen and Moritz, 1967,
sect. 1.-3):

(Y H!
Ve(r,Q) = GRE[ g(—)—dﬂ’ ; (26)
nf E

To remove the singularity of the reciprocal distance 1/£
in the potential V¢, we may proceed in a way analogous
to that for the potential V*. Let us rewrite eqn.(26) as

(27)

Ve(r, Q) = Vir,Q) + GRZf
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where V¢(r, Q) is the potential of a spherical material
layer with density 2(2) H and radius R,

!
crraoyr [ EL (28)

VEir,Q) =
(r, Q) T

The last integral may be readily evaluated yielding
4anGaQHE | r>R,
Vi(r,Q) =

r< R

(29)
4rGe(Q)HR

5. Topographical effects

If the gravitational potential V* of the actual topo-
graphical masses is approximated by the potential V* of
the condensation layer, as it is done in Helmert’s second
condensation technique (Helmert, 1884), i.e., when

Vi=V 468V, (30)

where 6V is the residual topographical potential, then
the gravity measured on the earth’s surface is to be
corrected by both the direct topographical effect on
gravity, 6 A(Q):

a6V (r,Q)

: (31)
6?‘ r=R+H

SA(Q) =

and the secondary indirect topographical effect on
gravity, §P(2)(Q):
§PA(Q) = %éV(R, Q). (32)

Moreover, the approximate geoid (called co-geoid) dif-
fers from the actual geoid by the quantity 6 N,,;(2) as:

SN () 2SS (33)
v
where 7 is the normal gravity on the reference ellipsoid.
In this context, the residual potential §V taken on the
geoid is called the primary indirect topographical effect
on potential.

6. The primary indirect topographical ef-
fect on potential

Martinec and Vani¢ek (1993b) showed that the Taylor
kernels K;(r, v, H') are weakly singular at points on the
earth’s surface. For computing the direct topographi-
cal effect 8 A(£2) is thus possible to use both the Taylor
series (16) and the analytical form (13) for defining the
radial integral of the Newton kernel, i.e., L=1(r, ¥, ).
Unfortunately, we will see later that the kernels
Ki(r,1, H') become strongly singular on the geoid, i.e.,
when r = R. This may cause serious difficulties when
the primary and secondary indirect effects are evaluated
using the Taylor series (16). On the contrary, we will
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show that integral (13) is only weakly singular on the
geoid. Therefore, we will use it to illustrate the prob-
lem arising from the use of the Taylor series (16) for
computing the indirect topographical effects.

The residual topographical potential 6V = V' — V¢
at a geoidal point can be rewritten by means of eqns.
(14) and (27), where 7 is replaced by R. We obtain

§V(R,Q) = 6VE(R,Q)+6VE(R,Q), (34
where the ” Bouguer term” §V2(R,Q) is given as
§VE(R,Q) = VP(R,Q) - VYR, Q),  (35)

and the ”terrain roughness term” §V#(R, Q) is equal to

R4+ H'

SVR(R,Q) =G {5(9’) LR, ¥,
nf T

l=R

S R+H
—2(Q) L-Y(R, ¥, ) T
—R2[g(Q)H' —a(Q)H) L™ (R, ¢, R)} d .  (36)

Using the last of eqns.(10) and (29) valid for r = R,
the Bouguer term §VZ(Q) becomes

§VE(R,Q) = 27GB(Q)H? (37)

Even though the Bouguer term §VB(R, Q) is the domi-
nant one in the potential §V(R,Q), in this paper we
are only interested in computing the terrain roughness
term 6VE(R, Q). We are thus not going to discuss the
Bouguer term any further here.

Substituting for RZL Y(R, 1, R) from eqn.(15), and

R+H
for LR, 4,7")|

ness term §VE(R, Q) cf. eqn.(36), can alternatively be
expressed by means of the kernels My and K; as

from eqn.(16), the terrain rough-

o0

§VE(R,Q) =G i {Z [6(Q)K:(R, ¢, H')—

-2 Ki(R, ¢, H)] -
—R?[3()H' - 2(Q)H) Mo(R, )} d2' . (38)

By eqn.(17), the kernel K; can be expressed by means
of the kernel Mpy, and the expression (38) can be further
simplified as

R S S —O 1. T4
§sVR(R, Q) = G/n’;[g(g VKi(R, ¥, H')

—2(Q)Ki(R, ¢, H)|dQ' . (39)

In practice, the infinite series in the last equation is
truncated at a degree imq. and the correct value of

SVE(R,Q) is approximated by its estimate éVR(R Q):

fmax

§VR(R,Q) = G/IZ[Q(Q’K (R, %, H")—

-8(Q)K;(R, ¥, H))dQ' .

For example, Wichiencharoen (1982), Vanicek and
Kleusberg (1987), and Wang and Rapp (1990) only con-
sider the terms with 7 = 2.

The correct analytical formula (36) for §VF(R,Q)
provides us with a tool for testing the accuracy of the
estimate 6V E(R, ). But, before using this tool, we will
find the condition under which the infinite series of the
Taylor series kernels K; actually converges.

(40)

7. The problem of the convergence of the
Taylor series expansion

For computing the primary indirect topographical
effect on potential, the topographical potential V*, and
therefore the integration kernels K; are to be evaluated
on the geoid, i.e., at points (R, Q). As already noted, in
this case all the kernels K;(R, ¥, H') are singular at the
point ¥ = 0. Fortunately, we have learned by analysing
eqn.(9) that there is no need to evaluate the integra-
tion kernel K;(R,,H') at the point ¢ = 0. Neverthe-
less, the kernels have to be evaluated in the immediate
neighbourhood of the computation point 3 = 0, and
therefore, we have to ask about the type of singularity
of the kernels K;(R, ) at that point.

To answer this question, we employ eqn.(25); for
r = R it yields

i—1

Mi(Rah) = ELZ il(i — 2)!

e
X
s:l S—l)T
sitispe i+ 2—s—t)M(Ei—s+8) (&'
o | E] i
Xg( ) G+2—-s—Odl R
(41)

where £, stands for the distance between points (R, )
and (R, '), i.e

(i—s—1)!

ly = L(R,¢,R) = 2Rsin% : (42)
The type of the singularity of the kernel M;(R,1) at
the point ¥ = 0 is given by the highest power of the
reciprocal distance 1/£;. Inspecting eqn.(41), we can see
that the highest power of 1/£y occurs when summation
indices s and t are small,ie., s=1,andt=0ort=1
(subject to the constraint that 7 — s +¢ 4 1 be an even
number). Considering s = 1 in this constraint, we can
see that ¢ must be of the same parity as ¢, i.e., t = 0
when ¢ is an even number, and ¢ = 1 when 7 is an odd
number.

To begin with, let us consider the case when i is
an even number. From eqn.(41) we can see that in the
vicinity of the point ¥ = 0, (i.e., when 3 < ¢, and € is a
small positive number), the kernel M;(R, ) behaves as

5 R
gz—‘,—l .

My(R, ¢ < ) ~ (-1) ¥ [(i - 1)!1] (43)



This formula shows that the higher the degree of the
kernel M;(r, 1)), the stronger its singularity at the point
% = 0. Substituting eqn.(43) into (17), we find that in
the vicinity of the point ¥ = 0 the Taylor series kernel
K; behaves as

; A s [ DI 5) Vi
I\g(R,T,bSE,H)NR(—l)?W(EU e
(44)
To find a condition under which the Taylor series (16)
converges for ¢ < ¢, let us evaluate the ratio (7 is still
an even number)

Kipo(RY<eH)  (i+1)? [(H\?
KR % <e H) ~ (i+2)(i+3) (E) , (45)

where we have used eqn.(44). Since

; (i+1)°
e T Wl )
the convergence of the Taylor series (16) depends on the
ratio H' /€5. The same criterion may be found for odd
degrees 1.

In the case when the kernels K;(R,, H') are
evaluated for 9’s for which £y > H’, the magnitude of
the kernels K; decreases with increasing order 7, and the
Taylor series (16) converges. On the other hand, com-
puting the kernels K;(R,, H') at a smaller distance
1, such that o < H', the magnitude of the kernels K;
increases with increasing order ¢ and the Taylor series
(16) diverges.

As a consequence, special care has to be paid to
numerical computation of the Newton integral for V?
when the Taylor series is employed. The topographical
heights are wusually given on a regular grid
(RA¢, Rcos AN), where A¢ and A) are steps in lati-
tude and longitude, respectively. If both the steps RA¢
and Rcos A are larger than the largest topographi-
cal height in the area of interest, then the values of the
distance £y over the topographical grid are always larg-
er than H', and the Taylor series (16) converges at all
the points on the topographical grid. Such a situation
usually occurs in a flat terrain.

The problem arises when the topographical poten-
tial V*(r, Q) is to be evaluated at mountainous terrain.
In this case, the sampling of the topographical height-
s has to be fairly dense (e.g., with a step of 1 km) to
express the ruggedness of the terrain; the dummy point
in the Newton integral than may come very close to the
computation point so that £y < H'. At this point the
higher order terms of the Taylor series become larger
than the low degree terms and the series (16) diverges.
Moreover, as eqn.(43) shows, individual terms of Taylor
series change the sign. To use such an oscillating and
divergent series for the evaluation of the Newton inte-
gral becomes impossible; we will see later that it cannot
be used for an accurate geoid determination.
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For comparison, let us now have a look at the be-

haviour of the vertically integrated form (13) of the
pa R4+ H'
kernel L‘I(R‘uﬁ,r"]’ ey in the vicinity of the point

¥ = 0. Using eqns.(l%) and (42), we have

R+H'

L-Y(R,v,r")

r'=R

1 R
= S(R+H'+3R cos ) L(R, %, R+ H') = (143 cos §) o +

H' + £ + L(R,v, R+ H')

EQ
.
lo+ 5%

2
+ %(3 cos?y — 1) In

1

(47)
where
L(R,v,R+ H') =

=v(R+H)?+R?—2R(R+H')cosv .  (48)
Again by using eqn.(42), the last relation reads

[}

L(R,%,R+ H') = \/eg - %e{; +H?. (49)
When a dummy point of integration comes close to the
computation point (p — 0 or {5 — 0), the first two
terms on the right-hand side of eqn.(47) come to a finite
number (4R + H')H'/2; the magnitude of the last term
grows to infinity since this term behaves like a function
Infy (we assume that H’ > 0). Because the following
limit is valid

li = 50
Jim T 03 (50)

i

the magnitude of the kernel E:E(R,e,b,r’) Zrows

ri=
to infinity even slower than the reciprocal distance 1/£g

when 1 approaches zero. Therefore, the numerical pro-
cedure of computing the Newton integral (36) based on
eqn.(13) is very stable even near the computation point
(¥ = 0) and is not limited by the restriction that the
discretization step has to be greater than the highest
topographical elevation.

8. Numerical computations
The Taylor kernels K;

To demonstrate the problem with the Taylor series con-
vergence, we computed the definite integral

R+H
LR+ H,p,v)|

(13) and compared its behaviour with that of the first
5 terms of the Taylor series (16). In Figure 1, we have
taken the height H' of the dummy point of integration
to be 1 km, the angular distance ¢ to be 0.01° (which
corresponds to the horizontal distance £y of about 1.1
km), and the height H of the computation point has
been varied from -4 km to 5 km (H = 0 means that the

computation point lies on the geoid).

using the analytical expression
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Figure 1: Integration kernels IT:E(R+ H,n’),r’)i %
ri=

computed by analytical formula (13) (curve denoted
as ’analytical’) and the Taylor series expansion kernels
K;(R+ H,¥,H’) for i = 0,...,4. The height # of the
computation point ranges in the interval (—4000,5000)
m, the height H' of an integration point is 1000 m. The
angular distance 1 between the computation point and
the integration point is 0.01°.
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Figure 2: The same as Figure 1 for ¢ = 0.005°.
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Figure 3: The same as Figure 1 for ¢ = 0.001°.

From Figure 1 we can observe that: (1) The mag-
nitude of the Taylor series kernels K; decreases with
increasing order ; in other words the Taylor series (16)
converges which confirms our theoretical conclusion be-
cause £y > H'. (2) The kernels K; change their signs
for the computation point near the geoid, which means
that the Taylor series (16) oscillates for points near the
geoid. (3) For a computation point on the geoid, the
magnitudes of odd-degree kernels K; are very small (but
not equal to zero) compared with those of even-degree
kernels K;. This means that the primary indirect topo-
graphical effect on potential can be reasonably modelled
by even degree kernels /; only.

Figure 2 shows a similar situation as Figure 1, where
the only change is that the angular distance ¢ between
the computation and dummy points is one half of the
above, i.e., the horizontal distance £y is 0.55 km. As
already shown theoretically, the kernels K; grow with
increasing order ¢ at the point on the geoid because
fy < H', and, consequently, the Taylor series (16) does
not converge. Figure 2 demonstrates this fact very
clearly.

An even more drastic example of the divergence of
the series (16) is plotted in Figure 3. Here the angular
distance ¥ is equal to 0.001° which corresponds to the
horizontal distance £5 = 0.11 km. We have plotted only
the first two kernels K and K; because the magnitude
of the higher order kernels grows too fast.

The primary indirect topographical effect on potential

Particular contributions of the/’I_‘gylor series kernels K,
to the terrain roughness term 8§V £(Q2) were studied over
an area of 1.65° x 1.25°, (51.20° < ¢ < 52.85%
242.7 < X < 243.95°) in Western Canada. The area cov-
ers a particularly rugged part of the Rocky Mountains,
the chain of Columbia Mountains. The topographical
heights range from 1 to 3573 m, and were sampled as
means of 30" x 60" cells.

Table 1 shows the extreme values of corrections to
geoidal heights due to the terrain roughness term
§VE(Q), cf. eqn.(40), induced by kernels K;, i=1,...,4.
The correct values, computed by means of the analyti-
cal formula (36), are shown in Figure 4; they fall within
the interval (-0.09, 0.20) m.

For the sake of completeness, we remark that the
Bouguer term §VZ(Q) for the same region gives values
ranging from -1.46m to Om for the 30” x 60" gridded
heights and from -0.71m to Om for the 5’ x 5’ gridded
heights. This demonstrates how sensitive the results are
to the selected grid size, but this problem is considered
beyond the scope of this paper.

Inspecting Table 1 and Figure 4, we can draw the
following conclusions:



Table 1: Corrections to the geoidal heights (in metres)

due to the terrain roughness term §VE(Q) expressed by
Taylor series kernels K;, i=1,...4.

term min max
K, -0.006 | 0.003

Ky || -0.222 | 0.394
K3 0.000 | 0.000
K, -1.14 | 0.906

(i) The magnitude of 6%(9) induced by kernels Kj;
with odd orders are small enough to be neglected for a
1 cm accuracy geoid computation in Canada.

(ii) The magnitudes of §VE(Q) induced by kernels
K; with even orders increase with increasing order i;
the Taylor series expansion (16) diverges at points with
extreme heights.

(iii) Wang and Rapp (1990) modelled the terrain
roughness term §VE(Q) by the contribution generated
by the kernel K, using the topographical grid size 30”.
Comparing these values with the correct ones, we can
see that the K5 term overestimates the terrain correc-
tions 6V 2(Q) about two times. This means that errors
in geoidal heights due to the K5 term approximation are
about two decimeters over the area under study. These
errors cannot be reduced by adding higher order terms
of the Taylor series, e.g., by adding the K4 contribution,
because of the divergence of this series.

We have also computed the terrain roughness term
S§VE(Q) from heights averaged on a sparser topograph-
ical grid 5" x 5" (not shown here). The resulting val-
ues fall within the interval (-0.03, 0.03) m. Comparing
these values with those on Figure 4, we can see that the
differences are more than one decimetre. This is caused
by the fact that the mean 5 x 5’ digital terrain model
is smoother than the 30” x 60” model. This fact tells
us that a grid size of 5’ in a mountainous terrain such
as the Rocky Mountains is not sufficiently small to ex-
press the irregularities of the terrain and thus does not
reveal properly the contribution to geoidal height due
to terrain height variations, as we have already noted.

9, Conclusions

Today geodesists strive to compute the geoid with an
accuracy of the order of 1 ¢cm (Vanitek and Martinec,
1993). To achieve such an accuracy, the gravity and the
earth’s topography must be known with a high preci-
sion. In addition in a mountainous terrain, topograph-
ical elevations must be known on a fairly dense grid.
In this paper we have concentrated on the problem
of convergence of the Taylor series of the Newton grav-
itational kernel on a dense topographical grid used for
modelling a rugged terrain. We have shown that for the
primary indirect topographical effect on potential, this
expansion converges if the horizontal distance between

>3

Figure 4: Geoidal heights (in metres) induced by the
terrain roughness term §VZ(Q) of the primary indi-
rect topographical effect on the geoid over the area of
Columbia Mountains.

the computation point and the dummy integration point
is greater than the topographical elevation. In fact, this
constrains the sampling of topographical heights. On
the one hand, there is a need to discretize the heights
of a rugged terrain as densely as possible to model the
terrain irregularities as accurately as possible and, on
the other hand, the discretization step cannot be small-
er than the largest topographical elevation in order for
the Taylor series to converge. On a numerical exam-
ple we have demonstrated that the Rocky Mountains is
one of the areas where these contradicting requirements
on the digitization step are not possible to be satisfied
simultaneously.

If the gravitational potential of topographical mass-
es at the point on the geoid is approximated by the
zeroth and quadratic terms of the Taylor series, as it is
usually done, then such an approximation is biased and
the bias may easily reach decimetres. We have shown
that for the Columbia Mountains these errors reach in
fact two decimetres.

Our conclusion is that for a rugged terrain the ap-
proximate formulae based on the Taylor series expan-
sion have to replaced by the correct (analytical) formula
which removes the problem of divergence of the Taylor
series. We have shown the very stable behaviour of
this formula in the vicinity of the computation point
(¥ = 0). However, considering this correct formula, the
application of the fast Fourier technique for computing
the gravitational potential of the topographical masses
is not as straightforward as in the case when the Tay-
lor series expansion is employed (see also Heck, 1992).
Further investigation of this problem has to be carried
out.

One thing should be emphasized at the end. Through-
out the paper we have used the spherical approximation
of the geoid and not the planar approximation (Moritz,
1966), because the type of approximation significant-
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ly influences the Bouguer term §VP(£2). Employing
the planar approximation, this term reads —7Go(Q)H?
(Vaniéek and Kleusberg (1987)). On the other hand,
in spherical approximation the Bouguer term equals
to 27Go(2)H? when the condensation density is equal
to o(QV)H', cf. eqn.(36) in (Martinec and Vanicek,
1993a), and is equal to —27Go(Q)H? if the conden-
sation density is chosen according to the principle of
the conservation of topographical masses, i.e., when the
condensation density is given as o(Q')H'(1 + H'/R +
H'?/3R?) (Martinec, 1993). For the terrain roughness
term 6V F(Q), the type of approximation of the geoid
does not influence the results very strongly because the
term 6V E(Q) is small. We are convinced that the term
§VE(Q) may also be computed on the basis of planar
approximation with the desired accuracy of 1 cm. But
again a detailed study should be devoted to this point.
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