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Abstract

The complete theory of topographical effects in the
Stokes-Helmert technique for geoid determination is de-
veloped. New formulae for direct and indirect topo-
graphical effects consider lateral density variations of
topographical masses. The formulae are further simpli-
fied for computing the topographical effects of water in
a lake. Numerical values of the particular topographical
terms are given for the lake Superior.

Introduction

Today’s effort of geodesists is focused to compute the
geoid with an absolute accuracy of 1 cm. To achieve
this accuracy, the theory of solving the geodetic bound-
ary value problem for geoid determination used up to
now - to compute the geoid with an accuracy of about
50 cm - has to be improved. There are many theoret-
ical problems that have to be resolved for computing
such an accurate geoid (Vanicek and Martinec, 1994).
For example: ”How to continue the gravity data from
the earth’s surface to the geoid through the topograph-
ical masses so that the standard Stokes integral can
be applied to gravity anomalies?”, ”How to incorpo-
rate the truncation error of the Stokes integration into
the geoidal height corrections?”, ” How many terms of
the Taylor expansion of the gravitational potential of
topographical masses are to be taken into consideration
when computing the gravitational effect of the topo-
graphical masses?”, to spell out just a few.

In this paper we focus our attention on yet another
problem, that of the influence of lateral changes of the
density of the topographical masses (masses between
the geoid and the earth’s surface) on geoidal height
computation. The gravitational effect of topographi-
cal masses on geoidal heights is described in the Stokes-
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Helmert technique by three terms (Martinec, 1993): the
direct topographical effect on gravity which is the gravi-
tational attraction of topographical masses at a point on
the earth’s surface; the primary indirect topographical
effect on potential which is the gravitational potential
of topographical masses at a point on the geoid, and the
secondary indirect topographical effect on gravity which
is the gravitational effect of topographical masses on the
anomalous gravity on the geoid.

Up until now, all the formulations of the direct and
both indirect topographical effects, have assumed that
the topographical masses have a homogeneous densi-
ty. The density was considered equal to a mean crustal
value of g9 = 2.67 g/cm®. This appears to be too
coarse a model, especially in the vicinity of lakes, be-
cause of the large difference between the water density
and the mean crustal density go. It is thus natural to
ask whether the density contrast between lake water
and surrounding rock is significant enough, and if it is,
how to modify the existing formulae to take into con-
sideration this density inhomogeneity for a precise geoid
computation.

The aim of the paper is to formulate an adequate
theory for describing this phenomenon. Numerical
example of the lake Superior (one of the Great Lakes
in the central part of North America) will give an in-
sight into the magnitude of corrections that must be
added to geoidal heights when the density of lake water
is erroneously modelled by the value of 2.67 g/cm3.

The gravitational potential of topograph-
ical masses

Throughout the paper we assume that the geoid is com-
puted by the Stokes-Helmert technique (Martinec at
all,, 1993). This section summarizes the formulae for
computing the gravitational effects of the topographi-
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cal masses as required in the Stokes-Helmert technique.
More details can be found in, e.g., Martinec et al. (1993),
Martinec (1993), or Martinec and Vanicek (1994a,b).

An important quantity in the Stokes-Helmert tech-
nique for geoid computation is the residual topograph-
ical potential §V which is defined as the difference be-
tween the gravitational potential V* of the topograph-
ical masses and the gravitational potential of the con-
densed topographical masses, i.e.,

sV=vt-ve. (1)

Let us express the potentials V! and V* by means of
Newton’s integrals. Let the geocentric radius of the
geoid be ry(Q2) and the geocentric radius of the earth
surface be r4(Q2) + H(Q). This means that H(Q) is the
height of the earth surface above the geoid reckoned
along the geocentric radius; this height, to a relative
accuracy better then 5 x 1076, is equal to the ordinary
orthometric height, which we shall assume throughout
the paper to be positive and correctly determined. The
argument €2 stands for a horizontal position given by
co-latitude ¥ and longitude A.

The gravitational potential V* induced by the topo-
graphical masses at a point (r, Q) is given by the Newton
volume integral

Vi(r, Q)=

ro(SV)+H(Q') p
=G / f o(r', Q)L™ (r, ¢, ") dr'dQY |
Q Jri=rg ()
(2)

where G is Newton’s gravitational constant, o(r, Q) is
the density of the topographical masses, L~Y(r,4,7) is
the Newton kernel (reciprocal spatial distance between
the dummy point (r/,Q’) and the computation point

(r,Q)):

th(r,w,r’) = 1

V4% el costp |

(3)

% is the geocentric angular distance between the geocen-
tric directions Q and €, and the integration in eqn.(2)
with respect to Q' is taken over the full solid angle.

Further, we shall abbreviate the notation for or-
thometric heights H(Q) leaving out the argument Q.
Therefore, we will use H instead of H () for the ortho-
metric height of the topographical surface in direction
2 and H' instead of H(Q) for the orthometric height
of the topography in direction €’.

The potential of the Helmert condensation layer may
be expressed by Newton’s surface integral:

V) =G [ a@) 17 (@) 2 @)a
(@

where o(R) is the surface density of the condensation
layer. Later we will show how to choose this surface

density appropriately.

Approximating the radius of the geoid r4() by
a mean radius of the earth, R, and the actual densi-
ty of the topographical masses o(r,Q) by an average
column value 3(2),

R+H
2=z [ o 0ar, )

(the arguments for making such assumptions are dis-
cussed by, e.g., Martinec and Vaniéek (1994a)), and re-
moving the singularity of the Newton kernel, the poten-
tial V* takes the form (Martinec, 1993):

Vi(r,Q) =

R+H'

r'=R

=VB(r, Q)+G/l;’ [E(Q’) L7i(r, ¢, )

—a(Q) L= (r, 4, ')

R+H ,
] -

where the symbol E:i(r, ¥, ') stands for the radial in-
tegral of the Newton kernel weighted by r/°:

E:i(r', ¥, r’) :] L‘l(r: ¥, i"J')""ﬂd""; - (7)

The gravitational potential V2 (r, Q) of the spherical
Bouguer shell of thickness H and density 2(22) may be
expressed as (Wichiencharoen, 1982),

( 47Ge(Q)L [RH + RH? + 1H?] |
fr>R+H,

VB(r,Q) = J 2GR(Q) [(R+ H)? - 22 _ grﬂ :
fR<r<R+H,

if o <R,
; _ (8)

The singularity of the potential of the condensed
masses may be removed in a similar way (Martinec,
1993):

| 47Ge(Q) [RH + 1H?] |

Ve(r,Q) = V‘(r, Q)+
+GR? /ﬂ [o(@) - ()] L—l(r,¢,R)dQ' . (9

Here the symbol V*(r, Q) denotes the gravitational po-
tential of a spherical layer with the density a(Q):

4?1'G0'(&'2)5f_—2 2 alazalte

Vir,Q) = (10)
4rGo(QR, r<R.

The density o(2) of condensed masses can be chosen

in a variety of ways. In this paper we will choose it ac-

cording to the principle of conservation of topographical
masses (Wichiencharoen, 1982), i.e.,

a(Q) =2()r(Q) , (11)



where

Q) =H (1 A 3’;22) : (12)

Topographical effects in the Stokes-

Helmert technique

As mentioned in the Introduction, the effect of topo-
graphical masses on geoid determination is described by
three terms (Martinec, 1993): the direct topographical
effect on gravity at the earth’s surface:

86V (r,Q)
or r=R+H ,

§A(QY) = (13)
the primary indirect topographical effect on potential
at the geoid:

SV(R,Q) ; (14)
and the secondary indirect topographical effect on the
gravity at the geoid,

§AD(Q) = %aV(R, Q). (15)
The first and the last terms affect the gravitation rather
than the potential. To express their effect on the anoma-
lous potential T', or, better still, on the geoidal height N,
Stokes’s integration has to be applied to them. The to-
tal topographical effect on geoidal height, Ni,p, is then

given as
Ntop = Ngir + Npri + Nsee (16)

where the term Ny, is caused by the direct topograph-
ical effect on gravity:

Nair(Q) = R / SA)S()AY ,  (17)
the term Np,; is caused by the primary indirect topo-
graphical effect on potential,
SV(R,Q
Npri() = LB (18)
T

and the term Nj.. is caused by the secondary indirect
topographical effect on gravity,

Nyee(Q) = f §A(Q

Here we have used the standard notation: S(¢) is the S-
tokes function (Heiskanen and Moritz, 1967, eqn.
(2-164)), and 7 is the normal gravity on the reference
ellipsoid.

Substituting for 64 and §A® from eqns.(13) and
(15), and then for the residual potential §V from the
Helmert decomposition (1), each of three terms Ng,,
Npri and N, may be split into two constituents:

s thir,pri,sec ) (20)

Sy . (19)

Z . e t
Ndﬁr,pr:}sec = th'r,pri,sec
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where geoidal height increments N with superscripts ’t’
are induced by the topographical potential V* and those
with superscripts ’¢’ are induced by the condensation
potential V¢. Explicitly,

N = B [ VD)

47r7 o or S(¥)aet’,

r=R+4+H'
(21)

V‘ “(R,Q), (22)

Nt € (Q)

pri

and
NLS(Q) = £ fV“(RQ)S(ab)dQ' (23)

Let us now discuss the 3 effects separately.

The direct topographical effect on gravity

The direct topographical effect on gravity, §A(Q), is
nothing but the radial derivative of the residual poten-
tial 6V taken at a point (R+ H, 2) on the earth surface,
cf., eqn.(13). Substituting for the residual potential §V
from Helmert’s decomposition (1) into eqn.(13), we can
write

SA(Q) = AH(Q) — A%(Q) , (24)
where :
AHQ) = 3V5(:,Q) . ’
and 880
A= gﬁ‘én—m reR+H (@)

are the radial components of the gravitational attrac-
tion induced by the topographical and condensed mass-
es at the point on the earth surface.

Taking the radial derivative of eqn.(6) and then put-
ting r = R+ H, we obtain

AYQ) =
_AB(Q)+G/ (Y iﬁ(w,r’) A
- o e ) 8‘-‘" =R -

R+H

J ', (26)
r'=R r=R+H

where AP(Q) is the radial component of the attraction
of the Bouguer shell at the point (R + H,Q), i.e.,

OL=1(r, %, ')

B
APy = (%) (27)

or r=R+H

Applying, as we should, the first of eqns.(8), AZ(Q)

becomes
R? H H?

o = —47Go(NH —— .
4B(Q) = —47Ga(®) (R+H)2( + = +3R3)

(28)
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Similarly, we can derive the attraction A°(€2) of the
condensed masses at (R + H,Q). Taking the radial
derivative of eqn.(9), we get

AS(Q) = AYQ)+
+GR? f [0() - o(9)] QEM i
! r=R+H ( 9)

where A%(Q) is the attraction of a sphencal single layer
with the density o(£2):

ave(r, Q)

or (30)

ANQ) =

r=R+H

Considering, as we should, the first of eqns.(10), A4(Q)
becomes
R2

BT (31)

AL(Q) = —47Go(Q)
Substituting eqns.(26) and (29) into (24), the direct

topographical effect on gravity may be expressed in the

form:

AP(Q) -

§AQ) = A‘(Q)+

+G/ l:_(Q)aL (ra,b,r)

R+H

!

ri=R

oL 1(7‘ )|

- o)

r'=R
oL~ (r, rf),R)]

or r=R+H
Provided that the condensation of the topographical
masses is performed according to the principle of mass
conservation, i.e., when the condensation density o(£2)
is given by eqns.(11) and (12), then eqns.(28) and (31)
readily show that

AP(Q) = 449) . (33)

—R?[o() — 0(Q)] ' . (32)

This means that the attraction of the Bouguer shell at
a point on the earth surface is equal to the attraction
of a single layer at the same point. As a consequence,
the first two terms in eqn.(32) cancel and the direct
topographical effect on gravity reads

oL -1(r, )|
n’ [E(Qf) H 1

!

SA(Q) = G

ar
r'=R
oL 1(r,p,r)| "
—e)—p —
r'=R
_R2[o(Q) — o(Q)] Mﬁl} de . (34)
r=R+H

The primary indirect topographical effect
on potential

The formulae (6) and (9) may be used dlrectly for de-
termining the geoidal height increments Np,’,‘: (2) due to
the primary indirect topographical effect on potential.
All that is required is to put r = R and divide them by
normal gravity v - cf. eqn.(22) - to get:

M@ = “222(0) (RH + 317 +
R4H'
+2 [ [oo Firvr|o -
P . R+
2@ Firu e, @)
and AnGR
Niri(@) = ——0(Q)+
+E [ @)~ @117 (R4, RN, (30
T Jar

where for the gravitational potential of the Bouguer
shell we have substituted from the last of eqn.(8), and
for the potential of spherical material layer from the last
of eqn.(10). Taking the condensation density o(Q) as
defined by egns.(11) and (12), the geoidal height incre-
ments due to the primary indirect topographical effect
of the residual potential §V becomes

Npri(Q) = Nppi(Q) — N;i(Q) =
2rG 2H
= -3 H? -
5 o(Q)H (1+3R)+
R+H'

r'=R

+& Fmﬁfjwwwv
T Jar

~2(@) iR, 9,7 -
—R?[o(Q) — o(Q)] L™(R, %, R)] 4’ . (37)

The secondary indirect topographical ef-
fect on gravity

By definition (cf., eqn.(15)), the secondary indirect to-
pographical effect on gravity, §4(®)(Q), is given by the
residual topographical potential §V at a point on the
geoid multiplied by 2/R. This effect may be expressed
by means of the geoidal height increment N,;(Q) as

§AGN(Q) = %’Npri(g) : (38)

Substituting from eqn.(37) into eqn.(38), the secondary
indirect topographical effect on gravity takes the form:

_%gmmHzO+g§)+

§AR(Q) = o



2G —rO T—1 ' RtH'
22 [ Ja@) Bl

R+H

r'=R
(R, ¢, R)] dQ . (39)

—2(?) LY(R, 4,7’

—R?[o() - o(Q)] L~

Anomalous density of topographical mass-
es

For computing the geoidal heights, the density of the
topographical masses is usually modelled by the mean
crustal density go = 2.67 g/cm® (e.g., Vaniéek and
Kleusberg (1987) or Sideris (1990)). In the mountains,
small variations from this value become significant. Al-
so the density of water in lakes such as the Great Lakes
in North America, differs significantly from the value of
2.67 g/cm®. How much of an error can this cause in
geoidal heights?

To answer this question, we express density 7(£2),
assumed to be varying only lateraly, as a sum of the
constant ’reference’ value go = 2.67 g/cm® and a later-
ally varying ’anomalous’ density 6g(Q2), i.e

2(2) = oo + 62(Q) . (40)

Substituting the decomposition (40) into eqn.(11), the
condensation density () is written analogously as:

o(Q) = 00(Q) + 60(Q) . (41)

The ’reference’ value o(£2), that corresponds to the ref-
erence density gg, varies only with terrain height:

00(2) = 00 7(Q) , (42)

whereas the ’anomalous’ condensation density 6o(Q) is
associated with both the anomalous density §2(2) and
the height as

b0 (Q) = 63()7(Q) . (43)

Substituting for g(Q2) and ¢(Q2) in eqn.(34) from
eqns.(40) and (41), the direct topographical effect on
gravity can be written as

SA(Q) = 6A0(Q) +6A5(Q) , (44)
where
af'Ti ¥ p R+H'
6A0(Q) = GQ()/' [——E,;; ™) _
r'=R+H
=51
~R @) - r(@) G ] )

197

and
—_— R+-H'
=1 7
§A(Q) = G / {53@1’) ﬂ_g‘_ﬂ{’s_"_)
a " r'=R
oL -1(r,u,m)|[**H
~sp@) b))
r'=R
1
—R2[60() - 60(Q)] ‘%—(’“‘"’_@-] s
r=R+H

(46)

Similarly, the geoidal height increments Np,;(Q)

caused by the primary indirect topographical effect on
potential, cf. eqn.(37), may be decomposed as

Npri (Q) - Npri.ﬂ(Q) + Npri,éE(Q) ] (47)

where
27G 2H
Nprio(R2) = —?9032 (1 + EE) +
Goo =T o |RHH
+T/: [L (R, ¢, 7") gy
—-R*[r() = r(Q)] L7} (R, %, R)] dY,  (48)

and

227G 2H
= (1412

R+H'

o8| oo

—_— : R4+H
—62(@) LR 97|, -

—R*[60(Q) — 60(Q)] L~ }(R, %, R)| d' . (49)

Finally, the secondary indirect topographical effect
on gravity, cf.eqn.(39), may be decomposed as

§A(Q) = 6A57(Q) + 842 () (50)
where
sAD(q) — _17G ( 2H
A (Q) RQH 1+3R+
2G 00 f [~ R+H'
Lt / -
5 R , (ij’r)r’:R+H
—R*[r(Q') — ()] L (R, ¥, R)] 4", (51)
and

542(0) = G@(Q)H? ('1 + 35) +

3R

2G — R+H'
= [ |se(@) L1 ' -
* R 0 { g( ) L (Rj w‘T)L':R
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R+H
—-58(Q) L (R, 1),

—R*[60(Y) — 60(Q)) L1 (R, %, R)] dY . (52)

In summary, the terms 6A4o(Q2), Nprio(©2) and
6A52)(Q) represent the direct and both the indirect to-
pographical effects induced by topographical masses of
constant density go, whereas terms 6 As3(Q), Nppi 53()
and 6/15?(9) represent the effects induced by column
averages of lateral anomalies §3(Q2) of the topographi-
cal density. The former terms are usually considered in
geoid computations (e.g., Vanicek and Kleusberg (1987),
or Sideris (1990)), while the latter terms are not.
Since our interest here is focused on exploring the effects
of lateral anomalies of topographical density on geoidal
heights, we will further investigate only the terms

8As3(Q), Npri 57(2) and 6452(9).

One particular example: a lake

A lake whose surface has a non-zero topographical height
represents an obvious example of lateral changes in the
topographical density §(£2) - note that a lake at the alti-
tude of sea level, or ocean, for that matter, has zero to-
pographical height and thus zero topographical effects.
We will denote the density of water by gy, (1.0 g/cm?),
while the density of surrounding topographical masses
will be denoted by go (2.67 g/cm?). Let the orthometric
height of the lake surface be H (H > 0) and the depth
of the lake be D(Q2), (D(2) > 0). To a high degree of
approximation, we may assume that H = Hy = const.
over the whole lake.

By definition (see eqn.(5)), the laterally varying den-
sity 2(Q2) is evaluated from the actual 3-D density o(r, Q)
by averaging along the topographical column of height
H. For our example of a lake, this formula yields

[ow D(2) + 00 (Ho — D(Q))] /Ho ,
_ if D(Q) < Ho ,
2(Q) = SRLp= o
0w , if D(Q) > Ho .
(83)
The anomalous density ég(Q), cf. eqn.(40), is then given
by

(20 — 0w)D(Q)/Ho ,
52() =

20 — lw

D(Q) < Ho

D(Q) > Hy .

(54)
The first of eqns.(54) shows in particular that if D(Q) =
0, then 68(Q2) = 0.

For a lake, the direct topographical effect on gravity
given by the term 6 A53(2), cf., eqn.(46), may be further
simplified. Realizing that the height of the lake surface
is constant, we may put r’ = R+ Hj (instead of »' = R+
H') in the first term on the right hand side. Moreover,

the second term in this equation is equal to zero when
the computation point lies outside the lake because the
anomalous density 6g(£2) vanishes outside the lake. At
the lake, the height H of the computation point is equal
to Ho. Therefore, we may put ' = R + Hy (insted of
" = R+ H) in the second term without changing its
numerical value. The term 6 A;7() then becomes

8As(Q) =
—¢ [ |pa@) - sz L) s
=c [ |wea@)- o) =
—1 r
—R? [60() — 60(Q))] W} inco Q' .
Ay

Expressing the anomalous condensation densities in the
positions 2 and Q' according to eqn.(41), we Aave

60(Q) = 68(Q) () ,

b () = 8a() () , (56)
where R
T(Q]:H(1+E+3—R—2—) ,
and

Ho Hg) ‘ 57

The condensation density o(£2) vanishes if the computa-
tion point 2 is outside the lake, therefore, the function
7(€2) may be chosen arbitrarily for this position. At the
lake, the function 7(£2) is equal to 7(Q') because of the
fixed height of the lake surface. In summary, we may
put

@) =r@=r =t (1+ 5204 ) . )

The spherical approximation (used throughout the pa-
per) then yields

Q) =7(Q)=rn=H, . (59)
Substituting eqns.(56) and (59) into (55), 6 As5(2) may

be finally written in the following form:
6A55(Q) =

R+Hg

=G [ leo) - 5200 [@L—%"”—’”
AL~ (r, ¢, R)]
or r=R+H

The geoidal height increment Np; 57(S2), cf. eqn.(49),
may be expressed analogously, getting:

—~R?H, dfY' =7 (L30(60)

2rG __ 2H
Nyrese(@) = - 2255 (14 550+



R+Ho

G [ o o [ T oien o
+2 [ o) - sz [ i,

—R*HoL™Y(R, 4, R)] d' . (61)

‘=R

The secondary indirect eﬁect.‘ﬁ%) (), cf. eqn.(52),
is simple to derive from the last equation:

542(@) = GéE(Q)Hé* (1 + %*HRE) o5
R+Ho
+5 [ @) - sw@) | Fiw| L -

. —R’H,L™Y(R,%, R)] 42’ . (62)

For the highest lake in the world, the lake Titicaca in
Peru (Ho = 3810 m), the second term of Np; s5(2), the

term
4rG H-

*Tﬁ o)
has the value of —0.4 mm. Slmllarly, the corresponding

term ofﬁ&?(ﬂ), the term

_8rG 52( Q)
3
has the value of —10~3 mgals. It is thus not worth con-
sidering these terms at all. Neglecting them, eqns.(61)
and (62) read in their final form:

Norss2(®) =~ G B+
R+Hy
+2 [ @) - sa@) | PR, -
—R*HoL™'(R,%,R)] d' , (63)
and o R 4
§A457(Q) = ——-6a(VHG+
S [ o) - s [E—‘IR )
+7 [ tow@) - sp@) | Firg | -
—R*HoL™Y(R, %, R)] 4’ . (64)

Numerical results for the lake Superior

Lake Superior in the central part of North America was
chosen to ilustrate the effect of lateral changes of to-
pographical density caused by lake water on geoidal
heights. The area under study is bounded by latitudes
¢ = 46° — 49° North and longitudes A = 268° — 276°
East. Figure 1 shows the depth of lake Superior as
provided by the Geodetic Survey of Canada. The max-
imum depth is 329 m, the orthometric height of the lake
surface is approximately 183 m.

199

Figure 2 shows the plot of the term §A55(Q) over
the lake Superior. We can see that the magnitude of
this term ranges from -0.14 to 0.18 mGal. The Stokes
integration of the corrections 6 As7(2) provides the in-
crement Ng;, 57(€2) to the geoidal heights in the form:

Narsa® = = [ 64a(@)s@a . (©9)

Figure 3 shows that this increment ranges from -1.1 to
1.3 cm.

To get a better estimate of the magnitude of the in-
dividual terms making the increment N,; s7(2) to the
geoidal undulations due to the primary indirect topo-
graphical effect, let us divide this term into two con-
stituents:

Nprs‘,éE(Q) pr: 69(9) +:N, pri 5Q(Q) (66)

where the Bouguer term N}f_,-_ s3(§2) is equal to

N,fi,-ﬂ(sz)_—?-’fr(n)ffo( %) . (67)

Figure 4 shows the plot of the term N, =y ég(Q) over the
lake Superior. We can observe that the magnitude of
this term ranges from -0.24 to 0.0 cm, the largest neg-
ative values are encountered in the deepest parts of the
lake.

Let us explain the reason why the minimal value of
-0.24 c¢m has a ’plateau’ over the deepest parts of the
lake Superior. The orthometric height of the surface of
the lake is 183 m, while the depth of the lake reaches
the value of 329 m. This means that the deepest water
masses of the lake, whose depth is more than 183 m,
lie under the geoid. Inspecting equation (54) for the
anomalous density 69(€2) of the topographical masses,
we can find that the ”topographical masses” for these
deepest parts of the lake have a constant density go—3,,
(=1.67 g/cm?). Since the height H of the observer is
also constant over the lake, H = Hy, eqn.(67) shows
that the term NZ pri 57(Q) is constant over the deepest
parts of the lake, l.e., parts whose the depth is larger
than 183 m.

The term N2 ori,iz(§2), an analogue of the terrain
term in the indirect effect (Heiskanen and Moritz, 1967,
sect.3-3) for a case when the density of topographxcal
masses varies laterally, is given by

Ngs,az(g) =

+Ho

=2 [ o) -69(9)1[ (7,0

~R*HoL™ (R, 4, R)] 4’ . (68)

Figure 5 plots the term N2 ori,55(S2) over the lake Su-
perior. The magnitude of thls term is of the order of
4 x 107° m. Comparing these values with the magni-

tude of the term Njﬁ.‘ 6@(9) (Figure 4), we observe that
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Figure 1: Depth of lake Superior (in metres).
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Figure 4: The geoid height increment generated by

the Bouguer part of the primary indirect topographical
effect N2, ;5(Q) over lake Superior (in metres).
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Figure 5: The geoid height increment generated by the
terrain correction to the primary indirect topographical
effect N};’f.‘-’az(ﬂ] over lake Superior (in metres).
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Summary

The main problem of linear estimation
theory in infinite dimensional spaces is
presented and its typical difficulties
are illustrated.

The use of Wiener measures to represent
continuous observation equations is
carefully analysed in relation to the
physical description of measurements and
to the mathematical limit when the num-
ber of observations grows to infinity.
The overdetermined problem is solved by
applying the Wiener principle of
minimizing the mean square estimation
error; the solution is proved to exist
and to be wunique under very general
conditions on the observation operators.
Examples coming from space geodesy,
potential theory and image analysis are
presented to prove the effectiveness of
the method and 1its applicability in
different contexts.

1. Introduction

In this paragraph we would 1like to
discuss the main differences and
difficulties encountered when we try to
generalize the usual least squares
estimation theory to infinite dimen-
sional spaces.

A classical scheme in linear estimation
theory is the following: assume the set
of measurements to be collected in a
vector Y belonging to some linear vector
space HY , also called the space of

observables, with finite dimensions nY :

the theoretical value y is constrained
to belong to some linear (proper)
manifold in Hy, which for instance is

described in parametric form as
{s§ssshtidray x€ Hx}

ranges in the
space Hx , also

where the vector x
so-called parameter

finite dimensional, with nx< nY yraiesg
constant vector in Hy, A is a linear
operator (matrix) from Hx into Hy.

The relation
{151°)

reflects the physics and the geometry of
the observational process, i.e. a
description of all what is known of the
physical and geometric relations between
the quantities relevant to the experi-
ment, including those which describe the
internal states of the instruments; -in
(1.1) the vector a represents just a
fixed translation of the range of A, ﬂA,

y = Ax + a

away from the origin of HY and it can be

eliminated by a coordinate shift, there-
fore from now on we suppose a = 0 and
the manifold of the admissible wvalues
will coincide with ﬂﬁ. . The vector of

observations Y does not belong to the
manifold of the admissible wvalues,
because the model (1.1) is imperfect in
describing the measurement process, i.e.
we rather have an observational model

Y = Ax + v (1.2)



the Bouguer term N2, ;+() is about two orders larger
than the terrain term N, ;~(Q). This fact can be easily
explained by the shape of the bottom of the lake. The
slope of the lake banks is very steep so that a larger part
of the lake has a depth greater than 183 m. Therefore,
replacing real ”topographical masses” by the Bouguer
plate is a fairly good approximation.

We have also computed the effect of the secondary
indirect topographical effect on the geoid, cf., eqn.(62).
The Stokes integration of AE? () yields the increment
Niee,55(R). The numerical values of this contribution
to the geoid are another of magnitude smaller than the
term N2, —(Q); for a 1 cm geoid both NE, (Q) and
Niec,53(S2) may be safely neglected.

Conclusions

This paper was motivated by a question whether lakes
should be considered as lateral density inhomogeneities
of the topographical masses, when the geoid is to be
determined with a high accuracy. The standard way
of approximating the density of topographical masses
when computing their gravitational effects is to take
the constant value of 2.67 g/cm?®, while the lake water
density is 62% less.

Numerical computations have been caried out for
lake Superior, the largest of the Great Lakes of North
America. We have computed the correction to geoidal
heights when the density of 1.0 g/cm® was used in the
computations instead of the density of 2.67 g/cm3. The
numerical values of these corrections for lake Superior
are fairly small; the correction to the geoidal height due
to the direct topographical effect on gravity lies within
the range (-1.1, 1,3) cm, the correction to the geoidal
height due to the primary indirect topographical effect
on potential is within (-0.24, 0.0) cm. We have shown
that the dominant term in the latter corrections is the

Bouguer term (§§), which depends linearly on the den-£7

sity contrast between water and surrounding rock, and
quadratically on the orthometric height of the lake sur-
face.

To take into consideration a laterally varying densi-
ty, the singularity of the Newton integral for the direct
as well as primary and secondary indirect topographi-
cal effects have been removed using a different approach
from that for a case of a constant topographical density
(Moritz, 1968). Moreover, we have shown that for the
case of a lake the general formulae may be simplified
making the numerical evaluation easier.
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