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Introduction

Today’s effort of geodesists is devoted to compute the geoid with an abso-
lute accuracy of 1 cm. To achieve such an accuracy, the theory of solving a
geodetic boundary value problem for geoid determination used up to now to
compute the geoid with an accuracy of about 50 cm has to be precised. There
is a lot of theoretical problems that have to be highlighted for computing such
an accurate geoid. Let us introduce a couple of questions which should be
answered in this context. How to continue the gravity data from the topog-
raphy to the geoid through the topographical masses in order the traditional
Stokes’s integral could be applied to gravity anomalies? How to incorporate
the truncation error of Stokes’s integration into the geoidal height correc-
tions? How many terms of the Taylor series expansion of the gravitational
potential of the topographical masses are to be taken into consideration for
a precise computing the gravitational effect of the topographical masses?

In this report we focus our attention on the problem of the influence of lat-
eral changes of the density of the topographical masses (masses between the
geoid and the earth’s surface) on geoidal height computation. Up to now all
theories computing the gravitational effect have assumed that the topograph-
ical masses were homogeneous. The density was considered constant, equal
to a mean value gy = 2.67 g/cm®. This is too approximate especially near
and in mountaineous areas. Geological and geophysical knowledge about the
earth’s crust indicates that there are lateral density variations of the order of
10% at least. In contrast with deeper parts of the earth, the radial changes of
the density of the topographical masses are unimportant. The reason is that
the mass density of deeper parts of the earth is influenced by pressure and
temperature changing strongly radially, whereas the density of topograph-
ical masses is determined by geological factors (geological formation, age,
porosity, previous history, etc.) which differs from place to place.



The report aims to answer the question: Are corrections to geoidal heights
due to laterally varying density of topographical masses important for a 1-cm
geoid determination? And, if so how to modify the existing theories for the
topographical effect computation to take into consideration lateral density
inhomogeneities.

Theoretically, we will investigate three problems connected with these
questions.

1. What are the correct forms of expressions describing the effect of to-
pographical masses on geoidal heights?

2. How to remove a weak singularity of the Newton integral kernel if a
2-D topographical density is considered?

3. How large is the truncation error of Stokes integration and how to
remove a weak singularity of Stokes’s function?

The gravitational effect of topographical masses on geoid heights is de-
scribed by three terms (Heiskanen and Moritz, 1967; Wichiencharoen, 1982;
Vaniek and Kleusberg, 1987; Wang and Rapp, 1990; Sideris and Forsberg,
1990; Heck, 1992; Martinec and Vanicek, 1993a,b; Martinec et al., 1993a;
Martinec, 1993a-c): the direct topographical effect on gravity which is the
gravitational attraction of topographical masses at a point on the topogra-
phy, the primary indirect topographical effect on potential which is the grav-
itational potential of topographical masses at a point on the geoid, and the
secondary indirect topographical effect on gravity which is the gravitational
effect of topographical masses on the anomalous gravity on the geoid.

Nevertheless, in geodetical literature there are large differences in for-
mulae for describing these terms. Mixing the gravitational attraction of
topographical masses with the downward continuation of gravity anomalies
(Wang and Rapp, 1990) is one reason of discrepancies of formulae for the di-
rect topographical effect on gravity. Misunderstanding planar approximation
of the geoid (Wichiencharoen, 1982; Vani¢ek and Kleusberg, 1987; Wang and
Rapp, 1990) is a source of severe errors in formulae for the primary indirect
topographical effect on potential (Martinec and Vanicek, 1993a). Chapter
1 of the report is thus devoted to derive theoretical formulae for the above
topographical terms in the forms which they possess in a boundary condition
of the boundary-value problem for geoid determination. ‘
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The weak singularity of the Newton kernel makes difficulty in computing
the direct topographical effect on gravity as well as both the indirect topo-
graphical effects. The traditional way (Moritz (1968, 1980); Wichiencharoen
(1982); Vanitek and Kleusberg (1987); Wang and Rapp (1990); Sideris and

. Forsberg (1990); Heck (1992); Martinec and Vanicek (1993a,b)) of removing

the singularity on the Newton kernel is as follows. First, the Newton kernel
is expanded by means of Taylor’s series expansion, then the integral over the
vertical coordinate is carried out analytically, and finally the singularity is
removed 1n each individual terms of Taylor series.

A questionable point of the above procedure, pointed out e.g. by Heck
(1992), is whether the Taylor series expansion converges or not, and if so, how
many terms of the infinite Taylor series should be taken into consideration
to describe the gravitational potential with a prescribed accuracy. Geode-
sists (Moritz, 1968; Vanicek and Kleusberg,1987; Sideris, 1990; Forsberg and
Sideris, 1993) usually take only a few first terms of the Taylor series (most
often only the first three) and believe that the rest of the series may be ne-
glected. This seems to be a good approximation for a flat terrain when a grid
of the topographical heights is sparse having a large step (e.g. 0.5 degree).
Then a dummy point of integration in the Newton integral never goes too
much close to the computation point and magnitudes of higher order terms
of the Taylor series retain small.

The problems appear when the gravitational potential of the topograph-
ical masses is computed in a rugged mountaineous terrain such as the Rocky
Mountains. In this case, a grid of topographical heights has to be consid-
ered fairly dense (e.g. lkmx1lkm) to fit rought shape irregularities of the
terrain. A dummy point of the Newton integral may moves very close to the
computation point, and thus magnitudes of higher order Taylor terms in-
crease faster then magnitudes of lower order terms. As a result, higher order
terms become dominant and the Taylor series expansion stops to converge
(Martinec at al., 1993c)

Instead of expanding the Newton kernel into a Taylor series expansion and
removing singularity of each series term separately, in this report (Chapter
2) we will remove the singularity of the Newton kernel immediately in the
definition of the Newton integral. By subtracting and adding a value of
the Newton kernel at the computation point to the Newton integrand, the
singular point ¥y = 0 may be left out from the integration domain, and
thus the singularity can be overcome. The only necessity is to evaluate the

3




Newton integral over a fixed height and a fixed mass density. This can be
done analytically resulting in the gravitational potential of a Bouguer shell.

In Chapter 3 we will show how to chose the condensation density of the
Helmert condensation layer. A concrete form of the condesation density in-
fluences a condition for the existence of the solution of the boundary-value
problem for geoid determination. An improper choise of the condensation
- density may cause that the boundary condition for an anomalous gravita-
tional potential is singular, and consequently, the solution of the boundary-
value problem does not exist in a ’classical’ sense. Moreover, a condensation
density significantly influences forms of the Bouguer terms of the direct as
well as primary indirect topographical effect; different ways of condensa-
tion results in different expressions for the topographical terms. Therefore,
attention should be paid to a way how to perform the condesation of the
topographical masses.

To distinguish contributions to the geoidal heights generated by topo-
graphical masses of a constant density from those coming from the lateral
changes, we will separate the density of topographical masses into a 'refer-
ence’ part, which will be considered constant throughout all the topo-masses,
and laterally varying ’anomalous’ part. Lateral changes of the topographical
density may appear due to different reasons. In Chapters 5 and 7 we will
consider three of them: the density contrast of water in lakes, the Pratt-
Hayford compensation density, and anomalous density of a given geological
formation. The first type of lateral changes of topo-density is important
in regions with large lakes (such as in the North America). By the sec-
ond model of the lateral density, we will estimate the effect of compensation
mechanism of topographical masses on the geoidal heights. Nevertheless, as
already mentioned, the largest lateral changes of the topographical density
are caused by geological factors. On a geological pattern of topographical
masses from Purcell Mountains (the eastern part of the Canadian Rockies)
we will demonstrate that the lateral densities may play an important role for
an accurate geoid determination.

The direct topographical effect on gravity can be transformed to geoidal
heights by applying the Stokes integration. To avoid the integration over
the whole earth, Vanicek and Kleusberg (1987) suggested to separate the
geoidal heights into low and high frequency parts. The low frequency part i1s
assumed to be determined from satellite geodesy, whereas the high frequency
part is computed by Stokes’s integration with the spheroidal or the modified



spheroidal Stokes’s function. Unfortunately, Vani¢ek and Kleusberg (1987)
did not explore the truncation error of this 'partial’ Stokes’s integration quite
properly. Therefore, one point under our interest is to give a formula and
numerical values (over Canada) of this error. Theoretically, this requires
to introduce the Molodensky truncation coefficients for the spheroidal and
the modified spheroidal Stokes functions. The section 6.2 dealts with this
problem.

All mentioned Stokes’s functions have a weak singularity at the point
1 = 0. Hence, to evaluate the Stokes integral numerically, we meet with the
same problems as in computing the Newton integral. The singularity at the
point ¥ = 0 may be treated by an analytical way (Heiskanen and Moritz,
1967, sect. 2.24) or may be removed by the same way as we do for Newton
kernel. Vanicek and Kleusberg (1987) used the former possibility, but we will
follow the latter possibility and remove the singularity of the Stokes function
by subtracting and adding the gravity anomaly at the computation point to
the gravity anomaly at an integration point. In such a way, the singular point
¥ = 0 of Stokes’s function will be removed from the integration domain.

The price paid for it is to evaluate the angular integral of the Stokes
function analytically. When the integration domain of Stokes’s integral is
the full solid angle, then the angular integral of the Stokes function vanishes.
Nevertheless, we will shrink the Stokes integration to a spherical cap of a
small radius. In this case an incomplete integral of Stokes’s function does
not vanish; analytical formula for the primitive function of this integral is
derived in section 6.4.



Chapter 1

Stokes-Helmert’s
boundary-value problem for
geold determination

This chapter is devoted to formulate the boundary-value problem for geoidal
height determination. As was shown by many geodesists this problem can be
characterized as a free non-linear boundary-value problem for the infernal
non-harmonic gravity potential. We will demonstrate that this problem can
be transformed to a fized linearized boundary-value problem for the harmonic
Helmert anomalous potential.

We are specially interested in terms describing the effect of topographical
masses on geoidal heights. We will show that this effect can be character-
ized by three terms, the direct topographical effect on gravity, the primary
indirect topographical effect on potential, and the secondary indirect topo-
graphical effect on gravity. In geodetical literature there are large differences
in formulae for descriptions of these terms. Let us mention the contraversy
between Vani¢ek and Kleusberg’s (1987) equation for the direct topographical
effect and Wang and Rapp (1991)’s mixed formula for the direct topograph-
ical effect and the downward continuation of gravity anomaly. The planar
approximation of the geoid caused that resulting equations for the primary
indirect effect on potential derived e.g. by Wichiencharoen (1982) or Vanicek
and Kleusberg (1987) are also significantly biased (Martinec and Vaniéek,
1993a). Therefore, in Chapter 1 we will derive formulae for topographical
terms in details.



1.1 Formulation of the problem

Let us start with reminding fundamental expressions related to geoid deter-
mination.

Gravity field. The gravity potential W is created by the gravitational po-
tential V' generated by the earth’s masses and by the centrifugal potential ®
induced by the earth’s rotation, i.e., -

W=V+0&. (1.1)

The potentials will be described by spherical coordinates (r, 1), where
stands for the pair of angular coordinates, co-latitude ¥ and longitude A.

Geoid. As usual the geoid is defined as the equipotential surface of the gravity
potential W of the earth corresponding to the mean sea level, i.e.,

W(T, Q) = WQ ’ (1.2)

where W, is the prescribed (known) value. This implicit definition of the

- geoid may be transformed to an explicit expression for the radial coordinate

r of a point on the geoid,
r= T‘g(ﬂ; WO) ) (13)

where r,(§2; W) is a non-linear function of both the variables 2 and W.
The Bruns’s formula (Heiskanen and Moritz, 1967, eqn.(2-144)) represents a
linearized form of eqn.(1.3).

Topographical masses. The masses between the geoid and the earth’s surface
will be called the topographical masses. We will assume that the density g of
the topographical masses is known. In the reality, we have only innacurate
models for it. Later we will see that by introducing the Helmert condensation
layer, the requirement of accurate topographical density is greatly reduced
and only a rough information about topographical density is sufficient to
determine the gravity field inside the topographical masses with a sufficient
accuracy.

Formulation of the problem. Let us assume that gravity measurements per-
formed on the earth’s surface result in data about the magnitude of gravity

7



acceleration g = |g|. Let heights acquired from surface leveling have been
converted to the orthometric heights H of the earth’s surface above the geoid
(Heiskanen and Moritz, 1967, sect.4). The transformation from the leveling
heights to the orthometric heights may be run because we assume that the
density of the topographical masses is known. Given two data sets on the
~earth’s surface, g = ¢(Q?) and H = H({2), and the value Wy of the gravity
potential on the geoid, the problem is to determine the figure of the geoid and
the gravity potential W outside the geoid. This problem may be classified
as the free boundary-value problem for the gravity potential W.

1.2 Helmert’s anomalous potential

Let us decompose the gravitational potential V' generated by the earth into
two parts:

V=vig v, (1.4)

where V7 is the potential generated by the masses below the geoid and V*
is the potential generated by the topographical masses. Helmert (1884) sug-
gested to approximate the topographical potential V! by potential V¢ of
masses condensed on the geoid with surface condensation density o(f2). The
difference between potentials V' and V¢ then defines the residual potential
sV,

§V=V-ve. (1.5)

As shown in Martinec and VaniZek (1993a), the effect on geoidal undula-
tions by the topographical potential V* is of the order of 10 m, whereas the
residual potential 6V influences geoidal heights of only about 2 m. It means
that the condensation potential V¢ approaches the topographical potential
V? fairly well. As a consequence, the residual potential §V may be computed
from relatively much less precise expressions, e.g., by evaluating the Newton
volume integral using approximate estimates of the topographical density.
Such estimates cannot be used in computing the condensation potential V¢,
because they would cause errors in geoidal heights 3 orders of magnitude
larger.

To make use of the above fact, the potential V¢ together with the potential
V9 will be considered as unknown quantities. The gravity potential V44 V<4
® may be expressed as a sum of a normal gravity potential U generated by



a geocentric biaxial ellipsoid spinning with the same angular velocity as the
earth and an anomalous potential T*,

ViVt d=U+T". - (L.6)

Inserting from eqns.(1.4)-(1.6) into eqn.(1.1), the gravity potential can be
written as a sum of three terms:

W=U+T"+6V. \ (1.7)

Here we denote the anomalous gravitational potential T* by a superscript
h and will call it Helmert anomalous potential to differentiate it from the
standard anomalous potential T (Heiskanen and Moritz, 1967, eqn.(2-137)).
 Eqn.(1.7) shows that T is related to T by

T=T"+6V. (1.8)

This formula may be thought of as another expression for the Helmert con-
densation decomposition (1.5).

The important consequence of eqn. (1.6) is that the Helmert anomalous
potential T* is harmonic outside the geoid, i.e., it satisfies Laplace’s equation
everywhere outside the geoid, '

VTR =0 outside the geoid . (1.9)

The free boundary-value problem for the gravity potential W formulated in
sect. 1.1 will be transformed to a fix boundary-value problem for the Helmert
anomalous potential 7. FEquation (1.9) shows that the latter problem is
described by Laplace’s equation valid outside the geoid. In the sequal, we
will look for a boundary condition for T*.

1.3 Bruns’s formula

Let us re-derive the Bruns’ formula (Heiskanen and Moritz, 1967, eqn.(2-
144)) for the case when the Helmert decomposition (1.5) is employed. Let Py
be a point on the geoid and @ be the corresponding point on the reference
ellipsoid (lying on the same geocentric radius). Then the actual gravity
potential of the Earth at the point on the geoid, Wp,, can be written as

Wp, = Wo = Up, + T, + 6Vp, . (1.10)

9




The normal potential on the geoid, Up,, can be expanded by the Taylor series
expansion as:

1 90U

- 10
= —_— - N%y ...
Up, UQ+81‘QN+287‘2Q + ,
=Ug — ’)’QN +en, (111)

where 74 is the normal gravity on the reference ellipsoid and N is the geoid-
ellipsoid separation called geoidal height. The magnitude of the correction
term e is of the order of 1071° x Wy (Vanicek and Martinec, 1993). Its con-
tribution to the geoidal height N is at the most 1 mm. In the following text,
this term will be omitted because we are interested only in one-centimeter
geoid determination.

We will assume that the parameters of the reference ellipsoid have been
chosen in such a way that the normal potential U on the reference ellipsoid
has the same value as the actual gravity potential on the geoid, i.e.,

UQ - WO . (1.12)
Substituting from eqn.(1.12) into eqn.(1.11), we get
Up, = Wo —vo N, (1.13)

where we have omitted the correction term ey. Finally, substituting for Wy
from eqn.(1.10), the last equation becomes

R St
N - (Th, +6VR,) (1.14)
This is a modified Bruns’s formula for the case of Helmert’s decomposition
(1.5). The term
: T}I;o
TQ
yields the separation between the so called co-geoid (Heiskanen and Moritz,
1967, Sec. 3-6.) and the reference ellipsoid, and the term

1%
Npri = B (1‘16)

RL
yields the separation between the geoid and co-geoid; it is the so-called pri-
mary indirect topographical eflect on potential divided by o (ibid.). This

term will be discussed in details in Chapters 4 and 5.

N* (1.15)

10



1.4 Linearized boundary condition for 7"

To evaluate the boundary condition for the Helmert anomalous potential T,
let us apply the operator grad{-} to eqn.(1.7) and take the magnitude of the
resulting vector. We get

, gradU - grad(T* + §V) |grad(T* + §V)P2]*

= d
lgradW| = |gradU| |1 + lradUE lgrad U2

(1.17)
Using the binomial theorem, the right-hand side may be linearized to the
form

lgradW| =~y - —— — —/— —¢x , (1.18)
T

where v = |gradU| is the normal gravity. The magnitude of the correction
term ey is of the order of 0.1 mGal at the most. In one-centimeter geoid
computation this term should be considered as a correction to the first two
terms. Its explicit form may be found in Vani¢ek and Martinec (1993).

The equation (1.18) is valid everywhere above the geoid. Let us consider
it at a point P on the earth’s surface.

or*
Or

8V

—EH . (1.19)
P

Normal gravity yp may be expressed by means of v and its derivatives at the
point @ on the reference ellipsoid lying on the same geocentric radius as the
point P (Heiskanen and Moritz, 1967, sect. 2-14}),

a
=70+ 5| (N+H)+...
ar|,
. mQ
:'yQ—ZEN—F—e.,, (1.20)
where R is the mean radius of the earth, and F' is the free-air reduction,
P2 g (1.21)
ari, ’

and N is the geoidal height given by the Bruns formula (1.14). The explicit
form of the ellipsoidal correction term €., was derived among others by Moritz
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(1980, sect.40.), Cruz (1986), Pavlis (1988) and Martinec (1990). Inserting
eqns.(1.20) and (1.14) into eqn.(1.19) yields
ar*
or

2

t R

P

Th = —Agh —6A~6P®) —ey —¢, . (1.22)

The term
Agf =gp—vq+F (1.23)

is the free-air gravity anomaly (Heiskanen and Moritz, 1967, eqn.(3-62)), the
term

sy
= 1.24
§A o |, (1.24)

is the direct topographical effect on gravity (Heiskanen and Moritz, 1976,
eqn.(3-59)), the term

6P = %Wpo (1.25)

is the secondary indirect topographical effect on gravity (Heiskanen and
Moritz, 1967, eq.(3-51)).

Adding and subtracting term dT*/dr| to the condition (1.22), we get

Fo
FA 2
637 WLET].%0 =—-Agh - 64—-6PP — ¢y —e,— Dy , (1.26)
Po
where o7 ah
Dg(T*) = ——| - (1.27)
or |p  Or |y
is the difference of anomalous gravitation between the earth’s surface and
the geoid.

The geoid in the boundary condition (1.26) will be modelled by a sphere
of radius R. It means that the left-hand side of eqn.(1.26) is linearized as
follows: -

ar* N 2 Th or* 2
or|p R or R
1]
where the subscript R denotes that terms are taken on a sphere of radius K.
Since the relative error of spherical approximation of the geoid is 3 x 1072,

+ T;;-}-&R , (1.28)

R
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the magnitude of the correction term ¢z may reach units of mGal. In one-
centimeter geiod computation this correction has to be taken into account;
its explicit form may be found Vani¢ek and Martinec (1993).

Considering eqn.(1.28), the boundary condition (1.26) takes the final lin-
earized form

or* 2
_(9TR+ET£: —-Agg——&Ag s (1.29)
where
Eng = 6A+6P(2)+6H+61+ER+D9 ] (1.30)

The term €4, represents corrections to the free-air gravity anomaly AgE; its
magnitude is of the order of units of mgal at most, i.e., its contribution to
geoidal heights may reach 2 m. Therefore, the geoid occuring in this term
may be taken as a sphere of radius R; the error of such approximation will
be 5 mm at most and may be neglected.

The correction ea, consists of terms of different origins: the topographical
effect (§ A+ 8P, the difference between the differentiation along the actual
plumb line of gravity field and along the radial direction (¢x), higher order
terms in the normal gravity (&), spherical approximation of the geoid (er),
and downward continuation of anomalous gravitation from the topographical
surface to the geoid (Dg). In this report we only focus our attention to treat
the effect of topographical terms §A and 6P on geoidal heights.

The Laplace’s eqn.(1.9) together with the boundary condition (1.29) rep-
resent a fixed linearized boundary-value problem for determination of the
Helmert anomalous potential T* outside and on the geoid. After finding the
solution of this problem, the shape of the geoid is determined by means of
the Bruns formula (1.14).

Since the correction €5 and continuation term Dg depend on the poten-
tial 7", the solution of the problem is necessary to search by an iterative
approach described e.g. by Martinec and Vanicek (1993d). The zero-order
iteration of 7" is given by Stokes’s integral applied on the right-hand side of
eqn.(1.29) where terms ey and Dg are left out. Higher-order iterations are
expressed by Stokes’s integral of gravity anomaly differences. This report
is only concentrated to estimate the effect of the topographical terms 6 A
and 6P on geoidal heights. Therefore, we will not describe the iterative
approach in details and only find the Stokes integral of terms §A and §P(?)
(see Chapters 4, 5, and 7).
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Chapter 2

Newton’s integral for
topographical potentials

As outlined in sect. 1.2, the residual potential 6V will be evaluated by means
of the Newton integral. To do it, we will express the potential V* of the topo-
graphical masses by the Newton volume integral and the potential V* of the
condensed masses by the Newton surface integral. Substituting the results
to the Helmert decomposition (1.5), we obtain the integral representation of
the residual potential §V.

Let the geocentric radius of the geoid be 7,(€2) and the geocentric radius
of the earth’s surface be 7,(Q) + H(Q). It means that H() is the height of
the earth’s surface above the geoid reckoned along the geocentric radius; this
height, to a relative accuracy better than 5 x 107, is equal to the ordinary
orthometric height. We shall assume throughout the report that A > 0.
The gravitational potential V* induced by the topographical masses at a
point (r,(2) is given by the Newton volume integral

O 2
tr, Q) G// ( ' VYN (r, o, )2 drdSY (2.1)
" Jrl=rg Q’ )
where G is Newton's gravitational constant, g(r,Q) is the density of the
topographical masses, N(r,%,r") is the Newton kernel,
, 1
N(r,y,r") = , (2.2)

r? 4 1'% — 277! cos 3
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1 is the angular distance between the directions 2 and (', and the integration
in eqn.(2.1) for ' is taken over the full solid angle.

We will abbreviate notations for the orthometric heights H({?) dropping
the argument 2. Therefore, we will use H instead of H(§2) for the orthometric
height of the topographical surface in direction 2 and H' instead of H(§Y')
for the orthometric height of the topography in direction '

The potential of the condensation layer of radius ry(€2) may be expressed
by the Newton surface integral:

Ve(r,Q) = G /Q ()N (b, g Q) r2(R)dSY (2.3)

where ¢(f2) is the surface density of the condensation layer. In Chapter
3 we will introduce how to choose the surface density o for the Helmert
condensation layer. '

2.1 Approximations

As shown by Wichiencharoen (1982), Wang and Rapp (1990), or Martinec
and Vanicek (1993a), the equipotential surface undulations generated by the
residual potential §V for density of 2.67 g/cm? are of the order of 2 m. That
is why, for the purpose of computing the residual potential §V, the geoid
may be modelled by a sphere of radius R,

rg() = R, (2.4)

where R is the mean radius of the Earth. This approximation is justifiable
because the error in this spherical approximation is at most 3 x 10~2 which
then causes an error of at most 6 mm in the geoidal height.

For the same reason, the density of the topographical masses in the resid-
ual potential §V may be modelled by an averaged value p(€?) of the actual
density o(r, Q)

o(r, ) = o() , (2.5)

where p(2) may be obtained e.g. by averaging the actual density o(r, Q)
along the topographical column of height H, i.e.,

1

R+H
o() = H./r o(r, ) ridr . (2.6)

=R
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Under the assumptions (2.4) and (2.5), the topographical potential V*,
~ eqn.(2.1), and the condensation potential V¢, eqn.(2.3), read

R+H'

Vi) =G [ o@) /r:=n N(r, 3, v )r2dr'd) (2.7)
and
Ve(r,Q) = GR® /Q () N(r, %, R)AY (2.8)

where the Newton kernel N(r,,r") is given by eqn.(2.2).

2.2 A weak singularity of the Newton kernel

The definition (2.2) of the Newton kernel shows that it grows infinity when
a dummy point of .integration moves towards the computation point, i.e.,

&irré N(r,¢,7") — 00 . (2.9)
Nevertheless, the Newton kernel is only weakly singular which means that
the surface integral of it is bounded (Kellog, 1929, Chapter VI),

/Q, N(r,,7)dQ < oo , r£0. (2.10)

Writing the element of the full solid angle in polar coordinates (¥,a) as
dfY = sinydyda, the weak singularity property (2.9) may also be expressed
in the form-

< oo, (2.11)

rl—r

ii_lg siny N(r,¢,7')

which is valid for all non-zero radii r and r'.
The property (2.10) may be utilized for removing the singularity of the
Newton integral (2.7). Subtracting and adding the term

VE@r, Q) = G o( [ / N(r,, ') dr' dgY (2.12)
to the potential V¢(r,Q), we get ’

Vir, Q) = VE(r, Q)+

16



R+

f—

H 2
N(r,,r")r""dr'| d)' .

=R
(2.13)
The quantity V7 is the potential of a spherical Bouguer shell of the density
0(€?) and thickness H. This potential is finite due to inequality (2.10) and is
equal to (Wichiencharoen, 1982),

(4rGo(Q)L [R?H + RH* +1H3] , r>R+H,

VE(r,Q) =1 2rGo(Q) [(R+ H)? - 22 - 1% | R<r<R+H,

| 47Go(9) [RH + %H2]‘ , r< R.
O (214)
The singularity of the Newton kernel in the integral on the right-hand side of
eqn.(2.13) is now removed. Namely, if ¢y — 0 then p(2') — o(Q?) and H' —
H. Moreover, considering the property (2.10), the function in square brackets
in eqn.(2.13) vanishes at the point ¥ = 0. It means that the point ¥ = 0
may be left out from integration domain for ', and hence the singularity of
the Newton kernel at the point ¥» = 0 is removed. This fact is important for
numerical computation of the topographical potential V*(r, 1) because the
modified formula (2.13) ensures that the numerical algorithm is not forced to
evaluate the undefined expression of type 0/0 occuring in the original Newton
integral (2.7).
To abbreviate notations, let us denote an indefinite integral over 7’ of the

Newton kernel N(r,¢, ') by
Nwe) = [ N, rydr’ (2.15)

Using the primitive function N(r,d;,r’), the topographical potential V* be-
comes
Vi(r,Q) = VE(r, Q)+
REH' R+H

+G /n [e(ﬂ’) N, )|, — (@) N(r,zb,r')lrlzn] a0 . (2.16)

To remove the singularity from the condensation potential V¢ at the point
r = R, we may proceed by an analogous way as in the case of potential V*.

17



Rewriting eqn.(2.8) as
Ve(r, Q) = V¥(r, Q) + GR? /ﬂ [o() - o] N(r,, )R, (2.17)

where V¢(r, ) is the potential of a spherical material single layer with density
a(Q),
Vi(r, Q) = Go(Q) R jﬂ N(r,4, R)dSY (2.18)

- the singularity of the Newton kernel in integral (2.17) is removed. As follows
from (2.10), the potential V¥(r,§) is finite and may be readily evaluated as

arGo(ME | r>R,
Vir, Q) = (2.19)
4rGo(Q)R, r<R.

2.3 Analytical expressions for integration ker-
nels of Newton’s type

Now, let us derive analytical expressions for the integration kernels appearing
in the Newton integral.

The integration kernel N(r,v,r’) defined by an indefinite integral (2.15)
may be evaluated analytically (Gradshteyn and Ryzhik, 1980, pars. 2.261,
2.264) as:

— r’ + 3r cos r? 1
N(r,,r') = 2—1;%?.’—1-;’—1‘% + 5(3cos2z/) —1)In|r" —rcosy + Nog)|
(2.20)
Let us remind our notations: r is the radius of the computation point, r' is
the radius on an integration point, and % is the angular distance between
the directions &t and ).
For computing the direct topographical effect on gravity § 4, cf.eqn.(1.24),
we need to compute the radial derivative of the Newton surface and volume
integrals. The integration kernels of these integrals are formed by the radial

derivative of the Newton kernel and the radial derivative of the kernel (2.15).

18



To find the radial derivative of the Newton kernel N(r,,r’) is straightfor-
ward; taking the radial derivative of eqn.(2.2), we get
/ ‘ -
ON(r,¢,1') _ r — 7' cosip o (2.21)
or (r2 + 7% — 2r1' cos ¢) '

Using eqn.(2.20), we can find an analytical formula for the radial derivative

—

of the kernel N(r,,r’). After some algebra, we get

6N(T, ¢1 T") / aN(T, 1/)’ TI) r’sz" =

or or
= [(r'2 +3r%) cosy + (1 — 6cos’ z/))rr'] N(r,9,r")+
+7(3cos’p — 1) In r’—rcosz/)—}-m (2.22)

The computational programs for evaluating the integration kernels (2.20)
and (2.22) are introduced in Appendices attached to this report.
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Chapter 3

The density of the
condensation layer

In this section we will deal with a question how to choose surface density
(2) of the Helmert condensation layer. The condensation density o(Q)
should be chosen in such a way that the condensation potential V¢ fits the
actual topographical potential V' as close as possible. Nevertheless, this
criterium is ambiguous and allows us to choice density ¢(£2) by different
ways. The problem is that the potentials V' and V¢ behave differently when
the computation point is near to topographical masses.

Therefore a criterium for choice of o(2) is based on similarities of poten-
tials V! and V* in far distances from the topographical masses. It is possible
to show (e.g. Martinec and Vanicek, 1993a) that the topographical potential
V* behaves like a potential of a thin layer with the surface density equal to
the product of orthometric height H and topographical density g when it is
‘observed’ from larger distances. We will follow this idea and assume that the
condensation density is chosen in such a way that the mass of condensation
layer is equal to the topographical masses. This requirement still ensures
that the potential V! and V¢ behave similarly in a far zone but it further im-
plies that the Helmert anomalous potential 7" does not contain the spherical
harmonic of degree zero. In summary, we will adopt the following principle.

The principle of mass conservation: The mass M° of the condensation layer
is equal to the actual topographical masses M', i.e.

M= Me . (3.1)
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The integral representation of this condition is readily to express:

/ﬂé’(ﬂ) /:;:H r2drdQ) = R2/na(ﬂ)dﬂ , (3.2)

where the density o(f2) of the topographical masses is assumed to be laterally
varying only, cf.eqn.(2.5), and the geoid is modelled by a sphere of the mean
earth’s radius R, cf.eqn.(2.4). The constrain (3.2) is identically satisfied

putting
Q) [R+H
o(Q) = ";22) /r:R r2dr . (3.3)
for all directions 2. Performing the integration over r, we get
H H?
= —+—. A
a(2) = o()H (1 + 7 + 3R2) (3.4)

If the density of the condensation layer is chosen according to eqn.(3.4),
the Helmert disturbing potential T has no spherical harmonic of degree
zero, but it contains the spherical harmonics of the first degree. It means
that the center of mass of the Helmert body is shifted from the origin of the
coordinate system. Let us compute the magnitude of this shift.

Cartesian coordinates of the center of mass of the actual earth’s masses

M, M = M9+ M, are given by formula:

o
_ '1\12 f,, | / L )er ()r2dr'deY’ (3.5)

=0

where e,(§)') is the unit position vector in the direction V',
e, () =sindcos Ae; +sindsinde, + cosde, . (3.6)

The set of unit vectors e, e,, and e, forms the Cartesian base vectors, and
the direction §2 is characterized by co-latitude 9 and longitude A.

The center of mass of the earth’s body is usually located at the origin of
the coordinate system (Heiskanen and Moritz, 1967, Chapter 2-6.), i.e

xT = 0 s (3-7)

which means that

Jo [ et trertrtaan == [ [ 0E ot @y aan
(3.8)
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Under the assumption that the condensation of the topographical masses
conserves the topographical masses, Cartesian coordinates of the Helmert
body of the mass M* = M = M? + M° are

h___l_ ro(f¥) I N3 1t 10y , N300 ’
XT_M[/Q'/r e (@)’ dY + [ o(@)e(¥)r3(@)de

=0

(3.9)
Substituting for the first integral from eqn.(3.8), we get
rg(Q)+H'
[ ] / o(r, Ve, (V)2 drdY +
’ f._.rg(Ql
+f a(Q')e,(Q')rg(a')da'] . (3.10)

Approximating the radius of the geoid r,({2) by a mean radius of the earth
R, ry(2) = R, and the topographical density p(r,§2) by an column averaged
value o(Q) (see section 2.1), the last equation becomes

’

h_i_ . 1] 1 R+H 13 74 1] ’ ! '
xh = M[ /Q,g(n)e,(a)/ﬂzﬂ oY + B [ o()e,(@)d0

/'\

3.11)
Performing the integration over r’ and inserting for o(Q') from eqn.(3.4), we
get

RQ

h’—_—
Xr = 2M Jo

4H 1H"? |
e, (V) H” = e’ . 12
@)e. (@ (14 55+ 37 (3.12)
To estimate the magnitude of the vector x%, we put o(Q) = go = 2.67
g/cm?® and take only the first term within the brackets which is of three
orders larger then the rest. The approximation of eqn.(3.12) then reads

xh = [ /ﬂ H e (QV)dSY (3.13)
where e
o fo = N |
K= i =10""m (3.14)

for M =5.97 x 10* kg, R = 6371 km, and gy = 2.67 g/cm?.
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Realizing that

sindcos A = —\/ 2; Yu () + 15(Q)] ,

sindsin A = 1\/55[)’11((2) - Y;; ()}, (3.15)

cosd = \/%EYIO(Q) ,

where Y1,,(?) are spherical harmonics normalized according to Varshalovich
et al. (1976), and asterisk denotes complex conjugation, the unit position
vector e,(Q) takes the form

er() = = [ 1) 4 ¥ @0] 12 00(0) — Y ()]

+ \/7%)/10(51) e, . (3.16)

Substituting eqn.(3.16) into (3.13), and introducing spherical harmonic co-
efficients (H?),  as

/ HY; ()4 (3.17)

the Cartesian coordinates (z%,y%, 2&) of the vextor x4 are

) Nt 2 2

1T - K\/_;[(H ) (H )11] - 21{\/::;Re (H )11 ’

yh = ~K\/£1[ H?), Hz) ] = —21(\/%;17;1 (H?),, , (3.18)
. _f(f (7). .

where He and I'm stand for the real and imaginary part of a complex number.
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The numerical values of the coeflicients (H?), were found for the earth
topography described by the TUGS87 global digital terrain model (Wieser,
1987) complete to degree and order 180. We have obtained

(H2)10 = —0.847 x 10° m®

(#?) ., = (=0.207 x 10% 0.509 x 10°) m” . (3.19)

Then
x4 = (—6; —15; 2) x 10°m , (3.20)

~and its magnitude is equal to
|xh] =16 x 1073 m . (3.21)

We can conclude that the center of mass of the Helmert body is shifted about
16 mm from the center of mass of the actual earth body in the case that the
Helmert condensation is performed according to principle of conservation of
topographical masses. '

When the condensation of the topographical masses is performed accord-
ing to the above principle, i.e., when the condensation density o is taken
according to eqn.(3.4), the Helmert anomalous potential T* does not contain
the spherical harmonics of degree zero but it contains the spherical harmonics
of degree one (and higher, of course):

A o RN\ I .
T =Y (Z) X ThYim(®) (3.22)
=1 m=-j

The first degree harmonics T}, are completely unresolved in the boundary
condition (1.29). The left-hand side of this equation for degree 7 = 1 is always
equal to zero because the matrix element is proportional to factor 7 — 1.
The right-hand side of eqn.(1.29) consists of the free-air gravity anomaly,
the direct topographical effect on gravity, the secondary indirect effect on
gravity, and other terms. Neither the free-air gravity anomaly, nor the sum
of the topographical terms contain the spherical harmonics of degree one.
Therefore, equations for 3 = 1 may be left out from the system of equations
(1.29). The spherical harmonics T}, .of the anomalous potential 7" will be
evaluated separately according to the procedure described above, and then
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will be added to the Stokes’s solution of the boundary condition (1.29). Hence
the Stokes function for integration of eqn.(1.29) starts from the spherical
harmonics of degree two, i.e., it has the standard form (Heiskanen and Moritz,
1967, eqn.(2-164)):

27 +1
71

S0 =3 L (cost) (3.23)
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Chapter 4

Topographical effects on
geoidal heights

As shown in Chapter 1, the effect of topographical masses on geoid determi-
nation is described by three terms: the direct topographical effect on gravity,

sa(0) = 2V () , (4.1)
ar R+ H
the primary indirect topographical effect on potential,
§PM(Q) = 6V(R,Q) (4.2)
and the secondary indirect topographical effect on gravity,
§PCN(Q) = %W(R,Q) . (4.3)

The boundary condition (1.29) for determining the anomalous gravitational
potential T shows that the first and last term contributes to the anomalous
gravitation. To express their effects on the anomalous potential T', Stokes’
integration has to be applied to them. The total topographical effect on
geoidal height, § Vo, is then given as

6Ntop = Ndir + Npri + Nsec ’ (4'4)
where the term Ny;, is due to the direct topographical effect on gravity,
R
Ngir(2) = — [ S§A(Q)S(¥)dQY 4.5
wl®) = = [ 6A@)S) (45)
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the term N, is due to the primary indirect topographical effect on potential,

1
Npri(2) = = 6PI(Q) (4.6)
v :
and the term N, is due to the secondary indirect topographical effect on
gravity, . ,
R
Nee(Q) = — [ 6PN dQ’ . 4.7
@) = 5= [ 5PA@)S ) (4.7)
Here we have used the standard notation: S(3) is the Stokes’s function,
cf. eqn.(3.23), and v is the normal gravity on the reference ellipsoid (To
abbreviate notations, we have dropped subscript @ for vg).
Substituting for §4 and §P(?) from eqns.(4.1) and (4.3), and then for the
residual potential §V from Helmert’s decomposition (1.5), each of terms Ny;,,
N,ri and N, may be split into two constituents:

—_ ¢ ¢
NdiT,PTi;Sec - Ndir,pri,sec - Ndir,pri,sec ? (48)

where geoidal heights N with superscripts '’ are induced by the topograph-
ical potential V* and with superscripts 'c’ are induced by the condensation
potential V. Explicitly,

e B OVE(r, Q) ,
NiE@) = o= [ = S (4.9)
NES(R) = = VS(R,Q) (4.10)
'7
and |
NEE(R) = —— [ V(R Q)S(p)dsY (4.11)
21y Jar

4.1 The direct topographical effect on grav-
ity

The direct topographical effect on gravity, §A(f2), is defined as the radial

derivatives of the residual potential 6V taken at a point on the topography,



cf. eqn.(4.1). Substituting for the residual potential 6V from the Helmert’s
decomposition (1.5) into eqn.(4.1), we can write

SA(Q) = AYQ) — A%(Q) (4.12)

where

avi(r, Q)
or

AYQ) = A%(Q) = ?E;_:,_Q_) o (4.13)

?

r=R+H r=R+H

are the gravitational attractions induced by the topographical and condensed

masses at a point on the topography.
Taking the radial derivative of eqn.(2.16) and then putting r = R + H,

we obtain
+H
Q) —2=7 dqY
— o(2) . ’-—R:I Q,
= r=R+H

<6 [ Jam 226
(4.14)

where AP(Q) is the attraction of the Bouguer shell at the point on the to-
pography, i.e.,

A‘(Q) = AB(Q)+
ON(r, ,7)|" ON(r, ,r)["

r'=R

B
AB(Q) = 9v=(r, &) ] (4.15)
or r=R+H
Considering eqn.(2.14);, AZ(2) reads
R? H H?
B — — —_—
A”(Q) = 47rG'g(Q)H(R+ I (1 + = 7 + 3R2) . (4.16)

Similarly, we can derive the attraction A°(2) of the condensed masses at
the point on the topography. Taking the radial derivative of eqn.(2.17), we
get

dN(r,¢, R)

A(Q) = A(9) + GF? [ @) ~ o()] =5

aY | (4.17)
r=R+H

where A‘(f2) is the attraction of a spherical single layer with the density
a():
aVE(r,Q)

A = or

(4.18)

r=R+H
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Considering eqn.(2.19),, A%(Q) reads
R2
(R+H)?

Substituting eqns.(4.14) and (4.17) into (4.12), the direct topographical
effect on gravity may be expressed in the form:

SA(Q) = AB(Q) — AYQ)+

AYQ) = —47Go(Q) (4.19)

—~ R+H'
n ON(r, 9, 1) 2 ,3N(r,1,b,R)_
— N |RHH
oy ) +Rac,(m?&g_w] Ca. e2)
T =R T
r=R+H

Moreover, provided that the condensation of the topographical masses is
performed according to the principle of mass conservation, i.e., when the
condensation density o({2) is considered in form (3.4), then egns.(4.16) and

(4.19) readily show that
ﬁB(m

= A(Q) . Y (4.21)
This means that the attraction of the Bouguer shell is equal to the attraction
of a single layer at a point on the topography. As a consequence, the first
two terms in eqn.(4.10) cancel each other and the direct topographical effect
on gravity reads

R+H'

N(r ! N(r
514(9) e A [Q(Q’) aN(a’:b’r) _ R20_(Ql)a (81:1’: R)__
r'=R
—~ o (REH
—o(Q) Qﬂ%?i,i_) 4 R%(Q)a—N—(TB’rﬂ@} da . (4.22)
=R r=R+H

4.2 The primary indirect topographical ef-
fect on potential

The formulae (2.16) and (2.17) may be immediately utilized for determining
the geoidal heights N.5(Q) which come from the primary indirect topograph-

p

ical effect on potential. Putting » = R in eqns.(2.16) and (2.17) and dividing
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them by normal gravity -, as eqn.(4.10) requires, we have

NE(Q) = 4’;G o(9) (RH + %Hz) +

pT’i

+ g— f , [9(9’) N(R,%,7") RZZ — o(Q) N(R, ¢, 7’ )|f+ ]dQ’ (4.23)
and
Nl = T80 00) 4+ EE [ o) - (@I N(Rv, RIS, (420

where for the gravitational potential of Bouguer shell we have substituted
from the last relation of eqn.(2.14), and for the potential of spherical material
layer from the last relation of eqn.(2.19). Taking the condensation density
() according to eqn.(3.4), the geoidal height due to the primary indirect
topographical effect of the residual potential §V is of the form

Np’i(Q) P"(Q) prt(Q) —'g;ﬁg(ﬂ)ﬂq ( + g%) +

G

+7w[(>(R¢>

[ R'e(@)N(R, %, R)-

—e(®) N(R,p,7)[[1) + Ro@N (R, B a2 . (1.25)

4.3 The secondary indirect topographical ef-
fect on gravity

Now, let us turn our attention to evaluate the geoidal height N.&, cf. eqn.(4.11),
which comes from the secondary indirect topographical effect on gravity. For
doing this, the gravitational potential V*(r, ) must be evaluated at a point
on the geoid (r = R), and then the Stokes integral must be applied to the
potential V¢(R, ).

For evaluating the potential V*( R,{2), the Newton kerne! will be expanded
as

N(R,¥,r") = S—i ( ) : (cosyp) >R, (4.26)
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where P;(cosv) is the Legendre polynomial of degree j. The series (4.26)
is divergent at the point ¢ = 0 and »' = R. This does not matter because
we already known that the Newton integral may be arranged in such a way
that this singularity is removed from integration domain. To perform this,
we can proceed by two ways. First we could remove the singularity from the
Newton integral as suggested in eqn.(2.16), and then substitute series (4.26)
into (2.16). Nevertheless, to maintain understability of derivations, we will
proceed by the second way. We first substitute the series (4.26) into the form
(2.7) of the potential V¥(R,Q), where the singularity is not removed. This is
possible because the Newton integral (2.7) is still bounded even if the series
(4.26) is divergent at the point ¢ = 0 and ' = R. Then we will perform
the Stokes integration and finally we will remove the singularity from the
resulting integral.

Taking into consideration eqns.(2.7) and (4.26), the gravitational poten-
tial of the topographical masses on the geoid takes the form

V{R,Q)=G /Q o() / L fj( ) Pj(cos®) rdr'dQY . (4.27)

The Stokes integral of this term (multiplied by the factor 2/R as eqn.(4.11)
requires) then reads

o e 1 3 ! / " lJ
Noee D) = 2%7/ / , o) / —Z( ) i(cos Yargn) S (o)’ dr'dQ"dQY

'=R
(4.28)
where the subscripts at ¥ denote the directions between them v is taken; ¢
without any subscripts implicitly means the angular distance is considered
between the directions Q0 and 0'.
The angular integral of the product Pj(cosa:q~)S(1Paq) may be ar-
ranged as follows:

/Q’ P;(cos Yaran) S(Yaa)dQ' =

A j 3]
Z m )}ljm(QH 1m1 Jlm (QI)
012‘]+1m"1 J 11‘2 l—lmn == J 1
(47)? 4r

Z J m Q” )

TSR " Py(cospane) , (4:29)
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valid for j > 1; otherwise the integral is equal to zero. In the first step we
~ have used the Laplace addition theorem for spherical harmonics, ¥, () (e.g.
Heiskanen and Moritz, 1967, Sec.1-15.),

Pi(cosy) = ) Yim (), (4.30)

2+1

m=—j

then we have substituted for Stokes’s function from eqn.(3.23) and used the
orthogonality property of spherical harmonics,

S Viims (VY51 (D)2 = 83,8 (431)

and finally we have again evaluated the sum of products of spherical har-
monics according to the addition theorem (4.30).
Substituting for the angular integral over the product P;(cos g )S(¥anr)
from eqn.(4.29) into (4.28), we get
t RILE L (R .
N&JQ)_2 o) [ (—) P;(cos p)r2dr'dSY . (4.32)
o f =R 15 ]

T,
- Introducing kernel U(R,,1'),

1 & g
WRWJU=;Z}JT(§)&@m¢L R<r, (4.33)
j=2d T4 NT

and an indefinite integral of it,

m&¢mzjum¢yw%a (4.34)
the geoidal height N}, , eqn.(4.32), may be written as
R+H'

Nt () =22 /(w (R, )| doY. (4.35)
=R

The singularity of the kernel Ij(R,d),r’) for » = R and ¥ = 0 may be
removed by simple algebraic operation
G R+H'

t 9 INFT ’ _ Fr n|B+H !
N =22 [ (@i - e@0(rs,|] dors
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(4.36)

Go() 1 7 NG
H_T/n' T(R, ")

r’=

Eqn.(4.33) shows that the angular integrals of kernels U( R, 4, ') and ﬁ(R, P,
are equal to zero because they do not contain the spherical harmonic of the
degree zero, 1.e.,

[ UR,r)d = [ T(R,9,r')de =0. (4.37)
QI Ql
The secondary indirect topographical effect N?,_(Q) now becomes

N) =22 [ [o@)0 (R,

v

R+H'

aQ’ .
(4.38)
The geoidal heights N¢_, cf. eqn.(4.11), which comes from the secondary
indirect topographical effect on gravity induced by the condensation layer
may be obtain from eqn.(4.38) putting r' = R, ¢(Q2) = R?s(12), and omitting
the integration over r'. We get

o QT(R,¥,7)|,

R+ H]

GR?

Niee ) =2

s€C

/ (o' =) U(R, %, R)aq' . (4.39)

Finally, the secondary indirect topographical effect on gravity induced by
the residual potential §V is given by the difference of N, _(?) and NZ (),

le.,

Noee() = N, (@) — N, () =
_oC I, [g(n')ﬁ(R, b ) — RPa(Q)U(R, %, R)-

04 r’=R

~oWT(R, 4,7 + o (U (R, B)] e (4.40)

4.3.1 The integration kernel U(R, v, ')

Let us derive the spatial form of the integration kernel U(R,#,7"), R < r'.
Introducing the ratio h,

h== (4.41)

il
TJ
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and writing the 1dentity

0 hj o i—1
——Pj(cosp)=h h
J=2]_1 1=0

3#1

e 1Pj(cos P)+1, (4.42)

the kernel U( R, ¥, 7') may be expressed in terms of the Paul function Uz(cos, h),
cf. eqn.(4.58), as

. R Ry 1
U(R,l,/),r ) = ;‘EUQ (COS 1,0, ;) + 1-; - (443)
4.3.2 The integration kernel U(R, v, ")

The integration kernel U(R,,r') is defined by an indefinite integral over
' of the kernel U(R, ¥, r"), cf eqn.(4.34). Substituting from eqn.(4.33) into
eqn.(4.34), and carrying out the integration over r'; we get

- o 1 R\'?
UR,,r") = —R*Y e (—) Pi(cosp) + R*Py(cos ) Inr' |
(o) = =B ) o=y \)  Pleest)+ ER(cos)
(4.44)
or using the ratio h, eqn.(4.41), we may also write
(j(R,I/J,T’) = R? Z (E—I—I — —1—2) hj_QPj(COS P) + Rzpz(cos ¥)In r.
=3\ T LI
(4.45)

Spreading the summation over j on terms 5 = 0 and j = 1, respectively, we
further have

rr / bt hj_z i
R, ,r) = 0y 2. g Pileosd) + 57 = Pa(cos )
;=0
F#1
S hiT? 1 cos ¢ ,
‘jgoj_gpj(COSQ/))—z/?— i + Py(cosp)In7r") . (4.46)
i#£2

34



The sums on the right-hand side of the last equation may be expressed in
terms of the Paul functions Us(cos, h), and Us(cos 9, h), cf. section 4.3.3:

] ' 1 1 cos P
U(R,¢,r") = R? {EUz(COS ¥, k) — Us(cos ¢, h) + on TR

— Py(cos )+

+Py(cos ) Inr'} . (4.47)

Substituting for functions U, and Us from eqns.(4.58) and (4.59), we finally

get N
U(R,¥,") = R* {Py(cos¥)In (+' — Rcosyp + D(R,9,r")) —

! v’ — Rcosy + D(R,v,7")
) cosyIn ( 577 +
—r'+ 3Rcosy N 2 r?
-+ SR D(R,,r") — —Ecosdz-}- SEE Py(cos 1,())} ,  (4.48)
where
D(R,,") = \/R2 ~2Rr! cos P + 12 . (4.49)

4.3.3 Paul’s functions U,(t,h) and V,(t, h)

Paul (1973) introduced two sets of auxiliary functions U,(¢, k) and V,. (¢, h),
n = 0,1,2,... defined by series

o) hk—n+l
Un(t, h) = (1), 4.50
th)= X Al (4.50)
k#n-1
and
S T p 4.51
Vit k) =S ———_P(i) , .
(8= 3 g A (4.51)

where 0 < A < 1, Pi(t) is the Legendre polynomial of degree k, and —1 <
t < 1. Unfortunately, Paul (ibid.) only gave the recurence relations for
U.(¢,1) and V,(¢,1). In this report we need to evaluate the Paul functions
also for h # 1. These may be computed according to the following recurence
relations:

(n— D)Un(t, h) — (2n — 3)tUn1 (8, h) + (n — 2)U,—a(t, R)+
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P, 3(t) — P (t
T o g e = e = Laalt) (452)

2n—3
and
nVu(t, h) — (2n — 1)tVay (8, k) + (n — 1) Vaea(t,R) — R W1 = 2th + A2 =0 .
(4.53)
The initial values for the recurence (4.52) are
h—t++1—2th+ hA?
Us(t, h) = In ( + 11 et ) , (4.54)
Un(t, b) =1 2 ) (4.55)
=In , .
Y 1—th+v1—2th+h?
and for the recurence (4.53):
Vo(ta h) = Uﬂ(t,h) ) (456)
Vi(t,h) = tVo(t,h) + V1 —2th+ h2 1. (4.57)

For evaluating the kernels U( R, ¥,7’), eqn.(4.43), and U(R,+,7"), eqn.(4.47),
Paul’s functions with higher indexes are needed to evaluate explicitly. Em-
ploying the recurence relations (4.52) and (4.53), we have

Ua(t, h) = tUy(t, h) — %\/1 —oth+t h2—1t, (4.58)

1 1 7, 1
Us(t, k) = 5(3t2 ~1Ui(t, k) - 57l;(l +3th)V1 — 2th + b2 — 4—t2+ 1 (4.59)

and

1 1 3
Va(t, h) = 3(3t2 — )Vo(t, h) + 5(h + 3t)V1 — 2th + h? — 5t (4.60)
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Chapter 5

Anomalous density of
topographical masses

For computing the geoidal heights, the density of the topographical masses
is usually modelled by a constant value g = 2.67 g/cm?® (e.g. Olliver (1980),
Vanicek and Kleusberg (1987), Stewart and Hipkin (1989), Sideris (1990),
Featherstone (1992), Forsberg and Sideris (1993)). Nevertheless, in a rugged
mountaineous areas the actual density of the topographical masses differs
from the value of 2.67 g/cm?® due to various reasons, e.g. due to a com-
pensation mechanism of topographical masses. Also the density of water in
lakes such as the Great Lakes in the North America differs significantly from
value of 2.67 g/cm®. A question is how large are the errors of geoidal heights
introduced by modelling the topographical density by value of 2.67 g/cm?
throughout all the topographical masses without taking care of area with
large density variations.

To answer this question, we will separate the laterally varying density
2(9) into two parts, the 'reference’ value gy = 2.67 g/cm? which is constant
throughout all the topographical masses, and laterally varying 'anomalous’
density 6p(€2), i.e.,

() = po + 80(0) . (5.1)

Substituting the decomposition (5.1) into eqn.(3.4), the condensation density
o(2) may be split by an analogous way:

a(§2) = 0o(R) + 80(R2) . (5.2)
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The ’reference’ value oy(£2) corresponds to the reference density go according
. to relation

oo({l) = 0o 7() , (5.3)
whereas the ’anomalous’ condensation density éo () is associated with the
anomalous density §g(f2):

5o (Q) = §o()T() . (5.4)

For a sake of brevity, we have introduced symbol 7(2) for that part of the
condensation density o(£2) which depends on the orthometric heights H only,
Le.,

H, & ) (5.5)

Q) =H{1+2 4=
(&) (+R+3R2

Let us remind that the orthometric height H of the earth’s surface is an
angularly dependent function. '

5.1 Topographical effects

The direct and both the indirect topographical effects on geoidal heights will
be now specified for the topographical density (5.1) and the condensation
density (5.2). Let us start with the direct topographical effect on gravity
SA(S). Substituting for g(§2) from eqn.(5.1) and for o(2) from eqn.(5.2)
into eqn.(4.22), we get

SA(R) = §A0(N) + 6A5,(92) , (5.6)
where
r o= R+H'
aN ) 9 ! ! aN i )R
6A0(Q) = Geo [ —“—_(:3:[) N R(e )——————(’éf )
| r'=R
~ o (REH
_ONEw )T RQT(Q)BN(r,d),R)} o (5.7)
or . or ’ '
r'=R r=R4+H
and
R+

ON(r, 1, )

6As( ) =G [ [&»(n') ( =

_ RZT(Q')G____N(B;/” R)) _

r'=R

38



ON (1. ol IN(r
50(9) (————( éf” R B M UL ZEU) 6;:/” R)” &, (58)
=R r=R+H

The geoidal heights N,.;(?) coming from the primary indirect topograph-
ical effect on potential, cf. eqn.(4.25), may be decomposed by an analogous
way to eqn.(5.6):

Nprt(ﬂ) prt O(Q) + an 59(9) 3 (5-9)
where WG L/ 2H
Nyriol) =~ 0o (1+5%)+
G '

22 [ | MR |15~ B @OV (B, B)-

~ N(Rp, )| 4 R (QN(R, ¢,R)] s . (5.10)
and onG 2 -

Mol ) = ~ == 8(WH (1+5%)+

+H'

+2 [ [seo) (Rr,m|[

—50() (N(R,¢, - R’r(ﬂ)N(R,z/z,R))] de (5.11)

- Rr(@)N(R, , R)) -

Finally, the geoidal heights N,..(€?) originating from the secondary indi-
rect topographical effect on gravity, cf. eqn.(4.40), may again be decomposed
similarly to eqn.(5.6):

Nsec(Q) = Nsec,O(Q) + Nsec,&g(ﬂ) y (5'12)

where

Necal®) =252 [ [0(R, 0000 = K@U (R, B)-

~ OB, ) 4 Rr (U (R, Y, R)] e (5.13)
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and

G

Weesel®) =27 [ [s0(@) (OR,|[T7 — BH@U(R Y, B)) -

o
. R+H
—60(0) (U(R,:p,#)L,_R — R*r(QU(R, ¥, R))] o’ . (5.14)

Terms 6§ Ao(£2), Nprio(2), and Nyeco(S2) represent the direct, primary and
secondary indirect topographical effects induced by topographical masses
of a constant density go, whereas terms 8 As,(£2), Npriso(2), and Nyec50(€2)
represent the gravitational effects induced by lateral changes 6p(f2) of the
topographical density. Usually, for geoid computation the former terms are
considered and the latter terms are neglected. Since our interest is devoted to
explore effects of lateral changes of topographical density on geoidal heights,
we will further investigate terms 8As5,(£), Npriso(©2), and Nies,(2) sepa-
rately from terms 6 Ao(€2), Nprio(€2), and Nieco(f2).

5.2 A lake

A water lake whose surface has a non-zero topographical height represents an
example of lateral changes of the topographical density p(2). We will denote
the density of water by g,,, 0, = 1.0 g/cma, and the density of surrounding
topographical masses by go (=2.67 g/cm3). Let the orthometric height of the
surface of the lake be H and the depth of the lake be d(2). Approximately,
we may assume that H = Hy = const. over the lake.

The laterally varying density ¢(§?) may be approximately evaluated from
the actual 3-D density o(r,Q) by averaging the density o(r,Q) along the
topographical column of height H, cf. eqn.(2.6). For our model of a lake this
formula yields

{ [0 d(§2) + 20 (Ho — d(2))] /Ho , () < Ho ,
o(Q)) = (5.15)
Ow d(Q) Z HO -
The anomalous density 6p(f2), cf. eqn.(5.1), then reads
{ (90 - Qw)d(Q)/HO ’ d(Q) < Ho )
§0(2) = (5.16)
00 — Qw , d(Q) 2 110 .
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For the lake, term 8 A44,(§2) of the direct topographical effect on gravity,
cl. eqn.(5.8), may be further simplified. Realizing that the height H of the
computation point over a lake is equal to the height H’ of the surface of
the lake, H = H’, because H' = Hy = const. over the lake, and that the
anomalous density 6p(£2) vanishes outside the lake, cf.eqn.(5.16), we can put
"= R4+ H = R+ Hy instead of ¥ = R 4+ H in the third term on the
right-hand side of eqn.(5.8). For the same reasons, the function 7(Q2) may be
considered as follows:

= = = — —_— — - 1
(@) =7(@) =m0 = 5 (1+ 7 +3R2) (5.17)

Hence, the term 6 A;5,(2) may be written in the form:

aﬁ(r, P, r')

R+Ho
8A5,(Q) = G/Q, [60(Q') — 60()] [ o Rz ON(r,v, R)

- —_— aQ’ .
=R 07' ] r=R+H
(5.18)
The geoidal heights N,.; 5,(2), cf. eqn.(5.11), and Ny 5,(82), cf. eqn.(5.14),
may be arranged by an analogous way:
27TG ( 2 Ho
)+

Nori5o(§2) = —'7—59(9)5’3 1+ 3R

+ % | [se@) - se(s0)] [IV (R, )0 — RN (R, ¢, R)] Y, (5.19)

and

R+Hy

Nsec.ﬁe(g) = %/‘;, [69(91) - 59(0)] [(7(R7 ’)[)1 rI)Ir’:R - RZTOU(Ri "I)a R)] d’.
(5.20)

5.3 Compensation of topographical masses
As mentioned in Sect. 1.2, shape irregularities of the earth’s surface generate
a strong gravitational field. The undulations of the equipotential surfaces of

this field are hundreds of metres and may reach even one thousand metres.
But the equipotential surfaces of the observed gravity field do not vary with
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such large amplitudes; the maximal undulations of the actual gravity field
are 100 m at most. This fact indicates that the amplitudes of a strong
gravitational field of the outer surface must be reduced by another source
of gravitation lying beneath the topographical masses. Geodesists usually
speak about the compensation of the topographical masses.

There are at least two mechanisms compensating a strong gravitation
of the topographical masses. By exploration seismology it was found that
there is a mass discontinuity in depths of 30-80 km where the mass density
increases abruptly by about 0.3 g/cm® This discontinuity called the Mo-
horoviéié¢ discontinuity anti-correlates nearly linearly with the earth’s surface
and thus it generates the gravitational attraction of the opposite direction to
that generated by the earth’s surface. (This type of compensation is called
the Airy-Heiskanen model of compensation (Heiskanen and Moritz, 1967,
sect.3-4.).) Nevertheless, the compensation by undulations of the Moho dis-
continuity is not eflicient enough to compensate all the irregularities of the
~ earth’s surface (Martinec, 1993) and another source of compensation must
exist.

It was found (e.g. Tanimoto (1991), Martinec (1992b)) that the mass
density laterally varies in the earth’s lithosphere (i.e. up to the depths of 100-
150 km) in such a way that the density is smaller beneath high mountains
and is larger beneath a low terrain. This type of compensation called the
Pratt-Hayford compensation model (Heiskanen and Moritz, 1967, sect. 3-4.)
supplies the compensation by the Moho discontinuity.

It is still not known properly how large are the contributions of partic-
ular compensation mechanisms to the entire compensation effect. Later we
will assume that the topographical masses are compensated by the Pratt-
Hayford type of compensation only. Since the Pratt-Hayford compensation
model is based on a laterally varying density in the lithosphere, which does
not change with depth, considering this mechanism then means that the cor-
responding compensating laterally varying densities represent an averaged
densities which could occur in the uppermost part of the earth. Magnitudes
of the lateral variations of the actual density within the lithosphere could be
smaller as well as larger. Especially, lateral changes of the density of topo-
graphical masses may be larger than Pratt-Hayford compensating densities,
because the lateral variations of the density of the uppermost part of the
earth may be 10% or even larger.



5.3.1 Pratt-Hayford compensation model

In this section we will derive the parameters of the Pratt-Hayford compensa-
~ tion model. This model has also been treated in the book of Heiskanen and
Moritz (1967, sect. 3-4.). Unfortunately, the derivation presented there is
rather misleading because it is based on the assumption of mass equality in
topographical columns. Such an assumption is artifitial because no geophys-
ical observation supports it. On contrary, our consideration will be based on
two facts which follows from observations. (1) A strong gravitational field
induced by the topographical masses is not observed; (2) the compensation
mechanism runs into depths of 100-150 km.

Let the upper boundary of the compensation layer of the Pratt-Hayford
model be the earth’s surface of the radius R + H. Let the lower boundary
of this compensation layer be a surface of the radius R.. In agreement with
geophysical observations, this lower boundary coincides with the bottom of
lithosphere and R. may be considered constant. The depth D of the lower
boundary, D = R — R., will be considered as 100-150 km. The gravitational
potential V'9¥" induced by the compensation layer at a point (r,{) is given
by the Newton volume integral:

Vlayef(r Q G,/Qr /l R, QI)N( ’Q/),r’)?‘/zd‘l"dﬂ' ? (521)

where we have used the same notations as in eqn.(2.1).
The density o(r, 1) within the compensation layer will be split into two
parts:

o(r, Q) = go(r) + 6e(Q1) , (5.22)
where go(r) forms the dominant part of the actual density o(r, ). It may be
modelled e.g. by the density of the PREM model (Dziewonski and Anderson,
1981). The small density variations §p correct the reference density go(r);
the Pratt-Hayford model assumes that these corrections are laterally varying
only.

Substituting eqn.(5.22) into eqn.(5.21), we get

Ve, ) =G [ / a0 r 1, 1) dY +

+G/Q’/TR+H' R gt
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R+H'
e /Q bo(®) /ﬂﬂ N(r, .7 ) dr'dY . (5.23)

The first integral yields a term which is angularly independent and con-
tributes to potential of type 1/r only; this term is out of our interest. The
second integral expresses the gravitational effect of the topographical masses
with a radially dependent density. In this integral we may approximately put
00(r) = go = 2.67 g/cm?>. The third integral expresses the gravitational effect
of laterally varying density of the compensation layer. The Pratt-Hayford:
compensation model assumes that the gravitational effect of the topographi-
cal masses is compensated by the effect of the laterally varying density inside
the lithosphere. Mathematlcally, it means that the third integral cancels the
second integral, 1.e.,

R+H(Q')
00/ / I)Tr2dTlde+
@ Jri=R
R+H 2 [
+/Q‘ 59(9')/ N N(r,,r'yr'""dr'dQ’ =0 (5.24)

The radial integral of the Newton kernel may be evaluated analytically.
For the computation point (r,2) on or outside the earth’s surface, i.e., when
r > R+ H(Q), it holds

M) =15 (2] Bleosw), (5.25

7=0

where Pj(cos ) is the Legendre polynomial of degree 7. An indefinite radial
integral of the Newton kernel then reads

©o 1 17 +3

N2 g r
'/TIN(T,w)T)r dT —j=0j+37.j+l

Pi(cosyp)+ C (5.26)

where C' does not depend on the variable r'.
The definite radial integrals occuring in the condition (5.24) then becomes

R+H' ) 1 Rj+3 )2 143
N NA2 gt A e _
/rl:R (ry,r")r'dr 275 [(1—!— R)

P;(cos ) .
(5.27)
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Taking approximately

H 1+3 . ' H
(l + —]—{—) =14+ 3)7%- , (5.28)
we have
R+-H' 0o RJ+2
/ L N = Z Pi(cos ) . (5.29)
Similarly
R+H' 9 0 J+2
/:_R N(ryap, vy dr’ = (D + H]E P;(cosp) . (5.30)

Substituting eqns.(5.29) and (5.30) into the Pratt-Hayford condition (5.24)
for compensation mechanism, we obtain

0 R_1+2
QO/’ P;(cos9)dQY' +

+/ So(€Y) [D+H]Z Pi(cos9)dfY =0 . (5.31)

Since the last equation is expressed in ’small’ quantities, we may approx-
imately put R. = R. Then the equation will only be satisfied if for an
arbitrary direction €2’ holds

eoH' +60(Q)[D+ H'|=0. (5.32)
This is a condition for the compensation density 8o():

H(Q)

50(9) = _Qom )

(5.33)
where we have indicated the dependence of topographical height H on the
angular coordinates 2. Let us remind that for the density po we take a value
- of 2.67 g/cm?®, and for the compensation depth D we consider a value from
interval 100-150 km.

The condition (5.33) for the compensation density 6p(f2) was derived
under assumption of vanishing the external gravitational field induced by
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the topographical masses. Such a requirement is in full agreement with the
observations of the surface gravity. Heiskanen and Moritz (1967, sect. 3-
4) derived the same condition (ibid., eqn.(3-25)) under the assumption of
equality of masses in topographical columns. Such a requirement seems to
be artifitial having no correspondence with observations of the surface grav-
ity field or other geophysical observations. But connecting their results with
the derivation presented above, we can conclude that the condition for van-
ishing the external gravitational field induced by topographical irregularities
is approximately equivalent to the condition of the conservation of masses in
topographical columns.
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Chapter 6

Stokes’s integration

To transform gravity anomalies Ag(£2) (and thus also the direct topographi-
cal effect on gravity §A(2)) to geoidal heights N (), the Stokes’s integration
is to be applied to Ag(§?) (Heiskanen and Moritz, 1967, eqn.(2-163b))

= 20 [ ag@)swae, (61)

4my
where « is the normal gravity on the reference ellipsoid. The Stokes’s function
S(%) may be represented in a spatial form (Heiskanen and Moritz, 1967,
eqn.(2-164)) or in a spectral form (ibid., eqn.(2-169) or eqn.(3.23) of this
report); hereafter we will use the latter representation.

Evaluating the geoidal heights according to Stokes’s formula (6.1) requires
knowledge of the gravity anomalies over the entire earth. This makes the
problem difficult because there is a lack of gravity data in some regions
of the earth or the coverage of gravity data over some areas is fairly non-
homogeneous. Therefore, we will follow the idea of Vani¢ek and Kleusberg
(1987) and separate the summation over j in the Stokes function (3.23) into
a low and high degree parts:

N($2)

¢ .
SW) =y 2}?_*11 Py(cos ) + 5'(#) (6.2)

The spheroidal Stokes function S°()) (ibid.) is the Stokes function in which
the first £-th spherical harmonics are dropped, i.e.,

Sy =3 2]7 _+11 Pj(cost) . (6.3)
j=t+1
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Substituting for S(y) from eqn.(6.2) into (6.1), the geoidal heights N(§1)
may be split into a low degree reference surface N{(?) and a high degree
contribution N{(Q2):

N(Q) = Ng(Q) + N{(Q) , (6.4)
where
N[(Q)—ZR— A (Q)z2’+1p( cos )Y’ | (6.5)
and B
Ni(©) = 5 [ Ag@)S ()Y (6:6)

Vaniéek and Kleusberg’s (1987) approach then assumes that the low fre-
quency part of the geoid is determined from satellite geodesy. Therefore
~ we will chose £ = 20 as Vanitek and Kleusberg’s (1987) proposed, and as-
sume that the geoidal heights N§(2) are known. Stokes’s integration will be
employed to compute the high frequency part Nf(2) of geoidal heights only.

6.1 Modified spheroidal Stokes’s function

The integration in eqn.(6.6) has to be still carried out over the entire earth,
so that the problem with an unsufficient coverage of gravity data over some
areas remains. Despite of this, let us imagine that the Stokes integration
(6.6) is only taken over a spherical cap of a small radius 1y around the point
of interest. This shrinking of Stokes’s integration is intuitively supported by
the fact that the effect of local gravity coverage will be most significant due
to the largest values of Stokes’s kernel for small distances ¥. Shrinking the
Stokes integration leads to a quantity

47r'y/ / Ag(9, e Sz(zlj)smz/)dzpda, (6.7)

which somehow estimates the geoidal heights N{(f2). The difference between
N{(Q) and NY(R), i.e., the error of the estimate N(Q2) is given by so called
truncation error (Heiskanen and Moritz, 1967, sect. 7-4); its form is given as

SNY(Q) = NYR) — NE(Q) =
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_ 7 2 P 1
=i L, [ Be(,e)S () s payda (6.8)

According to Molodensky et al. (1962), Vani¢ek and Kleusberg’s (1987)
proposed to modify the spheroidal Stokes’s function S¢(3) such that trunca-
tion error § V() is minimal in a least-squares sense. A function coming from
this minimization is called the modified spheroidal Stokes’s function S*(1q, %)
(ibid.). (Let us note that we are using a different notation for the modified
spheroidal Stokes function than it is introduced in Vanic¢ek and Kleusberg’s
(1987) paper.)

Let us summarize the definition relations for the modified spheroidal
Stokes function S¢(4pg,1) as it was introduced by Vanicek and Kleusberg
(1987). The function S*(1g,) is determined by formulae

¥4 .
S (o, ) = S ~ 3 Lt By(eos ) (69)

J=0

or substituting for S¢(1) from eqn.(6.3), we can also write

5o, %) = S(¥) — Z 21 L 1 0s 1) — Z 2J; ! t;(vo)P;(cos ) . (6.10)

=2 7=0
The coefficients ¢;(1o) are determined by solving the linear algebraic equa-
tions:
23 +1
5 2L Ghobts (o) = Qo) (6.11)
}=0

where 7 = 0,1,...,¢. The matrix of the system of equations (6.11) is formed
by coeflicients R;;(%o) introduced by Molodensky et al. (1962) and later
investigated numerically by Paul (1973),

Ris(ho) = L :% Pi(cos ) P;(cos ) sin dip . (6.12)

Right-hand sides of eqns.(6.11) are created by Molodensky truncation coeffi-
cients QS(to) for spheroidal Stokes’s function St(3),

Qo) = [ 58P, (cos)sin (6.13)

Table 6.1 gives an example of a set of coefficients t;(1o) for 7 = 0,1,...,20
and 'l/)o = 6°.
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Table 6.1:

Coecllicients t;(zo) for j = 0,1,..

.,20 and o = 6°.

7 o) || 7| tile) |t 5 | ti(3ho)

0 -0.113168 || 7 | -0.109871 || 14 | -0.101394
1]-0.113048 || 8 | -0.108950 || 15 | -0.099838
21-0.112809 || 9 |-0.107926 ||.16 | -0.098212
31-0.112451 || 10 | -0.106802 || 17 | -0.096522
41-0.111977 || 11} -0.105582 || 18 | -0.094772
51-0.111387 || 12 | -0.104271 || 19 | -0.092969
6 |-0.110684 || 13 | -0.102873 || 20 | -0.091120

To get a better insight to differences between different Stokes’s functions,
Figure 6.1 shows the graphs of the Stokes function S(v), the spheroidal
Stokes function S%(3), and modified spheroidal Stokes function S*(3, ) for
£ =20, o = 6° and 1¢(0,8°).

Stokes functions
g . . . . —

10!

amplitude

100

10-1

102

Figure 6.1: The Stokes function S{+) (SF-curve), the spheroidal Stokes
function S2°(3p) (SST-curve), and the modified spheroidal Stokes function

10 b

—_

3

4 5

spherical distance (degree)

S520(sho, ), o = 6° (MSSI-curve), for 4 = 0 — 8°.
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6.2 Molodensky’s truncation coefficients

The truncation coefficients Q%(bo), cf. eqn.(6.13), have been introduced by an
analogous way to the Molodensky truncation coefficients @ ;(1o) for Stokes’s
function S(3p) (Molodensky et al., 1962),

Qs(0) = [ S(W)Py(cost)sinthey (6.14)

The relation between the truncation coefficients Q%(10) and Q;(30) may
be readily derived by substituting for S%(3) from eqn.(6.3) into eqn.(6.13).
Using the definition (6.12) of Paul’s functions R;;(30), we get

¢
. — 2k+1
Q3 (o) = Q;(3o) = 3 T:Rjk(fl)o) : (6.15)
k=2
In the following text we will need to handle with the Molodensky trunca-
tion coefficients Qf(z,bo) for modified spheroidal Stokes’s function S%(3po,),

1.e., with quantities

G4 (o) = / " S(xpo, %) Ps(cos o) sin i . (6.16)

=1

The relation between the truncation coefficients @5(1/)0) and Q;(’{l)o) may be
derived by substituting for $%(3,%) from eqn.(6.9) into eqn.(6.16). We get

~ £ 2k
G40ko) = Qo) = 3 o tu(sho) Ry (o) - (6.17)
k=0
Introducing the function
N 0 y 0< "/’ < 1/)0,
5 (sbo, ) = { (6.18)
St(d)J’z/)) ) '(/)0 S Il) S ™,

we may also write

Q'(o) = /ﬂ} 5 (spo, $)P(cos ) sin ) (6.19)
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Using the orthogonality ploper}of Legendre polynomials, the last equation
may be inverted obtaining

TR ge(zbo, i o) Pj{cos ) . (6.20)

In the next paragraph we will prove that @f(ibo) =0 for y = 0,1,...,¢

Therefore the summation over j in eqn.(6.20) may start from index j = £41,
le.,

Fwow = Y 211G

=41

Q5 (o) Pi(cos ) . (6.21)

Now, let us show that truncation coefficients Qf—(‘(bo),j =0,1,...,¢ are
identically equal to zero. Substituting for S*(1, %) from eqn.(6.9) into (6.16),
we have

@f(“/’o) = /" [ 2::

P=1vp

t j(w0) Pi(cos )| Pi(cosy)sintpdyp =

= Q4(o) — Lt (o) Bis(o) = 0 (6.22)

2

j=0
which is valid for ¢ = 0,1,...,£. In this derivation, we have used the defi-
nition (6.13) of truncation coefficients Q¢(v) and relation (6.12) for Paul’s
incomplete integrals R;;(1o) of the double product of Legendre polynomi-
als. The last equality follows from system of equations (6.11) for coefficients
tj(%o). -

The Molodensky truncation coefficients Q%(1o) and Qf(sbo) for o = 6°,
£=20,and § =0,1,...,180 are plotted in Figure 6.2. As we will see later,
the Molodensky truncation coefficients occur as "weights” in a spectral repre-
sentation of a truncation error §N4(Q?). Realizing that the spectral power of
the external gravitational field of the earth decreases with increasing spher-
ical degree (e.g., Rapp et al., 1991), Figure 6.2 shows that the truncation
error of Stokes’s integration which uses the modified spheroidal Stokes func-
tion is smaller than the truncation error of Stokes’s integration employing
the spheroidal Stokes function.

The other important finding is that when the Stokes integration is carried
out with the modified spheroidal Stokes function, then the truncation error
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Figure 6.2: Molodensky’s truncation coeflicients Q;(z/;c.) and Qj(zpo) for the
spheroidal Stokes function 5%°(3), and modified spheroidal Stokes function

Szo(po) 4’)7 11)0 = 6°.

§NYQ), see eqn.(6.28) below, does not depend on a reference field of low
spherical degrees (; = 0 — £) because this function is ’blind’ to spherical
harmonics of these spherical degrees. This fact does not hold for integration
with the spheroidal Stokes function.

6.3 Truncation error

The modified spheroidal Stokes function S¢(#, %) has been chosen such that
the truncation error

— B __Ri_ Ea 27 ¢ )
SN = [b . /a _ Dg(,0)S (o, ¥) sin bdpdar (6.23)




is minimal. Now, we ask about the magnitude of §N¥(Q) for a given radius
1. Unfortunately, Table 2.3 in Vanicek et al. (1987) yields poor information
about §N%(Q). Therefore, we will investigate the truncation error N%(Q) in
a detailed view.

Let us represent the disturbing potential T'(r, ) of the external gravita-
tional field of the earth in terms of spherical harmonics Y;,,(§2) (Heiskanen
and Moritz, 1967, eqn.(2-152)):

oo i+l
7,0 = S (B 8 By, (6.24)
— :

where M is the mass of the earth, and T3, are spherical coefficients of the
external gravitational field of the earth. Under representation (6.24), the
gravity anomaly approximately reads

J

or 2 GM &
Ag(f?) = - [_67 + T] = T 2 2 AginYin(Q), (6.25)
r=R 1=2m=—)
where
Agjm = (3 = 1)Tjm - (6.26)

The truncation error § N {(2) may now be evaluated as follows:

SN(Q) = 4—f;/ [ [ 20, @)3 (o, 9)sin papde =

= L Ag()F (o, $)dSY =

41r'y o
] > 2]2 + 1~
_/, Z Z Angml nmi (Q ) E 9 52(1/)0)X
n=2my=-j J2=0

Z 12m2 Jnmz(Q)dQl E Z Q (11)0 AngYTm(Q)

2-72 +1 ma=—jz j=2m=—j

In the first step, we have spread the integration from the interval < 3,7 >
onto the interval < 0,7 > because of replacing the Stokes function S(xo, )
by the Stokes functlon 5 (2o, %), cf. eqn.(6.18). Then we have transformed

the integration over polar coordinates (1, «) to the spherical coordinates
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Q = (¥, A), then we have substituted for S¢(tbo, %) from eqn.(6.20), and used
and the addition theorem for spherical harmonics (eqn.(4.30)). Finally we
have applied the orthogonality property of spherical harmonics (eqn.(4.31)).
. We get an important formula for the truncation error,

SNY(Q) = i gjj Q% (o) AgimYim () (6.27)

showing that the Molodensky truncation coefficients @5(1/;0) appear as "weights”
of series of spherical harmonics Ag;mY;m(§2). The smaller are the trunca-
tion coefficients, the smaller is the truncation error. As we have shown in
eqn.(6.22), @g(gbo) = 0 for j = 0,1,...,¢. Therefore the summation in
eqn.(6.27) may start from index j =€+ 1, i.e.,

SNY(Q) = Z Z Q (¥0)AgimYim () - (6.28)

j=€+1 m=—j;

Figures 6.3 and 6.4 plot the truncation errors SN‘(£2) and §N¢(f) over
Canada. The gravitational field of the earth was described by the model
OSU91A (Rapp et al., 1991); the cut of degree of spherical harmonic series
(6.28) was equal to 360, the degree of reference spheroidal field was £ = 20
and the radius of the integration cap was 19 = 6°. The values of the error
§NY(2) are within the interval (-1.9, 2.3) metres, whereas the errors §N{(()
lie in the interval (-0.24, 0.34) metres. This means that the modification
of the spheroidal Stokes function significantly reduces the magnitude of the
truncation error of Stokes’s integration.

6.4 Removing singularity of Stokes’s func-
tion

The Stokes integration with the modified spheroidal Stokes function yields a
high frequency part N°(Q) of the geoidal heights N(Q),

~ _ _f{_ ¥a r2m N\ oot .
Q) = 7 /w N /a _ Bg(@)S (Yo, $)sinpdpdar . (6.29)



The Stokes function S*(3o,%) has a weak singularity at the point ¢ = 0, i.e.,

lim §*(do, %) = 00 , (6.30)

and

lim S(1po, ¥) siny < oo . (6.31)

The method of removing this singularity is described in Heiskanen and Moritz
(1967, sect. 2.24) or in Vani&ek and Kleusberg (1987). We will use another
technique of eliminating the singularity of the Stokes function S*(3o,%). Sub-
tracting and adding the gravity anomaly Ag({2) at the computation point to
the gravity anomaly Ag(f)') at an integration point, the formula (6.29) may
be formally rewritten as :

NY(Q) = 4‘:7 /w %0 / 7 1Bg(Q) — Ag(R)] S (v, ) sin pdpdat

%o 2m
+ 21—fr%ag(n) o [ 8o, p)sindpda (6.32)
The singularity of the Stokes function S¢(3, ) in the first term is removed.
Namely, if ¥ — 0, then Ag(Y’) — Ag(?). Moreover, considering the prop-
erty (6.31), the integrand in the first integral vanishes at the point ¥ = 0. It
means that this point may be left out from the integration domain.

It remains to evaluate analytically the second integral in eqn.(6.32). We
may proceed as follows:

/ / S%(bo, ) sin pdipde = 2 /d_ (o, ) sin hdp =

0 . L
. / i [5(¢) ¥ _+ (cos1p)] sin i |

#=0

(6.33)
where we have firstly carried out the integral over « and then substituted for
S5%(10, %) from eqn.(6.10). Using the relations

Yo . T .
L "~ S()sinpdip = — /¢ , St)sinpd (6.34)

56



and

us

Yo
/ P;(cos ) sin pdep = — / P;(cos ) sin hdyp (6.35)
#=0

Y=g

for 3 > 0, eqn.(6.33) becomes

/¢ " S (4po, ) sin pdpder =

= [S(w)—Zi’HP(cosw) Z DI L (ho) Picos ) | sin -

i=2

—rto(to) / " sinpdyp =

= —97 {Qo o) — z_: . Rjo(1o) — Z 2' t;(%o) Rjo(vo)+
1
5 o(wo)(1 — cos 1[)0)] =

t;(vo)Rjo(tbo) + to(’/’o) (Roo(%o) + 1 — cos 1)

= —2x [Qo '//’0

i=0

= —2m [@8(to) + to(tho)] - (6.36)

In the above derivation we have used the definition (6.14) of the Molodensky
truncation coefficient Q;(3o); for 7 = 0 this coefficient reads (Heiskanen and
Moritz, 1967, eqn.(7-43)):

Qo(1o) = —4t + 5t> + 61> — 7t* + 6£7(1 — ) In(t + %), (6.37)
where
t = sin %‘l . (6.38)

The Paul function R;o() employed in eqn.(6.36) takes a simple form (Paul,

1973):

Pj1(cos o) — Pj—1(cos o)
25 +1

Rjo(to) = (6.39)

when 7 > 0, and
Roo(1o) = 1 + cos by . (6.40)
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Stokes’s formula (6.32) for a high frequency part of the geoid may be
finally written as

@) = o= [ [ 1) — g(@) 5, )iV

R

~ 35 89() [@5(0) + to(0)] - (6.41)
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Chapter 7

Numerical results

7.1 Data sets used

The orthometric heights H(f) of the earth’s surface were described by the
ETOPOS digital terrain model which provides the topographical heights over
Canada in a regular grid 5’ x 5. Results of numerical computations were
presented over four areas, (1) area A: latitudes ® = 42° — 72°N, longitudes
A = 218°—258°, which covers the Rocky Mountains in west Canada, (2) area
B: & = 48° — 58°N, A = 238° — 248°, which covers the Columbia Mountains
(Figures 7.1-7.3), (3) area C: ® = 49° —51°N, X = 242° — 244°, which covers
the Purcell Mountains (Figure 7.4), and (4) the region of the lake Superior,
® = 46° — 49°N, A = 268° — 276°. Figure 7.5 shows depths of the lake
Superior; the maximal depth is 329 m, the orthometric heights of the lake
surface 1s approximately 183 m.

The reference density pg of the topographical masses was chosen equal to
2.67 g/cm?3.

The anomalous density p(§2) of the topographical masses was considered
for three different cases:

(i) Density contrast of lake water. According to eqn.(5-16), we evaluated
the anomalous density o(£2) due to the density contrast between water of the
lake Superior and surrounding rockies.

(11) The Pratt-Hayford density anomalies. According to eqn.(5-33), we
evaluated the anomalous density p(§?) due to the Pratt-Hayford compensa-
tion mechanism of the Columbia Mountains.
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(iit) Anomalous densities coming from geological information. We dis-
cretized the Geological Map of Canada (1962) and the Geological Map of
British Columbia (1962) and obtained a data set of rocks and sediments in
the region of the Purcell Mountains. The discretization step was 5" x5’. Then
we transformed the map of sediments and rocks to a map of anomalous den-
sities p({2) according to tables of rock and sediment densities (Telford at al.,
1978). The resulting anomalous density of the geological structure beneath
the Purcell Mountains is shown in Figure 7.6.

The first step of this procedure is fairly reliable because there is good
knowledge of geological structure of the Rocky Mountains. On contrary, to
associate mass densities to geological rocks or sediments is highly unreliable
because the densities of rocks and sediments are influenced by many factors,
e.g. their age, previous history, depth below surface, geological history of the
region, etc. This causes that the density varies in a large range even for one
type of rock or sediment.

7.2 The primary indirect topographical ef-
fect on potential

To get a better view about magnitudes of particular terms creating the correc-
tions NV,,;(£) to the geoidal heights due to the primary indirect topographical
effect on potential, let us separate this term into two constituents:

Nori(2) = N7i() + Npi(9) (7.1)

where the Bouguer term N2,(1) is equal to

pTl

27rGg(.Q)

Q) = 2H).

H2(1+——

- (7.2)

pr:(

The term N?.(Q), an analog of the terrain correction (Heiskanen and
Moritz, 1967, sect. 3-3.) for the condensation technique, is equal to
G RAH'
NE@) = [ @) (R(rp, )| - R @)V (R, B)) -

v

~o(@) (N(R, 9,00 + Br@N (R, B)| a2, (13)
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where the Newton kernel N(£,4,r’) and the kernel N(R,t/),r’) are given by
eqns.(2.2) and (2.20).

Bouguer term

In correspondence with notations introduced in sect. 5.1, N7, B (Q) will de-
note the Bouguer term N2.(£2) for a constant density go = 2.67g/cm3and
NE. 5,(Q) will stand for the Bouguer term Nﬁ,(ﬂ) for anomalous density
60(f?). Numerical computation of the term Npﬂo( ) is easy to carry out,
because it is created by a simple algebraic expression and it does not include
any integration over topographical masses as other topographical terms. The
dependence of N, r:O(Q) on the topogra.phlca,l height is shown in Figure 7.7.
Over Canada (H < 6000m) the term N2, () may reach -4m which is a
large contribution to the geondal heights.

The plot of the term N2 »ri0l{2) over area A is shown in Figure 7.8. Minimal
value i1s -1.41m. Figure 7. 9 plots the same term over area B; minimal value
si -0.78m. We can see that the minimal values of N2, () do not reach the
value of -4 m as predicted in Figure 7.7 for heights of 6000 m. The reason
is that the ETOPObS topography is smoother than the actual terrain; the
height of some hills in the Rocky Mountains is reduced very significantly.

Numerical tests

For computing the terrain corrections N,%,(R2) of the primary indirect topo-
graphical effect on potential, cf. eqn.(7.3), we have created the computation
subroutine NEWTC for carrying out (i) the integration kernel

NR, )| (7.4)

generating the gravitational potential V*(R, ) of the topographical masses
at a point on the geoid, (i1) the integration kernel

R*7(Q)N(R,%, R) (7.5)

generating the potential V¢(R, Q) of the condensed masses on the geoid, and
(iit) the difference

RyH'

N(R,¢,r')[r=R — R*r(Q)N(R, %, R) (7.6)
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generating the residual potential 6V (R, ) on the geoid. The condensation
density 7(§2) is considered in the form (5.5). The subroutine NEWTC is
listed in Appendix A. The input and output parameters of this program are
described in comments at the beginning of the program.

We have carried out several numerical tests to explore the behaviour of
the integration kernel (7.6) in dependence of varying topographical height
H’ and the angular distance 3. The angular distance 1 was changed fluently
from 0.0001° to 10°, i.e., the distance between the computation point and an
integration point ranges approximately from 11m to 1100km. The height H’
of the integration point was modelled by three values: H’ = 200m, 1km, and
5km. The results are shown in Figures 7.10-7.13. We have plotted separately
the particular parts of the integration kernel (7.6); the solid curves in Figures
7.10-7.12 show the behaviour of the kernel (7.4), the dashed lines the kernel
(7.5), and the dotted curves their difference, 1.e., the kernel (7.6). Observing
Figures 7.10-7.13, we can see that:

(i) The computation algorithm is very stable even if a dummy point of
integration is very close to the computational point. This stability of the
integration kernel is caused by the logarithmic function occuring in the kernel
(2.20). When a dummy point of integration is very close to the computation
point such that ¥ < e (¢ is a small number), then the logaritmic function in

R+H'
eqn.(2.20) becomes dominant and the kernel N(R, %, r )I R behaves like a
function In ¢y, where ¢ 1s the horizontal distance between the computation
point and a dummy point of integration. Because of the limit

lim —— =0, (7.7)

the kernel N(R, 4,7 )l}t;[ goes to infinity when ¢ approaches zero even
slower than a reciprocal distance 1/¢y3. Therefore, the numerical procedure
of computing the Newton integral (7.3) based on the formula (2.20) is very
stable near the point ¥ = 0 and is not limited by a restriction that a dis-
cretization step has to be greater then the heighest topographical elevation
as in the procedure based on the Taylor series expansion (Martinec et al.,
1993b)

(i1) The topography used over Canada is gridded by step 5. If, for in-
stance, the topographical step would be shorter, say 1km, then the integra-
tion kernel (7.6) grows up in magnitude about 3 orders for a hill of 1 km high
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(Figure 7.11) and about 2 orders for a hill of 5 km high (Figure 7.12). This
increase of the integration kernel causes an increase of geoidal height N, (£2).
Of course, not with the same magnitude as for the integration kernel because
the integration in eqn.(7.3) is taken over varying topographical heights sur-
rounding the computation point. For example, when the topographical grid
is made denser from a grid of 5’ x 5’ to 1kmx1km, the maximal amplitude
of the terrain corrections N[, () over area B increases from 5cm to 18cm
(Martinec at al., 1993). Therefore, the grid step 5’ in a quickly varying moun-
taineous terrain such as in the Rocky Mountains is not able to fit feature of
the terrain with a sufficient resolution and does not reveal contributions to
geoidal height that are larger than lcm.

(iii) As soon as the computation point moves away from the integration
point, the integration kernel (7.4) starts to approach the integration kernel
(7.5), and the kernel (7.6) goes to zero. This means that the gravitational
potential of topographical shell of a finite thickness behaves like that of a
thin layer when it is observed from larger distances. The integration over the
full solid angle €' in term Nﬁ;(ﬂ) may be therefore shrinked to an integra-
tion over a small area (of radius ) surrounding the computation point. A
question is how large the integration radius 1y should be chosen in order to
retain a prescribed accuracy of geoidal heights. To answer it, we have eval-
uated the term N%, () for various radii %o; Table 7.1 summarizes result of
the tests.

Table 7.1: The minimum and maximum values of the term Nﬁ;'o(ﬂ) over the
west Canada (area A) for different integration radii 1

Yo min | max
(degrees) || (cm) { (cm)
0.5 -2.7 | 4.2
1.0 2.7 1 4.9
1.5 -2.6 | 5.2
2.0 20 | 5.9
3.0 -20 § 6.7
4.0 211 70

65



From Table 7.1 we can see that the accuracy of geoidal heights of the
order of | cm may be maintained when the integration radius is considered
equal to ¥ = 3°.

Columbia Mountains

The plot of geoidal heights due to the terrain correction term N, (Q) (with
integration radius ¢y = 3°) over area B is shown in Figure 7.14. We can
observe that the magnitudes of this term lay within the interval (-3, 5) cm.
The maximum values are linked with high hills in the Rocky Mountains. This
expresses the fact that the Bouguer term NZ; () (Figure 7.9) subtracts too

large values of geoidal heights, and therefore, the terrain corrections NX; ()

have to correct it by adding positive values. The opposite situation is for a
valley.
Figures 7.15 and 7.16 show the geoidal heights N2, (Q) and NE. ; (Q)

pri,bo pribe

induced by the Pratt-Hayford density anomalies (5.33). The values of the

term N5, ;,(€) are within the interval (0, 2) cm, wheregs the term NE. ()

varies in the interval (-1, 0.7) mm. The Bouguer term N, ; < (£2) is always pos-

itive because the density anomalies of the Pratt-Hayford compensation model
take only the negative sign, cf.eqn.(5.33). Neglecting the compensation of to-

pographical masses then means that the geidal heights may be biased because

of the systematic contribution of the Bouguer term Ng,-,ag(ﬂ). Comparing

Figures 7.14 and 7.15, we can see that terms Nﬁ,-,o(ﬂ) and NE,; () are ap-

proximately of the same magnitudes (of units of centimetres); both have to
be taken into consideration for a 1-cm geoid computation. On contrary, the

terrain corrections Nﬁ‘-,&g(ﬂ) due to lateral changes of compensation density

may be omitted for geoid computations with such an accuracy.

Purcell Mountains

Figures 7.17 and 7.18 show the Bouguer term N7, () and terrain correc-

tions N2, 5 (Q2) over area of the Purcell Mountains. The laterally varying

density ép was taken according to the laterally varying geological structure
of this region (Figure 7.6). The values of terms NB., () and NE . (Q)

pribe pribe
range between -8cm and 7cm, and -0.8cm and 0.6cm, respectively. Hence,
for 1-cm geoid computations, the Bouguer term N5, 5 () is to be taken into
considerations whereas the terrain corrections N,;; ;,(€2) may be ommited.

Lake Superior
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Figure 7.19 shows the plot of term N2, ; () over the lake Superior. We can
observe that the magnitude of this term lies within the interval (-0.24, 0.0)
cm, the largest negative values are linked with the deepest parts of the lake
Superior.

Let us explain the reason why the minimal value of -0.24 cm has a
’plateau’ over the deepest parts of the lake Superior. The orthometric height
- of the surface of the lake is 183 m, the depth of the lake reaches value of
329 m. This means that deeper water masses of the lake whose depths are
larger than 183 m lie under the geoid. Inspecting the definition (5.16) of
the anomalous density 6o(2) of the topographical masses, we can find out
that topographical masses for these deepest parts of the lake have a constant
density go — 0., (=1.67 g/cm?). Since the height H of the observer is also
constant over the lake, H = Hy, the first term on the right-hand side of
eqn.(5.19) shows that the term N5, ; (€0) is constant over the deepest parts
of the lake (i.e. parts whose depths are larger than 183 m).

Figure 7.20 plots the term N;ﬁi,c?a(‘Q) over the lake Superior. The magni-
tude of this term is of the order of 4 x 107> m. Comparing these values with
the magnitude of term N2, ; (Q) (Figure 7.19), we observe that Bouguer

pr

term N}f‘i,6g(n) is about two orders larger than the terrain correction term

N2 5,(8). This fact can be easily explained by the shape of the bottom of
the lake. The slope of shores of the lake is such severe that a larger part
of the lake has a depth greater than 183m. Therefore, replacing the real

topographical masses by the Bouguer plate is a fairly good approximation.

7.3 The direct topographical effect on grav-
ity

Numerical tests
For computing the direct topographical effect on gravity, see sect. 5.1, we
have created the computational subroutine DNEWTC for evaluating (i) the

integration kernel
R+H'

ON(r, ¢, ")
ar

generating the gravitational attraction Af(r, Q) of the topographical masses,

(7.8)

r=R
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(11) the integration kernel

ON(r, ¢, R)
2,28\ Y, 1Y)
R*r(Y) 5 (7.9)
generating the attraction A°(r,Q) of the condensed masses, and (iii) the

difference
R4+H'

ON(r, %, ") _ R%(g’)M
or =R or

generating the residual attraction §A(r, ). The condensation density 7 is

considered in the form (5.5). The subroutine DNEWTC is listed in Appendix

B. The input and output parameters of this program are described in remarks

at the beginning of the program.

Figures 7.21-7.23 show the behaviour of the kernels (7.8)-(7.10) for height
of the integration point H' = lkm. The height of the computation point was
described by three values: H = 200m, 1km, and 5km. The angular distance 1
was fluently changed from 0.001° to 10°, i.e., the horizontal distance between
the computation point and the integration point ranges approximately from
110m to 1100km. Observing Figures 7.21-7.23, we can drew similar results
as we did for the kernel N(r,1, r’)|?§£’l in sect. 7.2:

(i) The computational algorithm for evaluating the kernels (7.8)-(7.10)
is very stable even if a dummy point of integration lies very close to the
computation point.

(i1) There is a large difference in magnitude of kernels (7.8) and (7.9) in
an immediate neighbourhood of the computation point. The higher is the
topography above the computation point, the larger is the difference between
these kernels, and therefore, the stronger is the direct topographical effect
on gravity.

(iii) When an integration point moves away from the computation point,
the integration kernel (7.9) starts to approach the kernel (7.8), and the mag-
nitude of the residual kernel (7.10) goes fastly to zero. This means that
the gravitational attraction of a material shell of a finite thickness behaves
similarly to the gravitational attraction of a thin material layer when it is
observed from larger distances. The integration over the full solid angle ('
in the term § A(Q2) may be therefore shrinked to an integration over a small
cap of a radius ¥ surrounding the computation point. A question is how
to choose the integration radius ¥ to maintain a prescribed accuracy of
gravitation § A(Q2).

(7.10)
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To answer it, we have evaluated the direct topographical effect on gravity
8 Ao($2), cf.eqn.(5.7), for several radit 3o over the area A. Table 7.2 summa-
rizes results of the test.

Table 7.2: The minimal and maximal values of the direct topographical effect
on gravity §Ag({?) over west Canada (area A) for several integration radii o

Yo min max
(degrees) || (mGals) | (mGals)
0.5 -107.8 47.1
1.0 -117.7 47.1
1.5 -121.2 47.1
2.0 - -123.0 47.1
3.0 -124.1 47.1

From Table 7.2 we can see that the accuracy of 1 mGal may be maintained
when the integration radius s is chosen equal to 3°. Surprising is that the
maximal values of §A¢(£2) do not change within tenth of mGals; changes of
this value appear in hundredths (10~%) of mGals.

Columbia Mountains

The plot of the direct topographical effect on gravitation §A¢(§?) (with in-
tegration radius 3o = 3°) over the area B is shown in Figure 7.24. We
can see that the maximal value of §A4¢(?) is 28 mGals and minimal value
1s -28 mGals. As expected, these values are linked with hills and valeys of
the Rocky Mountains. In a flat terrain, the magnitude of §A4¢({2) is small
reaching at most the units of mGals.

Figure 7.25 shows the direct topographical effect on gravity §As,(£2) in-
duced by the Pratt-Hayford compensation density ép, cf. eqn.(5-33). The
values of §As,(Q2) range from -0.7 mGals and 0.7 mGals. The Stokes inte-
gration (4.3) of the gravitation § As,(2) provides corrections Ngir 5,(€2) to be
added to the geoidal heights. Figure 7.26 plots geoidal heights Ngi, 5,(€2) due
to the Pratt-Hayford compensation mechanism of area B; values are in the
interval (-7, 7) cm.

Purcell Mountains
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The direct topographical effect on gravity 8 As,(2) generated by lateral den-
sity variations of geological structure beneath the Purcell Mountains (Figure
7.6) ranges from -6 mGals to 9 mQGals (see Figure 7.27).- These large contri-
butions to gravity anomalies are significant for precise determination of the
geoid and surely contribute to decimetres of geoidal heights. Unfortunately,
the area plotted in Figure 7.27 is too small for applying Stokes’s integration
(4.3).

Lake Superior

Figure 7.28 shows the plot of term 6 As,({2) over the lake Superior. We can see
that the magnitudes of this term lie within the interval (-0.14, 0.18) mGals.
The Stokes’s integration of § As,({2) is shown in Figure 7.29. The corrections
 Nuirso(Q) to geoidal heights are in the interval (-1.1, 1.3) cm.

7.4 The secondary indirect topographical ef-
fect on gravity

Numerical tests :

For computing the Stokes integral N (§2) of the secondary indirect effect on
gravity, cf. eqns.(5.12)-(5.14), we have created the computation subroutine
UKERTC for carrying out (i) the integration kernel

(R, ) (7.11)
(ii) the integration kernel
R ()U(R, 4, R) , (7.12)
and (iii) their difference
O(Rp, )|~ Ro(@)U(R %, R) | (7.13)

The condensation density 7({2) is considered in the form (5.5). The subrou-
tine UKERTC is listed in Appendix C. The input and output parameters of
this program are described in comments at the beginning of the program.
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We have performed several numerical computations to explore the be-
haviour of the integration kernel (7.13) with respect to varying topographi-
cal height H' and the angular distance 3. These parameters were changed
within the same ranges as for testing the subroutine NEWTC (sect. 7.2).
The results are shown in Figures 7.30-7.32. Observing these figures, we can
drew the similar conclusions as we did for the kernel (7.6) (sect. 7.2):

(i) The computational algorithm for evaluating the kernel (7.13) is very
stable even if a dummy point of integration lies very close to the computa-
tional point.

(i1) The magnitude of the kernel (7.13) decreases very rapidly to zero
when an integration point moves away from the computational point.

Figures 7.33-7.35 compare the kernel (7.6) (curves ’N’) and the kernel
(7.13) (curves 'U’) for various heights of the integration point. We can ob-
serve that the magnitude of the kernel N’ is significantly larger then the
magnitude of the kernel U’ in an immediate vicinity of the computation
point. The higher is the topography above geoid, the larger is the difference
between the kernel "N’ and 'U’.

On contrary, the magnitude of kernel U’ becomes comparable with that
of kernel "N’ when the distance between the computation point and an inte-
gration point starts to enlarge. For instance, the kernel "U’ is approximately
the same as that of the kernel ’N’ in distances of about 20 km from compu-
tation point for topographical height of 200m (Figure 7.33), or in distances
of about 90 km for topographical height 5km (Figure 7.35). The kernel "U’
is even larger in farther distances. This indicates that if the kernel "N’ for
the primary indirect effect is taken into consideration for geoid computation,
then the kernel U’ cannot be left out because it contributes to geoidal heights
by terms of comparable magnitudes as the kernel "N’.

Figure 7.36 showing the geoidal heights generated by the secondary indi-
rect term N, 0(£)) over areas B prove the above statement. The magnitude
of Nseco(£?) ranges from -1.5 cm to +3 cm that is comparable with magnitude
of the term NE. () plotted in Figure 7.14.

pri,0

7.5 Discussion

The above numerical computations aimed to estimate the effect of later-
ally varying anomalous density o(§2) of topographical masses on the geoidal
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heights. For comparison, we also carried out numerical values of topograph-
ical terms for the constant reference density go. Let us summarize the basic
facts which follow from numerical analysis.

The topographical terms can be sorted into three groups according to
their magnitudes. :

(1) The largest contributions to the geoidal heights are induced by th
Bouguer term Np’i‘-,o(ﬂ) of the primary indirect topographical effect on po-
tential and the direct topographical effect on gravity § Ag(2). The magnitude
of the former term may reach values of -4m in a rugged mountaineous ter-
rain such as the Rocky Mountains (see Figures 7.8 and 7.9), the latter term
may contribute to gravity anomalies by values of tens and even hundred of
mQGals (see Table 7.2). Since these two terms are evaluated for the constant
density go of topographical masses, the only errors of these terms are caused
by inaccuracies of topographical heights and/or a poor resolution of a topo-
graphical grid. Namely, if the topographical heights are discretized by a very
large step, the DTM is not able to fit rough irregularities of a terrain, and
consequently, topographical terms are distored by large errors. For example,
the grid 5" x 5’ for description of the terrain shape of the Rocky Mountains is
of such a poor resolution that it causes errors in geoidal heights of the order
of metre (compare Figure 7.7 with Figure 7.8).

(2) The second group is formed by terms NX; o(2), NE, ;,(Q), 6As,(2),
and Ny 0(2). All these terms contribute to the geoidal heights by decimetres
at most in a rugged mountaineous terrain and by a few milimetres in a flat
region (see Figures 7.14, 7.15, 7.17, 7.25-7.27, 7.36). Even if the magnitude of
these terms i1s about one order smaller than that of terms of the first group, a
sparse discretization of topographical elevations may still cause large errors
of geoidal height. For instance, topographical terms of this group carried
out for the topographical grid 5’ x 5" in area of the Rocky Mountains do not
possess a desired accuracy of 1 cm; errors of geoidal heights due to a sparse
disretization may reach decimetres (Martinec et al., 1993c).

Poor knowledge of lateral variations of the density of topographical masses
1s other source of errors of the geoidal heights. For instance, for area of the
Rocky Mountains the topographical density has to be known with a relative
accuracy of 1% or better to be able to evaluate the topographical terms of
this group with 1-cmn accuracy (compare Figure 7.15 with 7.17, or Figure
7.25 with 7.27).



(3) Terms Nﬁmg(ﬂ) and Nye5,(2) induce geoidal heights of magnitudes
smaller than 1 cm (Figures 7.16 and 7.18), and may be therefore neglected
in l-cm geoid determination.

In summary, for a 1-cm geoid the terms of the first group have to be
taken into consideration in all cases, for a rugged terrain as well as for a flat
area. The topographical terms of the second group may be left out from
geoid computation over a flat terrain but they have to be considered over a
rugged mountaineous region. For the Rocky Mountains, the topographical
heights have to be gridded by step of 1km or denser, and the density of
topographical masses must be known with a relative accuracy of 1% or better.
The topographical terms of the third group may be omitted.

A density contrast between lake water and rockies and sediments repre-
sents another source of lateral changes of the topographical densities. Numer-
ical computations carried out for the lake Superior showed that this anoma-
lous density effects the geoidal heights in a few centimetres at most. There-
fore, the "water” effect of large lakes is to be considered only for a very
accurate modeling of the geoid.
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Figure 7.1: ETOPOS topographical heights over area B (® = 48° — 58°N,
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