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Abstract

The Stokes-Helmert scheme of the geoid determination was further developed here.
In this scheme the topographical masses above the geoid are condensed as a surface
material layer on the geoid. The gravity field associated with this condensation is
called the Helmert gravity field.

The mixed Boundary Value Problem (BVP) is first solved in the Helmert space
(field). As a result, the "geoid of the Helmert earth” or the ”Helmert co-geoid” is
determined. Then, the co-geoid is transformed to the geoid by applying the correction
for the indirect effect. For its determination the co-geoid is decomposed into two parts:
the long wavelength part, called the reference spheroid is determined using satellite
only analysis; the short wavelength part called the residual (high-frequency) geoid is
determined using terrestrial gravity data. The reference spheroid plays the role of
a reference surface to which the residual geoid is referred. Both parts are precisely
corrected for the Helmert condensation effect.

The long wavelength reference gravity field is constructed, from the satellite data,
to compute the Helmert reference spheroid. In the meantime, some quantities in the
reference field are computed. These quantities are: the direct topographical effect on
gravity, Helmert’s reference gravity anomaly, secondary indirect topographical effect
on gravity, and the reference spherical correction to the boundary condition. They
are all evaluated to a 2nd degree approximation.

In the residual geoid, the generalized Stokes integral, taken over a spherical cap
of radius o = 6° and employing a modified spheroidal kernel designed to counter-
act the truncation, is used. The contribution of the gravity data outside the cap is
called the truncation error, minimized by the modified kernel. It is estimated using a
geopotential model. The gravity data used in the Stokes integration, are the residual
(high-frequency) 5’ x 5 mean Helmert gravity anomalies, referred to the co-geoid.
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These residual values are obtained from the ”"observed” gravity anomalies (the whole
values) on the topography. For this, the observed values are first Helmertized by
applying the direct topographical effect on gravity. They are reduced to residual
component by subtracting the Helmert reference gravity anomalies on the topogra-
phy (discussed above). Then, they are downward continued to the gevid. The values
on the geoid are transferred to the co-geoid by applying the secondary indirect topo-
graphical effect and the spherical correction to the boundary condition, both reduced
by their reference values.

The error in the Helmert co-geoid is a combination of two errors: that of the
spheroid and that of the residual geoid. The error in the spheroid is the result of the
errors in the satellite potential coefficients. The spheroidal heights are correlated, and
the correlation is a function of the geopotential model used. The correlation distance
is about 900 km. The error in the residual geoidal heights are due to the errors in
the terrestrial gravity data. They are also correlated through the gravity data being
shared by the Stokes integrals at the two points in question.

il
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Chapter 1

Introduction

The work presented in this dissertation is an outcome of a research contract done on
the precise determination of the geoid by a working group to which the author was
a member. During the past five years, the working group refined a theory for the
precise determination of the geoid. This theory has been crystallized in a method
called the ”Stokes-Helmert Scheme” [Vani¢ek and Martinec, 1994]. The group em-
ployed the scheme to compile a precise geoid for Canada [Vanicek et al., 1995a]. The
author’s responsibility in the group was partly to look after the long wavelength part
of the geoid: examining different global geopotential models and assessing their ac-
curacies. A more detailed description of the author’s contribution towards the geoid
computation is given in Sec. (1.3).

In this introductory chapter, the whole picture of the geoid determination will be
briefly explained in the section called the Stokes-Helmert scheme. Before this, the
gravimetric determination of the geoid based on the Stokes theory and the Helmert

method is explained.



1.1 Gravimetric Determination of the Geoid

In the gravimetric method, the geoidal height is obtained as a by-product of the third
or mixed Boundary Value Problem (BV P) [Heiskanen and Moritz, 1981, p. 36] solved
for the disturbing potential T,

V3T = 0. (1.1)

This is the Laplace differential equation. Geoid is the boundary and

Ag = —g—g-%z‘ (1.2)
is the boundary condition—the spherical approximation of the "fundamental equation
of physical geodesy” [Heiskanen and Moritz, 1981, eqn. (2-151f)], where Ag is the
boundary value (the gravity anomaly referred to the geoid), R is the mean radius of
the earth, and H is the orthometric height. The condition for T to satisfy the Laplace

equation is to be a harmonic function. T is harmonic outside (r > R) the earth and

c 1
T = ;+0(73) for r — oo, (1.3)
[Martinec, 1996]. The condition on the existence of the solution for 7, is that Ag
should not contain the first-degree harmonics [ibid]. This condition is satisfied in the

geocentric coordinates system and the solution is given by the Stokes formula

T(Q) = g [ [2e@) s (v(2,2)) a2, (1.4)

where € denotes the earth, Q is the geocentric direction (with components of the geo-
centric latitude ¢ and longitude 1) defining position on the geoid of the computation
point, and Q' is the direction defining position of the integration point. S(¥) is the
Stokes kernel, a function of 1)—the spherical distance between the two positions. The
geoidal height N, referred to a geocentric reference ellipsoid, is then derived from 7'
using the Bruns formula

N = f—o (1.5)
where 7o is the normal gravity on the reference ellipsoid.



1.1.1 Helmert’s method

There arise complications in the application of Stokes’s formula to the real earth,
because T is not a harmonic function everywhere on the geoid, as it is required by
the Laplace equation and the gravity anomaly is not very well known on the geoid.
These complications arise because of the existence of topographical masses above the
geoid.

Condensation of the topographical masses along the plumb lines into a surface ma-
terial layer on the geoid, based on Helmert’s second condensation reduction method
[Heiskanen and Moritz, 1981, Sec. (3-7)], creates a different gravity field called Helmert’s
gravity field with the following characteristics:

1. the isostatic equilibrium of the crust is mostly preserved, i.e., the replacement
of the topography by the condensed layer does not significantly alter the equi-

librium, and as such preserves the main features of the gravity field,

2. the Stokes formula is applicable in this field anywhere on and above the "geoid
in Helmert’s space” (Helmert co-geoid) without any complication, and

3. the transformation back to the real space (indirect effect) can be numerically

evaluated.

Denoting the gravity potential of the earth by W and the Helmert gravity potential
by W*, one can write

Wh=w -V, (1.6)

where V' is the change in the gravity potential due to the condensation. In analogy
to the earth gravity field, the Helmert gravity field is characterized by the Helmert
disturbing potential T*. Unlike T, T* is a harmonic function outside the Helmert
co-geoid, since there remain no attracting masses outside the co-geoid in the Helmert

field, thus it satisfies the Laplace differential equation

ViTk = 0. (1.7)



This implies that the Stokes formula, as a solution to the Laplace equation will
determine the T outside the co-geoid. The Boundary here is the equipotential surface
of the Helmert field counterpart to the geoid in the real field. It is the Helmert co-
geoid, and the boundary condition is similar to eqn. (1.2), as

Agh = _oT _ 3T", (1.8)

where Ag” is the boundary value (Helmert’s gravity anomaly referred to the co-geoid).

The Helmert co-geoid departs from the geoid by at most a few metres [Heiskanen

and Moritz, 1981, Sec. (3-7)]. It is the Helmert condensation indirect effect—called

the Primary Indirect Topographical Effect (PITE). It can be numerically evaluated

since the difference of the Helmert model earth from the real earth is mathematically
described.

1.2 The Stokes-Helmert Scheme

There are researchers who have given thoughts to the precise determination of the
geoid. Wichiercharoen [1982] by computing indirect effect on the geoid, Wang and
Rapp [1990] by computing the terrain effect on the geoid, and Heck [1992] by con-
sidering the Helmert second condensation method. In the Stokes-Helmert scheme,
presented herein, a thorough investigation of the Helmert condensation idea for a
precise determination of the geoid was conducted by Vaniéek and Martinec [1994]. In
this scheme the BVP is first solved in the Helmert space. The solution (Helmert co-
geoid) is then transformed back into the real space (the geoid) by precise evaluation
of the PITE.

The main goal of the Stokes-Helmert scheme is to provide a theory accurate enough
for computing the geoid, as the final product, to the accuracy of 1 cm in a distance of
100 km or 10 cm in a regional extent. This goal will be achieved if all the corrections

and transformations of the observed gravity anomaly to the Helmert space are carried



out to the accuracy of 10 pGal [Vaniéek and Martinec, 1994]. This in turn implies
that any effect on gravity, during the transformations, larger than 10 xGal has to be

investigated and taken into account.

The scheme can be visualized from different perspectives. In one view it can be

described in the following four steps:

1. Transforming the "observed gravity anomaly” (Ag;) on the earth surface into
Helmert’s gravity anomaly (Ag?), referred to the same surface.

2. Downward continuing of Agl to the Helmert co-geoid.

3. Solving the BVP in the Helmert space, i.e., solving for the Helmert co-geoid
using the generalized Stokes formula.

4. Transforming the co-geoid to the geoid by evaluating the PITE.

To carry out the transformations, the mathematical descriptions of the differences,
both in gravity and potential, between the actual gravity field and the Helmert field
are required. The difference in the potential (V; eqn. (1.6)), called "residual topo-
graphical potential” is given by

V = Vt - Vc, (1‘9)

where V* is the gravitational potential of the topography and V* is the gravitational
potential of the condensation layer. Assuming g as the density of the topography and
o as the surface density of the condensed topography, the two potentials are given by
the Newton integral, as

vt o= G///% (1.10)

ve = G// de, (1.11)



where 7 and ¢ characterize the volume of the topography and the surface of the geoid
respectively. G is the gravitational constant and ¢ is the spatial distance between the
computation point and the integration point. These potentials will be elaborated in
Sec. (2.4.1).

The potential V is the tool for the transformations from the actual space to the
Helmert space and back to the actual space. As it is understood from the three
equations above, it is the mass density difference between the topography and its
condensation that is required for the evaluation of the potential V. As the first
approximation, the topographical density is modelled as the lateral density distribu-
tion within the topography. Martinec and Vaniéek [1994b] show that an approximate
knowledge of the distribution (good to about 5%) would ensure the required accuracy
in the evaluation of V' (and the gravity transformations).

Based on the potential V, the four steps above can be further explained as follows

o Step 1: Ag, is computed from the observed gravity g; by subtracting from it
the normal gravity 4; on the telluroid,

Age = ge — , (1.12)

where v, is obtained from normal gravity on the reference ellipsoid (7o) using

Taylor series expansion of the normal gravity along the normal direction (n),

al v, 1 08% N2
70+a—noH +§an20(H ) L

= %+ grad 4|, HY, (1.13)

M

where HY is the normal height [Vanigek and Krakiwsky, 1986, Sec. (16.4)]. The
effect of the neglected terms in the Taylor series expansion is smaller than 1uGal
at a maximum elevation of 4000 m [Vani¢ek and Martinec, 1994]. Denoting the

term (grad vlo HY ) as the sum of the three terms:

grad 7|, HY = —0.3086 (mGal/m) HY — LE — AE; (1.14)



and comparing with the previous equation, yields

LE = (-a—" —0.3086) HY
ano
_ 1 8%y N2
AE = —EWO(H ), (1.15)

where -0.3086 is the global mean gradient of normal gravity, LE is the Latitude
Effect” and AE is the ”Altitude Effect” on the normal gravity. The normal
height HV is compared to the Helmert orthometric height H by the equation

—0.1543 H
H=HV |2 . .
H (g, +0.0424 H) (1.16)

This equation is worked out from the definitions of the normal and orthometric
height systems [ibid]. The difference between orthometric and normal heights
defines the separation between quasigeoid and the geoid. The separation is neg-
ligible at sea but may reach to a maximum of 2 m in mountains. Assuming
the maximum value, the two heights can be used interchangeably in the correc-
tive terms LE and AE, as was approximated by Vani¢ek and Martinec [1994,
eqns. (22) and (37)),

LE = (% 70(#) +2 7 ~0.3086) H
AE = -481x10"® (mGal/m?) H?, (1.17)

where w is the angular velocity of the earth spin, and ¢ is the latitude.

The Ag, is then transformed to Helmert’s space by applying the residual topo-
graphical effect on gravity, i.e., by constructing Helmert’s gravity anomaly Agh.
This effect is the vertical gradient of potential V evaluated on the topography.
It is called the Direct Topographical Effect on gravity—DTE. Its value on the

topography is derived as
ov

t

(1.18)



A similar effect on gravity arises from the condensation of the atmosphere on
the geoid. It is called the Direct Atmospheric Effect on gravity—DAE, and the
value on topography is given as

ove

DAE, = - ==/,
t

(1.19)

where V' is the residual atmospheric potential, defined in much the same way
as the residual topographical potential. A combined topographical and atmo-

spheric residual potential may be denoted as
V*=V+Ve (1.20)

Hence,

ov*
OH |,
In practice, DTE, and DAE,, being vertical gradients, are approximated by

the geocentric radial (r) derivatives of V and V. The error committed by the

approximation is much less than 10 uGal.

Step 2: Ag} is reduced downward to the geoid along the plumb line. This
requires the vertical gradient of Helmert gravity to be known, which it is not.
In practice, thus, an alternative approach is used [Vanicek et al., 1996]. In
this approch the Helmert gravity anomaly on the geoid is determined from the
anomalies on the topography, using inverse Poisson’s integral transformation
[Heiskanen and Moritz, 1981, eqn. (1-89)]. The downward reduction can be
written as

Agh = Agl + DAg*, (1.22)
where DAg" is called the downward continuation of Agh.

For the precise evaluation of the geoid, Ag;‘ is further reduced to the co-geoid
(the boundary) to which the sought Helmert’s disturbing potential T is also



referred. For this, a reduction called the Secondary Indirect Topographical and
atmospheric Effect on gravity—SITE, evaluated on the geoid,

SITE= Z V°, (1.23)

| v

is applied [Vani¢ek and Martinec, 1994, eqn. (40)]. V; here is the potential
V* evaluated on the geoid. The SITE may account for up to 300 pGal. It
is evaluated using spherical approximation, without deteriorating the required
accuracy. The Helmert anomaly reduced by the corrections discussed so far is

denoted by Agp.

The Stokes formula, to be used in the next step, is based on the approximate
(spherical approximation) boundary condition eqn. (1.8). To correct for this
approximation, another correction, denoted by D%,

2

D° = % [‘:T“;) +f (—-;- + cos(2¢))} T, (1.24)

is needed [Vanicek and Martinec, 1994, eqn. (29)]. The D? correction may reach
up to 160 uGal. It may be evaluated using a high resolution (e.g., 360/360)
geopotential model, taking T for the Helmert disturbing potential T%.

Assembling all the corrections into one equation yields

Agh = Agh+ SITE + DS
Ve
6H |,

+DAg" + % V' + Df, (1.25)

= g.— (7% —0.3086 H—~ LE — AE) +

where Agf” is the anomaly to be used in the Stokes integral.

Step 3: The Stokes formula is now employed to compute the Helmert co-geoid
from Ag}’. There are, however, some practical considerations involved here.

They will be further discussed in Sec. (3.1).



¢ Step 4: The computed co-geoid is then corrected for the indirect effect due to
the transformations from real space to the Helmert space. It is a combination of
the Primary Indirect Topographical (PITE) and Atmospheric (PI AE) Effects
on the geoid, [Vani¢ek and Martinec, 1994],
V.
PITE + PIAE = 7’ , (1.26)
(]

The PITE amounts to at most some 1-2 m. It should be evaluated using the

spherical approximation of the geoid, versus the planar approximation used
in common practice. This better approximation improves the geoid by as
much as 0.5 m [Martinec and Vanitek, 1994a]. Assuming a laterally vary-
ing density distribution for the topography, compared to the constant density
g0 = 2.67 g em™3, further improves the PITE, i.e., to the accuracy of 1 cm
[Martinec, 1993].

Helmert’s condensation reductions DTE and DAE do have some impact on
the physical parameters of the earth. They may either change, even though
slightly, the mass or the location of the centre of mass of the earth, depending
on the formulation of the surface layer density [Martinec, 1993]. As a result, the
Helmert co-geoid represents a "model earth” which is slightly different in mass
or in the centre of mass. But the changes are compensated when transforming
the co-geoid to the geoid by applying the corresponding PITE and PIAE

corrections.

1.2.1 Generalized Stokes-Helmert Scheme

Because of the sparse gravity data on the earth surface, the gravimetric method alone
cannot be used in determination of the whole spectrum of the geoid. A combined
method, using two types of data: extraterrestrial (satellite); and terrestrial (surface)
data, is employed. The first data, Sec. (2.2), are homogeneous and available in low-

frequency band, since satellites barely sense the earth gravity field in high-frequency

10



band which is strongly attenuated at the satellite altitude. The second data, surface
gravity anomalies, are reliable only in the high-frequency band, since the gravity
observations on the earth surface are only distributed in a local or regional extent.
Both kinds of data carry information about the same gravity field of the earth. For a
proper use of the data, in the geoid determination, one should assign proper statistical
weights to each data type. This is not a trivial task. One way to take advantage of
both data is to define a clear cut frequency delimitation between the data types
to avoid correlation [Vanicek et al., 1987]. The degree/order 20/20 potential term
is shown to be a reasonable break [Vanitek and Krakiwsky, 1986, Ch. 23], since the
terms up to degree 20 are determined to a good accuracy from the analysis of satellite
orbits. Hence, the geoid is determined in two parts.

The long wavelength part (the main features up to 20/20) is determined from a
satellite-derived geopotential field, Sec. (2.3). For the reasons discussed in the next
paragraph, this part of the geoid is called the higher-degree reference spheroid, and
the field originating the spheroid is called the higher-degree reference field.

The remaining part (the short wavelength features), called the residual (high-
frequency) geoid, is determined from terrestrial gravity, using spheroidal Stokes’s
integral [Vani¢ek and Krakiwsky, 1986, eqn. (24.28)], employing spheroidal kernel of
degree L = 20. The integral, as a high-pass filter, automatically cuts off the low-
frequency contribution of the surface data and refers the residual geoid exactly to the
higher-degree spheroid. Thus, the spheroid plays the role of a reference surface—the
reference spheroid.

The spheroidal Stokes’s integral, as with the original Stokes’s integral, has to
be extended over the entire earth, even though the contribution of the "distant”
gravities to this integral is minimal. For the lack of gravity observations in remote
areas, the spheroidal kernel is modified in a way that minimizes the contribution of
the distant gravities [Vani¢ek and Sjoberg, 1991]. Then, the integral is called the
”generalized Stokes integral”. More on the modification theory is found in Sec. (3.1).
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The (minimum) contribution of the "distant” gravities, called the "truncation error”
is estimated separately, using a high resolution geopotential model, Sec. (3.3).

Let us complete this section by briefly explaining another generalized technique for
the precise determination of the geoid. Sideris and She [1995] applied a technique to
compute a high-resolution geoid for Canada. In their approach, a higher-degree (360)
spheroid is first derived from a global geopotential model, e.g., OSU91A [Rapp et al.,
1991]. The spheroid is then used as a reference surface for the residual geoid computed
from the Stokes integral (eqns. (1.4) and (1.5)) employing the original Stokes’s kernel,
and the terresterial gravity anomalies rediused by the geopotential field. The original
kernel is used in order to correct for the deficiency in the geopotential model by the
terresterial data. For the numerical evaluation, the (convolution) Stokes integral and
other terms such as the indirect effects and the accuracy estimate of the geoid, were
treated using the Fast Fourier Transform [Schwarz et al., 1990; Forsberg and Sideris,
1993; Sideris and Li, 1993].

1.2.2 Flowchart of the Operations

In practice, surface gravity data are available in the form of mean anomalies, repre-
senting 5 x 5', 1° x 1° or even larger geographical cells, while satellite data are given
in the form of potential coefficients. Hence, the numerical evaluation of the geoid
involves mean anomalies.

In the absence of a homogeneous and properly densified network of point gravity
anomalies (with known orthometric heights), a grid of mean anomalies, derived from
point values, may represent the gravity field better. Averaging the ”observed” point
anomalies in a geographic cell suppresses the observational errors in data collection,
in the meantime, however, smoothes the gravity field. The degree of smoothness
depends on the area of the cell. Any quantity of the gravity field, e.g., the geoid,
derived from mean anomalies is a smoothed model of the reality. Practically, in geoid

determination, the mean anomalies associated with smaller cells eliminate only the
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local surface irregularities of the gravity field without affecting the geoid solution.

A flowchart of the operations required at each step of the geoid evaluation, an

improved version compared to Vanicek et al. [1995a], is shown in Fig. 1.1. In this

diagram, the circles stand for input data and rectangles denote computational blocks.

The list of input (I) data sets required is:

I1 - the first 20/20 potential coeficients of a satellite-derived field;

12-5 x 5 mean incomplete Bouguer anomalies;

I3 - global topographical height model (given by harmonic coefficients);

14 - local detailed topography, such as 1 kmx1 km, and 5' x 5 topography;
I5 - global atmospheric density model;

I6 - normal gravity field and the corresponding reference ellipsoid;

I7 - combined (satellite and terrestrial) global geopotential field of high resolu-
tion (e.g., 360/360);

I8 - topographical density model.

Operations required to evaluate the Helmert higher-degree reference spheroid

(Né‘o) are shown in the sequence of boxes on the left hand side of the Fig. 1.1 and

the operations associated with the residual Helmert co-geoid are shown on the right

hand side. The operations in the dash-line blocks are so far only proposed, and have

not been implemented yet.

1.3 Topics of the Investigation

Contributions of this research towards the geoid determination theory are mostly in

the area of the reference field in the Helmert space, i.e., all the operational blocks in
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the left column of the diagramme (Fig. 1.1) except for the atmospheric condensation
corrections.

The most appropriate satellite gravity field was selected as the reference gravity
potential field (20/20), after investigating and examining the accuracy performance of
different global geopotential models of the GEM-T and GRIM4 families, Sec. (4.1.1).
For the reduction of the selected reference field on the geoid, the satellite-derived
potential coefficients were corrected for the ellipticity of the geoid (”ellipsoidal ap-
proximation”), Sec. (2.5). The desirability of an even better approximation (compared
to the ellipsoidal approximation) was studied; it was concluded that the ellipsoidal
approximation is good enough for the 1 cm accuracy.

The reference residual topographical potential V3¢ was formulated in a harmonic
series expansion, Sec. (2.4.2), in terms of a series of squared-topography harmonics,
derived from the topography model TUGS87 [Wieser, 1987]. The reference field was
then Helmertized by applying the potential V5o, Sec. (2.4.2). The Helmert reference
potential was then reduced to the Helmert disturbing potential (T,_,’B) by subtract-
ing the normal potential induced by the GRS-80 reference ellipsoid, Sec. (2.4.2).
The reference gravity anomaly Agh, shown by Dgh in the Fig. 1.1, was formu-
lated, Sec. (2.4.2). The reference spherical correction D3;, Sec. (2.5), derived from
the Helmert disturbing potential, and the SIT E,g, Sec. (2.4.2), all derived from Vao,
were then generated. These fields are to be subtracted, in the sequences shown in
Fig. 1.1, from the mean "observed” values to eliminate the long wavelength compo-

nents. Finally, the high-frequency Agh?°

, shown by Dg}*° in the Fig. 1.1, is obtained.
The Helmert reference spheroid N} was derived from T%. It constitutes the long
wavelength component of the Helmert co-geoid.

Improvements of the high-frequency Stokes’s integrator were implemented and
the truncation error of the integrator has been formulated and estimated. The orig-
inal software (integrator) had been designed to accept either point or mean gravity

anomalies of different resolutions as the input data and to predict point anomalies
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wherever necessary. These features caused an unnecessary complexity of the software
and slowed down the computation. With the availability of the mean anomalies of
the 5' x 5 resolution throughout Canada, the software was streamlined. As a result,
the CPU time required for running the software was considerably reduced. With this
faster software, an optimum size of the inner zone was studied. The truncation error
of the integrator was estimated using different high resolution geopotential models to
investigate an optimum model.

The software developed to carry out the research herein described is as follows:

sfroid.f - to evaluate a higher-degree spheroid, employing "spherical”, "ellipsoidal”,
and "higher-degree” approximations, using a given geopotential model. The
ellipsoidal correction (approximation) to the spheroid, using eqn. (2.99), and
the higher-degree correction, compared to the ellipsoidal correction, considering

eqn. (4.3), are numerically evaluated.

sfrod3.f - to evaluate a higher-degree spheroid, eqn. (2.101), and the accuracy esti-

mate of the spheroid due to the errors of the geopotential model.

sfrod4.f - to evaluate the error variance, Fig. 5.1, error power spectrum of a geopo-
tential model, Fig. 5.2, and error covariance of a satellite-derived spheroid,

Fig. 5.3.

hgrvan.f - to evaluate the reference quantities: V5o (eqn. (2.69)), Agzo (eqn. (2.38)),
DTE (eqn. (2.86)), Agh, (eqn. (2.87)), SITEjq (eqn. (2.90)), and the ellipsoidal
correction to the gravity anomaly (eqn. (2.100)), using a geopotential model and
a topographical model.

sphelm.f - to evaluate the V3o and the Helmert spheroid NX, eqn. (2.102).

dsterm.f - to evaluate the DS term, eqn. (2.103), and its accuracy, using a combined

geopotential model.
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trnerr.f - to evaluate the truncation error, eqn. (3.11), of the generalized Stokes
integral and the accuracy of the truncation error. This program was originally
written as zbysto.f by Martinec [1993]. The program is modified by different
input option. Some features such as profile option and error estimation, were

added to the program.

hdelgtr.f - to compute high-frequency mean Ag! from mean Bouguer anomaly [Heiska-
nen and Moritz, 1981, eqn. (3-19)], reduced by the reference gravity anomaly on

topography, and corrected for some mean anomalies discussed in Sec. (3.2.1).

avrage.f - to average a high resolution mean anomalies, e.g., 5 x 5, to a smother

mean anomalies, e.g., 1° x 1°.

GIN95.f - to evaluate the generalized Stokes integral, Sec. (3.1), using the integra-
tion cap of radius ¢ = 6°. This is a new version of the original GIN program

described in [Gang Chang et al., 1986; Vanicek et al., 1987].

crltion.f - to evaluate the error correlation, as a function of spherical distance, be-

tween residual geoidal heights, eqn. (5.32).

chnseq.f - to change the sequence (order) of data in a sequential file to the sequence
required by the GIN95.f routine. As a requirement with GIN95.f, an input file
of gravity anomalies, assigned with latitudes and longitudes, has to be ordered

for latitudes from south to north, and for longitudes from west to east.
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Chapter 2

Higher-degree Reference Field in
the Helmert Space

2.1 Introduction

2.1.1 Actual Gravity Field of the Earth
Potential

The actual gravity potential of the earth W is the sum of the gravitational potential
(W,) and the centrifugal potential (W.),

W =W, +W, (2.1)

In satellite dynamics applications the gravitational potential, a harmonic function
outside the earth, is expressed as an infinite series of harmonic functions, formulated

in a geocentric coordinates system as

Wy(r, ) = S _ %A{g; (2)" waie), (2.2)

where r is the geocentric radius, Q is the geocentric direction, G is the gravitational

constant, M is the mass of the earth, o is the radius of the Brillouin sphere (a
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geocentric sphere with minimal radius enclosing the whole earth), W, are the surface
spherical harmonics,
n

Vn22 W) =3 [WanVam(Q) + WernVom(2)], (2.3)

m=0

where ng and W,sm are the unitless and normalized potential coefficients, 75,,, and

7:’:," are the norma'ized spherical harmonics of degree n and order m, [Heiskanen and

Moritz, 1981, eqns. (1-73)],

7,(:' = V2n +1 Pa(sin ) m =0,
?Sm (n —m)! [ cos mA )
( 7in ) S Rt oy EC TR
(2.4)

where P, are the Legendre polynomials and P, are the associated Legendre func-

tions.

Gravity

The actual gravity g, the magnitude of the gravity vector, of the earth is the absolute
value of the gradient of the actual potential. The gravity vector defines the vertical
(H) direction, hence, g equals the vertical gradient of the potential with negative sign
[Vanicek and Krakiwsky, 1986],

ow

g=|VW|= ~3H (2.5)

2.1.2 Anomalous Gravity Field of the Earth
Disturbing Potential

Since the variation of the actual gravity potential (W) of the earth is very small
compared to its magnitude, the bulk of the potential is expressed mathematically

in such a way that the remaining part, called the disturbing or anomalous potential
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T, is small and thus easily handled using even linear approximations. The closest
model potentiai to the actual potential, yet easy to handle mathematically, is the
normal potential U generated by the "normal body” (the reference ellipsoid) of the
earth with the mass equal (ideally) to the mass of the earth, co-axial with the earth,
and spinning with the same velocity as the earth. The actual potential can, then, be

written as

W=U+T. (2.6)

The normal potential is expressed as
U=U,+W.. (2.7)

where U, is the gravitational part of the normal potential and W, is the centrifugal
potential of the earth. U, is a harmonic function and can be expanded, in the geo-
centric coordinates system, in an infinite series of harmonic functions [Heiskanen and

Moritz, 1981, eqn. (2-88)], as

GM* GM* & \" .
Uslr,p) = —— === 3 (2) I¥Pu(sin ), (2.8)
n=2,4,

based on the four ”Stokes’s constants” a*, b*, M*, and w. JY are the normal potential

coefficients [ibid, eqn. (2-92)],

JN = (~1)3H 3e” 1 _05n+25n22 2.9
n ( ) (n+1)(n+3) Qn T2 nez ) ()

defined only for the even degrees n. All of the coefficients corresponding to the odd
degrees are zero. In this formula e is the first eccentricity, J}¥ is the second degree
coefficient, representing the flattening of the normal ellipsoid. It is determined from
the four given constants [Bomford, 1971, P. (479)]. It is useful to mention here that
the coefficients J) decrease to zero for n > 8 [Vanitek and Kleusberg, 1987).

The normal gravity v, the magnitude of the normal gravity vector, in analogy to

the actual gravity, is given as the derivative of the normal potential along the normal
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direction (n). It can be also approximated to a good accuracy by the derivative along

the H,
ou

AH
The most recent international formula for the normal gravity, as part of GRS-80, is
given by Moritz [1980].

Considering eqns. (2.7), (2.1), and (2.6), we obtain T as

5 =|VU| = - (2.10)

T(r,Q) = W,(r, Q) — U,(r, Q). (2.11)

T is about 5 orders of magnitude smaller than W, [Vani¢ek and Martinec, 1994],
and it is a harmonic function outside the earth, since both W, and U, are harmonic

functions. Considering eqns. (2.2) and (2.8), the spectral form of T is obtained as

T(r, Q) = GTM T, — gﬂ f; ( ) Tu(e), (2.12)

where To, the 0-th degree harmonic, goes to zero for M* = M, T, are the disturbing

potential surface harmonics,

Vn22  T(@)=Y FLYS.(+TLYL@)].  (213)

m=0

~C
Tnm

and Tfm are the disturbing potential coefficients. In the derivation of T, it
was assumed that both eqns. (2.2) and (2.8) are referred to the same coordinates
system, i.e., the reference ellipsoid is geocentric (the mean earth ellipsoid). For a non-
geocentric ellipsoid, first-degree harmonics appear in the spectral form of T' [Heiskanen

and Moritz, 1981, eqn. (2-176a)].

Gravity Anomaly

The gravity anomaly Ag, as a function of T, is defined by the "fundamental equation
of physical geodesy” [Heiskanen and Moritz, 1981, eqn. (2-148)]:

or 1 B‘yT

A9=—3m t YR

(2.14)
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or in terms of potential U (see eqn. (2.10))

oT 16%U

A9="58 ~ yom.

(2.15)

The spherical approximation of the equation [Heiskanen and Moritz, 1981, eqn. (2-

154)], reads

oT 2
Ag = —E’ - ;T (2.16)

Substituting for T (from eqn. (2.12)) and its partial derivative with respect to the

geocentric radius r,

8T GM, GM & a\"
3 =Tt X)) (2) (@), (2.17)
into eqn. (2.16) yields
GM_, GM & a\"
8g(r,0) = 5 To+ 5 3 (n — 1) (;) T,(Q). (2.18)

The sources of error in the spherical approximation of Ag are the following approxi-

mations,

o~

or or 18U 2
8H ~ or’ y8H? " ¢’

(2.19)
The error caused by the approximation of the vertical derivative of T' with the radial
derivative is due to the difference between geodetic and geocentric latitudes. It is
of a relative order of 5.5 x 107%3in?2¢ [Vanicek and Martinec, 1994]. Assuming 300
mGal as maximum value for the vertical derivative of T', the maximum error is about
2 pGal which is negligible. A large error comes from the second approximation.

For a rigorous evaluation of Ag on the geoid, the second error must be eliminated.
This is done by considering the D° term (see eqn. (1.24)) in the eqn. (2.15). This
term is defined for T* by Vaniéek and Martinec {1994, eqn. 27]; in the real space it

reads

s_(L&Uul 2
DS = (% 5w ~ 7)o (2.20)

0
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where T, is the disturbing potential on the geoid and R is the mean radius of the
earth

R=(a?p)", (2.21)
and
1 82U| . 2 wia* | *?
%ﬁ?o_a—.[l+ . + f* cos 2¢ + 16(11+12co.s2q5+co.s4q§) .

(2.22)

This equation, as a power series in the flattening f* of the reference ellipsoid, was

derived by Vani¢ek and Martinec [1994, eqn. 22]. Denoting

D® = D(¢) T,, (2.23)
from eqn. (2.15) we get
oT 2

Substituting for T, and for its radial derivative from their harmonic series, one obtains

the rigorous harmonic expansion of the gravity anomaly on the geoid, as

80®) = T (@) + 5 3 (2 a0, (2.29
where
Ag(@) = (114 D($) )To
Vn>2  Ag(®) = (n—1-r, D(¢) Ta(Q), (2.26)
and

g =1g() (2.27)

is the geocentric radius of the geoid.
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Geoidal Height

The geoidal height N is derived from the disturbing potential T' (evaluated on the
geoid, T;) using Bruns second formula
N(@) = B (2.28)
Yo
This formula is obtained from the Taylor series expansion (the linear part) of the

normal potential U on the reference ellipsoid, assuming U, = Wo:

ou
Vs=Uot 31

1 82U
RRAEY e

N 4 .., (2.29)
0

where W is potential on the geoid. For the condition Uy # W, a correction to the
Taylor series must be applied [Heiskanen and Moritz, 1981, eqn. (2-178)]. Considering
eqn. (2.10), and after some manipulations of the series, we get

vey=T3 1 9

_— 2
o "oy am| Nt (2.30)

0

Approximating o = 10® mGal, %’I— = 0.3 mGal/m, the second degree (in N) term, a
correction to the Bruns formula, is in the order of 1.5 x10~7 N2, which for |[N| = 100 m
it is less than 1.5 mm. For a centimetre geoid, this correction is negligible [Vanicek

and Martinec, 1994].

2.2 Satellite-derived Gravity Field of the Earth

The long wavelength features of the earth gravity field can be determined from orbit
perturbations analysis of low orbiting satellites. In the satellite altitude, the high
frequency features of the earth gravity field are attenuated, i.e., the amplitudes of the
features of degree 20 and higher reduces by more than 40% [Vanicek and Krakiwsky,
1986, Sec. (23-4)]. The gravity field derived this way is called satellite-derived geopo-
tential model. The model is usually given by a series of spherical harmonic functions

with derived coefficients.
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A recently derived family of geopotential models by "Deutsches Geodatisches
Forschungsinstitut, Abt.I” (DGFI) is called the GRIM4 models [Schwintzer et al.,
1991]. These models had been originally designed for the orbit restitution of the
ERS-1 altimeter satellite to the accuracy of one decimetre (in the radial direction).
GRIM4-54 is a purely satellite-derived model complete to 60/60. Observations to 31
satellites with different inclination angles, distributed between 0° and 90°, were used
to derive the model. The observations (satellite tracking data) comprise of optical
observations to satellites (1962-1971), satellite laser ranging since 1971, and Doppler
range rates since 1978. These data reveal gravitational orbit perturbations of satellites
to be composed of wide band spectrum of variations.

A single satellite in an inclined orbit is subject only to some wavelengths of the
earth gravitation, so that the relative amplitudes of individual periodic components
contained in the satellite data are mainly dependent on the satellite inclination. This
means that the relative power spectrum of the data changes with the inclination.
As a result, only a combination of the tracking data obtained from an assembly of
satellites with different inclinations, distributed between 0 to 90 degrees, provides a
complete picture of the gravity field. This has been the case with the satellites used
in the derivation of the GRIM4 models.

An analysis of sensitivity of the geopotential coefficients of GRIM4-S1 model to
orbital information was conducted by Schwintzer et al. [1991]. It has shown that
the contribution of the orbital perturbation information to the potential coefficients
decreases, from 100% to 0%, by increasing the degree and order of the coefficients. The
situation is quite opposite for the a priori stochastic information, based on the Kaula
rule, imposed on the coefficients. That is, as the degree and order of the coefficients
increase, they become more dependent on the a priori information than on the real
orbital information. However, the coefficients of degree 0 up to 25/25 are shown to

be well determined—being more than 50% dependent on the orbit perturbation data.
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In the adjustment of the satellite tracking observations, the external gravity po-
tential of the earth is formulated as a series of spherical harmonics in the coordinates
system defined by the tracking station network. In order to prevent aliasing effects,
the upper bound of the series is selected as high (in frequency) as to exhaust all peri-
odicities that may exist in the observations. By constraining the coordinates system
to coincide with a geocentric system, the adjustment yields a field lacking the first

degree harmonics. The low frequency part (of degree less or equal to L) of the satellite
field is then formulated as

Wi(r, Q) = GTMWO —~ GTMg (5:-)" W,.(Q), (2.31)
where M is mass of theAearth plus the mass of the atmosphere obtained from the
satellite observations, Wy, the zero-th degree coefficient, equals to unity if the mass
is fixed to the initial value (M ) prior to the adjustment. & is a pre-selected scale (the
semi-axis of the earth; an approximation of the Brillouin radius), and W, are surface

harmonics of the satellite potential, see eqn. (2.3).

2.3 Higher-degree Reference Field

As it was discussed in Sec. (1.2.1) and (2.2), a satellite-derived gravity field is more
appropriate to be employed in derivation of the long wavelength part of the geoid

because

e it is the most unambiguous and unbiased, available so far, in its constituents
because a group of well distributed satellites in inclination is used to provide

the full coverage of the earth;

o the terrestrial gravity data collected so far, around the globe, are yet sparse.

The data are inadequate to yield homogeneous global features of the gravity
field of the earth.
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To facilitate this, the gravity potential W is modelled differently than in the eqn. (2.6).
Following the same ideology as in Sec. (2.1.2), W may be decomposed into its
(low-frequency) long wavelength part (W) and the remaining high-frequency part
(WE) as
W =w,+ W=k (2.32)
Now, WL, is selected from the satellite field (eqn. (2.31)) and denoted as the higher-
degree reference potential. Referring this potential to the potential U, yields

Wi =U + 6U, (2.33)

where 6U is the higher-degree reference potential referred to the second-degree po-

tential U. Comparing the equation (above) with the equation
WL =U+Tzg, (2.34)

derived from eqn. (2.6) for L > 8 (see Sec. (2.1.2), reveals that
8U =Ty, (2.35)

where T, is the long wavelength part of the disturbing potential 7', expressed as
eqn. (2.12). Considering the eqns. (2.8) and (2.31) in the eqn. (2.11), using the
satellite field, for n < L, we get

GM GM L. (a\"
oU = TL(T‘,Q) = r To — r nz=:2 (;) Tn(ﬂ), (236)
where
- M*
TO = WO - M

Vn>2  T(Q) = WiQ) - (AAJJ ) (%')"J,{VP,. (sin @).  (2.37)

The higher-degree reference gravity anomaly Agy, on the geoid is directly obtained
from eqn. (2.25), using the satellite field, and by taking only the first Z harmonics,

~

GM GM & (a\"
Agz,(ﬂ): -2 Ago(Q)+ 2 Z(;') Ag,,(Q) (238)
9 g n=2 9
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Based on §U(TL), evaluated on the geoid, the reference spheroid N, referred to the

reference ellipsoid, is derived from the Bruns formula

TL()
N () = , 2.39
L( ) 70(9) ( )
or in the spectral form as
GM, GM & a)"
N (Q) = T, — — | To(%). 2.40
u) = 2r, - S5 (2) 200 (.40

The spheroid is an equipotential surface of the reference field, as the geoid is of the
actual field.

2.4 Helmertization of the Higher-degree Reference

Field

By Helmertization, it is meant the transformation from the real earth field to the
Helmert space. This includes all the quantities defined in the field. The transforma-

tion originates from eqn. (1.6),
Wh=w -V,

where the potential V, eqn. (1.9), is a small residual quantity. Further to the discus-
sion in Sec. (1.2), the topographical potential V* generates a strong gravitational field
capable of displacing equipotential surfaces, such as the geoid, by as much as 103 m
[Martinec and Vani¢ek, 1994}, while the effect of V on the geoid is at most 2 m. This
implies that V is 2.5 orders of magnitude smaller than either V* or V¢. This is why
the transformation from the real earth field to the Helmert space (Helmertization of
the field) can be precisely carried out, even if a precise information about the density
distribution within the topography is not available.

The Helmert disturbing potential T%, in analogy to T in the real field, is given by

Wh=U+Th. (2.41)
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Substituting for W from equn. (1.6), yields
Th=W-U-V=T-V. (2.42)
Considering eqns. (2.1), (2.7), and (1.9) we get
Th=W,-Vt4+ V-, (2.43)

It can be seen that the gravitational potentials (W, — V*), V¢, and U, are harmonic
outside the geoid. Hence, T is harmonic and satisfies the Laplace eqn. (1.7). This
implies that T* can be expressed as a series of harmonic functions outside the geoid
with the harmonic coefficients determined from the proper boundary condition. This
problem has been already solved for T, assuming that T is a harmonic function, in
the real space. The solution is expressed by eqn. (2.12). The solution, even though
it does not completely fit a non-harmonic function T, fits the harmonic function
T* rigorously. Substituting for T' from eqn. (2.12) in eqn. (2.42), provides rigorous

harmonic expansion for T.

2.4.1 Residual Topographical Potential V

The residual potential V, eqn. (1.9), is defined as the difference between the two
potentials V* and V°. Denoting by o the density within the topography and o as
the surface density of the condensed topography, the two potentials can be evaluated,
using Newton’s integral [Martinec and Vanicek, 1994b], as

. r@EE) o' Q) 2,
= =t ' dr d 2.44
Vi Q) / / e W DMLY (2.44)

Ve(r, Q)

O'(Q) 2 '
G/ {r, Q) @ 4 (2.45)

where £ is the spatial distance between the computation point (7, ) and the integra-

tion point (r',Q'), 4 is the geocentric radius of the geoid. To evaluate the integrals,
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one has to know (), and the densities p and 0. To evaluate the potential V, which
is a very small quantity compared to V*, an approximate knowledge of r, and the
densities should be good enough. The potential V has an effect of at most 2 m on
the geoidal height, thus the spherical approximation of the geoid (rg = R) will have
an effect of the order of flattening (0.003), i.e., at most 6 mm on the geoidal height
[Martinec and Vanicek, 1994b]. The situation is somewhat similar with the densities.
Assuming now constant density g, within the topography and the T = R, the
gravitational potential of the topography is given by the Newton integral [ibid],

H, (R + Z)z '
d .
Um0 Rt 2@ 2 (2.46)

Vi(r,Q) = Goo /E /

where H', the topographical height, is a function of ' reckoned along the radius vec-
tor, and equals to a sufficient accuracy to the orthometric height. We can now express
the inverse distance as an infinite series of the Legendre polynomials P,(cos %),

% = %i (R:- z)"P,.(co.s ¥), (2.47)

n=0

convergent for 7 > R + z, where 9 is the spherical distance between the computation
point and the integration point.

Substituting the inverse distance into the integral formula yields

Vi 9) = Geo [ [ : (th)z > (R+ z)nPu(cos V) dz d9Y'. (2.48)

n=0 r

This equation has been further developed to

-] n+1l n+3 3 I\ k ,
Vir,Q) = GooR? ) (E) Tﬁ 3 ( n+ ) /e (%) P,(cos 9) d,

n=0 > T k=1 k
(2.49)
by Vanicek et al. [1995b].
The evaluation of eqn. (2.45) requires a condensation model that associates the
condensation density o with the real topographical density g. We shall show how this

works for two such models that seem to make the best physical sense.
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First Condensation Model

For the evaluation of the potential of the condensation layer, we first select a model
among many possible models, the condensation scheme that preserves the positioz of
the centre of mass of the earth. The consequence of this selection is that when the
residual topographical potential is expressed in a spectral form, the terms of degree
1 are identically equal to zero. As a result, the spectral form of the reference field in
Helmert’s space does not contain terms of degree 1 either, i.e., the field is referred to
the geocentric coordinates as required in the Stokes theory. It is shown by Martinec
(1993] that the condensation density

JH(QY) + H¥}(Q) + H3(Q)

o(@) = (@) H@) 1+ 52+ T L T

(2.50)

preserves the centre of mass. Here o is the surface layer density, and 7 is the mean
density of topography along the geocentric radial direction.

Substituting for the surface density from eqn. (2.50) into the eqn. (2.45), and
considering constant topographical density go, which results in 3 = g, yields

3H? H® H*\1 .,
¢ = GR? ' = dn. 2.51
Ve(r, Q) GRgof€<H+2R+R,+4R3)e (2.51)
Developing the reciprocal distance into spherical harmonics,
1 1 & 7R\
-==Y (= 2.52
== (3) Paleos 9), (2.52)

n=0
and substituting into these into the integral, we finally get the harmonic expression
for the condensation layer potential, convergent for r > R,

oo

V(r, Q) = GR2g 3 (.r’?)"+1 /e F(H') Pa(cos ¥) d20, (2.53)

O S (I COREICo P

where
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Subtracting the condensation layer potential from the topographical potential, we get
the harmonic expansion for the residual topographical potential V/,

V(r,Q) = GooR? i (g)ﬂ+1 [n—1i-3 "i:s ( nt3 ) / (I;')k P.(cos ) dQ) —

n=0 k=1 k

_/ef (H') Pn(cos o) dQ'] .
(2.55)

The summation over k converges very quickly, since H < R, and we can safely
truncate it at degree 3. Then the equation for potential V is rewritten in a more

transparent form

V(r,Q) = GgoRzg:()(f "H [ ( R) Pa(cos ) d +

; / (%)3 Pa(cos ) dﬂ'].
(2.56)

It is evident that the harmonic constituent of degree 1 goes to zero, as expected.

Isolating the zero-degree term yields

V(r,Q) = G9°R/H 40’ +
Goo & (R\™ 12 ,
+= 2222(7) (n—1) /e H'? Py(cos 4) dQ¥,  (2.57)

where now the higher than second degree terms in H were left out. This is possible for
the reference field limited to a maximum degree L. The error caused by neglecting the
H'®.-term is smaller than (L +1) x 0.5 x 10~2, which for L = 20 amounts to about 1%.
The isolated term in the right hand side, i.e., the zero-degree residual topographical
potential is denoted by V5.

In accordance with the definition of a surface harmonic [Heiskanen and Moritz,

1981, eqn. (1-71)], we can write

(H’)" Q) =

2‘n. + 1 9 '
= /e H'? P,(cos ¥) Q¥ (2.58)
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where (H?), is the surface harmonics of the squared-topography H?2. Using this
symbolism in eqn. (2.57), we get

-1

V(r,Q) = G0 i (g)“+1 = (#7), (@), (2.59)
where
(#7), @) = X [ (&) v + (#7)] vi@)]. (2.60)

The symbols (H2)S_ and (H 2)5  denote the harmonic coefficients of the HZ.

The presence of the zero-degree harmonic V; reflects the fact that this condensation
model is not designed to preserve the mass of the earth. As a result, the equipotential
surfaces are slightly uplifted in the Helmert space, compared to their positions in the
real earth field. The amount of uplift at the earth surface (» = R) can be evaluated
from a global topographical model. Using the TUG87 model, the uplift is determined
from the Bruns formula,

Vo

No=—=—-40cm, (2.61)
Yo

where

Vo = —2nGgo (H?) (2.62)

00’
Second Condensation Model

The second model of condensation reduction is the one that preserves the mass of the

earth. This condensation requires a surface layer of density

(Q) = 5(Q) H(Q) [1 + ng) + H;,(Z?)] , (2.63)

[Martinec, 1993]. Following the same procedure as for the first model, starting from
eqn. (2.50) onward, we end up with the spectral expression for the residual topo-
graphical potential associated with this condensation, (cf. eqn. (2.59)),

R)"+1 (1) (@), (2.64)

V(r,Q) =2mGoo ) (7 m +1

n=1
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where the zero-degree harmonic is zero, as prescribed, and the first-degree harmonics

are
‘/10 = 2?“'690 (Hz)lor

vE = Zow (1),

27 s
VS = 5 Geo (#?), - (2.65)
The first-degree harmonics describe the displacement of the origin of the coordinate
system with respect to the centre of mass. Assuming ¢, 7, and ( to be the displace-

ments in the geocentric coordinates system, it is shown by Heiskanen and Moritz

[1981, p. 99] that

GM
Vie = = &
GM
Vg = R? £
GM
Vlsl = Rz 7)' (2-66)

Using the TUG87 model, it was found that

(¢ = 23 mm,
n = 7.5 mm,
¢ = —1.5mm. (2.67)

In the sequel, the first condensation model will be used, since it does not violate
the requirement of using a geocentric coordinates system ("forbidden harmonics”).
On the other hand, the Stokes integral is blind to the presence of any zero degree
harmonic. That has to be evaluated from somewhere else. This, however does not
present a problem here, since the zero degree harmonic V; has been already determined

from the earth topography, eqn. (2.62).
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2.4.2 Helmert’s Higher-degree Reference Field

The higher-degree reference potential in the Helmert space, denoted by W?, is derived
from eqn. (1.6). Taking the long wavelength part yields

WE(T, Q) = WL(T, Q) - VL(T7 Q): (268)

where W, replaces Wy, as we will be talking about the satellite-derived field only.
Before subtracting the potential V;, (eqn. (2.59)), it is rewritten as

vt ) = Py - 5 (4) @) (2.69)
where
V22 Vu(@) =) [VEYE (@) + VY5 (9), (2.70)

and the unitless harmonic coefficients are given by

27I'Rgo 2
VC _ n H2 c
Vn 2 27 m S n: nm = _2‘”690 (n 1) (5_) ( )nm ’
v M (2n+1)\a (Hz):m

(2.71)

where @ and M were defined in Sec. (2.2). Now the Helmert reference potential can

be easily derived as

) e L anm
Wf(r,n>=G—MW$—G—"12(9) WA (), (2.72)
r T n=2 r
where
Wé‘ = WO—‘/CH
Vo>2  WHQ) = W,.(Q)-Vi(Q). (2.73)

We now have to derive Helmert’s higher-degree reference potential, reference gravity

anomaly, and the Helmert reference spheroid, as these three quantities constitute the
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"references”. These quantities are obtained by ” Helmertization” of their counterparts
in the real earth space. This is done by transforming the quantities from the real earth
field to the Helmert space by applying the corresponding corrective terms: V, DTE,
and SITE.

The higher-degree Helmert reference potential §U*, referred to U (see Sec. (2.3))
is
§U* = T}, (2.74)
where the anomalous potential T} is obtained directly from eqn. (2.42),

Ti(r,Q) = Ty(r, Q) - Vi(r, Q). (2.75)

Considering eqns. (2.36) and (2.69) we get

: .
i) = 2y - S 5 (4) 1 (2.76)
T T n=2 T
where
T = To-V
Va2  THQ) = T (Q)-Vu(Q) (2.77)

The Helmert gravity anomaly Ag", like its counterpart in the real field, Sec. (2.1.2),
is defined by the equation

h
O 107 (2.78)

h—_—
A =-3H ~OH

where Ag* and T* both refer to the Helmert co-geoid. Let us re-write the similar

equation for Ag and T on the geoid, in the real space (eqn. (2.14)):

0T 106y
=—c—4+-T7 2.
Ag £V + 43 HT (2.79)
Subtracting the last two equations yields
o(Th-T) 10y
h=Ag- - h_T). 2.80
Ag" = Ag 3 + 73 H(T T) (2.80)
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Substituting for (T — T) from eqn. (2.42) we get
Agh=Ag+ — — -V (2.81)

Because of the residual V, we can use the spherical approximation (eqn. (2.19), on

the geoid),
16y _ 18U 2
v8H  ~8H* R’
and the radial derivative of V instead of the vertical derivative [Vani¢ek and Martinec,

1994] in the the right hand side, as

(2.82)

ov 2
Ag" = A l l V.
g g ar R . (2’83)

The last term of the equation is the SITE, see eqn. (1.23). This equation defines

also the relation between the long wavelength terms as

ovy 2
Ag} = Agr + TrL- + 7 Ve (2.84)
or
oV;
Agl = Agr+ -~ + SITE,, (2.85)

The partial derivative in the right hand side is the higher-degree direct topographical
effect on gravity (cf. eqn. (1.18)), referred to the geoid. Taking the radial derivative
of eqn. (2.69), we get

aVL _ GM_  GM & (i
2y M) =——3V+ Ez(;) (n + 1)VL(Q). (2.86)

Considering eqns. (2.38) and (2.86) in eqn. (2.85) we find on the Helmert co-geoid,
that

GM GM & (a\"
Agg(rg:, Q) = —rTAgg(‘rg, Q) + T Z (a) Ag,':(rg, Q) + SITEL, (2.87)
g g n=2

where 7, is the radius of the Helmert co-geoid, r, is the radius of the geoid, and

Agh(rg, ) = Ago(Q) - Vo
Agh(rg, Q) = Aga(Q) + (n + 1)Vo(Q), (2.88)
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or substituting for Age(Q2) and Ag,(Q) from eqns. (2.26), we get

Agh(ry, ) = (1—ry D(¢) )To—Vo
VR22  Agd(r,Q) = (n—1—r, D($) YTa(Q) + (n+ 1)Va(Q).

(2.89)
Substituting for V' from eqn. (2.69) yields the higher-degree SITE,
. 2GM . 2GM & (&\"
SITE, = 7 Vo — 7..;2 (E) Va(Q). (2.90)

Helmert’s reference spheroid or the higher-degree Helmert co-geoid is derived from
8U* or T!, eqn. (2.76), on the geoid, using Bruns’s formula,

GM_, GM & (a\"
NE Q) = T — (—) T (Q). 2.91
o = Mgy M5 (2) 1a 2o
Considering eqns. (2.75) and (2.39) we can write
NZ(Q) = Ni(Q) — : 2.92
L( ) L( ) 'YO(Q) ( )

The last term in the equation is the residual topographical effect on the reference
spheroid. It can be given in terms of the harmonics of potential V, eqn. (2.69), as

) ..
Vo . GMy GM < (5) Va(Q). (2.93)

Yo Yo Y0 p=2 \T

2.5 Evaluation of the Anomalous Quantities on the
Helmert co-geoid

To evaluate the Helmert anomalous quantities, e.g., eqn. (2.76), on the Helmert co-
geoid, one has to know the equation of the co-geoid. The separation between the
Helmert co-geoid and the geoid is at most 2 m (PITE, Sec. (1.2)). Using the radii
Ty and 7, interchangeably in the evaluation of the anomalous quantities does not

make sensible differences. Hence, we consider only the geoid whose equation is

r =14(Q). (2.94)
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The geoid can only be described by mathematical expressions of an infinite complexity
such as an infinite series. In the equations relating anomalous quantities, however,
the geoid can be modelled by either the mean earth sphere or more precisely it can

be approximated by the mean earth ellipsoid,
re = rg(Q), (2.95)

of the major semi-axis & and the flattening f. Selection of the ”ellipsoidal geoid” in
the equations, brings about the so-called ellipsoidal approximation of the anomalous
quantities. For a small flattening f, the equation of the ellipsoid is given by Bomford
[1971, p. 565] as

re() = a (1 — feos?d + 0(f?)), (2.96)

where 6 is the co-latitude, and 0(f2?) represents the terms of the order of squared-

flattening. By substituting rg for r in T}, the radial term changes to

" n+1l
Vn<20: (ri) = 1+ (n + 1)fcos?8 + 0(f?). (2.97)

E
The effect of the squared-flattening terms in T}, for L=20, is smaller than 3 x 1073,
so they can be neglected. Hence, the ellipsoidal approximation of the disturbing

potential reads

GM GM &
TH(Q) = —~T¢ - — [1+(n+1) f cos®] THQ), (2.98)
n=2

and the ellipsoidal approximation of T} compared to the spherical approximation,

(rg = &), will then be given by the correction

r L
T},‘(r,Q)lmra — T(r, Q)| _, = f cos?8 TH - % 3 (n+1) f cos?d THQ),
n=2

(2.99)

called the ellipsoidal correction to the disturbing potential. The correction is consid-

erable and may have an impact of up to one metre on the geoidal height, see chapter

4.
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It is useful to show the ellipsoidal correction to the reference gravity anomal Agr

(eqn. (2.38)). As with the disturbing potential, we can write

~

GM &
AgL(Q)Ir=r3 - AgL(Q)Ir=6 = f COSzo AgO(Q) - a? Z(n + 1) f 60320 Agﬂ(ﬂ)i
n=2

(2.100)

In practice, the anomalous quantities in the real earth field: eqns. (2.36), (2.38),
(2.40) or the quantities in the Helmert space: eqns. (2.76), (2.87), (2.91), (2.90), are
required to be evaluated on the geoid/co-geoid using the ellipsoidal approximation of
the geoid. The ellipsoidal approximation of the eqns. (2.40) and (2.91), read

GM_ GM & 2
= - (2.
NL(Q) o - Ez [L+(n+1) f cosd] Tu(Q) (2.101)
and
M M E
NE Q) = gw Te —~ 570 2_:2 [1 +(n+1)f co.szﬂ] THQ) (2.102)
respectively.

It is worth to give here the spectral formula of the reference D§ term, evaluated
on the geoid. From eqns. (2.23) and (2.12) and using ellipsoidal approximation, we

obtain

D$ = G—i”- D(¢) To - GTM i [L+(n+1) f cos®| D(¢) T(Q).  (2.103)

n=2
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Chapter 3

Numerical Evaluation of the

Residual Helmert Co-geoid

3.1 Modified Spheroidal Stokes’s Integrator

The residual (high-frequency) Helmert co-geoid is evaluated from the residual Helmert
gravity anomaly using the generalized (spheroidal) Stokes integral,

B

NE(Q) = rr

[ [ adk@) s*w) g, (3.1)

where Ag” in this chapter denotes the high-frequency Helmert gravity anomaly eval-
uated on the co-geoid. S* is the high-frequency Stokes kernel or the spheroidal Stokes

kernel, referred to degree-L spheroid,

SL(’lll)z i 2n;}-11

n=L+1

P,(cos ). (3.2)

The kernel, as a function of spherical distance v, decreases to zero faster, compared
to the original (ellipsoidal) Stokes kernel [Vani¢ek and Krakiwsky, 1986]. This charac-
teristic of the kernel is advantageous since the gravity from distant areas contributes

little to the result of integration.
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In order to further minimize the contribution of "remote” gravity to the Stokes
integral, Molodenskij et al. [1961] proposed the idea of the modification of the Stokes
kernel. The kernel is modified in such a way as to make it converge to zero at a shorter
distance from the computation point, so that the integration can be "truncated” closer
to the computation point. Theoretically, there is no modification that would give zero
contribution of the remote gravity to the integral. Some contribution always persists.
This is called the truncation error of the modified Stokes integral, truncated close to
the computation point.

The idea could be extended to the spheroidal Stokes integral as well. In Vanicek
and Kleusberg [1987], the modification of the spheroidal Stokes kernel for a spherical
cap of radius 4, = 6° was first proposed. The spheroidal Stokes kernel is modified by

adding low-frequency constituents to the kernel,

L
S*(p) = SE($) — Si(v) = S5(p) - 3 21

=2

iy Pi(cos 9), (3.3)

where the amplitudes f; are determined, to minimize the truncation error.

It is, of course, the truncation error of the modified Stokes integral:

oL L oL
NH(@) = | [ AdH(®) 5H(p) dt, (3.4)

that is minimized. The modified integral is different from the original (eqn. (3.1))
integral by

= L oL

6N™ = = = [ [ (s%w) - 5*Uw)) Ag* aa
— . L
= / / Si() Agh 4. (3.5)

Since the modification of the Stokes kernel is carried out in the low-frequencies, the
modification will not affect the Stokes integral, i.e., §N™ will be zero if the resid-
ual Helmert gravity anomalies Ag” are not contaminated by any low frequency er-
rors. This requires the low-frequency component (Ag) to be known properly, since

the residual anomaly is obtained from the "observed” anomaly by subtracting the
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satellite-derived (low-frequency) reference anomaly. The spectral form of the SN™

will be derived later in Sec. (3.3), when dealing with the truncation error.

3.2 Numerical Evaluation of the Modified Spheroidal
Stokes Integral

The modified spheroidal (high-frequency) Stokes integral is evaluated over the spher-
ical cap Cj of radius v = 6°, (see above)

R

N.L(Q) = 4myo

/ /CO Agh(Q') S*E(y) dQ. (3.6)

Gravity anomalies on the earth surface are given as mean values for geographical
cells. To accommodate the mean anomalies, the Stokes integral is reduced, without

any loss of generality, to a summation of partial integrals over the cells ¢; inside the

spherical cap,

NHQ) = o [ [ Be sy de

85" [ [ 5w de (3.7)

3 47y,

Since a mean anomaly is, by definition, constant over the corresponding cell, it can
be taken outside the partial integral, so that each partial integral could be expressed
as a product of the integral mean (within the cell) of the kernel with the cell area.
If the kernel behaves linearly within the cell, the integral mean of the kernel
can be approximated by the kernel value at the centre of the cell . This behaviour
of the kernel may be true over a smaller size cell or over a cell located reasonably
far from the computation point. The modified spheroidal Stokes kernel is assumed
linear over 5’ x 5' cells, located at spherical distances of some arc minutes from the
computation point [Vanitek and Kleusberg, 1987]. The kernel is assumed linear over

even larger (1° x 1°) cells, located farther than 1 arc degree from the computation
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point. This property of the kernel necessitates a division of the inner zone where

detailed anomalies must be used, and outer zone, where mean anomalies for larger

cells could be used, Fig. 3.1.

Inner-
most
zone

inner Zone

Outer Zone

Figure 3.1: The three zones in the Stokes integrator

The linear approximation, however, is the source of some errors in the integration,
which will be discussed later.

At the immediate vicinity of the computation point, the behaviour of the kernel
is more involved. Because of the higher rate of change of the kernel and particularly
its singularity at the computation point, an analytical solution of the Stokes integral
is sought in the immediate vicinity. For this reason, the ellipsoidal surface of the
integration domain is approximated by a plane tangent to the ellipsoid at the com-
putation point. This integration domain is called the innermost zone; it is the area
extending to the spherical distance of a few arc minutes from the computation point.
In this zone an analytical surface, usually a plane, is fitted in the least-squares sense
to the discrete equally weighting 5' x 5 mean gravity anomalies. The reason for the
equal weighting is simply the lack of knowledge about the proper assessment of the

mean anomaly accuracies. The existing different weights implied by the observational
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accuracies cannot be used, since they usually reflect only observational statistics, and
not the averaging (modelling) errors of the mean anomalies which are probably more
dominant. The modified spheroidal Stokes kernel, expressed as a series of trigono-
metric functions, is truncated (after the trigonometric functions are developed into
series) to the first few terms, insuring its accuracy to 0.01% at distances P <20,

S() = % —3n (g) —4 (3.8)

[Vanicek et al., 1987]. Because of the meridian convergence, the number of the mean
anomalies inside the innermost zone increases when the computation point moves
north. At the latitude of 40° the number is almost doubled compared to the equator.

Outside the innermost zone, the next area extends up to 1° and is called the inner
zone. In this zone the partial integrals are computed as the kernel value at the centre
of cell multiplied by the cell area, and 5 x 5 mean anomalies are used. Outside the
inner zone, is the outer zone which extends to the distance of 1, = 6°. In this zone
the Stokes integral is treated the same way as in the inner zone but using 1° x 1°
mean anomalies. These anomalies are averaged from 5 x 5 mean anomalies.

The original Stokes’s integrator GIN452 used by Vanicek et al. [1987] was rewritten
into a new version called GIN95.f. This new version computes residual co-geoid in
three modes, single point, profile, and grid of points using 5 x 5 mean anomalies in
innermost and inner zones and 1° X 1° mean anomalies in the outer zone. As a very
preliminary test of the new version, the performance of the integrator was examined
in the following way. It has been shown by Sjéberg [1983] that the observed land uplift
in Fennoscandia caused a geoidal height change of almost 10% of the uplift, i.e., for 1
m land uplift the change in the geoid is almost 10 cm. One metre change in elevation
(land uplift) is equivalent to a gravity change of 0.3 mGal. Hence, one can argue that
a 0.3 mGal long wavelength change in gravity is equivalent to 10 cm change in the
geoidal height. Given the observed gravity anomaly data, the integrator was assigned

to compute residual geoid at a profile twice: once using the original data, the second
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time using the data increased by 0.6 mGal. The difference in co-geoidal heights
resulting from the two computations, ranged between 18 and 22 cm, confirming a
reasonable performance of the integrator.

The integrator was further tested in an area of 5° x 10° in south-west Canada. The
integrator was assigned to compute a residual geoid, using gravity anomalies derived
from the GFZ93A combined global geopotential model [Gruber and Anzenhofer, 1993]
for (n = 21...,360). The computed geoid, after being corrected for the truncation
error, was compared to the geoid obtained directly from the potential coefficients of
the same model using the software sfrod3.f, Sec. (1.3), employing spectral formula
of the geoid. Discrepancies ranging between -0.12 m and +0.28 m were observed,
Fig. 3.2.

The discrepancies were thought to be mostly due to the use of point values of the
integration kernel rather than integral mean values. Another source of discrepancies
is that, by changing computation point in steps of 5 in either latitude or longitude,
the integration zones remain unchanged until the computation point passes through
an integer degree parallel or meridian (border lines of 1° x 1° anomalies), i.e., the
exchange of gravity data sets is not smooth. As a result, sharp changes (tears) in
geoidal heights occur in both directions, see Fig. 3.2.

To reduce the effect of the kernel approximation (point values for mean values)
the dimensions of the inner zone were increased from 2° x 2° to 4° x 4°. This allows
a larger number of finer cells to be used by in the integration, and results in a better
approximation of the Stokes integral. This resulted in a considerable improvement
and the range of the discrepancies decreased to (-0.07 m, +0.07 m). Further expansion
of the inner zone, e.g., to the size of 6° x 6°, caused further improvement, by a few
millimeters, but the computer time spent on the integration increased by 100%.

To repare the tears, a smoothing algorithm [Vaniéek et al., 1995a] was applied
to the integrator’s output. A comparison after smoothing showed that the tears

disappear and the discrepancy range is reduced to (-0.06 m, +0.06 m), see Fig. 3.3.
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Figure 3.2: Errors in the residual geoid, obtained by the GIN95.f integrator (size of

inner zone used is 2° x 2°). Contour interval is 0.02 m.
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Figure 3.3: Smoothed errors in the residual geoid, obtained by the GIN95.f integrator
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Further smoothing brings another improvements by a few millimeters which is not
considered significant. The 6 cm magnitude discrepancy is interpreted as a combi-
nation of errors of the numerical integration, and the use of point instead of mean

surface gravity anomalies.

3.2.1 The Residual Helmert Gravity Anomaly

In practice, gravity data is available in the form of mean free-air or mean Bouguer
gravity anomalies in regular geographic grids. The Bouguer anomalies [Heiskanen and
Moritz, 1981, eqn. (3-19)], because the topographical effect is removed, are smooth
and suitable for interpolation. For this reason, these anomalies are used in developing
the Helmert anomalies (eqn. (1.25)). A mean Helmert anomaly (on the geoid) is
expressed in terms of a mean incomplete Bouguer anomaly A_gf, on the topography,
as

Agdr = Ag: +DTE, +2rGooH +ILE + AE
+DAg" + SITE + D°, (3.9)

[VaniZek et al., 1995a], where G is the gravitational constant, and g, is the topo-
graphical density. This is the formula applied in the flowchart Fig. 1.1. Overlines
here denote mean values in the flowchart. As it is shown, the mean Bouguer anomaly
is "Helmertized” by applying the DT E, computed using a high resolution topography
(height) model. The mean Helmert anomaly is corrected for the (2rGgoH), denoted
(B. Plate) in the flowchart, to restore the Bouguer plate reduction in the Bouguer
anomalies. Then LE and AFE are applied to correct for the spherical approximation
of the global gradient (0.3086mGal/m) of the normal gravity. After these corrections,
the resultant is considered as the Helmert gravity anomaly on the topography.
Before the downward continuation, the Helmert gravity anomaly (on the topogra-
phy) is reduced to its high-frequency component, by subtracting the Helmert reference
gravity anomaly Dg}(Agh,), on the topography. Agh, on the topography is computed
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from its value (satellite-derived) on the geoid, from left column of the flowchart, using
the Taylor’s series (linear part) expansion. As a consequence of the ellipsoidal ap-
proximation applied in the reference anomaly, and the ZE and AE effects (discussed
above), the reduced Helmert gravity anomaly is considered only a high-frequency com-
ponent, i.e., the low-frequency part is properly removed. The reductions discussed
(so far) are handled by the routine "hdelgtr.f”, see Sec. (1.3).

The (residual) high-frequency Helmert anomaly is then continued downward to
the geoid by apply DA—gh, Sec. (3.4). After the downward continuation, the high-
frequency SITE and the high-reference D° are added. These hirh-frequency quanti-
ties are obtained from their mean values by subtracting the corresponding reference
values. Finally, the Helmert anomaly, reduced to this end, is considered to be of a
high-frequency character as is required by the generalized Stokes integral, Fig. 1.1.

3.3 Truncation Error of the Modified Spheroidal
Stokes Integral

The (minimum) truncation error of the modified spheroidal Stokes integral, eqn. (3.4),
is given by
R '
oL _ " L qsL I 3.10
6N = [ [, Ad® 5E(w) 2, (3.10)

where € —Cj is the area outside the spherical cap Cy. A spectral form of the trun-
cation error, in terms of gravity anomaly harmonics, was derived by Vanicek and
Sjoberg [1991], N

SNHQ) = 25 3> Qi(Yo) (Agh)n, (3.11)

n=L+1

where
Va>L  Q%E = /¢ " S*E(3p) Pa(cos ¥) sin ¥ dyp (3.12)

are Molodensky’s like truncation coefficients [Molodenskij et al., 1960].

50



For the numerical evaluation of the coefficients, the integral formula above might
not be a suitable one. It will be more convenient to express the coefficients in terms

of the Molodensky original coefficients Q, [Heiskanen and Moritz, 1981, eqn. (7-34)],
Qn(t0) = /¢ S(4) Pa(cos ¥) sin ¢ di, (3.13)
where S(%) is the original Stokes kernel

S(4) = Z2l+1

Py(cos ), (3.14)

[ibid, eqn. (2-169)].
For the convenient expression of @:Z(3o), let us go back to Vanitek and Sjoberg

(1991]. In a search for the minimum truncation error, they found that the L;-norm:

= [, 0 e, (3.15)

of the sought kernel S*X(1) (eqn. (3.3)) has to be minimized. Minimizing the norm
with respect to the free coefficients f; results in the following normal equations, [ibid,
eqn. (18)],

Vn=2,.,L: Q:L(4) = 0. (3.16)

Substituting for S*L(¢) from eqn. (3.3), yields L — 1 normal equations for the L — 1

unknowns #; as
[
Vn=23,..,L: Z u Eim ty = QE, (3.17)
=2
where QL are "high-frequency” Molodensky’s coefficients,

Qi) = [ S5(¥) Pa(cos ) sin v di (3.18)
and
E, = ‘/; Pi(cos 1) Pn(cos 1) sin ¢ dyp. (3.19)
Substituting for S*X(¢) from eqn. (3.3) into eqn. (3.12) and considering eqn. (3.18)
yields A
VasLo Q)= Qi) - % 2t B (3.20)
1=2
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Now the Q% are derived in terms of the Q,. For this, the SE(¥) (eqn. (3.2)) is

written in terms of S(¢) as

L
5%) = W) - 3 727 Aleas ). (3.21)

Substituting for S%(¢) in eqn. (3.18), yields

21+ 1
Qr(%o) = Qn(%o) — Z (3.22)
1=2
Substituting for these coefficients in eqn. (3.20), after some manipulation we finally

get

Vn>L o Q) = Qulto) - lz:zl’jll ( ’;lt‘,) o (3.23)
=2

These coeflicients are zero for n < L, see eqns. (3.16).

In practice the truncation error, eqn. (3.11), is expressed in terms of the Helmert

disturbing potential coefficients T, using eqn. (2.18), in a spherical approximation

r= R:
SNE(@) =2 35 (n—1) QuE(yo) T (3.24)

n=L+1

Approximating the Helmert surface harmonics T by the real harmonics T, we get
an estimate of the truncation error. The need for this approximation arises from
the fact that the numerical evaluation of the high-frequency T requires a detailed
squared topography model. On the other hand, because the Q% coefficients converge
to zero in high frequencies, the approximation does not introduce considerable error.
Figure 3.4 shows an estimate of the truncation error for 1o = 6° in Canada, using the
GFZ93A combined model as a source of T,. The error ranges between -0.24 m and
+0.36 m.

The truncation error estimates using different global models differ by a few cen-
timeters. A comparison between truncation errors estimated from the GFZ93A and

the OSU91A models is shown in Fig. 3.5, where differences ranging between -6 cm
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and +5 cm are evident. Because of this uncertainty in global models, the truncation
error should be kept to the minimum even though it is estimable from geopotential
models.

In computing the truncation error, the summation over degrees n does not need to
be extended all the way over all the degrees of the model used, because the truncation
coefficients Q1L converge to zero for higher degrees. This was examined by computing
the truncation error selecting different upper limit for the summation. The upper
limit was increased at the steps of An = 10 each time. It was shown that after
degree n = 120, the change in §N*L remained less than one centimetre. Hence, to
the accuracy of one centimetre, the summation for Canada can be terminated at
n = 120. The estimation uncertainty (commission error) of the truncation error, as
it was computed from propagation or errors (of the potential coefficients), remained
under one centimetre when the GFZ93A model was used.

Now §N™, eqn. (3.5), the correction to the Stokes integral is evaluated. Substi-
tuting eqns. (3.3) and (3.2) into eqn. (3.5) yields

L ool
SN™ = m//’E __.E,,, &1 P(cos ) Ag” QY. (3.25)

Changing the sequence of summation and integration yields the spectral form, in

terms of the surface harmonics of the gravity anomaly,

§N™ = Z & (Ag™). (3.26)

Y =2
As it was discussed in Sec. (3.1), theoretically, the correction is equal to zero. In
practice, however, the reduced Helmert gravity anomaly (Sec. (3.2.1)) contains some
low-frequency noise because of the noise in satellite reference field or the noise coming
from "observed” anomalies. As a consequence, § N™ is not equal to zero, and has to be
statistically evaluated. Finally, the high frequency co-geoid determined in (Sec. (3.2)

should be corrected by both the truncation error and by an estimate of 6 N™.
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3.4 Downward Continuation of Mean Helmert’s

Gravity Anomalies

Downward continuation of gravity anomaly in the real earth field depends on the
topographical density, because of the presence of the attracting topographical masses
above the geoid. In the Helmert space, however, the downward continuation of the
(Helmert) anomaly is possible, since the topographical masses are condensed on the
geoid. As a result, the Helmert disturbing potential T* and the function 1Ag",
are harmonic outside the geoid. In Vanigek et al. [1996], Poisson’s integral formula
[Heiskanen and Moritz, 1981, eqn. (1-89)] is used for the downward continuation of
the Helmert gravity anomaly. The integral reads

Vi(r,Q) = ;11? / /e V(R, Q' )K(r, %, R)dY, (3.27)
where
2 _ 2
K(r,9,R) = &23_3_)_ (3.28)

Ve(r, Q) is the value of the harmonic function V at point (r, Q) exterior to the sphere
of r = R. The value is obtained by integrating of values V(R, Q') on the sphere of
radius R. The function K is the Poisson kernel, a function of both the computation
point (r,§) and the integration point (R, '), whose spherical and spatial distances
from the computation point are 1 and £ respectively. The Poisson integral is im-
mediately applicable to Helmert’s gravity disturbance (§g*) [Heiskanen and Moritz,
1981, eqn. (2-142)], as a point function. For the Helmert gravity anomaly, the integral
changes to [Vanicek et al., 1996, eqn. (11)]

R ,
h - h
Agt= — fe Agh K(r,y,R) dV'. (3.29)

The spectral form of the kernel is

K(H, ) = i (2n +1) ( - f H)"+l Pa(cos ), (3.30)
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where H is the height of the computation point. The Poisson kernel, in contrast
to the Stokes kernel, is non-homogeneous—a function of height of the computation
point. The kernel converges to zero slowly at low altitude, and faster at high altitude.

Since in the Stokes-Helmert scheme the surface gravity data are used to evaluate
only the residual (n > 20) co-geoid, then, only the high-frequency components of
Helmert’s anomalies are needed to be continued downward. This allows the high-

frequency Poisson kernel

K*(H,y) = ;in (2n+1) (R fH)n+ Pn(cos ), (3.31)

to be used. This kernel converges to zero at a shorter spherical distance from the
computation point than the original kernel. It was shown in Vanicek et al. [1996]
that for the downward continuation of anomalies to the accuracy of 10 uGal, in
south-west Canada with topography ranging from 0 to 3000 m, the high-frequency
Poisson integration can be evaluated out only up to spherical radius of 1 arc degree
with a manageable truncation error. For the integration cap of radius ¥ = 1°, a
modification of the (high-frequency) kernel was sought (K*?°), in much the same
way as the modification of the Stokes kernel, (cf. Sec. (3.3)), i.e., to minimize the
contribution of "distant” (3 > 1°) anomalies on the Poisson’s integral. The truncation
error can then be estimated from global geopotential models.

The modified high-frequency Poisson integral is then adapted for the evaluation
of the mean gravity anomalies on the topography from the mean anomalies on the
geoid. This requires a double averaging of the kernel over geographical cells ¢; on the
topography and c; on the geoid,

K, = % / L % ( / / K*(H, ) dc,-) de;. (3.32)

3

The integration over the Helmert co-geoid is replaced by summation of partial inte-

grals over the number of cells (J) within the spherical cap of radius ¥, = 1°,

J == * —
g™ =Y K. Bg™. (3.33)

¢ J
=1
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The approximation sign accounts for the fact that the truncation error of Poisson’s
integral is missing in the equation.

For a simultaneous evaluation of J mean anomalies on the topography from the
same number J of mean anomalies on the co-geoid, the above system of linear equa-
tions is implemented for ¢ = 1,2,...,J. A closer look at this system of equations
reveals that not all of the J mean anomalies on the topography are completely de-
termined from the J mean anomalies on the geoid. The anomalies at the marginal
points—points sitting closer than 1° spherical distance from the border of the com-
putation area (area defined by the J anomalies on the co-geoid) are only partially
determined. Actually, at these points the 1° integration cap is incomplete; there are
not enough data (mean anomalies) falling inside the cap when the marginal points
are considered.

For a precise evaluation of the mean anomalies on the topography, even the min-
imized truncation error, which may still reach to a few huzdreds of xGal [Vanicek et

al., 1996|, has to be taken into account. The spatial form of the error reads:

_ R ™™\ k20 pre2o .
Dgr = 1 /¢ 0 /0 Agh®® K*®(H, ) sin ¢ dy da. (3.34)

Following the same reasoning as in Heiskanen and Moritz [1981, Sec. (7-4)], see also
Sec. (3.3), the spectral form of the error was found to be

Dr = o+ 3 Q(H%0) (8gf) (335)
n=0
where
Q2(H, o) = /¢ K*(H, ) Pa(cos $) sin ¥ dy), (3.36)

and (Ag;'”)n is the n-th (n > 20) surface spherical harmonic of the residual Helmert
anomaly.

For an estimation of the truncation error, we may express (Ags',‘”)ﬂ in terms of
T}, using equation similar to eqn. (2.18) in the Helmert space on the co-geoid, and
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taking the spherical approximation (r = R),

(agh*) = i—? (n—1) (%)"T,’:. (3.37)

Now, substituting (Ag;‘m)n from this equation into eqn. (3.35) we get

Dgr =

o go (n=1) (%) Qu(H, o) T2 (3.38)
This is the formula employed to estimate the truncation error from a global geopo-
tential model, e.g., GFZ93A, by taking T" = T,,.

In the process of downward continuation, the anomalies on the topography are
known and anomalies on the co-geoid are to be determined. Thus, we are really
interested in solving the inverse problem from what we have been discussing so far.
This inverse problem implies that the system of equations (3.33) has to be solved.
Denoting the mean anomalies on topography by vector b*® and mean anomalies on
the co-geoid by vector %°, the system of equations is abbreviated in a matrix notation

as
b* = A*(to) 2 + t*(%o), (3.39)

where t* is the vector of the truncation errors, which is treated as a corrective quantity
in the system.

The matrix A**° is non-symmetric, containing more zero elements than non-zero
ones. It is regular and well conditioned when 5' x 5' mean anomalies are considered.
Its main diagonal elements are positive, smaller than 1 but larger than the off-diagonal
elements. The off-diagonal elements grow even smaller in absolute value further away
from the main diagonal.

For the downward continuation of 5 x 5 mean Helmert’s anomalies in an area of
dimensions 17° x 22° [Vanigek et al., 1996}, the number of equations needed is large:
J=53856. The direct solution cf such a system of equations is not trivial and an
iterative method has been employed by the authors. The iteration starts with the
initial value

220 O = p _¢*. (3.40)
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To carry on with the iterations, the solution vector is corrected each time for the
amount of the misclosure of the system. Iterations are continued until the convergence
threshold of 10 uGal, in a Tchebyshev or a quadratic norm sense is met.

Downward continuation of 5 x 5 mean Helmert anomalies in south-west Canada,
[Vanicek et al., 1996] showed sizable values (hundreds of mGal) of a high-frequency
character. The contribution of these values to the co-geoidal heights ranges between

0.10 m and 1.10 m; interestingly it is positive everywhere, Fig. 3.6.
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Chapter 4

Numerical Results

4.1 Reference Quantities

4.1.1 Reference Spheroid of Degree 20 in Canada

Equation (2.101) describes the reference spheroid of degree L (L=20), using a satellite-
derived disturbing potential. The equation as a harmonic series, could accommodate
various geopotential models. In the least-squares adjustment of the GRIM4-S4 model
[Schwintzer et al., 1995], an initial value of GM = 0.398600440D + 15 for the earth
"geocentric constant” was selected. The 0-th degree coefficient was estimated as W, =
0.999999994 D + 00. This implies an aposteriori estimate of GM = 0.3986004367D +
15, which is different from the GM* = 0.3986005D + 15 adopted for the GRS-80—the

reference ellipsoid. This difference creates a 0-th degree term of

for the spheroid, referred to the ellipsoid. The estimation error is about + 4 mm.
The term is almost one metre and cannot be neglected. A different value of -1.025 m
for (N)o was obtained for the GEM-T2 model [Marsh et al., 1990].

Figure 4.1 shows the spheroid of degree 20, denoted by Ny, referred to GRS-80, in

Canada, using GRIM4-S4 geopotential model. The minimum and maximum values
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of the spheroid, computed from different geopotential models are shown in Table 4.1.

Model Name Nzo [Min.(m), Max.(m)] Mean Error(m)
GEM-T1 [Marsh et al., 1988] -48.18, 42.89 1.06
GEM-T2 [Marsh et al., 1990] -47.57, 43.68 0.90
GEM-T3S [Lerch et al., 1992] -47.81, 43.02 0.28
GRIM4-54 -47.38, 42.17 0.51

Table 4.1: Spheroid N3¢ in Canada and its mean ”commission error”

The last column of the table shows the average ” commission error” of the spheroids,
an error due to the uncertainties associated with the satellite potential coefficients.
This error is computed using eqn. (5.10).

The ellipsoidal correction to the spheroid, computed from the ellipsoidal correction
on the potential (eqn. (2.99)), estimated from GRIM4-S4, ranges between -0.88 m
and 0.65 m in Canada, see Fig. 4.2. A higher-degree (higher than 2; the ellipsoid)
approximation was obtained by evaluating the disturbing potential on the geoid,

where we wrote
ro(Q) = r5(Q) + Nao(Q). (42)

Then, the radial term in eqn. (2.97), attains a value

(;:’Tm)w - (%)"+1 [1 —(n+1) (%ﬂ) + ] . (4.3)

This results in a maximum (absolute value) correction of 3 mm, in addition to the
ellipsoidal correction (approximation), to the spheroid in Canada, as shown in Fig. 4.3,
and a maximum correction of 1 cm across the world not shown here). This ”geoidal

correction” can thus be safely neglected under present circumstances.

4.1.2 Reference Gravity Anomaly of Degree 20 in Canada

Reference gravity anomaly of degree 20 is computed using eqn. (2.38), evaluated on

the geoid using the ellipsoidal approximation for r, i.e., putting ry = rg.
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Figure 4.4 shows the reference gravity anomaly (Agyo) in Canada, derived from the
GRIM4-54 model. Table 4.2 shows the minimum and maximum values and the mean
"commission error” of the gravity anomaly, computed from different geopotential

models.

Model Name Min.(mGal), Max.(mGal) Mean Error (mGal)

GEM-T1 -43.484, 31.707 2.486
GEM-T2 -43.068, 33.654 2.134
GEM-T3 -43.740, 31.580 0.639
GRIM4-54 -44.267, 29.745 1.223

Table 4.2: Agy in Canada and their mean "commission error”

The ellipsoidal correction, eqn. (2.100), to the reference gravity anomaly is shown
in Fig. 4.5. The minimum and maximum values are -1.396 mGal and 1.093 mGal

respectively.

4.2 Helmert’s Reference Quantities in Canada

The residual topographical potential coefficients V; and V., eqn. (2.71), were evalu-
ated using squared topography, given by the TUG87 model. The direct topographical
effect on spheroid, eqn. (2.93), was evaluated using ellipsoidal approximation. Fig-
ure 4.6 illustrates this effect, based on the conservation of the centre of mass of the
earth. In Canada, the minimum and maximum values are -0.13 m and 0.18 m respec-
tively. When condensation based on the conservation of mass of the earth is used,
the extreme values in Canada change to -0.09 m and 0.25 m; this result is not shown
here.

The direct topographical effect on reference gravity (DT EL), eqn. (2.86), evalu-
ated on the geoid, using the ellipsoidal approximation is shown in Fig. 4.7, based on

the conservation that conserves the centre of mass.
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The minimum and maximum values are -0.252 mGal and 0.500 mGal. These
extreme values change to -0.258 mGal and 0.549 mGal when the other condensation
model is applied.

The reference SITEy, is the correction, before Df, to be applied on the gravity
anomaly. It was evaluated from eqn. (2.90). For the first condensation formula,
it varies between -0.040 mGal, and 0.055 mGal in Canada, see Fig. 4.8. The last
correction to the gravity anomaly is D, eqn. (2.103), with the extreme values -0.029
and 0.016 mGal in Canada, see Fig. 4.9.

Adding the direct topographical effect on spheroid (Fig. 4.6) to the Ny, yields
the Helmert reference spheroid, denoted by N2, which can be also directly com-
puted from eqn. (2.1062). Applying the effect DT Ey (Fig. 4.7) to the Agayg gives the
Helmert reference gravity anomaly Agh,, which could be also directly obtained from
eqn. (2.87). The following Tables 4.3 and 4.4 show the range of variations of these

Helmert reference quantities using different geopotential models.

Model Name Min.(m), Max.(m)

GEM-T1 18.19, 4275
GEM-T2 -47.57, 43.53
GEM-T3S -47.81, 42.87
GRIM4-S4 -47.34, 42.09

Table 4.3: N}, in Canada

Model Name Min.(mGal), Max.(mGal)

GEM-T1 -43.486, 31.430
GEM-T2 -43.062, 33.346
GEM-T3 -43.729, 31.298
GRIM4-54 -44.255, 29.639

Table 4.4: Agh, in Canada
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The Helmert spheroid, based on the conservation of the centre of mass condensa-
tion model, is geocentric by definition. It is, however, distorted in scale which shows
as a constant depression of the geoid by 0.05 m along the vertical and can be described
through the 0-th degree of the direct topographical effect on spheroid. The distortion
is corrected when the PIT E, based on the same conservation model, is applied to

the Helmert co-geoid to obtain the final geoid.
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Chapter 5

Accuracy of the Helmert Co-geoid

5.1 Introduction

In the Stokes-Helmert scheme, as it was shown, the geoid at each point is determined
as the sum of the spheroid N} (cf. eqn. (2.102)) and the residual geoid N~ (eqn. (3.1)).
In this chapter, we will be talking about the accuracy of the geoid, rather than
the Helmert co-geoid, i.e., ignoring the accuracy assessment of the transformations
between real field and the Helmert space. By omitting the superscript ”h” from the

notations, and denoting NZ by §NL we write
N = Ny + 6NF. (5.1)

This new notation is used here to avoid confusion. For the error estimation, it is good
enough to work with the spherical approximation of the spheroid:
L
NL(Q) =R Z Tn(9)1 (52)
n=0

[Vani¢ek and Krakiwsky, 1986], where R is the mean radius of the earth, T,(f) are
the surface harmonics of the disturbing potential, given by eqn. (2.13):

n

T(®) = Y [TonVom(?) + Ton Vo (2)] (5.3)

nm- nm
m=0
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and
ﬁm(ﬂ) _ cos m\ P (sin ) 54
?:m(ﬂ) - stn mA . i (5:4)

are the fully normalized spherical harmonics, see eqns. (2.4). T'Sm and Tfm are fully
normalized satellite-derived disturbing potential coefficients.

The residual geoid is determined from the generalized Stokes integral, eqn. (3.1):

SNE(Q) = K / /c §AGE(Q') S*E(p(Q, Q') dOY, (5.5)
where
R
= I’ (5.6)

Q' is the integration variable, 1 is a spherical distance, 7o is the normal gravity on the
reference ellipsoid, and C, denotes the integration domain: a spherical cap of radius

Yo = 6° in our applications, and §Ag~ is the residual Helmert gravity anomaly,
§Ag" = Ag — Ag, (5.7)

where Ag is the "observed” Helmert gravity anomaly and Agy is the (low-frequency)

reference gravity anomaly.

5.2 Variance of the spheroid of degree L

For simplicity, let us omit the subscript L from the relevant symbols in this section,
bearing in mind that all the discussion here is related to the spheroid of degree L.
Uncertainties in the disturbing potential coeflicients, are due to errors in the satellite
potential coefficients estimated from satellite tracking. To estimate 0%, the variance
of the spheroid, let us denote by o2, the error variance of either cosine (_Tsm) or sine
(Tim) satellite potential coefficients in eqn. (5.3). By applying covariance law to the
equation, we get

o20) = 3 [(Fom(@)" + (Tin(@)’] o2 (58)

m=0
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where the sum in the square brackets (amplitude of the spherical harmonics) is derived
from eqn. (5.4), resulting in

o) = 3. P (sin @) o2, (5.9)

m=0

where o2() is the error variance of the surface harmonic T, and o2 are the estimated
variances from the satellite observations. The error variances o2(y) with respect to
degree n, in different latitudes for the GRIM4-S4 "satellite only” model are shown in
Fig. 5.1.

@ = 70°,75°
045+ -(p — 65°

04r E

0ast 1 = 60°

@ = 55°

1p = 50°
.(P =450

varianco x10(-16)
o
R

0 2 4 [ 8 10 12 14 16 18 20
degree n

Figure 5.1: Accuracy (error variance) performance of GRIM4-S4 model in different
latitudes

Applying now the covariance law to eqn. (5.2) yields
L
on(w) = R* Y ol(p), (5.10)
n=0
where 0% (¢) is the variance of the spheroid, a function of the latitude of the compu-
tation point.
Let us look now at AN, the spheroidal height difference between points P; and
P;,
AN = N; — N,. (5.11)
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The spheroidal heights N; and Nj, determined from satellite potential coefficients at
two points are statistically correlated. The correlation comes from the fact that the
same potential coefficients are used in both computations. Applying the covariance

law to eqn. (5.11), the variance of AN is obtained as
oan = on(P:) + o(P;) — 2Cn(P;, Fj), (5.12)

where o} is given by eqn. (5.10) and Cy is the error covariance function. It is

expressed in terms of the error correlation function py as
Cn(P:, P;) = py(Pi, P;) on(P;) on(F;). (5.13)

To estimate o y, one has to estimate the two variances o%,(P;), o%(P;), and the value
of Cn(P;, P;).

To derive the error covariance Cn(FP;, P;), let us assume a vector of spheroidal
heights IN computed at a mesh of m points, using satellite coefficients (see eqns. (5.2)
and (5.3)). Let @ be the Vandermonde matrix comprised of the spherical harmonic
functions and ¢ the vector of satellite-derived coefficients for the disturbing potential

T (eqn. (5.3)). The following matrix equation is then valid,
N=8T¢ (5.14)

There is an estimated error covariance matrix (fully populated) associated with the
vector ¢, derived from the adjustment of the satellite observations. Let us denote it
by C.. Applying covariance law to the equation (above) yields the covariance matrix
of N;

Cn=9TC, ®. (5.15)

The error covariance Cn(FP;, P;), the element located at i-th row and j-th column of

the matrix Cy, is a quadratic form obtained as

Cn(P;, P;) = Q? C. ;. (5.16)
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where ®; and ®; are the i-th and j-th columns of the Vandermonde matrix. Assuming
a diagonal matrix C, and considering eqns. (5.2) and (5.3) we obtain,

CN(PaP) = B 3 3 o [Fon(0) Fn(2)) 4 P () Fou(2))],  (517)

n=0 m=0
where o2, is the error variance of the satellite coefficients, ; and Q; are the locations
of points P; and P;.

The covariance function can now be computed, given the accuracy of the satellite

coeflicients. Fig. 5.2 illustrates the error variance as a function of degree n (o2 =

m=0202,), the error power spectrum of the gravity field determination by GRIM4-
S4 global geopotential model [Schwintzer et al., 1995]. Fig. 5.3 shows the covariance

function (eqn. (5.17)), along a meridian of the spheroid of degree 20, determined by

the same model.

K1

Error varianco x 10%(~10})
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o
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Figure 5.2: Error power spectrum of the GRIM4-S4 model
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Figure 5.3: Error covariance function of the spheroid of degree 20 along a meridian
5.3 Variance of N and A(J6N)

In this section, we also omit L, simplifying §N* to §N. The residual geoid §N
obtained from the Stokes integral (eqn. (5.5)) is subject to errors in the gravity
anomalies §Ag” in the integration domain. The error variance of the geoid is derived
by the covariance law applied to the Stokes integral. Let us call this variance by o2y

It will be derived in the next section.

The difference between residual geoidal heights at points P; and P; is given as
A(6N) =6N; — §N;, (5.18)

where §N; or §N; are both determined from eqn. (5.5). By applying the covariance
law to eqn. (5.18), the variance of A(6N) is obtained as

oainy = 9an(Pi) + oy (P;) — 2Csn(P;, P;), (5.19)

where Csy is the error covariance function of the residual geoid. It is related to the

correlation function pgpy by

Csn(Fi, P;) = psn (P, P;j) osn(Pi) osn(P;). (5.20)
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5.3.1 Covariance of 6N

Let us consider the errors in residual gravity anomalies §Ag used in the Stokes inte-
gration to be statistically independent. The gravity anomalies are really not indepen-
dent; they are at least correlated through errors in the reference gravity anomalies,
see eqn. (5.7). Dealing with this problem is out of the scope of this paper. Assuming
independent anomalies, the errors of geoidal heights §N; and §N;, computed at two
points farther than 3 = 12° apart, would be statistically independent; the distance of
12° equals to twice the radius of the integration domain and for ¢ > 12°, there is no
overlap of the two integration domains. The statistical correlation will arise though
if some data are shared by the two integrals. This will be the case for points closer

than 12°, i.e., when the integration domains intersect, see Fig. 5.4.

I"igure 5.4: Intersection of the integration domains

The area ¥ = C; N C; contains the gravity data shared by the integrations over C;
and C;j.

To formulate the covariance function Csn (eqn. (5.20), we again employ an alge-
braic approach. Denoting by d N the vector of the geoidal heights computed at a
mesh of m points, and d Ag the vector of gravity data required by the Stokes integral

to compute N, we can write the following system of linear equations

SN = S 5Ag, (5.21)
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where S is the Stokes matrix operator, with its elements

si = Ki S**(Yax) A, (5.22)
being the values of the Stokes kernel (§*%(1;:)) multiplied by the area of the surface
integration element (Aa;) at the gravity point P, and by K; (see eqn. (5.5)). The
kernel S*L runs through the spherical cap C; of radius ¥ = 6°, centred at point P;.
In other words, the i-th row vector of the matrix § multiplied by the vector  Ag
equals to the numerical integration (summation) of the Stokes’s integral (over the cap
C:), resulting in the numerical value of residual geoidal height § N; (element of vector
ON).

Applying the covariance law to eqn. (5.21) yields

Csv = S Csa, ST, (5.23)

where Cjsa,4 is the covariance matrix of the gravity anomalies. The element c¢;; of the
matrix Cyy, is the covariance between §N; and §N;. This element can be obtained

from the matrix equation (above) as the quadratic form

cij = Si Csag ST,

(5.24)

where S; and S; are the i-th and j-th row vectors of the matrix S. The operator §;,

in the spherical coordinates system, has the form
Si = [, Ki SP(Q') sin (@), ...], (5.25)

where sin 1;(Q') is the Jacobian of the transformation to the spherical coordinates
system and ;(Q') is the spherical distance of point "Q)'” (Fig. 5.4) from point P;.
The compact form of c;;, denoted by Csn(P;, P;) in eqn. (5.20) can be now written
as
cij = Csn(Pi, P;) = K; K x

/ /c.- S:E(Q) sin (@) ( [L S sin 95(0) cmg(n',n")m") dq’,
(5.26)
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where Q' and Q" are two points in the domain R = C; U C; (Fig. 5.4), StX(Q') is
the Stokes kernel defined in the cap C;, S;L(Q" ) is the kernel defined in the cap Cj,
¥;(Q") is the spherical distance of point """ from the centre P;, K; is the Stokes
constant at P, the centre of C;, K is the constant at P;; the centre of C;, and
Cs50q(Q, Q") is the covariance function (a kernel) defined for the pairs of points Q'
and Q". The covariance function represents those "elements” of the covariance matrix
Csag (eqn. (5.23)), in the compact space, that are contained in the domain R.
Assuming independent gravity anomalies (§Ag), the covariance function Cja (R, Q")

reduces to a Dirac delta function [Korn and Korn, 1968], defined as

. . 0 or QO £ Q"
Cong@ -)= {0 AN (5.27)
O5a(V) for @ =0
where agAg(Q') is the variance of gravity anomaly at point Q. Taking the delta

function into account, the eqn. (5.26) reduces to

Con(Po Py) = Ki K; [ [ SrE(R)S3(@) sin () sin $u(Q) o2uy(®) dO.
(5.28)
Further, the kernel S;L(Q') is different from 0 only in a portion of C;, i.e., in the area

¥. Hence, the integration domain (C;) is reduced to ¥;

Con(Pi ) = K K; [ [ SI9Q)STHR) sin $5() sin () odp () dO'.
(5.29)
This is the covariance function between residual geoidal heights (§N), at points P;
and P;, see Fig. 5.4.
A special case of this function is the variance function o?y(€;) at point P, when

P; moves towards the F;, yielding

I} . 1,12 1 [
o2y(h) = K? / /c [S7H(Q) sin Q)] o2a,(R) dO. (5.30)
As P; moves to P;, the integration domain ¥ increases to C;. Writing variances at
points P; and P;, and assuming uniform accuracy (c2y(R')) for the gravity anoma-

lies, and taking K; = Kj, the correlation function p;y is obtained from eqn. (5.20).
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Substituting for the covariance and variances from eqns. (5.29) and eqn. (5.30) we get
psn(Fi, Pj) =
J Jo S:H(Q) S3H(Q) sin 95(Q) sin y(Q') 4

VI o, TSTECY sin S 4 [ I [34(80) sin 9@ )] der”
(5.31)

and realizing that C; = C; = C), we finally get

J I StE(Q) S3E(Q') sin ;(Q) sin i(Q') dO
J Jo, [S3E(Q) sin o(Q)]* dY ’

where S3L(Q') is the Stokes kernel, defined in the spherical cap Cp. Clearly, as

P; — P;, psn(P;, PJ) — 1, as it should.

Pszv(Pi, Pj) =

(5.32)

5.3.2 Numerical evaluation of the p;y

The correlation function can now be numerically evaluated. The modified spheroidal

Stokes kernel can be approximated within the 6° spherical cap by the function

1.99727
¥

to the accuracy of better than 10~ [Vani¢ek and Kleusberg, 1987]. The correlation

S'(y) = —32.43544 +

—3.44927 In ('g) —173.24417 % In (%) , (5.33)

function, eqn. (5.32), is the ratio of two surface integrals. In the denominator is the
integral of the squared Stokes’s kernel over the whole spherical cap of radius ¥, = 6°.
The integrand is singular at the centre of the cap, but the singularity is removed in
the spherical coordinates system. The integral is finite and equals approximately to
0.9558. We note that this number seems to be acceptably close to 1.

The integral in the numerator is taken over the intersection area ¥, and involves
the product of two kernels, referred to points P; and P;, Fig. 5.5. The integral is

written in a more explicit form as
[ [ 875096, 2)) S8, Q) sim 45(Q) sin w(@) 4, (5.34)
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where €Q; and {; define the points P; and P;, v; and %, are the spherical distances,
and Q' defines the dummy point P’. At a first look, the integral seems to be a function
of §); and €;, but writing the integral in the polar coordinate system at the pole P;

with polar coordinates of 1; and a (azimuth) as

I(y) = f /|9 S* (%) S*E(%i(%, ¥i, @) sin $;(¥,9:, a) sin ; dy; da,  (5.35)

where 1; (see the triangle P,P'P;) is a function of v;, v, and the azimuth «, shows
that the integral is really a function of 4Y»—the spherical distance between points P,
and P;. |

For the numerical evaluation of the correlation function, a planar approximation
is employed: the spherical caps C; and C; are regarded as plane circles. Fig. 5.5
illustrates the case of 9 < 1. In this case, the area of the integration is divided
into four quadrants: OAD,OAB,OBC, and OCD. Because the Stokes kernel is
homogeneous and isotropic, the integral over the area ¥ equals to four times the

integral over, for instance, the area OAB,

1) =4 [ /(m) S*E(s) S*E(;) sin ; sin o di; de. (5.36)

In the area (OAB), the kernel S*L(3);) remains a regular function, while the kernel
S*L(3;) is singular at point P;. The integration is carried out in the polar coordinate
system with origin at P;, and the singularity is treated separately. In the case ¥ > vy,
see, i.e., Fig. 5.4, the integration can be again divided into 4 segments in the same
coordinate system, provided that there would be no singularity of the Stokes kernels
in this case. The correlation function obtained is shown in Fig. 5.6; it decreases
monotonically, from unity at the 0° spherical distance to zero at a spherical distance
of 12°. The integration was performed numerically for ¥ €< 0,12° > at a step of
0.01 arc degree in both variables. For practical applications, the correlation function

can be approximated by the following function

Psn(¥) =1+ aln(l+9)+by?, (5.37)
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Figure 5.6: Correlation function of the residual geoid
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to the accuracy of 0.01 (root mean squares error of fit), where

a = —0.46824364,
b = +0.00012060,

for 1 expressed in arc degrees.

5.3.3 Relative Accuracy of the Geoid

Accuracy of the geoid, 0%, is obtained from eqn. (5.1) by applying the covariance

law;

ox =0oN, +0ine, (5.38)
where on the right hand side are the variances of the spheroid and the residual geoid,
considered here independent. In fact, these variances are statistically dependent
(correlated), due to the use of Agy in derivation of §Ag” (see eqn. (5.7)). The
correlations call for a separate investigation.

For the investigation of relative accuracy, eqn. (5.1) is re-written for the differences

of quantities involved, as

AN = AN + A(6NE). (5.39)

For the reason just discussed, the relative quantities (above) are also correlated.
In the case of a higher degree spheroid (360x360) being used as a reference [She

et al., 1993], there are even correlations between Agy and the "observed” Ag too.

Assuming independency and applying the variance law to eqn. (5.39), we obtain the

error variance of the geoid difference as the sum,

TAN = AN, + TA(sNL); (5.40)

of the variances of the two components.
After the correlation functions for the spheroid and the residual geoid are derived

(eqns. (5.12) and (5.19)), they are added together to give the variance of the total
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geoidal height differences. We obtain:

oan = on(P)+ox(P;) — 2px(P;, P;) on(P:) on(P;) +
oin(P) + oin(Pi) — 205n(P:, P;) osn(P:) osn(P;). (5.41)

89



Chapter 6

Conclusions and recommendations

6.1 The Stokes-Helmert Scheme

For the precise transformation of the "observed” gravity anomaly Ag, on the to-
pography to the Helmert gravity anomaly Agh" on the geoid, eqn. (1.25), the series
of corrections compris{ng DTE (eqn. (2.86)), DAE, LE, AE (eqmus. (1.17)), DAg"
(Sec. (3.4)), SITE (eqn. (2.90)), and D5 (eqn. (2.103)) are required. The first two
corrections provide the transformation from the real earth space to the Helmert space.
The DT E—due to the difference between topographical masses and their condensa-
tion on the geoid, is weaker in the long wavelength part but more powerful in the
short wavelength, i.e., its long wavelength contribution to the geoid is a few decime-
tres, Fig. 4.6, while its short wavelength contribution could reach up to a metre
[VaniCek et al., 1995a]. For precise evaluation of the DT E, a more detailed topog-
raphy (DTM) is required. The DAE hasn’t been considered in the Stokes-Helmert
scheme yet. This effect, even though smaller compared to DT E, has to be taken into
account. This will complete the Helmertization (Sec. (2.4)).

It is worthwhile to mention here that the Helmert orthometric heights H using the
Poincare-Pray gravity gradient (0.0848 mGal/m), based on the simplified assumption

of constant crustal density go = 2.67 g cm ™3, may be in error by a few decimetres due
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to the actual density variations within the topography [Vanicek et al., 1995a]. This
in turn can cause an error up to 100 pGal in the upward continuation, eqn. (1.14), of
the normal gravity, but has negligible impact on the LA and AE.

The DAg* is determined through an iterative process. The number of iterations
requized, to meet the accuracy of 10 uGal [Vanitek et al., 1996], increases with the
height of the computation point. The downward continuation is a high-frequency
phenomenon, it’s contribution to geoidal height can reach up to a metre, Fig. 3.6.
This cannot be ignored in the precise geoid determination.

The SITE is a relatively smell correction. It could reach up to a few uGal in the
long wavelength part, but may attain larger values, e.g., 300uGal see Sec. (6.1), in
the high-frequency part. The D® is evaluated using a combined geopotential model,
e.g., GFZ93A. The "commission error” due to the model is negligible.

6.2 The Helmert Reference Spheroid

The Helmert spheroid is obtained from the Helmert disturbing potential T#. This po-
tential is derived from the reference potential Ty, by subtracting from it the residual
topographical potential Vz, eqn. (2.75). The potential V;, is two orders of magnitude
smaller than T7. This can be verified by the comparison of their extreme effects on
equipotential surfaces, shown on Figs. (4.1) and (4.6). In the harmonic expansion,
VL is a function of mainly the squared-topography, eqns. (2.71). The ”squared to-
pography” model is derived from a global topographical model, e.g., TUG87. Any
uncertainty of the model is propagated into the derived squared topographical model
and finally to the potential V. Since the potential V7, is relatively small, the effect of
the topographical error on the Helmert spheroid will be small too. Hence, the only
error in the spheroid comes from satellite potential coefficients (commissior error).
For the evaluation of the Helmert spheroid to a decimetre accuracy or better,

the ellipsoidal approximation, Sec. (2.5), has to be implemented, since its impact on
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the spheroid reaches up to a metre, Fig. 4.2. The same approximation must also be
considered when evaluating the reference gravity Agy, see Fig. 4.5. Approximation
to a degree higher than 2 (the ellipsoidal approximation) could improve the spheroid
by a few milimetres, Fig. 4.3; this may be disregarded at the present time.

As seen in Sec. (4.1.1), different geopotential models estimate 0-th degree term
differently. The differences imply error in the 0-th degree term of the spheroid, and
it is translated as an error to the geoidal height. In relative accuracy assessment of

the geoid, however, this error is immaterial.

6.3 Accuracy of the Geoid

The accuracy of the geoid was investigated in two parts: one reflecting the accuracy
of the Helmert spheroid of degree 20; the other reflecting the accuracy of the residual
geoid. Either one of the accuracies is a function of distance (isotropic) only.

Error in the spheroid is due to the ”commission error” of the satellite potential
coefficients. The derived spheroidal heights are high'y positively correlated at neigh-
bouring points, see Fig. 5.3. The correlations imply some statistical dependence of the
spheroidal heights. The positive correlation, up to the distance of 900 km, indicates
that the spheroidal height differences are determined to higher accuracy than the
heights themselves, see eqns. (5.12). The correlation sign, however, starts alternating
after 900 km.

The accuracy of the residual geoid was derived on the assumption of homogeneous
and statistically independent residual gravity field. The positive correlation, Fig. 5.6,
again indicates some functional relation among residual geoidal heights. Statistical
independence of the gravity anomalies is a false assumption. They are certainly
correlated through the methods of the prediction and densification used, as well as
through the reference gravity. The correlation will have some effects on the correlation

function, derived for the geoidal height.
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6.4 Recommendations

During the computation of the precise geoid for Canada, we (the working group)
discovered that the terrestrial data, i.e., the existing 5 x 5 mean (Bouguer) gravity
anomalies are not suitable (accurate) for a precise geoid. This has been verified by
comparing some files of the mean anomalies with the satellite-derived anomalies of
the same resolution. The discrepancies are far beyond the 10uGal, required for a
centimetre geoid. The reason for this is that, the mean anomalies are based on sparse
gravity (observed) network [Mainville and Veronneau, 1989], thus, mostly generated
by prediction methods. The trace of systematic errors in the anomalies, as a result of
these methods is evident [Vanitek et al., 1995a]. Another source, causing uncertainty
is the height system to which the anomalies are referred. Hence, both a densified
enough gravity network and a precise height network are fundamental for a precize

determination of the geoid:

e A5 x5 and higher resolution mean anomalies, required by a "centimetre

geoid”, demand much more gravity observations than exists today.

o A precise geoid could only stand on the bases of a reliable orthometric height
network. This network is a base for both an unbiased gravity anomalies and a

reliable topography model (DTM).

The atmospheric effects (DAE and PIAE) on the geoid are smaller, may be by
one order of magnitude, than DTE (Fig. 4.6) and PITE. The effects are then still
a few centimeters. For the precise geoid these effects have to be formulated and
implemented in the Stokes-Helmert scheme.

The "GIN95.f” integrator is sensitive to low-frequency noise which may exists in
the residual Helmert gravity anomaly. This is because the kernel used, contain low-
frequency (n < 20) spectrum. This kernel translates any low-frequency noise (in the

gravity data) to the noise in the geoidal height, i.e., correlating with the spheroid.
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The noise could be developed either from the "observed” gravity anomalies or from
the reference anomalies, see eqn. (5.7). To prevent the correlation with the spheroid,
one has to make sure that the residual gravity anomalies are properly reduced to
high-frequency component, or to account for the correlation by the propagation of
the errors in the "observed” and reference gravity anomalies to the geoid.

It is seen from Fig. 3.5 that the geopotential models are not consistent in the
estimation of the truncation error. This implies errors in a geopotential model which
propagate, as an error, to the quantity (truncation error) estimated. The error will
be evidently small on a small quantity. The minimum truncation error, then, will be
estimated to a better accuracy by a geopotential model. This is why the generalized
Stokes integral, using a modified kernel, is advantageous in the computation of a

residual geoid.
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