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SUMMARY

In this paper we formulate the boundary-value problem for the determination of the
gravimetric geoid considering a satellite gravitational model as a reference. We show
that the long-wavelength part of the gravitational field generated by topographical masses
must be added to the satellite model in order to prescribe a reference gravitational
potential for a partly internal and partly external problem for geoid determination. We
choose a reference potential that does not depend on the way topographical masses
are compensated or condensed, but only on the satellite reference model and on the
difference of gravitational potentials induced by topographical masses in the spaces
outside the Earth and below the geoid. The latter contribution to the reference potential
is expressed in the form of an ellipsoidal harmonic series, and the expansion coefficients
are tabulated numerically up to degree 20.

Key words: boundary-value problem, ellipsoidal harmonics, geoid determination,

gravitational potential.

1 INTRODUCTION

Two techniques have recently been employed for the deter-
mination of the geoid over continental areas. Combining GPS
positioning with orthometric heights results in the geometrical
geoid, whose undulations with respect to the level ellipsoid are
given as the ellipsoidal (GPS-determined) heights minus the
orthometric heights (e.2. Hofmann-Wellenhof, Lichtenegger &
Collins 1992). On the other hand, surface gravity observations
supplemented by geodetic levelling can be used to construct
the so-called gravimetric geoid (e.g. Vanicek et al. 1987). As a
matter of fact, these techniques are not independent, since both
make use of a density hypothesis within the Earth. Only the
ellipsoidal heights resulting from GPS positioning on the one
hand and gravimetric data on the other hand are independently
determined. The geoid, therefore, can be determined in two
ways, both of which depend on the density distribution within
the Earth. Hence, there is hope that in the near future these
two techniques can be combined, which will lead to an
improvement of density distribution modelling in the upper-
most part of the Earth. In order to reach this goal, the geoid
should be determined with an accuracy of 1dm (or better),
since a change in the density model for the uppermost part
of the Earth from a commonly accepted constant value of
2.67 gcm ™~ to a more realistic 3-D density model changes the
geoid by a few decimetres only (Martinec 1993).

The magic accuracy of 1dm in the determination of the
gravimetric geoid—not yet realizable in mountainous terrain—
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requires not only highly accurate surface gravity observations
but also accurate theories and corresponding numerical codes
for geoidal height computations. The last requirement has not
yet been resolved satisfactorily since existing theories for geoid
computations still contain some assumptions which do not
allow the desired accuracy of 1 dm to be reached.

In this paper, our aim is to formulate the boundary-value
problem for the determination of the gravimetric geoid with
an accuracy of 1 dm. Throughout the paper, we will call this
problem the boundary-value problem for geoid determination
(BVPGD). Besides the usual data of surface gravity measure-
ments and heights of the Earth’s surface above the geoid, we
shall assume that the low-degree potential harmonic expansion
obtained from analysis of satellite orbit perturbations, truncated
approximately at degree 20, is known a priori, so that it can
serve as the reference potential. Let us note that it is the
spherical harmonic coefficients of the Earth’s gravitational
field that are derived from the analysis of satellite orbit
perturbations; to obtain the ellipsoidal harmonic coefficients
of this field, the transformation relations between spherical
and ellipsoidal harmonics derived by Jekeli (1988) are used.
Formulating the BVPGD for a higher-degree reference potential
has several advantages. For instance, the truncation error of
Stokes’ integral applied to observed gravity data reduced to
the reference gravity field is significantly smaller than in the
case where the classical Stokes theory is applied to original
gravity data that contain low- as well as high-frequency com-
ponents (Vanitek & Sjoberg 1991). This reduced truncation
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error can be evaluated numerically using a global gravity
model truncated at degree 120 at most (Martinec 1993).

However, the formulation of the BVPGD with a reference
potential given a priori may encounter some difficulties, since
it is not as easy as in, for instance, the case of Molodensky’s
boundary-value problems (Heck 1991). Whereas Molodensky’s
problems are governed by the Laplace equation in the external
space, and a reference satellite potential represents low-degree
components of the solution in the whole space of interest,
the reference satellite harmonics used in a partly internal and
partly external BVPGD represent a solution only in the
external space. The gravitational potential induced by topo-
graphical masses must be added to the satellite gravity model
in order to construct the low-degree part of the solution within
the topographical masses.

Vanitek et al. (1995) have made a first attempt to use
satellite potential harmonics in the BVPGD as the reference.
They defined the reference potential for Helmert’s disturbing
potential as the difference between the satellite model and the
low-degree components of the direct topographical effect on
the potential. This means that the reference harmonics of the
sought potential depend on the way the topographical masses
are condensed. In this paper, we will show that the reference
potential for the BVPGD can be introduced differently, such
that it does not depend on the way the topographical masses
are compensated or condensed. This model better reflects the
physical and mathematical background of the BVPGD,
because the long-wavelength part of its solution is uniquely
determined by the boundary conditions on the geoid and the
Earth’s surface and, of course, by the Laplace—Poisson equa-
tion. Note that the uniqueness and stability of the short-
wavelength part of the solution of the BVPGD is influenced
by the way the topographical masses are condensed (Engels
et al. 1993). Another question not answered by Vanicek et al.
(1995) is how to reduce the observed surface gravity to the
reference field. Again, we will show that such a reduction can
be performed without specifying the model of compensation
of topographical masses.

2 FORMULATION OF THE BVPGD

The BVPGD will be formulated in ellipsoidal coordinates, as,
later on, after linearization, the geoid will be approximated by
a level ellipsoid—the ellipsoidal coordinates are most suitable
to introduce this approximation. The 3-D ellipsoidal coordi-
nates {u, f. A} can, for instance, be introduced by their relation
to Cartesian coordinates {x,y,z} (e.g. Heiskanen & Moritz
1967, Sect. 1-19; Thong & Grafarend 1989):

x=+/u?+ E*sin fcos 4,
y=+t?+ E?sin fsin 1, (1)
z=ucosfl,

where the parameter E is constant and defines the common
focal distance of the family of confocal ellipsoidal coordinate
surfaces u = const.

Let the geoid S, be described by a function u = uy(Q), where
Q stands for the pair of angular coordinates (f, A), i.e. (15(€2), )
are points on the geoid. We will assume that the function u,(€2)
is not known. Let H(Q) (=0) be the height of the Earth’s
surface S, above the geoid reckoned along a coordinate line
f = const., 2 =const. We will assume that H(Q) is a known

function. Finally, let the following quantities be given: the
gravity g(Q) measured on the Earth’s surface, the density
o(u, Q) of the topographical masses (the masses between the
geoid and the Earth’s surface), and the gauge value W, of the
gravity potential on the geoid.

Since it is our intention to deal with the gravity field
generated by the Earth’s internal masses, we make a few
simplifying assumptions. First, we assume that the observations
of g are corrected for the attraction of the atmosphere and
the direct gravitational effect of the other bodies, mainly the
moon and the sun. Second, we assume the Earth is a rigid,
undeformable body, uniformly rotating (with a constant angular
frequency w) around a fixed axis passing through its centre of
mass. This assumption excludes consideration of the indirect
gravitational effect of other celestial bodies, such as the tidal
deformation of the Earth. Third, as already mentioned, we
assume the height H(Q) of the Earth’s surface S, above the
geoid reckoned along a coordinate line = const. to be known.
It can be defined analogously to the usual orthometric heights,
H = C/g,, where C is the geopotential number and g, is the
mean value of the u-component of gravity along a coordinate
line Q =const. between the geoid and the Earth’s surface.
Values of g, can be estimated by a procedure similar to that
used for g (Heiskanen & Moritz 1967, Sect. 4-4). However, &
determined in this way is a rough estimate of the actual value.
Only after finding the geoid with a high accuracy (better than
1 dm) will we be able to improve both g, and g.

The question we pose is: how do we determine the gravity
potential W(u, Q) inside and outside the topographical masses
and the radius u,(Q) of the geoid? The problem is governed
by Poisson’s equation with the boundary conditions given on
the free boundaries S, and S, coupled by means of height
H(Q):

V2 W= —4nGo + 2w* outside S, (2)

lgrad W|=g on S;, (3)

W =W, on S, (4)
1 GM 1

W= sz(x2+y2)+T+0(§) r— oo, (5)

where GM is the geocentric gravitational constant, g is equal
to zero outside the Earth, and r is the distance from the
geocentre, r = (x* + y* + z?)"/2. The first-degree harmonics are
left out of the potential W because of the geocentric coordinate
system.

The gravity potential W can now be split into the normal
(known) gravity potential U and a disturbing (unknown)
gravitational potential T

WEDAeT (6)

where the normal potential U is generated by a level ellipsoid
(of minor semi-axis by, say) spinning with the same angular
velocity as the Earth (Heiskanen & Moritz 1967, Sect. 2-7).
Throughout the paper, we will assume that the mass of the
level ellipsoid is equal to the mass of the Earth, and that
the mass-centre of the level ellipsoid coincides with that of
the Earth. Then the zero- and first-degree harmonics of the
potential U are equal to those of the potential W, and thus
they vanish in the disturbing potential T. Moreover, we will
assume that the normal gravity potential U on the level
ellipsoid is equal to the actual gravity potential W, on the
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geoid. The free, non-linear boundary-value problem (2)—(5)
can be reformulated for the disturbing potential T:

V2T = —4nGo outside S,, (7)
lgrad(U+ T)| =g on S, (8)
U+T=W, on S,, (9)
T~O(}3) r—ooo. (10)

The unknowns to be determined by solving the problem
(7)-(10) are the disturbing potential T in the space outside
the geoid, and the ellipsoidal u-coordinate of S,. Clearly, the
boundary value of potential U cannot be subtracted from W,
in boundary condition (9) because the surface Sg is not known,
and thus the normal potential U cannot be directly evaluated
on S,. The asymptotic condition (10) imposed on T at infinity
follows from (5), the fact that zero- and first-degree harmonics
of the normal potential U are equal to those of the gravity
potential W, and that both fields, W and U, are related to the
same angular velocity.

The non-linear boundary-value problem (7)-(10) with a free
boundary will be treated in a linearized form. Let us define
points P, Py, and Q on the Earth’s surface, the geoid, and the
level ellipsoid u = by, respectively, such that they lie on the
same coordinate line Q = const. Then the boundary condition
(8) can be linearized and written in the form

aT 2
u|p bo

(Martinec 1990; Heck 1991; Martinec et al. 1993), where we
have introduced the free-air gravity anomaly Ag",
Ag"=gp—vo+F, (12)

where F is the free-air reduction (Heiskanen & Mortiz 1967),
£,(Tp) and s?(TP ) are the ellipsoidal corrections,

—&(Tp) —&,(Tp,) = —Ag" (11)

T

T
g(Tp) = — = gin ,B— (13)
h P 2 l{ 3

T;
&(Tp,) = €3 cos? f—2, (14)
T g bO

e is the first numerical eccentricity,

e E (15)
and e, is the first eccentricity of the level ellipsoid u = b,,
€o= E/~/b} + E2. It can be simply shown that leaving out the
non-linear terms in eq. (11) results in a relative error of 1077
and an absolute error of the order of 0.1 mgal. The bias in the
geoidal heights induced by this linearization error is at most
15 mm (Seitz, Schramm & Heck 1994).

By the above linearization, the free, non-linear boundary-
value problem (7)-(10) can be reduced to a fixed, linear
boundary-value problem [described by eqs (7), (10) and (11)]
for determining the disturbing potential T outside the surface
S,. In contrast to in the problem (7)-(10), S, is now considered
to be known and fixed. The easiest and most often used way
to approximate the geoid is by a mean sphere. The relative
error introduced by this spherical approximation is of the
order of 3 x 107* (Heiskanen & Moritz 1967, Sect. 2-14),
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which then causes an error of at most 0.5m in the geoidal
heights.

To reach a better accuracy in the determination of the
disturbing potential T, we will approximate the geoid in the
problem (7), (10) and (11) by a level ellipsoid, i.e. we put

ug(Q) = by. (16)

In fact, the actual shape of the geoid deviates from a level
ellipsoid by 100 m at most. Therefore, if we treat the geoid as
the level ellipsoid in the formulae relating to the disturbing
potential T, this causes a relative error of up to 1.5 x 1075;
the absolute error in geoidal heights then does not exceed
2 mm.

After solving the fixed, linear boundary-value problem
described by eqgs (7), (10) and (11), and finding the disturbing
potential T outside the geoid, the height N of the geoid above
the level ellipsoid is obtained from boundary condition (9); its
linearized form turns out to be the well-known Bruns’ formula
for height N (Heiskanen & Moritz 1967, eq. 2-144):

N=—=% (17)
Yo

3 COMPENSATION OF TOPOGRAPHICAL
MASSES

Now, let us look for a particular solution to the Laplace-
Poisson equation (7). The gravitational potential V'(u,Q)
induced by the topographical masses,

bg + H(Q') Q(H Q) o ) )
Vi(u, Q)= GJ J._ Tl 0w, )"0 B du a2, (18)

where
w(u, B) = u® + E% cos®fs, (19)

Q, is the full solid angle, L(u, Q, v, Q') is the distance between
the computation point (1, Q) and an integration point (u', Q'),
and dQ' =sin ' dff d}, is a quantity that satisfies eq. (7).
[Note that the ellipsoidal approximation (16) of the geoid has
already been used in the formula for the potential V'(u, Q).]
However, it is a well-known fact that the equipotential surfaces
of V* undulate by several hundreds of metres with respect to
a level ellipsoid. Thus, it is not very advantageous to consider
only V* as a particular solution of eq. (7): another solution of
this equation must be added to the potential V' in order to
reduce its large magnitude.

The fact that the known undulations of the geoid are
significantly smaller than those induced by the potential V*
indicates that a compensation mechanism must exist which
reduces the gravitational effect of topographical masses. This
mechanism is probably mainly connected with lateral mass
heterogeneities of the crust (Martinec 1994a) but also partly
with deep dynamical processes (Martinec 1994b; Matyska
1994). To describe the compensation mathematically, a number
of more or less idealized compensation models have been
proposed. For the purpose of geoid computation, we can,
in principle, employ any compensation model generating a
harmonic gravitational field outside the geoid. For instance,
the topographic-isostatic compensation models (e.g. Rummel
et al. 1988; Moritz 1990) are based on compensation by the
anomalies of density distribution g.(u, Q) in a shell between
the geoid and the compensation level by — D(Q), D(Q) > 0; i.e.;
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the gravitational potential

J b 0., Q)

w(, f') du' dQ'
’=b0_D(n’] L[u, Q, ur’ Q:) [ ﬁ}

Visosl.{u, Q} =G J
Q4

(20)

reduces the gravitational effect of topographical masses.

In the limiting case, the topographical masses can be
compensated by a mass layer located on the geoid. This kind
of compensation, called the Helmert second condensation
(Helmert 1884), produces a potential described by the surface
Newton integral:

a(Q')

AT G

Voondcn,{u‘ Q,] =G J
Q,

where ¢(Q) is the density of the condensation layer. The 2-D
condensation density o(Q) can be chosen in various ways
depending on the approximation used for fitting the topo-
graphical potential V* with the condensation potential Veonéer:
(Martinec 1993).

Having introduced a compensation mechanism for the topo-
graphical masses, the associated compensation potential V¢
‘approximating’ the topographical potential V' reads

Ve= Visost. or V¢= Vconden. (22)

for the isostatic compensation and Helmert’s condensation of
topographical masses respectively. Finally, a particular solution
of the Laplace-Poisson equation (7) can be chosen as

V=Vt—Vve, (23)

where 8V is the so-called residual topographical potential, i.e.
the misfit of V* and V*.

4 A HIGHER-DEGREE REFERENCE
GRAVITATIONAL POTENTIAL

Now, let us assume that some low-degree harmonics of the
gravitational potential T have been determined from satellite
orbit analyses. The question arises of how to reformulate the
fixed boundary-value problem described by egs (7). (10) and
(11) so that a low-degree satellite gravity model can be
considered as a reference gravitational potential.

Since the disturbing potential T is harmonic outside the
Earth and it vanishes at infinity, it can be represented as a
series of ellipsoidal harmonics e/*'q;,,(¢)Y;,(Q),j=0, 1, ..., and
|m| <j, which all vanish at infinity (Heiskanen & Moritz 1967,
p. 43, eq. 1-111b):

Two)=% 3 T, (i)ﬁli’”(ﬂr @ (24)

; j=2m=-j T €p QJM(GO} 0 ¢
where g;,(e) are defined by eq.(A4) in the Appendix. This
series is convergent outside the bounding ellipsoid u = b,, but
it may be divergent in the space between the Earth’s surface
and this bounding ellipsoid (Sjoberg 1977; Jekeli 1983;
Grafarend & Engels 1994). To define a higher-degree reference
potential for the above boundary-value problem, however, we
are interested only in the low-degree part of the potential T.
Let us thus split the disturbing potential T into the (known)
low-degree reference potential T, and a (unknown) higher-degree
gravitational potential T*:

T=T+T. (25)

The set of potential coefficients T5, (where superscript e stands
for external) determined by analyses of perturbations of satel-
lite orbits will be taken as the reference. The reference gravi-
tational potential T, in the space outside the bounding ellipsoid
u = b, is then represented as

Lw9=Y 3 T (i)jﬂq’““’—[e)r @ (26)
- j=2m=—j ™\ e dim(€0) g
where ¢ is the cut-off degree of the reference potential
coefficients, say ¢ = 20. Moreover, since |T5,| < co, the finite
series (26) has finite values not only outside the bounding
ellipsoid u=b,, but also in the space between the Earth’s
surface and the ellipsoid u = b,. Therefore, T, represented by
the finite series (26) can also be considered as the reference
gravitational potential for gravity observations performed on
the Earth’s surface.
Analogously, the residual gravitational potential 6V can also
be split into low-degree and high-degree parts:

SV =0V, +5V°. (27)

The low-degree part 8V, is given by the low-degree parts of
expansions (A16) derived in the Appendix:

(V};:—V';mJ(E)J L=y @)

j=0m=—j € qjm(€o) &
for u=by+ H(Q),
ap;(u,g)=< o o+ H(Q)
Y Y (Vin—Vi)Vm©@
j=0m=-j
\ for u=b,.

(28)

Applying the same argument as in the preceeding paragraph,
we represent 5V, by the first series not only above u = b, but
also between the Earth’s surface and the bounding ellipsoid
u=b,. Note that formulae (28) do not determine the potential
6V, (u, Q) within the topographical masses.

5 REFERENCE GRAVITY ANOMALY

The crucial point of the problem of a higher-degree reference
field is determining the (low-frequency) part Agt of the free-
air gravity anomaly Ag" that is generated by the reference
potential T,. Obviously, Ag} is given by boundary condition
(11) applied to T;:

Agt L) 2 T
g B o — —_——
: Ot |y=py+n@ Do !u=bg
+ (T u=py+ e + e/(Ty)lu=b, - (29)

The first and third terms of Ag can easily be computed
employing the representation (26) of T,. Unfortunately, the
same representation cannot be used for evaluating the second
and fourth terms of Agf, because formula (26) is valid only
outside the Earth (not on the geoid). Hence, the next step will
be devoted to deriving the ellipsoidal harmonic expansion of
T, at a point on the geoid.

The gravity potential W can be considered to be a sum of
the gravitational potential V® generated by the masses below
the geoid, the topographical potential V*, and the centrifugal
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potential V*:
W=Ve+ Vi + Ve, (30)

The two different decompositions (6) and (30) of the gravity
potential W can now be put together so that the disturbing
potential T reads

T=V'+VeE+V*—-U. (31)

This equation is valid everywhere inside and outside the Earth.
Outside the geoid, in particular, the gravitational potential
V& + V®—U is harmonic, and it can be represented by an
ellipsoidal harmonic series of the form (valid also for u = by)

k=0m

w© J FPRYAS
vsrve—U=Y ¥ (V3+V“’—U)jm(;-)
=—j Q

x qjm(e)

Y..(Q) foru=b,, 32
qjm(eo) @) f 32)

where (V& 4 V® — U),, are expansion coefficients. Substituting
the last formula together with the expansions (A9) and (26) into
eq. (31), comparing the coefficients by ellipsoidal harmonics
€1 ¢;n(€)Y;,(Q) up to degree ¢, and considering the con-
tinuation property of harmonic functions, in particular the
unique extension of the region of definition of a harmonic

function (Kellogg 1953, Theorem V, Chap. X), we obtain
(VE+ V® —U)jp= TS — Vi for u>by, (33)
where j=0,1,....7, |m|<j, and Vi, are given by integrals
(A10).

On the geoid, u = by, formula (31) together with expansions
(A11) and (32), yields

o0 J .
Tho, =Y, 2 [Vin+(VE+V°—U);]Ym(Q). (34)
i=0m=-—j
The low-degree part T, of potential T [see decomposition (25)]
at a point on the geoid then reads

Te(bo, Q) = ﬁ i [Vin+ (VE+ V° = U);n1Ym(Q), (35)

j=0m=~-j

or, on substituting for (V& + V* — U);, from eq. (33), we have

A .
T(bo, Q=3 Y TiuYim(@), (36)
i=0m=~—j
where
T-_iim = Tﬁm T V;;:l T V};:, (3?}

i=0,1,....¢, and |m| <j.

Finally, we are ready to evaluate the reference free-air gravity
anomaly Agf. Substituting egs (26) and (36) into (29), we
obtain

agf(a)=(1+§sin2ﬁ)i 5 (i)w
j=0m=-j \€o

: U gmle) 1 dq;,.(e)]
x| —(j+1 +
I: U ] uz iE EZ q_im(eo} ‘?,Im(el}] du = bg + H(EY)

X T, Y;(©) + i(?,—eﬁ cos’ ) 3 i T’m Yim(Q).

bo j=0m=—

(38)
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It is important that the reference free-air gravity anomaly
Agf does not depend on the way the topographical masses are
compensated or condensed, but only on the reference satellite
harmonics T5,, the density distribution of topographical
masses via differences, Vi — V%s, and on the topographical
height H(Q).

6 BVPGD WITH A HIGHER-DEGREE
REFERENCE FIELD

Subtracting eq. (29) from eq. (11) and using the decomposition
(25), we have

aT’ 2
o =} =R
éu u=bhg+H(£2) bo u=hg
— (T umso+ i@y — &y(T)u=p, = — A, (39)

where T is the high-degree part of the potential T, and Agh*
is the high-degree part of the free-air gravity anomaly,

AgF¢ = AgF — AgE. (40)

On the strength of assumption (16), the residual topo-
graphical potential §V, and thus also its high-degree part
dV*, can be considered as known quantities at points on the
Earth’s surface and the geoid. The latter quantity can readily
be determined from formula (27), where dV, is given by the
ellipsoidal harmonic expansion (28). This makes it possible to
introduce a new unknown potential T™¢:

The =LV, (41)

By noting that the function T — ¥V is harmonic outside the
geoid, its high-degree part T™¢, the high-degree part of
Helmert’s so-called disturbing gravitational potential (Martinec
et al. 1993) when the topographical masses are compensated
according to Helmert’s second condensation technique, satisfies
the boundary-value problem of the form

{7 et ) u> by, (42)
o L2 e
du u= b+ H(S) by u=bgy
—g(T™) |u=b0+H[nj 5 Ey(Th'(] =ty
= — AgF’ — 8A4¢ — 58°¢
o sﬁ(6V(]|u=bo+H(n] +&,(8 V{)|u=boa (43)
1
Th,JNO(F) u— oo, (44)

where the boundary condition (43) follows immediately from
the substitution of eq. (41) into eq. (39). The high-degree parts
of the direct and secondary indirect topographical effects on
gravity (Martinec & 'Vani¢ek 1994a, b) read

36V (u, Q o ¥ e
e =200 -¥ ¥ (V};:J;;)(—)
ou u=by+H() j=0m=-—j €o
; D gRle)? 91" Ldg ,-...(e)]
x| —(j+1
|: U }uz +E? qjml€o)  qim€0) du  li—po+me)
X Yin(@), (45)
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and

2
=6V
boé (bO's

ZZ

0j=0m=—j

ViA— V)Y@,  (46)

The asymptotic constraint (44) reflects condition (10) and
the fact that only the high-degree part of the gravitational
potential is sought, while the low-degree component T, is
assumed to be completely known a priori. Not even the best
satellite gravity model is error-free, however, leaving an
unmodelled low-degree residual in the boundary data. The
following question may arise: should we try to determine this
low-frequency residual or should we be satisfied with the low-
frequency part of the solution as defined by a satellite gravity
model and a low-degree model of topography, and only search
for the high-frequency part of the solution? Nowadays, we
tend to accept the latter point of view, since the coverage of
gravimetric data over the Earth’s surface is still not accurate,
dense and homogeneous enough to be used to determine low-
frequency components of the Earth's gravity field more pre-
cisely. This concept is also supported by the fact that the
modelling of the long-wavelength term &V, of the residual
topographical potential is not error-free because of an insufficient
knowledge of the density of topographical masses. Thus, some
long-wavelength residual of the gravitational effect of topo-
graphical masses affects the surface gravity data. Without
knowledge of the 3-D density structure of topographical
masses, it is impossible to distinguish this residual from
long-wavelength errors of a satellite gravity model.

Accepting this concept, ie. assuming that the solution is
sought only for high-degree components (even though the
reduced boundary data contain some low-frequency noise), the
solution to the problem (42)—(44) may be affected by a low-
degree aliasing effect. Whether or not the high-frequency part
of a solution T¢ we are looking for is distorted by low-
frequency noise in the boundary data depends on how the
problem is solved. For instance, if the above boundary-value
problem is solved by means of Poisson’s and Stokes’ integrals,
the integration kernels must be constructed such that they are
‘blind’ to low-frequency components of the boundary data. Then
the low-degree harmonics do not affect the high-frequency
solution. The construction of Poisson’s and Stokes’ integration
kernels with such a desired property can be found in Vanicek
et al. (1987; 1996).

It is not the intention of this paper to construct the solution
to the problem (42)—(44). For a long time, geodesists have
been solving more or less similar problems. In most cases, they
have tried to transform geodetic boundary-value problems
similar to the problem (42)—(44) to Stokes’ problem and to
solve them by Stokes’ integration (Heiskanen & Moritz 1967,
Sect. 2-26). However, a satisfactory solution to the problem
(42)—(44) matching today’s accuracy requirements has not yet
been presented. Perhaps the most crucial problems are that
(1) the existence of a solution to the problem (42)—(44) cannot
be guaranteed, and (2) the solution is unstable (e.g. Engels
et al. 1993; Martinec & Matyska 1996). What conditions
guarantee the existence of the solution and how to reasonably
stabilize the solution are the open questions which have not
yet been answered satisfactorily.

After finding T™ by solving the fixed boundary-value
problem (42)—(44), the solution to the free boundary-value
problem (2)—(5) can be found by giving the undulations N of
the geoid with respect to the reference ellipsoid. Substituting

egs (25) and (41) into Bruns’ formula (17), we obtain
1 h,¢ &

N=N(+ })_{T 2 +(5V )IPB’ (47)
Q

where we have introduced low-degree geoidal undulations N,
as

1
Ny=—Tlp,. (48)
7o

From egs (36) and (37), we obtain

4 J
=~1-Z Y (Tt Vi — Vis)Yim(Q). (49)
j=0m=

It should be emphasized that neither Ag; nor N, depends
on the way topographical masses are compensated or con-
densed, but only on the reference harmonics T%, and on the
differences V', — Vis of ellipsoidal harmonics induced by
topographical masses. On the other hand, the boundary-
value problem (42)-(44) for T™ depends on the way the
topographical masses are compensated. There is an open
question, not addressed here, whether Helmert’s now popular
condensation technique (e.g. Martinec et al. 1993) is the best
way to compensate the gravitational effect of topographical
masses when the problem (42)—(44) is to be solved.

7 NUMERICAL RESULTS FOR V}i— Vjz:

Let us try now to estimate the effect of the gravitational field
generated by topographical masses on the reference free-air
gravity anomaly Agf and the reference geoidal undulations
N,. To do this, we have evaluated the differences Vj,;,— Vim
for low degrees, j=0,1,...,20, by a numerical quadrature
applied to integrals (A10) and (A12) found in the Appendix.
As a first approximation of V%, — V', we have assumed that
the density o(u, Q) of topographlcal masses is constant and
equal to the mean crustal density of go=2.67 gcm ™. The
actual density of topographical masses is expected to vary
around g, by 10 to 20 per cent. Later on, we will estimate
the effect of such topographical density variations on the
differences Vi — Vis.

Table 1 gives the differences Vi — Vis, j=0,1,...,20,
|m| < j, for the TUGS7 global spherical harmonic terrain model
(Wieser 1987) complete up to degree and order 180. We have
found that the contributions of Vi — V%, j=0,1,...,20,
|m| <j, to geoidal heights lie within the interval (—2.80; 0) m;
the minimum —2.80 m is located in the Himalayas. Note that
this result is in an agreement with that obtained by Sjoberg
(1994). A plot of this effect for the territory of Canada is
shown in Fig. 1. As expected, the minimum value, which
reaches —0.43 m, is connected with the highest part of the
Canadian Rocky Mountains. Since the density of topographical
masses enters Newton’s integral linearly, in order to achieve
the 1 dm accuracy of geoidal heights, the regional density of
the Rocky Mountains massif should be known with a relative
accuracy of better than 25 per cent.

Inspecting eq.(38), we can observe that the part of the
reference free-air gravity anomaly Agl(Q) that originates from
differences V% — Vi< is

D viaicscanicd
Ag! topo s R b_ Z _Z‘ r:t ;m] (50)

0 j=0m=—
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Figure 1. The part of the reference geoidal heights N, (in metres) that originates from differences V% — Ve over the territory of Canada.

We have evaluated AgJ ,0(€) globally for £ =20 and found
that it reaches at most 0.09 mgal.

8 CONCLUSION

To employ a reference potential in the computation of the
gravimetric geoid has an evident advantage: it reduces the
magnitude of quantities we work with and thus enables us to
linearize the originally non-linear boundary-value problem for
geoid determination. There are certainly a lot of possible ways
to bring the reference potential into the geoid computation.
Here, a reference potential has been considered to consist of
the harmonics derived from the analyses of satellite orbits.
We have assumed that such a priori information on long-
wavelength components of the gravitational field is fixed and
should not be corrected from surface gravity observations.
This fact is expressed by an asymptotic condition (44), which
says that only the short-wavelength part of the gravitational
potential is sought from surface gravity data. On the other
hand, introducing a reference potential into the problem of geoid
determination requires that the reference potential harmonics
be accurate enough and that they contain meaningful infor-
mation. Therefore, we have assumed that reference satellite
harmonics are taken up to degree about 20.

It should be emphasized that satellite potential harmonics
define the reference gravitational potential in the space external
to the Earth. In order to construct a reference potential for a
partly internal and partly external boundary-value problem of
geoid determination, the low-degree part of the gravitational
potential induced by topographical masses must be taken into
account. Vani¢ek et al. (1995) have already formulated the
BVPGD for the case where a satellite reference potential is
taken as the reference. They confined themselves to the
so-called Stokes—Helmert technique for geoid computation,
and introduced the reference potential for Helmert’s disturbing
potential as a satellite gravitational potential minus the direct
topographical effect on the potential. Evidently, such a refer-
ence field depends on the way topographical masses are
condensed.

Here, we were motivated by whether the BVPGD could be
formulated in such a way that a higher-degree reference
potential would be independent of the way the topographical

masses are compensated. We have shown that such a formu-
lation exists; the reference free-air gravity anomaly as well as
the reference geoidal height are determined by a satellite
gravitational model and by the differences of the external and
internal gravitational fields generated by topographical masses.
The reference potential for geoid determination is insensitive
to the way the topographical masses are compensated.
Numerically, the magnitude of that part of the reference geoidal
heights which comes from low-degree components of the
topographical potential is approximately three times larger
than the corresponding direct topographical effect on the
potential in the Stokes—Helmert technique (Vanicek et al.
1995).
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APPENDIX A: ELLIPSOIDAL HARMONIC
REPRESENTATION OF 4V

In this Appendix, we express the residual topographical
potential 8V in a spectral form. Because of the ellipsoidal
approximation (16) of the geoid, it is advantageous to represent
&V in terms of ellipsoidal harmonics.

The expansion of the reciprocal distance in terms of ellip-
soidal coordinates can be found in Hobson (1965, pp. 424-430);
for u>u',

1 LS & o=l o8
L, Q, o', Q) 24“350,,,2 ,-[_l) Grmp (lE)

x P (‘uf) V(@Y (), G0

where i=./—1, P7(iw/E) and Q7(iu/E) are the Legendre
functions of the first and second kinds normalized according
to Hobson (1965), Y;,(Q) are fully normalized spherical har-
monics normalized according to Varshalovich, Moskalev &
Khersonskii (1989), and the asterisk denotes the complex
conjugate.

Thong (1993) has shown that Legendre’s functions
P7(iu/E) and Q7 (iu/E) can be wrillen as infinite power series
of the first eccentricity e, defined by eq. (15), as

: (2=
o m—(j+1 (+m)! j+1
Q" (‘E) =(=1)m¢ }nme dime). (A3)
where
P;'m(e}= "z"l‘ ajmkeur Q_;'m(e}= i bjmkezk‘ (A4)
k=0 k=0

The coefficients a;,, and by, can be defined, for instance, by
the following recurrence relations:

(—j+2k—2P—m?

Oynk = 2 T2k ) - for k>1 (AS)
with Ajmp = 1, and

G+2k—1PF—-m
L= h. for k=1 A
bim = e+ 2+ 1) et fork=ld (e

again with bj,, = 1. For points lying on the Earth’s surface or
close to the Earth’s surface, the eccentricities e and ¢’ are of
the order of 7 x 102 at most, and the series over k in eq. (A4)
quickly converge for low degrees j. Later on, we will restrict
ourselves to ellipsoidal harmonics of degrees j < 20; in such a
case, it will be sufficient to sum the series in eq. (A4) only up
to k=2 and still keep the relative accuracy of the order of



228  Z. Martinec and P. Vaniéek

1075, Such an accuracy ensures the determination of the geoid
to an accuracy of the order of 1 mm. Substituting eqs (A2)
and (A3) into the expansion (A1), we get

1

e j e\
wawd) "ES.Z, 2;+1( )
x qjm(e)p,-m(ej (@Y 5(Q), (A7)

valid for u > u’, or, equivalently for e <e.

Let us now turn our attention to the topographical potential
V', Substituting the above expansion of the reciprocal distance
into Newton’s integral (18), the gravitational potential V* at
a point outside the ellipsoid (of minor semi-axis b, say)
completely enclosing the Earth reads

by + HIEY') e i
Vatuldrom I J ' =bo i Q}JZOMZ'} 2]‘1'1( )
X qjm(€)Pjm(€)Yim( QY 5, (Q )W, f) du' dQ' . (A3)

For u = b,, it is admissible to interchange the order of sum-
mation over j and m with the integration over «' and Q'
because of the uniform convergence of the series. We get

||M3

Vaug=3 3 V};;(i)jﬂ W@ y @ foruzb,
i=0m=—j €y QJM[BO]
(A9)

where the expansion coefficients V7; read

4nG e, g 3 HEL) e\
pres T o) 2
in= %+ 1 Ul J _[ ew 2N

< (Q)w(, B) du’ d. (A10)

x ij( )
Here, we have introduced factors e} g;,(¢,) to normalize the
expansion coefficients V.
Analogously, for u<b,, the gravitational potential V*
induced by the topographical masses can be expressed in terms
of ellipsoidal harmonics that are regular at the origin, i.e. as

t.i Eg ] ij(e}
ij( e ) Pim(€o) Yl

for u<b,,

Vi(u, Q) = OZO: _i:

j=0m=—j

(All)

with coeflicients

/ 4nG e, bg+ H(Q') e j+1
1 _ ' ' il
Vin=571 EPme )LJ‘“E% o, @)\ =

X i@ )Y 5(Q )W, f') du'dQY . (A12)

As we have discussed, the compensation of topographical
masses plays an important role in geoid determination.
Employing expansion (A7) of the Newton kernel, the com-
pensation potential V¢, eq. (22), at points outside/on the geoid
can be expressed as a series of ellipsoidal harmonics:

V=¥ _Z (8) =9 v

j=0m=— €9 qjm(€o)

for uzbo,

(A13)

where the coefficients V5, are equal to

416G e bo e\
ve v, ) &
i 2Jf+l Eq.;m( 0 J%.[’=%—Drﬁ‘} Qc( }(e;

X Pjm(€)Y 5u(Q)w(W', f) du’ Y, (A14)
for the isostatic compensation of topographical masses, and
4G e,

1+

m=%i1E gjm(€o) Lo (Q)Pjm(€0)Y Sl )W(bo, f') dY',

(A15)

for Helmert’s second condensation.
Finally, we are ready to write the ellipsoidal harmonic
representation of the residual topographical potential

oV =V*'—V* Using expansions (A9), (All), and (A13), the
potential 6V reads
[ones
4im(€)
e — Vo ( ) == 7.2
_;2:0;“;—;{ % ) €g qjm(eo) - L
5V, Q) = { ‘ foruz=b,,
] i f
Y X (Va=—Vi¥u@
j=0m=-j
\ for u=b,,
(A16)

where the coefficients V%2, Vii, and V5, are given by eqgs
(A10), (A12), and (A14), respectively.
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