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1. Formulation of the appropriate Boundary Value Problem (BVP)
of the third (Robin's?) kind.

*Region of Interest:  Space outside the geoid;

*Boundary:  The geoid (unknown);

*Unknown Function:  Disturbing potential T(≅W-U); has  the  following

properties:
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2. Transformation of BVP into a harmonic space.
Potential W  has to be transformed to another potential Wh , harmonic

everywhere above the geoid for which the boundary value equation can be

linked to observations in the harmonic space:
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geoid→co-geoid.

Many choices of harmonic spaces exist.



3. Selection of an appropriate harmonic space
Helmert's space:
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where t stands for topography, a for atmosphere and c for condensation.

Choice of condensation scheme: Helmert’s second condensation. Why

Helmert’s scheme?

We use the scheme that preserves earth mass in the transformation to

Helmert's space (=> spherical model must be used).

Hörmander's condition is violated.

4. Formulation of boundary values on the geoid (really Helmert's co-
geoid)
4.1. Transformation of observations into Helmert's space

Observed gravity g H ° ,Ω( ) = g rt ,Ω( )  transformed to:

gh rt ,Ω( ) = g rt ,Ω( ) − DTE rtΩ( ) − DAE rt ,Ω( ) ,

where
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(these are complicated integrals for spherical models).  See Figure 1.

4.2. Determination of Helmert's anomalies
(Helmert's) gravity gh rt ,Ω( ) on the earth surface is converted to

(Helmert's) anomalies:
∆gh rt ,Ω( ) = gh rt ,Ω( ) − ro + Ho Ω( ),Ω( ) +
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Th rt − Z Ω( ),Ω( ).

4.3. Use of simple Bouguer's anomaly
Instead of using observed gravity g rt ,Ω( )  we use simple Bouguer anomaly

∆gB Ω( ) :

g rt ,Ω( ) − ro + Ho Ω( ),Ω( ) = ∆gFA Ω( ) = ∆gB Ω( ) − 2 o Ho Ω( ).



Figure 1  Real and Helmert spaces.

4.4 Averaging gravity anomalies
For easier numerical integration (later on) we convert point values

∆gh rt ,Ω( )  to mean values:

∆ gh rt ,Ω( ) =
1

A A∫ ∆gh rt ,Ω( )dA.

This is done for 5' by 5' cells.  The size of cells is dictated by available

gravity data density.

4.4. Evaluation of 'fundamental gravimetric equation'

∆gh rt ,Ω( ) = − Τh r ,Ω( )
r r =rt

− Τh rt − Z Ω( ) ,Ω( ) + n rt ,Ω( )

−
g

rt ,Ω( ) = F Τh rt ,Ω( )[ ] + EC rt ,Ω( ).
This equation links the observed values g rt ,Ω( )  to boundary values

F Th rg ,Ω( )[ ], it is valid for all r≥rg!



4.5. Downward continuation of F T h( )  to the geoid

Since Τh  is harmonic above geoid, so is r
Τh

r
and∇2 rF Τh r,Ω( )[ ]( ) = 0 ,

∀r≥rg.  Direchlet's BVP can be formulated and solved⇒Poisson's solution

can be used.  (Actually, EC r,Ω( ) is also harmonic for ∀r≥rg, but we have

elected to work with rFh Τ[ ] only.  We get:

F Τh rg ,Ω( )[ ] = ∆gh rg ,Ω( ) − EC rg ,Ω( ) .

We have elected to continue 5' by 5' mean values rather than point values.

(Poisson's solution appears to be a linear operation.)  Mean values

F  Th rg ,Ω( )[ ] are the discrete boundary values for the BVP of the third

kind.

5. Solution of the BVP of the third kind.
5.1. Reformulation (generalization) of the BVP

To take advantage of the availability of global field Τ( )L  from satellite

orbit analysis we construct Th( )
L
 through transformation to Helmert's

space (Hemertization).  We take L=20; for L>20 global field consists of

mostly noise.
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Note:  Wh = U + Th = U + Th( )
20

+ Th( )20
and U + T h( )

20
is a new

reference potential, [U + Th( )
20

]/  is a new reference spheroid.

5.2. Stokes’s solution to the BVP
This is the classical solution of Green's kind:
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For the generalized BVP:
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So far, we have taken only rg'=R.



5.3. Splitting the integration domain
We evaluate the Stokes integral in its above form only over a spherical cap

C0 of radius Ψ0 .   For the rest of the domain (spheroid - C0) we use the

spectral form.  We choose Ψ0 = 6˚ (somewhat arbitrarily).

Using a simplified notation we write:

  

sph∫ FS20 = sph∫ F20S20 = sph F20S∫( ) = sph∫ F20 S20 + M20( )
S*20

1 2 4 3 4 
=
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S*20  is a modified spheroid Stokes kernel.   We have chosen M20  such as

to minimize the upper bound of the far-zone contribution (second term).

We evaluate this FZC in a spectral form using a global field model.  For

computational reasons we construct the F20  already on the topography and

only F20 [Th(r, Ω)] is continued down to the geoid.

6. Solution of the geoid
 Still in the Helmert space, we construct the (Helmert co-) geoid:

Νh Ω( ) = 1

0 Ω( )
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  
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20

+ Νh Ω( )( )20
.

The first term is the reference spheroid, the second term is the residual

geoid form the solution to the BVP of the third kind.


