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Abstract

In the past, two different methods were proposed to
consider the effect of the terrain in Helmert’s 2nd con-
densation method. In Vaniéek and Kleusberg (1987)
approach the attraction of the topographical masses is
evaluated at a point on the topographical surface. By
analogy with the Molodensky’s theory, Wang and Rapp
(1990) claim that the free-air anomaly should be re-
duced by the terrain correction. They also state that
the attraction of the topographical masses should be
referred to a point on the geoid.

This paper shows that key to solve this discrepancy
is hidden in the way how the downward continuation of
the anomalous gravity is treated in the particular meth-
ods. In the Vani¢ek and Kleusberg approach (1987) the
downward continuation of the anomalous gravity from
the topographical surface to the geoid is completely ne-
glected, whereas Wang and Rapp (1990) evaluate this
term under implicit assumption that there is a linear re-
lationship between free-air gravity anomaly and the ele-
vation of topography. As Moritz (1966) showed such an
assumption comes from a simplified view of the compen-
sation of topographical masses; it has not been proved
yet that this assumption is acceptable for a precise geoid
determination.

In other words it means that both methods, Vanicek
and Kleusberg (1987) as well as Wang and Rapp (1990),
are for different reasons only approximate. We will not
be able to decide which method yields more accurate re-
sults until a correct procedure of computing downward
continuation of anomalous gravity will be employed.
Let us emphasize that this paper does not aspire to
provide such an accurate procedure.

Correspondence to: P. Vanitek

Introduction

Stokes’s formula for the gravimetric determination of
the geoid requires that there be no masses outside the
geoid and the gravity anomaly be referred to the geoid.
One way how to satisfy these requirements is to use the
Helmert 2nd condensation technique (Heiskanen and
Moritz, 1967, sects. 3-7, 4-3; Vanicek and Kleusberg,
1987; Sideris and Forsberg, 1990). This condensation
technique is applied as follows:

(1) To replace the effect of topographical masses on
gravity at the earth surface by the effect of the
mass layer on the geoid; this difference is known
as the direct topographical effect on gravity
(ibid.);

(2) To compute the gravity anomaly at the geoid by
évaluating actual gravity at the geoid from the ob-
served surface value through downward contin-
uation;

(3) Now Stokes’s technique can be applied since the
above 2 requirements are satisfied to give the so-
called co-geoid;

(4) To compute the indirect topographical effect on
potential, (ibid.), to obtain the geoid.

According to Sideris and Forsberg (1990, eqn.(17)) steps
(1) and (2) yield Ag°® on the geoid computed from the
formula

AQOZQP—’Yq+F—AP+A°pg, (1)

where gp is the observed gravity at the surface point By
7¢q is the normal gravity at a point @ on the reference
ellipsoid, F is the free-air reduction at the point P, Ap
is the attraction of the topographical masses (above the
geoid) at the point P, and A};o is the attraction of the
condensed topography at the point P, on the geoid.
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The aim of the paper is to answer two questions
which occur when the Helmert condensation technique
is applied. The first concerns the term Ajp . Heiska-
nen and Moritz (1967, sect. 4-3), Sideris and Forsberg
(1990, eqn.(17)), and Wang and Rapp (1990, Conclu-
sion) claim that the attraction of the condensed topo-
graphical masses must be referred to the point P, on the
geoid as denoted by the subscript. Vanicek and Kleus-
berg (1987, eqn.(10)) claim that the attraction of the
condensed topography must be computed at the point
P on the topographical surface, i.e they replace the term
Ap by a term Ap.

The second problem concerns the downward contin-
uation of the gravity anomalies from the topographi-
cal surface to the geoid. In the Vani¢ek and Kleusberg
(1987) approach this step is performed by the simple
free-air reduction of —0.3086 4 mGal/m. This term
represents the downward continuation of the gravity in
free-air when the gravity is represented only by a spher-
ical harmonic of degree zero. A question arises how
the gravity data are distorted by the free-air reduction,
if they also contain the spherical harmonics of degrees
higher than zero. In other words, up to which spher-
ical harmonic degree is it possible to approximate the
actual vertical gradient of gravity by the simple free-air
reduction?

Boundary condition for the anoma-

lous potential

In this section we derive the boundary condition for the
anomalous gravitational potential in the case when the
Helmert 2nd condensation technique is employed. Let
us start with a decomposition of the potential of the
gravitational field generated by the Earth. It may be
split into two parts:

V=VIi+ V', (2)

where V9 is the potential generated by the masses below
the geoid and V' is the potential generated by the to-
pographical masses (masses between the geoid and the
topographical surface). The potential of the topograph-
ical masses may be further decomposed as

VE=Ve+6V, (3)

where V¢ is the potential of the masses condensed on the
geoid with the density o = pH, H being the orthometric
height of the topography above the point of interest.
The term 8V is obviously the residual potential given
by the difference between the actual potential of the
topographical masses and the potential of the condensed
masses.
Inserting eqn.(3) into eqn.(2), we get

V=Vttsv, (4)

where

yh = 9 4 ve (5)

may be considered as a potential approximating the ac-
tual potential V. As shown in Martinec and Vanicek
(1992), the effect on geoidal undulations by the topo-
graphical potential V* is of the order of 10 m, whereas
the residual potential 6V influences geoidal heights of
only about 2m. That is why, the residual potential §V
may be computed from relatively much less precise ex-
pressions, e.g., by evaluating the Newton volume in-
tegral using approximate estimates of the topographi-
cal density. Such estimates cannot be used in comput-
ing the condensation potential V¢, because they would
cause errors in geoidal heights 3 orders of magnitude
larger. Therefore the potential V¢ together with the
potential V¢ will be considered as unknown quantities-
see eqn.(7) below. Since the potentials V¢ and V¢ are
harmonic outside the geoid, the potential V* is obtained
by solving the Laplace equation, V2V" = 0 outside the
geoid, with a boundary condition prescribed on it.

Keeping in mind eqn.(4), the gravity potential of the
Earth takes the form

W=Vtt+6V+0, (6)

where @ is the centrifugal potential of the Earth. The
gravity potential V" + ® may be written as a sum of
a normal gravity potential U generated by a biaxial el-
lipsoid spinning with the same angular velocity as the
earth and a (unknown) disturbing potential 7",

VE+o=U+T". (7)

The superscript ’h’ emphasizes that 7" approximates
the actual disturbing potential 7" of the Earth, 7" =
W — U. The difference between 7" and T,

V=T-T", (8)

measured in geoidal heights reaches at most 2m (Wichien-
charoen, 1982, Martinec and Vanicek , 1992). Inserting
(7) into (6), the gravity potential W outside the geoid
becomes

W =U+Tt 46V, 9)

where

ViTh = 0 outside the geoid .  (10)

Let us apply the operator grad{-} to eqn.(9) and take
the magnitude of the resulting vector. We get

gradU - grad(T" + 6V)
|gradU|

|grad(T" + 6V)|2)
10 ( ey (11)

where ’-’ denotes the scalar product of vectors. The
radial component of the normal gravity vector gradlU

lgradW| = |gradU| +




is 3 x 102 larger than its horizontal components. To
an accuracy better than 1 pGal (Vanicek and Martinec,
1993) eqn.(11) becomes

Lo _aw
=t o or '’

(12)

where g = |gradW | is the actual gravity and v = |gradU]|
is the normal gravity. Using eqn.(3), the last term in
eqn.(12) becomes

D6V avt _3V‘°
ar = Or ar

where A is the radial component of the attraction of the
topographical masses and A° is the radial component
of the attraction of the condensed topography. Now,
eqn.(12) reads

ar
—_— = A—A°. 14
5 SaeRE (14)
This equation is valid everywhere above the geoid.
Let us consider eqn.(14) at a point P on the topo-
graphical surface,

oTh

—_— == Ao = A% . 15
o gp+1p +Ap —Ap (15)

P

Normal gravity 7p may be expressed by means of y and
its derivatives at the point Q on the reference ellipsoid
on the same geocentric radius as the point P (Heiskanen
and Moritz, 1967, sect. 2-14),"

dy
- L H
P m+3rL(N+ )+

: )i
Zyq-2p N-F, (16)
where R is the mean radius of the Earth, F is the free-
air reduction, °
oy

o ar

i (17)
Q

and N is the geoidal height given by the Bruns formula
(Heiskanen and Moritz, 1967, eqn.(2.144)),

N == (T" +V)|

= b (18)

Here P, is the point on the geoid that lies on the same
geocentric radius as points P and Q. Inserting eqns.(16)
and (18) into eqn.(15) yields

(0} PR
o P+ e L AgE Api—iAG = Bagaen (19)
where

AgE =gp =19+ F (20)
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is the free-air gravity anomaly (Vanicek and Krakiwsky,
1986, eqn.(21.14)). The term

ol OVp, .42

- 6Vp, (21)
orlg e R

e

is called the secondary indirect effect on gravity (Heiska~
nen and Moritz, 1967, eq.(3-51)).

To obtain the radial derivatives of potential 7" on
the geoid, as required in Stokes’s integration, let us de-
velop the radial derivatives of T" at the topographical
surface into the Taylor series. Since T" is harmonic
between topographical surface and geoid, we can write:

il
P, i or?

oT*

=

or*
ar

HEL snoi(22)
PQ

Taking only the first two terms of this Taylor series
expansion, equation (19) takes the final form

o
ar

Ea T = AP (23)
B, VI

which is the spherical approximation of the boundary
condition for the disturbing potential 7% at the point
P, on the geoid. The Helmert anomaly reads

Ag = Agh — Ap+ Ap + 91+ 6, , (24)
where Sk
= — . 2
=55 | H (25)
g

Now, the two requirements of Stokes’s integration are
satisfied: the boundary condition (23) is referred to a
point on the geoid, and the disturbing potential T is
harmonic outside the geoid. Therefore, Stokes’s inte-
gration may be immediately applied to eqn.(23).

Comparing eqn.(24) with (1), we can see that the
attraction A% of the condensed topography must be
referred to the point P on the topographical surface
as was claimed by Vanitek and Kleusberg (1987) and
not to the point P, on the geoid as was argued, e.g.,
by Sideris and Forsberg (1990), and Wang and Rapp
(1990).

Helmert’s anomaly contains the term g; which does
not appear in eqn.(1). Since 82T"/8r? is the vertical
gradient of the anomalous gravitation AT™ /r, the term
g1 = (8°T§ /Or?) H represents the harmonic downward
continuation of the anomalous gravitation from P to
P,. In the Vanicek and Kleusberg (1987) approach the
downward continuation of the gravity is only realized
by the simple free-air reduction and the term g;{is ne-
glected. But if the gravity contains high-frequency com-
ponents, the term g; may be significant and has to be
considered in Helmert’s condensation reduction proce-
dure.
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Moritz’s terrain correction approx-
imation

In this section we will discuss the term g; in detail. The
quantity g; may be written as follows:

oo L o1 4 R o h)
e = Seifpeae g S 2 p H=
T gl ( A |
dAgH H oT*
=- H-2—= — (26)
or |p, R Or |p

The vertical gradient of gravity appearing in eqn.(26)
may be expressed by means of eqn.(2-217) in (Heiskanen
and Moritz, 1967). We get

LH e BT
=g (a0 -)

Py

(27)

g R_’*H/ Agp, () - Agp, .,

2 ¢ fg ;
where £y is the spherical distance between the dummy
point in the integration and the point of interest (ibid.,
Fig.1-13). In planar approximation (Moritz, 1980, eqn.
(45-31)), the first term on the right hand side of eqn.(27)
may be neglected, so the downward continuation term
g1 is approximately equal to

dsy .

2 A H ) = A H
R / gp, (&) — Agp, (28)
ﬂi

s o B

This expression may be called the ’gradient solution’ of
the downward continuation in analogy with the gradi-
ent solution used in Molodensky’s theory (Moritz, 1980,
sect.45).

To be able to compute the term g;, the gravity
anomalies are to be continued from the topographical
surface (AgH) to the geoid (Aggg ). To avoid this proce-
dure, Pellinen (1962) and after him also Moritz (1966)
suggested to assume that the free-air gravity anomaly
is linearly dependent on the elevation H of topography.
Let us assume that this assumption is also valid for the
Helmert anomaly,

AgH =a+ 27GpH |, (29)
where a is a constant and p is the density of the to-
pographical masses. Under this assumption, the down-
ward continuation term g; becomes

H() — H

g1 = —GpRzH 3
o b

daqy . (30)

Now, the correction terms Ap, A% and g; that ap-
pear in Helmert’s anomaly (24) depend on topograph-
ical heigt H only, and may be thus added together.

Provided that £y > H, Vanicek and Kleusberg (1987,
eqn.(14)) derived that

HE(QJ) S H2

1
—Ap+ A% = =G R2
Bt 28" Jo %

aal’  {(31)

The sum of eqns.(30) and (31) yields

—Ap+Ap+g1=C, (32)
where
1 e Hi?
C = =GpR? M dsY’ (33)
2 n! EG

is the Moritz terrain correction (Moritz, 1980, sect.48).
Under the assumption that the Helmert gravity anomaly
is linearly dependent on the elevation of topography, the
Helmert anomaly reads

Ag? = AgE +C+36, . (34)

The sum of the free-air anomaly AgE plus the ter-
rain correction C' may be called a refined Faye anomaly
(cf., Faye, 1883). Equation (34) means that Helmert’s
anomaly is equal to a refined Faye anomaly (except the
small term é,) provided that the assumption (29) is
valid.

Conclusion

This paper investigates one of the questionable points of
Helmert’s condensation technique concerning the eval-
uation of the attraction of the topographical masses.
From our derivations it seems clear that this term has
to be applied at a point on the topographical surface as
was proposed by Vanicek and Kleusberg (1987).

Provided that the Helmert anomaly is linearly de-
pendent on the terrain elevation, we have shown that
the terrain correction term

2000\ _ 72
HY®) - H? |

1
~GpR® Q 35
2 S )
employed in the Vani¢ek and Kleusberg (1987) approach

is replaced by the Moritz terrain correction term

, 2
lG’pRz [_H_(Q)s—H] sy (36)
2 Q 2
used in the Wang and Rapp (1990) approach. The last
term represents a sum of the terrain corection term (35)
and the downward continuation term gi, cf. eqn.(32).
This means that downward continuation term g; is miss-
ing in the Vanicek and Kleusberg (1987) approach whereas
it is treated approximately under the assumption (29)
by Wang and Rapp (1990).
A questionable point of the Wang and Rapp ap-
proach (1990) remains the Pellinen assumption about



linear relationship between free-air gravity anomalies
and topographical heights. Moritz (1966) showed that
this assumption corresponds to a simple compensation
model of the topographical masses. There are areas on
the earth where the topographical masses are compen-
sated according to this simple model. In such areas,
Wang and Rapp advocated approach may yield more
accurate geoidal heights than the Vanitek and Kleus-
berg approach. But today’s knowledge about the struc-
ture of the uppermost parts of the earth points out that
there are regions where the compensation mechanism of
the topographical masses is rather complicated and is
dependent on different physical phenomena. In such
areas the assumption about linear relationship between
free-air gravity anomalies and topographical heights re-
mains questionable. The accuracy of geoidal heights
over such areas coming from Wang and Rapp approach
can be worse than that of Vani¢ek and Kleusberg ap-
proach, particularly, in cases when the mass distribu-
tion in the earth creates the gravity field which behaves
opposite to the assumption (29).

A logical consequence of the facts above is that the
discussion wheather the Wang and Rapp (1990) ap-
proach or the Vanicek and Kleusberg (1987) approach
is better does not make any sense. Both methods are
approximate for different reasons and we cannot decide
at this point which of them yields more accurate results.
Only by applying a correct procedure for treating the
downward continuation of anomalous gravity, we will be
able to solve this controversy.
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Abstract

Dynamical network analysis deals with two sources of
€rTor. The inevitable errors in the geodetic
measurements are augmented by the so called
dynamical-system noise. In this paper the combined
noise is filtered out by a two-step procedure. At step
one the geodetic measurements are processed
sequentially (epoch by epoch) without modeling the
variations in network geometry. The only noise
considered at this stage is the noise of the geodetic
measurements. At step two the variations in network
geometry are modeled by means of a physical model.
Physical model limitations, designated as system noise,
are represented by an autocovariance matrix. A small
network in the vicinity of Haifa was monitored over a
period of one year with the purpose of studying
fluctuations in high tension pole foundations. The
precise levelling measurements together with other
auxiliary data were analyzed by the above two-step
method. It produced identical results while offering
significant advantages over the alternative single-step
approach.

1. System Noise in Dynamical Network Analysis

The standard approach in adjustment computations by
the method of observation equations depends on a
mathematical model where the geodetic measurements
are presented as an explicit function of a number of
parameters. The model is normally seen as being
absolutely correct while the measurements are regarded
as quantities corrupted by measurement noise. The
parameters which in most cases have a definite
physical meaning are conceived as a mixture of
deterministic and stochastic components. The

* Deceased.

stochastic component in the parameters is usually
ignored provided its magnitude relative to the
measurements’ noise is negligible.

Another noise component may come from
unaccounted variations in time of the parameters. In
deformation analysis with kinematic or with dynamical
models, the parameters should be capable of properly
describing the dynamic physical reality. However, as
we all know, any model, even the best, is valid up to
a certain point. Compared to well known dynamical
models employed in celestial mechanics and in satellite
orbit analysis the force fields which are considered
responsible for deformations of the earth crust or of
man-made  structures are often only vaguely
understood. In such cases it is mandatory to append
the "deterministic" physical models of the geodetic
monitoring network by a stochastic (noise) component.
In the following two sections we develop the theory
for the adjustment of dynamical networks where both
types of noise are present.

If the autocovariance matrices of the above two
noise sources were equally well known, the proper
solution would be to bring to a minimum the properly
weighted sum of squares of all the residuals.
However, on the basis of our experience with geodetic
measurements, we are much more certain in the
characteristics of the measurements” noise.  The
validity of the physical models and the respective
system noise autocovariance matrix are often a
guesswork. A single step approach (a combined
minimum), as advocated above, may lead to
undesirable results. System noise due to inadequacies
of the physical model may cause severe distortions of
the parameter estimates.

A promising alternative which could take care of
such situations would be to adopt a two-step approach:
* At step one the geodetic measurements are
adjusted, producing estimates of parameters which are
to serve subsequently as the raw material for the



