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A b s t r a c t : The truncated geoid, defined by the so called “Truncated Stokes Integral”,
which is an integral transform of the gravity anomalies in a limited domain of a spherical
cap of specified radius with the Stokes function being the kernel, has been widely used by
geodesists as an approximation to the geoid in a variety of approaches to the (terrestrial)
geoid determination. The possible physical interpretation of the truncated geoid, i.e., its
relation to the density distribution generating the surface gravity has been investigated
by the authors. Preliminary results are being published as the study progresses. This
paper focuses on numerical aspects of the evaluation of the truncated geoid. It can
be computed either in spectral form, providing the geopotential is given in a spectral
form, or directly by numerical integration over mean gravity anomalies. Alternatively,
the truncated geoid may be evaluated analytically from geoidal undulations via another
integral transform, namely the so called “Altimetry Integral”. This becomes particularly
useful when interpreting the truncated geoid on sea, where the geoidal undulations of
global coverage and good quality can be obtained after procesing the readily available
satellite altimetry data. However, the numerical evaluation of the “Altimetry Integral”
poses a challenge. We devote most of the attention, in this paper, to overcoming the
problems encountered in the numerical evaluation of the above integral transform. We
review a couple of numerical techniques used previously and introduce a new, more flexible
numerical technique for the truncated geoid from geoidal undulations evaluation, that was
developed by us recently.
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1. Introduction

The truncated geoid, defined by proper mathematical aparatus in sec-
tion 2, is evaluated by integrating over the gravity anomalies in a spherical
cap of a radius, which is usually referred to as “the truncation radius”. In
the geodetic boundary value problem, the geoid is computed by the Stokes
integral of gravity anomalies over the entire globe [Stokes, 1849]. Here, the
truncated geoid may be encountered in several techniques for the terres-
trial (local, regional) geoid determination, where it is treated purely as a
mathematical object, serving as an approximation to the geoid, while the
“truncation error”, which is the contribution of the integral over the omitted
domain - i.e., the counterpart of the spherical cap to the whole sphere, is
either neglected or modelled (e.g., [Molodenskij, 1962; Vaníček and Kleus-
berg, 1987; Vaníček et al., 1995].

The authors, along with Prof. Sjoeberg, Prof. Kleusberg, and Dr. Mar-
tinec, were likely the first ones to consider the physical meaning of the
truncated geoid (in the sequel abbreviated as the TG). They started in-
vestigating the relation of the TG to the density distribution generating
the surface gravity more closely in 1992. The first study was carried out
by means of computer simulation and was limited to density distributions
represented by point mass anomalies. Gravity inversion for one point mass
anomaly using the TG together with its theoretical verification was pre-
sented in [Vajda and Vaníček, 1996]. An inversion algorithm, named the
“truncation technique”, which was designed for sets of point mass anomalies
as a result of multiple computer simulations was presented in [Vajda and
Vaníček, 1997]. The investigation is in progress and now it will concentrate
on continuous density distributions.

This paper focuses on numerical aspects of the evaluation of the TG.
The surface of truncated geoidal undulations (the TG) can be computed
either in spectral form, providing the geopotential is given in a spectral
form, or by direct numerical integration over mean gravity anomalies on a
mesh within the cap. This was the case in the context of our research, where
we were generating synthetic gravity anomalies, in either spectral form or
on a mesh, by sets of point masses. Both these evaluations are ralatively
straight forward and will be presented in section 3.

Eventually we would like to evaluate the TG from geoidal undulations for
the sake of the off-shore geophysical interpretation in terms of the TG. There
is an integral transform for evaluating the TG analytically from geoidal
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undulations, which was derived by Vaníček et al., [1987]. However, the
numerical evaluation of such integral transform poses a challenge. The
difficulties one has to face include the fact, that the integration needs to
be carried out over the entire globe, which is impractical if not impossible,
and also that there is a singularity, which can be removed analytically,
but numerically causes a problem. Here we mention a couple of numerical
techniques used previously and demonstrate a new, more flexible numerical
technique for its evaluation, that was developed by us recently.

2. Truncated geoid

The truncated geoid is defined by the truncated Stokes integral (e.g.,
[Vaníček et al., 1987])

Nψ0(P ) =
R

4πγ

∫∫

<(ψ0)

∆g(Q)SPQ d σ. (1)

The truncated geoidal height Nψ0 is evaluated at the computation point
P as a convolution of the gravity anomalies ∆g on a spherical cap <(ψ0)
of radius ψ0 centred at P, with the Stokes function S [Stokes, 1849] being
the kernel. Point Q is the dummy integration point. R is the radius of the
boundary sphere (mean earth) and γ is normal gravity. The increament
dσ is the surface element. Integral (1) can be expressed in the local polar
coordinates of point P as (cf. Fig.1):

Nψ0(P ) =
R

4πγ

ψ0∫

0

2π∫

0

∆g(ψ, α)S(ψ) sin(ψ) dψ dα, (2)

where ψ is the spherical distance between points P and Q, and α is azimuth
of point Q.

Radius ψ0, called the truncation radius, is a free parameter of the TG.
This is why we usually refer to it as the “truncation parameter”. We also
refer to a TG as to a surface of the truncated geoidal heights evaluated for a
particular value of the truncation parameter ψ0. The TG (the shape of this
surface) changes when changing the value of ψ0. That is the reason why we
often talk about different TGs for different values of ψ0. To be complete,
the surface of the TG is shaped by
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1. the mass distribution generating the surface gravity and therefore the
TG, as well

2. the value of ψ0.

Fig. 1. The truncated Stokes integration.

The TG may alternatively be evaluated from the geoidal heights (un-
dulations) via the altimetry integral, which expressed already in the polar
coordinates of the computation point reads as follows [Vaníček et al., 1987]:

Nψ0(P ) = N(P )− 1
4π

π∫

0

2π∫

0

N(ψ, α)
cos(ψ)− cos(ψ0)

Tψ0(ψ) sin(ψ) dψ dα, (3)

where N is geoidal undulation, the T kernel is given by the series

Tψ0(ψ) = Q2(ψ0)P1(cosψ) +
∞∑

n=2

(
2n+ 1

2

)
tn(ψ0)Pn(cosψ) (4)

with coefficients

tn(ψ0) =
n(n− 2)
2n+ 1

Qn−1(ψ0) +
n(n+ 1)
2n+ 1

Qn+1(ψ0)−
− (n− 1) cos(ψ0)Qn(ψ0), (5)
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where Qn(ψ0) are the Molodenskij truncation coefficients [Molodenskij et
al., 1962; Vaníček et al., 1987, eqn.(5.19)]

Qn(ψ0) =

π∫

ψ0

S(ψ)Pn(cosψ) sin(ψ) dψ, (6)

with Pn being the Legendre polynomials. The integral in eqn. (3) has a
weak singularity at ψ = ψ0. This singularity can be removed as follows
[Vaníček et al., 1987]:

Nψ0(P ) = N(P )− 1
2

π∫

0

N(ψ)−N(ψ0)
cos(ψ)− cos(ψ0)

Tψ0(ψ) sin(ψ) dψ, (7)

since due to the orthogonality of the Legendre polynomials

1
2
N(ψ0)

π∫

0

1
cos(ψ)− cos(ψ0)

Tψ0
` (ψ) sin(ψ) dψ = 0, (8)

and where the over-bar represents azimuthal average

(∗) =
1

2π

2π∫

0

(∗) dα. (9)

Note, that integral (7) is to be evaluated over the entire globe to compute
the truncated geoidal height in one point of computation.

3. Numerical evaluation of the TG from gravity anomalies

3.1 Computation of the truncated geoid in spectral form

Suppose that we are given the disturbing potential on the boundary
sphere in spectral form, with the zero-th and the first degree spherical har-
monics being absent:

T (ϕ, λ) =
∞∑

n=2

Tn(ϕ, λ) =
∞∑

n=2

n∑

m=0

[
ATnmY

c
nm(ϕ, λ) + BTnmY

s
nm(ϕ, λ)

]
, (10)
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where Y cnm(ϕ, λ) = cos(mλ)Pnm(sinϕ), Y s
nm(ϕ, λ) = sin(mλ)Pnm(sinϕ) are

spherical harmonic functions with Pnm(sin(ϕ)) being the associated Leg-
endre polynomials. The truncated geoid can be then evaluated from the
disturbing potential as

Nψ0(P ) =
1
γ

∞∑

n=2

(
1− n − 1

2
Qn(ψ0)

) n∑

m=0

(
ATnmY

c
nm(ϕP , λP )+

+ BTnmY
s
nm(ϕP , λP )

)
, (11)

where again Qn(ψ0) are the Molodenskij truncation coefficients (cf. eqn.(6))
and can be numerically evaluated by Paul’s algorithm [Paul, 1973]. Having a
spectral representation of the disturbing potential up to a certain preselected
degree is equivalent to having such a spectral representation of the gravity
anomalies or the geoidal undulations, as there is a simple linear relation
between the spectral coefficients of these three quantities (e.g., [Vaníček
and Krakiwsky, 1986, page 518]).

In the context of our computer simulation we were generating synthetic
gravity anomalies on a mesh covering the entire boundary sphere and per-
forming spherical harmonic analysis, using the “SHA routine” [Martinec,
1992], to obtain the spherical harmonic coefficients of the gravity anomalies
up to the desired degree and order nmax. The disturbing potential harmonic
coefficients were then computed simply as (e.g., Vaníček and Krakiwsky,
1986, eqn.(22.8))

ATnm =
R

n − 1
A∆g
nm, B

T
nm =

R

n − 1
B∆g
nm, n = 2, . . . , nmax, m = 0, . . . , n. (12)

The Molodenskij truncation coefficients were computed using the “TCPAL
subroutine” [Kleusberg, 1992] based on Paul’s algorithm.

When computing a real global TG (based on actual gravity field data),
the spherical harmonic coefficients come from a specific global spectral solu-
tion to the geopotential, such as GFZ93a [Gruber and Anzenhofer, 1993] or
GEM-T3 [Lerch et al., 1992], etc. Naturally, the spectral content of such a
real global TG is only as good as is the spectral content of the geopotential
model used for its computation.
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3.2 Computation of the truncated geoid by numerical integration
over mean gravity anomalies

Suppose that mean gravity anomalies are given on a uniform geographical
grid ∆ϕ = ∆λ = ∆IG (IG stands for “integration grid”), where a value of
∆g(ϕ, λ) is assigned to the centre of each grid cell of size R∆ϕ×R cos(ϕ)∆λ.
When expressing the truncated Stokes integral (eqn. (1) or (2)) in geograph-
ical coordinates [ϕ, λ],

Nψ0(P ) =
R

4πγ

∫ ∫

<(ψ0)

∆g (ϕ, λ)S(ψ) cos(ϕ) dϕ dλ, (13)

where the polar distance is evaluated from the geographic coordinates of
points P and Q (e.g., [Vaníček and Krakiwsky, 1986, eqn.(20.50)])

cos(ψ) = sin(ϕP ) sin(ϕ) + cos(ϕP ) cos(ϕ) cos(λ− λP ), (14)

and where the elementary surface element reads as

dρ = sin(ψ) dψ dα = cos(ϕ) dϕ dλ, (15)

we have to face a weak singularity at Q ≡ P, (ψ = 0). After a proper
treatment of this removable singularity (e.g., [Vajda, 1995, page 135]), the
integration can be performed numerically as

Nψ0(P ) =
R

γ

√
cos(ϕP )

π
∆g(P )∆IG +

+
R

4πγ

∑

Qi∈D
∆g(Qi)S(ψi) cos(ϕi)

(
∆IG

)2
, (16)

where the first term is the contribution of the cell which is concentric with
the computation point P , and the second term is the contribution of all
the cells whose centres fall inside the spherical cap of radius ψ0 excluding
the cell concentric with P (denoted here as domain D). Note that the
gravity anomalies have to be given on an area extending the computation
area in any direction by Rψmax

0 , where ψmax
0 is the largest desired value of

the truncation parameter of the TG under investigation. The step of the
geographical grid (∆ϕ) dictates the smallest possible value of ψ0, (ψmin

0 ),
that can be considered, as well as the smallest possible step in the truncation
parameter ∆ψmin

0 when computing the TGs with systematically decreasing
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the value of the truncation radius from ψmax
0 to ψmin

0 , which is the case in
our computer simulation.

In the context of real gravity anomalies given on a mesh in a geographic
area (locally, regionally), the same limitations, imposed upon the values of
the truncation parameter, as above, apply.

4. Numerical evaluation of the truncated geoid from geoidal
undulations

The integration in eqn. (7) has to be carried out over the entire reference
sphere, which is not possible. The problem of a too large integration domain
can be by-passed, following the method of Vaníček et al., [1987], by split-
ting the computation into low-degree and high- degree parts, evaluating the
low–degree part in spectral form, and introducing an approximation in the
numerical integration of the high–degree part by truncating the integration
domain to a manageable size.

First we split the truncated geoid into low- and high–degree parts at a
spheroidal degree `

Nψ0 = Nψ0
` + δNψ0

` . (17)

The low-degree, or long-wavelength, truncated geoid is evaluated in spectral
form

Nψ0
` (P ) =

1
γ

∑̀

n=2

(
1− n − 1

2
Qn(ψ0)

) n∑

m=0

(
ATnmY

c
nm(ϕP , λP )+

+ BTnmY
s
nm(ϕP , λP )

)
. (18)

Note that disturbing potential, or equivalently the geoidal undulations, in
spectral form up to degree ` has/have to be known. In the context of our
computer simulations the spherical harmonic coefficients of the disturbing
potential were obtained by spherical harmonic analysis (cf. section 3.1).
When computing a real TG, these coefficients must come from a specific
solution to the geopotential, such as global models or global satellite models
(cf. section 3.1).

The high-degree or short-wavelength truncated geoid reads as (note here
that again, due to the orthogonality of Legendre polynomials on 〈0; π〉, we
removed the low-degree part of the T kernel)
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δNψ0
` (P ) = δN `(P )− 1

2

π∫

0

δN
`
(ψ)− δN`

(ψ0)
cos(ψ)− cos(ψ0)

Tψ0
` (ψ) sin(ψ) dψ, (19)

where the spheroidal T kernel is given by

Tψ0
` (ψ) =

`+ 1
2

{
`Q`+1(ψ0)P`(cosψ)− (`− 1)Q`(ψ0)P`+1(cosψ)

}
+

+
∞∑

n=`+1

(
2n+ 1

2

)
tn(ψ0)Pn(cosψ) (20)

and where

δN `(ϕ, λ) = N(ϕ, λ)− 1
γ

∑̀

n=2

n∑

m=0

[
ATnmY

c
nm(ϕ, λ) + BTnmY

s
nm(ϕ, λ)

]
, (21)

Vaníček et al., [1987] have shown, that when the integration domain in eqn.
(19) is truncated from the entire sphere to a cap of radius that of the first
positive maximum of the spheroidal T kernel (φ0), the result approximates
that of eqn. (19) very well. Only spectral band 〈`, `+25〉 of the (high-degree)
truncated geoid gets slightly distorted. This phenomenon has not been
properly explained, yet, thus there is a lot of room for further investigation.
We get

δNψ0
` (P ) .= δN `(P )− 1

2

φ0∫

0

δN
`(ψ)− δN`(ψ0)

cos(ψ)− cos(ψ0)
Tψ0
` (ψ) sin(ψ) dψ. (22)

Compared to the fairly straightforward analytical removal of the weak sin-
gularity at ψ = ψ0, its removal in the numerical integration remains still
a challenge, due to the discretization. Contrary to Vaníček et al. [1987],
who perform the double numerical integration in the local (ψ, α) coordi-
nate system of the computation point P (the “ring integration technique”,
which in fact does not remove the singularity completely), and contrary to
Zhang [1988], who furthermore approximates geoidal undulations by poly-
nomial functions to treat the singularity numerically in a better way (the
“improved ring integration technique”), we have chosen to perform the inte-
gration in geographical coordinates (ϕ, λ) to avoid further approximations.

Suppose the mean (high-degree) geoidal undulations are given on a uni-
form geographical grid. We propose that it be performed by making use of
four sub-integration domains (see Fig. 2) as follows:
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Fig. 2. The integration domain and the sub-domains for the numerical integration over
the geoidal undulations.

Thus

δN
ψ0
` (P ) = δN `(P )− 1

4π

∑

i;Qi∈D1

δN `(Qi)− C1

cos(ψi)− cos(ψ0)
T
ψ0
` (ψi) cos(ϕi)∆2 −

− Tψ0
` (ψ0)CP (ψ0), (23)

where the D1 sub-domain is the spherical cap of radius φ0 with a removed
ring of radius ψ0 and thickness δ, the singularity ring (domain D2), and
where

C1 =
1
n2

n2∑

i;Qi∈D2

δN `(Qi) (24)

is the contribution of the singularity ring. The third term in eqn. (23) takes
care of the removable weak singularity and is computed as an azimuthal
average of the slope of the geoid in the ring at ψ = ψ0, and the CP constant
is evaluated by means of the upper and lower rings (cf. Fig.2) as
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CP (ψ0) =
1

sin(ψ0)


 1
nu

nu∑

i;Qi∈UR
δN `(Qi)−

1
n`

n∑̀

i;Qi∈LR
δN `(Qi)


 1
δ
· (25)

Numerical testing has lead to choosing δ = ∆IG for the integration.
The above described numerical technique was tested against the TGs

computed from gravity anomalies. It proved reasonably accurate in the
context of our computer simulations in terms of the interpretation of the
TG using the truncation technique. It is difficult to say more about the
discrepancy caused by the approximation due to the auxiliary truncation
(replacing the entire globe by the spherical cap of radius φ0). More test-
ing needs to be performed in order to asses the accuracy in a more proper
way. The fact that the integration up to the first positive maximum of the
spheroidal T kernel (φ0) gives such a good approximation has not been the-
oretically explained, yet. In comparison to the existing techniques, namely
the ring integration [Vaníček et al., 1987] and the improved ring integration
[Zhang, 1988], our numerical technique seems to be no less accurate, but
more flexible. In fact, those two techniques were specifically tuned-up for a
particular value of the truncation parameter ψ0, which matched the objec-
tive of the investigation, for which they were designed [Vaníček et al., 1987].
Our technique works equally well for any value of ψ0 under the limitations
discussed in section 3.2. The mesh, on which the geoidal undulations are
given, must extend the computation area in any direction by Rφ0, which
depends on the values of ψ0 and `. The relation between `, ψ0, and φ0 is
tabulated in Vajda [1995].

5. Conclusions

Procedures for evaluating the truncated geoid for any value of the trunca-
tion parameter from gravity anomalies, geoidal undulations, and in spectral
form are presented along with the respective numerical techniques for their
performance. Although these techniques were designed, tested and used on
synthetic gravity data, they are equally useful and accurate on the real grav-
ity data. Above mentioned techniques served as the core numerical tools in
our computer simulations, based on which we demonstrated the behaviour
of the truncated geoid and its potential within the frame of geophysical ex-
ploration by gravity inversion. Our aim is to use them in the interpretation
of the real surface gravity in the future.
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