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PREFACE 

This "manual" is the third in the series designed to assist 

surveyors, in the maritime provinces, on the correct and practical use 

of the geodetic information of the redefined Maritime Geodetic Network. 

It has been written as a surveyors handbook for the design, computation, 

and assessment of horizontal geodetic networks. In this report, a 

geodetic network is considered to be any geometric configuration of three 

or more terrestrial survey points. The points may be connected via 

any cowhination of direction, angle, azimuth, and distance observations; 

furthermore, there may be redundant observations leading to overdetermined 

cases. The networks are treated in only one environment in this manual, 

the conformal mapping plane. There are two sound reasons for this: 

(1) this is the environment in which most practicing surveyors wish 

to do their network computations, (ii) derived quantities - coordinates, 

distances, azimuths and their associated covariance matrices - can be 

transformed, if required, to the.2-D ellipsoidal and 3-D environments 

using the methodologies outlined in "A Manual for Geodetic Coordinate 

Transformations in the Maritimes" [Krakiwsky et. al., 1977] and "A 

Manual for Geodetic Position Computations in the Maritime Provinces" 

[Thomson et. al., 1978) respectively. This approach(rigorous trans-

formation of 2-D plane information to 2-D ellipsoidal or 3-D) is 

equivalent to carrying out the original computations in the environment 

itself (e.g. 2-D ellipsoidal, 3-D). 

No extensive derivations or explantions of the mathematical 

formulae used are given. The equations required to solve certain 

problems are stated, the notation is explained, and numerical examples 
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are presented. A reader desiring extensive background information is 

referred to the reference material. 
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1. INTRODUCTION 

It has been shown that the coordinate definition and associated 

accuracy estimates for any terrain point can be expressed equivalently 

in three dimensional cartesian coordinates (X, Y, Z; C ), in ellipsoidal x,y,z 

coordinates (o, ~; C~A), or in conformal mapping plane coordinates , 
(x, y; C ), since the rigorous transformations between these quantities 

~- x,y 

are well known [e.g. Krakiwsky et. al., 1977]. When an unknown terrain 

point is observed (e.g. an azimuth and a distance) from a known terrain 

point, the determination of the unknown coordinates and associated covariance 

matrix can be done in three dimensional space, on the surface of a reference 

ellipsoid, or on a conformal mapping plane [e.g. Thomson et. al, 1978]. 

The_equivalence of results (coordinates, covariance matrix) in the three-

environments is attained through the rigorous reduction (recall that no 

reductions are required for three dimensional computations) of the spatial 

measurements to the chosen computation surface. We can conclude from this 

that the choice of an environment in which to carry out position computations 

is, from a mathematical point of view, arbitrary. This fact is very 

important in the~present context as it permits us to study the establishment 

and assessment of horizontal geodetic networks in the conformal mapping 

plane environment with the assurance that the procedures used yield results 

equivalent to those used in the three dimensional and ellipsoidal surface 

environments. Since the conformal mapping plane mathematical models 

involved with the establishment of horizontal geodetic networks are easy 

to understand, and since in practice a majority of surveyors prefer to 

use plane coordinates, the entire subject matter of this manual is treated 
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in only one environment - the conformal mapping plane. For a treatment 

of this subject matter in the three-dimensional and ellipsoidal surface 

environments, the interested reader is referred to, for example, Vincenty 

[1973] and Krakiwsky and Thomson [1978] respectively. The establishment 

and assessment of one-dimensional vertical networks is beyond the scope 

of this present work. A knowledge of the treatment of vertical networks 

is vital for surveyors, and the reader is referred, for example, to 

Vanicek and Krakiwsky [in prep.]. 

In this manual, a horizontal geodetic network is considered to 

be any geometric configuration of three or more terrain points connected 

via any combination of azimuth, direction, angle, and distance observations. 

The horizontal network may be such that only a un~que solution for the 

coordinates of unknown points is possible (no. observations n = no. 

unknowns u), or there may be redundant observations in which case we say 

the network is overdetermined (no. observations n >no. unknowns u). For 

both cases, contemporary mathematical and statistical concepts and method­

ology are used. 

The fundamental concept utilized is that of a mathematical model. 

A mathematical model is defined as a functional relationship between some 

unknown parameters x (coordinates of unknown points) and some observables 

t (azimuths, directions, angles, distances). There are two mathematical 

models that are of interest to us: the direct (explicit) form 

X= g(t) 

in which g is an explicit, functional relationship, and the inverse 

(explicit) form 

(1-1) 
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t = h (x) (1:._2), 

in which h is another explicit, functional relationship. Both forms of 

these models are well-known to surveyors. · For example, the direct (explicit) 

form is used in position computations on a conformal mapping plane [e.q. 

Thomson et. al., 1978; p. 112, eqs. (4-39) and (4-40)] 

x. = x. + R. • • sin t .. 
J ~ ~J ~) , 

yJ, = ·Y. ·+-'R. .. cos t, . • 
1 1] 1) 

The solution for either of the coordinates of the new point 

(x., y,): simply involves the evaluation of either of the two equations 
J J 

(x1., y. are known, R. •• (chord length) and t .. (grid azimuth of chord) 
1 1] 1] 

are reduced measured quantities)~ This type of mathematical model (direct 

explicit) lends itself to geodetic position computations (only one unknown 

point to be considered). The .inverse (explicit) form is also well known, 

for example, the expressions for a distance and azimuth respectively 

[e.g. Thomson et. al., 1978; p. 112, eqs. (4-41) and (4-42)1 

t .. 
1) 

1 (x. x.) 
=tan- J 1 

(Yj - yi) 

Recall, however, that the objective is to solve for the coordinates of 

an unknown point (say x., y.) using observed R.. • and t. . • In this instance, 
J J 1) 1J 

neither equation can be solved directly. They must be used together to 

get a solution mor (x., y.). This requires special techniques which become 
J J 

extremely important when there are redundant observations. The inverse 
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(explicit) form of the mathematical model leads itself particularly to the 

computation of geodetic networks, and can also be easily used for geodetic 

position computations. In this manual, the inverse (explicit) model is 

used exclusively. 

There are, of course, other forms of mathematical models. These 

are considered to be outside the scope of this work, but for the solution 

of certain special problems are important. For a complete coverage of 

the topic of mathematical models, the reader is referred, for example, 

to Vanicek and Krakiwsky [in.prep]. 

This manual pre~ents the step-by-step mathematical and 

computational procedures required for the establishment and assessment 

of a horizontal geodetic network on a conformal mapping plane. The 

procedures with respect to different conformal mapping planes only vary 

in the reduction of measured quantities; therefore, this distinction is 

only made in Chapter 2 which covers Observations and Their Reductions. 

In addition to a review of the reductions of measurements to a conformal 

mapping plane, Chapter 2 also includes (i) a brief review of the instru­

mentation used to observe azimuths, directions, angles, and distances 

and the accuracy estimates (variances) one should expect to be associated 

with the measured quantit~es, and (ii) an introduction to the concept of 

screening (assessing) observations prior to their reduction and use in 

network computations. Chapters 3 and 4 respectively cover the topics of 

Mathematical Models for Azimuth, Direction .and Angle Observations and 

Mathematical Models for Distance Observations. For each observable, the 

inverse explicit model is presented, first in it's original non-linear 

form, then in it's linearized form. The linearized equation is often 
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referred to as the observation equation. The relationships of the elements 

of the linearized model with the matrix expressions of the method of least­

squares used for solving a set (2 or more) of these equations is given for 

each case. In Chapter 5, entitled the Solution of Unique Cases, the linear­

ized mathematical models of Chapters 3 and 4 are taken in several practical 

combinations to yield unique (no. unknowns u = no. observations n) solutions 

of well-known surveying problems (e.g. direct problem, azimuth intersection, 

distance intersection, resection, special traverses). Numerical examples 

for each problem are presented. The Solution of OVerdetermined Cases, 

which constitute the main body of work in the establishment of a surveying 

network, is the subject of Chapters 6 and 7. The advantages of using the 

method of least squares is given; the combination of the observation 

equations (Chapters 3 and 4) in several practical situations are shown. 

In addition, the implications of differenct conditions imposed 

on a horizontal network (e.g. fixed or weighted coordinates, orientation, 

scale) ':.are discussed. Numerical examples for several types of survey 

networks are given (e.g. traverse, triangulation, trilateration). Chapters 

8 and 9 deal with the analyses of networks. The Preanalysis of a network, 

which is basically an optimization process, is important for surveyors 

when considering geometric design, economics, tolerances, etc. The Post­

analysis, treated in the final chapter (9) is most important to a surveyor. 

It is here that a certain "confidence" in the work done can be ascertained. 

The manual is concluded by Three Appendices deemed to be necessary for a 

complete understanding of this work, namely Taylor Series (I), Least 

Squares Method (Parametric) (II), and Error Ellipses (III). 



2. OBSERVATIONS AND THEIR REDUCTIONS 

The planning, execution, and treatment of observed azimuths, 

directions, angles, and distances are important aspects of the establishment 

and analysis of a horizontal geodetic network. The execution (actual field 

measurement techniques) are not covered in this manual; the interested 

reader is referred to, for example, Faig [1972], Thomson [1978], Cooper [19711, 

Burnside [1971], and Saastamoinen [1967]. The planning of observations is 

treated in Chapter 8 (Preanalysis) •. The mathematical treatment of the 

observed quantities is given here in three sections,, namely (i) the accuracies 

of observed azimuths, directions, angles, and distances, (ii) a review of the 

reductions of observations to a conformal mapping plane, and (iii) data 

screening. 

2.1 Accuracies of Observed Azimuths, Directions, Angles and Distances 

A knowledge of the accuracy of an observable (a proposed 

measurement) is an important aspect of the preanalysis of survey networks 

(Chapter 8), and a knowledge of the accuracy of an observation (a completed 

measurement) is important for network computations. The determination of 

these accuracies, expressed as variances Ca12), is the subject of this section. 

Note that the effects of systematic errors are assumed to have been removed 

by either observing or mathematical procedures or a combination of the two. 

h . 2 
T e var~ance a A of an astronomic azimuth determination by 

observation of celestial bodies (e.g. stars or sun) is dependent on the 

method used. For astronomic azimuths determined by the hour angle method 

2 
aA is given as [e.g. Nickerson, 1978; Mueller, 1969] 

6 
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2 = l F 2 + 1 (a 2 + a 2) 
aA n at n p c , (2-1) 

n = number of paintings on the star, 

a 
p 

a 
c 

2 

=variance of the observation of time in arcseconds (1" = 0.067s), 

=variance of a single pointing on a star (cf. eq. (2-5)), 

= combined variance of two readings of the horizontal circle and 

pointing on the reference mark (cf. eqs. (2-6) and (2-4)), 

2 2 2 2 F =cos 4> (tan 4> -cos A cot Z) + m (2 tan ip +cot Z- 2 tant cosA·cotZ) , 

a 
v 

z = zenith angle of star, 

4> = astrono~~c latitude of station, 

A measured astronomic azimuth, 

m 

2 variance of levelling the theodolite (cf. eq. (2-9)). 

Some typical default values for aA assuming 4> = A 

typical theodolites are shown in Table 2.1. 

Z = 45° and different 

Astronomic azimuths determined by observing star altitude have 

the following expected variance [e.g. Nickerson, 1978; Mueller, 1969]: 

2 2 + (CJ + CJ ) } , 
p c 

(2-2) 

2 where o vc 
combined variance of levelling the vertical circle bubble and 

reading the vertical circle7 

a~r variance of tracking for simultaneous horizontal and vertical 

pointing on a star ::. 1" , 

a = altitude of the observed star corrected for refraction. 



Typical 20" Inst. Typical l" Inst. Typical 0~5 inst. 

M=20, d=20", v=30" M = 30, d=l I v=20" M = 40, d=0~5, V=lO" 

yields yields yields 

a = 3':5, a =8~78, a't=6" 
p c v 

a = 2~33,a =3~84,a =4" 
p c v 

a = 1~88,a =2:095 a =2" p c , v 

n=2· n=4 n=8 n=l6 n=2 n==4 n=8 n=l6 n=2 n=4 n=8 n=l6 

a = 0~'5(0.03s) 
t 9~ll 6~44 4':55 3~22 5~20 3~68 2':60 1~'84 3~1S 2~'23 1~58 1~11 

a = l'~S(O.lOs) 
t 

9~11 6~44 4~55 3~22 5~21 3':68 2~60 1~84 3~16 2~23 1~58 1':12 

00 
a = 15" (1. Os) t 9~37 6~'62 4':68 3~'31 5':65 3':99 2~'82 2~'00 3~84 2~'72 1~92 1~'36 

a = 2'30"(10.0s) 
t 

23':78 16~81 11~89 8':41 22':57 15~'96 11~29 n'98 22':19 15'.'69 11~10 7'.'85 

Table 2.1. Expected Values of aA Using Hour Angle Method. for~= A= z = 45° 
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Table 2.2 shows some typical values of aA (for the same types of theodolites 

considered in Table 2.1} assuming A= ~ = 45°. 

For azimuths observed with gyro-theodolite~, the most reliable 

method for obtaining a variance is to compute the sample variance of the 

mean of a set of many observation of the azimuth. This yields 

where n 

1 
n-1 

n 

r 
i=l 

(A. - A} , 
~ 

number of observed gyro-azimuths, 

A.= individual'gyro-azimuths, 
~ 

A = mean of the set of observed gyro-azi~uths. 

(2-3} 

Some default values to be expected are aA = 20" to 30" for a single observed 

azimuth determined by a gyro attachment similar to the Wild GAKl 

[Bamford, 1975], and aA = 3" for a single gyro-azimuth observed with gyro­

theodolites such as the MOM Gi-B2 or GYMO-GI-Bl/A which have electronic 

time registration [Halmos, 1977]. 

1978] 

2 where a 
p 

a 
r 

n 

p 

D 

2 

The expected variance of direction observations is [e.g Nickerson, 

2 2 
a +a 

P r 
n 

+a 
L 

2 , (2-4) 

variance of pointing the telescope on the target (cf. eqs. (2-6) 

and (2-5}}, 

variance of reading the horizontal circle of the theodolite 

(cf:.". eqs. (2-7} and (2-8}), 

effect of variance of levelling the theodolite (cf. eq. (2-9)}, 

variance of centering the instrument and target (see Table 2.3), 

number of paintings and readings for the direction, 

206264.8 = number of arc seconds in one radian, 

distance between instrument and target. 



~0 

25 

35 

45 

55 

65 

75 

85 

Typical 20" Inst. Typical 1" Inst. Typical 0~5 Inst. 

M = 20, d = 20", v = 30" M 30, d 1", v = 20" M = 40, d = 0~5, v = 10" 

yields yields yields 

a =3~5,a =8~78,a =6"~a =6~03 
p c v vc 

a o=2~33,a =3~'0<1,a =4" ,a =2~53 
p c v vc 

a = 1~88,a =2~095,a =2",a =1~27 
p c v vc 

n=2 n=4 n=8 n=l6 n=2 n=4 n=8 n=l6 n=2 n=4 n=8 n=l6 

8.48 5.99 -1.24 3.00 4.22 2.99 2.ll 1.49 2.68 1.90 1. 34 0.95 

8.30 5.87 4.15 2.94 4.29 3.03 2.15 1.52 2.68 1.90 1. 34 0.95 

8.54 6.04 4.27 3.02 4.67 3.30 2. 34 1.65 2.86 2.02 1.43 1.01 

9.69 6.85 4.84 3.43 5.65 4.00 2.83 2.00 3.41 2.41 1.71 1. 21 

12.99 9.18 6.49 4.59 7.91 5.59 3.96 2.80 4. 77 3.37 2.38 1.69 

22.63 16.00 11.31 8.00 13.85 9.79 6.92 4.90 8.42 5.96 4.21 2.98 

75.15 53.14 37.57 26.57 44.90 31.75 22.45 !5.87 27.69 19.58 13.85 9.79 

--~~~ 

Table 2.2. Expected Values of a Using Star Altitude Method for ~ = A= 45° A . 

1-' 
0 
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The pointing error is dependent on the magnification M of the particular 

theodolite being used (see Table 2.5) and is given as 

CJ II 

p 
= 45 11 

M 
I (2-5) 

for stationary tarsets and good observing conditions. For n-oving targets 

(e.g. star), the pointing error·is 

7011 

CJ II = 
p M 

{2-6) 

The reading error is a function of the least count of the theodolite and 

the readout system. For theodolites with a least count of d", and using 

coincidence micrometers (usually the case for 1" and 0~5 instruments 

(see Table 2.5)), 

cr = 2.5 d" r (2-7) 

and for theodolites with a microscope or direct reading system (typically 

ford= 10" to 1'), 

cr = 0.3 d" • 
r 

2 2 The effect crL of the variance of levelling the instrument crv is 

dependent on the vertical angle h to the target, and is given as 

where 

= cr 11 tan h 
v 

cr = 0.2 v" 
v 

(2-8) 

(2-9) 

(2-10) 

and v" is the value of one division (2 rom) of the· plate level (see Table 2. 5). 

The centering error cr summarised in 
c 
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Method of Centering Expected Error cr 
c 

spring plumb-bob 1 mm/m 

optical plummet 0.5 mm/m 

plumbing rods 0.5 mm/m 

forced or self-centering 0.1 mm 

Table 2.3 Expected Centering Error 

Table 2.3 is for normal conditions (i.e no. wind, equipment in good adjust-

ment). Table 2.4 lists typical default values for crd assuming crc = 0.5 mm/m 

(i.e. cr = 1 mm for instrument height = 2 m) and a vertical angle h = 5°. 
c 

It should be noted that this table is representative of good observing 

conditions. If observing conditions were poor, then the pointing error cr 
p 

would increase accordingly. From equation (2-4), it is obvious that 

centering error a is more critical for short lines of sight. As well, 
c 

aL (eq. 2-9) will contribute increasingly for steeper lines of sight. 

Horizontal angles B can be considered as the difference of two 

direction observations. Propagation of errors through the formula 

(2-11) 

yields the expected variance for an observed angle as 

2 2 
2cr 2 

2 
a + a 

2 2 
2 { p r c } aB = + aL + p I n 02 

(2-12) 

or twice the variance of a single direction. Thus, typical values for 

observed angles can be obtained from Table 2.4 by multiplying the values 

by 12. 



'. ' ... 

D(m) 

100 

200 

400 

BOO 

1600 

3200 

Typical 20" Instrument Typical 1" Instrument Typical 0~5 Instrument 

M=20, d=20", v=30" M=30, d=l", v=20" M=4o, d=0~'5, v=lo" 
. . . . .. 

a =2~25, a =6~0, crL=0~52 
P r 

a =1~5, a =2~5, a =0~35 
p r L a =1~13, a =1~25, crL=O~lB 

P r 

n=2 n=4 n=B n=l6 n=2 n=4 n=B 

5':41 4~36 3':73 3~37 3~59 3':28 3~11 

4':79 3~'56 2~74 2':23 2':55 2~'09 1~'82 

4~62 3':33 2':44 1':84 2':21 1%7 1~31 

4~'58 3':27 2~35 1':72 2':12 1~54 1'.'15 

4~'56 3':25 2': 33 1%9 2~10 1~'51 1~'10 

4':56 3~25 2':33 1~'69 2~'09 1~'50 1~'09 

Table 2. 4. Expected Values of ad for h = 

n=16 n=2 

3~'03 3~'16 

1~'67 1~'89 

1':09 1':41 

0~89 1~26 

0~'83 1~22 

0~'81 1'.'21 

5° and a 
c 

n=4 n=8 n=l6 

3~04 2~98 2~95 

1%9 1~'59 1':53 

1~13 0':96 0':86 

0':94 0~'72 0':59 

0~'88 0~65 0':49 

0~'87 0~63 0':47 

= 1 rom 

...... 
w 



Telescooe H. Circle V. Circle Rea dina 
INSTRUMENT ~WIUFACTURER COUNTRY Magni- Objective Len~th Shortest Field of Dlam. Gradu- Diam. Gradu- Direct System 

fication diam(mm) (mm Focus (m) V1ew (•) (mm) atton (nm) at ion to 

FTlA Fennel W. Germany 30 40 175 1.2 1.6 90 1" 70 1" )I Opt. Scale 
DKr1-l Kern Swftzerl and 20 30 120 0.9 1.7 50 201 50 201 10" Opt. micro 
Kl-A Y.ern Switzerland 28 45 155 1.8 1.5 89 1" 70 1" 20" Opt. micro 
Te-E6 ~1om Hungdry 20 28 123 1.3 2.0 80 201 40 20' 10" ·Opt. micro 
11icroptic 1 P.ank U.K. 25 38 146 1.6 1.5 89 20' 64 20' 20" Opt. micro 
4149-A Salmoiraghi Italy 30 36 172 2.0 1.4 90 30" 90 30" 30" Oirect 
':22 Vickers U.K. 25 38 137 1.8 2.0 78 1" 63 1" 20" Opt. scale 
T16 .lmd Switzerland 28 40 150 1.4 1.6 79 1" 79 1" 1' Opt. scale 
TlA Wild Switzerland 28 40 150 1.4 1.6 73 1" 65 1" 20" Opt. micro 
Tileo 020 ZiessfJena) E. Germany 25 35 195 2.1 1.6 96 1" 74 1" 1' Opt. scale 
Th 3 Zeiss Ober.l W. Germany 25 35 150 .1.2 1.7 78 1" 70 1" 30" Opt. micro 
'!"h 4 Zeiss Ober. W. Germany 25 35 150 1.2 1.7 98 1" 85 1" 11 Opt. scale 
Tu Askania W. Germany 30 45 165 1.5 1.6 90 201 70 20' 1" Coinc. micro 
FT 2 Fennel W. Germany 30 45 174 2.0 1.6 93 20' 60 201 1" Coinc. micro 
~'<!·' 2 Kern Switzerland 30 45 170 1.7 1.3 75 101 70 101 1" Coinc. micro 

1 Dl:r~ 2-A Kern Sliitzerl and 30 45 170 1.7 1.3 75 101 70 10' 1" Coinc. micro I ~5 -1 :-lash- USSR 26 40 180 1.2 1.3 85 20' 75 20' 1" Coinc. micro 
priboritorg 

Te-83 1·\om Hungary 30 40 175 2.5 1.5 78 20' 66 20 1 1" Coinc. micro 
::icriJptic 2 Rank U.K. 28 41 165 1.8 1.5 98 '10' 76. 10' 1" Co·inc. micro 

14200-A /Salmoiraghi Italy 30 40 172 2.5 1.5 40 10' 90 10' 1" · Coinc. micro 
T3vistock 2 Vickers U.K. 25 38 159 1.8 2.0 85 201 70 20' 1" Coinc. micro I T2 ~lild S~1itzerl and 28 40 150 1.5 1.6 90 20' 70 20' 1" Coinc. micro 
Theo 010 Zeiss(Jena) E. Germany 31 53 135 2.0 1.2 84 20' 60 20' 1" ·Coinc. micro 
Th2 Zeiss (Ober.) W. Germany 30 40 155 1.6 1.3 100 101 85 10' 1" Coinc. micro 
OVJ'J Kern Switzerland 27,45 72 140 19 1.6 100 10' 100 10' 0~5 Coinc. micro 

j (IT -02 !~ash- USSR 24,30, 60 265 5.0 1.6 135 4' 90 8' 0~2 Coinc. micro. 
1 P ri bori torg 40 
i "icro?tic 3 Pank U.K. 40 50 170 1.8 1.0 98 5' 76 5' 0~2 Coinc. micro 
I ~eod. Tavf. Vickers U.K. 20,30 60 225 5.0 1.3 127 20' 70 201 0~5&1" Coinc. micro 
jT3 Wild Switzerland 24,30 60 265 3.6 1.6 135 ,. 90 8' 0~2 Coinc. micro 

40 
T4 Wild Switzerland 70 60 - 100 ' - 240 2' 135 4' 0~1/0~2 Co1nc. micro 

·, 

Table 2.5 Major Features of Some Modern Theodolites 

Soirit Levels Value of 2 nm 
Plate Altitude Spherical 
( •) (") (I) 

40 auto. 8 
30 30 -
40 auto. -
50 auto. 6 
40 30 -
30 auto. · 10 
45 90 17 
30 30 8 
30 auto. 8 
30 auto. 8 
30 auto. 15 
30 auto. 10 
20 auto. 10 
20 20 6 
20 20 -
20 auto. -
20 25 12 

20 auto. 6 
20 20 -
20 auto. 10 
20 20 20 
20 30 8 
20 20 8 
20 auto. 10 
10 10 -
7 12 -

10 20 -
20 10 -
7 .30 -

1 2 8 

Weight 
(kg) 

4.0 
1.8 
4.2 
2.6 
4.5 
4.7 
5.2 
4.5 
5.0 
4.3 
3.5 
4.5 
4.6 
5.5 
3.6 
6.8 
5.1 

5.5 
6.3 
6.1 
4.8 
5.6 
5.3 
5.2 

12.2 
11.0 

8.0 
9.8 

I 1],2 

60 

--

I 
I 
I 

I 
I 
I 

! 

I 

I 
I 

..... 
"'" 
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The covariance between angles derived from a set of three or 

more directions cannot be overlooked. Considering the situation illustrated 

in Figure 2.1, the angles are usually derived from the directions as 

(2-13) 

Figure 2.1 Angles and Directions 

Use of the covariance law to propagate errors from equations (2-13) into 

the angles Bijk and Bikt gives the variance covariance matrix CB of the 

angles as 

2 .2 2 
CJ + CJ'; -CJ 

d .. dik dik l.) 

CB (2-14) 

2 2 2 
-a CJ + CJ 

dik dik diR. 

i.e. covariances equal to minus the variance of the common direction 

between the angles will exist. For angles not derived from directions, 

but measured independently, CB will be a diagonal matrix. 
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The variance o 2 of spatial distances observed with EDM is 
r 

characterized by [e.g. Nickerson, 1978] 

a 
r 

2 
a z 

2 
(2-15) 

where a2 =variance of phase difference determination (cf. eq. (2-16)), ph 

02 
z = variance of the so-called zero error, 

= variance of determination of the index of refraction n (cf. eqs. 

(2-17) and (2-18)), 

m1. and Il12 = numbe·r of determinations of phase difference and meteorological 

readings, respectively. 

The variance of phase. determination is computed as 

2 
aph = (2-16) 

where A modulation wavelength used by the specific 

instrument (see Table 2.6), 

2 o6 = variance of determination of the phase difference 

for one distance measurement in fractions of a 

wavelength. 

Most modern EDM equipment can easily achieve an accuracy of phase difference 

determination oe = 0.001 [Burnside, 1971], but more accurate values for 

an individual instrument should be available from the manufacturer's 

specifications. The zero error a results from inaccurate knowledge of z 

the electrical center of the instrument with respect to the geometric 

center which is aligned over the point. This value is usually small (e.g. 

5 mm) for instruments using light waves as the carrier frequency, but for 



I Model Manufacturer Radiation 
Source 

Geodimeter AGA 5m~J He-Ne 
~~ode1 8 Sweden Laser 
Geodo1ite 3 G Spectra-Phys1.cs Sm~l He-Ne 

U.S.A. Laser 
Geodimeter AGA 30 w 
~odel 6 S1·1eden ff.ercury Lamp 
Geodimeter 76 AGA ·2mW 

Sweden Laser 
OM 1000 Kern GaAs-Diode 

900 nm 
t·lekometer Kern Xenon-flash 
ME 3000 {100 Hz) 
m·t soo Kern GaAs Diode 

875 nm 
sr~ 11 Zeiss GaAs Diode 

0Jerkochen 910 nm 
ELDI 2 Zeiss 

Oberkochen 
:~.;; 100 Tell urometer GaAs Diode 

930 nm 
CD 6 Tell urometer · GaAs 'Diode 
SO~I-3 Sokl~isha Ltd, GaAs Diode 

Tokyo 900 nm o· ., I tm d Hecrbru~g GaP.s Diode ! ., 

375 nm 
01-1-60 C11t-ic Ind. GaAs Diode 
i.uhitape Co., l'SA 900 nm 
3800 B He1~l ett- GaAs 

Pacl:ard, USA Diode 
Ran~er I I Laser Syst. & 3mH He-Ne 

I Electronics USA Laser 

Modulation Frequency Method of 
Modulator Power Phase 

Base lMHz) Tota 1 iJ .Consumed (W) Measurement 

30 4 KOP Crystal 75 null meter 

49 5 ·'400 digital 

30 3 Kerr Cell 70 resolver 
300 null meter 

2 Kerr Cell 

15 2 - 11 digital 

500 5 AD? Crystal 18 optomechanical 
null meter 

15 2 - 11 digital 

15 2 - 12 automatic 
digital 

4 

75 4 - 14 digital 

digital 
15 2 - 10 digital 

7.5 2 - 14 digital 

75 3 - 15 automatic 
digital 

15 4 - 12 digital 

KDP Crystal! 
null meter 

15 4 automatic 
digital 

Table 2.6 Characteristics of Modern EDM 

Range (Km) 

Day Night 

30 60 

60 80 

3 15 
5 . 25 

3 
(3 prisms) 

2.5 
( 3 Refl.) 

3 
(3 prisms) 

0.5 
(3 prisms) 

2 
(19 prisms) 

5 

2 

2 
1 

(3 prisms 
0.6 

(3 prisms) 
2 

3 
(3 prisms) 

6 

Standard 
Deviation 

:!:. (5 mm + 1 • lo·6,) 

+1.10-6s or 1 mm 
whichever grea6er 
.:!:,(1 em+ 2.10- s) 

.:!:,(1 em+ 1.1o-6s) 

:!:. 1 em 

:!:,(0.2 mm + 1.1o-6s) 

:!:. 1 em 

:!:. 5 to 10 mm 

.:!:. 5 mm 

.:!:,(1.5 mm + 2.1o-6s) 

+(5 mm + 5.1o-6s) 
£1 em 

.:!:,(5 mm + 5.lo-6s) 

.:!:,(5 lTV!)+ l.Jo-5s) 

.:!:,(5 ~ + 1.10-5s) 

:!:,(Smm + 2.lo-5s) 

I 
' 

..... 
-..) 



Antenna 

tl.odel l'.anufacturer Carrier Measurin~ Diameter Diver~ence 
Frequency (GHz) Frequency MHZ) · (em) (0 

HRA 101 Te11urometer Ltd. 10.05 to 10.45 7.5 33 6 

HRA 3 Tellurometer Ltd. 10.025 to 10.45 7.5 33 9 

NRA 4 Te11urometer Ltd. 34.5 to 35.1 75 33 2 

CA 1000 Tellurometer Ltd. 10.1 to 10.45 19 to 25 

Electrotape DM20 Cubic Corp. U.S.A. 10.5 to 10.5 7.5 33 6 

Distomat DISO Wild Heerbrugg 10.2 to 10.5 15 36 6 

Distomat DI60 Siemens-Albiswerk 10.3 150 35 6 
---~ 

Table 2.6 Continued. 

Power 
Consumed Readout 
·(w) 

38 digital 

digital 

digital 

digital 

digital 

50 digital 

38 digital 

Measuring 
Range (Km) 

0.1 to 50 

0.1 to 50 

0.05 to 60 

0.05 to 30 

0.05 to 50 

0.1 to 50 

0.02 to 150 

Standard Deviation 

!(1.5 em+ 3. l0-6s) 

!(1.5 em+ 3.1o-6s) 

!(3 mm + 3.1o-6s) 

!(1.5 em+ 5.1o-6s) 

.:!:.0 em+ 3.1o-6s) 

.:!:.(2 em + 5.10-6s) 

!{1 em+ 3.1o-6s) 

I 
I 
I 

..... 
(X) 
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rr~crowave instruments the value may be up to 20 mm. This value is normally 

supplied with the instrument. The variance of the refractive index is 

different for lightwaves and microwaves. For lightwaves, the variance is 

[e.g. Nickerson, 1978; Laurila, 1976] 

where T temperature in degrees Kelvin (t°C + 273.15), 

{287.604 + 4 "8864 
A 2 

c 

+ 0.068 ) for A 
A 4 c 

c 

= carrier wavelength 
(see Table 2.6), 

p =air pressure in millibars (1 mbar ~ 0.75 mm Hg@ 0°C), 

(2-17) 

e = water vapour pressure in mbar ~or detailed computation see Bamford 

a 
p 

a 
e 

2 

[1975], p. 54), 

variance of temperature measurement in °C2 , 

. f . t'mb 2 = var1ance o pressure measuremen s 1n ar , 

=variance of water vapour determination· in mbar2 

For microwaves the variance of the refractive index is [e.g. Nickerson, 1978; 

Laurila, 1976] 

4 
74.38•10 ) }2 2 {77.62} 2 2 + 

3 e aT + T a 
T p 

+ { -12.92 + 37.19•104 } ae2] . 10-12 , 
T T2 

(2-18) 

where the elements in this equation are defined the same as those in 

equation (2-17). Table 2.7 summarizes the effect of errors in meteorological 

measurements on observed distances. 



METEOROLOGICAL ERROR 

+ 1 mbar in air pressure 

+ l°C in temperature 

+ l°C in the difference 
between dry and wet bulbs 

20 

EFFECT ON DISTANCE 

Light waves Microwaves 

0.22 ppm 0.22 ppm 

1.0 ppm 1.6 ppm 

o.os ppm 8.0 ppm 

Table 2.7 Effect of Meteorological Errors on Measured Distances 

., Table 2. 8 below lists some· expected values of or for both lightwave 

and microwave instruments. 

For treatment of distancesobserved by mechanical or optical 

means, one is referred to e.g. Nickerson [1978] or Smith [1970]. 

The above discussion has treated only the accuracy of observed 

azimuths, directions, angles and distances. However, the observations 

used in horizontal network computations are considered to be reduced to 

the plane. Any inaccuracies resulting from these reductions must also be 

accounted for. ~ispropagation of errors through the reduction formulae 

(see section 2.2) has already been covered in section 3.2.8 of Thomson et 

al [1978]. 

2.2 Reduction.of Observations to a Conformal Mapping Plane 

The reduction of observed azimuths, directions, angles, and 

distances to a conformal mapping plane is essentially a two-phased process: 

terrain to reference ellipsoid, and reference ellipsoid to conformal mapping 

plane. Each phase, depending on the observed quantity, may contain one or 

more reduction steps. These procedures, for the· 3° Transverse Mercator and 



s (in) 

100 

200 

400 

800 

1600 I 

3200 I 

6400 

12800 

25600 I 

Lightwaves; A = 900 nm 
c 

Microwaves; A = 3 em 
c 

A = 20 m, crz =· 0.005 m, cr 6 = 0.001 A=40 m, crz = 0.015 m, cr 6= 0.001 

0 = 1 mbar a = 5 mbar cr = 1 mbar a = 5 mbar 
p p p p 

crT =of,T=0.2°C a = cr =1 °C 
2 =cr = 0~2C cr = cr = 1°C 

T /j.T crT /J.T T IJ.T 

m =2,m =1 
1 2 m =4,m =2 

1 2 m =2,m =1 
l 2 

m =4,m =2 
1 2 m =2,m =1j m =4,m =2 j m =2 1m =1 1 m =4,m =2 1. 2 1 2 '1 2 1 2 

0.009 0.007 0.009 0.007 0.021 0.018 0.021 0.018 

0.009 0.007 0.009 0.007 0.021 0.018 0.021 0.018 

0.009 0.007 0.009 0.007 0.021 0.018 0.021 0.018 

0.009 0.007 0.009 0.007 0.021 0.018 0.022 0.019 

0.009 0.007 0.009 0.007 0.021 0.018 0.024 0.020 

0.009 0.007 0.010 0.008 0.021 0.018 0.033 0.026 

0.009 0.007 0.013 0.010 0.023 0.020 0.057 0.041 

0.010 0.008 0.021 0.015 0.029 0.023 0.107 0.077 

0.012 I 0.009 0.040 0.028 0.045 0.035 0.212 0.150 

Table 2.8 Expected Values for a 
r 

II.) 
..... 
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Double stereographic conformal map projections, are given, for example, 

in Thomson et. al. [1978). The entire process is reviewed here in the 

context of horizontal geodetic networks. The primary reason for. this is 

that for network computations the sequence of events is different than 

that used for position computations; in addition, the software used to 

generate the numeriGal examp!e~; given in this report follows the sequence 

given here. 

The first problem to be solved is the determination of the 

· t d' t ( a Ya) d (~a ,a) f h k · t approxJ.ma e coor J.na es, X , an "' , 1\ , or eac un nown p:>J.n 

in the network. This can be done in several ways, .but the most o£ten 

used are (i) to determine them graphically using a large scale map or a 

plan, or (ii) to compute them using observed quantities, well known geometric/ 

trigonometric solutions and coordinate transformation procedures. 

The coordinate transformations are given in, for example, Krakiwsky, et. 

al [1977]. The main point to bear in mind when determining approximate 

coordinates is that they must be sufficiently close to the final values 

so that the effects on the reduction of observations will be negligible. 

A conservative estimate of "sufficiently close'~ is 20 m. This can be 

achieved easily, in most instances, using observed quantities and unique 

geometric/trigonometric solutions. Well determined approximate coordinates 

are also important in the solution for final coordinates as this will 

minimize the number of required iterations [e.g. Steeves, 1978). 

The reduction of an astronomic azimuth (A .. ), obtained from 
l.J 

astronomic observations or a gyrotheodolite, to a conformal mapping plane 

(grid) azimuth (t .. ) is outlined in Figure 2.2. The observed, known, and 
l.J 
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computed quantities required are given in Table 2.9. The equation numbers 

listed in Figure 2.2 and Table 2.9 refer to those found in Thomson et. 

al [1978]. 

The reduction of a measured terrain normal section direction (d~.) 
l.J 

to a conformal mapping plane (grid) direction. (d .. ) of the corresponding 
. l.J 

chord is outlined in Figure 2-3. The observed, known, and computed 

quantities required are given in Table 2.10. The equation numbers listed 

in Figure 2.3 and Table 2.10 refer to those found in Thomson et. al. [1978}. 

A measured angle {B .. k), since it is simply the difference of two 
Jl. 

t t 
terrain normal section directions (dik - dij) follows the same reduction 

procedure as the directions themselves. The procedure is outlined in 

Figure 2.4. The observed, known, and computed quantities involved are 

given in Table 2.11. The equation numbers listed in Figure 2.4 and Table 

2.11 refer to those found in Thomson et. al. [1978]. 

The reduction of a terrain spatial distance (r. ,} (measured 
l.J 

distance corrected for atmospheric and instrumental effects) to a conformal 

mapping plane (grid) distance (i, .) of the corresponding chord is outlined 
l.J 

in Figure 2.5. The observed, known, and computed quantities involved are 

given in Table 2.12. The equation numbers given in Figure 2.5 and Table 

2.12 refer to those found in Thomson et. al [1978]. 

An examination of Figures Z.2 to 2.5 and Tables 2.9 to 2.12 inclusive Shows 

a significant overlap in observed (e.g. z .. ) computed (e.g. approximate 
l.J , 

coordinates), and known(e.g. ellipsoidal and conformal mapping system 

constants) quantities involved in the reduction of measured azimuths, 

directions, angles, and distances. In practice, these quantities need 

only be specified once. For example, in the·program GEOPAN [Steeves, 1978], 
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OBSERVED ASTRONOMIC AZIMUTH A .. 
l.J 

TRUNCATED LAPLACE CORRECTION 
(3-15) 

GRAVIMETRIC CORRECTION 
(3-21) 

SKEW NORMAL (HEIGHT OF TARGET) CORRECTION 
(3-22) 

NORMAL SECTION TO GEODESIC CORRECTION 
(3-23) 

(T-t} CORRECTION 
Double Stereographic: (4-11} or (4-31) 

3° Transverse Mercator: (4-53} 

y MERIDIAN CONVERGENCE CORRECTION 
Double Stereographic: (4-7) or (4-27} 

3° Transverse Mercator: (4-47) 

CONFORMAL MAPPING PLANE (GRID) AZIMUTH t .. 
- l.J 

(3-15} I (3-16) I (3-17) 1 (3-18) I and (4-5} 

Figure 2.2 

Reduction of Observed Astronomic Azimuth to 
a Conformal Mapping Plane 



Status Quantity 

A .. : Astronomic Azimuth 
l.J 

z. . (or h. . or H .. ) : 
l.J l.) l.) 

zenith distance(or 
elliposidal or orthometric 
height difference) 

a a (x.,y.), 
l. l. 
a a 

(~.,A.), 
l. l. 
a a 

(x.,A.) 
l. l. 

z. ,: reduced zenith distance 
=!:J 

s~.: approximate ellipsoidal 
l.J distance 

(T-t) .. 
l.J 

y.: Meridian convergence 
l. 

h.: ellipsoidal height of 
J target 

a, b (or a,f) 

1/Jo' .1\o' R; 

4>o' Ao~ xo' yo; 

k 
0 

H. (or h. ) : orthometric 
1 (or elhpsoid)height 

N~, 
l. 

~ • I 
l. 

N~ 
J 

n ,{deflection of vertical 
1 components at observed 

station 
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Remarks 

obtained via stellar, solar, or gyrotheodolite 
observations. 
needed for reduction purposes 

see Krakiwsky et al. [1977] re coordinate 
[transformations. .. 

(3-14) ; use partially reduced azimuth, 
from (3~15), for this computation 
(3-39) or (3-62); use approximate 
coordinates (oa,Aa) to compute all 
quantities, including auxilaries. (4-11) 
or (4-31) for Double Stereographic, (4-53) 
for 3° Transverse Mercator~ use approximate 
coordinates for all computations. 
(4-7) or (4-27) for Double Stereographic, 
(4-47) for 3° Tranverse Mercator; use 
approximate coordinates for all computations. 

parameters of reference ellipsoid. 

all defining parameters of the conformal 
mapping system. 

geoidal heights required to determine Ah ..• 
l.) 

Table 2.9 

Reduction of Observed Astronomic Azimuth to a Conformal 
Mapping Plane 



c 

c 
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OBSERVED DIRECTION d~. 
~J 

1 

SKEW NORMAL (HEIGHT IDF TARGET) CORRECTION 
(3-22) 

NORMAL SECTION TO GEODESIC CORRECTION 
(3-23) 

GRAVIMETRIC CORRECTION 
(3-21) 

(T-t) CORRECTION 
Double Stereographic: (4-11) or (4-31) 

3° Transverse Mercator: (4-53) 

CONFORMAL MAPPING PLANE (GRID) DIRECTION d .. 
(3-12) and (4-3) 

Figure 2.3 

Reduction of an Observed Direction to a 
Conformal Mapping Plane 

~J 



Status 
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Quantity 

t d .. : terrain normal section 
l.J direction 

zij (or ~Hij or ~hij) 

s~.: 
l.J 
a 

a .. : 
l.J 

z .. : 
l.J 

approximate ellipsoidal 
distance 
ap~roximate geodetic 
azJ.muth 
reduced zenith distance 

(T-t) .. 
l.J 

h.: ellipsoidal 
J target 

a,b (or a,f) 

ljJ 
o' A o' R; 

cpo' Ao; xo' yo; 

k 
0 

height of 

H. (or h.): orthometric (or 
]. ]. 

ellipsoidal) height of 
instrument 

Ni, Nj: geoidal heights 

~i' ni: deflection of vertical 
components 

Table 2.10 

Remarks 

needed for reduction p~poses 

see Krakiwsky et al. [1977] re 
coordinate transformations. 

(3-39) or (3-62)~ use approximate 
coordinates 

(3-37) or (3-59) for all computations 
a 

( 3-14) : use a . . for this computation 
l.J 

(4-11) or (4-31) for Double 
Stereographic, (4-53) for 3° 
Transverse Mercator; use approximate 
coordinates for all computations. 

parameters of reference ellipsoid 

all defining parameters of the 
particular conformal mapping system. 

required to determine ~h .. 
l.J 

Reduction of an Observed Direction to a Conformal Mapping Plane 
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OBSERVED ANGLE 8 .. k 
Jl.. 

SKEW NORMAL (HEIGHT OF TARGET) 
CORRECTION FOR EACH LINE (d~k' d~.) 

(3-22) l.. l..J 

NORMAL SECTION TO GEODESIC 
CORRECTION FOR EACH LINE (dik' d~j) 

(3-23) 

GRAVIMETRIC CORRECTION FOR 
EACH LINE {dtk, dt.) 

l.. l..J 

{3-21) 

(T-t).k, (T-t) .. CORRECTIONS 
l.. l..J 

Double Stereographic: {4-11) or (4-31) 
3° Transverse Mercator: (4-53) 

CONFORMAL MAPPING PLANE (GRID) ANGLE B •. k 
Jl.. 

(3-13) and (4-4) 

Figure 2.4 

Reduction of an Observed Angle to a Conformal Mapping Plane 



Status Quantity 

a "k: angle 
)~ 

z .. ,z.k (orl1H .. , !1H~k' 
~) ~ ~) ... 

or !1hij' !1hik 

a a 
(xi,yi)' 

a a C<P.,A.), 
~ ~ 

a a 
(x. ,y.) ' 

J J 
a a (cp.,A.), 
J J 

29 

a a 
ellipsoidal s .. ' 5 ik: approx. 

~J distances a a 
geodetic (lij' (lik: approx. 

azimuths 
z .. ' zik: reduced zenith 
~) distances 

(T-t} .. , 
~) 

(T-t}ik 

h ' hk: 
j 

ellipsoidal heights 
of targets 

a,b.(or a,f) 
1jJ ,A I R; 

0 0 

cp ,A ; 
0 0 

H. (or 
~ 

X ,y ;k 
0 0 0 

h.): orthometric 
~ 

(or ellipsoidal) height 
of instrument 

N~ ,N~ ,Nk*: geoidal heights 
~ J 

l;, 1 n, ! deflection Of 
~ ~ . l vert2ca components 

Remarks 

needed for reduction purposes 

see Krakiwsky et al. [1977] re coordinate 
transformations. 

(3-39) or (3-62)l use 

(3~37} 9r (3-59}j for 

approximate coordinates 

all computations 

a a 
(3-14): use nij'nik for these computations 

(4-11} or (4-31) for Double Stereographic 
(4-53) for 3° Transverse Mercator, use 
approximat.e coordinates for all computations 

parameter of reference ellipsoid 
all defining parameters of the particular 
conformal mapping system. 

required to determine !1hij' !1hik 

Table 2.11 

Reduction of an Observed Angle to a Conformal Mapping Plane 
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TERRAIN SPATIAL DISTANCE rij 

REDUCTION TO REFERENCE ELLIPSOID 
(3-19) and (3-20) 

REDOCTION TO CONFORMAL 
MAPPING PLANE 

(4-6) 

CONFORMAL MAPPING PLANE (GRID) 
DISTANCE i . . 

l.J 

(3-19), (3-20) and (4-6) 

Figure 2.5 

Reduction of a Terrain Spatial Distance to a 
Conformal Mapping Plane 



Status 
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Quantity 

r .. : terrain spatial distance 
l.J 

Z. • (or ~H .. or ~h .. ) 
l.J l.J l.J 

a a a .. , a .. : approx. geodetic 
l.J Jl.azimuths 

hj: ellipsoidal height of 
_ target 
k .. : line scale factor 

l.J 

a,b (or a,f) 

H. (or h.): orthometric (or 
l. l. ellipsoidal) height 

of instrument 
Nl.~' N*· geoidal heights j. 

Table 2.12 

Remarks 

Instrumental and atmospheric effects 
have been removed 
needed for reduction purposes. 

see Krakiwsky et al. [1977} re coordinate 
transformations. 

(3-37) ,(3-35) and (3-36), or (3-59), 
(3-60) and (3-61)~ use approximate 
coordinates for all computations. 

(4-13) or (4-33) for Double Stereographic, 
(4-57) for 3° Transverse Mercator~ use 
approximate coordinates for all computations 

parameters of reference ellipsoid 

three parameters pertaining to the 
particular conformal mapping system 

required to determine ~h .. 
l.J 

Reduction of a Terrain Spatial Distance to a Conformal 
Mapping Plane 
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used for the numerical computations in this report, one set of approximate 

coordinates are used for any one project. 

2.3 Data Screening 

Prior to being used in network computations, each piece of data 

(azimuth, direction, angle, distance) should be tested individually to 

ensure that it is self-consistent. These tests are accomplished by methods 

of univariate analysis,which means the examination of the repeated 

measurement of 'che sane observable (e. g. a distance). These repeated. 

measurements are represented by a data series R.. ,·i = 1, N where N is the 
l. 

sample size. The problem here is to discover which individual observations 

R.. are statistically incompatible with the rest of the series. This 
l. 

subject is commonly known as the detection of outliers [e.g. Krakiwsky, 

1978; Pope, 1976]. 

The specific test which is used to detect outliers depends on the 

underlying assumptions about the population mean ~ and population variance 

2 a • If 
2 

~ and a are assumed unknown, they are estimated by the sample mean 

R. and sample variance s2• The following interpretations can be made: 

(a) ·~ known' corresponds to measuring a line of known length (e.g. a 

a calibration baseline); (b) ··~2 'known' corresponds to measuring with an 

instrument of known accuracy; (c) ·~ unknown' corresponds to measuring a 

line of unknown length; (d) •a 2 unknown' corresponds to measuring with an 

instrument of unknown accuracy. The four possible combinations of the 

above cases are shown in Table 2.13. 

The so-called null hypothesis H being tested is 
0 

H 
0 

• • L is a member of .a sample with normal distribution • 
l. 



·~-·--·-··· --····--· 
Situation 

Name 61 62 

Normal 
Test of 
a Single 
Observation 

Student's t 
i Test of 
I a Single 
Observation 

Normal 
Test of 
a Single 
Observation 

II 
known 

II 
known 

r 

o2 
known 

2 s 

a2 
known 

H0 (null hypothesis) 

1i belongs to a 

sample having the pdf 

71; Ur II• o2> 

R.i belongs to a 

sample having the pdf 

~ , .. , lit s2) 

R. i belongs to a 

sample having the pdf 

'1l,; (R.; r, a2) 

Statistic 
y 

R. - II 
a 

!...:...J!. 
s 

1-i 
(N-1 1/2 
N) a 

pdf* 
., (y) 

standard 
normal 
n(O,l) 

Student's t 

\;-1 

standard 
normal 
n(O,l) 

-------+----+----1 -- .. ··----·------------····· ·-·--·- ··-·-------· 
t Test 
of a 
Single 
Observation 

r 2 s 

R.i bel~ngs to a 

sample having the pdf 
..., - 2 
"'" (.t; ... s ) 

'l'au 

TN-1 

1-a** COnfidence Interval 
for the Quantity 'l'ested 

11 - a na < R.'i < 11 + a n1_ ;~;. 

2 2 

II - s tN-1,~ < .ti < II + s tN-1,1- ~ 

1 1 
- N-1 2 - N-1 2 .. 
1.-(-) a n <1 <.t.+(-1 a n a 

N ,! i N 1- 2 
2 

Remarks 

a known thus the normal 
distribution. 

s is computed using r 
estimated from sample of 
size N thus t distribution. 

a known thus the normal 
distribution. 

......... ~~ .... ---·--.. ···------------·-· ·•· . . ... - ·- . . .. -· .............. ·-·-· -- .. . 

1 1 
- N-1 2 · - N-1 2-.t.- (==-:-:9 ST a<l.i<.t.+ (-N ) STN 1 1 lt. 

N N-1,2 - ' - 2 
r and 8 computed fr0111 the 
same sample thus the T 

distribution • 

I-. .... I I I I --1 - -··-······--··.... .. .• ·---
*Pope [1976), n(O,l) -standard normal distribution of 0 mean and variance 1. 

~-l - student's t distribution with N-1 degrees of freedom. 

tN - tau distribution with N-l degrees of freedom. 

** a • a/N, where It: is- the:. number· of members- in the seriear. 

Table 2.13 

'i'esting for Outliers 

.. .. ---------- ___________ _j 

w 
w 
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2 
The test which is applicable most often is for o known and ll unknown. 

This corresponds to the third test in Table 2.13, i.e. 

N-1 1/2 
ti < t + (~) o nl-a/2 , (2-19) 

where 1 = sample mean, 

N = sample size, 

o = known standard deviation, 

n =standard normal distribution (see Table 2.14), 

a= a/N for a= significance level (e.g. a= 0.5). 

If the observation t. being tested does not lie within the limits 
l. 

given by equation (2-19), then the null hypothesis H is rejected at the 
0 

(1-a}% confidence level. 

For example, ~able 2.15 lists 11 observed values of astronomic 

azimuth for the same line. The mean value of the series is i' = 85 ° 36' 18': 71, 

and the assumed known standard deviation o 5~77. For a significance level 

a = 0.05, a/2 = a/2N = 0.05/22 
-3 

2.273•10 , and 1 - a/2 = 0.99773. From 

Table 2.14, the value for nl-a/2 is 2.83. Thus, the rejection limits for 

an individual observation 1. are 
l. 

85° 36' 03~14 < 1. < 85° 36' 34~28 • 
l. 

(2-20) 

Performing the test for each astronomic azimuth in Table 2-15, it is seen 

that azimuth numbers 1, 2, 3 and 10 are rejected at the 95% confidence level, 

i.e. the hypothesis that they are members of a sample with normal distri-

bution is rejected. Thus, only the seven remaining azimuths are taken as 

representative of the sample, and the mean value I = 85° 36' 25~'14 computed 

from these seven remaining azimuths is used for further computations. 
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Values of Pr corresponding to c for the normal curve. 

The value of Pr for (-c) equals one minue the value or Pr for (+c). 

c 
.00 I .01 .02 .03 .04 .05 .06 .07 .08 .09 

. 
.o . 5000 .~040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 
.1 .5398 .5438 .M78 .5517 .5557 .5596 .5636 .5675 .5714 .5753 
.2 .&793 .5~:\2 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 
.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 
.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 
. 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .'1123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .'1454 .7486 .7517 .7549 

.7 .7f>SO .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .81$6 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 
1.1 .6f,.i3 .86(i5 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 
1.2 .t\849 .8869 .8~8 .8907 .8925 .8944 .8962 .8980 .8997 .9015 
1.3 .9032 .~049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 . 9345 ,9357 .9370 .9382 .9394 .M06 .9418 .9429 .9441 
1.6 .9452 .94t\3 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 
1.7 .9554 .9-564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 
1.8 .9641 .9£)49 .9656 • tl6()4 .9671 .9678 .9686 .9693 .9699 .9706 
1.9 .9713 .9il9 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9ii8 ~9783 .9788 .9793 .9798 .9803 .9808 .9812 .981'1 
2.1 .9821 . !l$:!ti .9fl30 .98:44 .9838 .9842 .9846 .9850 .9854 .9857 
2.2 .!1~61 .!l~f'i-i .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 
2.3 .9~93 • 9S!lli .9R!I8 .9!101 .990·1 .9906 .9909 .9911 .9913 .9916 
2.4 .9918 . !l!l:!O .99!!2 . !l92r, .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 . .9!145 .9946 .9948 .9949 .9951 .9952 
2.6 .!19&3 . ~gr,;, • !J!If,6 .9957 .9959 .9960 .9961 .9962 .9963 .9964 
2.7 .9965 .mll'G .9967 .!1968 .9969 .9970 .9971 .9972 .9973 .9974 
2.8 .9974 .9!l75 .9976 .9977 .9977 .9978 .997!) .9979 .9980 .9981 
2.9 .9981 .99S2 .9982 .9983 .9984 .9984 .9985 .9985 .9!l86 .9986 

3.0 .9987 .9!lS7 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 
3.1 .9990 .9!l!H .9991 .9991 .99n .99!)2 .9992 .9992 .9993 .9993 
3.2 .9993 I .9!1!1:\ .999·1 .9994 .999·1 . 99!14 .999·1 .99H5 .9995 .9995 I 
3.3 I 

.9!)95 • !l!l:l;, ,9!195 .9996 .9996 .99!16 . 99% .9996 .999G .H!J97 
3.4 .!1997 i • !l!l!li .99!17 .H9H7 .9997 .9997 . !19!)7 .9997 .H997 .9!J9S I 

.. 

Table 2.14 

Cumulative Normal Distribution - Values of Pr 
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SET NO. OBS'D AZIMUTH 

1 85 35 27.84 

2 85 35 34.36 

3 85 36 51.15 

4 85. 36 27.95 

5 85 36 28.89 

6 85 36 28.43 

7 85 36 20.46 

8 85 36 22.29 

9 85 36 24.02 

10 85 36 36.46 

11 85. 36 23.93 

Table 2.15 Astronomic Azimuth Data Series 

lf the underlying assumptions for the univariate test are 
.. •·. 

dif"ferent (e.g. a unknown, ll known), then one of the three other tests of 

Table 2.13 should be used. Essentially, this changes only the rejection 

limits (cf. eq. (2-20)). The necessary tables (i.e. Students t and tau 

distributions) can be found in e.g. Rainsford [1957] and Pope [1976]. 



3. MATHEMATICAL MODELS FOR AZIMUTH, DIRECTION. 

AND ANGLE OBSERVATIONS 

In this chapter, the mathematical models relating angular 

observations and coordinates are given. Coordinates are the x(easting) and 

y(northing) coordinates referred to a conformal mapping plane (e.g. Krakiwsky 

et al., 1977; Thomson et al., 1978]. Both the linear and nonlinear forms of 

the mathematical model for azimuths, directions, and angles are given. 

3.1 Azimuth Mathematical Model 

The nonlinear form of the azimuth mathematical model is 

F .. 
l.J 

x.-x. 
arctan ( J J.) t = 0 

- iJ' yj-yi 
, 

where the first term is a nonlinear function of the coordinates of two 

points i and j (see Figure 3.1), and t .. is the observed azimuth from 
l.J 

(3-1} 

point ito point j reduced to the mapping plane [e.g. Thomson et al., 1978, 

section 4.2.3}. A linear Taylor series (see Appendix I} is used to 

approximate this nonlinear model. The resulting equation is 

0 0 

0- x.-x. 
F .. = F .. + dF .. = arctan ( J J.) - t .. + dt .. - v + ... = 0, 

l.J l.J l.J ~-':19 l.J l.J t .. 
J J. l.J 

(3-2) 
x~-x~ 

where arctan ( J J.) = computed value of the azimuth based on approximate Yj-Yi 
values of the coordinates (~,yO), 

dt.. differential change in the computed azimuth resulting 
l.J 

from differential changes in the approximate coor-

dinates (see eq. (3-3)), 

37 
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lly {Grid North) 

Figure 3.1 Mapping Plane Azimuth 

. 
J 

x. 
J X 
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V = correction to the observed mapping plane (grid) azimuth. 
t .. 
~) 

The differential change in azimuth dt .. 
~) 

is given as 

at .. at .. at .. at .. 
dt .. = __u_ dx. _2:2 +~ dx. _!J. + a dy. + a dy. 

~) ax. ~ y, 1. ax. J y, ) 
1. 1. J J 

Evaluation of the partial derivatives in equation (3-3) yields 

at .. 
___.!)_ 
ax. -

0 0 
-(y. -y.) 

J 1. 

u.c:> .>2 
1.] 

=a .. 
1. 

at .. 
1.] 

ayi = 

at .. 
_2J_­
ax. -

J 

0 0 (x.-x·.) 
J 1. 

(R.c:>.)2' 
1.) 

= 

0 0 
at.. -(x.-x.) 
-2:.2 - _-JOL.J--:1.:;;...... 

ay . - < R. <;> • > 2 
~ 1.] 

1.) 

b .. 
1.] 

-a .. 
1.] 

= -b ij 

(3-3) 

(3-4) 

(3-5) 

(3-6) 

(3-7) 

where R.? •. ·· is the mapping plane distance between points i and j computed 
1.] 

using the approximate coordinates. Substituting equations (3-3) to (3-7) 

into equation (3-2) yields the so-called observation equation as 

0 0 
x.-x. 

V" = [arctan t.. . 
1.] 

( J 1.) 
0 0 

Yj-Yj_ 
+ p"a .. 6x. + p"b .. 6y. -- p"a .. ox.- p"b.joy., 

1.] 1. 1.] 1. 1.] J 1 J 

where p" = 206264':8062 is used to proportion the elements, and 

ox:-oy. = differential changes in the coordinates. 
1. J 

(3-8) 

Converting equation (3-8) to matrix notation yields the matrix form of the 

observation equation as 
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V" = [arctan 
t .. 
~J 

- t .. ) "+ p" [a .. b .. - a~J· -b .. ] 
~~ ~J ~J ~ ~J 

-t5x i • 

oy. 
~ 

(3-9) 

c5x. 
J 

c5y. 
J 

'Ihe matrix form of the evaluated partial derivatives (i.e. a .. , b .. , etc.) 
~J- ~J 

is called the design matrix A, the difference between computed and observed 

azimuths is called the misclosure vector W, the vector of differential changes 

in coordinates (ox, oy) is called the solution vector x, and the correction 

to the observed azimuth is called the residual vector v. Rewriting equation 

(3-9) in this notation yields 

v 
t .. 

w 
t .. + A X (3.,-10) 

t .. 
~J ~J ~J 

(1,1) (1,1) (1,4) (4,1) 

3.2 Direction Mathematical Model 

Direction observations are relative to the 'zero' direction 

of the horizontal circle of a theodolite. The azimuth of this zero direction 

is called the orientation unknown Z (see Figure 3.2} and it must be solved 

for along with the unknown coordinates. Orientation unknowns are not 

desired quantities and thus are called nuisance parameters. The nonlinear 

form of the direction mathematical model is 

where d .. 
~J 

x.-x. 
F .. =arctan ( J ~} - (d .. + Z.) = 0, 

1J yj-yi 1) 1 

observed direction from point i to point j reduced to the 

mapping plane [e.g. Thomson et al., 1978, section 4.2.1], 

Z. = orientation unknown at point i. 
1 

(3-11} 
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lly (Grid North) 

j(x.,y.) 
J J 

Figure 3.2 Direction on the Mapping Plane 

X 
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The linear Taylor series expansion of equation (3-lll. gives the linearized 

direction mathematical model as 

F .. = arctan 
1) 

z~ - d. . + dt . . - dzi - v + ••• 
1 1) 1) d .. 

1) 

0 where Z. 
1 

= approximate value of the orientation unknown, 

0 , 

differential change in the orientation unknown Z. caused by an 
l. 

0 
inaccurate approximate value z. , 

1 

V = correction to the observed direction. 
d .. 
1) 

(3-12} 

The approximate value of the orientation unknown Z~ is obtained by subtracting 
l. 

the observed direction tb a station j from the azimuth to the same station 

computed from the approximate coordinates, i.e. 

zC:: = arctan 
1 

0 0 
x.-x. 

( J ].) 
0 0 y,-y. 
J l. 

- d .. 
l.J 

(3-13} 

Realizing that dtij has already been evaluated for the 

linearized azimuth mathematical model (see eqs. (3-3) to (3~7)), the 

observation equation for a direction is 

V" = [arctan 
dij 

or, in matrix form 

v" = [arctan 
d .. 
1) 

0 0 x.-x. 
( J l.) 

0 0 
y,-y. 

J l. 

- z~- d .. ]" + p"a .. ox. + p"b .. oy. - p"a .. ox. 
l. l.J l.J l. l.J l. l.J J 

- p"b .. oy. -oz. 
l.J J l. 

0 - z -d .. ]" + p" [a .. b .. -a .. -b .. - 1] 
i . l.J l.J l.J l.J l.J 

(3-14) 

ox. • (3-15) 
l. 

oyi 

ox. 
J 

oy. 
J 

oz. 
l. 
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Using the symbolic matrix notation of section 3.1, equation (3-15) becomes 

v = w + A X 
d .. d .. d .. 

l.J l.J l.J 

(1 ,1) (1 1 1) (1 ,5) (5,1) 

3.3 Angle Mathematical Model 

The nonlinear mathematical model for an angle is (see Figure 3.3) 

F. 'k l.J 
0 , 

where Bijk = angle observed at point i from point j to point k reduced 

(3-17) 

to the mapping plane [e.g. Thomson et al., 1978, section 4.2.2}. 

The difference between two direction mathematical models F.k and F .. has the 
l. l.J 

same form as the angle mathematical model Fijk" The linearized form of the 

angle mathematical model is 

arctan - arctan ) - Bijk + dBijk - VB. 'k 
l.J 

+ ••• = 0,(3-18) 

where dBijk = differential change in the computed angle resulting :from 

differential changes in the approximate coordinates, 

V = correction to the observed mapping plane angle. 
B. 'k l.J 

The differential change in the angle dB. 'k is given as 
l.J 

dB, 'k = 
l.J 

i)B, 'k. 
l.J 

ax. 
l. 

i)Bijk i)Bijk dx. + i)Bijk i)Bijk i)Bijk 
dx. + " dy . + " " dy . + " dx. + " dyk • 

l. ay, l. aX. J ay. J aX. K ayk 
l. J J K 

(3-19) 

Evaluation of the partial derivatives in equation (3-19) yields 

aB. 'k 
0 0 0 0 

- (yk -y i) (y j -y i) 
l.J + ; c 

ax. (R.~k) 2 CR.c:'.>2 ijk , 
l. 

1) 

(3-20) 
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lly {Grid North) 

i (x.,y.) 
I I 

Figure 3.3 Angle on the Mapping Plane 

X 



as. 'k 
_2)_ = 

ay. l. 

0 0 
as .. k ..;,(y,-y,) 
~ - --~J ___ J._ 

ax. - (t~.) 2 
J l.J 

as. 'k 
0 0 (x.-x.) 

l.J J l. 
ay. (t~.) 2 J 

l.J 

as. 'k 
0 0 

(yk-yi) l.J =---= 
a~ ·o 

(tik) 

as. 'k 
( 0 0 

l.J - ~,..xi) 
= 

ayk (t~k) 2 
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0 0 
(x.-x.) 

J l. 

(t~.) 2 
l.J 

a .. . l.J I 

b .. 
l.J 

, 

-aik I 

-b. l.k 
, 

, 

0 
where tik is the mapping plane distance between points i and k computed 

using the approximate coordinates. Substituting the-above values into 

(3-21) 

(3-22) 

(3-23) 

(3-24) 

(3-25) 

equations (3-19) and subsequently evaluati~ the linearized mathematical 

model (eq. (3-18)) gives the observation equation as 

0 0 

[arctan 
~-xi 

( ) - arctan 
0 0 

yk-yi 

0 0 x.-x. 
( J 'l.) 

0 0 
y,-y-:, 

J l. 

(3-26) 



or in matrix form , 
. 0 0 
"k-xi 

:i" =[arctan ( ) -
B. 'k o o 
~J . yk-y i 
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x.-x. 
arctan(__J_2;_)-B., ]+ p" 

0 0 ~Jk y,-y, . 
J. ~ 

[c. 'kd. 'ka. ,b .. -a. k-b.k] 
~J ~J ~) ~J. ~ ~ 

Again, using the symbolic matrix notation, equation (3-27) becomes 

V =W 
B. 'k B. 'k 
~) ~) 

X 

(1 ,1) (1,1) (1,6) (6,1) 

6xi • 

6Yi 

6xj 

dy. 
) 

cS"k 
c5yk 

(3-27) 

(3-28) 



4. MATHEMATICAL MODELS FOR DISTANCE OBSERVATIONS 

This chapter describes the nonlinear and linearized 

mathematical IIDdels relating plane coordinates (x 1 y) to observed distances 

t .. from point i to point j reduced to a conformal mapping plane [e.g. 
1] 

Thomson et al., 1978 1 section 4.2.4]. The nonlinear form of the 

distance mathematical model is (see Figure 4.1) 

F .. 
1] 

(4-1) (4-1) 

Linearization of equation (4-1) by a linear Taylor series 

(see Appendix I) expansion gives the linearized form of the distance 

mathematical model as 

F .. 
1] 

0 
= Fij + dFij 

0 0 2 2 112 
((x. -x. ) + (y. -y. ) ) -' !. . + dt. . - V + 

J J. J J. l.J l.J Jl,ij 

where ((x~-x~) 2 + (y~~y~) 2) 112 =computed value of the distance based on 

0 0 
approximate values of the coordinates (x 1Y >~ 

(4-2) 

dt .. =differential change in the computed distance resulting from 
l.J 

differential changes in the approximate coordinates (see 

eq. (4-3)) 1 

V = correction to the observed mapping plane distance. 
Jl. •• 
1] 

The differential change in distance dR. .. is given .as 
1) 

at.. at.. a1.. at.. 
dt .. =~ dx. +~dy, +~dx. +~dy. 1 

l.J oXi J. <>Y i J. axj J <>Y j J 

where the partial derivatives are 

47 

(4-3) 
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_________ J 

i(x.,y.) 
I I 

(x.-x.) 
J I 

Figure 4.1 Distance on the Mapping Plane 

X 
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(H. •• 
0 0 

- (x.-x.) 
_ll= J 1 = e .. ax. 0 1] 

1 1 .. 
(4-4) 

1] 

at .. - (y. -y.) 
___!_J_ 1 1 

f .. 
ayi 0 1] 1. ~ 

{4-5) 

1] 

at .. 
0 0 

(x.-x-;) 
-2:2 = J 1 -e .. ax. 0 1] 

] t .. 
1] 

(4-6) 

ati. 
0 0 

(yj-y i) 
_2:2 = = -f .. 

ayj 0 1] 
, 

1 .. 
1] 

(4-7} 

0 
where R.. • is the mapping plane distance between_ points i and j computed 

1] 

using the approximate coordinates. Substituting these partial derivatives 

into equation (4-3) to obtain dt .. , and, in turn, substituting dt .. back 
1] 1] 

into equation (4-2) yields the distance observation equation as 

v = [((x~-x~) 2+Cy~-y~> 2 > 112 - t .. ] +e .. ox.+f .. oy.-e .. ox.-f .. oy., (4-8) 
1 ij ] 1 ] 1 1] 1] 1 1] 1 1] ] 1] ] 

or in matrix form 

= [((x'?-x~) 2+(yc:'-yc:') 2 ) 112 - 1 .. ] +[e .. £ .. - e .. - f .. ] 
] 1 ] 1 1] 1] 1] 1] 1] 

ox. • (4-9) 
1 

oy. 
1 

ox. 
] 

oy. 
] 

The units of both equations (4-8) and (4-9) are metres. Converting the 

observation equation into symbolic matrix notation as in section (3-1) 

(cf. eq. (3-10)) yields 

v 
!1,,. 
1] 

= w 
R. •• 

•1] 

(1,1) (1,1) 

+ A 
R. •• 

X 
1] 

(1,4) (4,1) 

(4-10) 



5. SOLUTION OF UNIQUE CASES 

This chapter covers the unique cases (i.e number of 

observations n = number of parameters u) of coordinate determination 

encountered in practice (e.g. direct problem, intersection, resection, 

traverse). The inverse (explicit) mathematical models developed in 

chapters 3 and 4 are combined using the method of least squares (see 

Appendix II) to solve these unique cases. This leads to a unified 

approach when the overdetermined (n>u) cases are considered in chapter 

6. For treatment of these unique cases by the direct method (cf. eq. 

(1-1)), the reader is referred to e.g. Faig [1972], Thomson et a1. 

[1978], Richardus [1974]. 

For all of the examples considered in this chapter, it is 

assumed that the observations have been reduced to a conformal mapping 

plane as explained in section 2.2. Thus, although the examples are 

not explicitly spelled out for each of the three existing Maritime 

conformal mapping planes [Krakiwsky et al., 19771~ the methods used 

are equally applicable to all three provinces. The only differences 

are in the actual values of the initial approximate coordinates and 

the final adjusted coordinates. 

All of the examples in this and following chapters have been 

performed by program GEOPAN [Steeves, 1978]. 

so 
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5.1 Direct Problem 

The direct problem considered here (see Figure 5.1) is 

essentially the same as that used in section 4.8.1 of Thomson et al. 

[1978]. The only difference is that here point 1 is considered fixed 

(i.e. its covariance matrix is zero) whereas in Thomson et al. [1978], 

point 1 had a covariance matrix associated with it. 

2 

lly {Grid North) 

1 
Figure 5.1 Di.rect Problem 

The approximate coordinates of point 2, the fixed coordinates 

of point 1, the reduced observations and their standard deviations are 

given in Table 5.1. The standard deviations are derived through the 

formulae.developed in section 2.1. For instance, the standard 

Coordinates of Points Observations on the Mapping Plane 

Station X(m) Y(m) Type From To Value a 

1 377164.887 862395.774 Az. 1 2 44° 15'28~97 s•:o 

2 378907.0 864184.0 Dist. 1 2 2496.423 m 0.03 m 

Table 5.1. Initial Data for Direct Problem 
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deviation of 5'.'0 for the observed azimuth could result from the azimuth 

observed three times by the hour angle method wit:. a l" theodolite and 

at= l.Os (cf. Table 2.1). Similarly, the distance standard deviation 

of 0.03 m could result (assuming a = 0 0 ) from the distance observed 
r '" 

by a CA 1000 with cr 
p 

5 mbar and crT= a~T = l°C (cf. Table 2.8). The 

approximate coordinates are determined graphically or analytically as 

suggested in section 2.2. 

The mathematical model used here is a combination of equations 

(3-10) and (4-10). The residual vector V is defined as 

v w 

{ 2, 1) ( 2, 1) 

or explicitly 
0 

x2-xl 
arctan( 0 ) - t 1 , 2 

y2-yl 

v 
{2,1) 

where the units are 

v 
{2,1) 

+ A X 

(2,2) (2,1) 

0 
{y 2 -y 1) 

p" 
0 2 

{~1,2) 

+ 
0 

(x2-xl) 

~0 
1,2 

-{x0 -x ) 
II 2 1 

ox2 p 0 2 
{~1,2) 

0 
{y2-yl) 

ay2 

0 

~1,2 

{5-2) 

{5-3) 

The solution X is given from Appendix II, equation (AIII-11) 

as 

~ T -1 
X = - [A P A] {5-4) 

Thus, using the above coordinates and the observations with their standard 

deviations, the A, P and W matrices are numerically evaluated yielding 



A 
[

59.17941 

0.6978111 

and, assuming 
2 = 1 a 

0 

p = [0-04 
e 

Using these matrices, 
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-57.65335] 

0.7162819 

(cf. eq. (AII-3)) I 

11:1.11] in units of 

evaluationr•of equation 

X [0.11835 m ] 

-0.27802 m 

w = [-23.0324] 

0.11655 
I 

[ (" ) -2 
m-2] • 

(5-4) yields 

for the first iteration, and the corresponding values of the parameters 

are (eq. (AII-12)) 

X = xo + X = [378907.0] 

864184.0 

+ [ 0.11835] 

-0.27802 

= [
378907 .118 m1· 
864183.722 m 

(5-S) 

These values for the parameters are now taken as new approximate coor-

dinates, and the A and W matrices are :reevaluated. They are 

[

59.17573 

A-

0.6978911 

-57.66265 ] 

0.7162039 

W= [
0.001075] 

0.000016 

Evaluating equation (5-4) for the second·time (iteration) yields 

~ =[-0. 00002] , 

0.00000 

which is insignificant (i.e. less than 0.001 m), and thus the solution 

has converged. The final least squares estimate of the coordinates of 

point 2 are 
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X = [x2] = [378907 .118 mm] • 

y2 864183.722 

These are identical to the results obtained in Thomson et al. [1978], 

section 4.8.1. 

The variance covariance matrix C of the parameters is given 
X 

by equation (AII-16) as 

(5-6) 

If X has been computed according to formula (5-4),.then this is a by-

product of computing the solution vector X. In this case it is 

c 
X 

= [ 0.2305•10-2 

-0.13925•10-2 

-0.13925 •10 - 2] I 

0.2233•10-2 

in units of 2 
m • Computing the standard error ellipse according to 

formulae (AIII-8), (AIII-5), (AIII-6) and (AIII-14) gives 

a = 0.061 m, 
s 

b = 0.030 m, 
s 

6 = -45° 44' 32". 

Assuming the a priori variance factor known, the c factor to increase 

the confidence level to 95% is (see Table AIII.l) 

C = (X2 )1/2 = (5.99)1/2 
2,0.95 

2.45 • 

Thus, the 95% confidence ellipse has a semi-major axis 

a = 0.149 m 

and a semi-minor axis 

b 0.074 m 
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The orientation remains the same as the standard ellipse. The 95% 

confidence ellipse is depicted in Figure 5.2. 

In this as in all of the unique cases, the residual vector 

V computed (eq. (AII-17)) after the final iteration is equal to zero. 

The observations can give only one value for the parameters, and thus 

there are no residual corrections for the observations. The a post-

A 2 
eriori variance factor a is zero in this case as well. 

0 
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lly 

0 5. 10 15 20 
Ellipse Scale (em) 

Figure 5.2 Confidence Ellipse for Direct Problem 
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5.2 Azimuth Intersection 

Flgure 5.3 shows the azimuth intersection example considered 

in this section. The mathematical model used.here is that of 

-lly (Grid North) 

1003 

0 =Unknown Point (Grid North) 

{1 = Fixed Point 

Figure 5.3 Azimuth Intersection on the Plane 

section 3.1, specifically equations (3-8), (3-9) and (3-10). In ~~is 

case, there are two azimuth observations (namely t 3 , 1003 and t 4 , 1003 > 

and two unknowns (coordinates of station 1003). Thus, the matrix 

form of the observation equation is 

V = W + A X (5-8) 

(2,1) (2,1) (2,2) (2,1) 

or, explicitly 
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0 0 0 

arctan 
xl003-x3 

- t 
yl003-y3 (xl003-x3) ox 

0 3,1003 0 i 0 2 1003 . 
v 

yl003-y3 (£3, 1003) (£3,1003) 
+ p" oy1oo3 (5-9) 

(2,1) 0 0 0 

arctan 
xl003-x4 

- t4,1003 
(y 1003 -y 4) - (xl004-x4) 

0 0 2 0 2 
yl003-y4 (R, 4,1003) (R, 4,1003) 

The approximate coordinates of points 1003 and the known coordinates 

of points 3 and 4 as well as the values and standard deviations of 

the observed azimuths reduced to the mapping plane are listed in Table 

5.2. The standard deviation of 4~0 could result from 4 determinations 

using the hour angle method with a 1" theodolite and c\ = 1. Os (see 

Table 2.1). 

Coordinates of Points Observed Azimuths Reduced to Mapping Plane 

Station X(m) Y (m) From To Value a 

1003 3265.0 645.0 3 1003 272° 10' 29!.'71 ~~0 

3 3660.0 630.0 4 1003 308° 15' 15!.'94 4'.'0 

4 3635.0 355.0 

Table 5.2 Initial Data for Azimuth Intersection 

The solution vector X is given as (cf. eq~ (AII-11)) 

~ T -1 T 
X = - [A PA} A PW 

Thus, using the above approximate coordinates for point 1003 and the 

observed azimuths and their standard deviations, the A, P and W matrices 

and vector are evaluated. They are 



A = [19. 80142 

270.6642 

521.4374] 

345.3302 

2 
and, assuming a = 1 , 

0 
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p = [0.0:25 0.:6J 

w 
r-0%3035] 

l 0~36394 , 

-2 
The units for P are (") and for A are (" /m).- Evaluation of the 

solution vector X gives 

~ = (-0.01575 mm] 

0.00181 

Thus, the least squares estimate of the parameters after this first 

iteration are 

X= [
3265.0] 

645.0 

+ 

0 A 

X=X +X, 

[
-0. 01575] 

0.00181 

[
3264. 984 m] 

645.002 m 

(5-10) 

These values for the parameters are now taken as new approximate values 

0 X , and the A and W matrices are reevaluated. They are 

[19.8022 521.4165] [0,0001046 ] 
A 

= 270.6504 

w = 

-0~00002522 • 345.3251 

This results in a solution vector X of 

X [0.00000] 
0.00000 
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Thus, the parameters X are unchanged by the results of this second 

solution or iterati:on, and it has converged. The variance covariance 

matrix C of the parameters is 
X 

c 
X 

[ 

0.347049.10-3 

-0.920918.10-4 

-0.920918.10-4 ] 

0.6534486.10-4 

The standard ellipse computed according to Appendix III is 

a 0.019 m 
s 

b 0.006 m 
s 

6 = -72° 24' 41" • 

2 
Assuming a known, the 95% confidence ellipse is 

0 

a = 0.047 m , 

b = 0.015 m 

Figure 5.4 shows the 95% confidence ellipse. 

0 2 4 6 8 10. 

Ellipse Scale (em) 

Figure 5.4 95% Confidence Ellipse for Azimuth Intersection 
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5.3 Distance Intersection 

Figure 5.5 shows the distance intersection example used 

for 

1003 
.13,1003 

c---------~~--~~. 3 

Figure 5.5 Distance Intersection 

this section. Points 3 and 4 are fixed, and point 1003 is unknown. 

Thus, there are two unknown parameters and two observations giving 

the.unique case again. 

The approximate coordinates for point 1003, the fixed 

coordinates of 

Coordinates of Points 

Station 

1003 

3 

4 

X(m) 

3265.0 

3660.0 

3635.0 

Y (m) 

645.0 

f-30.0 

355.0 

Observations on the Mapping Plane 

~ From TO Value a 

Dist. 

Dist. 

3 

4 

1003 

1003 

395.840 m 

464.103 m 

0.005 m 

0.006 m 

Table 5.3 Initial Data for Distance Intersection 
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points 3 and 4, and the observed distances and their standard deviations 

are listed in Table 5.3. These standard deviations could be a result 

of six determinations of the distance with a lightwave instrument such 

as the Hewlett-Packard 3800 (assuming or= a1 ). 

The observation equation in the form of formulae (4-9) and 

(4-10) is 

~ 
( 0 . ) 2 ( _0 -· ) 2) 1/2 II 

V = x1003-x3 + Yl003 Y3 N3,1003 + 

(2,1) ( 0 - )2 (' 0 . )2)1/2 1 
xl003 x4 + Y1003-y4 - 4,1003 

0 0 
<xl003 -x3> (yl003-y3) 

ox1003 0 0 
1 3,1003 "1 3,1003 

0 
(x1003 -x4) (y~003-y4) 5Y1oo3 

0 

.1',4,1003 
0 

1 4,1003 

Using the data from Table 5.3, the A, P and W metrices are 

A= [

-0.9992797 

-0.7870559 

0.03794731 ' 

0.6168817 

W = [-0.55498 m] 

6.00325 m 

and, assumed the a priori variance factor a 2 1 , 
0 

p 

-2 where A is unitless and P has units of m 

, 

Using these matrices to evaluate X for the first iteration 

(again using equation (AII-ll))yields 

(5-11) 
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X= [
-0.97203 m ] 

-10.97179 m 

, 

which results in the least squares estimate of the coordinates being 

[
3265. 0] 

X=Xp+~ == 

645.0 

[
-0.97203] 

+ -10.97179 

= [
3264.028 m] 

634.028 m 

(5-12) 

Using these parameter values as approximate coordinates now, and 

~eevaluating the A and W matrices for the second iteration gives 

r-0.9999483 0.01017244] [0.15283] 
A = , w = 

-0.7991728 0.6011013 0.09187 

Using these matrices (as well as P) to compute X again using equation 

(AII-11) gives 

X = [0.15336 m] 

0.05105 m 

(5-13) 

which, when added to this iterations' approximate coordinates (eq. (5-12)) 

gives the parameters from the second iteration as 

['264.02~] [0.15336] [3264.181 J 0 .... 
X=X'+X r:: + = (5-14) 

634.028 0.05105 634.079 

Because the correction or solution vector X was not insignificant (i.e. 

less than 0.001 m) on the second iteration (eq.(5-13)), a third iteration 

is required. Thus, the parameters of the second iteration (eq. (5-14)) 

now becomes the approximate coordinates X0 for the third iteration, and 

the A and W matrices are again computed. They are 



A [

-0.9999469 

-0.7990006 

o. 01030534] 

0.6013303 
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W = [0.3496·10~: m1 
0.1905·10 m 

The solution vector X from this third iteration is 

i = [ 0.00000] I 

-0.00003 

which is less than 0.001 m, and thus insignificant. The solution has 

converged, and the final least squares estimates for the coordinates 

of point 1003 are given by equation (5-14). 

The variance covariance matrix of the parameters computed 

according to equation (AII-16) is 

[

0.2972685•10-4 

c = 

X 0.40380781•10-4 

0.40380781·10-4] 

0.13924377•10-3 

which results in a standard error ellipse of 

a =· 0.01235 m I s 

b = 0.00406 m s 

a = 18° 12 1 11" 

Increasing the confidence lebel to 95% as in the previous two examples 

yields 

a = 0.030 m 

b = 0.010 m 

Figure 5. 6 illustrates the result·. 
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13,1003 
3 

0 2 4 6 8 10 
Ellipse Scale (em) 

4 

Figure 5.6 95% Confidence Ellipse for Distance Intersection 

5.4 Angle Resection 

The angle resection considered here is depicted in figure 5.7. 

There are two angle observations B1007 , 2 , 1 and B1007 , 1 , 3 , where the 

subscripts stand for stations 'at, from, to'. Point 1007 is the 

unknown station and points 1,2 and 3 are fixed. 

Table 5.4 lists the point coordinates as well as the 

observations 

Coordinates of Points Observations on the MaEping Plane 

Station X y At From To Value a -
1007 3160.0 865.0 1007 2 1 23°13'37':33 3~0 

1 2640.0 1160.0 1007 1 3 175°36'21!.'70 3~5 

2 2530.0 935.0 

3 3660.0 630.0 

Table 5.4 Initial Data for Angle Resection 
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and their standard deviations. These standard deviations could result 

from 2 sets of observations with a 1" theodolite or 8 to 10 sets with 

a 20" instrument (see Table 2.4). 

The observation equation as developed in section 3.3 (eqs. 

(3-26) and (3-27)) is 
0 

xl-xl007 
arctan ( ) - arctan 

0 

v 
yl-yl007 

= (2,1) 0 
x3-x1007 

arctan ( ) - arctan 
0 

y3-yl007 

0 ) 0 
-(yl-yl007 (y2-yl007) 

+ 0 . 2 
(.!1.1007 ,1> 

+ p" 

0 2 
(.!1.1007 ,2> 

0 
(yl-yl007) 

0 2 
(.!1.1007 ,1> 

0 II 

x2-xl007 
( 0 ) - B 1007,2,1 
y2-yl007 

0 
x1-xl007 

( ) 
0 

- B 1007,1,3 

y1-y1007 

0 
(xl-xl007) 

0 
_ (x2 -xl007) 

0 2 
(.!1.1007,2) 

0 2 
(.!1.1007' 2) 

0 
(x3-xl007) -

0 2 
(.!1.1007 '3) 

0 
(xl-xl007) 

0 2 
(.!1.1007,1) 

oxl007 

oy1oo7 

. 

Substituting the initial data from Table 5.4 into the above expressions 

results in 

A= [
-134.3056 

329.0484 

d . 2 an , assum1ng o0 1 ' 

p = 

23. 32723] 

637.974:3 

[-2~34886] w = 

3~317 

-2 -1 The units for Pare (") and for A are (").m • 

The solution vector X resulting from this first iteration 

(computed by eq. (AII-11)) is 

(5-15) 
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X [
-0.01688 mm'] 

0.00351 

(5-16) 

which gives the par~~eter vector as 

==[3161. 0] + [-0. 01688] 

865.0 0.00351 

[
3159. 983 mm] 

865.004 

(5-17) 

These parameter values are no·,.; taken as new appro;:imate coordinates 

0 
X , the A and W matrices are recomputed to enable the second iteration 

value for X to be fo~~c. They are 

A= [-134.3128 

329.0485 

23. 32934] 

637.9719 

which results in a solution vector of 

X= [0.00000]· 

0.00000 

[0~6428•10 -: J 
-0'!4607·10 5 

Thus, the solution has converged, and the final least squares estimate 

of the coordinates of point 1007 is given by equation (5-17). 

The variance covariance matrix of the parameters corr~uted 

according to equation (AII-16) is 

c 
X 

[
0.42099214 

-0.21233829 

-a. 21233829 ·1o - 3 J , 
0.13714132 . 10-3 

which gives the standard e~ror ellipse computed by the equations of 

Appendix III as 
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Figure 5. 8 95% confidence EliJ.pse. fr<>nl Angle Resection 

3 

C5'l 
I!) 



a = 0.02312 m 
s 

b = 0.00486 m 1 s 

70 

a = - 61° 52' 46" 

Increasing the confidence level to 95% yields 

a = 0.057 m 

b = 0.012 m 

The resultant confidence ellipse is depicted in Figure 5.8. 

The variance covariance matrix for the parameters C would 
X 

be difficult to compute using the direct (explicit) mathematical model 

for an angle resection, mainly due to the complicated partial derivatives 

:~ needed for the Jacobian of transformation in the covariance law 

(cf. Thomson et al. [1978), Appendix II). Thus, it is seen that the 

method of least squares offers a consistently convenient method of 

error propogation. 

5.5 apen Traverse 

Figure 5.9 shows the open ended traverse considered in this 

example. As in section 5.1, angle and distance observations are 

combined in the same model. There are three angles and three distances 

for a total of six observations, and three unknown points, or six 

unknown·coordinates. Thus, n = u and this is a unique case. 

The fixed coordinates for poin~l and 2, the approximate 

coordinates for points 1001, 1002 and 1003, and the observations and 

their standard deviations are listed below in Table 5.5. The observational 

standard deviations are computed according to section 2.1. 



71 

J.I,IOOI 1001 .2.1001,1002 

2 

• 

1003 

Figure 5.9 Open Traverse 

Coordinates of Points Observations on the Mapping Plane 

Station X y Type At From To Value a 

1001 2950.0 1160.0 Dist. 1 1 . 1001 307.997 m 0.010 m 

1002 3280.0 1145.0 Dist. 1001 1001 1002 330.355 m 0.012 m 

1003 3265.0 645.0 Dist. 1002 1002 1003 500.243 m 0.011 m 

1 2640.0 1160.0 Angle 1 2 1001 243°56'55~16 3~'5 

2 2530.0 935.0 Angle 1001 1 1002 182°36'5'!44 4~0 

Angle 1002 1001 1003 269°6 1 51~'39 3~0 

Table 5. 5 Initial Data for Open Traverse 



72 

Combining the mathemat:ical models developed in section 3. 3 

and chapter 4, the observation equation for this example is 

v 
(6 ,1) 

A 
(6,6) 

or E'va.luatins the matrices individually, 

w 
::= 

- arctan 
x -x 
2' 1 (---) 

X , 
( 6,1) 

9..1001,1002 

9..1002,1003 

B 
1,2,1001 

(6 ,1) 
y2-y1 

• -U·,6J 

0 0 
x -x 

t ( 1002 1001) arc an 
0 0 

y1002-y1001 

0 0 x -x 
t ( 1003 1002 ) arc an----

o 0 
y1003-y1002 

·-;~0_\-;J:l' (y~COl-yll 

l~,lO(ll 1;,1001 

-r.~c;o~-x~~~~ -(y~002~~QOll 

•• lCOl,l(X):l 1 ~001,10.,7 

h·~l"'~l-yl) -b:~~~ll-xl) 

"~.1001 12 ·o > 
(ll,lC"Jl, 

- arctan 

0 0 
xl001-x1002 

arctan(-o-----~---)- Bl002,1001,1003 
yl00l-yl002 

~ 0 0 

(x~O.:Jl·x7o_Q!) 

1~ool,lC!Oi 
b~on·r7oot 

0 

. l~tl0l 1 1CO~ 

-b~:~))~-~C>?.?~ 
•• lOO:Z,lOOl 

-cr~ooJ·yit~ll h.~ool·x~c-ol' 
1~001rl00J ·~002",100) 

0 0 0 

:.!.~!o_o:z->'~,..?~ • lyl-y~2:2_~ c.~,~:z ~flat' ~~ .. ·,;oot,. fr~c-ol·y~".i"'.;~ 
Ca;OOl,l00lJ 2 (l~,lCCli'· u;001,10C4)l U~,1001Jl (l~OOl,lOOl)l 

.. (x;007·•~1J0l) 

c 1;001, 1002) 2 
0 

Cx~OOl-:w~OV2) _t•~oot-x;O.,J2J ()'~00) 
0 

-ylC'~l~ 

(~001.100J' 2 ~~OOl.lOOll 2 1'~oo2.,looJ12 

(5-18) 

0 

0 

ly~(',.))-y~r::-c2~ 

l~C'IOl,lOO) 

0 

0 

- t•7=·.)) -•7:-::'1 1 

lt~OiJ1.,l.:OO!), 

(5-19 
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Note that p" has been omitted from the non-zero elements of the last three 

rows of A. The first three rows of A are unitless, whereas the last 

three have units of (")m-1• The solution vector has the form 

oxlOOl 

~ylOOl 

X= 
QX1002 

(5-20) 

~yl002 

&xl003 

~yl003 

Using the initial values from Table 5.5 yields the following 

A, W and P matrices: 

100.0 o.o o.o o.o 

-0.9989685 0.04540766 0.9989685 -0.04540766 

o.o 

o.o 

o.o 

O;O 

o.o 

o.o 

o.o 

-665.3703 

o.02998651 o. 9995503 -o. 02998651 -o. 9995503 

A= o.o 0.0 o.o 

28.35255 1289.126 -28.35255 -623.7561 0.0 

-28.35255 -623.7561 440.5112 611.3914 -412.1587 

o.o 

o.o 

12.36476 

(note that p" has been multiplied onto the appropriate elements for 

A matrix) 

2.0033911 m 10000.0 0 0 0 0 0 

-0.01411715 m 0 6944.44 0 0 0 0 

-0.01848697 m 0 0 8264.46 0 0 0 
W= ' P= 

-7~7426476 0 0 0 0.08163 0 0 

3~7866587 0 0 0 0 0.0625 0 

this 

5~4711834 0 0 0 0 0 0.1111 

, 
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The solution vector X computed (using eq. (AII-11)) from these first 

iteration matrices is 

-2.00339 m 

-0.01164 m 

-1.98958 m 
X = , 

-0.1861 m 

-1.98646 m 

-0.03720 m 

which results in the parameters X being 

2950.0 -2.00339 2947.997 m 

1160.0 -0.01164 1159.988 In 

X=X0+~ 
3280.0 -1.98958 3278.010 m 

= + = (5-21) 
1145.0 -o 1861 1144.981 m 

3265.0 -1.98646 3263.014 m 

645.0 -0.03720 644.963 m 

Using these parameters as new approximate coordinates and 

recomputing A and W to get a new solution vector X results in 

X= 

o.ooooo 

0.00008 

o.ooooo 

0.00007 

0.00000 

0.00007 

All elements of X are less than 0.001 m, and thus the-solution has 

converged. Thus, the final least squares estimate of the coordinates 

of points 1001, 1002 and 1003 is given by equation (5-21). 
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The variance covariance matrix of the parameters assuming 

the a posteriori variance factor known (eq. (AII-16)) is 

0.10086490.10-l -o. 27788873.10-8 0.10086495.10-3 -0.16731703.10-8 0.10086663.10-3 -o.17234176.1o-• 

o. 27313521.10-4 o.l3280578.1o-5 -o. 56579556.10-4 o. 45670326.10-4 -o. 55249614.10-4 

0.24569748.10-3 -0 •. 19616485.10-s 0.25068166.10-3 -0.21111371.10-5 - -0.15846045.10-3 0.15194931.10-3 -3 
0.15384425.10 

0.47467789.10-3 0.14892772.10-3 

SyJIIIIetric 0.27256622.10-l 

Table 5.6 shows the standard and 95% station error ellipses as well as 

the relative error ellipses between the unknown points. Again, it is 

2 assumed that a is known, and the c factor is 2.45. 
0 

Station Ellipses 

Standard 

Station a (m) 
s 

1001 0.010 

1002 0.016 

1003 0.024 

Relative Ellipses 

b (m) 
s 

0.005 

0.013 

0.014 

Standard 

Station a (m) b (m) 
s s 

1001 to 1002 0.012 0.009 

1002 to 1003 0.015 0.011 

95% 

e a(m) 

-89°59'52" 0.025 

-88°42'45" 0.038 

62° 4'46" o.o58 

95% 

e a(m) 

-87°23'47" 0.030 

-88°16'56" 0.036 

b(m) 

0.013 

0.031 

0.034 

b(m) 

0.021 

0.027 

Table 5.6 Station and Relative Ellipses for Open Traverse 

(5-22) 
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The traverse with both station and relative 95% confidence 

ellipses is shown in Figure 5.10. 

2 

I J 

0 2 4 & 8 10 

£ IIIP•• scale (em) 

Figure 5.10 95% Confidence Ellipses for Open Traverse 



6. SOLUTION OF OVERDETERMINED CASES 

As already mentioned in the introduction, overdetermined 

cases include any network in which the nuwher of observations n is greater 

than the number of unknowns u. Any overdetermined network has more than 

one unique solution for the coordinates of the unknown points. Thus, the 

best solution based on all of the available information must be found. This 

is accomplished -by the method of least squares (see Appendix II) which 

gives the minimum weighted sum of squares of the residuals (corrections to 

th b . ) . T . . e o servat~ons , ~.e. V PV = ~n~mum. A simple example is the least 

squares line fitting technique shown in Figure 6.1. The observations 

are the y coordinate (horizontal axis t is known) and the unknowns are the 

slope of the line a and the y intersect b (i.e. y = at + b) • The least 

squares technique minimizes the sum square of the residuals, which in this 

case is the-distance parallel to they axis from the observation point 

to the line. 

y 
6 

~1--------------------~~~t 

Figure 6.1 Least Squares Line Fitting 
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Besides having at least as many observations as unknowns, a 

horizontal network mus.t also have certain other bas.ic information befure 

it can be solved. A network must have scale, orientation, and one known 

position. Orientation is introduced by observing an azimuth, or by 

"fixing" one point along with the x or y coordinate of another point. 

The scale is provided by measuring at least one distance and including 

it in the network, or by "fixing" at least two points. At least one 

point must be assumed known to provide the minimum position information 

for a horizontal network. If two or more points are assumed known, 

then the scale and orientation are inherent as well. If this minimum 

information is not provided, then usually the normal equations matrix 

N = ATPA is singular, and its inverse cannot be found. 

Classical horizontal networks were usually measured by triang­

ulation methods; i.e. having only angular observations between stations. 

The scale was introduced by baselines measured with invar wires or tapes. 

Since the introduction of EDM equipment, trilateration networks composed 

mainly of distance observations have been measured, with the orientation 

provided by azimuth observations. Modern day horizontal networks are 

usually composed of a mixture of both angular and distance observations, 

and the phrase triangulateration network has been coined to characterize 

them. A traverse is a simple example of a triangulateration network. 

The following examples show some of the various network types for over~ 

determined cases. 

6.1 Closed Traverse 

Figure 6.2 depicts the closed traverse considered in this example. 
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There are four unknown points and four fixed points. The x, y coordinates 

of the four unknown points along with the six orientation unknowns (see 

section 3.2) gives a total of fourteen unknown parameters. It is seen 

from Figure 6.2 and Table 6.1 that there are a total of seventeen 

observations, and the degrees of freedom is, therefore, three. Since 

the degrees of freedom is greater than zero, this problem is overdetermined. 

Coordinates of Pqi~ts Observations on-the Mapping Plane 

Station X y Type From To Value a 

1003 3265.0 645.0 Dir. 1 1006 0°00'00':0 2~0 

1004 3570.0 915.0 Dir. 1 2 66°1' l~O 2~0 

1006 2820.0 945.0 Dir. 1006 1007 0°00'00':0 2':0 
1007 3160.0 865.0 Dir. 1006 1 216°53'42':0 2':0 

1 2640.0 1160.0 Dir. 1007 1003 0°00'00'.'0 2':0 
2 2530.0 935.0 Dir. 1007 1006 128°41'52':0 2':0 
3 3660.0 630.0 Dir. 1003 1004 0"00'00':0 2':0 
4 3635.0 355.0 Dir. 1003 1007 286°1'57'.'0 2~0 

Dir. 1004 3 0"00'00'.'0 2':0 
Dir. 1004 1003 65°48'6':0 2':0 
Dir. 3 4 0"00'00':0 2':0 
Dir. 3 1004 157°25'5':0 2'.'0 
Dist. 3 1004 301.200 m .01 m 
Dist. 1 1006 279.747 m .01 m 
Dist. 1006 1007 348.982 m .01 m 

· Dist. 1007 1003 243.623 m .01 m 
·oist. 1003 1004 408.310 m .01 m 

Table 6.1 Initial Data for Closed Traverse 

Again, it is assumed that the observations have already been reduced to 

the mapping plane, and that the standard deviations have been computed 

according to section 2.1. 

Combining the mathematical models developed in section 3.2 and 

chapter 4, the observation equation takes the form 

v 
.(17,1) 

w + 
(17,1) 

A X 
(17,14) (14,1) 
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... 
Thew, A and X matrices are evaluated exactly as for the unique case 

examples in chapter 5. The primary difference between the unique case 

and this overdetermined case is that the residuals V are no longer zero. 

TheW matrix is computed exactly as.in equations (3-15) (directions) 

and (4-9) (distances) • For a direction, the W matrix element is 

w = 
d .. 

arctan 
~J 

x~-x~ 

<__l__!:.> - z~ - d .. 
l. l.) 

y~-y~ 
J l. 

Taking the direction dl,lOOG as an example and using the initial 

approximate coordinates of Table 6.1 yields 

w = arctan (2820.0-2640.0) - arctan (2820.0-2~40.0) - oooo•oo~o , 
dl,l006 945.0-1160.0 945.0-1160.0 

w = 0~0 
dl,l006 

The approximate value for the orientation unknown Z~ is always computed 
l. 

as the azimuth between the from and to stations of. the first direction 

in the set of directions. This causes the W matrix element for the 

first direction of a set to be zero assuming that the directions are 

reduced such that the first direction of the set always has an observed 

value of 0°00'00~0. In this case, dl,l006 is the first direction of the 

set. For the second direction of the set d1 , 2 , the W matrix element is 

W = arctan (2530.0-2640.0) _ arctan (_2820.0-2640.0) _ 6601 , 1 ~ 0 
d1,2 935.0-1160.0 945.0-1160.0 

206° 03' 12~58- 140° 03'49~02 - 66°1 1 1~0 , 

-97~44 • 
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The distance W matrix elements are computed aa in chapter 5, for example 

WR. 
3,1004 

= ((3570.0-3660.01 2 + (915.0-630.0) 2) 112 - 301.200 

w~. . 
3,1004 

= 298.873 - 301.200 

W = -2.327 m . 
.2.3,1004 

After computing all of the elements of W using the initial coordinates in 

Table 6.1, W is 

wT = (O':o, -97~44, o•:o, -258':85, o':o,· 203':80, o':o, -106':71, O':O, 745':82, 
(1 ,17) 

0':0, -496'!99, -2.327 m, 0.654 m, 0.303 m, 0.149 m, -0.971 m) 

where the transpose of W is given for ease of writing. 

The A matrix is computed via formulae (3~15) and (4-9) as well. 

For example, the direction d1 , 1006 has nonzero elements -pa1 , 1006 , 

-pb1 , 1006 , -1 in columns 5, 6 and 9 of row 1 of A. Distance .2.3 , 1004 has 

nonzero elements - e 3 , 1004 and f 3 , 1004 in columns 3 and 4 of row 13 of 

A. The entire A matrix is given to five significant digits below. 

(17,14) 

0 

0 

.o 

0 

0 

0 

0 

0 

0 0 

0 0 

0 

0 0 

-763.62 -364.46 0 0 

0 0 0 0 

-335.64 379.15 335.64 -379.15 

-763.62 -364.46 0 0 

0 0 658.11 207.82 

-335.64 379.15 335.64 -379.15 

0 0 0 0 

0 0 658.11 207.82 

0 0 -0.30113 0.95358 

0 0 0 0 

0 0 0 

~e41~7J -0.90248 Q 0 

-c. ''a?;; -'-.66284 o. 74876 o.662B4 

-564.03 -472.21 0 0 -1 0 0 0 0 0 

0 0 0 0 -1 0 0 0 0 0 

135.26 574.84 --135.26 -574.84 0 -1 0 0 0 0 

-564.03 -472.21 0 0 0 -1 0 0 0 0 

0 0 763.62 364.46 0 0 -1 0 0 0 

135.26 574.84 -us. 26 -574.84 o o -1 o o o 

0 0 0 0 0 0 0 -1 0 0 

0 0 763,62 364.46 0 0 0 -1 0 0 

0 0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 0 0 -1 

0 0 0 0 0 0 0 0 0 0 

o. 64194 -o. 76676 0 0 0 0 0 0 0 0 

-0.97342 0.22904 0.97342 -0.22904 0 0 0 0 0 0 

0 0 -0.43073 o. 90248 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
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where z1 , z2 , z3 , z4 , z5 and z6 refer to the orientation unknowns at 

stations 1, 1006, 1007, 1003, 1004, and 3, respecti.vely. 

The P matrix is diagonal of size 17 .x 17 with the inverse of 

the standard deviations (Table 6.1} squared on the diagonal. It is 

p 

(17,17) 

0.25 0 
0 0.25 

0 
0 
0.25 0 

0 0.25 0 
0 0.25 0 

0 0.25 0 
0 0.25 0 

0 0.25 0 
0 0.25 0 

0 0.25 0 
0 o. 25 0 

o n.2s 0 
0 10000 0 

0 lOOOO. 0 
0 10000 0 

0 

0 10000 0 

0 0 10000 

" Computing the solution vector X via equation (AII-11) and the. 

above W, A and P matrices yields (in units of metres) 

AT 
X = (-0.40492, 1.4367, -0.01428, 2.43956, -0.32453, 0.58429, -0.49373, 

1.23052) 

for this first iteration. The orientation unknowns are not given as they 

are considered as nuisance parameters. This results in tne parameters 

T T "'T X =X0 +X= (3264.595, 646.437, 3569.986, 917.440, 2819.675, 945.584, 

3159.506, 866.231), 

where X0 are the approximate coordinates of Table 6.1. 

These parameters X are taken as new approximate coordinates X0 , 

and the A and W matrices are reevaluated using them. Equation (AII-11) 

is again used to compute the solution vector for the second iteration as 
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AT 
X= (0.00.451, -0.00163, 0.00500, 0.0.0123, -0.00103, 0.00361, 

-0.0.01111 , 

which results in the parameter vector 

T T "'T 
X =X0 +X = (3264.600, 646.435, 3569.991, 917.441, 2819.677, 945.583, 

3159.510, 866.229). (6-1) 

These parameters are taken as new approximate coordinates X0 

again, and the third solution vector is (after reevaluating A and W) 

A"'! 
X (0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 

0.00000) 

and the solution has converged. The final parameters (x,y coordinates 

of the unknown points) are thus given by equation (6-1) • 

The variance covariance matrix of the parameters is computed 

via equation (AII-16) assuming the a priori variance factor is 1. To five 

significant digits, C is 
X 

-0.24399.10 
-4 0.15629.10 

-4 . -5 
-0.70930.10 0.44888.10-4 o. 76894.10 

-6 

0.59682.10-4 -0.22694.10:5 0.65123.10-5 

0.72621.10-4 -0.16742.10-4 

o. 20302.10-4 

0.56083.10-4 -0.70447.10 
-5 0.24325.10 

-4 -5 -4 
0.56478.10 0.39107.10 

-4 -5 -5 -5 -o.11126.10 - 4 
-0.22861.10 o. 25438.10 -0.50328.10 0.95914.10 

-4 -0.10576.10-4 0.19808.10-4 -4 o. 32084.10-4 
0.69924.10 -0.20030.10 

0.37112.10-4 -4 0.18196.10-4 -4 
-0.32346.10 -0.20442.10 

-4 -o.15496.10-4 -4 
0.46543.10 0.43721.10 

0.57933.10-4 -0.20907.10- 4 

0.65816.10-4 sy=etric 

The 95% (c factor = 2.45) station and relative error ellipses computed 

by the equations of Appendix III from the above C matrix are listed 
X 

in Table 6.2, and plotted in Figure 6.3. 
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Station Ellipses Relative Ellipses 

Station a{m) b(m) e Station s.tation a(.ml b(ml e 

1003 .021 .019 -9°39'53" 1003 1004 .021 .012 69°24'07" 

1004 .022 .008 -21°19'45" 1003 1007 .022 .008 -30°39'26" 

"1006 .021 .007 -40°51'12" 1007 1006 .020 .010 -67°07'34" 

1007 .022 .016 -39°39'44" 

Table 6.2 95% Error Ellipses for Closed Traverse 

The residuals V computed by equation (AII-17) are 

VT = (2.07, -2.07, 1.48, -1.48, 0.91, -0.91, 0.41, -0.41, 0.45, -0.45, 
(1, 17) 

-0.14, 0.14, 0.004, o.ooo, -0.007, 0.003, -0.011), (6-2) 

where the units are arcseconds for the first 12 residuals (i.e. for directions), 

and metres for the last five (distance residuals). Using these residuals and 

~ 2 
the P matrix computed earlier, the a posteriori variance factor a is 

0 

computed via equation (AII-18) as 

T 
v d~v = 1. 9214 

Both the residuals and a posteriori variance factor are used in chapter 

9 for the post analysis procedures. 

6. 2 N-etwork 

(6-3) 

Figure 6.4 shows the network considered in this example. It consists 

of 10 unknown stations and one fixed station with 38 directions, 17 distances; 

and 2 azimuths observed. Accounting for the 11 orientation unknowns, then, 

the degrees of freedom is 26. The initial point coordinates are listed in 

Table 6.3 and the observations and their standard deviations are given in 

Table 6.4. 
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Station X y Station X y 

1 2640.0 1160.0 1003 3265.0 645.0 

2 2530.0 935.0 1004 3570.0 915.0 

3 3660.0 630.0 1005 2770.0 655.0 

4 3635.0 355.0 1006 2820.0 945.0 

1001 2950.0 1160.0 1007 3160.0 865.0 

1002 3280.0 1145.0 

Table 6.3 Initial Coordinates for Network Stations 

Combining the mathematical models of section; 3.1 and 3. 2 and 

chapter 4, the matrix form of the observation equations is 

v = W + A X 
(57,1) (57 ,1) (57 ,31) (31,1) 

Using the same techniques as in the previous example in section 6.1, 

the W matrix is computed as 

WT = '(327~58, 928~78, 0.191 m, 0.003 m, 0.010 m, -0.613 m, -0.48 m, 
(1,57) 

0.827 m, -0.588.m, 0.448 m, 0.287 m, 0.571 m, 0.223 m, 0.242 m, 

-1.011 m, -0.198 m, -0.112 m, -0.603 m, -0.774 m, 0~0, -215~98, -388~51, 

-337~42, o~o. -344~78, -371~73, -527~22, o~o, -59~62, -240:83, 

-369~48, o~o. 544~73, -304~18, o~o, -497~86, -446~99, -367~48, 

o~o. -161~91, 60~93, 41~22, o~o. -67~31, -1361~01, -1193~51, 

-276~02, o~o. 236~22, -1184~82, o~o, -204~24, o~o. -688~87, 

-582~99, 0~0, 522~36) 

where the order of the elements of W is the same as the order of the 

observations in Table 6.4. The A matrix is too large to put conveniently 

on one page, so the nonzero elements of it are given on the following 



~ From 

Az 

Az 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dist 

Dir 

Dir 

Dir 

Dir. 

Dir 

Dir 

Dir 

Dir 

Dir 

Dir 

1 

1003 

1003 

3 

1 

4 

2 

1 

1 

1 

1001 

1001 

1001 

1006 

1006 

1007 

1007 

1002 

1003 

1 

1 

1 

1 

1001 

1001 

1001 

1001 

1006 

1006 

89 

To Value a Value CJ 

2 205°57'45~0 5~0 Dir 1006 1005 158°41'24~0 2~0 

1004 48°13'31~0 5~0 Dir 1006 1 289°00'25~0 2~0 

3 395.094 m .01 m Dir 1005 1006 0°00'00~0 2~0 

4 276.131 m .01 m Dir 1005 1003 81°13'25~0 2~0 

2 250.440 m .01 m Dir 1005 1 335°51'58~0 2~0 

1003 470.719 m .01 m Dir 1007 1002 0°00'00~0 2~0 

1005 369.262 m .01 rn Dir 1007 1003 131"25'33~0 2~0 

1001 309.173 m .01 m Dir 1007 1006 260°08'58~0 2~0 

1005 522.052 m .01 m Dir 1007 1001 301°27'28~0 2~0 

1006 279.953 m .01 m Dir 1002 1004 0°00'00~0 2~0 

1006 250.960 m .01 m Dir 1002 1003 53°20'43~0 2~0 

1002 329.770 m .01 m Dir 1002 1007 74°45'49~0 2~0 

1007 361.889 m .01 m Dir 1002 1001 144°10'23~0 2~0 

1007 349.043 m .01 m Dir 1003 1002 0"00'00~0 2~0 

1005 295.290 m .01 m Dir 1003 1004 46°47'01~0 2~0 

1002 304.829 m .01 m Dir 1003 3 90°50'04~0 2~0 

1003 243.884 m .01 m Dir 1003 4 126°42'07~0 2~0 

1004 370.738 m .01 m Dir 1003 1007 332°50'40~0 2~0 

1004 408.113 m .01 m Dir 1004 1003 0°00'00~0 2~0 

1001 0°0'00~0 2~0 Dir 1004 1002 79°52'09~0 2~0 

1006 50°07'25~0 2~0 Dir 1004 3 294°19'13~0 2~0 

1005 75°40'19~0 2~0 Dir 2 1 0°00'00~0 2~0 

2 116°08'50~0 2~0 Dir 2 1005 113°24'07~0 2~0 

1002 0° 0'00~0 2~0 Dir 3 4 0°00'00~0 2~0 

1007 52°02~51~0 2~0 Dir 3 1003 87°10'18~0 2~0 

1006 118°39'36~0 2~0 Dir 3 1004 157°26'31~0 2~0 

1 177°32'38~0 2~0 Dir 4 1003 0°00'00~0 2~0 

1001 0° 0'00~0 2~0 Dir 4 3 56°57'38~0 2~0 

1007 

Table 6.4 Observations on the Mapping Plane for the Network 
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two pages. Note that the row number is given under the observation type, 

and the column numbers are given between dashes (~.g.-18- ) over top 

of the actual number. Station 1 is fixed, and thus there are no columns 

appearing in A for it. All elements resulting from azimuth or direction 

observations are multiplied by p" as was done in section 6.1. 

The P matrix is ~iagonal of size 57 x 57 with the inverse of 

the standard deviations (see Table 6.4) squared on the diagonal. The 

first two diagonal elements are 0.04, the next 17 are 10000.0, and the 

last 38 elements are 0.25. P thus takes the shape 

3-

p= 
(57,57) 

20-

0.04 0 
0 0.04 0 

0 10000. 0 

0 

0 

. 
10000.0 

0.25 

. 0 
0 o. 25 

Using the above A, P and W matrices in equation (AII-11) to 

compute the solution vector for the first iteration yields 

AT 
X 

(1 1 20) 
(0.3616, -0.1768, 0.8559, 1.6254, 1.2828, 1.5808, -0.8268, 1.0078, 

-1.3181, 2.9488, 1.0736, 2.3229, 0.4415, 4.2027, 0.8414, -0.3917, 

0.1877, 0.7411, 0.2573, 2.0613) , 

in units of metres. The orientation unknowns are not given as they are 

not required. Adding this solution to the approximate coordinates of 



AZli'!UTH 

' 

DISTANCE 
3 

DISTANCE 
s 
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1 CX,YI FIXED 
0.73988970+03 -0.)6172390+03 

1003 ·ll· IX 1 YI ·12.· 
-0.9992797J+OO 0.37947330-01 

1 CX,YI FIXED 
o.43921o1o+oo o.89H3844o•oo 

3 • 3· I X, Y I • 4• 
0.99927970+00 -0.379473~D-01 

Z • 1· I X, Y I - 2• 
-0.43921010+00 -0.89838440+00 

DISTANCE 

' 
·..-. --r--cx;vl - ,.:- 1oo3 -rr--cx,YJ -n-;----------
o.787o559o•oo -0.6168S17D+oo -o.78705590+oo 0.61688170+00 

DISTANCE 
l 

DISTANCE 
8 

-DISJ ANCE 
9 

DISTANCE 
10 

DISTANCE 
l1 

2 - 1- cx,vl - ~-
-o.6507914D+oo o.7592566o+oo 

1 - CX,YI FIXED 
-o.looo·oooD+o 1 o .o 

. i . . CX,YI FIXED 
-0.2492980D+OO 0.96842680+00 

1 IX 1 YI FIXED . 
-0.641?3670+00 0.76675770+00 

1001 • 7· CXoYI • 8· 
0.51741930+00 0.85573200+00 

i005 -LS· IXoYl - -~16_. 
0.65079140+00 -0.75925660+00 

1001 • ~- IXoYI 
0.10000000+01 o.o - 8-

1005 ·lS· IXoY~ ~16• 
0.24929800+00 -0.9684268D+OO 

1006 -17- IXoYI -18-
0.64193670+00 -0.76675770+00 

1006 -17- IX,YI -19· 
-0.51741930+00 -0.85573200+00 

'D""'r'"'s'"' r"'A=-=N""c'"""E=-----too 1 - 1- c x, v .----:.::ca.-: • .-------,-1-no-no-:;2-=---, .. _:--:c"x','v"J.-~--•t"o.-=------"----
u. -0.99896S50+00 0.45407660-01 0.99896850+00 .-0.45407660·01 

.DiSTANCE 
13 

DISTANCE 
lot 

. 1001 . • 7· IX 1 Y I . • 8· 
-0.57993130+00 0.8146654D+OO 

1oo6 -17- cx;vT -18· 
-0.97341720+00 0.22903930+00 

1007 - ·19• (X ,y I -2.0· 
0.5799313D+OD -0.81466540+00 

1007 ·19· (X,YI •2.0· 
0.9734172D+OO -0.2290393D+OO 

~Q.JS!_ANCE_. __ . _lQO~ __ :-l_!::..__CXrYI ·18· 1005 -lS• IXoYI -u;-
. 15 0.16990c.9Q+OO 0.9854601D+OO -0.169?0690+00 -0.9854601D+OO 

DISTANCE 

" 
1007 ·19· IXoYI ·20· 

-0.39391930+00 -0.91914500+00 
1002 • S- IXoYI ·10- . 
0.39391930+00 0.91914500+00 

...D.lSI.A.NI"I.lE~---!1!007 __ ..=.19=-~l x,.Y.J ____ .zo-____ ---l.Qfl.3..__·11~ -lX • Y ). ___ -,12.~. 
17 -0.43072960+00 0.90248100+00 0.43072960+00 -0.9024H1~0+00 

DISTANCE 
18 

1002 - 9· cx,YI -to-
-0.78349770+00 0.62139470+00 

1004 ·13· IX 0 Yl ·1'\-· 
o. 78349770+oo -o. 62139470+oo 

.OlS.I.ANil.C.t:E--~·.1003.--=-U"--.lX..YI--...=.12~---..l00'"--.,1.3,-:_ .. IX. .. Y.L----".i"t::,;.·~~--~--
19 -0.74876220+00 -0.66283870+00 0.74876220+00 0.66283870+00 

DIRECTION . 1 _ 1 
20 o.o 

__ lX,YI FIXED 
0.66537030+03 

1001 ~- 7-. IX,YJ - -7 8- ···-o.-t'o•'"ot· o.o -0.6653 030+03 

...D.J.~t:lN..__L..l .X.Y..l_.FIXElL__ __ 1006.~.17-~-~ILYl ·18_· __ --..-;.,U:... __ 
21 0.56403090+03 0.47221200+03 -0.56403090+03 -0.47221200+03 -o .• D+Ol 

1005 -15· (X,YJ ·16· . ·21· 
-D-38306050+03 -0.986J9630+02 -~10+01 

DiRECTION 3 1 IX,YI FIXED 
22 o.38306o5o+o3 o.9a60963D+02 

DIP.ECTION 1 1001 • 7· tx,YI - 8· 
2+ 0.28352550+02 0.62375610+03 

1002 • 9· IX,YI ·10-
-0.28352~50+02 -0.62375610+03 

-u-
-o.to•ot 

.JllP.ECTIC.N _2.. __ 1001 • 7·_ IX,YJ --·· .• .. 8· .......... 1007. ·19·. IXoYI ,-20· ---- ·U.· ---· 
25 o.4t.40lr670+03 o. 33033830+03 -o. 4640'-u 70+03 -o. 33033S30+03 -o.to•ot 

DIRECTION 3 1001 - 7· IX,YI • 8-
26 o.7025257J+03 -o.4247B300+0J 

-DIHC.TlCtL_4 _ 1001 • 7· __ . (X, Y I _ • 8· ..... 
27 o.o -0.66537030+03 

OlkfLTIL.N lOOt. ·17· IX,Y I -18-
28 -0.7025257)+03 0.42478303+03 

OH:LC.TlUt. 2. 1006 ·17- IX,YJ ·18-
29 O.l352S5bD+Ol U.5748lb1U+03 

Dlhl(liUt~ 3 1006 -11· IX,YI ·18· 
30 C.690/i~l~+Ol -O.ll90905J+03 

1006 ·17- IX 1 Y) ·18· 
-0.70252570+03 0.424783J0+03 

1 
o.o 

lXoYI . FlXEO . 
0.6653103J+!H 

-u-
-o.t 0+01 

. -22· ·--
-0.10+01 

1001 - 7• IXoYI • 8- -23• 
0.702~2510+03 -0.4247830ll+03 ·0.10+01 

10(17 ·19· IXoYI •20• .. •23· 
-o.l3525560+03 -o.5743363D+03 -~tO+Ol 

1005 ·15· lli 1 YI •16· 
-0.6?072~1J•c1 o.l19J9D5J+03 

A matrix, rows 1-30 
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UIR~CTJDN 4 1006 ·17· IX1YI -18· 
31 -0.56403090+03 -0.4722120U+OJ 

t CX1YJ FIXED 
0.56403090+03 0.47221200+03 

OIKECTIUN 1 1005 ·15· IX1YI -16· 1006 ·17· IX1YI -US· •2."1'• 
_u_ ______ -,.._0.69072510.+03 .... 0oll9090!10+03 ____ .0.69012510+03 _-0Lll9Q9050+0~0.10+01 

DIRECTION 2 1005 -lS- CX1YI -1&· 
~3 0.84146780+01 0.416526~0+03 

1003 ·11· IX1YI ·12· 
-0.84146760+01 -0.41652660+03 

DIRECTION 3 ·1005 ·15- IX1YI ·1'· 1 (X,YI FJXEO -2'r-
__ ..3 -.Jl. 38306.Jl5lHO 3.__c::0&9860.96.30+02.. ___ fl-3830605D+D3- _Q. 986Q.9630.t:02....-...:o.t.0•01_ 

DIRECTION 
35 -

1007 ·19· IX1YI -20· 
-0.62235o7o+o3 o.Z667217D+03 

1002 - 9· IX1YI ·10• ·25· 
o.622350 70+03 -o. 26672170+03 _ -o.lo+o1 

DIRECTION 2 1007 ·19· IX1YI ·20· 1003 -U- CX1YI -12• ·U· 
_36 o .76 36 2 2 3[1+-0 3 o. J 64't5 t.l.D_~a.l.__.::O.._I.Q3.6Z2.30:!:.03--=..0..J~_6l.IU:ill--:.Q..tD:tOL_ 

DlkECTION 3 1007 ·19· IX1YI -ZO· 
37 -0.1352556~+03 -0.57483630+03 

1006 ·17- CX1YI -18· 
0.13525560+03 0.57483630+03 

DIRECTION 4 1007 ·19· IX 1YI -20- 1001 • 7• IX1YJ - 8· ·25· 
_)& " -,.QL'tM!Il.'tt.lO..t,Q.3_-0 .3.J(llJ..8;3i).t-Q3__Jh_46't046 70t.Q3__Q.._.3_3.03.3831l..+..O.l.___::.O.JQ.tl')i_ 

DIRECTION 
- 39 

1 1002 - 9- IX 1YJ -10- 1004 ·13· IX 1YI ·1~· •26• 
0.34628400+03 0.43661890+03 - -0.34628400+03 -0.43661890+03 - ·0.10•01 

DIRECTION 2 1002 - 9· IX1YI -10- 1003 -11- IX1YI ·12· •&6· 
40 0.41215810+03 -0.&.12.3.6.!t.I60t02__~'tlll.581D.:t03 o. 1236't.I6!Jt:D,..:.Z_...:•:.uD.._t0~01 __ 

DIRECTION 3 1002 - 9- IX1YI -10-
+1. 0.6.2235070+03 -0.26612170+0.3 

1007 ·19· IXoYI -20• 
-0.62235070+03 0.2667217D+03 

DIRECTION 4 1002 - 9· IX1YJ -to-
42. -D.&Z 8.3.52.55ll±Q2.__::_0....6.23ll6lD:!-.03 

1001 • 7• IX1YI • 8· ·U· 
0.28352550±.0.2..... o. 623l5..fUD..t.D.3~1.0.~0L._ 

DIRECTION 1003 -tl- IX1Y) -12-
... 3 -0.41215870+03 0.12364760+02 

1002 - 9· IX1YI ·10· •&T· 
o.412158 70+03 -o. 12364 760+02 -o1D1-o1 

~RECTI ON 2 1003 ·11· IX1YI -12-
-::.Ch.33 5.4~2.b[l_+Q 3 0 3 79.lllii!H.Jl.3 

1004 ·13- cx~i, -1+- -~~ 
0 3356..42.60+.03_ -=0....31915.1.80.+03__•..0.1D!OL_ 

DIF;.I::CTICIN 3 1001 ·11· IX,YI ·12· 
-.s 0.19801420+02 0.52143740+03 

3 - 3• IX1YI - +· -U· 
-o.1980llo20+02 -o. 52143 740 +03 -0.1 D•ot 

DIREC.TIGN 4· 1003 -11- IX1YI -sz-
... 6 0.27066420+03 0.34533020+03 

4 - S"· (X,YI • C- -n-
-0.27066420+03 -o. 34533020+03 -o.1D+0.1 

DIRECTION 5 1003 ·ll- IX1YI -12-
't"J -0.76362230•03 -0 .36445610+-03 

1007 -1~- IX1YI ·20· -%7· 
0.76362230+03 0.36445610+03 ·OJD+Ot 

DIRECTION 1 1004 -13- IX1YI -t+· 
46 0.33564260+03 -0.37915180+-03 

1003 -H- IX1YJ ·lZ· •2.8· 
-0.33564260+03 0.37915180+03 ·O.lOt-01 

DIRECTION 2 1004 -u- IX1YI -a-
+9 -0.34628400+03 -0.43661890+03 

DIRECTION 3 1004 -1~- IX1VI ·1+· 
!10 0.65810770+03 0.2078235~+03 

3 • 7· IX,YI - 8• -n· 
-0.65810770+03 -0. 20782350+03 ·O.lD+Ol 

DIR~CT ION 1 2 - 1· I X I Y) - 2-
51 -0.73998970+03 0.36172390+03 

1 IX,YI FIXED •25· 
o.7398!l970+03 -0.36172390+03 -o.to+ot 

DIRECTION 
52 

2 2 - 1- IX1YI - z-
0.42466280+-03 0.36399670+03 

1005 -15· IX1YI -t6· -2.!1-
-0.42466280+03 -0.36399670+03 •0.10+01 

OIR£UION 
53 

3 - 3- IX,YI - +- 4- - 5· IX1YI - 6· -~o-
0.74390590+-03 -o.67627&1o+o2 -o.74390~9o+o3 o.6762781o+o2 -nlo•ol 

---------- ··- ·--------·--· -·-----------------··----------
OIRECTIIJN 2 3 - 3· IX 1YI • +-
5~ -O.l980142J+02 -0.52143740+03 

DIRECTION 3 3 - 3· CX,Y) - +-
55 -0.6581077~+-03 -0.20782350+03 

OIREC:TION 
56 

4 - s- 1 xI v 1 - 6-
-0.2706642J+OJ -u.345330Z0+03 

o 1 Rl:: c: TI aN z 4 - s- 1 x 1 v' • 6-
57 -0.743?05~DtOJ 0.676~7810+02 

1003 -Jl- IX1YI ·12- -to-
0.19801420+02 O. 52143740+03 •O.lD+Ot 

3 • 3- I X, Y I • +-
0.7439059J+OJ -0.67627910+02 

-·31-
-o.l Dt 01 

A matrix, rows 31-57 
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Table 6.3 results in the parameter vector 

T T ~T 
X =X 0 +X = (2530.362, 934.823, 3660.856, 631.625, 3636.283, 356.581, 

2949.173, 1161.008, 3278.682, 1147.949, 3266.074, 647.323, 

3570.442, 919.203, 2770.841, 654.608, 2820.188, 945.741, 3160.257, 

867.061). 

Taking these parameters as new approximate coordinates X0 , reevaluating 

the A, P and w matrices, and computing a second iteration solution 

vector via equation (AII::-11) results in 

"T 
X = (-0.00006, -0.00004, -0.00898, -0.00012, -0.00821, 0.00147, -0.00136, 

-0.00253, -0.00649, -0.00518, -0.00375, -0.00082, -0.00707, 0.00096, 

0.00073, -0.00062, -0.00155, -0.00031, -0.00369, -0.00124), 

which yields a second iteration parameter vector of 

XT=X 0 T+XT = (2530.362, 934.823, 3660.847, 631.625, 3636.275, 356.582, 

2949.172, 1161.005, 3278.675, 1147.944, 3266.070, 647.322, 3570.434, 

919.204, 2770.842, 654.608, 2820.186, 945.741, 3160.254, 867.060). (6-4) 

Using these parameters as new approximate coordinates results in a zero 

vector for the third iteration solution vector, and thus the parameters 

in equation (6-4) are the final adjusted coordinates. 

The variance covariance matrix C of the parameters is computed 
X 

by equation (AII-16) (assuming a priori variance factor equals 1) and 

is given on the following page. Note that since the C matrix is too 
X 

large to display in a normal fashion, it has been printed in rows of 

six columns at a time. 

The 95% station and relative error ellipses are computed using 

the equations of Appendix III. They are listed below in Table 6.5 and 

plotted in Figure 6. 5. 
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__ _..2.~---- y-

CCOL 1J lCOl 2) IC.Ol J) 

_3 __ _y 

CCOL 41 
--------X-----~4 y 

I COL 5) ICOL 6) 
1 0.231330~20-0~ 0.5013?0640-05 0.335331550-04 0.765881720-04 0.511761530-04 0.757157230-0• 
2 0. 50l390o4D-05 u. J91)27:i!J3:l-O~ -0. 15854217•>-04 -0.11f.25130D-04 -o. 195190270-0~ -0. 10484't'>20-0< 
3 0.335331550-04 -0.151l54217D-C4 0.15ti27713:J-03 O.l'•833041.l-03 0.20~3112t.0-03 0.133!>37.310-0; 
4 0.7o5~d1720-D4 -C.ll~251JOU-04 0.148380470-0~ 0.336209150-03 0.243851310-03 0.37526?~3.1-0~ 

___s__o .511 7c:.t5J.J-04 -c .19!1l'iOZ7D-O'• ___ o.ZO'•llll60-0l o.2to3s5731 o-o3 ____ o.2855 379t.0-03. _ o. 22671ola:lo-o; 
6 o.1!>115723C.-04 -o.to48'•4o2D-04 o.133t.32310-u3 o.3152C:.903J-03 o.226741t.su-o3 o.3905o075'l-03 
1 o.to432330J-oo -0.3l7bJ?3oo-o5 o.18o77o560-04 -o.1l528971D-04 o.157es6a3o-o4 -0.11947.95~o-o~ 
8 0.2~~081040-04 -0.61't707310-05 0.52503122:1-04 0.1D745258D-03 0.77651>7870-04 0.105132?70-03 
9 0.116272710-05 -C.56477u730-05 0.4216614JU-04 -0.1350026S0-04 0.389399350-04 -0.155141~30-04 

10 0 .to 117 37471J-J4 -0 .10S'JI)u95J-O't 0. 1065462 JU-03 O. 222662 360-03 O. 16:0:640250-0J 0 o2l7'l4iJo2D-'B 
11 0.33~330360-04 -O.IJ7l71R20-04 0.131322060-03 0.1530Z481~-03 0.17~214380-0l O.l47143q70-03 
12 o.51452599o-04 -O.o0Jo3J580-05 O.Sl622584u-04 o.2't3706040-03 0.135471690-03 O.l4305l~00-03 
ll O..J.t.244278J-04 :oO .117~il5760-.0't ___ Q.102.5i18540-03 _ 0.5?132.4370-04 ___ 0~12l!>.J:91100:o.03 .. ..0 • .S057 32 H0-?4 
14 0.67't101t>C>'J-04 -0.1.<:015950·)-04 0.144816270-03 0.326519040-03 0.225361220-~3 C.318376'l0'J-Ol 
15 0.3~9706250-04 -O.Il16J4dl.l-04 o.d97507510-C't 0.167't3677D-03 0.129878590-03 0.1645't35~0-03 
1& o.154192t7o-o4 o.Bo4617toso-o5 o.6o7725970-05 o.6tJ415475D-O't o.180B01920-04 o.611\46~~o-o4 
17 0 • .lo52Z575D-CJ4 -0 ot.5!>2J-lS5U-05 o. 455259360-04 0.655160 810-0't 0.1>180 1215:>-04 O. 1>3952..?110-04 
18 o.144~>6803o-o4 -o.207JZo4sa-o5 o.18973242o-o~o o.&8622795D-04 o.34142247D-o4 o.6796047.40-04 
19 o.210770590-04 -0.90Bo77600-05 o.II5413401~-04 0.863950690-04 o.108638310-03 o.830929~00-04 
20 Oo400631t7lD-04 -0.774439640-05 o. 728808930-04 0.13817722D-03 0.11755636D-03 Ooi856933!!D-03 

X 1001 Y X 1001 Y . _ X _ 100! _ Y 

ICOL 7_1 CCOL 8) &COL 9) ICOL 10) CCCL llJ ICOL 121 

1 o .~Oft323300-,').6_ll_. 23903 l040:o.Q4 ___ 0.116272.710.,-05 _ O. 47773H7D-OL ___ O • 3393.30.380"-0'L_J).,l45 259?D-04 
32 , -0.327o3930i>-05 -0.61410 7310-05 -a. 564 776710-05 -0.10890~>95::l-O'• -o.t373 79!!20-0't -o. 6036H5:i0-05-

o.1&07705oD-u4 o.525031220-04 o.421t.6143D-04 o.l08546200-03 o.1313Z2oao-o3 o.S16225840-04 
4 -0.115289710-04 0.107452580-03 -0.135002680-04 0.222862360-03 0.153J24810--03 0.2437061)40-03 s O.l5788t>83D-oto o.77c5~rs7:>-04 o.J8989935D-04 0.16264025~-03 0.176214360-03 0.135471~10-03 
6 -o.11~429;6o-~~o o.105132?7o-o3 -0.155141930-04 o.2170to8o2o-o3 o.t47143b7o-o3 o.2430519oo-u3 
1 o.ltlo795eo:J-04 -o.150357130-o5 o.2l!H03870-04 -o.5H91609o•o5 o.t6759!139D-oto -o.A49332460-'l5 
8 -0.15035713-l-05 0.378715760-0't o.2o9o0182D-o5 o.71928502o-oto o.sot185320-04 o.7120S9B1o-oto 
9 0.2-ll:ll0387D-,Q4___Q.26960 1920-05 ___ ;). 45'J85 7730-0't .. ,.-D. B!>313233::l.,Ob ___ 0....3o9663'>00...,04 __ ,-0~9i16693\l9il-05 .. 

10 -o.58391t;090-o5 o.7192d502J-o4 -o.a631S2380-o6 o.1489R7ooo-o3 o.10.276375D-o3 l).t44.,Mll40-ol 
11 0 ol675'1839J-04 0. 50!.1~5320-04 o. 369bo3900-0't 0.102763 75;)-03 ().123423060-03 o. 87457163!>-04 
12 -O.a4~3324oJ-05 0.712:119300-C4 -0.986693090-05 o.1'•'t666940-o3 o.a74~73t.80-04 o.167762C50-03 

- 13 0.201159620-04 0.27253733:)-04 0.443705380-04 0.536776240-04 0.857526810-04 0.299656170-0it 
14 -o.91574!l34.>-o5 o.96<t•H33o!>-04 -o. 70625029D-05 o.2!ll92228D-03 o.l386oll8D-03 o.21oa 7l570-o3 
15 o.81462727D-o5 o.53219069J-04 o.130612410-04 o.106B14120-o3 o.885542520-04 o.lu9910lo0-03 
16 -O.db;2277Z0-05 0.16!!15244:>-04 -O.l1't91520J-04 0.33794055J-04 0.933389240-05 0.43818~J't0-04 
1 7 o .9 8'i99305Ll~5___o_. 2.143l 1610=.0't._O .1 J3546J90~_0_4 __ 0.4281t!>31.9D-O't... __ Q,_4412e 9370-04 __ _o, !r2.031 0')7;>-0it __ _ 
18 -o.a72~44320-~5 o.2248J273J-o4 -o.1oo771090-04 o.4tooto~24oo-o~o o.t947b09to0-04 o.469224530-04 
19 o.18579378J-J~ 0.303374870-04 0.37658~070-04 0.534948000-04 O.d09020410-04 0.524418~60-04 
20 -0.96Z01704u-o5 o.58769272o-o4 -o.t31445620-o4 o.t19515360-o3 o.7328279oo-04 o.t2443133D-o3 

X 100'1- 'f X 100!i Y X 1006 y. 

ICOL 13! CCCL 11tJ ICOL 151 ICOL 161 CCCL 171 ICOL 181 

--!~-~O...l624ft 2 730-0~-.0.t. 7410 160!)~04--0. 399 706250-04 __ . o. 154192170- Qit _ ___Q.165225 75 !r0~-0~1446 63030-04 
2 -O.l172657t>Ll-04 -0.12015'1:>00-04 -O.ll1o34810-0't 0.864617480-05 -0.655239550-05 -0.20732H.J0-05--
3 0.10256854D-03 0.144Jld27n-03 J.8S7507510-04 0.601725970-05 0.45525~360-0't Ool881l24~0-04 
4 0.591324370-04 0.32~51~040-03 0.167436770-03 0.6')415~750-0it 0.655180810-04 O.o86227950-04 
5 0.121079dOD-03 0.22~3~1220-03 0.12~378590-03 0.18080192Ll-04 0.1>18012150-04 Q.34142llt7J-~4 
6 0.50H32780-04 0.31&376000-03 0.1u4543580-03 0.611146530-04 0.639522110-04 0.67960424D-J4 
7 0.201159620-04 -0.915748J4~-05 0.814627270-0~ -0.885221720-05 0.989993050-05 -0.872944320-05 
8 0.272537330-04 0.969073360-04 0.532190690•04 0.166l5244D-04 0.21432761~-0't 0.224~82730-04 

--::~9'-~0-443 7 053!;il-04 -"'-0..1 0!>253290,-05.---0 • .l.3C812ft 10-04. =- O.l.l't91520D-Oio..--O~.l335.46190,.04_.,-Q..1Q0711 J10.,04 
10 0.536776240-04 C.20l9222d0-03 O.lO~S1't120-03 0.337940550-04 O.'t2B403190-04 Oo4't0442~'lD-04 
11 0.85752o81D-04 0.138~1>1180-03 0.8C5542520-04 0.933389240-05 O.'t41289370-0't 0.194760940-04 
12 0.299656171)-04 0.21UcH157::l-03 0.10'<91036U-03 0.41111'39340-04 0.420310070-04 0.46922453;)-04 
13 0.820598260-04 0.609665340-04 0.4~9480790-04 -0.4~8913970-05 0.291844080-0't o.3881823oU-05 
H O.b0966534D-O't 0.29655,3ft7J-03 0.148737230-03 0.510770420-04 0.588522180-04 O.o051511!l~-04 
15 0.49948079D-~'t 0.14il73723D-03 0.10035u9?0-03 0.170038500-04 O.'t45762o3D-04 0.273i43Jr.0-04 
16 -O.It91:191397~-05 0 .51071:h2i.)-04 0.1 7003!!500-04 O. 326i!iHU0-04 0.32366147::>-05 0.15523093D-04 

--+:17~~0.2.91 84408J)_-_Q4--.!h5 885221 B!l-:.Dit___O. 44 5762630-:0ft _Q.323!>61470:-::05 _ __J).2J9480260-04 0Lil303 87180-05 
18 0.3887C23t.0-05 O.t>053:Jll60-04 0. 27314>3090-04 0.155230930-04 O. 83::>3 87lcl0-05- 0. 20975137D;Oit·-
19 O.blblcl0830-04 0.7931~743J-O't 0.576233210-04 0.301:1218960-05 0.310789550-04 0.74300't,80-u5 
20 0.28840419D-04 0.165672340-03 0.870340980-04 0.314218400-0it 0.33249303D-Oit O.lt0942867D-Oit 

X 1007 'f 

ICOL 19) I C.Ol 20 J 

1 0.210770590-04 0.400834710-04 
2 -0.908677600-05 .. -,0a7 J4ft396ftJ-05 .. 
3 0.85413401D-04 o. 728603'1)0-04 
4 o.ao395069D-04 c.ld~l7722J-J3 
5 0.10B63d310-03 O.ll755o360-03 
6 O.II3092960J-04 0.18569~36~-03 
7 0.18579378:>-04 -0.962~17J4J-05 
8 0.303374<170-04 0.58/6927~0-0't 
9 0.37650C:.D7D-04 -O.l31445bZa-04 

_Jo ___ o. 58't94dOOJ-04 __ o .11'>5l:i36D-03 
ll O.S090ZC4lJ-04 0.7:>28U'JOJ-04-
l2 0.5.2441E!.t.J-J't O.l<:44Jl33J-03 
13 O.ol61B0d!U-04 0.2Bo40~19U-04 
14 o.79315743J-J4 o.165~7L34~-o3 
15 o.s7o23321U-04 o.8703419~D-04 
1b 0.30~ZOS~6J-05 0.31421~~0J-::l4 
17 o.31J78~55~-o4 o.332493J3J-J4 

_ _l_8 __ o. 74J004eso-os ____ o .~oo'HZ ~') 7J-O'• 
1'>' 0.6206"i7l~U-04 0.311'15 !·J;;•J-IH --------
20 O.J7195d5B0-04 0.1070l254J-03 

C~ matrix for Network. 
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STATION ELLIPSES RELATIVE ELLIPSES 

Station a(m) b(m) Station Station a(m) b(m) 

2 .016 .011 16°07'25" 2 1005 .020 .014 36°20'31" 
3 .052 .023 26°14'12" 1005 1006 .015 .011 -69°55'41" 
4 .058 .025 38°28'49" 1001 1006 .012 .008 -63°44'52" 

1001 .015 .Oll -4°27'10" 1001 1002 .016 .Oll 2°01'21" 
1002 .030 .017 -0°28 1 49" 1001 1007 .018 .011 59°14'16" 
1003 .038 .018 37°53'16" 1006 1007 .017 .012 11° 45' 51" 
1004 .043 .020 14°48'29" 1002 1007 .015 .009 -65°34'59" 
1005 .025 .013 76°37'28" 1002 1003 .024 .013 -84°45'14" 
1006 .014 .009 50°14'28" 1002 1004 .018 .01'3 42°27'42" 
1007 .028 .016 29°25'52" 1003 1004 .019 .010 -39°02'59" 

1003 1007 .013 .012 -21°58'22" 
3 1004 .015 .013 58°21'17" 
3 1003 .020 .011 1°26'04" 
3 4 .015 .012 -76°04'26'' 
4 1003 .024 .014 38°01'35" 

Table 6.5. 95% Error Ellipses for Network 

The residuals V computed using equation (AII-17) are 

VT 

(1,57) 
(-3.89, 3.89, -0.005, 0.007, 0.010; 0.005, -0.004, o.ooo, 0.003, 

0.001, -0.010, -0.008, -0.006, 0.008, -0.005, -0.002, 0.005, 

-0.002, 0.002, 0.13, -0.72, -1.31, 1.90, -0.01, 1.34, -0.55, -0.78, 

0.45, -1.29, -0.51, 1.36, 1.02, -0.33, -0.69, -0.37, 0.45, 1.68, 

-1.76, -1.20, 0.84, 0.05, 0.32, -0.08, 1.17, 0.31, -0~35, -1.05, 

-1.98, 1.72, 0.26, -0.88, 0.88, -0.16, 0.03, 0.13, -0.73, 0.73), (6-5) 

where the units are arcseconds for the first two residuals, metres for the 

next 17, and arcseconds for the last 38 residuals. The a posteriori 

A 2 
variance factor o is computed using the above residuals, the P matrix 

0 

given above, and equation (AII-18) as 

A 2 
(J 

0 
0.58488 

The residuals and a posterior variance factor are considered again in 

Chapter 9 for postanalysis of the network. 

(6-6) 
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7. A PRIORI KNOWLEDGE OF PARAMETERS 

This chapter considers points which have some independent a 

priori estimate of their position. The coordinates of these points are 

treated as observables, and have the following simple observation equation: 

L =X 
X 

{7-1) 

with associated variance covariance matrix CL , the accuracy estimate 
X 

of these so-called weighted parameters. By expanding the matrices of 

Appendix II to include these new observables, the least squares estimate 

of the solution vector (cf. eq. (AII-11)) becomes 

(7-2) 

or, multiplying the matrices together, 

X - [ATPA + p J-1 [ATPW + PXWL J (7-3) 
X 

-1 X 
where p = 

X CL 

and w 

Note that WL = 
X 

X 

xo - L L X 
X 

0 for the first iteration if X0 is taken equal to L • 
X 

This is not the case for the second and subsequent iterations. 

Although not done here, it can be shown (e.g. Krakiwsky [1975]), 

that the corresponding variance covariance matrix of the parameters X 

(cf. eq. (AII-16}} is 

c 
X 

T -1 
= [A .. PA + P ] 

X 

Thus, the only difference between a priori knowledge and no a priori 

(7-4) 

knowledge of the parameters for the accuracy estimate of the parameters is 

the addition of the P matrix to the normal equations. 
X 

Since the weighted parameters are treated as observables, the 

degrees of freedom for the adjustment change from df = n-u to 

97 
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df == n - u + u 
X 

I 

where u = number of weighted parameters. 
X 

{7-5) 

Another consequence of this is that the a posteriori variance factor 

(cf. eq. (AII-18)) is now computed as 

T 
A 2 v PV + VLxPXVLx 
a = 

0 df 
(7-6) 

where VL AX + WL {cf. eq. (AII-17)) are the residual corrections 
X X 

to the weighted coordinates. Noting that the A matrix for L is equal 
X 

to I, then VL 
X 

is simply 

VL = X + \·lL = 
X X 

m 
l: 

i=l 
X. 
~ 

\'lhere m = number of iterations in the adjustment. 

(7-7) 

The example shown in Figure 7.1 is exactly the same as that of 

section 5.1 except that station 1 is now weighted with an a priori 

variance covariance 

CL 
x1 

-2 
in units of m • 

= 

matrix of 

[ 
0.4455.10-l 

-3 -0.709.10 

-3] -0.709.10 

0.9535.10-l 

(7-8) 

lly (Grid 
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This corresponds to a standard error ellipse a= 0.309 m, b = 0.211 m and 

!1 = -0° 47' 58''. The initial data (i.e. approximate point coordinates, 

observations and their standard deviations) are given in Table 5.1. The 

observation equation is 

v w A X 
(2,1) (2,1) + (2,4) (4,1) 

(7-9) 

or, explicitly 

"2-xi ' -p"CY2-Yi) · ,Po(x;-xil p•Cy2-Yil -p"cx;-xil 
6x1 arctan 1-1 - t -.--2 

y•-y• 1,2 (1" )2 (1" )2· (t" )2 111,21 2 1 1,2 1,2 1,2 
6y1 v - + 

(2,1) 
(Cx"-x")2 + cy•-y•?>1/2_ l 

. -ex;-~> -(y•-y•) cx;-xil Cyi-Yil 
6~ . ~ -.-- -.--2 1 2 1 1,2 

11,2 11,2 11,2 11,2 6y2 

(7-10) 

where the units are 

v 
(") .m-1 (") .m-1 m 

+ [:] 
[ ("~ .m-1 (")~m-1] 

(2,1) 
m (7-11) 

m 

m 

Evaluating A and \v using the coordinates and observations of Table 5.1 

yields 

[ 
-59.17941 

A-
-0._6978111 

-57.65335 J 
-0.7162819 0.6978111 0.7162819 

57.65335 59.17941 -l-23.0324 m] w - • 
0~11655 

The weight matrix P of the observations is identical to that of section 

5.1. Employing formula (7-3) to compute the solution vector X gives X 

for the first iteration as 

0.00000 m 

0.00000 m 
X 

0.11835 m 

-0.27802 m 
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which yield parameters X of 

377164.887 0.00000 377164.877 m 

862395.774 0.00000 862395.774 m 
A 

(7-12) X=X0 +X - + = 

378907.0 0.11835 378907.ll8 m 

864184.0 -0.27802 864183.722 m 

Using these parameter values as new approximate coordinates, and 

recomputing A and W gives the second iteration solution vector as 

0.00000 

0.00000 
X= 

-0.00002 

0.00000 

and the solution has converged. Thus, the final least squares estimate 

of the parameters is given by equation (7-12), which is identical to the 

solution obtained in section 5.1. 

The variance covariance matrix of the parameters computed 

according to equation (7-4) is 

-1 -3 -1 
0.4455.10 -0.709.10 0.4455.10 -0.709.10 

-3 

-1 -3 
0.9535.10 -0.709.10 b. 9535~"10 - 1 

c = 
X 

Symmetric 

0.46855185.10-1 -0.21014856.10-2 ,<7- 13) 

0.97583041.10-1 

which gives the following standard error ellipses: 

Point #1: a= 0.309 m b = 0.211 m e -0° 47' 58" 

Point #2: a = 0.313 m b 0.216 m e -2° 22' OS" 

Relative 1-2: a= 0.061 m b 0.030 m e -45° 44' 31" 
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From these error ellipses, it is seen that the relative error ellipses 

give the precision of the actual surveying being done, whereas the 

station ellipses reflect the fact that point 2 cannot be established 

more accurately than the accuracy of the starting point #1. Increasing 

the confidence level to 95% (c factor = 2.45) gives 

Point # 1: a 0.756 m b = 0.517 m 

Point# 2: a= 0.766 m b = 0.530 m 

Relative 1-2: a = 0.148 m b o. 072 m 

These error ellipses are plotted in Figure 7.2. 

The residuals V are still zero because this is a unique case. 

These results compare identically with the example of section 4.8.1 in 

~homson et al. [1978] which uses the direct formulae, and propagation 

of errors to arrive at the result. Thus, the equivalence of the 

least squares method and the direct approach for the unique case is 

seen. 

0 0.5 1.0 1.5 2.0 2.5 

Ellipte Scale (m) 

Figure 7.2 Plot of 95% Error ~llipses for Direct Case 
with ~·Jeigh~ec: Parameters 
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The following example depicted in Figure 7.3 is almost the same 

as the closed traverse in section 6.1• The only difference is that the 

points which were considered fixed (i.e pts. 1, 2, 3 and 4) in section 

6.1 are now weighted. The initial data in Table 6.1 is the same for 

this case with weighted parameters. Additional initial data includes the 

weight matrix P (cf. eq. (7-3)) which is (for points 1, 2, 3 and 4, 
X 

respectively) 

o. 250l.1o-4 -o.12J2.1o-s -6 0.5201.10 
-6 0.1222.10 

0.2169.10-4 0.5941.10-6 -0.9860.10-6 

0.2460.10-4 -0.11106.10-5 

o.o 

o.o 

o.o 

0.2300.10-4 o.o 

o.o o.o o.o 

o.o o.o o.o 

o.o 0.0 o.o 

o.o o.o o.o 

0.2399.10-4 -s -0.1663.10 0.6120.10-6 -6 0.1001.10 
syrT-etric 

-4 
0.2243.10 

-6 0.8045.10 -0.8000.10 -6 

-4 0.2379.10 -0.1611.10 -s 

l -4 
0.2607.10 

Note that points 1 and 2 are considered uncorrelated to points 3 and 4. 

Figure 7.3 shows the 95% error ellipses represented by P above for the 
X 

four weighted points. 

Strictly speaking, the general matrix form of the observation 

equations for this example is 

V = A 
(25,1) (25,22) 

X 
( 22, 1) 

+ w 
(25,1) 

where W includes WL • Realizing that the rows of A corresponding to 
X 

the L observations reduce to the unity matrix (cf. eq. (7-2)), and 
X 

that WL reduces to zero for the first iteration (i.e. LX= X0 ), then 
X 

the observation equations are written as 

v A X + 
( 17 J 1) (17,22) "(22,1) 

w 
(17,1) 

{7-14) 
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The A matrix of section 6.1 is part of the A matrix for this example. 

Here 8 however 8 there are eight more columns for stations 18 2, 3 and 4. 

The A matrix for this example is 

.1 71 .2 "a "J ,.3 -·· '• 
564.03 472.Zl 0 0 0 0 0 0 

739.11 •361. 72 ·739.89 361.72 0· 0 0 0 

0 0 0 D 0 0 0 0 

SM.Ol 472.21 0 0 0 0 0 0 

0 0 0 D D 0 0 0 

0 D 0 D D 0 0 0 

D 0 D 0 0 0 0 0 -14CD1-

a 0 0 0 0 0 D D 0 .-a•AJ.a 
117,221 

0 0 0 D -658.11 •207.82 0 0 -6.1 

0 0 0 0 0 0 0 0 

0 0 0 0 70.90 -676.21 •743.90 676.:ta 

0 0 0 0 -658.11 ·207.82 0 0 

0 0 0 0 O.l01U -D.9Sll8 0 0 

-o.&4194 0.76676 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 • 0 0 0 0 0 

0 0 0 0 0 0 0 0 

where the numbers have been rounded to five significant figures and 

only the first eight columns are given (the final 14 are identical to 

A of section 6.1). TheW matrix in equation (7-14) as well as the P 

matrix are both identical to those in section 6.1. 

Noting that WL is zero for this first iteration, equation 
X 

(7-3) is employed to compute the first solution vector as 

AT 
X = (0.00271, -0.00239, -0.00436, 0.00215, 0.00170 8 0.00018, -0.00007, 

0.00002, -0.40785, 1.429528 -0.01027, 2.43608, -0.32709, 0.57935, 

-0.49390, 1.22106), 

for stations 1, 2, 3, 4, 1003, 1004, 1006, 1007, respectively. Thus, the 

updated parameter vector is 
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T T ~T 
X = X0 +X = (2640.003, 1159.998, 2529.996, 935.002, 3660.002, 630.000, 

3635.000, 355.000, 3264.592, 646.430, 3569.990, 917.436, 

2819.673, 945.579, 3159.506, 866.221). 

Using this parameter vector as new approximate coordinates X0 , the A and 

W matrices are reevaluated {note that WL is no longer zero)and equation 
X 

(7-3) is again employed to give a second iteration solution vector of 

~T 

X = (0.00003, 0.00014, 0.00048, -0.00023, -0.00069, 0.00014, 0.00019, 

-0.00004,0.00441, -0.00096, 0.00361, 0.00156, 0.00150, -0.00063, 

0.00322, -0.00030) , 

which yields the second iteration parameter vector as 

T T ~T 
X = X0 +X = (2640.003, 1159.998, 2529.996, 935.002, 3660.001, 630.000, 

3635.000, 355.000, 3264.597, 646.429, 3569.993, 917.438, 

2819.674, 945.579, 3159.509, 866.221) • 

Evaluating A, W and WL a third time to compute the third iteration 
X 

solution vector X yields a zero solution vector. The final parameter 

vector of adjusted coordinates is thus giveri\ll!y equation {7-16). 

The variance covariance matrix c of the parameters is 
X 

computed using equation (7-4) to yielc 

(7-15) 

(7-16) . 



c 
X 

106 

---- X - 1. '{____ - -- ---- . X . z __ .. Y .. .. ... _ X ____ l _ __ __ . Y 

l.;L.L 11. ltGL Zl ltlll 31 I<.Ul itl ILul 51 ILCL 61 

1 o.1~t.520Z9~-olt o.2395d~9lU-o5 o.55410165D-05 -0.2J79~1PbD-05 o.1oeo111t?-o5 -0.131197~5J-05· 
~ O • .l3'1>iiU•Hi)-05 Oo187t.51 .. •J~-Q.; -0.33319t.4l'J-O~ O.lt~'•BJZ'Il0-05 O.l171fJ4Z:l-05 O.!!Z~~o;,.·,rn-1() 
3 0.!>~41J1o5U-J5 -0.3JH~u41:J-Il5 0.11l15i;JL30-Co4 C.21;;242190-05 Ool124J.>J30-C5 :J.7olt·6171J-06 
It -0.2J7<;'<1:.t.o-o5 o.1B'to3l<JlU-05 o.l1624.!19U-O!> o •. H42h'IIO-'J4 -o.~.:u~eo.w-no ~.lJ7!'!•ll'H-?b 

___L_.O.ol0t103lllD-02._0 .l177:lU42J-05~·-0·11243:> !lj!)-Cl!> -:0.;;..!-l33°02il:-Cc __ Q. 15'IS l.;.,_.;,)-!J't_:-0. ll:l'iL:.i><;!I-·J'i_ 
6 -O.l310<JI~50-0~ Q.o;2JJ56•00-06 0.767t.L771u-06 -O.J315u31UU-Uo -O.i1~~~Lt.~J-u5 ~.21~b~52~~-J4 
1 -0.794571530-06 -0.6524JJ55u-06 0.306l39ld0-ll6 -O.l702b704C-06 0.644702Z2D-05 0.~~075~~~~-?b 
8 Ool1c.66737D-Q6 0.1Z'o3963ai.l-Ub -0.659459&5:>-07 0.3b187247U-07 -0.93l2c575il-Ot -J.7t-2H71JJ-06 
9 o.173029670-06 o.322Uitl17J-05 o.717~951v~-o5 -G.34735467o-o5 o.11774514D-o4 -~.2lo~S~7ZJ-J6 

10 -0.4G3'1l75lll-05 0.112241119~-04 0.66S994bol)-05 -O.l228465~C-05 -0.192b17o5o-05 O.ll12777o>-~4 
1l O.!llZ85le45il-05 o.259433HO-O:> 0.12l'l7935i>-05 -0.4dlltHoii2D-Ob 0.2232~c.75D-04 -!>.,552685<::>-:>5 
12 -o.554549690-il5 o.546425990-0-5 o.Z629.l01oo-oo; -o.l317o297o-os o.9szzc:eo~o-o7 :>.1d29741'1~-J4 I! 8·'iSS2173bO-Q5 g.42689205J-05 0.96155974)-05 -0.4505J54.;0-05 0.4173~1420-05 -0.726~101~0-1~ 

;;<<i4 J"Ztrb3 D-o 6 .1 b9797SOrFo4 o. r4 :J"il 675'5'D-==u5"-=tr.5J1t11l"ii1i21J-Oc: -0 .TI557!Pt"!r-Oo-lJ; 'S!l )3 :l; !;7J=o;-
15 0~598b66Z00-05 0.34742726)-05 0.561147380-05 -0.261608820-05 0.121797380-04 -0.21289755~-05 
16 -0.691398020-o5 o.l526744u~-o4 o.61739490~-o5 -0.3Z699634u-o5 -o.1olJ2625a-o5 o.99a76lsao-os 

X + 
I Ct;l 1) 

y 

I COL 81 

X 1003 Y X . 100.. Y 

ltOL' 9) ltOL lOJ CCOL 11J ltCL 121 

---!-=g-:n~~34H~a~ 8-;tl~~~u~s~&~-8:!H8~~t~s:-a~-~~-t~nu~\g;g~~~s:~~~2~~j~g~gri;i~~~ng~1=3~-
3 o.30t.1l9loo-~o -u.o594~9as~-o7 o.7175951o~-o5 o.66999486D-C5 o.l21T793SO-o5 o.26ZS~otoo-a5 
4 ~u.17v2t.7U4u-ll6 0.361872470-07 -O.l47354b70-05 -0.3228~6560-05 -0.4e~P1~o2D-06 -O.t3176Zr.7J-a5 
5 o.644 70l22:J-05 -o .•n1265751J-06 o. 11 77451 ~oo-04 -0.1'<2317b~o-o5 o .2n2su 75•)-o.; o. 95Zl<JJJil:l-o>7 
6 0 .I>U075&92D-Oo -0.71l2~47l30-06 -0.21643'• 720-06 0.138277 loP.-04 -a .4~~26!l54J-05 Ool<ll'7 74 n~-04 
1 o .1b44244!1D-o't -o .6S<J2H .ao-o& o. 563610250-05 -o. 146346 790-05 -o .3<!9S 51190-05 o. lB~7l0340-o5 
8 -O.t.b92l7221l-06 0.259104~00-04 -0.850964210-0o -0.174831920-0~ 0.9201b095D-06 -O.E436't7620-06 
9 o .5636 1025~5 -o.s509Hll0-06~0· 7311692 50-04 0.427104 hi:l-05 o.212S943t>O-Il4 -J • .:c l~.~5?C::l-ll4 -ro--=o-:I~63~t-li7'1~u~~ 174<i3 £92iF<f~;427704 76o=us·-----:r.-9n'S'm~to-o4 -o .-n7metv-o.. o."7517 l'>br:J=o~ 

11 -O.J6~B~ll91l-05 0.9201u0950-06 0.2128943~::1-04 -0.2178338o0-04 0.627653480-04 -o.270153Q30-04 
12 o.1oo710a40-o5 -o.a43~47620-06 -o.2018652oo-o4 o.7~172961D-04 -0.27u15393i.l-04 o.5953J77:;n-J4 
13 0.15j411620-J5 -O.Z05<Jlldl0-06 0.233710520-04 -0.1396<J525U-05 0.89699759o-05 -0.9452o~25::l-05 
l't -O.Ll155~49~-05 0.20241o~3D-06 -o.l95915e5o-os 0.417d190.lO-il4. · -0.484498lo~-o~ o.3J4't17o~o-or. 
15 0.11~~42119~-U!> -0.579250730-07 0.56lOOOSaU-Oit 0.7255J638D-05 0.299505000-04 -o.20Jl9026D-04 
16 0.349836170-06 -0.356552660~06 0.99d3964bD-u5 O.b6114le530-04 -0.164556290-J4 o.S095L05ZD-Oit 

X 1006 Y X LOOT Y 

&tOL 131 ltOL 141 ltOL 151 ILOL 16) .... -·------------------------ - ----------- --

1 0.986217360-05 0.244320630-06 0.59~68620~-05 -0.691398020-05 
-i-%:~iY~~~i~8:;8~-g: l~~~~ -~~g~:;~&:-~tlit H ~8:8t-8:U~~~tt&8~£-;;:4~------..:,_ ___ __, ____ _ 

1t -o.4~0505~4o-~~ -o.5347~6o2~-oo -o.Z6l60JelO-o5 -o.32699634o-o5 
5 o.~17JII14l0-05 -0.11~570440-06 0.1Zl7973SD-04 -0.101~~6250-05 
c. -o.7nc:.so<j:,O-oo o.:.OJ304570-05 -o.212ti9755o-os o.9'JE7:.1:J.;o-os ___ -----------------------· _ ........ _ 
7 o.1~34llo2J-u5 -v.l115~?~9~-c5 o.119~42690-05 o.3~9d3U170-06 
8 -O.l05927al0-U6 o.l0241u930-06 -0.579250730-07 -0.35a5526~0-06 
9 0.233/l0~2u-04 -G.1~5915o5D-05 0.561000580-04 Oo99o39a4o0-05 

lO -Q •. U'>.c.9c25.i.l=.J.5__.D_.41J.H902.0~0ft.__Q.JZ~5.J6330:-:Q2___Q_ • .b.blL4't.53V.:::.O.:'l-----------------
11 o.a.,~~s7~9o-o~ -~.4o449d1t.O-o5 o.29950500J-04 -0.16't5~ol90-olt 
12 -o .'»4~26il25D-05 o .304,.176oD-O't -o. 2031902 60-04. o. 509510520-04 
13 o.46079778o-04 -o.2o5817230-0it o.26528B1Z0-04 -0.139145azo-o4 

--l~ ----&:~~~~UH&:&1 -8:U&l~~~!8:8t-- ··· :-g:}~~~;~~;g:g: -8:t~g~~H~g:g: ----.. ---~-- -------- -------·--
16 -O.l39l't582D-04 0.65080222D-04 -0.183793880-04 0.982032270-04 

where C has been printed in rows of six columns at a time. The equations of 
X 

Appendix III (C factor = 2.45) are used to compute the 95% station and relative 

error ellipses listed in Table 7.1 and-plotted in Figu~e 7.4. 

Station E11iJ2ses Relative Elli,eses 

Station a(m) b(m) e Station Station a(m) b(m) e 

1 .011 .010 50°14'35" 1 2 .016 .011 32°18'42" 

2 .012 .010 26°36'31" 1 1006 .022 .011 -44°01'33" 

3 .012 . 010 -10°26'14" 1006 1007 .021 .012 -65°23'33" 

4 .012 .010 -5°13'45" 1003 1007 .022 .009 -31°42'07" 

1003 . 024 .021 9°48'58" 1003 1004 .024 .014 73°00'12" 

1004 .025 .017 -31°49'52" 3 1004 .023 .012 -24°38'31" 

1006 .022 .013 -36°09' 57" 3 4 .017 .011 -3°28'13" 

1007 .025 .019 -26°37'59" 

Table 7.1 95% Error Ellipses for Closed Traverse with Weighted Parameters 
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the residuals V are computed using equation(AII-17) and the solution vector 

of equation (7-15) to be 

VT = (0.84, -0.84, 0.58, -0.58, 0.40, -0.40, 0.16, -0.16, 0.31·, -0.31, 
(1,17) 

0.02, -0.02, o.ooo, -0.002, -0.004, -0.000, -0.005), 

where the units of the first 12 elements are arcseconds and the final five 
A 

(7-17} 

elements are in metres. Using these residuals and the summation of X's for all of the 

A 2 
iterations (cf; eq. (7-7)) the a posteriori variance factor cr is computed 

0 

via equation (7-6) as 

-:" 2 
cr 

0 

The rssults {i.e.·adjusted coordinates and accuracy estimates) 

for this example and that of section 6.1 where points 1, 2, 3 and 4 were 

considered fixed are significantly different. With weighted points, the 

observations are allowed to affect the final coordinates of the weighted 

points to a degree dictated by the observation as well as coordinate weight 

matrices (P and P ). This gives a more realistic least squares solution 
X 

than does the fixed point approach. 



8. PREANALYSIS 

Preanalysis is the study of the design of a network. The 

design is carried out prior to the establishment of the network in the 

field, and thus no observationsare necessary for a preanalysis. By 

optimizing the accuracy and distribution of the observables before 

entering the field, the required accuracy of the network points is 

achieved most expediently. 

Preanalysis is based on equation (AII-16) I i.e. 

c = [AT C-1 A]-1 
X L 

Since the variance covariance matrix of the parameters c does not 
X 

require knowledge of the actual observations (the only place where the 

observations are necessary is for computation of W), it can be computed 

knowing the approximate coordinates of the unknown points along with some 

proposed observations (and their standard deviations) amongst them. If 

some parameters are weighted, then equat.i:>n (7-4) applies, i.e. 

Computing the station and relative error ellipses from C , the results 
X 

of a network design are readily apparent. The design can be altered by 

proposin~ different observations and standard deviations and/or changing 

the position or number of unknown points, and recomputing C • 
X 

Better use of the already existing design is made when the 

sequential design approach [e.g. Nickerson et al., 1978] is used. This 

method is characterized by the following equation: 

c 
X. 
~ 

T 
A. 
~ 

T -1 
+C +A.C A.) A.C 
- Li 1 xi-l 1 1 xi-l 

109 

(8-1) 
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where C = covariance matrix of the parameters utilizing all observables, 
X. 

l. 

C = previous covariance matrix which is being alteredy 
xi-1 

A. = design matrix for the observables to be added or deleted, l. . 

cL. = variance covariance matrix of the observables being added 
l. 

or deleted. 

The plus and minus signs preceding C refer to addition and deletion of 
L. 

l. 

observables, respectively. The size of inverse to be computed {usually 

the most time consuming task) is equal to the number of observables 

being added or deleted, not the number of parameters as in the nonsequential 

equations. The standard deviations of specific observables are changed 

by subtracting the old observable with its standard deviation, and 

adding it back with the new standard deviation. The following examples 

illustrate the preanalysis process. 

8.1 Traverse Design 

Figure 8.1 depicts the initial information {see Table 8.1) for 

the traverse design. There aFe four fixed points and three unknown 

UNKNOWN POINTS KNOWN POINTS 

Station x(m) y(m) Des.Acc. (m) Station x (m) y (1'1) 

1 293682 225293 0.05 1102 293054.171 22sn4.674 

2 293976 225607 0.05 1116 293571.011 225598.373 

3 294421 225284 0.05 1105 295267.293 225419.706 

1106 295004.038 225951.144 

Table 8.1 Initial Data for Traverse Design 
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ELLIPSE SCALE 

D 0.0726 0.145 0.218 0.29 

A1106 

0 

294'500 

Figure 8.1 Initial Data Plot 

OBSERVABLE TYPE STANDARD DEVtATION FROM STATION TO STATION 

direction 3':0 1116 1102 

airection 3':0 1116 1 

direction 2':0 1 1116 

direction 2':0 1 2 

direction 2':0 2 1 

direction 2':0 2 3 

direction 0.02 m 1116 1 

direction 0.02 m 2 1 

direction 0.02 m 2 3 

Table 8.2 Initial Observables 

A. 10'5 
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points. The required accuracy is represented by the design circles of 

5 em. radius around the unknown points. 

The proposed initial observables between these points are 

listed in Table 8.2 and plotted in Figure 8.2. The design is first 

treated as an open ended traverse similar to the example in section 5.5. 

The main difference is that directions are used here instead of angles. 

Thus, the A matrix is of size 9 x 9 (i.e. n = 9, u = 9 (6 unknown coor-

dinates, 3 orientation unknowns}}, and is given as 

226179 

i 
,, 
n 22 .. 679 
p 
·' ,· 
il 
h 
!I 
,j 
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Figure 8.2 Initial observables Plot 
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(9,9) 
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o.o o.o o.o CI.O o.o o.o -1.0 0.0 o.o 

-596.637 -216.850 o.o 0.0 o.o o.o -1.0 o.o o.o 

-596.637 -216.850 o.o o.o o.o o.o o.o -1.0 o.o 

-350.0322 327.7371 350.0322 -327.7311 o.o o.o o.o -1.0 o.o 

-350.0322 327.7311 350.0322 -3.27.7311 o.o o.o o.o o.o -1.0 

o.o o.o 220.3494 303.5774 -220.3494 -303.5774 o.o 0.0 ":'1-0 

0.3415916 -0.9398485 o.o o.o o.o o.o o.o o.o o.o 

-0.683417 -0.729972 0.683477 0.729972 o.o o.o o.o o.o o.o 

o.o o.o -0.8092862 0.5874145 0.8092862-0.5874145 o.o o.o o.o 

This results fro~ c cor~ination of the direction mathematical model 

developed in section 3.2 (for the first six rows of A) and the distance 

mathematical model of chapter 4 (last three rows of A above). The 

last three columns of A are for the orientation unknowns z1116 , z1 , and 

The P matrix is (assuming cr 2 = 1) 
0 



p 

(9,9) 

0.111 0.0 o.o 

o.o 0.111. 0.0 

0.25 

0.25 

o.o 
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0 0.0 

0.25 

0.25 

2500.0 

2500.0 o.o 

0 o.o 2500.0 

Computing (ATPAl and taking its inverse yields 

&.61272.10 - 5 -4 -1.14078.10 4.55593.10"5 
_, 

-7.60943.10 
. -5 
8.72900.10 -l.e&Ol6.1o·5 -1.33244.10-2 

-4 
3.58538.10 

-4 -1.2882).10 ]. 72343.10-c -1.13~56.10-c ].93239.10-c "'4.84281.10_, 

c - 2.52101.10-c s.2llll.lo·5 -4 •5 ·4 

• 2.31851.10 2.44U7,10 3.76422.10 

8.52115.10-4 1. 25513.10 -· 7.52963.10-4 -1.76710.10-2 

-4 5.56954.10 2.23259.10-s -1.37171.10-2 _, 
1.1.5009.10 •3. 7087&.10-2 

9.0 

-2 -2 -2.66caa.1o -z.~aa.1o 

-9.68562.10-l -9.68562.10_, 

6.84Zl0.10•l 1.29314.1:1-z 

-4.10434.10-2 -4.61448.1,-2 

-z.1aoea.1o·2 -3.4':1411.10-z 

-1.85066.10-2 -1.11467.10-1 

t.o 

22.0 

9.0 

22.0 

30.0 

The first six rows and columns are the variance covariance matrix for 

the coordinates of points 1, 2 and 3. The last three rows and columns 

represent the variance and covariance of the orientation unknowns, and 

are of no practical concern. Since the orientation unknowns are nuisance 

parameters, only the first (6 x 6) submatrix of C will be considered 
X 

as representative of the traverse being designed. The 99% error ellipses 

. (8-2) 
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assuming o 2 known and nonsimultaneous ellipses (c factor = 3.035, 
0 

see Appendix II) are listed in Table 8.3. From Figure 8.3 

STATION ELLIPSES (99%)' RELATIVE ELLIPSES (99%·) 

Point Semimajor(m) Semiminor(m) Points Semiinajor (m) Semiminor (m) 

1 0.061 0.021 -19°58'26" 1-2 0.061 0.033 

2 0.079 0.049 0.061 0.049 

3 0.103 0.073 

Table 8.3 Confidence Ellipses from Initial Observables 

and the above table it is seen that all of the station ellipses lie 

43°06'57" 

outside the required accuracy circle of 5 em radius. New confidence ellipses 

ELL.lPSE SCHLE 

0 

226179 

4lB6 

Figure 8.3 Plot of 99% Confidence Ellipses from Initial Observables. 
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are computed using equation (8-1) to update the design. Table 8.4 shows 

the update observables which are depicted in Figure 8.4. Referring to 

OBSERVATION TYPE STANDARD DEVIATION FROM STATION TO STATION 

Direction 1~'5 3 2 

Direction 1~5 3 1105 

Direction 1~5 1105 3 

Direction 1~5 1105 1106 

Distance 0.02 m 3 2 

Table 8.4 Update Observables 

Figure 8.4 Plot of Update Observables 

equation (8-1), these new observables are added by first computing Ai 

and cL.' and in turn ex. taking equation (8-2) as C • After 
1 J. xi-1 

performing these operations, the new C corresponding to the 3 unknown 
X. 

l. 

points is (to 5 significant digits) 

5.9200E-5 -8.2518(-5 4 • 225BE""5 -5.8677E-·5 2.3325[-~.) -1.7375E-5 
-a.2518E-s 2.0463E-4 -1.1573!:-4 1.349bE"4 -3.169;!E""5 3.4932E··~ 
4.2258E-5 -1.157~iE-4 1.7800E-4 4.3074£-6 1. 07Bl·E-4 3.2542E~~i 

= -s.acl77E-s 1.~~496E-4 4.3074E-6 1.7620£-4 7.3:so:::;E-:::; 7 .1295E··s 
X 2.3325E-5 -3.1692£-5 1. 0786E·- 4 7. 330~)[""5 2.2146!:-4 1.460·lE"5 

-1.7:i75E-5 3.49:52C5 3.25•l2E-5 7.1295E-5 1 • 460•lE- 5 5.5169E:-5 
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2 
The 99% error el:ipses (again assuming a known and nonsimultaneous 

0 

ellipses for a c factor of 3.035) computed from the above C matrix 
X 

are listed in 

STATION ELLIPSES (99%) RELATIVE ELLIPSES (99%) 

Point Semimaj or (m} S~miminor (m) e Points Semimajor(m) Semiminor{m) 

1 0.047 0.014 0.046 0.018 51°07' 30' 

2 0.041 0.040 50°54'24" 2-3 0.047 0.019 -59° 19' 18' 

3 0.045 0.022 85°01'08" 

Table 8.5 99% Error Ellipses Af~er Update 

Table 8.5 

:I 
and plotted in Figure 8.5. Obviously, all of the error ellipses 

I· 
1! 

~ 21!6173 

Figure 8.5 Plot of Updated 99% Error Ellipses 
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now meet the required accuracy, and the design is finished. A summary 

of 'chc proposed obse:f"vr.ttions is given in Table 8.6. 

FROH 'I'O TYPE C1 --
1116 1102 1 3.0000 
1116 1 1 3.0000 
1116 1 2 .0200 Note: Type 1 = Direction 
1105 3 1 1.5000 
1105 1106 1 1.5000 Type 2 = Distance 
1105 3 2 .0200 

1 1106 1 2.0000 
1 2 1 2.0000 
2 1 1 2.0000 
2 3 1 2.0000 
2 1 2 .0200 
2 3 2 .0200 
3 2 1 1.5000 
3 1105 1 1. 5000 

Table 8.6 Observable Summary 

8. 2 Property Survey Design 

The initial data of this design (see Table 8.7 and Figure 8.6) 

is characteristic of a simple lot layout often encountered in practice. 

UNKNOWN POINTS KNOWN POINTS 

seat ion x(m) y(m) Des.Acc. Station x(m) y(m) 

1 155721.0 119687.0 0.05 1004 155221.688 119515.558 

2 156019.0 119595.0 0.05 1005 i55493.ll0 119604.892 

3 156027.0 119386.0 o.os 

4 156204.0 119596.0 o.os 

5 156213.0 119388.0 0.05 

Table 8.7 Initial Data for Property Survey Design 

Fixed points 1004 and 1005 represent two second order monuments, point 

1 an intermediate point , and points 2, 3, 4 and 5 the four lot corners 

to be established. Again, the required accuracy circle is of 5 em. 

radius, but this time at a confidence level of 95%. 
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00 

Figure 8.6 Initial Data Plot for Property Survey Design 

The initial observables considered for the design are 

listed in Table 8.8 and plotted in Figure 8.7. These initial accuracies 

:JBSERVABLE TYPE STANDARD DEVIATION FROM STATION TO STATION 

Direction 2~0 1005 1004 
Direction 2~0 1005 1 
Direction 2~0 1 1005 
Direction 2~0 1 2 
Distance 0.02 m 1 1005 
Distance 0.02 m 1 2 
Direction 3~0 2 1 
Direction 3~0 2 4 
Direction 3~'0 2 3 
Distance 0.02 m 2 4 
Direction 3'!0 4 2 
Direction 3~0 4 5 
Direction 3~'0 5 4 
Direction 3~0 5 3 
Distance 0.02 m 5 4 
Distance 0.02 m 5 3 

Table 8.8. Initial Observables for Property Survey Design 
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could be achieved using 4 sets of direction observables at station 

1005 and station 1, and 2 sets at stations 2, 4and 5 with a 1" 

theodolite (see Table 2.4). The distance's accuracy of 0.02 m is 

easily achieved using either lightwave or microwave EDM with 

normal meteorological readings (see Table 2.8). The A matrix for 

the initial C is (16 x 15) since there are 16 observables 
X 

Figure 8.7 Plot of Initial Observables for Property Survey Design 

(see Table 8.8) and 15 unknowns (10 coordinates and 5 orientation 

unknowns). The A matrix is formed using the equations developed in section 

3.2 and chapter 4. After computing A and P, equation (AII-16) is used to 

compute C as 
X 

X y X 3 y 

ICOl 41 lCOl 5 J 

0.119440340-03 0.350661160-03 
0.684944400-04 . 0.1369 39490-03 
Oo20948355D-04 Oo72484793D-03 
O.l494676SD-03 0.53:027244D-04 
o.51327Z44n-o~o _0.7643IB64D-03 
o. ~o;o7:>704<>-a3·-·-- a.-HlOC414qu-o4 
n.20793934U-o4 o.72~R7243n-a3 
O.l76127~dD-OJ Oo79f~~2330-04 
0.5301T4~3U-04 0.75YQ34830-03 
o.t7•J52Z~t.u-o3 o.65701Jl>•JU-04 

v 
ICOI. 101 

o.l\6'•4513D-03 
;). 7'>~176 110-'l't 
0.24b&'i7610-ll4 
a.nc,~222bD-03 
O.b'>7Jl01o3l>-J4 
o.~;o7'lS'79fhl3 
a.zt..,~!l~'i'Ju-o't 
0.2367S77f>0-03 
O.b•lb36S4flD-04 
0.6)88 1t3490-03 

ICOl 61 
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Figure 8.8 depicts the 95% (assuming a 2 known, nonsimultaneous ellipses, 
. 0 

c factor 2. 45) error ellipses resulting from this initial des_ign. 

C ~.tQ~ 0.211 O.l16 0.~~2 

119300 

119!0!1 

Figure 8.8 Initial Design Results 

Point 1 is the only point which meets the required accuracy. From the 

shape of the relative error ellipses (i.e. long and skinny along the 

line of sight), it is obvious that the distances are less accurate 

relative to the direction observables. Thus, the design is altered by 
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changing the standard deviation of most of the distance observables 

from 0.02 m to 0.01 m. This would correspond to using a more accurate 

instrument for observing distances (e.g. lightwave EDM with standard 

meteorological readings (cf. table 2.8)). These changes are effected 

by first subtracting (use sign in eq. (8-1)) the existing distances 

with 0.02m for a standard deviation, and then adding them back again 

(+ sign in eq. (8-1)) with a standard deviation of 0.01 m. After 

performing this operation for each distance observable except that from 

point 5 to point 3, the C matrix is 
X 

y X 

C C'lL I) I COL C:l CCOL 31 

__ _&, ____ Y::___ ---~x~-----'------~Y--
C<;OL 4) CCOL 51 (LuL 

llo£P777~!o;:n-o• Oo2<1.i71474J-J4 Oo6rJ..J!>7446<1-Iill Oo2377058Dl>-011 Oo85130b5uu-IJ4 Oo~.io47074D-04 
Oo2:J.l'l<tl'l<>-·l-' Oo<:l255?..J';.>-o)4 o.:: .. :Jt3~1>.JU-.l4 \Jo.i4024r,.!:.lol•.l4 Oolll21!:'47'+:...J-OII llo.>4..tu7162oJ-04 
Oof!13':7·•4t-.>-:lll Oo.Si!.Jl.Jchi.Jf)-Oif Ool!!14l!IJ7D-1>3 Oo9f!37233~0-05 Ooi8!>112267..J-U.i voV<;o·;o)5J79J-;)~ 
Oe~JP73~~E~-04 Ce~40249~1>-~4 0.~£372~~~~-~~ O.ud€9~~~60-~4 Oe4l~l~~ZJ~-~· U•~~1l~~6Z~-Q· 
Oo,lr:t.n•,>v.>-0'< vo412f.'•l4!..J-04 Oold':>II?.!'<·7 ... -•>.J Oo,.221'><>io!JJ-vlf Oo,Z24•019.>u-J.J <J .... d~932!ibi.>-OII o ;>", . ·• r J, •J=o ~--:; ."J:..>t. 7-,,_;.,·<i=:r .. ----o. <,o,;~·;:,,u ,.,.j..;;>!>-o ~·,o t.J2.Jt.z!>:;.iJ4-o.3nzc,.·::,::o·6.w;;;-a .. -;;-;~·f<i'issa7iF~3-
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As can be seen in Figure 8.9, all of the station ellipses now fall 

within the required accuracy circle, and the design is finished. A list 
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of the final 95% station and relative error ellipse (using the same 

assumptions as for the initial design) is made in Table 8.9. 
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Figure 8.9 Final Plot of Property Survey Design 

STATION ELLIPSES (95%) 

Point Sernirnajor(rn) Sernirninor(rn) 

1 
2 
3 
4 
5 

0.025 
0.033 
0.040 
0.040 
0.047 

0.008 
0.023 
0.034 
0.032 
0.037 

6 

70°11'09" 
87°54'11" 
78°50'42" 
88°14'20" 
78°24'09" 

RELATIVE ELLIPSES (95%) 

Points Sernima j or ( rn) Sernirninor (rn) 

1-2 0.025 0.015 
2-3 0.028 0.014 
2-4 0.022 0.013 
3-4 0.025 0.017 
4-5 0.025 0.017 

Table 8. 9 Final 95% Error Ellipses for Property Survey Design 

6 

-72°50'36" 
- 2°15'34" 
-89°04'23" 
-12°02'02" 
- 2°28'02" 
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This chapter has shown how the preanalysis or design of a 

horizontal network can be done. This technique is used wherever a 

priori knowledge of the expected accuracies of the points in a network 

is desired. The next chapter treats the equally important matter of 

testing the results of an adjustment of a network to see if they are 

reasonable. This process is known as postanalysis. 



9. POSTANALYSIS 

Postanalysis of a horizontal network tests whether the results 

of an adjustment are reliable, and is based on multivariate analysis. One 

important test which is performed is the chi-square test of the variance 

factor. This test takes the form 

where df 

" 2 
a 

0 

a 

df ~2 " 2 
2 

df (J 
0 0 

< a < I 
.2 0 

xdf 1-~ 
' 2 

X-f cc 
a '2 

degrees of freedom of the adjustment, 

a posteriori variance factor computed by equation (AII-18), 

significance level (e.g. 0.05), 

a 
0 

2 
= a priori variance factor (usually ass~ed to be 1), 

l= chi-square distribution value from Table AIII-1 (replace 

u by df). 

Equation (9-1) tests the null hypothesis H 
0 

i.e. is the 

(e. g. 1)? 

•• 2 2 h . . 
n : (J = a ypothes1zed 

0 0 0 

2 actual value of a equal to what it was assumed to be 
0 

If the test fails, then this hypothesis is rejected at the 

(1-a)% confidence level. Two possible reasons for its failure are 

1) Incorrect a priori covariance matrix CL of the observations 

(i.e. wrong weights for the observations), 

2)· Observations are not normally distributed. 

(9-1) 

The first reason given is usually the first to be investigated. If it is 

found that the \'/eights are chosen correctly and the test still fails, then 

the second reason is examined. The observations are examined by testing 

the residuals for outliers similar to the data screening process explained 
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in section 2.3. Each residual v. from the adjustment is tested as 
1 

follows: 

where n a 
2 

a 

n 
a 
2 

0 
v. 

1 

< v. < n1_~ 
1 2 

0 v. 
1 

a 
= values of the normal distribution for probability 2 

(see Table 2.14), 

= ·significance level (e.g. 0.05), 

(9-2) 

0 v. 
1 

~known a priori standard deviation of the observation whose 

residual is being tested, 

v. = residual being tested (computed by eq. (AII-17)). 
1 

Assuming that the a priori standard deviation o is known, then if this v. 
1 

test fails the observation does not come from a normal distribution. 

This usually implies that some systematic bias has affected the 

observation, and it should be reobserved. 

Another test which is useful is one for comparing two 

determinations of the same set of parameters to see if they are significantly 

different. This test assumes that the difference vector Cx2 - x1 > 

between the two determinations is a random variable which is normally 

distributed. The test is 

(X - X ) < l 
2 1 u,l-a ' 

(9-3) 

where x2 = vector of parameters being tested, 

x1 =originally determined parameters, 

c variance covariance matrix of the parameters being compared, 
x2 

2 
xu,l-a chi-square distribution with u degrees of freedom at probability 

level 1-a (see Table AIII.l} , 
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u number of parameters being compared (i.e. dimension of vector 

a·= significance level (e.g. 0.05). 

If the test fails, then the two parameter determinations are considered 

different at the (1-a)% confidence level. If it passes, then the two 

sets of parameters cannot be considered significantly different (again 

at (1-a)% confidence level). One precautionary note when using this 

test is that the two sets of parameters should be determined using 

approximately the same level of accuracy; i.e. C 
xl 

should not 

be greatly different. If a network is being designed or adjusted 

specifically for the purpose of comparing to a previous adjustment of 

the same network, then the simultaneous error ellipses (Appendix III, 

eqs. (AIII-12) and (AIII-13)) should be computed since all of the points 

are required to be inside the (1 - a)% confidence ellipse simultaneously. 

The following examples illustrate some of the postanalysis 

concepts described above. 

Using the a posteriori variance factor from section 6.1 and 

equation (9-1), the chi-square test of the variance factor (for a= 0.05) 

yields 

3 . 1. 9214 
1 

3 • 1. 9214 
< < , 

2 2 
X 3,0.975 X 3,0.025 

5.76 1 < 
5.76 

< , 
9.35 0.216 

0.62 < 1 < 26.69 , 
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and the test passes. The hypothesis that the a priori variance factor 

is 1 cannot be rejected at the 95% confidence level. 

The chi-square test on the variance factor should always 

be performed after an adjustment as an overall check on the validity of 

the results. If the test fails, then there is a good chance that 

something is wrong in the adjustment. 

As an example of testing of the residual for outliers, the 

first residual of equation (6-2) is tested. From equation (9-2), the 

test is 

n0 _025 2~0 < 2~07 < n0 _975 2~0 

where a is assumed to be 0.05, and the a priori standard deviation for 

this direction (from 1 to 1006) is 2~0. From Table 2.14, the value 

of n0 _025 = -1.96, and n0 •975 = 1.96. The test becomes 

-3~92 < 2~07 < 3~92 

which is true, and the test passes. This test should be performed on 

all residuals of an adjustment even though the chi-square test on the 

variance factor passes. It is easily verified that all of the residuals 

for the examples in sections 6.1 and 6.2 pass the outlier test. It is 

said, then, that we are 95% confident that the residuals come from a 

normal distribution. 
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APPENDIX I 

Taylor's Series 

The Taylor series is used to linearize non-linear mathematical 

models. Given a single function f(x) of a single variable x (unidimensional 

case), and a known value of this function f(a) at~= a, then the function 

f(x) is given by Taylor's series as 

f.(x) afl a2f = f(a) +- (x-a) + --
ax ~ 2 a oX a 

2 (x-a) 
21 

+ ••. + 
anf 

a 

n (x-a) 
n! + 

(AI-l) 

For values of x close to a, the linear approximation is used. This is 

f(x) = f(a) + ~~ Ia (x-a) . (AI-2) 

From Figure AI.l, the geometric meaning of this linear approximation 

is clear. The function f(x) is approximated by a straight tangent to f(x) at a 

f(x) 

c -----------------­
b -----------------

f (a) ---------------

a 

,..._ _ _... true curve f (x) 

.r----_.. slope of curve at 
a given by af 

ail . a 

X X 

Figure AI.l. Geometric Interpretation of Linear 

Taylor's Series 

131 
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with slope ()f I . When (x - a) is given (or evaluated), the value 
ax 

a 
of the function f(x) is approximated by b, and the exact value is c. Thus, 

the error arising from using the linear approximation is c-b. 

If f is a function of more than one variable, say f(x1 , x2) and 

its value is known at x1 = a1 and x2 = a 2 , 

then for values of (a1 , a 2) close to (x1 , x2 ) the linear approximation .is 

(AI-3) 

Setting 

af 
-= 
ax 

then 
f(X) (AI-4) 

If there is more than one function of X (e.g. f 1 , f 2) then the 

following set of equations exists: 

df 
f (Xo) + _2_, 

2 ax xo 
~X 

Setting 
a£1 af1 

[ ::] 
ax1 ax2 

aF F = ax 
Clf2 a£2 

axl ax2 
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then 

f (X) flx • (AI-5) 

Equation (AI-5) is the matrix form of the Taylor's series linear approximation. 

Equations (AI-2) and (AI-4) can be thought of as special cases of this matrix 

form. 



APPENDIX II 

Least Squares Method 

The least squares method is usually used to give a unique solution 

for an overdetermined case (i.e. number of observations n greater than 

number of parameters u). Only the inverse (explicit) form of mathematical 

model (cf. eq. (1-2)), which is sometimes called the parametric case of 

adjustment, is considered here. In matrix form, this model is expressed 

as 

L=F(X) I 

or F (X) - L = 0 , (AII-1) 

where L = vector of observations, 

F (X) = non-linear functions of the 

parameters x. 

The linearized form of this inverse (explicit) model is (see also Appendix I 

and chapters 3 and 4) 

A X 
(n,u) (u;l) 

+ .w 
(n,l) 

V = 0 I (AII-2) 
(n,l) 

where V = vector of residuals or corrections to the observations, 

A--aF I - ax xo = design matrix or Jacobian of transformat~on from 

observation space to parameter space, 

X = solution vector of corrections, which, when added to the 

approximate values X0 gives the parameters X (see eq. AII-12), 

v1=F(X 0 )-L = misclosure vector. 

134 
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The least squares estimate for X is obtained subject to the condition 

T .. V PV = nu.n~mum, (AII-3) 

where p 

(n,n) 

2 -1 
= a0 CL is called the weight matrix of the observables, 

2 
a = a priori variance factor, 

0 

CL = variance covariance matrix of the observables • 

(n,n) 

The variation function ~ relating the unknown quantities X and 

V to the known q~antities A, W, and Pis 

(AII-4) 

where K = unknown vector of Lagrange correlates. 

To find the minimum of the variation function, the derivatives with respect 

to X and V are found and set to zero. Thus 

(AII-5) 

.!. !t- KTA 2 .... - = 0 
ax 

(AII-6) 

The transpose of the above two equations and the linearized mathematical 

model (eq. · (AII-:-2)) make up the following least squares normal equations 

system: 

PV - K = 0 I 

T 
A K = 0 , 

AX + W - V = 0 

Writing these equations in hypermatrix form yields the most expanded matrix 

form of the normal equations system as 
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p -I 0 v 0 

-I 0 A K. + w ""0. (AII-7) 

0 0 
A 

X 0 

The solution vector X is obtained by using a matrix elimination 

technique [e.g Thompson, 1969]. Given the matrix equation system 

. m = 0. 

X is eliminated by forming a modified coefficient matrix and known vector 

as follows: 

[D - CA-l B] Y + [V- CA-l U] = 0 • (AII-9) 

Applying this method to equation (AIII-7) to first eliminate V gives-

.-1 [OJ}= 0 , 

or 

0 (AII-10) 

Using the same technique to eliminate K from equation (AII-10) yields 

or, solving for X 

A T -1 
X = - [A PA] (AII-11) 

This is the least squares estimate for the solution vector X • The parameters 

X are now computed as 

X (AII-12) 
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Usually, the solution vector X is iterated (i.e. now X0 + X, and a new X. 

is computed) until it is very small (e.g. < 1 mm). This is necessary 

because the use of a linear approximation is not exact (see Appendix I). 

The final expression for X is 

(AII-13) 

To find the variance covariance matrix C of the parameters, 
X 

the covariance law [e.g. Thomson et al., 1978] is used to propagate errors 

through equation (AII-13). Since the only independent random variable in 

equation (AII-13) is L (because W = F (X 0 ) - L) , then 

Realizing that 

since 

then 

ax 
~= aL 

aw 
aL 

CL (ax) T aL 

= a(F(X0 ) - L) =-I 
aL 

Noting that P = o0
2 c~1 , then 

or 

C = o2 [ATPA]-l ATPA [ATPA]-l , 
X 0 

c 
X 

T -1 -1 
[A C L A] • 

(AII-14) 

(AII-15) 

(AII-16) 

Thus, c is simply the normal equations inverse of the solution vector (see 
X 

eq. (AII-ll)). 

Once the final solution vector is found, then the residual vector 

V is computed as 

v AX + W (AII-17). 
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,., 2 
From the residuals V, the a posteriori variance factor cr is evaluated as 

·0 

,., 2 
cr 

0 

where df = degrees of freedom = n - u • 

(AII-18) 

This a posteriori variance factor is useful when performing a post analysis 

of adjustment results (see chapter 9). 



APPENDIX III 

Error Ellip~es 

Error ellipses ·(see Figure AIII-1), are characterized by the 

length of their semimajor and semiminor axes a and b, respectively and 

the azimuth 9 of the semimajor axis a. These ellipses are representative 

of the error of a point in a network (sometimes called station ellip~es) 

or of the error in the difference of coordinates between two points (relative 

error ellipses). These error ellipses are computed knowing the variance 

covariance matrix C of the parameters, and the so-called c factor. The 
X 

c factor is used to increase the confidence level of the ellipse from 

standard(~39%) to a desired (e.g. 95%) confidence level in the following 

way: 

a = ca 
s 

b = cb s 

(AII-1) 

where a and b are the semimajor and semiminor axes of the standard error 
s s 

ellipse. 

The basis of error ellipse computation lies in multivariate 

statistics [e.g. Wells and Krakiwsky, 1971; Hogg and Craig, 1970]. The 

2 
quadratic form of the parameters for the a priori variance factor cr 

0 

known is distributed as 

where X 

T -1 
X C X 

X 

2 
X u,l-a (AII-2) 

difference between the least squares estimate of the parameters 

and the true value of the parameters, 

x 2 = random variable with a chi-square distribution and degrees 
u,l-a 

of freedom u (see Table AIII-1) 7 
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X 

/ 

Fjgure AIII.l Error Ellipse 



-~-a .005 .010 .025 .050 .100 

1 .0000393 .000167 .000982 .00393 .0168 
2 .0100 .0201 .0606 .103 .211 
3 .0717 .115 .216 .352 .684 

" .207 .297 .-'84 .711 1.06 
II .412 .554 .831 1.15 1.61 

6 .676 .872 1.24 1.M 2.20 
1 .989 1.24 1.69 2.17 2.83 
8 l.M 1.115 2.18 2.73 3.49 
9 1.73 2.09 2.70 3.33 -&.17 

10 2.16 2.50 3.25 3.94 4.87 

11 2.60 3.05 3.82 4.57 5.68 
12 3.07 3.117 4.40 5.23 6.30 
13 3.57 -&.11 5.01 11.89 7.04 
14 4.07 4.66 5.63 6.57 7.79 
15 4:60 5.23 6.26 7.26 8.55 

16 5.14 5.81 0.91 7.96 9.31 
17 5.70 6.41 7.56 8.67 10.1 
18 6.26 7.01 8.23 9.39 10.9 
19 6.84 7.63 8.91 10.1 11.7 
20 7.43 8.26 9.59 10.9 12.4 

21 8.03 8.90 10.3 11.6 13.2 
22 8.M 9.54 11.0 12.3 1-6.0 
23 9.26 10.2 11.7 13.1 14.8 
24 9.89 10.9 12.4 13.8 15.7 
25 10.5 11.5 13.1 14.6 16.5 

26 11.2 12.2 13.8 15.4 17.3 
27 11.8 12.9 14.6 16.2 18.1 
28 12.5 13.6 15.3 16.9 18.9 
29 13.1 14.3 16.0 17.7 10.8 
30 13.8 15.0 ·16.8 18.5 20.6 

----

Table AII I.l 

.250 .500 .760 .900 

.102 .456 1.32 2.71 

.1175 1.39 2.71 4.111 
1.21 2.37 4.11 6.25 
1.02 3.36 5.39 7.78 
2.67 4.35 6.63 9.24 

3.45 5.36 7.84 10.6 
4.25 6.35 9.04 12.0 
5.07 7.34 1a.2 13.4 
5.90 8.34 11.-i 14.7 
6.74 9.M 12.5 16.0 

7.58 10.3 13.7 17.3 
8.44 11.3 14.8 18.5 
9.30 12.3 16.0 19.8 

10.2 13.3 17.1 21.1 
11.0 .4.3 18.2 22.3 

11.9 15.3 19.4 23.5 
12.8 16.3 20.5 24.8 
13.7 17.3 21.6 26.0 
14.6 18.3 22.7 27.2 
15.5 19.3 23.8 28.4 

10.3 20.3 24.9 29.6 
17.2 21.3 26.0 30.8 
18.1 22.3 27.1 32.0 
19.0 23.3 . 28.2 33.2 
10.9 24.3 29.3 34.4 

20.8 25.3 30.4 . 35.6 
21.7 26.3 31.5 36.7 
22.7 27.3 32.6 37.9 
23.6 28.3 33.7 39.1 
24.5 29.3 34.8 40.3 

---------

l Distribution 

.960 .976 

3.84 5.02 
6.99 7.38 
7.81 0.35 
9.-&9 11.1 

11.1 12.8 

12.6 1-&.4 
H.l 16.0 
15.11 17.5 
16.9 10.0 
18.3 20.6 

19.7 21.9 
21.0 23.3 
22.4 24.7 
23.7 26.1 
25.0 27.5 

26.3 28.8 
27.6 30.2 
28.9 ;u.s 
30.1 32.9 
31.4 M.2 

32.7 35.5 
33.9 36.8 
35.2 38.1 
36.4 39.-6 
37.7 40.6 

38.9 41.0 
40.1 43.2 
-61.3 44.5 
42.6 45.7 
43.8 47.0 

--------------------

.000 

6.63 
9.21 

11.3 
13.3 
15.1 

16.8 ' 
18.5 
20.1 
21.7 
23.2 

24.7 
26.2 
27.7 
29.1 
30.6 

32.0 
33.4 
34.8 
36.2 
37.6 

38.9 
40.3 
41.6 
43.0 
44.3 

45.6 
47.0 
48.3 
49.6 
50.0 

.095 

1.88 
10.6 
12.8 
14.9 
16.7 

18.5 
20.3 
22.0 
23.6 
25.2 

26.8 
28.3 
29.8 
31.3 
32.8 

34.3 
35.7 
37.2 
38.6 
40.0 

41.4 
42.8 
44.2 
45.6 
46.9 

48.3 
49.6 
51.0 
52.3 
53.7 

1-' 
ol:lo 
1-' 
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1-a = desired confidence level (e.g. 0.95} , 

u = dimensionality of the problem. 

For the case of horizontal geodetic networks, u = 2, and equation (AIII-2} 

is written as 

[x y] = (AIII-3) 

The C element in equations (AIII-2} and (AIII-3) is the submatrix for a 
X 

single point of the full C matrix for the whole network. An eigenvalue 
X 

problem [e.g. Kreyszig,l972; Mikhail, 1976] is performed an equation (AIII-3) 

to transform it to an equation without cross product terms as follows; 

[x' 

where x' ,y' = transformed coordinates wit~ respect to the rotated 

coordinate axes resulting from the eigenvalue problem, 

2 
G"max = largest eigenvalue of C (see eq. (AIII-5)), 

X 

2 a . = smallest eigenvalue of C (see eq. (AIII-6)). 
~n x 

Specfically,the eigenvalues are 

2 
0 . nun 

= 1 [(o 2+ 0 2) _ {(o 2 
2 X y X 

Writing out equation (AIII-4) explicitly results in 

(AIII-5) 

(AIII-6) 
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(x') 2 
---.1.:.:.......!'----- + 

2 2 
(y') 2 

1 , (AIII-7) 2 2 
a X max 2,1-a a min x2,1-a 

2 2 ) 1/2 which is the fa"!liliar equation of an ellipse with axes (a max x2 , l-a 

2 2 1/2 
and (a . x2 1 j • The standard error ellipse is found when Illl.n , -a 

2 x2,l-a is equal to 1, which corresponds to (1-a) = 0.3935, or a 39.35% 

confidence level. Thus 

a s 
(a2 ) 1/2 

max 

are the axes of the standard error ellipse. 

{AII:i--8) 

It is obvious from equation. (AIII-7) that the required c factor 

to compute a and b is 

c = (X2 ) 1/2 
2,1-a (AIII-9) 

2 
for the case of a assumed known. If the a priori variance factor is 

0 
... 2 

assumed unknown, however, then the a posterior variance factor a (see 
0 

Appendix II, eq. (AII-18)) is used to estimate the variance covariance 

matrix as C , where the "' stands for an estimated quantity. In this case, 
X 

the quadratic form of the parameters is distributed as 

T "-1 
X C · X 

X 
u F 

u,df,l-a (AIII-10) 

where F =random variable with a Fischer distribution (see table AIII.2) 

and degrees of freedom u and df, 

df = degrees of freedom of the adjustment. 

2 Using the same development as for a known, the c factor when using 
0 

... 2 
the estimated variance factor a to estimate C is 

0 X 
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c (2F ) 1/2 
2,df,l-a · 

(AIII-11) 

Equations (AIII-9) and (AIII-11) above give the c factor for 

computation of a single error ellipse without regard to other stations in 

the network. If, however, it is required that N station ellipses all have 

the desir~c confidence level (1-a) simultaneously, then the c factor is 

computed as 

C= 

or 
C= 

2 1/2 
(X 2,1- o/N) -

l/2 
( 2F 2 , df , 1- q/N) 

(AIII-12) 

(AIII-13) 

where a has been replaced by a;N. This is a direct result of Bonferroni's 

inequality [Vanicek and Krakiwsky, in prep.] which states that the given 

confidence level is at least 1-a for the simultaneous case. 

The orientation of the error ellipse is given by the normalized 

eigenvector corresponding to the eigenvalue a 2 of the eigenvalue problem 
max 

performed on equation (AIII-3). 

8 = sign(a ) • arccos 
xy 

The azimuth of the 
2 2 (a - a ) · 

[ max x 

2 
where a is given by equation (AIII-5). 

max 

semimajor axis is thus 

(AIII-14) 

rhe computation of relative error ellipses is facilitated by 

applying the covariance law to the following expressions: 

/',X. • X, - X 
1] J i 

(AIII-15) 
!1Y .. Y. - Y. 

1] J 1 



'!his gives 

where B 

or carrying out 

c 
t..x,Ay 

2 
a 

X· l. 

c = 
t.x,t..y 

= 
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c = B c BT 
t..x,t..y x,y 

at..x .. at..x .. at..x .. aAx .. 
l.J l.J l.J l.J 

ax. ay. ax. ay. 
l. l. J J 

ClAy .. 
l.) 

'dt..y .. 
~ 

'dAy .. 
l.J 

'dAy .. 
l.J 

ax. ay. ax. ay. 
l. l. J J 

the partial derivatives and \'Jri ting c in full 
x,y 

0 1 [-: 
-1 0 :] 

- (J 
y.x. 

l. J 
- a x.y, 

J.. J 

2 
a a 

x. xiyi l. 

2 
a 
yi 

symmetric 

+ a 
x.y. 

J J 

a 

a 

a -1 0 
xixj x.y, 

l. J 

a 0 -1 
y.x. 

J.. .J yiyj 

a 2 
a 1 0 

x. x.y. 
J J J 

2 
a 0 1 
yj 

- a 
y.x·. 

J.. ·;:~-

-a +a 
x.y. x.y, 
l.) .. )) 

2 
a· - 2a 

y. y.y. 
J.. J.. J 

(AIII-16) 

Thus, to compute the standard relative error ellipse between points i 

and j, the equations for station ellipses (i.e. eqs. (AIII-5), (AIII-6), 

(AIII-14)) are employed, but making the substitutions 
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2 2 
2a 

2 
a = a + a 

X x. x.x. X. 
J. J. J J 

a = a - a - a + a (AIII-17) 
xy xiyi yixj x.y. x.y. 

J. J J J 

2 2 
2a + 2 

a = a a y yi "yiyj yj 

The Surveys and Mapping Branch of the Dept. of Energy, Mines 

and Resources uses relative error ellipses to classify different order 

surveys [Energy, Mines and Resources, 1973]. A survey station of a network 

is classified according to whether the semimajor axis of the 95% confidenc~ 

ellipse with respect to other stations of the network is less than or equal 

to 

r = k d , (AIII-18) 

where r = radius of an error circle in em (see Figure AIII·-2), 

d distance in km to any station, 

k = factor assigned according to the order of survey (see Table 

AIII·.3). 

y 

95% confidence ellipse 

X 

Figure AIII.2. Error Circle and Confidence Ellipse 
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Thus, if a <' r for all the relative error ellipses (at 95% confidence 

level) between station i and the rest of the network stations, then station 

i is classified in that specific order of survey. ~9r example, a 

order k r in ppm 

1st . 2 20 

2nd 5 50 

3rd 12 120 

4th 30 300 

Table AIII.3. Horizontal Survey Classification. 

second order survey station must have the ser1imajor axis a'of the 95% 

relative error ellipse less than 25 em for stations 5 km apart. 




