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PREFACE

This "manual" is the third in the series designed to assist
surveyors, in the maritime provinces, on the correct and practical use
of the geodetic information of the redefined Maritime Geodetic Network.
It has been written as a surveyors handbook for the design, computation,
and assessment of horizontal geodetic networks. 1In this report, a
geodetic network is considered to be any geometric configuration of three
or more terrestrial survey points. The points may be connected via
any combination of direction, angle, azimuth, and distance observations;
furthermore, there may be redundant observations leading to overdetermined
cases. The networks are treated in only one environﬁent in this manual,
the conformal mapping plane. There are two sound reasons for this:
kl) this is the environment in which most practicing surveyors wish
to do their network computations, (ii) derived quantities - coordinates,
distances,iazimuths and their associated covariance matrices - can be
transformed, if required, to the 2-D ellipsoidal and 3-D environments
using the methodologies outlined in "A Manual for Geodetic Coordinate
Transformations in the Maritimes" [Krakiwsky et. al., 1977] and "A
Manual for Geodetic Position Computations in the Maritime Provinces"
[Thomson et. al., 1978] respectively. This approach (rigorous trans-
formation of 2-D plane information to 2-D ellipsoidal or 3-D) is
equivalent to carrying out the original computations in the environment
itself (e.g. 2-D ellipsoidal, 3-D).

No extensive derivations or explantions of the mathematical
formulae used are given. The equations required to solve certain

problems are stated, the notation is explained, and numerical examples



are presented. A reader desiring extensive background information is

referred to the reference material.



ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial assistance
given by the Surveys and Mapping Division of the Land Registration and
Information Service to support the preparation of this report. We would
like to thank R. Steeves, a graduate student in Surveying Engineering,
for his excellent work in the preparation of the numerical examples and
associated computer programs. S. Biggar is acknowledged for her
patieqce and dedication in the typing and final preparation of this

report.

iii






TABLE OF

Preface . . . . . . . . . ¢ < . ..
Acknowledgements . . . . . . . .. .
Table of Contents . . . . . . . . .
List of Figures . . . . . . . . . .
List of Tables . . . . . . . . . .

l. Introduction . . . . . . . . .

2. Observations and their Reductions

CONTENTS

2.1 Accuracies of Observed Azimuths, Directions, Angles and

Distances . . ¢« « ¢ « « « &

2.
2. Data Screening . . . . . .

3. Mathematical Models for Azimuth, Direction, and

3.1 Azimuth Mathematical Model

3.2 Direction Mathematical Model .

3.3 BAngle Mathematical Model .

4. Mathematical Models for Distance Observations

5. Solution of Unique Cases . . . .

5.1 Direct Problem . . . . . .
5.2 Azimuth Intersection . . .
5.3 Distance Intersection . .
5.4 Angle Resection . . . . . .
5.5 Open Traverse . . . . . . .

6. Solution of Overdetermined Cases -

6.1 Closed Traverse . . . . . .
6.2 Network . . . . . . . . .

7. A Priori Knowledge of Parameters
8. Preanalysis . . . . . . . . . .

8.1 Traverse Design . . . . . .
8.2 Property Survey Design . .

iv

- .

Angle

e o e e o o

2 Reduction of Observations to a Conformal Mapping Plane . . .
3

Observations

20
32

37
37
40
43
47
50
51
57
61
65
70
77

78
86

97

109

110
118



Table of Contents (continued)

9. Postanalysis . . . ¢ ¢ v i vt i i it bt et e e i e e e e e e . 125
REfEXeNCeS . « o o & o o o o = « o o o o o o o o o o o o o o o e e e o 129
Appendix I: Taylor's.Series . . . . ¢ &« ¢ v ¢ v 4 ¢t e s s 4 e s . . 131
Appendix II: Least Squares Method . . . . . . . . . . . .+ . .« . . 134

Appendix III: Error Ellipses . . . . ¢ ¢ ¢ ¢ ¢ o o o o« « = « « « « o 139



Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

2.1

2.2
2.3
2.4
2.5

3.1
3.2
3.3
4.1
5.1
5.2
5.3

5.4

5.6
5.7
5;8
5.9
5.10
6.1
6.2

6.3

LIST OF FIGURES

Angles and Directions . . . . . . . <« . ¢ . . . . . . ..

Reduction of Observed Astronomic Azimuth to a Conformal
Mapping Plane . . . . . . ¢ & ¢ 4 4 o o o ¢ o o o o o o .

Reduction of an Observed Direction to a Conformal Mapping
Plane . . . o ¢ v v v v 4 s e e e e e e e e e e e

c ® o

Reduction of an Observed Angle to a Conformal Mapping
Plane . . . ¢ ¢ ¢ o o o o o o o o o o o o o o o o o

e e o

Reduction of a: Terrain Spatial Distance to a Conformal
Mapping Plane . . . v v v & o = o o o o o o o s o o o o o

Mapping Plane Azimuth . . ¢« ¢ ¢ ¢ ¢ 4 ¢ ¢« ¢ ¢ & o o o o «
Direction on the Mapping Plane . . . ¢ v« ¢ ¢« « « o o o« &«
Angle on the Mapping Plane . . . ¢ ¢ ¢ @« ¢ o« ¢ « ¢ o o &
Distance on the Mapping Plane . . . ¢« « ¢ ¢« « ¢« o o « o &«
Direct Problem . . v v &+ ¢ o o ¢ o v« o o o o « o o o o @
Confidence Ellipse for Direct Problem e e e e e e e e .
Azimuth Intersection on the Plane . . . . . « « « « . .
95% Confidence Ellipse for Azimuth Intersection . . . . .
Distance Intersection . . . . . . ¢ ¢ ¢ « ¢ 4 ¢ 4 4 . . .
95% Confidence Ellipse for Distance Intersection . . . .
Angle Resection . . . . . « . « ¢ ¢ ¢ ¢ 4 0 4t e e e ..
95% Confidence Ellipse from Angle Resection . . . . . . .
Open TIAVeYS@ . o =+ o o o o« o o o o o = « o o o o o o o &
95% Confidence Ellipses for Open Traverse . . . « « « « &
Least Squares Line Fitting . . . . . . . . . . « . . . ..
Closed Traverse . . . . . . . S N

Plot of 95% Error Ellipses for the €losed Traverse « - - =

ovi

15

24

26

28

30

38

41

44

48

51

56

57

60

61

65

66

69

71

76

77

79

85



Figure
Figure
Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

6.4
6.5
7.1

7.2
7.3
7.4

8.1
8.2
8.3
8.4V
8.5
8.6
8.7
8.8
8.9

AI.1l

Network

Plot of 95% Error Ellipses for the Network
Direct Problem with Weighted Point . . . . . .

Plot of 95% Error Ellipses for Direct Case with Weighted

Paramet

Initial Configuration for Closed Traverse with Weighted

Points

Plot of 95% Error Ellipses for Closed Traverse with

List of Figqures (Continued)

€S « o« o o o o o

Weighted points . . . .

Initial

Initial

Plot of

Plot of

Plot of

Initial

Plot of

Initial

Data Plot . . .

Observables Plot

99% Confidence Ellipses from Initial Observables
Update Observables .

Updated 99% Error Ellipses

.

-

.

.

Data Plot for Property Survey Design .

.

Initial Observables for Property Survey Design ..

Design Results .

-

.

Final Plot of Property Survey Deéign e e e e e e e e s e

Geometric Interpretation of Linear Taylor's Series

AIII.l1 Error Ellipse . . . .

AIII.2 Error Circle and Confidence Ellipse .

vii

87

96

98

101

103

107

111

112
115
116
117
119
120
121
123
131
140

147



Table

Table

Table
Table
Table
Table
Table
Table

Table

Table

Table

Table

Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

2.1

2.2

2.3
2.4
2.5
2.6
2.7
2.8

2.9

2.10

2.11

2.12

2.13
2.14
2.15
5.1
5.2
5.3
5.4
5.5
5.6

6.1

LIST OF TABLES
Expected Values of O_ Using Hour Angle Method for
b=n=z=45° . . . . . L ..

Expected Values of OA Using Star Altitude Method for

$=A=45° . . . . i . U e i e e e e e e e e ae e e . e
Expected Centering Error . . . . . .o ¢ ¢ o ¢ ¢ o o o « &
Expected Values of od for h = 5° and Oc =1lmm. ... ..
Major.Features of Some Modern Theodolites . . « « .« «o « «
Characteristics of Modern EDM « . . . . ¢ « ¢ & o o o o &«
Effect of Meteorological Erxrors on Measured Distances . .
Expected Values for 0 . . . . . . . .. . .. .. . e e

Reduction of Observed Astronomic Azimuth to a Conformal
Mapping Plane . . . . « ¢ ¢ o o o o o o o o o o o o « o

Reduction of an Observed Direction to a Conformal Mapping
Plane . ¢ ¢ ¢ o ¢ ¢ o o o o o o o o o o o o o s 4 o o o o

Reduction of an Observed Angle to a Conformal Mapping
Plane . . ¢ o ¢ ¢ o o ¢ o o 4 o o o o o o o o s o o o o o

Reduction of a Terrain Spatial Distance to a'Confromal
Mapping Plane . . . & . ¢ &« o o o o ¢ o o = o o o o o o =

Testing for Outliers . . . . . ¢ ¢ ¢« ¢ ¢ ¢ o o o o o o =
Cumulative Normai Distributions - Values of Pr . . . . .
Astronomic Azimuth Data Series . . . . . . ¢ ¢ ¢« o« « o .
Initial Data for Direct Problem . . . . « & ¢ o « o« « . .
Initial Data for Azimuth Intersection . . . . . . . . . .
Initial Data for Distance Intersection . . . . . . . . .
Initial Data for Angle Resection , . . . . ¢« ¢« ¢ ¢ « o .
Initial Data for Open Traverse . . . « « « « o o « o o &
Station and Relative Ellipses for Open Traverse . . . . .

Initial Data for Closed Traverse . . . . « « « o o o o« =

viii

-

10

12

13

14

17

20

21

25

27

29

31

33

35

36

51

58

61

65

71

75

80



Table
Table
Table
Table

Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table

6.2
6.3
6.4
6.5

7.1

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

8.9

AITI.1 %2 Distribution . . « v v o o v o o v v o e e oo .

List Of Tables (Continued)

95% Error Ellipses for Closed Traverse . . . . . . .
Initial Coordinates'for Network Stations . . . . . .
Observations on the Mapping Plane for the Network .
95% Error Ellipses for Network . . . . . . . . . . .

95% Error Ellipses for Closed Traverse with Weighted
ParametersS. . . ¢ ¢ o ¢ ¢ o o o o o o o o o o o o =

Initial Data for Traverse Design . . . . . . . . . .
Initial Observables . . . . « ¢ ¢ ¢ ¢ ¢ o o« o« o o &
Confidence Ellipses from Initial Observables . . . .
Update observables . . . . « ¢ ¢ ¢ &« ¢ o o« o o o o a
99% Error Ellipses After Update . . . . . . . . . .
Observéble'Summary e e e e e e e e e e e
Initial Data for Property Survey Designs . . . - - «
Initial Observables for Property Survey Design . . .

Final 95% Error Ellipses for Property Survey Design

AIII.2 F Distribution for (1-a) = 0.95 . . ¢ ¢ ¢ &« « . .

AIII.3 Horizontal Survey Classification . . . . . . . . .

ix

86
88
89

95

106
110
111
115
116
117
118
118
119
123
141
144

148



1. INTRODUCTION

It has been shown that the coordinate definition and associated
accuracy estimates for any terrain point can be expressed equivalently
in three dimensional cartesian coordinates (X, Y, Z; Cx y z), in ellipsoidal
r r

coordinates (o, A’(:¢k)' or in conformal mapping plane coordinates
r

(x, y;: Cx y)' since the rigorous transformations between these gquantities

’
are well known [e.g. Krakiwsky et. al., 1977]. When an unknown terrain
point is observed (e.g. an azimuth and a distance) from a known terrain
point, the determination of the unknown coordinates and associated covariance
matrix can be done in three dimensional space, on the surface of a reference
ellipsoid, or on a conformal mapping plane [e.g. Thomson et. al, 1978].

The equivalence of results (coordinates, covariance matrix) in the three-
environments is attained through the rigorous reduction (recall that no
redudtions are required for three dimensional computations) of the spatial
measurements to the chosen computation surface. We can conclude from this
that the choice of an environment in which to carry out position computations
is, from a mathematical point of view, arbitra;y. This fact is very
important in the:present context as it permits us to study the establishment
and assessment of horizontal geodetic networks in the conformal mapping
plane environment with the assurance that the procedures used yield results
equivalent to those used in the three dimensional and ellipsoidal surface
environments. Since the conformal mapping plane mathematical models

involved with the establishment of horizontal geodetic networks are easy

to understand, and since in practice a majority of surveyors prefer to

use plane coordinates, the entire subject matter of this manual is treated



in only one environment - the conformal mapping plane. For a treatment
of this subject matter in the three-dimensional and ellipsoidal surface
environments, the interested reader is referred to, for example, Vincenty
[1973] and Krakiwsky and Thomson [1978] respectively. The establishment
and assessment of one-dimensional vertica; networks is beyond the scope
of this present work. A knowledge of the treatment of vertical networks
is vital for surveyors, and the reader is referred, for_example, to
Vanicek and Krakiwsky ([in prep.].

In this manual, a horizontal geodetic network is considered to
be any geometric configuration of three or more terrain points connected
via any combination of azimuth, direction, angle, and distance observations.

The horizontal network may be such that only a unique solution for the

coordinates of unknown points is possible (no. observations n = no.

unknowns u), or there may be redundant observations in which case we say

the network is overdetermined (no. observations n > no. unknowns u). For

both cases, contemporary mathematical and statistical concepts and method-
ology are used.

The fundamental concept utilized is that of a mathematical model.

A mathematical model is defined as a. functional relationship between some
unknown parameters x (coordinates of unknown points) and some observables
% (azimuths, directions, angles, distances). There are two mathematical

models that are of interest to us: the direct (gﬁplicit) form

x = g(&) (1-1)
in which g is an explicit, functional relationship, and the inverse

(explicit) form



£ = h(x) (1-2)
in which h is another expiici£,lfunctional relationship. Both forms of
these models are well-known to surveyors. - For example, the direct (explicit)
form is used in position computations on a conformal mapping plane [e.g.

Thomson et. al., 1978; p. 112, egs. (4-39) and (4-40)]

X, = X, + £,. sin t,,
J i ij ij «

Yj ='Yi'+*£ij cos tij .

The solution for either of the coordinates of the new point
'(xj, yj} simply involves the evalugtion of either of the two equations
(xi, y; are known, zij (chord length) and tij (grid azimuth.of chorad)

are reduced measured quantities). This type of mathematical model (direct
expiicit) lends itself to geodetic position computations (only one unknown
point to be considered). The .inverse (explicit) form is also well known,’
for example, the expressions for a distance énd azimuth respectively

[e.g. Thomson et. al., 1978; p. 112, egs. (4~41) and (4-42)]

_ _ 2 _ 2.1/2
35 = Ty = %)% + (y5 - ¥;) ,
oy &y mx)
t.,. = tan { — ) .

Recall, however, that the objective is to solve for the coordinates of
an unknown point (say xj, yj) using observed lij and ti”' In this instance,
neither equation can be solved directly. They must be used together to
get a solution for (xj, yj). This requires special techniques whigh become

extremely important when there are redundant observations. The inverse



- (explicit) form of the mathematical model leads itself particularly to the
computation of geodetic networks, and can also be easily used for geodetic
position computations. 1In this manual, the inverse (explicit) model is
used exclusively.

There are, of course, other forms of’mathematical models. These
are considered to be outside the scope of this work, but for the solution
of certain special problems are important. For a complete coverage of
the topic of mathematical models, the reader is referred, for example,
to Vanicek and Krakiwsky [in prep].

This manual presents the step-by-step mathematical and
computational procedures required for the establishment and assessﬁent
of a horizontal geodetic network on a conformal mapping plane. The
procedures with respect to different conformal mapping planes only vary
in the reduction of measured quantities; therefore, this distinction is

only made in Chapter 2 which covers Observations and Their Reductions.

In addition to a review of the reductions of measurements to a conformal
mapping plane, Chapter 2 also includes (i) a brief review of the instru-
mentation used to observe azimuths, directions, angles, and distances

and the accuracy estimates (variances) one should expect to be associated
with the measured quantities, and (ii) an introduction to the concept of
screening (assessing) observations prior to their reduction and usevin
network computations. Chapters 3 and 4 respectively cover the topics of

Mathematical Models for Azimuth, Direction, and Angle Observations ard

Mathematical Models for Distance Observations. For each observable, the

inverse explicit model is presented, first in it's original non-linear

form, then in it's linearized form. The linearized equation is often



referred to as the observation equation. The relationships of the elements
of the linearized model with the matrix expressions of the method of least-
squares used for solving a set (2 or more) of these equations is given for

each case. In Chapter 5, entitled the Solution of Unique Cases, the linear-

ized mathematical models of Chapters 3 and 4 are taken in several pfactical
combinations to yield unique (no. unknowns u = no. observations n) sélutions
of well-known surveying problems (e.g. direct problem, azimuth intersection,
distance intersection, resection, special traverses).‘Numerical examples

for each problem are presented. The Solution of Overdetermined Cases,

which constitute the main body of work in the establishment of a surveying
network, is the subject of Chapters 6 and 7. The advantages of using the
method of least squares is given; the combination of the observation
equations (Chapters 3 and 4) in several practical situations are shown.

In addition, the implications of differenct conditions imposed
on a horizontal network (e.g. fixed or weighted coordinates, orientation,
scale):are discussed. Numerical examples for several types of survey
networks are given (e.g. traverse, triangulation, trilateration). Chapters
8 and 9 deal with the analyses of networks. The Preanalysis of a network,
which is basically an optimization process, is important for surveyors
when ccnsidering geometric design, economics, tolerances, etc. The Post-
analysis, treated in the final chapter (9) is most important to a surveyor.
It is here that a certain "confidence" in the work done can be ascertained.
The manual is concluded by Three Appendices deemed to be necessary for a

complete understanding of this work, namely Taylor Series (I), Least

Squares Method (Parametric) (II), and Error Ellipses (I11).




2. OBSERVATIONS AND THEIR REDUCTIONS

The planning, execution, and treatment of observed azimuths,
directions, angles, and distances are important aspects of the establishment
and analysis of a horizontal geodetic network. The execution (actual field
measurement techniques) are not covered in this manual; the interested
reader is referred to, for example, Faig [1972], Thomson [1978], Cooper [1971],
Burnside [1971], and Saastamoinen [1967]. The planning of observations is
treated in Chapter 8 (Preanalysis).. The mathematical treatment of the
observed quantiti¢s is given here in three sections,. namely (i) the accufacies
of observed azimuths, directions, angles, and distances, (ii) a review of the
reductions of observations to a conformal'mappinq plane, and (iii) data

screening.

2.1 Accuracies of Observed Azimuths, Directions, Angles and Distances

A knowledge of the accuracy of an observable (a proposed
measurement) is an important aspect of the preanalysis of survey networks
(Chapter 8), and a knowledge of the accuracy of an observation (a completed
measurement) is important for network computations. The determination of
these accuracies, expressed as variances (022), is the subject of this section.
Note that the effects of systematic errors are assumed to have been removed
by either observing or mathematical procedures or a combination of the two.

The variance 0A2 of an astronomic azimuth determination by
observation of celestial bodies (e.g. stars or sun) is dependent on the
method used. For astronomic azimuths determined by the hour angle method

2 . . .
oA is given as [e.g. Nickerson, 1978; Mueller, 1969]



2 1 2 1 2 2
==F + = + -
UA n Ut n (UP OC ) s (2-1)
where n = number of pointings on the star,
ot2 = variance of the observation of time in arcseconds (1" = 0.067s),
op2 = variance of a single pointing on a star (cf. eq. (2-5)),
2 . . . . .

o, = combined variance of two readings of the horizontal circle and

pointing on the reference mark (cf. egs. (2-6) and (2-4)),

F = cos2 ® (tan & - cos A cot Z)2 + m (2 tan2¢ + cotzz - 2 tan® cosA cotz) ,

Z = zenith angle of star,
® = astronomic latitude of station,
A = measured astronomic azimuth,
m= (o + 0 2)/ot2,
ov2 = variance of levelling the theodolite (cf. eq. (2-9)).

Some typical default values for UA assuming ® = A =2 = 45° and different

typical theodolites are shown in Table 2.1. -

Astronomic azimuths determined by observing star altitude have

the following expected variance [e.g. Nickerson, 1978; Mueller, 1969]:

o 2. l-{(0 2+c 2) tan2a + (tand® - cosA tana)2 [(02 + oz)coseczA + 02 c032¢]
A n P v vce  p tr
L2 2
+ + -
(Gp O ), (2-2)
where Oic = combined variance of levelling the vertical circle bubble and
reading the vertical circle,
Gir = variance of tracking for simultaneous horizontal and vertical

pointing on a star = 1"

a = altitude of the observed star corrected for refraction.
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t

e = 0Y5(0.03s)
e = 1Y5(0.10s)
£ = 15" (1.0s)

= 2'30"(10.0s)

Typical 20" Inst.

Typical 1" Inst.

Typical 0V5 inst.

M=20, d=20", v=30" M = 30, d=1 , v=20" M = 40, d=0v5, v=10"
yields yields yields

o = 3"5, o =878, o,=6" o = 2Y33,0 =3Y84,0 =4" o = 1Y88,0 =2Y095,0 =2"
o) c v o) c v P c v
n=2 n=4 n=8 n=16 =2 n=4 n=8 n=16 n=2 n=4 n=8 n=16
9Y11l 6V44 4U55 3022 5720 3V68 2V60 1784 3715 2V23 158 111
9¥11 6Y44 4'55 3V22 5v21 368 260 1784 3V16 223 1758 1v12
9v37 6Y62 4768 3v31 5Y65 3V99 282 2700 384 2172 1792 1v36
23v78 16%Y81 11Y89 8v41 |22V57 15V9% 11v29 7v98 22¥19 15Y%69 11%'10 7v85
Table

2.1. Expected Values of oA Using Hour Angle Method. for ¢ = A = Z = 45°




Table 2.2 shows some typical values of GA (for the same types of theodolites
considered in Table 2.1) assuming A = ¢ = 45°.

For azimuths observed with gyro-theodolites, the most reliable
method for obtaining a variance is to coﬁpute the sample variance of the»

mean of a set of many observation of the azimuth. This yields

(Ai - Aa) ., ‘ (2-3)

o =—]:_—
A n-1

[ e B -

i=1
where n = number of observed gyro—-azimuths,
A, = individual gyro-azimuths,
A = mean of the set of observed gyro-azimuths.
Some default values to be expected are Op = 20" to 30" for a single observed
azimuth determined by a gyro attachment similar to the Wild GAK1l
[Bomford, 1975], and O, = 3" for a single gyro-azimuth observed with gyro-
theodolites such as the MOM Gi-B2 or GYMO-GI-Bl/A which have electronic
time registration [Halmos, 1977].
The expected variance of direction observations is [e.g Nickerson,
19781 5 5 2
2 _ o + o 5 5 20C
= —EL—:;-~— +o. T+

.
D2

ag (2-4)

d

where 0p2 = variance of pointing the telescope on the target (cf. egs. (2-6)

and (2-5)),
or2 = variance of reading the horizontal circle of the theodolite
(cfi. egs. (2-7) and (2-8)),
OLZ = effect of variance of levelling the theodolite (cf. eqg. (2-9)),
002 = variance of centering the instrument and target.(see Table 2.3),
n. = number of pointings and readings.for the direction,
P = 206264.8 = number of arc seconds in one radian,

D = distance between instrument and target.



Typical 20" Inst.

Typical 1" Inst.

Typical 0US5 Inst.

M =20, 4= 20", v= 30" M=30,d=1", v = 20" M= 40, 4 = 0V5, v = 10"
yields yields yields

op =3?5,oc=8?78,0v =6“;avc=6?03 opa=2?33,oc=3?84,0v=4",ch=2?53 op = l?88,cc=2?095,0v=2",ovc=l?27
a° n=2 n=4 n=8 n=16 n=2 n= n=8 n=16 n=2 n= =8 n=16
25 8.48 5.99 4.24 3.00 4.22 2.99 2.11 1.49 2.68 1.90 1.34 0.95
35 8.30 5.87 4.15 2.94 4.29 3.03 2.15 1.52 2.68 1.90 1.34 0.95
45 8.54 6.04 4.27 3.02 4.67 3.30 2.34 1.65 2.86 2.02 1.43 1.01
55 9.69 6.85 4.84 3.43 5.65 4.00 2.83 2.00 3.41 2.41 1.71 l1.21
65 | 12,99 9.18 6.49 4.59 7.91 5.59 3.96 2.80 4.77 3.37 2.38 1.69
75 | 22.63 16.00 11.31 8.00 13.85 9.79 6.92 4.90 8.42 5.96 4.21 2.98
85 | 75.15 53.14 37.57 26.57 | 44.90 31.75 22.45 15.87 27.69 19.58 13.85 9.79

Table 2.2, Expected Values of Op Using Star Altitude Method for & = A = 45°

o1
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The pointing error is dependent on the magnification M of the particular

theodolite being used (see Table 2.5) and is given as

' a "E —= ¥ » (2-5)

for stationary targets and good observing conditions. For moving targets
(e.g. star), the pointing error is
70"

Gp =,’3I_ . (2-6)

The reading erxrror is a function of the least count of the theodblite and
the readout system. For theodolites with a least count of d", and using
coincidence micrometers (usually the case for 1" and 0!5 instruments
(see Table 2.5)),

o, = 2.5 4" , (2-7)

and for theodolites with a microscope or direct reading system (typically
for 4d = 10" to 1'),

o, = 0.3 d" . (2-8)

The effect OL2 of the variance of levelling the instrument cvz is

dependent on the vertical angle h to the target, and is given as

g, = ov tan h , (2-9)
where
cv = 0.2 v" , (2-10)

and v" is the value of one division (2 mm) of the:plate level (see Table 2.5).

The centering error 0& summarised in
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Method of Centering Expected Error oc
spring plumb-bob 1 mm/m

optical plummet 0.5 mm/m
plumbing rods 0.5 mm/m
forced or self-centering|{ 0.1 mm

Table 2.3 Expected Centering Error

Table 2.3 is for normal conditions (i.e no wind, equipment in good adjust-

ment). Table 2.4 lists typical default values for o, assuming o, = 0.5 mm/m

a
(i.e. oc = 1 mm for instrument height = 2 m) and a vertical angle h = 5°.
It sﬁould be noted that this table is representative of good observing
conditions. If observing conditions were poor, then the pointing error Op
would increase accordingly. From equation (2-4), it is obvious that
centering error o is more critical for short lines of sight. 2as well,

o (egq. 2-9) will contribute increasingly for steeper lines of sight.

Horizontal angles B can be considered as the difference of two

direction observations. Propagation of errors through the formula
B=d, -4d (2-11)

yields the expected variance for an observed angle as

2 2 2

5 g + cr, 5 5 Zoc
o ‘=2 {(B—nuF 15 4 p } o, (2-12)

B n L D2

or twice the variance of a single direction. Thus, typical values for

observed angles can be obtained from Table 2.4 by multiplying the values

by V2.



Typical 20" Instrument

M=20, d=20", v=30"

0p=2?25, 0r=6?0, 0L=0?52

Typical 1" Instrument
M=30, d=1", v=20"

0p=l.5, 0r=2.5, 0L=0.35

Typical 0V5 Instrument

M=40, d=0%5, v=10"

=1 =]1" =QY
op 1v13, or 1v25, OL 0718

=2 n=4 n=8 n=16

n=2 n=4 n=8 n=16

=2 n=4 n=8 n=16

100

200

400

800

1600

3200

541 4736 3V73 3v37
4179 3756 2V74 2723
4762 333 2V44 1784
4758 3v27 2Y35 1v72
4756 3v25 2V33 1v69

4756 3v25 233 1Y69

3V59 3728 3v11 3703

[ 2Y55 2v09 1V82 1v67

2921 1ve7 Y31  1V09
2712 1Y54 1915 089
2Y10 1951 1V10 083

2709 1v50 1709 ovsl

3V16 3V04 2Y98  2U95
1789 1'69  1U59 1v53
1v41 1Y13 0v96 0V8s6
1726 0v94 0V72 0v59
1722 0v88 0V65  0V49

1'21 0ov87 0V63 0v47

Table 2.4, Expected Valuesof o

d

for h = 5° and cd =1 mm

€T



Telescope H. Circle V. Circle Reading Spirit Levels Value of 2 mm
INSTRUMENT | MANUFACTURER | COUNTRY Magni- Objective| Length | Shortest | Field of | Diam.| Gradu-}| Diam. | Gradu-| Direct| System Plate | Altitude { Spherical | Weight
fication| diam(mm) | (mm Focus (m) | View (°) ] (mm) | ation | (mm) | ation to () (*) ) (kg)
FTIA Fennel W. Germany 30 40 175 1.2 1.6 90 1° 70 1° 1 Opt. Scale 40 auto. 8 4.0
prM-1 Kern Switzerland | 20 30 120 0.9 1.7 - 50 20" 50 20" 10" | Opt. micro 30 30 - 1.8
K1-A Yern Switzerland | 28 45 155 1.8 1.5 89 | 1° 70 1° 20" | Opt. micro 40 auto. - 4.2
Te-E6 Mom Hungary 20 28 123 1.3 2.0 80 20' 40 20 10" [ Opt. micro 50 auto. 6 2.6
Microptic 1f Pank U.K. 25 38 146 1.6 1.5 89 20" 64 20! 20" | Opt. micro 40 30 - 4.5
4149-A Salmoiraghi | Italy 30 36 172 2.0 1.4 90 30" 90 30" 30" | Direct 30 . auto. 10 4.7
V22 Vickers U.K. 25 38 137 1.8 2.0 78 1° 63 1° 20" | Opt. scale 45 90 17 5.2
T16 Wild Switzerland | 28 40 150 1.4 1.6 79 1° 79 1° 1 Opt. scale 30 30 8 4.5
TIA Wild Switzerland | 28 40 150 1.4 1.6 73 1° 65 1° 20" | Opt. micro 30 auto. 8 5.0
Theo 020 Ziess(Jena) | E. Germany 25 35 195 2.1 1.6 96 1° 74 1° 1 Opt. scale 30 auto. 8 4.3
Th 3 Zeiss(Ober.) | . Germany 25 35 150 1.2 1.7 78 1° 70 1° 30" | Opt. micro 30 auto. 15 3.5
Th 4 Zeiss(Ober.) | W. Germany 25 35 150 1.2 1.7 98 1° 85 1° 1 Opt. scale 30 auto. 10 4.5
Tu Askania W. Germany 30 45 165 1.5 1.6 90 20' 70 20" " Coinc. micro 20 auto 10 4.6
FT 2 Fennel W. Germany 30 45 174 2.0 1.6 93 20" 60 20° 1" Coinc. micro 20 20 6 5.5
oK 2 Kern Switzerland | 30 45 170 1.7 1.3 75 10' 70 10' ™ Coinc. micro 20 20 - 3.6
DY 2-A Kern Switzerland | 30 45 170 1.7 1.3 75 10' 70 10° 1" Coinc. micro 20 auto. - 6.8
75 -1 Mash- USSR 26 40 180 1.2 1.3 85 20" 75 20" 1" Coinc. micro 20 25 12 5.1
priboritorg
Ta-B3 Hom Hungary 30 40 175 2.5 1.5 78 20" 66 20' ™ Coinc. micro 20 auto. 6 5.5
ticroptic 2 Rank U.K. 28 4 165 1.8 1.5 98 10' 76 10' 1" Coinc. micro 20 20 - 6.3
4200-A Salmoiraghi | Italy 30 40 172 2.5 1.5 40 10* 90 10' " Coinc. micro 20 auto. 10 6.1
Tavistock 2 Vickers U.K. 25 38 159 1.8 2.0 85 20* 70 20" 1" Coinc. micro 20 20 20 4.8
T2 Wild Switzerland | 28 40 150 1.5 1.6 90 20" 70 20' 1" Coinc. micro 20 30 8 5.6
Theo 010 Zeiss(Jena) | E. Germany 3 53 135 2.0 1.2 84 20' 60 20' 1" | Coinc. micro 20 20 8 5.3
Th2 Zeiss (Ober.)| W. Germany 30 40 -155 1.6 1.3 100 10' 85 10' 1" Coinc. micro. 20 auto. 10 5.2
w3 Kern Switzerland | 27,45 72 140 19 1.6 100 { 10* 100 10' 0'5 | Coinc. micro 10 10 - 12.2
0T-02 l'ash- USSR 24,30, 60 265 5.0 1.6 135 4! 90 8' 0'2 Coinc. micro. 7 12 - 11.0
priboritorg 40
*jcrontic 3| Pank U.X. 40 50 170 1.8 1.0 98 5' 76 5! 0'2 Coinc. micro 10 20 - 8.0
feod. Tavi.|Vickers U.K. 20,30 60 225 5.0 1.3 127 20" 70 20" |0¥5%1" [ Coinc. micro 20 10 - 9.8
T3 Wild Switzerland 34.30 60 265 3.6 1.6 135 4 90 8! 0v2 Coinc. micro 7 . 30 - 1.2
0 .
T4 Wild Switzerland | 70 60 - 100 - 240 2' 135 4 091/0%2 | Coinc. micro 1 2 8 60

Table 2.5 Major Features of Some Modern Theodolites

vt
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The covariance between angles derived from a set of three or
more directions cannot be overlooked. Considering the situation illustrated

in Figure 2.1, the angles are usually derived from the directions as

Bisk = %ix ~ 95 ¢

(2-13)

Bixr = Y4z ~ dix -

0-00-00""

Figure 2.1 Angles and Directions

Use of the covariance law to propagate errors from equations (2-13) into

the angles B, ., and B, gives the variance covariance matrix C_ of the
ijk ikf B

angles as

B ’ (2‘14)

2
-0 g + O
d;x 9y 40

o
i.e. covariances equal to minus the variance of the common direction

between the angles will exist. For angles not derived from directions,

but measured independently, CB will be a diagonal matrix.
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The variance cr2 of spatial distances observed with EDM is

characterized by [e.g. Nickerson, 1978]

o2 r2U 2
h 2
g 2B ,,2, 0, (2-15)
r 1 z m n2
2
~where 0§h = variance of phase difference determination (cf. eq. (2-16)),
2 .
Gz = variance of the so-called zero error, )
2 . . . : .
Un = variance of determination of the index of refraction n (cf. egs.

(2-17) and (2-18)),
m1 and mé = number of determinations of phase difference and meteorological
readings, respectively.

The variance of phase determination is computed as
o, = {=:} Ty ' (2-16)

where A = modulation wavelength used by the specific
instrument (see Table 2.6),
g = variance of determination of the phase difference

for one distance measurement in fractions of a

wavelength.
Most moderﬁ EDM equipment can easily achieve an accuracy of phase difference
determination 06 = 0.001 [Burnside, 1971], but more accurate values for
an individual instrument should be available from the manufacturer's
specifications. The zero error o, results from inaccurate knowledge of
the electrical center of the instrument with respect to the geometric
center which is aligned over the point. This value is usually small (e.qg.

5 mm) for instruments using light waves as the carrier frequency, but for



Method of

Model Manufacturer Radiation Modulation Frequency Modulator | Power Phase Range (Km) Staqdard
: Source Base (MH,) [Total # Consumed (W) | Measurement Day  Night Deviation
Geodimeter AGA 5ml! He-Ne 30 4 KDP Crystal 75 null meter 30 60 +(5mm+ 1. 10'63)
Model 8 Sweden Laser T 6
Geodolite 3 G [ Spectra-Physics | 5mi He-Ne 49 5 ‘ +400 digital 60 80 +1.10 %s or 1 mm
U.S.A. Laser whichever greater
Geodimeter AGA 30 W 30 3 Kerr Cell 70 resolver 3 15 (1 cm + 2,1075s)
Model 6 Sweden Yercury Lamp : 300 null meter 5 . 25 -6
Geodimeter 76 { AGA 2mW 2 Kerr Cell 3 #(1 ecm + 1.107"s)
Sweden Laser (3 prisms)
DM 1000 Kern GaAs-Diode 15 2 - N digital 2.5 +1cm
900 nm (3 Refl.) -6
Mekometer Kern Xenon-flash 500 5 ADP Crystal 18 optomechanical 3 { #(0.2 mm + 1,10 7s)
ME 3000 (100 Hz) ' null meter (3 prisms)
DM 500 Kern GaAs Diode 15 2 - 1 digital 0.5 +1lcm
875 nm (3 prisms)
s Zeiss GaAs Diode 15 2 - 12 automatic 2 + 5 to 10 mm
Oberkochen 910 nm digital (19 prisms)
ELDI 2 Zeiss ' 4 5 + 5 mm
Oberkochen -6
“A 100 Tellurometer GaAs Diode 75 4 - 14 digital 2 +{1.5mm + 2.10 s)
930 nm
co 6 Tellurometer | GaAs Diode ; digital 2 +(5 mm + 5.10'65)
35H-3 Sokkisha Ltd, | GaAs Diode 15 2 - 10 digital tlem
Tokyo 200 nm (3 prisms -6
DI 3 Wild Heerbrugg | Gaks Diode 7.5 2 - 14 digital 0.6 +(5 mm + 5.107"s)
875 nm : : (3 prisms) _a
DH-60 Cubic Ind. faAs Diode 75 3 - 15 automatic 2 +(5 mm + 1.1077s)
Cubitape €o., USA 900 nm digital - : -5
2300 Hewlett- GaAs 15 4 - 12 digital 3 (5 mm + 1.107"s)
Packard, USA Diode ' . null meter (3 prisms) -5
Ranner I1 Laser Syst. & 3 He-Ne 15 4 KDP Crystal automatic 6 +(5mm + 2.10 7s)
Electronics USA | Laser digital -
Table 2.6 Characteristics of Modern EDM

LT



Antenna

Model Manufacturer Carrier Measurinl Diameter{ Divergence] gg‘ggzmed Readout Measuring Standard Deviation
Frequency (GHz) Frequency ?MHZ) (cm) °3’ {w) Range (Km)
MRA 101 Tellurometer Ltd. 10.05 to 10.45 7.5 33 6 38 digital 0.1 to 50 +(1.5 cm + 3.10'65)
MRA 3 Tellurometer Ltd. 10.025 to 10.45 7.5 33 9 digital 0.1 to 50 +(1.5 cm + 3.10'65)
MRA 4 Tellurometer Ltd. | 34.5 to 35.1 75 33 2 digital 0.05 to 60 | +(3mm+ 3.10°%s)
CA 1000 Tellurometer Ltd. | 10.1 to 10.45 19 to 25 digital 0.05 to 30 +(1.5cm + 5.10'65)
Electrotape DM20 | Cubic Corp. U.S.A.} 10.5 to 10.5 7.5 33 6 digital 0.05 to 50 +(1 cm + 3.10'65)
Distomat DIS50 Wild Heerbrugg 10.2 to 10.5 15 36 6 50 digital 0.1 to 50 +(2 cm + 5.10'65)
Distomat DIGO | Siemens-Albiswerk | 10.3 150 35 6 38 digital | 0.02 to 150 | +(1 cm + 3.107%)

Table 2.6 Continued.

8T
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microwave instruments the value may be up to 20 mm. This value is normally
supplied with the instrument. The variance of the refractive index is
different for lightwaves and microwaves. For lightwaves, the variance is

[e.g. Nickerson, 1978; Laurila, 1976]

-N P N '
2 1 G 2 2 G 2 2 - .11.27.2 2 -12
= — (— + . —_—— ——= .
o = U 2 (3709 * 11:270)}" o + {35557 7 o7+ (Y 0 71 220
(2-17)
where T = temperature in degrees Kelvin (t°cC + 273.15),
N, = (287.604 + 4'8264 + 0°028 ) for AC = carrier wavelength
Ac Ac (see Table 2.6),

p = ailr pressure in millibars (1 mbar = 0.75 mm Hg @ 0°C),
e = water vapour pressure in mbar (for detailed computation see Bomford

[1975], p. 54),

2 . . 2
OT; = variance of temperature measurement in °C~,

2 . . 2
op = variance of pressure measurements in mbar ,

2 . . . . 2
Oe = variance of water vapour determination in mbar™.

For microwaves the variance of the refractive index is [e.g. Nickerson, 1978;

Laurila, 1976]

4
0nz =[{—77.229 . (12592 . 74.;8 10 )e}onz s {77462} 2 2,
T T T P
-12.92 . 37.19-10% 2 -12
+ { - + - } o :| . 10 , (2-18)
T ' T2 e

where the elements in this equation are defined the same as those in
equation (2-17). Table 2.7 summarizes the effect of errors in meteorological

measurements on observed distances.
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METEOROLOGICAL ERROR | EFFECT ON DISTANCE
Light waves Microwaves
+ 1 mbar in air pressure 0.22 ppm 0.22 ppm
+ 1°C in temperature 1.0 ppm 1.6 ppm
+ 1°C in the difference 0.05 ppm 8.0 ppm
between dry and wet bulbs

Table 2.7 Effect of Meteorological Errors on Measured Distances

.Table 2.8 below lists some  expected values Of o, for both lightwave
and microwave instruments.

For treatment of distancesobserved by mechanical or optical
means, one is referred to e.g. Nickerson [1978] or Smith [1970].

The above discussion has treated only the accuracy of observed
azimuths, directions, angles and distances. However, the observations
used in horizontal network computations are considered to be reducéd to
the plane. Any inaccuracies resulting from these reductions must also be
accounted for. Thispropagation of errors through the reduction formulae
(see section 2.2) has already been covered in section 3.2.8 of Thomson et

al [1978].

2.2 Reduction._of Observations to a Conformal Mapping Plane

The reduction of observed azimuths, directions, angles, and
distances to a conformal mapping plane is essentially a two-phased process:
terrain to reference ellipsoid, and reference ellipsoid to conformal mapping
plane. Each phase, depending on the observed quantity, may contain one or

more reduction steps. These procedures, for the - 3° Transverse Mercator and



Lightwaves; AC = 900 nm Microwaves; Ac =3 cm
A=20m, oz =.0.005 m, oe = 0.001 A=40 m, Uz = 0.015 m, oe= 0.001
0 =1 mbar Op = 5 mbar op = 1 mbar g_ =5 mbar
O =0,p=0.2°C = oAT=l°C T2 =Opp = 022C I = Opp™ l°c

S (m) ml=2,m2=l ml=4,m2= =2,m2=l ml=4,m2= l=?,m2=1 ml=4,m2=2 ml=2,m2= m1=4,m2 2
100 0.009 0.007 0.009 0.007 0.021 0.018 0.021 0.018
200 0.009 0.007 0.009 0.007 0.021 0.018 0.021 0.018
400 0.009 0.007 0.009 0.007 0.021 0.018 0.021 0.018
800 0.009 0.007 0.009 0.007 0.021 0.018 0.022 0.019
1600 0.00° 0.007 0.009 0.007 0.021 0.018 0.024 0.020
3200 0.009 0.007 0.010 0.008 0.021 0.018 0.Q33 0.026
€400 { 0.009 0.007 0.013 0.010 0.023 0.020 0.057 0.04i
12800 0.010 0.008 0.021 0.015 0.029 0.023 0.107 0.077
25600 0.012 0.009 0.040 0.028 0.045 0.035 0.212 0.150

Table 2.8 Expected Values for or

1<
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Double Stereographic conformal map projections, are given, for example,
in Thomson et. al. [1978]. The entire process is reviewed here in the
context of horizontal geodetic networks. The primary reason for this is
that for network computations the sequence of events is different than
that used for position computations; in addition, the software used to
generate the numerical examples given in this report follows the sequence
given here.

The first problem to be solved is the determination of the

approximate coordinates, (Xa, Ya) and (¢a, Aa), for each unknown point

in the network. This can be done in several ways, .but the most often

used are (i) to determine them graphically using a large scale map or a

plan, or (ii) to compute them using observed quantities, well known geometric/
trigonometric solutions and coordinate transformation procedures. -

The coordinate transformations are given in, for example, Krakiwsky, et.

al [1977]. The main point to bear in mind when determining approximate
coordinates is that they must be sufficiently closg to the final values

so that the effects on the reduction of observations will be negligible.

A conservative estimate of "sufficiently close" is 20 m. This can be

achieved easily, in most instances, using observed quantities and unique
geometric/trigonometric solutions. Well determined approximate coordinates
are also important in the solution for final coordinates as this will
minimize the number of required iterations [e.g. Sfeeves, 1978].

The reduction of an astronomic azimuth (Aij), obtainea from
astronomic observations or a gyrotheodolite, to a conformal mapping plane

(grid) azimuth (tij) is outlined in Figure 2.2. The observed, known, and
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computed quantities reguired are given in Table 2.9. The equation numbers
listed in Figure 2.2 and Table 2.9 refer to those found in Thomson et.
al [1978].

The reduction of a measured terrain normal section direction (dzj)
to a conformal mapping plane (grid) direction.(dij) of the corresponding
chord is outlined in Figure 2.3. The observed, known, and computed
qguantities required are given in Table 2.10.> The equation numbers listed
in Figure 2.3 and Table 2.10 refer to those found in Thomson et. al. [1978].

A measured 222;2'(Bjik)' since it is simply the difference of two

terrain normal section directions (d: - dzj) follqws the same reductian

k
procedure as the directions themselves. The procedure is outlined in
Figure 2.4. The observed, known, and computed quantities involved are
givén in Table 2.11. The equation numbers listed in Figure 2.4 and Table
2.11 refer to those found in Thomson et. al. [1978].
The reduction of a terrain spatial distance (rij) (measured
distance corrected for atmospheric and instrumental effects) to a conformal
mapping plane (grid) distance (Eij) of the corresponding chord is outlined
in'Figure 2.5. The observed, known, and computed quantities involved are
given in Table 2.12. The equation numbers given in Figure 2.5 and Table
2.12 refer to those found in Thomson et. al [1978].
An examination of Figures 2.2 to 2.5 and Tables 2.9 to 2.12 inclusive Shows
a significant overlap in observed (e.g. Zij),computed (e.g. approximate
coordinates), and known (e.g. ellipsoidal and conformal mapping system
constants) quantities involved in the reduction of measured azimuths,
directions, angles, and distances. In practice, these quantities need

only be specified once. For example, in the~pfogram GEOPAN [Steeves, 1978},
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OBSERVED ASTRONOMIC AZIMUTH Aij

Y

<:: TRUNCATED LAPLACE CORRECTION
(3-15)

/

GRAVIMETRIC CORRECTION
(3-21)

y
SKEW NORMAL (HEIGHT OF TARGET) CORRECTION ::)

(3-22)

Y

< NORMAL SECTION TO GEODESIC CORRECTION
(3-23)

Y
(T-t) CORRECTION
Double Stereographic: (4-11) or (4-31)
3° Transverse Mercator: (4-53)

Y

Y MERIDIAN CONVERGENCE CORRECTION
Double Stereographic: (4-7) or (4-27)
3° Transverse Mercator: (4-47)

Y
CONFORMAL MAPPING PLANE (GRID) AZIMUTH tij

(3-15), (3-16), (3-17), (3-18), and (4-5)

Figure 2.2

Reduction of Observed Astronomic Azimuth to
a Conformal Mapping Plane
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Quantity

Status Remarks
Aij: Astronomic Azimuth 6btained via stellar, solar, or gyrotheodolite
observations.
g Zij (or hij or Hij): needed for reduction purposes
z zenith distance (or
o elliposidal or orthometric
8 height difference)
a _a a _a ' s : .
(xi,yi), (x.,v.) see KraKiwsky et al. [1977] re cogrdlnate
a,a g g transformations.
(¢.,2.), (d.,A0)
105
(xi’ i)
Zij: reduced zenith distance [(3-14); use partially reduced azimuth,
a , v from (3-15), for this computation
Sij: approximate ellipsoidal [(3-39) or (3-62); use approximate
- distance coordinates (oa,ka) to compute all
3 quantities, including auxilaries. (4-11)
a (T-t) .. or (4-31) for Double Stereographic, (4-53)
g +J for 3° Transverse Mercator; use a oximat
5 ; ppr e
O coordinates for all computations.

Yy Meridian convergence (4-7) or (4-27) for Double Stereographic,
(4-47) for 3° Tranverse Mercator; use
approximate coordinates for all computations.

h,: ellipsoidal height of

target

a, b (or a,f) parameters of reference ellipsoid.

wo, Ao' R; all defining parameters of the conformal

¢°' lo’ X, Y, mapping system.

k

o
Hi (or h.): orthometric
o (or eliipsoid)height
§ N;, N* geoidal heights required to determine Ahij.
X

E., niﬁeflection of vertical
components at observed
station

Table 2.9

Reduction of Observed Astronomic Azimuth to a Conformal
Mapping Plane
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OBSERVED DIRECTION dzj

Y

(::¥ SKEW NORMAL (HEIGHT OF TARGET) CORRECTION::)
(3-22)

Y

<::> NORMAL SECTION TO GEODESIC CORRECTION::>
(3-23)

Y

GRAVIMETRIC CORRECTION
(3-21)

Y
(T-t) CORRECTION
Double Stereographic: (4-11) or (4-31)
3° Transverse Mercator: (4-53)

oy , ,
CONFORMAL MAPPING PLANE (GRID) DIRECTION 4,
(3-12) and (4-3) J

Figure 2.3

Reduction of an Observed Direction to a
Conformal Mapping Plane
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Remarks

Status Quantity
Le] t . .
g di.: terrain normal section
s J direction
] Z.. (or AH,. or Ah,.) needed for reduction purposes
8 ij ij i)
(x?,yi), x2,v9 see Krakiwsky et al. [1977] re
v 3] coordinate transformations.
a ,a a a
S:.: approximate ellipsoidal (3-39) or (3-62)] use approximate
a] distance coordinates
o] o, .: approximate geodetic (3-37) or (3-59)} for all computations
8 13 azimuth a
a Zij: reduced zenith distance (3-14) : use aij for this computation
E .
¢}
&) (T—t)i. (4-11) or (4-31) for Double
J Stereographic, (4-53) for 3°
Transverse Mercator; use approximate
coordinates for all computations.
h.: ellipsoidal height of
J target
a,b (or a,f) parameters of reference ellipsoid
WO, Ao’ R; all defining parameters of the
particular conformal mapping system.
¢O' AO; X Yoi
k
o)
Hi (or hi): orthometric (or
g ellipsoidal) height of
8 instrument
£

) N;, N;: geoidal heights

gi, n,: deflection of vertical

components

required to determine Ahij

Table 2.10

Reduction of an Observed Direction to a Conformal Mapping Plane
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OBSERVED ANGLE B..
jik

SKEW NORMAL (HEIGHT OF TARGET)
CORRECTION FOR EACH LINE (at , at.)
(3-22) ik i3

Y

NORMAL SECTION TO GEODESIC N
CORRECTION FOR EACH LINE (4t , 4..)
ik ij
(3-23)

Y
GRAVIMETRIC CORRECTION FOR
EACH LINE (at , at.)

ik ij

(3-21)

. A/
(T—t)ik, (T—t)ij CORRECTIONS

Double Stereographic: (4-11) or (4-31)
3° Transverse Mercator: (4-53) ’

Y

CONFORMAL MAPPING PLANE (GRID) ANGLE Bjik
(3-13) and (4-4)

Figure 2.4

Reduction of an Observed Angle to a Conformal Mapping Plane
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Status Quantity Remarks
- = t - dt
. Bjjx® angle Byik = ik T 95
] .
g Zij'zik (or AHij' AHik, needed for reduction purposes
o
8 or Ahij, Ahik
(xé,y?), (x?,y?), (xi,yi) see Krakiwsky et al. [1977] re coordinate
; ; i : a .a transformations.
(03207 (93,294 (93,4)
Si., Szk: approx. ellipsoidal| (3-39) or (3-62){ use approximate coordinates
aJ a distances
ai., ;) approx. geodetic (3+37) or (3-59)}) for all computations
o J azimuths . a a
2 Z..y 2., : reduced zenith (3-14) : use a,,,0., for these computations
3 ij ik . ij ik
% distances
3] (T—t)i., (T—t)ik (4-11) or (4-31) for Double Stereographic
J (4-53) for 3° Transverse Mercator, use
approximate coordinates for all computations
h , hk: ellipsoidal heights
J of targets
a,b,. (or a,f) parameter of reference ellipsoid
wo,Ao, R; all defining parameters of the particular
¢ A x k conformal mapping system.
o’"o! olyol o
Hi (or hi): orthometric
g (or ellipsoidal) height
2 .
0 of instrument
§ *

N;,Nj,N*: geoidal heights

k

€., n,: deflection of
1 .

vertical components

required to determine Ah,., Ah,
i ik

Table 2.11

Reduction of an Observed Angle to a Conformal Mapping Plane
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TERRAIN SPATIAL DISTANCE rij

Y

REDUCTION TO REFERENCE ELLIPSOID
(3-19) and (3-20)

Y

REDUCTION TO CONFORMAL
MAPPING PLANE
(4-6)

Y

CONFORMAL MAPPING PLANE (GRID)
DISTANCE zij

(3-19), (3-20) and (4-6)

Figure 2.5

Reduction of a Terrain Spatial Distance to a
Conformal Mapping Plane
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Status Quantity Remarks
g rij: terrain spatial distance Instrumental and atmospheric effects
5 have been removed
Q Z.. (or AH,. or Ah..) needed for reduction purposes.
@ ij ij ij
O
a a a _a ] ' '
(xi,yi),(xj,y') see Krakiwsky et al. [1977] re coordinate
s a a J a transformations. ’
(¢i,li)r (¢j, lj)
aij, aéi: approx. geodetic (3-37) ,(3-35) and (3-36), or (3-59),
g azimuths (3-60) and (3-61); use approximate
5 coordinates for all computations.
2 h.: ellipsoidal height of
S _~ target .
kij: line scale factor (4-13) or (4-33) for Double Stereographic,
(4-57) for 3° Transverse Mercator; use
approximate coordinates for all computations
a,b (or a,f) parameters of reference ellipsoid
X0 Y i ko three parameters pertaining to the
particular conformal mapping system
Hi(or h,): orthometric (or
a ellipsoidal) height
% of instrument
§ N;, N§: geoidal heights required to determine Ahij

Table 2.12

Reduction of a Terrain Spatial Distance to a Conformal
’ Mapping Plane
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used for the numerical computations in this report, one set of approximate

coordinates are used for any one project.

2.3 Data Screening

Prior to being used in network computations, each piece of data
(azimuth, direction, angle, distance) should be tested individually to
ensure that it is self-consistent. These tests are accomplished by methods

of univariate analysis,which means the examination of the repeated

measurement of the same observable (e.g. a distance). These repeated .
measurements are represented by a data series zi,’i = 1, N where N is the
sample size. The problem here is to discover which individual observations

li are statistically incompatible with the rest of the series. This

subject is commonly known as the detection of outliers [e.g. Krakiwsky,
1978; Pope, 1976].

The specific test which is used to detect outliers depends on the
underlying assumptions about the population mean pu and population variance

02. If up and 02 are assumed unknown, they are estimated by the sample mean

% and sample variance Sz. The following interpretations can be made:

(a) 'u known' corresponds to measuring a line of known length (e.g. a

a calibration baseline); (b)"ozikﬁown' corresponds to measuring with an
instrument of known accuracy; (c) 'u unknown' corresponds to measuring a
line of unknown length; (d) '02 unknown' correspond; to measuring with an
instrument of unknown accuracy. The four possible combinations of the

above cases are shown in Table 2.13.

The so-called null hypothesis Ho being tested is

Ho . li is a member of a sample with normal distribution.,



-1

"N

|* pope [1976]. n(0,1) - standard normal distribution of 0 mean and variance 1.

) Sltuat;on H  (null h . thesis) " | Statistic pdf* 1-a** Confidence Interval
Name 1 2 [ Ypo y $(y) for the Quantity Tested Remarks
‘Normal ) R'i belongs to a standard
Test of ° u o 2 -y . + . ¢ known thus the normal
a Single known | known sample having the pdf g :c(’:mi: L ng_ < 2'1 cuta - -;-' distribution.
Observation (21w, 0 ) 2
L] ——
iz:ieg; st y 52 9.i belongs to a .- Student's t s is computed using %
) sample having the pdf - ¥ t ‘ U~-st a<i <u+st a estimated from sample of
a Single known 2 8 N-1 N-l‘i i " N-l,- 2 size N thus t distribution
Observation | R (; u, 59 :
:Z::aif - a2 Ri belongs to a L -7 standard - %— - N1 % . 0 known thus the normal
- (=) <R, R+ (~—=) < jon.
a Single [ Xnown sample hiving the pdf (N_l)l/z . :?;m?)l L= q ) ‘o n: zi 24+ ( N ) “a n % distribution
Observation (e L, o?) N ! 2
;fT:sg _ ) £, belongs to a L -7 Tau _ N;-l % A — Nl % % and s computed from the
: P s sample having the pdf 1/2 T L= (=) “s1, ach, <A+{—) “st 2 | same sample thus the T
Single - 2 L NNl 4 TN TNLe ] distribution
Observation R &, 89 N | )

- student‘'s t distribution with N-1 degrees of freedom.

=~ tau distribution with N-l1 degrees of freedom.

«%x a = a/N, where N:is the number of members in the series:

Table 2.13

Testing for Outliers

€€
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The test which is applicable most often is for 02 known and p unknown.

This corresponds to the third test in Table 2.13, i.e.

1/2
9 Dy_ay2

1/2
- N-1 - N-1
- ——) g ) -
-0 Ny 4 SR D (2-19)

|
n

where sample mean,
" N = sample size,
o = known standard deviation,

n = standard normal distribution (see Table 2.14),4

a = a/N for a = significance level (e.g. a = 0.5).

If the observation,?,i being tested does not lie within the limits
given by equation (2-19), then the null hypothesis Ho is rejected at the
(1—&)% confidence level.

For example, Pable 2.15 lists 11 observed values of astronomic
azimuth for the same line. The mean value of the series is £ = 85° 36' 18v71,
and the assumed known standard deviation o = 5U'77. For a significance level
a = 0.05, a/2 = a/2N = 0.05/22 = 2.273-10-3, and 1 - a/2 = 0.99773. From
Table 2.14, the value for n is 2.83. Thus, the rejection limits for

1-a/2

an individual observation li are
85° 36' 03V14 < £i < 85° 36' 34v28 . (2-20)

Performing the test for each astronomic azimuth in Table 2-15, it is seen
that azimuth numbers 1, 2, 3 and 10 are rejected at the 95% confidence level,
i.e. the hypothesis that they are members of a sample with normal distri-
bution is rejected. Thus, anly the seven remaining azimuths are taken as
representative of the sample, and the mean value £ = 85° 36' 25%"14 computed

from these seven remaining azimuths is used for further computations.
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%f»

<

Values of Pr corresponding to ¢ for the normel curve.

The value of Pr for (-c) equals one minus the value of Pr for (+c).

? .00 01 .02 .03 04 .05 06 07 .08 09
0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359
1 .5398 | .5438 | .6478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753
2 | .5793 | .5832 | 6871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141
3 | .6179 | .6217 | .6255 | .6293 | .6331 | .63G8 | .6406 | .6443 | .6480 | .6517
4 | .6554 | .6391 .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879
.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224
6 | 7257 | L7201 | (7324 | .7357 | .T389 | .7422 | .7454 | .7486 | .7517 | .7549
7 | .7580 | .7611 7642 | L7673 | 7704 | 7734 | .T764 | 7794 | .7823 | .7852
8 | .7881 | .7910 | 7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133
9 | .8159 | .81%6 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389

1.0 | .8413 | .8438 | 8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621

141 .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 { .8810 | .8830

1.2 | .8%49 | .8&3G69 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015

1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177

1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9279 | .9292 | .9306 | .9319

1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 } .9429 | .9441

1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545

1.7 | .9554 | .9564 .9573 | L9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633

1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706

1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767

2.0 | .9772 | .9773 ;9783 | L9788 | .9793 | .9798 | .9803 | .9808 | .9812 | .9817

2.1 L9821 LOR26 | L9830 | L9834 | L9838 | 9842 | .9846 | .9850 | .9854 | .9857

2.2 | .98%61 | .9%64 | (98G8 | .9871 | .9875 | .9878 | .9881 | .9884 | .9887 | .9890

2.3 | .9893 | .9xa6 | (9R98 | 9901 .9904 | .9906 | .9909 | .9911 | .9913 | .9916

2.4 | .9918 | .9920 | .9922 | .9926 | .9927 | .9929 | .9931 | .9932 | .9934 | .9936

2.5 | .9938 | .9940 | 9941 | .9943 | .9945 | .9946 | .9948 | .9949 | .9951 | .9952

2.6 | 9953 | .9955 | 49956 | .9957 | .9959 | .9960 | .99G1 | .9962 | .9963 | .9964

2.7 | .9965 | .9%66 | .9967 | .9968 | .9969 | .9970 | .9971 | .9972 | .9973 | .9974

2.8 | .9974 | .9975 | 9976 | .9977 | .9977 | .9978 | .9979 | .9979 | .9980 | .9981

2.9 | .9981 .0982 | 9982 | .9983 | .9984 | .9984 | .9985 | .9985 | .9986 | .9986

3.0 | .9987 | .9987 | .9987 | .9988 | .99%8 | .9989 | .9989 | .9989 | .9990 | .9990

34 L9990 1 .94 L9991 L9991 | L9992 | 9992 | .9992 | .9992 | .9993 | .9993

3.2 | .9993 | o003 | 9994 | 9994 | .9994 | .9994 | .9994 | .9995 | .9995 | .9995

3.3 | .9995 . 0005 | 9995 | 9996 | .999G | .9996 | .9996 | .9996 | .9996 | .9997

3.4 | 9997 | 0097 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .9997 | .94998

Table 2.14

Cumulative Normal Distribution - Values 6f Pr
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SET NO. OBS'D  AZIMUTH
1 85 35 27.84
2 85 35 34.36
3 85 36 51.15
4 85 36 27.95
5 85 36 28.89
6 85 36 28.43
7 85 36 20.46
8 85 36 22.29
9 85 36 24.02

10 85 36 36.46
11 85. 36 23.93

Table 2.15 Astronomic Azimuth Data Series

I1f the underlying assumptions for the univariate test are
dif%érent (e.g. o unknown, u known), then one of the three other tests of
Table 2.13 should be used. Essentially, this changes only the rejection‘
limits (cf. eg. (2-20)). The necessary tables (i.e. Students t and tau

distributions) can be found in e.g. Rainsford [1957] .and Pope [1976].



3. MATHEMATICAL MODELS FOR AZIMUTH, DIRECTION.

AND ANGLE OBSERVATIONS

In this chapter, the mathematical models relating angular
observations and coordinates are given. Coordinates are the x(easting) and
¥ (northing) coordinates referred to a conformal mapping plane (e.g. Krakiwsky
et al., 1977; Thomson et al., 1978]. Both the linear and nonlinear forms of

the mathematical model for azimuths, directions, and angles are given.

3.1 Azimuth Mathematical Model

The nonlinear form of the azimuth mathematical model is

X.—X,

J X
F,. = arctan -t,.=0 3-1
i3 (Yj "Yi) i3 , (3-1)

where the first term is a nonlinear function of the coordinates of two
points i and j (see Figure 3.1), and tij is the observed azimuth from
point i to point j reduced to the mapping plane [e.g. Thomson et al., 1978,
section 4.2.3]. A linear Taylor series (see Appendix I) is‘used to

approximate this nonlinear model. The resulting equation is

o o
o xj—xi
.. = F, . s = = ) - t,. + i + ... =
Flj Flj + dFlJ arctan (yQ-y9) tlJ dt1J v, o,
J T2 ij
(3-2)
o_,0
XXy
where arctan (;%j;aﬂ = computed value of the azimuth based on approximate
j i
values of the coordinates (¥, y°),
dtij = differential change in the computed azimuth resulting

from differential changes in the approximate coor-

dinates (see eq. (3-3)),

37
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M (Grid North)

Figure 3.1 Mapping Plane Azimuth
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Vt = correction to the observed mapping plane (grid) azimuth.
ij

The differential change in azimuth dtij is given as

ati. Bti. atij : ati.
= + - + . P
dtij 5;71- dxi + syzl-dyi % dx, 5;;1 dyj (3~3)

‘Evaluation of the partial derivatives in equation (3-3) yields

ot. . -{y?-y?) , .
T o 3T %5 ~ (3-4)
3 2°.) J
ij
ot (xg-xi)
= =b.. , (3-5)
9y (222, 13
ij
(o] [}
.. (yo-yS
ij _ ¥J Yl) - . (3-6)
9x, @ )2 ij !
ot =0mx))
¥, 40,2 iy . (3-7)

where Zgj is the mapping plane distance between points i and j computed
using the approximate coordinates. Substituting equationé (3-3) to (3-7)

into equation (3-2) yields the so-called observation eqﬁaticn as

o O _n

X,—X,
" = __2__1_ - " " - " S - n
Vt.. arctan ( ° Q) tij + p aiiji + p bijéyi p aij xj o} bijﬁyj,
1] Yj‘Yi
(3-8)
where p"v= 20626478062 is used to proportion the elements, and

GX{»Gyj = differential changes in the coordinates.
Converting equation (3-8) to matrix notation yields the matrix form of the

observation equation as
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o O
X.,.—X,
w = __1____1_ - " " - - - 7 -
v y [arctan (y°—y°) tyy] te [a; 5 Dy " 355 b,y! 6x;1.  (3-9)
j i 8y,
8x,
]
8y,
L3

The matrix form of the evaluated partial derivatives (i.e. aij' bij’ etc.)
is called the design matrix A, the difference between computed and observed

azimuths is called the misclosure vector W, the vector of differential changes

~

in coordinates (dx, 8y) is called the solution vector X, and the correction
to the observed azimuth is called the residual vector V. Rewriting equation

(3-9) in this notation yields

Vt.' = Wt.. + At.. X . (3-10)
1] 1) 1]
(1,1) (1,1) (1,4) (4,1)

3.2 Direction Mathematical Model

Direction observations are relative to the 'zero' direction
of the horizontal circle of a theodolite. The azimuth of this zero direction
is called the orientation unkﬁown Z (see Figure 3.2) and it must be solved
for along with the unknown coordinates. Orientation unknowns are not
desired quantities and thus are called nuisance parameters. The nonlinear

form of the direction mathematical model is

X.~X,
F.. = arctan (——>) - (d.. + 2,) = 0, (3-11)
ij ¥iYy ij i

where dij = observed direction from point i to point j reduced to the
mapping plane [e.g. Thomson et al., 1978, section 4.2.1],

Zi = orientation unknown at point i.
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Any (Grid North)

0 00 00"

i(’(j,lﬁ)

i(x;,y;)

Figure 3.2 Direction on the Mapping Plane
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The linear Taylor series expansion of equation (3-11) gives the linearized

direction mathematical model as

+ ...

- 0 ,

(3-12)

o o
X, ~X,
F,, = arctan (——=) - 25 - d,, +dt,, -dz, -V
ij o_ o i ij ij i di'
yj, i J
where Zz = approximate value of the orientation unknown,
dZi = differential change in the orientation unknown Zi caused by an
inaccuraté approximate wvalue Z? '
Vd = correction to the observed direction.
ij

. . . o . . .
The approximate value of the orientation unknown Zi is obtaired by subtracting

the observed direction tb a station j from the azimuth to the same station

computed from the approximate coordinates, i.e.

Realizing that dtij

linearized azimuth mathematical model (see egs. (3-3) to (3<7)), the

observation equation for a direction is

o O
X,.~X,

"

" = ___l_____ - o - " " " - n
Vd [arctan ( ) Zi dij] +p aij6xi + p bijéyi p aijéxj

N o
1] Y

PO

3

-p bijayj -GZi

or, in matrix form

" = J i - o - LS " -
Vd [arctan ( ) Zi' dij] o [aij bij

a,

ij

ij

- 1]

6x,
1

has already been evaluated for the

Sy
§x.
J
Sy.
yJ
§z

(3-13)

(3-14)

. (3-15)
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Using the symbolic matrix notation of section 3.1, equation (3-15) becomes
Vd_. = Wd” + Ad.. X .
1] - 1) 1]
(1,1) (1,1) (1,5) (5,1)

3.3 Angle Mathematical Model

The nonlinear mathematical model for an angle is (see Figure 3.3)

-x, X,—X,
i j i
F,. = arctan ( - arctan - B,., =0 3-17
ijk Y oYy ) (y.-y.) ijk . ¢ )
3 1
where Bijk = angle observed at point i from point j to point k reduced

to the mapping plane [e.g. Thomson et al., 1978, section 4.2.2].

The difference between two direction mathematical models Fi and Fij has the

k

same form as the angle mathematical model Fi. The linearized form of the

jk°

angle mathematical model is

o o o
-x, X,"X, v
= Iy - J 1y - = -
Fijk arctan ( ) o) arctan ( o o ) Bijk + dBijk VBi.k +e.o. 0, (3-18)
Y Y, Yj i J
where dBijk = differential change in the computed angle resulting from
differential changes in the approximate coordinates,
VB = correction to the observed mapping plane angle.
ijk
The differential change in the angle dBijk is given as
aBi.k aBi.k SBi.k aBi'k aBi'k aBi.k
PR > R L S LS S W > L S
ijk 9x., i y. i X, 3 ay. 3j Bxk dy. k
i J 3 k
(3-19)
Evaluation of the partial derivatives in equation (3-19) yields
o o o o
BBijk —(y, my,) (yj y;)
= + =c.. ., (3-20)
axi (20 )2 (Ro )2 ijk
ik ij
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Ally (Grid North)

k(x,,y,)

i(x,,y;)

Y

Figure 3.3 Angle on the Mapping Plane
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o O o (o]
aBi;E' _ (xk—xi) (xj xi) - q (3-21)
3y, B (2° )2 (2° .12 Tijk
ik ij
. (o] o
BBle ) -(yj yi) . . (3-22)
Ix o .2 “iy !
(2..)
J ij
(o] (o]
9B, ., (x.-x.) .
Ak _ 3 i -
BYj (lo )2 bij ’ (3-23)
ij
(o] (o]
aB:i.jk - (,yk-yi) _ (3-24)
o, ) S
ik
o O
9B, ., - -X,
ijk _ 5%y = -b (3-25)
oy, 22 )2 ik ’ :
ik

where lzk is the mapping plane distance between points i and k computed
using the approximate coordinates. Substituting the-above values into
equations (3-19) and subsequently evaluating the linearized mathematical

model (eg. (3-18)) gives the observation equation as

o o o o
-X, xj-gi
" = - - " " u
VBi'k [arctan ( } ) arctan ( o Q) Bijk] +p cijkGXi +p dijk dyi
J Yk Yi Yj i

n " o am L T -
+ p aijéxj + p bijdyj p aik6xk o] bikGYk ’ (3~26)
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or,in matrix form

_ xz—x? X =X,
" - ta - _L.... - + " - -
YB.. .[arc n( o ) - arctan( S o) Bijk] p [cijkdijkaijbij a, .
ijk Y Y, A P :

(1,1) (1,1) (1,6) (6,1)

bik

]

(3-27)

(3-28)



4. MATHEMATICAL MODELS FOR DISTANCFE OBSERVATIONS

This chapter describes the nonlinear and linearized
mathematical models relating plane coordinates (x,y) to observed distances
lij from point i to point j reduced to a conformal mapping plane [e.g.

-Thomson et al., 1978, section 4.2.4]. The nonlinear form of the

distance mathematical model is (see Figure 4.1)

2)1/2 _ o 0. (4-1) (4-1)

F,, = ((xj—xi)2 + (yj-yi) i3

ij

Linearization of equation (4-1) by a linear Taylor series
(see Appendix I) expansion gives the linearized form of the distance
mathematical model as

1/2

o o 0,2 2
= = - +(Y.~Y, -2, +da,. -V + .= 0 (4-2)
Fij Fij * dFij ((xj %;) (yj y30) ij ij Rij ’
where ((x;.’-xg)2 + (y‘;’-‘yi)z)l/2 = computed value of the distance based on

approximate values of the coordinates (xo,yo),

dzij = differential change in the computed distance resulting from
differential changes in the approximate coordinates (see
eq. (4-3)),

Vz = correction to the observed mapping plane distance.
ij

The differential change in distance dlij is given .as

Bli. Bli. Bli. 3li.
ag,, = —2L ax, + —2Lay, + —Lax, + —Lay, , (4-3)
ij Bxi i Byi i axj 3 Byj 3

where the partial derivatives are

47
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Figure 4.1 Distance on the Mapping Plane
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azi. -(x?—xi) .
axJ = g = %5 (4-4)
2%, J
ij
alij ~ -(yi-yl)—
dy. o fi:'l ! 4=
i L.
ij
Bli. (x?-X?) .
e S e = ey (4-6)
3 22, J
ij
[}
3L, . ¥2-v)
3 i Ti
= = = £, (4-7)
Y4 22, J ’
ij

o . . . X . . ’
where zij is the mapping plane distance between points i and j computed
using the approximate coordinates. Substituting these partial derivatives
into eqguation (4-3) to obtain dlij, and, in turn, substituting dlij back

into equation (4-2) yields the distance observation equation as

_ o_0.2 o_0,2,1/2
v, = [((xj xi) +(Yj Yi) )

. - 2,.1 + eijdxi+fij6yi-eijij-fijéyj, (4-8)

1]
or in matrix form

_ o_o0,2 o o0,21/2
Vo o= L) =y ) D)

= - lij] + [e,. £.. - e,. - £..1] Gxi . (4-9)
ij

The units of both equations (4-8) and (4-9) are metres. Converting the
observation equation into symbolic matrix notation as in section (3-1)
(cf. eq. (3-10)) yields

VR.. = wl., + AIL.. X . (4-10)
ij ij ij

(1,1) (1,1 (1,4) (4,1)



5. SOLUTION OF UNIQUE CASES

This chapter covers the unique cases (i.e number of
observations n = number of parameters u) of coordinate determination
encountered in practice (e.g. direct problem, intersection, resection,
traverse). The inverse (explicit) mathematical models developed in
chapters 3 and 4 are combined using the method of least squares (sée
Appendix II) to solve these unique cases. This leads to a unified
approach when the overdetermined (n»>u) cases are considered in chapter
6. For treatment of these unique cases by the direct method (cf. eq.
(1-1)), the reader is referred to e.g. Faig [1972], Thomson et al.
[1978], Richardus [1974].

| For all of the examples considered in this chapter, it is
assumed that the observations have been reduced to a conformal mapping
plane as explained in section 2.2. Thus, although the examples are
not explicitly spelled out for each of the three existing Maritime
conformal mapping planes [Krakiwskx et al., 1977], the methods used
are equally applicable to all three provinces. The only differences
are in the actual values of the initial approximate coordinates and
the final adjusted coordinates.

All of the examples in this and following chapters have been

performed by program GEOPAN [Steeves, 1978].

50



51

5.1 Direct Problem

The direct problem considered here (see Figure 5.1) is
essentially the same as that used in section 4.8.1 of Thomson et al.
[1978]. The only difference is that here point 1 is considered fixed
(i.e. its covariance matrix is zero) whereas in Thomson et al. [1978],

point 1 had a covariance matrix associated with it.

*Ily (Grid North)

1,2

1

Figure 5.1 Direct Problem
The approximate coordinates of point 2, the fixed coordinates

of point 1, the reduced observations and their standard deviations are
given in Table 5.1. The standard deviations are derived through the

formulae developed in section 2.1. For instance, the standard

Coordinates of Points Observations on the Mapping Plane
Station X(m) Y (m) Type From To Value g

1 377164.887 862395.774 Az. 1 2 44° 15'28797 570

2 378907.0 864184.0 Dist. 1 | 2 2496.423 m 0.03 m

Table 5.1. 1Initial Data for Direct Problem



deviation of 5YC for the observed azimuth could result from the azimuth
observed three times by the hour angle method with a 1" theodolite and
ot = 1.0s (cf. Table 2.1). Similarly, the distance standard deviation
of 0.03 m could result (assuming 9, = 01) from the distance observed

by a CA 1000 with op = 5 mbar and OT = OAT = 1°C (cf. Table 2.8). The

approximate coordinates are determined graphically or analytically as

suggested in section 2.2.

The mathematical model used here is a combination of equations

(3-10) and (4-10). The residual wvector V is defined as
v = W + A X ,
(2,1) (2,1) (2,2) (2,1)
or explicitly )
r xO_x (yo_y ) —(XO"X )
w271 2
arctan ( ) - t p p dx
o_ 1,2 (20 )2 (lo )2 2
Y 1,2 1,2
v = + Sy
2
2,1 2-x °-
( ’ ) ((XO_X )2 . (VO_ )2)1/2 _ (X2 l) (Y2 Yl)
2 71 <271 1,2 4© 20
L J L 1,2 1,2 |
(5-2)
where the units are -1 -1
" “m "m m
v = + . (5-3)
(2,1) m - - m

~

The solution X is given from Appendix II, equation (AIII-11)
as
x=-@m"pa " alew (5-4)
Thus, using the above coordinates and the observations with their standard

deviations, the A, P and W matrices are numerically evaluated yielding
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59.17941 -57.65335 -23.0324

0.6978111 0.7162819 0.11655
. 2
and, assuming o, = 1 (cf. eq. (AII-3)),
-2
"
0.04 0 )
P = in units of .
0 1111.11 m
Using these matrices, evaluationrof equation (5-4) yields
“ 0.11835 m
X =
-0.27802 m
for the first iteration, and the corresponding values of the parameters

are (eq. (AII-12))

378907.0 0.11835 378907.118 m
A
X=X +X= + = . (5-5)
864184.0 -0.27802 864183.722 m

These values for the parameters are now taken as new approximate coor-
dinates, and the A and W matrices are reevaluated. They are

59.17573 -57.66265 0.001075

0.6978911 0.7162039 0.000016
Evaluating equation (5-4) for the second-time (iteration) yields

-0.00002

>
i
~

0.00000
which is insignificant (i.e. less than 0.001 m), and thus the solution
has converged. The final least squares estimate of the coordinates of

point 2 are
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X 378907.118 m

¥, 864183.722 m

These are identical to the results obtained in Thomson et al. [1978],

section 4.8.1.

The variance covariance matrix Cx of the parameters is given

by equation (AII-16) as

(af ¢t a7t

¢ L

x_

(5-6)

If X has been computed according to formula (5-4), then this is a by-

-

product of computing the solution vector X.

0.2305°10 2

-0.13925-10

in units of mz. Computing the standard error ellipse according to

-0.13925-10

2 0.2233°10

In this case it is

2

2 ’

formulae (AIII-8), (AIII-5), (AIII-6) and (AIII-14) gives

a = 0.061 m,
s
b = 0.030 m,
s
6 = -45° 44°' 32",

Assuming the a priori variance factor known, the c¢ factor to increase

the confidence level to 95% is (see Table AIII.1)

c = (X ) = (5.99)1/2 -

2.45 .

Thus, the 95% confidence ellipse has a semi-major axis

a 0.149 m ,
and a semi-minor axis

b=10.074m .
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The orientation remains the same as the standard ellipse. The 95%
confidence ellipse is depicted in Figure 5.2.

In this as in all of the unique cases, the residual vector
V computed (eg. (AII-17)) after the final iteration is equal to zero.
The observations can give only one value for the parameters, and thus
there are no residual corrections for the observations. The a post-

-

.. . 2 . . .
eriori variance factor co is zero in this case as well.
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[ 1 1 [l 1
o 5. 10 15 20

Ellipse Scale (cm) .-

Figure 5.2 <Confidence Ellipse for Direct Problem



5.2 Azimuth Intersection

Figure 5.3 shows the azimuth intersection example considered

in this section. The mathematical model used.here is that of

1ly (Grid North)

1003

(O =Unknown Point lly (Grid North)

/\ = Fixed Point

t
4,1003

Figure 5.3 Azimuth Intersection on the Plane

section 3.1, specifically equations (3-8), (3-9) and (3-10). In this

case, there are two azimuth observations (namely t3,lOO3 and t4,1003)

and two unknowns (coordinates of station 1003). Thus, the matrix

form of the observation equation is

~

\ W + A X ' . (5-8)
(2,1) (2,1) (2,2) (2,1)

or, explicitly



(o]
*1003 %3
arctan 5
Yoo =Y
v _ 1003 Y3
(211) . x0 _
1003 "4
arctan °
i ¥10037Y4
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1 yo -y (xS _~x )T
. 1003 Y3 *1003™%3 Sy
3,1003 (2° 2 )2 1003
3,1003 3,1003 s
+p" Y3003
° -y,) —(xo -x
. ¥10037Y4 1004 *a
4,1003 (20 )2 (20 )2
| | 74,1003 4,1003

The approximate coordinates of points 1003 and the known coordinates

of points 3 and 4 as well as the values and standard deviations of

the observed azimuths reduced to the mapping plane are listed in Table

5.2.

using the hour angle method with a 1" theodolite and %

Table 2.1).

Coordinates of Points

Station X(m) Y (m)
1003 3265.0 645.0
3 3660.0 630.0

4 3635.0 355.0

Table 5.2 Initial

The solution vector X

The standard deviation of 4Y0 could result from 4 determinations

= 1.0s (see

(5-9)

Observed Azimuths Reduced to Mapping Plane

29Y71

From To Value
3 1003 272° 10'
4 1003 308° 15°

A

is given as- (cf. eq:

X = - [ATPA]_l ATPW .

15794

Data for Azimuth Intersection

(A1I-11))

o

470

470

Thus, using the above approximate coordinates for point 1003 and the

observed azimuths and their standard deviations, the A, P and W matrices

and vector are evaluated.

They are
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19.80142 521.4374 -0v63035

270.6642 345.3302 0Y36394

and, assuming 002 =1,
0.0625 0

0 0.0625

. -2 .
The units for P are (") and for A are (" /m)..- Evaluation of the

solution vector X gives

-0.01575 m

>
[l

0.00181 m
Thus, the least squares estimate of the parameters after this first'

iteration are

x=x"+x,
3265.0 -0.01575 3264.984 m
X = _ + = . (5-10)
645.0 | 0.00181 645.002 m

These values for the parameters are now taken as new approximate values
Xo, and the A and W matrices are reevaluated. They are

19.8022 521.4165 0VY0001046

270.6504 345.3251 -0700002522

~

This results in a solution vector X of

0.00000

0.00000
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Thus, the parameters X are unchanged by the results of this second
solution oxr iteration, and it has converged. The variance covariance

matrix C of the parameters is
X :
3 4

0.347049.10 -0.920918.10

4 4

-0.920918.10 0.6534486.10

The standard ellipse computed according to Appendix III is

0.019 m |,
S

= 0.006 m ,
s

6 = -72° 24' 41" .

[
I

o
l

. 2 . o
Assuming Go known, the 95% confidence ellipse is

a 0.047 m ,

b

0.015m .

Figure 5.4 shows the 95% confidence ellipse.

y

[l 1 | | | I——
o 2 4 6 8 10 .

Ellipse Scale (cm)

4,1003

Figure 5.4 95% Confidence Ellipse for Azimuth Intersection



61

5.3 Distance Intersection

Figure 5.5 shows the distance intersection example used
for

1003 2'3 1003

Figure 5.5 Distance Intersection

this section. Points 3 and 4 are fixed, and point 1003 is unknown.
Thus, there are two unknown parameters and two observations giving
the. unique case again.

The approximate coordinates for point 1003, the fixedb

coordinates of

Coordinates of Points Observations on the Mapping Plane
Station . X(m) Y (m) Type From To Value g
1003 3265.0 645.0 Dist. 3 1003 395.840 m  0.005 m
3 3660.0 £30.0 Dist. 4 1003 464.103 m 0.006 m
4 3635.0 355.0

Table 5.3 Initial Data for Distance Intersection
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points 3 and 4, and the observed distances and their standard deviationé
are listed in Table 5.3. These standard deviations could be a result
of six determinations of the distance with a lightwave instrument such
as the Hewlett-Packard 3800 (assuming o, = ol).

The observation equation in the form of formulae (4-9) and

(4-10) is
o _ 2 o) 2,172 .
({x19037%3) * (¥14037¥3) ) 23,1003
v = +
(2,1) o _ .2 L0 . y21/2 _
((x10037%4) + (1003774 ) 24,1003
-0 . o -
(%) 0037%3) ¥10037Y3) 5x -
2° ¢° 1003
3,1003 3,1003
(5-11)
o _ o Sy
(%] 5037%4) (¥10037Ya) | 1003 ]
(o] o
24,1003 24,1003

Using the data from Table 5.3, the A, P and W metrices are

=0.9992797 0.0379473 =0.55498 m

~-0.7870559 0.6168817 6.00325 m

.. . 2
and, assumed the a priori variance factor oo =1,

40000 0
0 27777.777

. . . -2
where A is unitless and P has units of m .

~

Using these matrices to evaluate X for the first iteration

(again using equation (AII-11l))yields
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-0.97203 m

>
Il
-

~10.97179 m

which results in the least squares estimate of the coordinates being

3265.0 -0.97203 3264.028 m
x=x%x = + = ] (5-12)
645.0 -10.97179 634.028 m

Using these parameter values as approximate coordinates now, and
reevaluating the A and W matrices for the second iteration gives

~0.9999483 0.01017244 0.15283

=0.7991728 0.6011013 0.09187

-~

Using these matrices (as well as P) to compute X again using equation
(AII-11) gives

0.15336 m

>
I
-

(5-13)
0.05105 m

which, when added to this iterations' approximate coordinates (eg. (5-12))
gives the parameters from the second iteration as

3264.028 0.15336 3264.181 m
o ~
X=X +X = + = . (5-14)
634.028 0.05105 634.079 m

Because the correction or solution vector X was not insignificant (i.e.
less than 0.001 m) on the second iteration (eq.(5-13)), a third iteration
is required. Thus, the parameters of the second iteration (eq. (5-14))
now becomes the approximate coordinates X° for the third iteration, and

the A and W matrices are again computed. They are
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-0.9999469 0.01030534 0.3496°10.-5 m

-0.7990006 0.6013303 0.1905'10“4 m

A

The solution vector X from this third iteration is

0.00000

>
It
~

-0.00003
which is less than 0.001 m, and thﬁs insignificant. The solution has
converged, and the final least squares estimates for the coordinates
of point 1003 are given by equation (5-14).
The variance covariance matrix of the parameters computed

according to equation (AII-16) is

4 4

0.2972685°10 0.40380781-10

4 3

0.40380781-10 0.13924377-10

which results in a standard error ellipse of

a

-0.01235 m ,
s

b
s

0.00406 m ,

18° 12*' 11" .
Increasing the confidence lebel to 95% as in the previous two examples

yields

I}

a 0.030 m ,

b 0.010 m .

Figure 5.6 illustrates the result.
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L
0 2 4 6 8 [o}
Ellipse Scale (cm)

Figure 5.6 95% Confidence Ellipse for Distance Intersection

5.4 Angle Resection

The angle resection considered here is depicted in figure 5.7.
There are two angle observations 31007’2’1 and B1007'1'3, where the
subscripts stand for stations ‘'at, from, to'. Point 1007 is the

unknown station and points 1,2 and 3 are fixed.

Table 5.4 lists the point coordinates as well as the

observations
Coordinates of Points Observations on the Mapping Plane
Station X Y At From To Value g
1007 3160.0 865.0 1007 2 1 23°13'37Y33 30
1 2640.0 1160.0 1007 1 3 175°36'21v70 3U5
2 2530.0 935.0
3 3660.0 630.0

Table 5.4 1Initial Data for Angle Resection
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and their standard deviations.

from 2 sets of observations with a 1" theodolite or 8 to 10 sets with

67

a 20" instrument (see Table 2.4).

The observation equation as developed in section 3.3 (egs.

(3-26) and (3-27)) is

(o]

[e]
X, X X X
1"*1007 2 %1007
arctan ( o ) = arctan ( 3 ) BlOO7,2,l
v ¥17¥1007 ¥57¥3007
(2'1)= X x> X, -
arctan (_2__1992_)_ arctan (—l—~lggl) - B1007,1,3
i ¥3¥1007 Y1 ¥1007 |
B _.0 ) 9 _0 .0 ]
~¥1¥1007 . ¥5¥1007 (%17%1607) _ %37%1007’
o 2 o 2 o 2 o 2
A 1007,1) %1007,2’ (21007,2’ (%1007,2’
+ pu
o o o o
(¥3Y;997) V1 Y1007 *37%1007) - (¥17X1507)
o 2 o 2 [o) 2 o 2
1007,3’ #1007, “%1007,3 1007,1’

Substituting the initial data from Table 5.4 into the above expressions

results in

-134.3056

329.0484

and, assuming 002 =1,

The units for P are (")-—2

The solution vector X resulting from this first iteration

(computed by eq.

23.32723
’ W =
637.9743
0.11111 0
0 0.08163

and for A are (").m-1

N

(ATI-11)) is

-2734886

37317

*1007

8¥1007

These standard deviations could result

(5-15)
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-0.01688 m
X = ' , (5-16)
0.00351 m '

wnich gives the paramster vector as

3161.0 -0.01688 3159.9832 m )
x=x"+% = + = . (5-17)
865.0 0.0035%1 865.004 m

These parameter values are now taken as new approximate coordinates
o . . . .
X, the A and W matrices are recomputed to enable the second iteration

~

value for X to be found. They are
-134.3128 23.32934 0v6428-10

329.0485 637.9719 -0"4607-10"°

which results in a solution vector of

0.00000

>
It

0.00000
Trus, the solution has converged, and the final least squares estimate
of the coordinates of point 1007 is given by equation (5-17).
The variance covariance matrix of the parameters computed
according to equation (AII-16) is

-3

0.42089214 - 10 ~0.2l233829'10—3

-0.21233829 - 10 ° 0.13714132 - 10°°

wnich gives the standaxd error ellipse computed by the equations of

Appendix III as
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a_ = 0.02312 m ,
bs = 0.00486 m ,
6 = - 61° 52' 46" .

Increasing the confidence level to 95% yields

Il

a=0.057 m,

b=0.012m.
The resultant confidence ellipse is depicted in Figure 5.8.

The variance covariance matrix for the parameters Cx>wou1d
be difficult to compute using the direct (explicit) mathematical model
for an angle resection, mainly due to the complicated partial derivatives
%% needed for the Jacobian of transformation in the covariance law
(cf. Thomson et al. [1978], Appendix II). Thus, it is seen that the

method of least squares offers a consistently convenient method of

error propogation.

5.5 Open Traverse

Figure 5.9 shows the open ended traverse considered in this
example. As in section 5.1, angle and distance observations are
combined in the same model. There are three angles and three distances
for a total of six observations, and three unknown points, or six
unknown coordinates. Thus, n = u and this is a unique case.

The fixed coordinates for pointsl and 2, the approximate
coordinates for points 1001, 1002 and 1003, and the observations and
their standard deviations are listed below in Table 5.5. The observational

standard deviations are computed according to section 2.1.
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BI,Z,IOOI ;I\ _ ».Blojomoog} suooz,’looni:’;3
'Q’l.lOOI 1001 ‘llom,looz 1002
2 | | 2,002, 100:
(.) .
1003
Figure 5.9 Open Traverse
Coordinates of Points Observations on the Mapping Plane
Station X b4 Iype At Fron  To  Value o
1001 ~ 2950.0 1160.0 Dist. 1 1 A 1001 307.997 m  0.0l0 m
1002 3280.0 1145.0 Dist. 1001 1001 1002 330.355 m 0.012 m
1003 3265.0 645.0 Dist. 1002 1002 1003 500.243 m 0.011 m
1 2640.0 1160.0 Angle 1 . 2 1001 243°56'55Y16 3%'5
2 2530.0 935.0 Angle 100% 1 1002 182°36'5%44 470

Angle 1002 1001 1003 269°6'51Y39 3%0

Table 5.5 1Initial Data for Open Traverse
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Combining the mathematical models developed in section 3.3

and chapter 4, the observation equation for this

example is

v = 1% + A X ’
(6,1) (6,1) (6,6) (6,1)
or evaluating the matrices individually,
[ 2 2.1/2 ’
o o 1
2 - + -y. -2
(01750 *Wygor7¥y) ) 1,100
o o 2 o o 2.1/2
(G4 60271001 10027 Y1001 1001,1002
o o 2 [e} [e] 2
SO + - )
(40037 %1002) Y1003 Y1002 1002,1003
%2 -x X, =X
1001 1 1
arctan(-—————=) - arctan (—=—=) - B
woo_ yo -y y2—-yl 1,2,1001 . (5-18)
(56,1) 1001 “1
x° —xo -X
arctan(~3§ﬁ§l—;E¥ZL - arctan (—l;~J£¥ZL)~ B
~ o ~ o 1001,1,1002
Y10027¥1001 Y17¥1001
X —xo x° —xo
arctln(—lggéh—lggg) - arctwn(—lgg};-éggzﬁ - B
‘ _o o o 1002,1001,1003
i ¥10037¥1002 Y1001 Y1002 ]
[ [y (yfm-_yl_) o ° : o o
13,1001 ':.xom
:ﬁgo :”‘?cml "~6%00 z"?a_q_g’__ _‘_’jQ?lﬁOPL) "20921110_1_ o o
‘:cel,wcw 'ioox,wor 001 1007 . ':ool,mc:)
o o :ﬁ‘.ﬂif”_). _.(_’:_0_01_7;:‘27) 005 cor” "‘x’mf’?c«\_zt
a L ':ooz,loo: ":907,10\\) ':002.!00) ‘:oa:.xooa
o8l [TSPW N 68, -x)
1001 71 1701 71
uy xoo)” “:.1@:1’} ’ ° ° ¢
“ 003 Y000 . ATy R UL R Oy "‘\’mz'y:’no;’___ "':noz"'?rzox_" o o
001,100 "‘x’,xwx"~ “‘;oox,mcz’: “‘;,)c-ox’z To01, 1007 “‘;om,m(n’2
-(yi‘ml—yjﬂi _‘i;_él‘.“’:coi’_ :(7‘;50,1;5"1)*‘_(_'3‘;0_1_"_.??'—“1 ("(1,00)”7002_)___('700\"?(»2’ YloarMear® Moy iass!
“:oo:,lom’z 0011000 N 0,100 0 002,203 (L':nuz,loo,\’: 0031000 W002,3003)" U3003,1000

J

(5-19
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Note that p" has been omitted from the non-zero elements of the last three

rows of A. The first three rows of A are unitless, whereas the last

three have units of (")m-l. The solution vector has the form

[ ]
%3001
Y1001

%) 602

5>
]

(5-20)
$¥1002

%1003

| $¥1003 |

Using the initial values from Table 5.5 yields the following

A, W and P matrices:

[ 100.0 0.0 0.0 0.0 0.0 0.0 |
-0.9989685 0.04540766 0.9989685 -0.04540766 0.0 0:0
0.0 0.0 0.02098651 0.9995503 ~-0.02998651 0.9995503
a=| 0.0 -665.3703 0.0 0.0 0.0 0.0 ,
28.35255  1289.126 -28.35255 -623.7561 0.0 0.0
-28.35255 -623.7561 440.5112 611.3914 -412.1587  12.36476 |

(note that p" has been multiplied onto the appropriate elements for this

A matrix)
r . r s
2.0033911 m 10000.0 0 0 0 0 0
-0.01411715 m 0 6944.44 0 0 0 0
-0.01848697 m 0 0 8264.46 0 o (0]
W= , b= .
-7v7426476 0 0 0 0.08163 0 0
397866587 (0] 0 0 0 0.0625 0
5%4711834 0 0 0 0 0 0.1111




-~

The solution wvector X computed (using eq.

iteration matrices is

74

[-2.00339 m |
~0.01164 m
~1.98958 m
~0.1861 m

=1.98646 m

which results in the parameters X bei
[ 2950. 0] [-2.00339
1160.0 -0.011l64
o~ 3280.0 -1.98958
X=X +X = + =
1145.0 -0 1861
3265.0 -1.98646
| e45.0 |-0.03720

-0.03720 m |

ng

[2947.997
1159.988
3278.010
1144.981

3263.014

644.963

(AII-11)) from these first

. (5~-21)

Using these parameters as new approximate coordinates and

recomputing A and W to get a new solution vector X results in

»

All elements of X are less than 0.001 m,

[0.00000]
0.00008
0. 00000
0.00007

0.00000

0.00007 |

and thus the solution has

converged. Thus, the final least squares estimate of the coordinates

of points 1001, 1002 and 1003 is given by equation (5-21).



The variance covariance matrix of the parameters assuming

the a posteriori variance factor known (eq.

[ -
0.10086490. 10

-0.27788873.10 °  0.10086495.10"

4

0.27313521.10 ©  0.13280578.10

0.24569748.10

75

3

5

3

-0.16731703.10"°
-0.56579556.10 2
-0.19616485.10 >

-0.15846045.10" >

(AII-16)) is

- 0.10086663.10 >

0.45670326.10 4
0.25068166.10 3

0.15194931.10 >

-g]
-0.17234176.10

-0.55249614.10"%

~0.21111371.10~°

(5-22)

Symmetric
.

0.15384425.10™>

3 3

0.47467789.10 °  0.14892772.10

3

0.27256622.10

Table 5.6 shows the standard and 95% station error ellipses as well as

the relative error ellipses between the unknown points.

Again, it is

assumed that 002 is known, and the c¢ factor is 2.45.

Station Ellipses

Standard
Station as(m) bs(m)
1001 0.010 0.005
1002 0.016 0.013
1003 0.024 0.014
Relative Ellipses
Standard
Station as(m) bs(m)
1001 to 1002 0.012 0.009
1002 to 1003  0.015  0.0l1

Table 5.6 Station and

95%
¢] a(m) b (m)
-85:59'52" 0.025 0.013
-88°42'45" 0.038 0.031
62° 4'46" 0.058 0.034
95%
] a(m) b (m)
-87°23'47" 0.030 0.021
-88°16'56" 0.036 0.027

Relative Ellipses for Open Traverse
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The traverse with both station and relative 95% confidence

ellipses is shown in Figure 5.10.

1002

—~
=

N 1 1 1 | W |
o 2 4 68 10

Eliipse Scale (cm)

Figure 5.10 95% Confidence Ellipses for Open Traverse



6. SOLUTION OF OVERDETERMINED CASES

As already mentioned in the introduction, overdetermined
cases include any network in which the number of observations n is greater
than the number of unknowns u. Any overdetermined network has more than
éne unique solution for the coordinates of the unknown points. Thus, the
best solution based on all of the available information must be found. This
is accomplished by the method of least squares (see Appendix II) which
gives the minimum weighted sum of squares of the residuals (corrections to
the observations), i.e. VTPV = minimum. A simple example is the least
squares line fitting technique shown in Figure 6.1. The observations
are the y coordinate (horizontal axis t is known) and the unknowns are the
slope of the line a and the y intersect b (i.e. y=at + b). The least
squares technique minimizes the sum square of the residuals, which in this
case is the "distance parallel to the y axis from the observation point

to the line.

Figure 6.1 Least Sguares Line Fitting
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Besides having at least as many observations as unknowns, a
horizontal network must also have certain other basic information before
it can be solved. A network must have scale, orientation, and one known
position. Orientation is introduced by observing an azimuth, or by
"fixing” one point along with the x or y coordinate of another point.
The scale is provided by measuring at least one distance and including
it in the network, or by "fixing” at least two points. At least one
point must be assumed known to provide the minimum position information
for a horizontal network. If two or more points are assumed known,
then the scale and orientation are inherent as well. If this minimum
information is not provided, then usually the normal equations matrix
N = A?PA is singular, and its inverse cannot be found.

Classical horizontal networks were usually measured by triang-
ulation methods; i.e. having only angular observations between étations.
The scale was introduced by baselines measured with invar wires or tapes.

Since the introduction of EDM equipment, trilateration networks composed

mainly of distance observations have been measured, with the orientation
provided by azimuth observations. Modern day horizontal networks are
usually composed of a mixture of both angular and distance observations,

and the phrase triangulateration network has been coined to characterize

them. A traverse is a simple example of a triangulateration network.
"The following examples show some of the various network types for over-

determined cases.

6.1 Closed Traverse

Figure 6.2 depicts the closed traverse considered in this example.
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There are four unknown points and four fixed points. The x, y coordinates
of the four unknown points along with the six orientation unknowns (see
section 3.2) gives a total of fourteen unknown parameters. It is seen
from Figure 6.2 and Table 6.1 that there are a total of seventeen
observations, and the degrees of freedom is, therefore, three. Since

the degrees of freedom is greater than zero, this problem is overdetermined.

Coordinates of Points . Observations on-the Mapping Plane
Station X Y Type From To Value ]
1003 3265.0 645.0 Dir. 1 1006 0°00'00%0 2%0
1004 3570.0 915.0 Dir. 1 2 66°1" 10 20
1006 2820.0 945.0 Dir. 1006 1007 0°00'00%0 200
1007 . 3160.0 865.0 Dir. 1006 1 216°53'42%0 270
1 2640.0 1160.0 Dir. 1007 1003 0°00'00%Y0 270
2 2530.0 935.0 Dir. 1007 1006 128°41'52%0 2Y0
3 3660.0 630.0 Dir. 1003 1004 0"00'00%0 2%0
4 3635.0 355.0. Dir. 1003 1007 286°1'57%0 2%0
Dir. 1004 3 0"00'00%Y0 20
Dir. 1004 1003 65°48'6%0 20
Dir. 3 4 o"00'00%0 270
Dir. 3 1004 157°25'5%0 2%0
Dist. 3 1004 301.200 .01

m

Dist. 1 1006 279.747 m .01
Dist. 1006 1007 348.982 m .01
“Dist. 1007 1003 243.623 m .01
‘Dist. 1003 1004 408.310 m .01

44839 3838

Table 6.1 Initial Data for Closed Traverse

Again, it is assumed that the observations have already been reduced to
the mapping plane, and that the standard deviations have been computed
according to section 2.1.

Combining the mathematical models developed in section 3.2 and
chapter 4, the observation equation takes the form

v = w + A X .
(17,1) (17,1) (17,14) (14,1)
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The W, A and X matrices are evaluated exactly as for the unique case
examples in chapter 5. The primary difference between ;he unique case
and this overdetermined case is that the residuals V are no longer zero.
The W matrix is computed exactly as .in equations (3-15) (directions)

and (4-9) (distances). PFor a direction, the W matrix element is

x%-x°
W = arctan (——5) -2z° -4d,, .
ij yo-y? * +
jYi

Taking the direction d as an example and using the initial

1,1006

approximate coordinates of Table 6.1 yields

2820.0-2640.0,
945.0-1160.0"

2820.0-2640.0, .,
945.0-1160.0 ) ~ 07007000,

1] = arctan ( - arctan (

d1,1006

W = 0" .
9 1006

The approximate value for the orientation unknown Z; is always computéd
as the azimuth between the from and to stations of the first direction
in the set of directions. This causes the W matrix element for the
first direction of a set to be zero assuming that the directions are
reduced such that the first direction of the set always has an observed
value of 0°00'00Y0. In this case, d ‘is the first direction of the

1,1006

set. For the second direction of the set 4 , the W matrix element is

1,2
W, = arctan (2530.0-2640.0, _ . =~ 2820.0-2640.0) _ coo1uyug |
1,2 935.0-1160.0 945.0-1160.0
Wy = 206° 03' 12158 - 140° 03'49%02 - 66°1'1%0 ,
1,2
Wi, = -o7"a4 .



82

The distance W matrix elements are computed. as in chapter 5, for example

2 .
Wy = ((3570.0-3660.0) + (915.0—630.0)2)1/2 - 301.200 ,
3,1004
Wz . = 298.873 - 301.200 ,
3,1004
Wz = -2.327 m.
3,1004

After computing all of the elements of W using the initial coordinates in

Table 6.1, W is
WT = (O0v'0, -97744, 0Ov0, -258v85, 0v0, 203v80, 0%0, -106"71, 0OYO, 745?82,.
(1,17)

070, -496%Y99, -2.327 m, 0.654 m, 0.303 m, 0.149 m, -0.971 m)

4

where the transpose of W is given for ease of writing.
The A matrix is computed via formulae (3-15) and (4-9) as well.

For example, the direction 4 has nonzero elements

1,1006 ~P23,1006’

-pbl,1006' -1 in columns 5, 6 and 9 of row 1 of A. Distance 13'1004 has

nonzero elements - e3,1004 and f3'1004 in columns 3 and 4 of row 13 of

A. The entire A matrix is given to five significant digits below.

%003 Y1003 *1004 Y1004 = *1006  Yioos 1007 Yioer A %2 F % % %

o o o (] -564.03 -472.21 ] [} -1 (] o o0 [} [ ]
o o 0 0 (] [ o [} -1 /] 0 [] 0 1]
L] '] 0- 1} 135.26 574.84 --135.26 -574.84 O0 -1 O [ 0 [4
(4] ] ] ‘ o -564.03 -472.21 4] [} o -1 o o 0 [}
~763.62 -364.46 ] (] 0 o 763.62 364.46 O o -1 o 4 1}
0 o o 1} 135.26 574.84 -135.26 <=574.84 0 0 -1 o o [}
~335.64 379.15 335.64 -379.15 1] 0 1] (] 4 o o -1 o [

A = -763.62 -364.46 4} 3} ] 4} 763.62 364.46 O ] o -1 o o},
(17,14)

[} 1] 658.11  207.82 (4] (] [ [|] (] [} (] 0o -1 1]
-335.64 379.15 335.64 -379.15 [} 1} 4} [ o o (1] o -1 3}

0 [} 1] (1] 1] 4] (4] [ 1] 1] ] o 0o -1
0 [ 658.11  207.82 1} 0 ] 0 o 1] 4] o o -1

[ 0 -0.30113 0.95358 [ (1] [} ] (/] [} o o o o

2 0 0 ] 0.64194 -0.76676 (4] (] [} [} 1] o o o

) 0 0 ¢} -0.97342 0.22904 0.97342 -0.22904 O o o 0 o [+}

£.42273 ~5.90248 [¢] [ o 0 -0.43073 0.90248 O 4] [¢] o o o

L-’J.74376 -%.66284 0.74876 0.66284 o (o] o] o o [} (] o o o
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where Zl, ZZ' Z3, Z4, Z5 and Z6 refer to the orientation unknowns at

stations 1, 1006, 1007, 1003, 1004, and 3, respectively.
The P matrix is diagonal of size 17 x 17 with the inverse of

the standard deviations (Table 6.1) squared on the diagonal. It is

0.25 0 r . . . . . . . . . . . . 0
0 0.25Q
0 0.250
0 0.250 :
° 0 0.250 .
0 0.250 .
p . 0 0.250
=1 0 0.250 .
(17,17) 0 0.25 0
: 0 0.25 0
0 0.25 0 .
0 0.25 O
0 10000 O .
0 10000 : O
0 10000 O
0 10000 O
0 . e . . . . . . . . . . 0 10000
L p

Computing the solution vector ﬁ via equation (AII-11) and the.
above W, A and P matrices yields (in units of metres)
ﬁT = (-0.40492, 1.4367, -0.01428, 2.43956, -0.32453, 0.58429, -0.49373,
1.23052)
for this first iteration. The orientation unknowns are not given as they
are considered as nuisance parameters. This results in the parameters
XT=X°T+§T= (3264.595, 646.437, 3569.986, 917.440, 2819.675, 945.584,
3159.506, 866.231),
where X° are the approximate coordinates of Table 6.1.
These parameters X are taken as new approximate coordinates X°,

and the A and W matrices are reevaluated using them. Equation (AII-11)

is again used to compute the solution vector for the second iteration as



AT
X

-0.00111) ,

84

which results in the parameter vector

T T

XT=xo T4k

3159.510, 866.229).

(0.00451, -0.00163, 0.0050Q, 0.Q0123, -0.00103, 0.0036l1,

= (3264.600, 646.435, 3569.991, 917.441, 2819.677, 945.583,

(6-1)

These parameters are taken as new approximate coordinates X°

again, and the third solution vector is (after reevaluating A and W)

"
L1

X

0.00000) ,

and the solution has converged.

of the unknown points) are thus given by equation (6-1).

(0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000,

The final parameters (x,y coordinates

The variance covariance matrix of the parameters is computed

via equation (AII-16) assuming the a priori variance factor is 1. To five

significant digits, Cx is
[ -4 = =
0.59682.10 ~0.22694.10 0.65123.10
0.72621.10° % -0.16742.10
0.20302.10
L symmetric

5

4

4

-0.24399.10"%
0.56083.10"%
-0.22861.10 %

0.69924.10° %

0.15629.10 %
-0.70447.107°
0.25438.10">
-0.10576.10~%

0.37112.10°%

- - - -6
-0.70930.10">  0.44888.10"%  0.76894.10 1
- - -4
0.24325.10°%  0.56478.107>  0.39107.10
-5 -5 -
-0.50328.10 >  0.95914.10 > =0.11126.10
-4 -4 -4
0.19808.10°% -0.20030.10"%  0.32084.10
- - g
-0.32346.10°%  0.18196.20°% -0.20442.10
- - -2
0.46543.10°% -0.15496.10 %  0.43721.10
0.57933.10°%  -0.20907.10”%
0.65816.10 ¢

The 95% (c factor = 2.45) station and relative error ellipses computed

by the equations of Appendix III from the above Cx matrix are listed

in Table 6.2, and plotted in Figure 6.3.
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Figure 6.3 Plot of 95% Error Ellipses for Closed Traverse

S8
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Station Ellipses Relative Ellipses
Station a(m) b(m) o Station Station a(m) b(m) ®
1003 .021 .019 ~-9°39°'53" 1003 1004 .021 .012 69°24'07"
1004 .022 .008 -21°19'45" 1003 1007 .022 .008 -30°39'26"

.1006 .021 .007 -40°51'12" 1007 1006 .020 .010 -67°07"'34"

1007 .022 .016 =39°39'44"
Table 6.2 95% Error Ellipses for Closed Traverse

The residuals V computed by equation (AII-17) are

VT = (2.07, -2.07, 1.48, -1.48, 0.91, -0.91, 0.41, -0.41, 0.45, -0.45,
(1,17)

-0.14, 0.14, 0.004, 0.000, -0.007, 0.003, -0.011), (6-2)

where the units are arcseconds for the first 12 residuals (i.e. for directions),
and metres for the last five (distance residuals). Using these residuals and

the P matrix computed earlier, the a posteriori variance factor 002 is

computed via equation (AII-18) as

S2_ vy
o df

= 1.9214 . , (6-3)
Both the residuals and a posteriori variance factor are used in chapter:

9 for the post analysis procedures.

6.2 Network

Figure 6.4 shows the network considered in this example. It consists
of 10 unknown stations and one fixed station with 38 directions, 17 distances;
and 2 azimuths observed. Accounting for the 11 orientation unknowns, then,
the degrees of freedom is 26. The initial point coordinates are listed in

Table 6.3 and the observations and their standard deviations are given in

Table 6.4.
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Station X Y Station X Y
1 2640.0 1160.0 1003 3265.0 645.0
2 2530.0  935.0 1004 3570.0 915.0
3 3660.0 630.0 1005 2770.0 655.0
4 3635.0  355.0 1006 2820.0 945.0
1001 2950.0 1160.0 1007 3160.0 865.0
1002 3280.0 1145.0

Table 6.3 Initial Coordinates for Network Stations

Combining the mathematical models of sectiors 3.1 and 3.2 and

chapter 4, the matrix form of the observation equations is

~

\ W + A X .
(57,1) (57,1) (57,31) (31,1)

[l

Using the same techniques as in the previous example in section 6.1,
the W matrix is computed as

WT = (327'58, 92878, 0.191 m, 0.003 m, 0.010 m, -0.613 m, -0.48 m,

e 0.827 m, -0.588 m, 0.448 m, 0.287 m, 0.571 m, 0.223.m, 0.242 m,
-1.011 m, -0.198 m, -0.112 m, -0.603 m, -0.774 m, OV0, -215798, -388Y51,
'—337?42, ov0, -344:78, -371Y73, -527'22, 0Y0, -59'v62, -240783,

-369V48, 070, 544773, -304718, 0V0, -497!86, —-446799, -367.48,
0Y0, -161Y91, 60v93, 41v22, 0Ov0, -67V31, -1361V01, -1193'51,
-276%02, 0Y0, 236Y22, -1184%'82, 0Y0, -204%"24, 070, -688787,
-582v99, 0v'0, 522v36) ,

where the order of the elements of W is the same as the order of the

observations in Table 6.4. The A matrix is too large to put conveniently -

on one page, So the nonzero elements of it are given on the following



Type
Az
Az
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dist
Dir
Dir
Dir
Dir.
Dir
Dir
Dir
Dir
Dir

Dir

From

1003
1003

N ™)

1001
1001
1001
1006
1006
1007
1007
1002
1003

1001
1001
1001
1001
1006
1006

1003
1005
1001
1005
1006
1006
1002
1007
1007
1005
1002
1003
1004
1004
1001
1006
1005

1002
1007
1006

1001
1007

Value

205°57'45%0
48°13'31Y0
395.094 m
276.131 m
250.440 m
470.719 m
369.262
309.173
522.052
279.953
250.960
329.770
361.889
349.043
295.290
304.829
243.884
370.738 m
408.113 m
0°0'00Y0
50°07'25%70
75°40'1970
116°08'50Y0
0° 0'00Y0
52°02"51Y0
118°39'36Y0
177°32'38Y0
0° 0'00%Y0
72°05'52%0

=

5 3 8 8 8 8 8 8 8 8

89

g

50
5Y0
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
.01
270
270
270
270
270
210
270
270
2Y0
270

5 8 8 8 8 8 8 838 8 38 8 38 8 8 3 8 8

Type From

Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir
Dir

Dir

1006
1006
1005
1005
1005
1007
1007
1007
1007
1002
1002
1002
1002
1003
1003
1003
1003
1003
1004
1004
1004

DWW WwN

Value

158°41'24%0
289°00'25"0
0°00'00"0
81°13'25%0
335°51'58"0
0°00' 000
131"25'33%0
260°08'58%0
301°27'28%0
0°00'00"0
53°20'43"0
74°45'49"0
144°10'23%0
0"00'00%0
46°47'01"0
90°50'04"0
126°42'07"0
332°50'40%0
0°00'00"0
79°52'09"0
294°19'13%0
0°00' 00”0
113°24'07"0
0°00'00"0
87°10'18%0
157°26'31"0
0°00'00%"0
56°57'38%0

Table 6.4 Observations on the Mapping Plane for the Network

270
270
200
270
2°0
2t0
270
270
270
290
270
2Y0
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
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two pages. Note that the row number is given under the observation type,
and the column numbers are given between dashes (e.g.-18- ) over top
of the actual number. Station 1 is fixed, and thus there are no columns
appearing in A for it. All elements resulting from azimuth or direction
observations are multiplied by p" as was done in section 6.1.

The P matrix is diagonal of size 57 x 57 with the inverse of
the standard deviations (see Table 6.4) sgquared on the diagonal. The
first two diagonal elements are 0.04, the next 17 are 10000.0, and the

last 38 elements are 0.25. P thus takes the shape

- I

0.04 0 . . . . . . . . . 0
0 0.04 O
3- 0 10000.0 .
P- ) " 10000.0 .
(57,57) - . .
20- | - 0.25 -
) .0
| 0 . . . . . . ° . . 0 0.25

Using the above A, P and W matrices in equation (AII-11) to
compute the solution vector for the first iteration yields
XT

(1,20) = (0.3616, -0.1768, 0.8559, 1.6254, 1.2828, 1.5808, -0.8268, 1.0078,
4

-1.3181, 2.9488, 1.0736, 2.3229, 0.4415, 4.2027, 0.8414, -0.3917,
0.1877, 0.7411, 0.2573, 2.0613) ,
in units of metres. The orientation unknowns are not given as they are

not required. Adding this solution to the approximate coordinates of
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A matrix,

rows 1-30

A21MUTH 1 (X.Y) _FIXED 2 . 1= UX,Y) - 2-
1 0.73988970+03 '~0.3617239D+03  -0.73988970+03 0.36172390+03
TAZIMUTH 1003 - (x,Y) T =122 1004 13- (X,¥) __ -14-
2 -0.33564260+03 0.37915180+03 0.33564260403 -0.37915130+03
DISTANCE _1003  -11-  (X,Y) -12- 3 - 3. (X,¥) - 2_ e o
3 0.99927972+00  0.3794733D-01 0.99927970+00 -0.37947330-01
“DISTANCE 37 T T35 UK, Y) Al T TR TR TXGYT . - 6=
I 0.90535750-01 ' 0.95589320+00 -0.90535750-01 '~0.99539320+00
DISTANCE 1 (X,Y) (xg 2 - 1- (X,Y) C . 2 e+ o et e e+ e
H 0.43921010+00  0.8983844D+00 -0.4392101D0+00 -0.8983844D+00
DISTANCE & <85 (XyY) - 6= 1003 <11= (X,¥) <12~
3 0.78705590¢00 '~0.61683170+00 ~0.787055950+00 = 0.61688170+00
DISTANCE 2 -~ 1= (X,Y) - 2- 1005 _-15- (X,Y) _ ~ -16~ -
1 ~0.6507514D+00 0.7592566D+00 0.6507914D¢00 -0.75925660+00
DISTANCE | (X,Y) FIXED 1001 - 7- (X,Y) - 8-
8 ~-0.10000000+01 Q.0 0.10000000¢01 0.0
DISTANCE N (XyY) FIXED 1005 =15- (X,Y) -16- T
9 -0.24925800+00  0.9684268D+00 0.24925800+00 -0.9684268D+00
DISTANCE 1 TX,v] _FIXED 1066 =17~ [(Xs¥] 18-
10 -0.64193670+00  0.76675770+00 0.64193670+00 -0.7667577D+00
DISTANCE 10 (X,Y) - 8- 100 “17-  1X,Y) 18- e
1 0. 741930000 0.8557320D+00  -0.5 741930¢oo -0.85573200+00
DISTANCE 1001 = 7= _(X,Y) - 8- 1002 - 9- _(X:¥) ~10-
12 -0.99896350+00 0.45407660-01 0.95896850+00 '~0.4540766D-01
oxsrnucs - 1001 = 7= {Xe¥Y) = - 8- 1007 =19=  (X,Y) <20- T TTTTT T
13 -0.57993130+400 0.8146654D+00 0.57993130000 -0.8146654D+00
DISTANCE 1006 ~17- (Xs¥V) - 18- 1007 -19= _(Xs¥) <20-
12 -0.97341720+00  0.22903930+00 0.97341720+00 -0.2290393D+00
DISTANCE 1006 =17- _(X,Y) -18- 1005 =15~ (X,Y) -16- I
18 .16990690+00 0.98546010+00 -0.1697069040C -0.98546310+00
07 =-19-  {X,Y) -20- 10 = 8- (X,Y) -10- . -
DiETANCE -30393919go+oo ~0.91914500+00 0. 39391930¢oo '70.9191450D0+00
. 1007__-18 =-20-. __. 1003 _-11-___ Y) -12-_
_n{sxauce —0. 4zo1zqso+05 - 3.9ozaelooeoo 0.43072960400 *Y} 56748150705
ANCE 1002 - 9= (X,Y) -10- 1004 =13- (X,Y) ~14- e
°§§’ c -0.7834977D+00 ' 0.62139470+00 0.7834977D+00 '~0.6213947D+00
TANCE .10 =11 (X,Y) -12- 1004 _~13=_ Y) ___ =14-
'Dig a " =0. 74876220*00 -0.66283870+00 0.74816220*00 " 0.6628387D+00
; 1. - txyY) EIXED 1001 = T- (X,Y) - 8- L =21-.
D{RECTION L-beo XYy 66535030403 0.0 <0.66537030+03 ~oibroi
Rgc[[nu 2 XoY) _ FIXED 1ooa__. 17- _ _(XoY) __ -18- __ -21-
'Dl o 5640309D+03 0.47221200%03 =0.56403090+03 —-0.47221200+#03  -0.40+0f
N 3 1 (X,Y) FIXED 10 -15-  (X,Y) -16- . =21~
DQQECTxO 0.38306050+03 ' 0.93609630+02  -0. 36306050003 '-0.96639630002 -0.10 +01
. o AXyY)_ FIXED._ .. 2 ~ 1~ _(XeY) - 2~_____ =21
e §E°“°“' “ 5 73988970403 ~0.36172390%03 T =0.73988970+03 © 0.36172390+03  -0.1D+01
RECTION 1 1001 - 7= {X,Y) - 8- 1002 = 9= IX,Y) -10- -22-
og@ec ! 0.28352550+02 ' 0.62375610+03 =-0.28352550¢02  -0.62375610+03  -0.1D+01
PECTIGN _2__ 1001 = .7-. IX,Y) .. = B- 1007 -19-_ (X,Y) ~20- . =22 ___
'Désbc ! 0.46404670+03 Xo Y 33033830403 —0.46404670+03 '~0.33033830+03  -01D+01
ECT 7= (X,Y) - 8- 1006 =17-  (X,Y) -18- -22-
DQEEC IoN- 3 3998525734037 13, 42472300+03 0070252570403 ° 0.42478330+03  -0.1D+OL
- . T 4 . 100 - T-_ 1X,Y) 8- o1 .. IX,Y) FIXE . e22=
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Table 6.3 results in the parameter vector

XT=X°T+)A(T = (2539.362, 934.823, 3660.856, 631.625, 3636.283, 356.581,
2949.173, 1161.008, 3278.682, 1147.949, 3266.074, 647.323,
3570.442, 919.203, 2770.841, 654.608, 2820.188, 945.741, 3160.257,
867.061). |

Taking these parameters as new approximate coordinates XQ, reevaluating
the A, P and W matrices, and computing a second iteration solution
vector via equation (AII-11l) results in
;T = (-0.00006, -0.00004, -0.00898, -0.00012, .—0.00821, 0.00147, -0.00136,
-0.00253, -0.00649, -0.00518, -0.00375, -0.00082, -0.00707, 0.00096,
0.00073, -0.00062, -0.00155, -0.00031, -0.003589, -0.00124),
which yields a second iteration parameter vector of
xT=x°T+xT = (2530.362, 934.823, 3660.847, 631.625, 3636.275, 356.582,
2949.172, 1161.005, 3278.675, 1147.944, 3266.070, 647.322, 3570.434,
919.204, 2770.842, 654.608, 2820.186, 945.741, 3160.254, 867.060). (6-4)
Using these parameters as new approximate coordinates results in a zero
vector for the third iteration solution vector, and thus the parameters
in equation (6-4) are the final adjusted coordinates.
The variance covariance matrix Cx of the parameters is computed
by equatién (AII-16) (assuming a priori variance factor equals 1) and
. is given on the following page. Note that since thé Cx matrix is too
large to display in a normal fashion, it has been printed in rows of
six columns at a time.
The 95% station and relative error ellipses are computed using
the equations of Appendix III. They are listed below in Table 6.5 and

plotted in Figure 6. 5.
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STATION ELLIPSES RELATIVE ELLIPSES
Station a(m) b(m) Station Station a(m) b(m)
2 .016 .011 16°07'25" 2 1005 .020 .014 36°20'31"
3 .052 .023 26°14'12" 1005 1006 .015 .011 -69°55'41"
4 .058 .025 38°28'49" 1001 1006 .012 .008 -63°44'52"
1001 .015 .011 -4°27'10" 1001 1002 .016 .011 2°01'21"
1002 .030 .017 -0°28'49" 1001 1007 .018 .011 59°14'le"
1003 .038 .018 37°53'16" 1006 1007 .017 .012 11°45'51"
1004 .043 .020 14°48'29" 1002 1007 .015 .009 -65°34'59"
1005 .025 .013 76°37'28" 1002 1003 .024 .013 -84°45'14"
1006 .014 .009 50°14'28" 1002 1004 .018 .013 42°27'42"
1007 .028 .016 29°25'52" 1003 1004 .019 .01p -39°02'59"
1003 1007 .013 .012 -21°58'22"
3 1004 .015 .013 58°21'17"
3 1003 .020 .011 1°26'04"
3 4 .015 .012 -76°04'26"
4 1003 .024 .014 38°01'35"

Table 6.5. 95% Error Ellipses for Network

The residuals V computed using equation (AII-17) are

v: = (-3.89, 3.89, -0.005, 0.007, 0.010, 0.005, -0.004, 0.000, 0.003,
0.001, -0.010, -0.008, -0.006, 0.008, -0.005, -0.002, 0.005,
-0.002, 0.002, 0.13, -0.72, -1.31, 1l.90, -0.01, 1.34, -0.55, -0.78,
0.45, -1.29, -0.51, 1.36, 1.02, -0.33, -0.69, -0.37, 0.45, 1l.68,
-1.76, -1.20, 0.84, 0.05, 0.32, -0.08, 1.17, 0.31, -0:35, -1.05,
.-1.98, 1.72, 0.26, -0.88, 0.88, -0.16, 0.03, 0.13, -0.73, 0.73), (6-5)
where the units are arcseconds for the first two residuals, metres for the
next 17, and arcseconds for the last 38 residuals. The a posteriori

. 2. . . .
variance factor o, 1is computed using the above residuals, the P matrix

given above, and equation (AII-18) as

= = 0.58488 . (6-6)

The residuals and a posterior variance factor are considered again in

Chapter 9 for postanalysis of the network.
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7. A PRIORI KNOWLEDGE OF PARAMETERS
This chapter considers points which have some-independent a
priori estimate of their position. The coordinates of these points are
treated as observables, and have the following simple observation equation:
L =X , (7-1)

with associated variance covariance matrix CL , the accuracy estimate
x

of these so-called weighted parameters. By expanding the matrices of
Appendix II to include these new observables, the least squares estimate

of the solution vector (cf. eq. (AII-11l)) becomes

_1 _l -
X = - [AT 1] CL 0 A [AT 1] CL 0 1 w
. (7-2)
0] CL I 0 CL WL
X,
or, multiplying the matrices together,
T -1 T
X =-[A"PA + Px] [A"PW + waL 1, (7-3)
_1 X
where Px = CL '
X
= o -
and WL X Lx .
X .
Note that WL = 0 for the first iteration if X° is taken equal to Lx.

X
This is not the case for the second and subsSequent iterations.

Although not done here, it can be shown (e.g. Krakiwsky [1975]),
that thé corresponding variance covariance matrix of the parameters X
(cf. eqg. (AII-16)) is
c =% +p 1t . (7-4)
X X
Thus, the only difference between a priori knowledge and no a priori
knowledge of the parameters for the accuracy estimate of the parameters is
the addition of the Px matrix to the normal equations.
Since the weighted parameters are treated as observables, the '
degrees of freedom for the adjustment change from df = n-u to
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df = n-u+u , (7-5)
. . . B x -

where u = number of weighted parameters.
Another consequence of this is that the a posteriori variance.factor
(cf. eq. (AII-18)) is now computed as

T
+ V. PV
vV PV Ly XLy (7-6)

ot
o af '

A

where VL = AX + WL (cf. eq. (AII-17)) are»thé residual corrections
X X
to the weighted coordinates. Noting that the A matrix for Lx is equal

to I, then VL is simply
b3

L

~ m N
V. =X+ WL =. I X, , (7-7)
X X i= .

where m = number of iterations in the adjustment.
The example shown in Figure 7.1 is exactly the same as that of

section 5.1 except that station 1 is now weighted with an a priori

variance covariance matrix of
0.4455.10
3

1 3

-0.709.10

it

c, ) (7-8)
Xy -0.709.10 ’ '

1

0.9535.10

. . -2
in units of m .

Ally (Grid North)
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This corresponds to a standard error ellipse a = 0.309 m, b = 0.211 m and
& = -0° 47' 58". The initial data (i.e. approximate point coordinates,
observations and their standard deviations) are given in Table 5.1. The

observation eguation is

~

v W A X (7-9)

(2,1) ~ (2,1) T (2,4 (4,1) '

or, explicitly

L FoMysmYy ) pxSmXY)  lySeyD)  Tel(xgex3)
arctan(——=) - t) , ) >. 2 3 8x)
¥y (23 s ¥ g p @ )
vV = + GYI R (7 10)
2,1) =(x3-x3) 2% 24 (x3-x%3) (y3-y2) y -
((x;-xi)2 + (y;-yi?)]'/z- "1 A0 2°x1 2. 1 3 1 f 1 §x,
! [ [ [ 2
1,2 1,2 1,2 . 1,2 8y,
where the units are
-1 -1 -1 -1 [ 7]
v " Mem  Mem T ("am o (Mem m
=" +
(2,1) .
' m - - - - m (7-11)
m
Lm

Evaluating A and W using the coordinates and observations of Table 5.1
yields
-59.17941 57.65335 59.17941 -57.65335 =-23.0324 m

-0.6978111 -0.7162819 0.6978111 0.7162819 0711655

The weight matrix P of the observations is identical to that of section

5.1. Employing formula (7-3) to compute the solution vector X gives X
for the first iteration as

0.00000 m

0.00000 m

>
1}

0.11835 m

L—O.27802 m
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which yield parameters X of

) ) L.
377164.887] [ 0.00000 377164.877 m |
A 862395.774 0.00000 862395.774 m ;
X=X°+X = + = . (7-12)
378907.0 0.11835 378907.118 m
864184.0 | |-0.27802| = |864183.722 m |

Using these parameter values as new approximate coordinates, and
recomputing A and W gives the second iteration solution vector as

0.00000 ]

0.00000

>
]

-0.00002

i 0.00000_
and the solution has converged. Thus, the final least squares estimate
of the parameters is given by equation (7-12), which is identical to the
solution obtained in section 5.1.

The variance covariance matrix of the parameters computed

according to equation (7-4) is

- -

0.4455.10° % -0.709.10"> 0.4455.10% -0.709.1073
0.9535.10 % -0.709.10> © 0.9535.10 %
Cx = 0.46855185.10 > -0.21014856.10 2| (771¥
' i Symmetric 0.97583041.10-{

which gives the following standard error ellipses:

Point #1: a=0.309m b=0.211m g = —-0° 47' 58"
Point #2: a=0.313m b = 0.216 m 0 = -2° 22' 0O5"
Relative 1-2: a = 0.061 m b= 0.030m 6 = —-45° 44°' 31" .
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From these error ellipses, it is seen that the relative error ellipses
give the precision of the actual surveying being déne, whereas the
station ellipses reflect the fact that point 2 cannot be established
more accurately than the accuracy of the starting point #l. Increasing

the confidence level to 95% (c factor = 2.45) gives

Point # 1: a=0.756m b =0.517m
Point # 2: a = 0.766 m b = 0.530 m
Relative 1-2: a = 0.148 m b = 0.072 m .

These error ellipses are plotted in Figure 7.2.

The residuals V are still zero because this is a unique case.
These results compare identically with the example of section 4.8.1 in
Thomson et al. [1978] which uses the direct formulae, and propagation
of errors to arrive at the result. Thus, the equivalence of the

least squares method and the direct approach for the unique case is

-] 0.5 1.0 [ -] 20 25
Ellipse Scals (m)

x> Zrror Zllivses for Direct Case

5%
htec Parameters

Figure‘7.2 Plot of ¢
with 'eic
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The following example depicted in Figure 7.3 is almost the same
as the closed traverse in section 6.1. The only difference is that the
points which were considered fixed (i.e pts. 1, 2, 3 and 4) in section
6.1 are now weighted. The initial data in Table 6.1 is the same for
this case with weighted parameters. Additional initial data includes the

weight matrix Px (cf. eq. (7-3)) which is (for points 1, 2, 3 and 4,

respectively) A .
-0.2501.10'“ ~0.1232.10"°  0.5201.10°°  0.1222.107% 0.0 " 0.0 0.0 0.0 ]
0.2160.10"%  0.5941.107% -0.9860.107® 0.0 0.0 0.0 0.0
0.2460.10"% -0.1006.107° 0.0 0.0 0.0 0.0
= 0.2300.10"% 0.0 0.0 : 0.0 0.0
. 0.2399.10°%  -0.1663.10"> 0.6120.10°° 0.1001.107°
symretric |
0.2243.10°%  0.8045.107® -0.8000.107®
0.2379.10% -0.1611.107°
0.2607.107%

Note that points 1 and 2 are considered uncorrelated to points 3 and 4.

Figure 7.3 shows the 95% error ellipses represented by Px above for the

four weighted points.

Strictly speaking, the general matrix form of the observation

-

equations for this example is
\" A X + w ’
(25,1) (25,22) (22,1) (25,1)

where W includes W Realizing that the rows of A corresponding to
X
the Lx observations reduce to the unity matrix (cf. egqg. (7-2)), and

]

that WL reduces to zero for the first iteration (i.e. Lx = X°), then
X
the observation equations are written as

\Y = A X + W . (7-14)
(17,1) (17,22) (22,1) (17,1)



Figure 7.3 Initial Configuration for Closed Traverse
' with Weighted Points '
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The A matrix of section 6.1 is part of the A matrix for this example.
Here, however, there are eight more columns for stations 1, 2, 3 and 4.

The A matrix for this example is

* Y1 *2 Y2 "3 bE] s s
[ s64.03 472.21 ° ° ° ° ° 0 ]
1 7000 -361.72 -130.80 36072 o ° ° °
° ° 0 ° ° ° ° °
564.03  472.21 ° ° ° 0 ° 0
0 0 0 ° ° ° o °
° ° ° ° ° ° ° ° E
. ° ° ° ° ° ° ° 0 Wext 14 colume
A - (-] [ [ L] o ] ] o same as A ia
ar,22)
0 ° ° 0  -658.11 -207.82 O 0  Section 6.1 .
° ° ° ° ° ° o 0 .
° ° ° 0 74290 -676.28 -743.90 676.28 :
° ° ° 0 -658.11 -207.82 © °
0 ° ° 0  0.30113 -0.95358 O °
-0.64194 0.76676 . 0 ° 0 ° J °
° ° ° ° ° ° ° °
1 e ° ° ° ° e ° °
{ ° ° 0 ° ° ° ° ° i

where the numbers have been rounded to five significant figures and
only the first eight columns are given (the final 14 are identical to
A of section 6.1). The W matrix in equation (7-14) as well as the P
matrix are both identical to those in section 6.1.

Noting that WL is ;ero for this first iteration, egquation

x
(7-3) is employed to compute the first solution vector as

ﬁT = (6.00271, -0.00239, -0.00436, 0.00215, 0.00170, 0.00018, -0.00007,
0.00002, -0.40785, 1.42952, -0.01027, 2.43608, -0.32709, 0.57935,
-0.49390, 1.22106),

for stations 1, 2, 3, 4, 1003, 1004, 1006, 1007, respectively. Thus, the

updated parameter vector is
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X'= X°T+xT = (2640.003, 1159.998, 2529.996, 935.002, 3660.002, 630.000,
3635.000, 355.000, 3264.592, 646.430, 3569.990, 917.436,
2819.673, 945.579, 3159.506, 866.221).

Using this parameter vector as new approximate coordinates X°, the A and

W matrices are reevaluated (note that WL is no longer zero)and equation

X
(7-3) is again employed to give a second iteration solution vector of

;T = (0.00003, 0.00014, 0.00048, -0.00023, -0.00069, 0.00014, 0.00019,
-0.00004,0.00441, -0.00096, 0.00361, 0.00156, 0.00150, -0.00063, (7-15)
0.00322, -0.00030) ,
which yields the second iteration parameter vector as

G S

= (2640.003, 1159.998, 2529.996, 935.002, 3660.001, 630.000,
3635.000, 355.000, 3264.597, 646.429, 3569.993, 917.438,
2819.674, 945.579, 3159.509, 866.221) . | (7-16) .

Evaluating A, W and wL a third time to compute the third iteration

solution vector ; yielzs a zero solution vector. The final parameter

vector of adjusted coordinates is thus given by equation (7-1€).

The variance covariance matrix Cy of the parameters is

computed using equation (7-4) to yield
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2.45) are used to compute the 95% stat

Appendix III (C factor

error ellipses listed in Table 7.1 and plotted in Figure 7.4.

Relative Ellipses

Station Ellipses

S

b(m)

Station a(m)

Station

b (m)

Station a(m)

.011
.011
.012

.0l6
.022
.021

50°14' 35"
26°36'31"
-10°26"'14"

.010
.010
.010
.010
.021

.011
.012
.012

1
2

32°18'42"
-44°01"'33"

1006
1007

1
1006

_65023' 33"

1007 .022 .009 -31°42'07"

1003

-5°13'45"

.012

4
1003
1004
1006

73°00'12"
-24038'31"

.024 .014

.023
.017

1003 1004
1004

9°48' 58"
-31°49'52"

.024

.012

3

.017

.025

-3°28'13"

.011

.013 -36°09'57"

.022

-.025 .019 -26°37'59"

1007

Table 7.1 953 FEyror Ellipses for Closed Traverse with Weighted Parameters
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‘Figure 7.4 Plot of 95% Error Ellipses for
Closed Traverse with Weighted Points
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the residuals V are computed using equation (AII-17) and the solution vector
of equation (7-15) to be

VT = (0.84, -0.84, 0.58, -0.58, 0.40, -0.40, 0.16, -0.16, 0.31, -0.31,

(1,17)
0.02, -0.02, 0.000, -0.002, -0.004, -0.000, -0.005), (7-17)

where the units of the first 12 elements are arcseconds and the final five

elements are in metres. Using these residuals and the summation of X's for all of the

A

. . . L 2,
iterations (cf: eq. (7-7))the a posteriori variance factor g, is computed
via equation (7-6) as

T T
_ VPV 4VLP Vp

= = 0.79712 .
- daf

2 2
o]
o

The results (i.e. adjusted coordinates and accuracy estimates)
for this example and that of section 6.1 where points 1, 2, 3 and 4 were
considered fixed are significantly different. With weighted points, the
observations are allowed to affect the final coordinates of the weighted
points to a degree dictated by the observation as well as coordinate weight
matrices (P and Px). This gives a more realistic least squares solution

than does the fixed point approach.



8. PREANALYSIS
Preanalysis is the study of the design of a network. The
design is carried out prior to the establishment of the network in the
field, and thus no observatiorns are necessary for a preanalysis. By
optimizing the accuracy and distribution of the observables before
entering the field, the required aécuracy of the network points is
achieved most expediently.

Preanalysis is based on eguation (AII-16), i.e.

Since the variance covariance matrix of the parameters Cx does not
require knowledge of the actual observations (the only place where the
observations are necessary is for computation of W), it can be computed
knowing the approximate coordinates of the unknown points along with some
proposed observations (and their standard deviations) amongst them. If
some parameters are weighted, then equation (7-4) applies, i.e.

C = [aTPA + P 17t
X X

Computing the station and relative . error ellipses from Cx,vthe results
of a network design are readily apparent. The design can be altered by
proposing different observations and standard deviations and/or changing
the position or number of unknown points, and recomputing Cx.

Better use of the already existing design is made when the
sequential design approach [e.g. Nickerson et al., 1978] is used. This

method is characterized by the following equation:

T
= - + + . -
C _ C C . A, ( C Aic Ai) AlC o (8-1)

109
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where c, = covariance matrix of the parameters utilizing all observables,

C = previous covariance matrix which is being altered,

Ai = design matrix for the observables to be added or deleted,

CL = variance covariance matrix of the cbservables being added

or deleted.

The plus and minus signs preceding CL. refer to addition and deletion of
observab}es, respectively. The size ;f inverse to be computed (usually
the most time consuming task) is equal to the number of observables
being added or deleted, not the number of parameters as in the nonsequential
equations. The standard deviations of specific observébles are changed
by subtracting the old observable with its standard deviation, and
adding it back with the new standard deviation. The following examples

illustrate the preanalysis process.

8.1 Traverse Design

Figure 8.1 depicts the initial information (see Table 8.1) for

the traverse design. There are four fixed points and three unknown

UNKNOWN POINTS KNOWN POINTS

Station x(m) y(m) Des.Acc. (m) Station X (m) : y(m)
1 293682 225293 0.05 1102 293054.171 225214.674
2 293976 225607 0.05 1116 293571.011 225598.373
3 294421 225284  0.05 1105 295267.293 225419.706
1106 295004.038 225951.144

Table 8.1 Initial Data for Traverse Design
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ELCIPSE SCALE
0 0.0726 0.145 0.218 0.29
226200
21106
225709
aiiie
a

j
!
| 2495
Q
i
¥
[}
i
»
}
4
i
4 224700
|
L 293508 __ 234000 294500 295020

v \J

Figure 8.1 Initial Data Plot
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OBSERVABLE TYPE STANDARD DEVIATION FROM STATION TO STATION

direction 3"0 1116 1102
direction 370 1116 1
direction 20 1 1116
direction 2U0 1 2
direction 2!0 2 1
direction 270 ) 2 3
direction 0.02 m 1116 1
direction 0.02 m 2 1
direction 0.02 m 2 3

Table 8.2 1Initial Observables
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points. The required accuracy is represented by the design circles of
5 cm. radius around the unknown points.

The proposed initial observabies between these points are
listed in Table 8.2 and plotted in Figure 8.2. The design is first
treated as an open ended traverse similar to the example in section 5.5.
The main difference is that directions are used here instead of angles.
Thus, the A matrix is of éize 9 %x9 (i.e. n =9, u= 9 (6 unknown coor-

dinates, 3 orientation unknowns)), and is given as

- ECLIPSE SCALE i

o 0.0725 €.148 0.218 ©.29
226179
i

a1ice
8110%

H
i
k 224679
H
:
i
i
- 2374R6 . 223986 , 234386 o 29498%
= e S ¥ , = +

Figure 8.2 Initial observables Plot
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[ 0.0 0.0 0.0 0.0 0.0 0.0 ~-1.0 0.0 0.0]
~596.637  -216.850 0.0 0.0 0.0 0.0 -1.0 0.0 0.0
-596.637 -~216.850 0.0 0.0 0.0 0.0 0.0 -1.0 0.0
-350.0322  327.7371 350.0322 -327.7371 0.0 . 0.0 0.0 -1.0 0.0
-350.0322  327.7371 350.0322 -327.7371 0.0 0.0 0.0 0.0 -1.0],

0.0 0.0 220.3494  303.5774 -220.3494 -303.5774 0.0 0.0 -1.0
0.3415916 -0.9398485 0.0 0.0 - 0.0 0.0 0.0 0.0 0.0
-0.683477 -0.729972 0.683477  0.729972 0.0 0.0 0.0 0.0 0.0

| 0.0 0.0  -0.8092862  0.5874145 0.8092862-0.5874145 0.0 0.0 0.0]

This results from a corbination of the direction mathematical model
developed in section 3.2 (for the first six rows of A) and the distance
mathematical model of chapter 4 (last three rows of A above). The

last three columns of A are for the orientation unknowns Z A

1116’ and

ll
Co . 2 '
22' The P matrix is (assuming o, = 1)



(9,9)

Computing (ATPAj and taking

r

8.61272.10

s .

-1.24078.207%  4.55592.10™% =7.60943.10"% 8.72900.107% -1.86016.10"> -1.33244.10"2 -2.66488.107% -2.66453.10"2
3.56538.107% -1.20823.107%  3.72343.107% -1.13656.207%  3.93239.107¢ =4.84281.107 -5.68562.103 -9.60562.10"7
2.52101.107%  5.23131.10"% 2.31851.207¢%  2.4a147.107%  3.76422.207%  6.84210.207% 1.290314.1972
6.52115.10°% 1.25513.107%  7.52963.107% -1.76710.10"% -4.10434.10"2 -4.67448.1072
5.56954.10°%  2.23269.10"% -1.371170.107% -2.760e8.10"2 -3.40471.1072
1.15009.10°3 ~3.70878.10"% -9.85066.10"2 -1.11462.10"%
2.0 9.0 s.0
aymmatcic 2.0 22.0
3.0
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[0.111 0.0 0.0 = = + « + v e e e e e . . .0.0
0.0 0.111 0.0

C . 0.2 .

' i . 0.25 . .

: o o2s . S
: o5

: . 25000 -

. - 2500.0 0.0
00« « v v e oo o ... 0.0 2500.0

its inverse yields

-

~d

The first six rows and columns are the variance covariance matrix for

the coordinates of points 1, 2 and 3.

The last three rows and columns

represent the variance and covariance of the orientation unknowns, and

are of no practical concern.

Since the orientation unknowns are nuisance

parameters, only the first (6 x 6) submatrix of Cx will be considered

as representative of the traverse being designed.

The 99% error ellipses

(8-2)
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assuming 002 known and nonsimultaneous ellipses (¢ factor = 3.035,

see Appendix II) are listed in Table 8.3.

STATION ELLIPSES (99%)

Point Semimajor(m) Semiminor (m) L)
1 0.061 0.021 ~19°58"'26"
2 0.079 0.049 7°19'43"
3 0.103 0.073 2°09'09"

Table 8.3 Confidence Ellipses

and the above table it is seen that all of the station ellipses lie

From Figure 8.3

RELATIVE

ELLIPSES (99%)
Points Semimajor(m) Semiminor(m) €
1-2 0.061 0.033 43°06'57"
2-3 0.061 0.049  -54°01'35"

from Initial Observables

outside the required accuracy circle of 5 cm radius. New confidence ellipses

f 226179
|

225679

| 224579

ELLIPSE SCALE

9.143

0.299 £.443 0.598

ai136

10

Figure 8.3 Plot of 99% Confidence Ellipses from Initial Observables.



are computed using equation (8-1) to update the design.

the update observables which are depicted in Figure 8.4.

OBSERVATION TYPE STANDARD DEVIATION

Direction

Direction

Direction

Direction

Distance

116

FROM STATION

175 3

1'5 3

1vs 1105

175 1105

0.02 m 3
Table 8.4 Update Observables

{1cs

Table 8.4 shows

Referring to

TO STATION
2

1105

1106

Figure 8.4 Plot of Update Observables

equation (8-1), these new observables are added by first computing Ai

and CL.
i

, and in turn CX taking equation (8-2) as C

i

. After

i-1

performing these operations, the new Cx corresponding to the 3 unknown

points is (to 5

5,92006E75
"B.2518E75
4.2258E75
T5.8677E75
X | 2,3325E73

T1.7375ETS

i
significant digits)
T8.251IBETS 4,2258E75  T5.88677E75
2.04483E74  T1,1573574 1.34946E574
T1.1573E74 1.7800E74 4.3074E76

1.3495E74
T3J1692ETS
3.4932E75

7.3305E7S
7 1290E7S

1L.74620E7 4

5 T1.,7375E75
TELLEIRETS B A93ZETS
1.078¢E"4
7 3BOBETS
2,214657 4
104604575

1.4404E

S.TL69ETS
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The 99% error ellipses (again assuming 002 known and nonsimultaneous
ellipses for a c factor of 3.035) computed from the above Cx matrix

are listed in

STATION ELLIPSES (99%) RELATIVE ELLIPSES (99%)

Point Semimajor(m) Sémiminor (m) 8 Points Semimajor(m) Semiminor {m) 8
1 0.047 0.014 -24°18'25" 1-2 0.046 0.018 51°07"'30'
2 0.041 0.040 50°54'24" 2-3 | 0.047 0.019 -59°19'18"
3 0.045 0.022 85°01'08"

Table 8.5 99% Error Ellipses After Update

Table 8.5 and plotted in Figure 8.5. Obviously, all of the error ellipses

i - ECUIPSE SCALE ;

Y

+
g

I 0 0.0585 0.137 1.206 5.274

i

SR L

226173

2:5879

(3
e
(=]
UM

P

2248673

29142% 2323354 294466 234988

Figure 8.5 pPlot of Updated 99% Error Ellipses
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now meet the required accuracy, and the design is finished. A summary

of the pronosed observations is given in Table 8.6.

FROM TO TYPE g
1116 1102 1  3.0000
1116 1 1  3.0000
1116 1 2 .0200 Note: Type 1 = Direction
1105 3 1 1.5000
1105 1106 1  1.5000 Type 2 = Distance
1105 3 2 .0200 :
11106 1  2.0000
1 2 1 2.0000
2 1 1 2.0000
2 3 1 2.0000
2 1 2 .0200
2 3 2 .0200
3 2 1 1.5000
31105 1  1.5000

Table 8.6 Observable Summary

8.2 Property Survey Design

The initial data of this design (see Table 8.7 and Figure 8.6)

is characteristic of a simple lot layout often encountered in practice.

UNKNOWN POINTS KNOWN POINTS

Station x(m) y (m) Des.Acc. Station x (m) y (m)
1 155721.0 119687.0 0.05 1004 155221.688 119515.558
2 156019.0 119595.0 0.05 1005 155493.110 119604.892
3 156027.0 119386.0 0.05
4 156204.0 119596.0 0.05
5 156213.0 119388.0 0.05

Table 8.7 1Initial Data for Property Survey Design

Fixed points 1004 and 1005 represent two second order monuments, point
1 an intermediate point , and points 2, 3, 4 ahd 5 the four lot corners
to be established. Again, the required accuracy circle is of 5 cm.

radius, but this time at a confidence level of 95%.
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Figure 8.6 Initial Data Plot for Property Survey Design

The initial observables considered for the design are
listed in Table 8.8 and plotted in Figure 8.7. These initial accuracies

OBSERVABLE TYPE STANDARD DEVIATION FROM STATION TO STATION

1005 1004
1005 1
1005
2
1005

Direction
Direction
Direction
Direction
Distance
Distance
Direction
Direction
Direction
Distance
Direction
Direction
Direction
Direction
Distance
Distance
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Table 8.8. Initial Observables for Property Survey Design
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could be achieved using 4 sets of direction observables at station

1005 and station 1,

ith a 1"

4 and 5 w

2,

and 2 sets at stations

The distance's accuracy of 0.02 m is

theodolite (see Table 2.4).

easily achieved using either lightwave or microwave EDM with

The A matrix for

1l readings (see Table 2.8).

normal meteorologica

initial C_ is

.

the

(16 x 15) since there are 16 observables

X

<-

.

<
L=
=5 I
= o

-t
- -

Lt et S

Figure 8.7 Plot of Initial Observables for Property Survey Design

(see Table 8.8) and 15 unknowns (10 coordinates and 5 orientation

ion

in sect

developed

formed using the equations

is

The A matrix

unknowns) .

d to

1s use

After computing A and P, equation (AII-16)

3.2 and chapter 4.

as
X

compute C

8)

(cou

5)

tcoL

%)

(cor

3)

teot

2)

{ceo

1)

{ccL

b-¢3
D-
5~

Cow 0N ....3?2&9
WINAIOT AR L

s es e e
0O00OCOITOOO

OOMS Mg

OVPONMOTXT O
OV NETSDL RN
NN O N NN
VNN~ M~ ~0
LR R A A L N )
0000000000

i
i
MEEMmEmengm

AFNOI NGO
O ON-AI~ON 20y
ELoOMOMNSN

ot O Nt - A~ et
sesss s

00COONCO00

33343434345

NNNOClmiegy N
Crmifs td CUs O
IR

[ol=1olalelSTe [T w)

(VP O RS At
C00DOVVOND
ISR

NAIAE Rt ey
RS C e D
$ M e

N O et et [ i}~
I

[oléYelalslololeto ]

33333....,33?3 -
QO LT

SALLLLANL A

LI LY PRI A oNTYe)
QP LT QML N X
MO0V UM N O
NG QT VD0
NNt Nt N ot
OV o 7 et (i () ek 0, 0t
EEEEEEREE

OCOOOﬂUOCOC

oo
NN OO O
! | -

10)

(Cot

9

(cot

8)

(cor

7)

{CoL

MTEnFnEmnem
mq)ooaooom
[olalalaleRalaTaialn]
Aeted SOP LD
et O N NS R T
nohNonnrenm
AN RN O
Rt I lalala nl-]

T P SO VIANIR
PRIy

CO.COQCCOOQ
i

LAl AR Ha bRl ok o

| |

!
N W OV T O
) -4



121

. . . 2
Figure 8.8 depicts the 95% (assuming 9 known, nonsimultaneous ellipses,

c factor = 2.45) error ellipses resulting from this initial design.

ELLTFSE SCALE
2.105 €.211 0.316 0.422

Owr

115900

! 119300

119:09

1‘540? 1556&9 1SSR00 156092 156209 1564¢
g n - + .

R4 14

Ll

Figure 8.8 1Initial Design Results

Point 1 is the only point which meets the required accuracy. From the
shape of the relative error ellipses (i.e. long and skinny along the
line of sight), it is obvious that the distances are less accurate

relative to the direction observables. Thus, the design is altered by
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changing the standard deviation of most of the distance observables

from 0.02 m to 0.01 m.

This would correspond to using a more accurate

instrument for observing distances (e.g. lightwave EDM with standard

meteorological readings (cf. table 2.8)).

by first subtracting (use - sign in eq.

These changes are effected

(8-1)) the existing distances

with 0.02m for a standard deviation, and then adding them back again

(+ sign in eq.

(8-1)) with a standard deviation of 0.0l m.

After

performing this operation for each distance observable except that from

point 5 to point 3, the Cx matrix is

x 1 Y X 2 v x 3 Y
(CnL 1) {CoL e} (cuL 3) (coL a) (coL 5) [JEVIS o)
1 Ve8BI77274353D3-04 062837214740 -04 0e8335744H0-04 023770588004 0351306500=-04 0e230470T74D~04
2 0e233710730-2% Cedl253523%0-04 0e2c31383030=-24 Ue340245510-04 0¢812€6€97450-0% Ve 343077620-04
3 0.8335743463-03 0.32313203D-04 21318370-03 JeG8372335D0-05 0.185422670—0J VeY¥9¥233379D-35
4 De2377I35%8I3-04 Ce34024951)2-04 O-Vvi7ZJJbJ—05 Qe389%2%950-04 0e82015€200-0% VedJ 132362004
5 _. 0 21 395500=03 Qes12€%7450-04 061354220 70~03_ _0e42215230-04 04224401500~ Jd3 Ue232932650-04
o 0e? 32423743 =0% Jela30T7020=34 De 9t 35079095 04501323620=-047  C+38263260u=04 vVecliahi5370-93
7 0.5JJ74'153 04 Je32al03510-us 018105921023 Va6 823130705 Celb6515310-V3 Ve de554520-04
a3 0e20+163333~-06 Jed135248590-0a ~0e133217050~J9% 0.117553250-03 0,08L12540U~0 dellulasviv~-03
9 Qed31153729)=-J4a Dettl1134042)-04 Oeli*S534350~U . 0e%1G057823-048 0217642000~-03 Ued0d252130~-04
10 Ve2I7755710=08 04423301220 -04 01355341050 ~vad  Uedlb337%00=94 0+66106040L=04 Ve220746730~-03
b3 4 Y X 1 Y
{cuL 7) (couL 8) (coL 9) !CDL 10)

13 De3u372335)~04 0+4209143350-04 JeH851618280~-04 0.20775381D~048
2 0322715510 -0e__0.313524550-04 0e8113404c0-04___0.4232%1220=-94 _

3 Velisli554210-03 Je1333172330-04 Qe lon3a3a59%0-v0 Velu55413%0-06

L3 Je3031231300-05 Qe117H532G0~93 UVedl120D7320-04 Ue11894758D-03

S Oel35315312-03 D:636125400-04 0217€42006U—=03 0.061060640D~J4 -

6 0el122554520=-94 Je¢12214303)-23 Vel 429521 00~-04 Ved2074673D0-23

7 Vel262743930~-03 Uell3»9137220-04 Qe2¢15077L0—-03 0¢1203164670-04

a3 0115313720 -048 Vel 23425290-933 Ce745252170=-04 O0«17€13518D-03

9 De261502750-03 0e745252170-04 0e311967120-03 Ve7284965130-04

10 0e12031%670=04___0+176133182-93 067289991 30=08__ 0.27876436D-03

As can be seen in Figure 8.9, all of the station ellipses now fall
A list

within the required accuracy circle, and the design is finished.
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of the final 95% station and relative error ellipse (using the same

assumptions as for the initial design) is made in Table 8.9.

123306
thvru\r

ELLIRPSE SCALE

¢

3.0652 0.13

0.196 0.261
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155409 155600 155800 156090 156290 1554¢

Figure 8.9 Final Plot of Property Survey Design

STATION ELLIPSES (95%)

Point Semimajor(m) Semiminor (m)

1 0.025 0.008
2 0.033 0.023
3 0.040 0.034
4 0.040 0.032
5 0.047 0.037

6

70°11'09"
87°54'11"
78°50'42"
88°14"' 20"
78°24'09"

RELATIVE ELLIPSES (95%)

Points Semimajor(m) Semiminor (m)

1-2 0.025 0.015
2-3 0.028 0.014
2-4 0.022 0.013
3-4 0.025 0.017
4-5 0.025 0.017

Table 8.9 Final 95% Error Ellipses for Property Survey Design

6

-72°50"36"
- 2015' 34"
-89°04"'23"
-12°02'02"
- 2°28'02"
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This chapter has shown how the preanalysis or design of a
horizontal network can be done. This technique is used wherever a
priori knowledge of the expected accuracies of the points in a network
is desired. The next chapter treats the equally important matter of
testing the results of an adjustment of a network to see if they are

reasonable. This process is known as postanalysis.



9. POSTANALYSIS

Postanalysis of a horizontal network tests whether the results

of an adjustment are reliable, and is based on multivariate analysis. One

important test which is performed is the chi-square test of the variance

factor. This test takes the form

atg cz 5 df‘oo2
')'(3_’a< Oo <———a" ’ (9-1)
at, 1-3 de,~2-
where df = degrees of freedom of the adjustment,
002 = a posteriori variance factor computed by equation (AII-18),
o = significance level (e.g. 0.05),
002 = a priori variance factor (usually assumed to be 1),
X2 = chi-square distribution value from Table AIII-1l (replace

u by df).
Equation (9-1) tests the null hypothesis HO

Ho : 002 = 002 hypothesized ,

i.e. is the actual value of 002 equal to what it was assumed to be
(e.g. 1)? If the test fails, then this hypothesis is rejected at the
(1-2.) % confidence level. Two possible reasons for its failure are

1) Incorrect a priori covariance matrix CL of the observations

(i.e. wrong weights for the observations),

2) . Observations are not normally distributed.
The first reason given is usually the first to be investigated. If it is
found that the weights are chosen correctly and the test sfill fails, then

the second reason is examined. The observations are examined by testing

the residuals for outliers similar to the data screening process explained
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in section 2.3. Each residual vy from the adjustment is tested as

follows:
n O, <Vv;<n o oo ’ (9-2)
- i 2 i
2
o
where n, = values of the normal distribution for probability-;
(see Table 2.14),
o = significance level (e.g. 0.05),
ov = known a priori standard deviation of the observation whose
i

residual is being tested,
v, = residual being tested (computed by eqg. (AII-17)).
Assuming that the a priori standard deviation O is known, then if this
i

test fails the observation does not come from a normal distribution.
This usually implies that some systematic bias has affected the
observation, and it should be reobserved.

Another test which is useful is one for comparing two
determinations of the same set of parameters to see if they are significantly
different. This test assumes that the difference vector (X2 - Xl)

between the two determinations is a random variable which is normally

distributed. The test is

T -1 2

- - < -
(X2 Xl) sz (X2 Xl) Xu,l-a , (9-3)

where X2 = vector of parameters being tested,
Xl = originally determined parameters,

Cx = variance covariance matrix of the parameters being compared,

2
xi 1-0 = chi-square distribution with u degrees of freedom at probability
,1-

level 1-a (see Table AIII.1) ,
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u = number of parameters being compared (i.e. dimension of vector

(x2 - xl)) ’

e
i

significance level (e.g. 0.05).

If the test fails, then the two parameter determinations are considered
different at the (l-a)% confidence level. If it passes, then the two
sets of parameters cannot be considered significantly different (again
at (1-a)% confidence level). One precautionary note when using this
test is that the two sets of parameters should be determined using
approximately the same level of accuracy; i.e. Cxl and C X should not
be greatly different. If a network is being designed or adjusted
specifically for the purpose of comparing to a previous adjustmént of
the same network, then the simultaneous error ellipses (Appendix III,
egs. (ATIII-12) and (AIII-13)) should be computed since all of the points
are required to be inside the (1 - a)% confidence ellipse éimultaneously.

The following examples illustrate some of thé postanalysis
concepts described above.

Using the a posteriori variance factor from section 6.1 and

equation (9-1), the chi-square test of the variance factor (for o = 0.05)

yields
3 .1.9214 _, 3 -1.9214
2 2
X3,0.975 X3,0.025
5.76 . , 5:76_
9.35 0.216

0.62 < 1 < 26.69

4
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and the test passes. The hypothesis that the a priori variance factor
is 1 cannot be rejected at the 95% confidence level.

The chi-square test on the variance factor should always
be performed after an adjustment as an overall check on the validity of
the results. If the test fails, then there is a good chance that
something is wrong in the adjustment.

A8 an example of testing of the residual for outliers, the
first residual of equation (6-2) is tested. From equation (9-2), the
test is

" " ”
n0.025 270 < 2?07 < no.975 270 ,

where o is assumed to be 0.05, and the a priori standard deviation for
this direction (from 1 to 1006) is 2Y0. From Table 2.14, the value

-1.96, and n = 1.96. The test becomes

© 0.975

£ 05 025 =
-3"92 < 2"07 < 392 ,

which is ﬁrue, and the test passes. This tegt should be performed oh
all residuals of an adjustment even though the chi-sguare test on the
variance factor passes. It is easily verified that all of the residuals
for the examples in sections 6.1 and 6.2 pass the outlier test. It is
said, then, that we are 95% confident that the residuals come from a

normal distribution.
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APPENDIX I

Taylor's Series

The Taylor series is used to linearize non-linear mathematical
models. Given a single function f(x) of a single variable x (unidimensional
case), and a known value of this function f(a) at x = a, then the function

f(x) is given by Taylor's series as

(x-a)"
n!

2 n_.
(x-a) oo+ o £
21 n

9x

2°%f
§x°

- f -
f(x) = f(a) + axla (x=-a) + + eeen.

a

(AI-1)

For values of x close to a, the linear approximation is used. This is

f(x) = f£(a) + Ef-

| (xa) . (A1-2)

From Figure AI.1l, the geometric meaning of this linear approximation

is clear. The function f(x) is approximated by a straight tangent to f(x) at a

£y
true curve f(x)
Clhmmmmm /// » slope of curve at
bF-———m— a given by 3f
9x
fa) fpmmmm e ,

X

]

Figure AI.l. Geometric Interpretation of Linear

Taylor's Series

131
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with slope 9f . When (x - a) is given (or evaluated), the value

9x
a

of the function f(x) is approximated by b, and the exact value is c¢. Thus,
the error arising from using the linear approximation is c-b.

If £ is a function of more than one variable, say f(xl, x2) and

1 1 2

then for values of (al, az) close to (xl, x2) the linear approximation is

its value is known at x, = a., and x_ = a2,

of af

By, %)) = £la;, a)) + R (x)-a)) + EX N (x,73,) .«
1'%2 1722
(AI-3)
Setting
"1 170 .| af _ o e
S T S T ©o T ek x|
*2 2732 2
then 3F
f(x) = £(x°) + P Ax . (AT-4)
X |y

If there is more than one function of X (e.qg. fl, f2) then the

following set of equations exists:

Bfl
f.(X) = £f. (X°) + —— AX
1 1 X x° '
3f2
f (X)) = £, (X°) + — AX .
2 2 90X X°
Setting _ -
Bfl afl
fl axl 8x2
oF
Fe ©Bx | '
f2 sz af2
Laxl 3x2_
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then

F
£(X) = F(x°) + 3% AX . (AI-5)
X %°

Equation (AI-5) is the matrix form of the Taylor's series linear approximation.
Equations (AI-2) and (AI-4) can be thought of as special cases of this matrix

form.



APPENDIX II

Least Squares Method

The least squares method is usually used to give a unique solution
for an overdetermined case (i.e. number of observations n greater than
number of parameters u). Only the inverse (explicit) form of mathematical

model (cf. eqg. (1-2)), which is sometimes called the parametric case of

adjustment, is considered here. In matrix form, this model is expressed
as |
L =F(X) ,
or F(X) - L=20, (AII-1)
where L = vector of observations,

F(X) = non-linear functions of the
parameters X.
The linearized form of this inverse (explicit) model is (see also Appendix I

and chapters 3 and 4)

A X +W - v =o0, (AII-2)
(n,u) (u;l1) (n,1) (n,1)

where V = vector of residuals or corrections to the observations,

F . . . : .
A= %; = design matrix or Jacobian of transformation from
XO
observation space to parameter space,
X = solution vector of corrections, which, when added to the

approximate values X'gives the parameters X (see eg. ATI-12),
P

W=F(X°)-L = misclosure vector.

134
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The least squares estimate for X is obtained subject to the condition

T
V PV = minimum, (AII-3)
2 - . .
where P = Oo CLl is called the weight matrix of the observables,
(n,n)

2 .. .
o, = a priori variance factor,

CL = variance covariance matrix of the observables .

(n,n)

A

The variation function ¢ relating the unknown quantities X and

V to the known quantities A, W, and P is

, T T
& =VPV+ 2K (AX+W-V), (AII-4)

where K = unknown vector of Lagrange correlates.

To find the minimum of the variation function, the derivatives with respect

to X and V are found and set to zero. Thus

136 o Tp _ T o 11—
2 3v VP XK =0 , (AII-5)

%%: KTA=0 . (AII-6)
9x

The transpose of the above two equations and the linearized mathematical

model (eq. - (AII-2)) make up the following least squares normal equations

system:

Writing these equations in hypermatrix form yields the most expanded matrix

form of the normal equations system as
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P -1 0 v 0
-1 0 A Kl + W =0. (AII-7)
0 AT 0 % 0

The solution vector X is obtained by using a matrix elimination

technique [e.g Thompson, 1969]. Given the matrix equation system

A B X U
______ - + - = 0 ’
C D Y v

X is eliminated by forming a modified coefficient matrix and known vector
as follows:

bD-calely+(v-caltul=o0. (AII-9)

Applying this method to equation (AIII-7) to first eliminate V gives

-1 -1

0 A -1 P~ -1 o1) [x W -1] p T [0]) =0,
T - o h
A 0 0 X 0 0
oxr
p ! A K W
- R + = 0 . (AII-10)
A 0 X 0

Using the same technique to eliminate K from equation (AII-10) yields

[ATPA] X + ATPW =0 ’

or, solving for X

X = - a%pal Y aTew . (AII-11)

A

This is the least squares estimate for the solution vector X . The parameters

X are now computed as

X=X"+X . (AII-12)
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~ ~

Usually, the solution vector X is iterated (i.e. now X° « X, and a new X.
is computed) until it is very small (e.g. < 1 mm). This is necessary
because the use of a linear approximation is not exact (see Appendix I).
The final expression for X is

1

X =x° - [aPA] T ATPW . (AII-13)

To find the variance covariance matrix Cx of the parameters,
the covariance law [e.g. Thomson et al., 1978] is used to propogate errors
through equation (AII-13). Since the only independent random variable in

equation (AII-13) is L (because W = F (X°) - L), then

X X, T
= (&= <2 . AII-14
Cx (BL) CL (BL) ( 14)
Realizing that
X _ aTpa)t aTp , (AII-15)
oL
since
W _AFE(x) - 1) _ o
L oL !
then
c = (aTpa1" ! aTrc pa (aTpa;”?t .
X L
) 2 -1
Noting that P = %, CL , then
c =02 aTra;”t aTra [(aTPa]”t ,
X (o]
or c =@l ctart (AII-16)
x L 4

Thus, Cx is simply the normal equations inverse of the solution vector (see
eq. (AII-11)).

Once the final solution vector is found, then the residual vector
V is computed as

V=AX +W . (AII-17)"
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From the residuals V, the a posteriori variance factor‘oo2 is evaluated as
g = (AII-18)

where df = degrees of freedom = n - u .
This a posteriori variance factor is useful when performing a post analysis

of adjustment results (see chapter 9).



APPENDIX III

Error Ellipses

Error ellipses (see Figure AIII-1), are characterized by the
length of their semimajor and semiminor axes a and b, respectively and
the azimuth 6 of the semimajor axis a. These ellipses are representative
of the error of a point in a network (sometimes called station ellipses)
or of the error in the difference of coordinates between two points (relative
error ellipses).. These error ellipses are computed knowing the variance
covariance matrix Cx of the parameters, and the so-called c¢ factor. The
c factor is used to increase the confidence level of the ellipse from
standard(~39%) to a desired (e.g. 95%) confidence level in the following
way :

a=-ca_ ,
s

(AII-1)

b= cbs ’

where a_ and bs are the semimajor and semiminor axes of the standard error
ellipse.

The basis of error ellipse computation lies in multivariate
statistics [e.g. Wells and Krakiwsky, 1971; Hogg and Craig, 1970]. The
quadratic form of the parameters for the a priori variance factor 002

known is distributed as

’ (AII-2)

where X = difference between the least squares estimate of the parameters
and the true value of the parameters,
2u 1 = random variable with a chi-square distribution and degrees
P70

of freedom u (see Table AIII-1),

139
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(Grid North)

Figure AIII.1

XKY

Error Ellipse
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1-a

desired confidence level (e.g. 0.95) ,

]

u dimensionality of the problem.
For the case of horizontal geodetic networks, u = 2, and equation (AIII-2)

is written as

(AIII-3)

[x ] = 32
y 2 X2,1-a *

The C element in equations (AIII-2) and (AIII-3) is the submatrix for a
x
single point of the full Cx matrix for the whole network. An eigenvalue

problem [e.g. Kreyszig,1972; Mikhail, 1976] is performed an equation (AIII-3)

to transform it to an equation without cross product terms as follows;

. Uiax 0 -1 x'
2
[x' Yj =X :
: 2,1-a '’
0 0_2. Y' 14
min
where x',y' = transformed coordinates with respect to the rotated

coordinate axes resulting from the eigenvalue problem,

2 .

qmax = largest eigenvalue of Cx (see eq. (AIII-5)),
2 .

Umin = smallest eigenvalue of Cx (see eq. (AIII-6)).

Specfically,the eigenvalues are

2 1 2 2 2 22 2, 1/2 _
Orax - 2 [(cx + qy ) + {(ox o, Y+ 40xy} ] (AIII-5)
2 _1 2 2, _ 2 22 2 .1/2. _
Oin = 3 (o "+ oy ) {(ox o, )T+ 4°xy} 1. (ATII-6)

Writing out equation (AIII-4) explicitly results in
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2 2
(x") ") -
02 3 + 02 > 1, (AIII-7)
max X2,l—a min X2,1—a
. . e . . . 2 2 1/2
which is the familiar equation of an ellipse with axes (o X )
max “2,1-a

2 1/2

and (02 . X ) . The standard error ellipse is found when
min *2,1-a

xg 1-0 is equal to 1, which corresponds to (l-a) = 0.3935, or a 39.35%
’

confidence level. Thus

a = (02 /2
S max
(AIIE~8)

b_ = (o2 . y1/2
S min

are the axes of the standzrd error ellipse.
It is obvious from equation. (AIII-7) that the required ¢ factor

to compute a and b is

2 1/2

¢ = (X 1-a '

(AIII-9)

2 .. . . .
for the case of oo assumed known. If the a priori variance factor is

. . 2
assumed unknown, however, then the a posterior variance factor Go (see

Appendix II, eg. (AII-18)) is used to estimate the variance covariance

matrix as Cx, where the

A

stands for an estimated quantity. In this case,

the quadratic form of the parameters is distributed as

. R S (AIII-10)
’ ’

where F = random variable with a Fischer distribution (see table AIII.2)

and degrees of freedom u and df,

af

degrees of freedom of the adjustment.

. 2 .
Using the samc development as for oo known, the c¢ factor when using

the estimated variance factor co to estimate Cx is
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_ 1/2
© = (2, 4o )T (AIII-11)

Equations (AIII-9) and (AIII-11) above give the € factor for
computation of a single error ellipse without regard to other stations in
the network. 1If, however, it is required that N station ellipses all have

the desirzd confidence level (l-a) simultaneously, then the ¢ factor is

computed as

.2 172 -
c= (X 2,1- cyN) ' (AIII-12)

or 1/2

2F, af,1- o/N

where o has been replaced by ®&N. This is a direct result of Bonferroni's
inequality [Vanicek and Krakiwsky, in prep.] which states that the given
confidence level is at least 1-a for the simultaneous case.

The orientation of the error ellipse is given by the normalized
eigenvector corresponding to the eigenvalue Ozmax of the eigénvalue problem

performed on equation (AIII-3). The azimuth of the semimajor axis is thus

2 2.
(Gmax T )
0 = 51gn(0xy) * arccos [ 5 > 2.2.1/2 1. (AIII-14)
(o + (o -0_")")
Xy max x

where czmax is given by equation (AIII-5).
The computation of relative error ellipses is facilitated by

applying the covariance law to the following expressions:

AX,, =x, - X, ’
1] J 1
(AIII-15)
AY, . =Y., =Y,
ij 3 i
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This gives

9bx.. 9Ax . 9bx.. x|
P ij

9X, oy . OX. oy .
where B = . J J

aAyij aéyii BAyij aAyij
L axi ayi axj oy

or carrying out the partial derivatives and writing Cx in full
’

- — : e
Chpay = |71 0 1 0 o2 o, o, o, 107-1 o
0-101 52 % x. gy 0 -1
¥s 5 I 0
cxz x.¥ 1 0
J 373
symmetric >
oy 0 1l
L i) L N
[ 2 2 : T
o, ~ 2, tog. o -o, . —0 +0
i “im 3 iY5 yi‘j' xlyj xjyj
Cax,ay =
0X Y - GY x, ox Yy * 0x Y 02 20 + 02
iti i” i j -
i 3 3 373 Yy Yi¥y .Yy
(AIII-16)

" Thus, to compute the standard relative error ellipse between points i
and j, the equations for station ellipses (i.e. egs. (AIXII-5), (AIII-6),

(RIII-14)) are employed, but making the substitutions
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o =0 - 20 + 0 ’
X x X.X, b4
i i3] 3j
o = ox -0 <. ox + ox ’ : (AIII-17)
Xy 1y1 Yi 3 iy3 JYJ
02=o 2. 20 +02,
Y Yl fyiyj YJ

The Surveys and Mapping Branch of the Dept. of Energy, Mines
and Resources uses relative error ellipses to classify different order
surveys [Energy, Mines and Resources, 1973]. A survey station of a network
is classified according to whether the semimajor axis of the 95% confidence
ellipse with respect to other stations of the network is less than or equal
to

r=kd, (AIII-18)

where r = radius of an error circle in cm (see Figure AIII.2),

d

distance in km to any station,

k

factor assigned according to the order of survey (see Table

AIII.3).

>95% confidence ellipse

g

X

Figure AIII.2. Error Circle and Confidence Ellipse
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Thus, if a < r for all the relative error ellipses (at 95% confidence
level) between station i and the rest of the network stations, then station

i is classified in that specific order of survey. For example, a

ordexr k " r in ppm
st . 2 . 20
2nd 5 50
3rd 12 120
4th 30 300

Table AIIX.3. Horizontal Survey Classification.

second order survey station must have the senimajor axis a’of the 95%

relative error ellipse less than 25 cm for stations 5 km apart.





