AUTOMATED TIDAL REDUCTION OF SOUNDINGS

E. G. OKENWA

November 1978

PREFACE

In order to make our extensive series of technical reports more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text.

AUTOMATED TIDAL REDUCTION OF SOUNDINGS

E.G. Okenwa

Department of Surveying Engineering
University of New Brunswick
P.O. Box 4400

Fredericton, N.B.
Canada
E3B 5A3

November 1978
Latest Reprinting January 1993

Abstract

In Hydrographic Surveying, soundings are reduced to a chart datum established at a reference gauge station from a long period of tidal observations. Unfortunately, due to the variations in tidal characteristics from place to place, soundings can only be reduced to the chart datum within the vicinity of the gauge station. As we move away from the gauge station, it becomes necessary to obtain new information on the tidal characteristics and apply necessary corrections to the chart datum to obtain an appropriate sounding datum for reducing the soundings.

To reduce soundings means to subtract the heights of tide, at the sounding locations and at the times of soundings, from the depths sounded to obtain the depths referenced to the chosen datum. Manual reduction of soundings is a tedious aspect of the field hydrographor's list of chores. There have been some attempts to automate the tidal reductions using digitized cotidal charts.

The objective of this work has been to develop alternative approaches to automated tidal reductions, namely, using analytical cotidal models. The range ratio and time lag fields have been approximated by surfaces described by two dimensional algebraic polynomials $(\operatorname{Pn}(\phi, \lambda))$. The observed time series at a reference station has been -nroximated by one dimensional trigonometric polynomial

With the coefficjents of these Polynomials stored in the computer, the range ratio and the time lag at any point (ϕ_{i}, λ_{i}) in the area can readily be predicted and the height of tide at the point and at time t can be predicted from the predicted height of tide at the reference station.

Test computations, using data from the 'Canadian Tides and Current Tables, 1978' for the Bay of Fundy have been done. It has been shown that the water level (h) at a location (ϕ_{i}, λ_{i}) can be predicted with a standard deviation $\left({ }^{1} \mathrm{~h}_{\mathrm{i}}\right)$ of 0.5 m or better.

TABLE OF CONTENTS
Page
ABSTRACT ii
LIST OF FIGURES vi
LIST OF TABLES viii
ACKNOWLEDGEMENTS ix
I. INTRODUCTION 1
1.0 Chart Datum and Other Water Levels 1
1.1 Sounding Datum 6
1.2 Reduction of Soundings 13
II. ANALYSIS AND PREDICTION OF TIDES 16
2.0 Introduction 16
2.1 Theory of Tide Generation 16
2.1.1 The Movement of the Moon (Real) and the Sun (Apparent) 19
2.1.2 The Tide Generating Forces and Potentials 21
2.1.3 Development According to Darwin (1886) 30
2.1.4 Development According to Doodson (1921) 33
2.2 Least Squares Harmonic Analysis and Prediction of Tides 37
2.3 Tidal Analysis and Prediction by Response Method 45
2.3.1 General 45
2.3.2 Brief Outline of the Theory of the Response Method 47
III. COTIDAL CHARTS AND THEIR USES 49
3.0 Introduction 49
3.1 Types of Cotidal Charts 49
3.1.1 Range/Time Cotidal Charts 49
3.1.2 Amplitude/Phase Cotidal Charts 51
3.2 Numerical Schemes 54
3.3 Uses of Cotidal Charts 60
Page
IV. THE PROPOSED ANALYTICAL SCHEME 65
4.0 Introduction 65
4.1 Models 67
4.2 Least Squares Solution of the Models 70
4.3 Data Requirements and
Reduction Aligorithms 76
4.3.1 Amplitude/Phase Cotidal Models 76
4.3.2 Range/Time Cotidal Models 78
V. TEST COMPUTAIONS AND RESULTS 82
5.0 Data 82
5.1 Computations and Results 87
5.1.1 Determination of the Coefficients of the Approximating Polynomials 87
5.1.2 Least Squares Polynomial Approximation of Observed Time Series at the Reference Station 100
5.l.3 Tidal Reductions 101
VI. CONCLUSIONS AND RECOMMENDATIONS 107
REFERENCES 109
APPENDI CES 114
I. Outline of the Least Squares Approximation Theory 115
II. Brief Description of the Computer Programs Used 122
III. Canadian Definitions of Chart and Sounding Datums $i 56$
Page
Figure 1-1 Relationship Between Various Water Levels 4
Figure l-2 Bay of Fundy - Variation \& Tidal Ranges and Sounding Datum Along the Northern Coast 8
Figure l-3 Bay of Fundy - Variation of Tidal Ranges and Sounding Datum Along the Southern Coast 9
Figure $1-4$ Variation of Sounding Datum in an Estuary or a River 11
Figure 1-5 Tidal Reduction Curve 14
Figure 2-1 Line Spectrum of Function $h(t)$ 18
Figure 2-2 Relationship Between the Orbital Motions of the Moon and the Sun 20
Figure 2-3 Effects of the Gravitiational Attraction of a Heavenly Body M on the Earth 23
Figure 2-4 Distribution of Tidal Forces 26
Figure 2-5 Orbital Parameters 31
Figure 2-6 Time Relationships 30
Figure 3-1 Range/Time Cotidal Chart 50
Figure 3-2 Amplitude/Phase Cotidal Chart 53
Figure 3-3 Digital Cotidal Chart - Hudson Bay 1976 63
Figure 4-1 The Proposed Analytical Scheme - Flow Chart 66
Figure 5-1 Bay of Fundy - Tide Gauge Locations 85
Figure 5-2 Bay of Fundy - Grid Numbering 95
Figure 5-3 Bay of Fundy - Range/Time Cotidal CurvesUsing the Proposed Analytical CotidalModels96
Figure 5-4 The Average Progression of the Semi-diurnal Tides in the Bay of Fundy 99

Figure II-3	Program for the Tidal Reduction - Flow Chart

[^0]
LIST OF TABLES

Page
Table 2-1 Principal Tidal Constituents as Derived by Doodson 35
Table 5-1 Bay of Fundy - Tidal Information on Secondary Ports 83
Table 5-2 Tide Observations at the Port of Saint John 86
Table 5-3 A Posterori Variance Factors for Various Degrees of the Polynomials 89
Table 5-4 Fourier Coefficients After Discarding ''nose of Them Greater Than Their Standard Deviations93
Table 5-5 Original Coefficients of the Polynomials and Their Associated Standard 94 Deviations
Table 5-6 Predicted Range Ratios and Time Lags at the Grid Intersections97
Table 5-7 Coefficients of the Polynomial for the Time Series at the Reference Station 102
Table 5-8 Tidal Reductions 105
Table 5-9 Difference Between Predicted and Observed Values 106

ACKNOWLEDGEMENTS

I wish to express my deep gratitude to my supervisor Dr. D.B. Thomson who suggested this topic and gave me valuable guiciance throughout the research.

My gratitude also goes to Dr. P. Vanicek for his useful suggestions and advice, Mr. D.L. De Wolfe of the Bedford Institute of Oceanography for the useful discussions I had with him, and my fellow graduate students for useful exchange of ideas and for their helpful attitudes.

I would also like to express my gratitude to the University of Nigeria, Nsukka for offering me the opportunity to undertake this research.

My thanks goes to Mrs. Rao for her excellent typing.
Finally, I wish to dedicate this work to my wife, Chinyere, in appreciation of her support and encouragement and for taking care of our baby.

I. INTRODUCTION

1.0 Chart Datum and Other Water Levels

The hydrographic surveyor must refer all his depth and height measurements to a reference datum. This reference datum, generally called chart datum, is a low water datum which by international agreement is so low that water level will seldom fall below it. The chart datum is, for purposes of integration and consistency, normally tied to the Geodetic datum which is usually defined by the mean sea level. For example, over a period of some years, tide gauges in Canada have been tied to the Geodetic Survey of Canada Datum (G.S.C.D.) [Atlantic Tidal Power Engineering and Management Committee Report, 1969]. This geodetic datum is based on the value of the mean sea level prior to 1910 as determined from a period of observations at tide gauge stations at Halifax and Yarmouth, Nova Scotia and Father Point, Quebec on the East Coast, and at Prince Rupert, Vancouver and Victoria on the Pacific. Hean Sea Level (M.S.L.), as its name implies, is the mean level taken up by the sea. It is determined at a tide gauge station from a long period of tide observations The geoid, which is supposed to be the datum for the heights, is defined as
"that equipotential surface which on the average coincides with the mean sea level' [Thomson, 1974]. It therefore leaves the problem of mean sea level determination to be solved in order to define a height datum.

It is not easy to determine mean sea level since the actual level of the sea is continuously changing. Wemelsfelder [1970] , in his paper titled, 'Mean Sea Level as a Fact and as an Illusion', outlined two concepts of mean sea level: the Physical concept and the Emperical concept. The Physical concept according to him 'is that of a common parlance', it is the concept used in the verbal description, "the height of the mountains above sea level". This concept has the intent to overlook every motion of the sea, it intends to say, no waves, no tides, no storm surges, no wind influences, no seasonal changes, no density anomalies, no temperature anomalies. The mean sea level is rather conceptualized as, 'a physical object existing primarily in space, the way in which the ocean spans the earth.'

The emperical concept tries to quantify the mean sea level as the mean observed water levels at a tide gauge station over a period of time. This mean level even on the same sea varies from one tide gauge location to another and varies also with different time epochs. Wemelsfelder, [1970], enumerated 33 factors influencing the variations in the mean sea level and grouped them under global, regional, lical
and instrumental influences. Bomrord, [1971], observed that apart from tidal forces whose mean effect over a long period should be zero, other forces cause the mean sea level to depart appreciably from an exact level (equipotential) surface. Thomson [1974], further noted that, 'the problem of determining the true physical surface of the oceans is analogous to that of using Stoke's formula for geoid determination - we would require an infinite number of tide gauges, atmospheric sensors, sea temperature and density determinations'. It appears then that mean sea level, thus the geoid, cannot be easily determined.

The various other water levels* that can be used as a datum, or that will be relevant to the subject matter of this work, will now be briefly defined and each is illustrated in Figure 1-1.

The average of recorded values of all the high and low waters over a period is called the Mean Tide Level (M.T.L.). It is obtained more easily than mean sea level and as such is sometimes used in calculations instead of the M.S.L.

The average throughout the year of heights of high waters during the spring tides is termed Mean High Water Springs (M.H.W.S.). The average throughout the year of the heights of low water during the spring tides is called Mean Low Water Springs (M.L.W.S.).

Mean High Water Neaps (M.I.W.i.) is the average
*see Appendix $I l l$ for further details regarding definitions used in Canada.

Figure 1-1

Retationship Between Various Water Levels
throughout the year of heights of high waters during the neap tides and the average throughout the year of heights of low water during the neap tides is called Mean Low Water Neaps (M.L.W.N.).

The highest tide which can be predicted to occur under average meterological conditions and under any combination of astronomical conditions is termed Highest Astronomical Tide (H.A.T.), while the lowest predictable tide is called the Lowest Astronomical Tide (L.A.T.).

Chart datum, as previously stated, is a low water level. It is the datum to which all soundings on published charts are reduced and to which tidal predictions and tide readings are referenced. Ideally, Lowest Astronomical Tide level should be taken as chart datum. But, since we cannot accurately define it, we choose chart datum arbitrarily as close to L.A.T. as possible such that, (i) tides will seldom fall below it, (ii) it is not so low as to give unduely shallow depths.

1.1 Sounding Datum

When a chart datum is chosen, it can only be used within the vicinity of the gauge location [Atlantic Tidal Power Engineering and Management Committee, 1969]. Depending on the variation of tidal characteristics, it is not advisable to reduce depth measurements to this chart datum if the reference tide gauge is more than 8 km away [Admiralty Manual of Hydrographic Surveying, 1969]. This leads to the necessity of establishing a local sounding datum. In the Admiralty Manual of Hydrographic Surveying, 1969 , the following rules are given as a guide to the choice of sounding datum:
(i) if possible, a sounding datum should agree with the chart datum.
(ii) changes in a sounding datum within the area of interest must be made whenever the nature and range of tides alter appreciably. It is difficult to lay down precise figures, but a difference in range of about one metre between two places would normally indicate the necessity for a change of datum somewhere between them.
(iii) the time difference between tides experienced at two places will not have any effect on the difference of sounding d:tum between two points. It may however have a considerable effect on the
value of the reduction required to reduce soundings to datum. Therefore, it is important, even if the sounding datum does not alter, to obtain time differences between tidal stations so that time differences may be interpolated and applied to observed heights of tide used for the reduction of soundings.
(iv) If there is any doubt in the surveyor's mind concerning the behaviour of the tide, he should set up another tide gauge to find out what is happening.

Figures 1-2 and 1-3 show how the tidal ranges change along the southern and northern coasts of the Bay of Fundy. At Yarmouth, the range at the spring tides is about 4.9 metres (16 feet). The range increases to the east and at Burnt Coat Head, a distance of about 290 km away, the range reaches about 16.7 metres (55 feet). Along the northern coast, the range is about 8.5 mteres (28 feet) at Eastport, Me. and increases going eastward, and at Joggins Wharf, the range is about 12.2 metres (40 feet).

If a datum was established at Yarmouth or Eastport, Me. for the reduction of soundings, as the soundings progressed eastwards, the sounding datum should be altered. The ideal thing is to alter a sounding datum in a series of steps. Figures 1-2 and 1-3 depict the alteration of a sounding datum in steps of 0.6 m (2 feet). The correction to be

Figure 1-2
Bay of Fundy; Variation of Tidal Ranges and Sounding Datum Along the Northern Coast

Flgure 1-3

Bay of Fundy; Variation of Tidal Ranges and Sounding Datum Along
the Southern Coast
applied to a chart datum (established datum at the reference station) to obtain the sounding datum is given by [Admiralty Manual of Hydrographic Surveying, 1969],

$$
\begin{equation*}
\mathrm{d}=\mathrm{h}-\mathrm{H}-\stackrel{r}{\mathrm{r}}, \tag{1.1}
\end{equation*}
$$

where h is the height of the M.S.L. above the zero of the new reference gauge, H is the height of the M.S.L. above the established chart datum, r is the range of tide at the new reference station and R is the range of tide at the established reference station. It means that when $|\mathrm{d}|>0.6 \mathrm{~m}$ (2 feet) the sounding datum is changed by 0.6 m (2 feet).

Figure l-4 illustrates how a sounding datum could change in an estuary or a river. The configuration of the land and the slope of the sea bed will influence the tidal characteristics and hence the tidal ranges. The range of the tide increases at first proceeding up a river and then starts to decrease until it reaches zero at a point inland where the river ceases to be tidal.

It is not possible to establish one sounding datum tor a hydrographic survey which covers a long stretch of coastline and where tidal conditions are unknown. Tidal information in the area must be built up and a sounding datum transferred gradually along the coast as the survey progresses. A hydrographic surveyor on a sounding mission could be met with any of the following situations regarding sounding datum:

Figure 1-4

Variation of Sounding Datum in an Estuary or a River
(i) a chart datum has already been established within the sounding area,
(ii) a chart datum has been established near the sounding area,
(iii) a chart datum has not previously been established anywhere nearby.

The actions corresponding to the above situations are:
(i) the surveyor should recover the established chart datum and use it,
(ii) the surveyor should transfer the datum to the survey area; in other words, he should obtain a sounding datum for the area to be surveyed referenced to the established chart datum,
(iii) the surveyor should aim at establishing a chart datum.

1.2 Reduction of Soundings

Figure l-1 illustrates the realtionship between a sounding at a time t and the chart datum. The height of tide at time t must be subtracted from the depth sounded to yield a reduced sounding. Manual reductions of soundings in tidal waters is a tedious aspect of the field hydrographer's tasks. It requires that a tide gauge be set up in the survey area and the rise and fall of tides observed while the sounding is performed. From the observed heights, it is possible to plot a curve showing the variations in the water levels and to reduce the soundings to a suitable reference plane. Figure 1-5 illustrates a typical reduction curve [Admiralty Manual of Hydrographic Surveying, 1969]. It has been drawn from the height observations at half hourly intervals with additional readings on either side of the high water. The reductions are scaled in steps of one metre and noted in the form of a table. For example, the reduction is 5 m from 1247 hrs to $1342 \mathrm{hrs}, 6 \mathrm{~m}$ from 1343 to 1446 hrs.

For inshore surveys, it is usually convenient to set up a tide gauge and observe the tides while sounding is proceeding. If we are sounding offshore, the problem becomes complicated. It may be possible to use drying banks, islets or temporary structures such as drilling rigs as sites for tide gauges. Another possibility in the near future will be the use of automatic sea bed tide gauges [DeWolfe,1977].

Figure 1-5

Tidal Reduction Curve

In the absence of the above alternatives, tidal observations could be made from an anchored survey vessel using an echo sounder.

If the cotidal charts for the area of interest are available or could be constructed, the necessary tidal information for the reduction of the sounding can be recovered from them. The objective of this report is to offer an automated analytical alternative to the manual task of tidal reduction of soundings through the use of tidal observations or cotidal chart information or a combination of the two.

Before describing the proposed scheme, an understanding of tidal theories and phenomena, analysis and prediction of tides, and the types and construction of cotidal charts are pertinent. Chapter II covers the theory of tide generation, harmonic analysis and prediction of tides. Chapter III is devoted to the types, construction and uses of cotidal charts.

II ANALYSIS AND PREDICTION OF TIDES

2.0 Introduction

When the water levels $h(t)$ have been observed at times t relative to a chosen datum at a tide gauge station, we have obtained a record distributed in time space (time series) and defined at the discrete time intervals. There is a trigonometric polynomial, $\mathrm{Pn}(\mathrm{t})$, of the form

$$
\begin{equation*}
\tilde{\mathbf{h}}(t)=\sum_{i=0}^{n}\left(a_{i} \cos \omega_{i} t+b_{i} \sin u_{i} t\right), \tag{2.1}
\end{equation*}
$$

which can predict this time series at any time t in the interval. The analysis of this time series means the determination of the real numbers a_{i}, b_{i}, and ω_{i}. If we seek a least squares solution to this problem, we would have a system of normal equations that would be nonlinear. The presence of the non-linear trigonometric terms as unknowns leads to a serious problem which may or may not have a solution [Vanic̄ek and Wells, 1972]. If, however, the frequencies ω_{i} are known, the coefficients a_{i} and b_{i} can be determined using least squares harmonic analysis.

The first and basic problem of harmonic tidal analysis, therefore, is the determination of the constituent frequencies ω_{i}. This is the first step in the complete decomposition of the observed time series into individual trigonometric terms. The first practical attempt at the determination of the constituent frequencies was made by

Darwin in 1886 using the orbital theories of the moon and the sun. In 1921, Doodson improved on the method by making a more complete expansion of the tidal potential using the modern luni-solar orbital theories.

The careful analysis of the tides at Honolulu and Newlyn by Munk and Cartwrigit [1966], indicated that the spectrum of a tidal record is a continuous function of frequency w over the low frequency band, but that it approximates closely a line spectrum over the other frequencies - 'the constituent lines emerge from the noise background as trees from grass' [Godin, 1972]. As long as we do not work with the low frequency band, (as is generally the case in Hydrographic Surveying), it is reasonable to assume that to a good order of approximation the spectrum of a tidal record is a line spectrum. ive can therefore treat the observed heights as a problem of spectral analysis of a time series. Letting

$$
\mathrm{H}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}}^{2}+\mathrm{b}_{\mathrm{k}}^{2}
$$

and

$$
\alpha_{k}=\operatorname{Arctan}\left(b_{k} / a_{k}\right)
$$

equation 2.1 can be rewritten as

$$
\begin{equation*}
\tilde{h}(t)=\sum_{k=0}^{\infty} H_{k} \cos \left(\omega_{k} t+\alpha_{k}\right) \tag{2.2}
\end{equation*}
$$

where H_{k} is the amplitude of the constituent frequency ω_{k}, α_{k} is the phase of the constituent at time $t=0$. If the function is defined on the finite set $M=\{0, \pm 1, \pm 2, \pm 3$, $\ldots \pm \ell\}$, the frequency ω_{k} is \S iven by

$$
{ }^{\left({ }^{(1)}\right.} k=\pi / \ell k .
$$

H_{k} is obviously a non negative real number that deseribes the magnitude of the constituent frequency ω_{k}. By plotting the amplitude against integer frequencies, a visual interpretation of the contributions of the individual constituent frequencies (Figure 2-1) can be made. This represents the discrete transformation of the function from time space into frequency space [Vanicek and Wells, 1972].

Figure 2-1
Line Spectrum of Function $h(t)$

Munk and Cartwright, [1966] introduced an entirely different method of tidal analvsis which they called the response method. In this method, the potential is generated as a time series $V(t)$ and an atempt is made at the
prediction of neight of the tide at a time t as the weighted sum of the past and present values of the potential

$$
\begin{equation*}
h(t)=\sum_{S} W(s) V\left(t-\tau_{S}\right) . \tag{2.4}
\end{equation*}
$$

The weights $W(s)$ are determined such that the prediction error $h(t)-\tilde{h}(t)$ is a minimum in the least square sense.

In this chapter, the theory of tidal generation and the traditional harmonic analysis and prediction of tides are described. The thinking behind the response analysis and prediction is briefly outlined.

2.1 Theory of Tide Generation

2.1.1 The Movements of the Moon (Real) and the Sun (Apparent)

The moon and the sun are the principal tide generating agents. Other heavenly bodies are either too distant or have too little mass to exert any significant force on the earth's surface. Figure 2-2 shows the relationship between the orbit of the moon and the apparent orbit of the sun. The sun moves in an apparent path around the earth on a plane called the ecliptic once every 365.25 solar days. For our present purposes, this movement can be regarded as uniform and inclined at an angle of $23^{\circ} 27^{\prime}$ (obliquity of the ecliptic) to the celestial equator. The point where the ecliptic crosses the celestial equator from sollth to north (B in Figure 2-2) is called the Vernal equinox or the first point of Aries T.

The moon moves eastward around the earth in an orbit

Figure 2-2

The Relationswip Between the Orbital Motions of the Meon and the Sun
inclined at about $5^{\circ} 9^{\prime}$ [Admiralty Manual of Hydrographic Surveying, 1969] to the ecliptic and crosses the ecliptic at the nodes. It takes approximately 27.2122 mean solar days for the moon to travel from the ascending node F to the ascending node K (Figure 2-2). As indicated in Figure 2-2, the lunar orbit does not cross the ecliptic at the same place consecutively. The nodes continually move westward along the ecliptic and this nodal movement or regression, as it is often called, has a period of 18.61 tropical years (one tropical year $=365.2422$ mean solar days). Due to the nodal regression, the obliquity of the lunar orbit with respect to the celestial equator varies progressively between a maximum and a minimum, namely,

$$
\begin{aligned}
& \text { Max. }=23^{\circ} 27^{\prime}+5^{\circ} 9^{\prime}=28^{\circ} 36^{\prime}, \\
& \text { Min. }=23^{\circ} 27^{\prime}-5^{\circ} 9^{\prime}=18^{\circ} 18^{\prime} .
\end{aligned}
$$

2.1.2 The Tide Generating Forces and Potentials

To derive the mathematical expression for the tide generating forces of the moon and ti:e sun, the principal factors to be taken into consideration are:
(i) the revolution of the moon around the earth in an orbit inclined to the equator,
(ii) the motion of the earth around the sun along the ecliptic which is also inclined to the equatorial plane,
(iii) the rotation of the earth around its axis.

The tide generating forces at the earth's surface result from a combination of two basic forces; (i) the force of gravitation exerted by the moon (and sun) upon the earth, and (ii) centrifugal forces produced by the revolutions of the earth and the moon (and the earth and the sun) around their common centre of mass known as the barycentre.

The magnitude of centrifugal force produced by the revolution of the earth-moon system around barycentre (which lies approximately 1709 km beneath the earth's surface on the side towards the moon and along the line connecting centres of mass of the earth and of the moon) is the same at any point on or beneath the earth's surface [National Ocean Survey, 1977]. Its magnitude is [Godin, 1972]

$$
\mathrm{F}_{\mathrm{c}}=\mathrm{KM} / \rho_{0}^{2}
$$

where ρ_{0} is the distance between the centres of mass of the earth and of the moon (Figure 2-3), K is the universal gravitational constant, and M is the mass of the moon.* The gravitational force exerted by the moon is different at different positions on or beneath the earth's surface because the force of attraction

[^1]

Flgure 2-3

Effecte of the Cravitutional Attracton

Of a therovily budy in on the Eapth
between two bodies is a function of the distance between them. This gravitational force at 0 (Figure 2-3) is

$$
\begin{equation*}
\mathrm{F}_{\mathrm{g}_{0}}=\mathrm{KM} / \rho_{0}^{2} \tag{2.6}
\end{equation*}
$$

and at X is

$$
\begin{equation*}
\mathrm{F}_{\mathrm{g}}=\mathrm{KM} / \rho_{\mathrm{x}}^{2} \tag{2,7}
\end{equation*}
$$

where ρ_{x} is the distance between the centre of mass of the moon and point X on the earth's surface. The tide generating force due to the moon M at point X (Figure 2-3) on the earth's surface is defined as the difference between the gravitational force at X and that at the resultant centre of mass of the earth-moon system where the gravitational and centrifugal forces are in equilibrium [Dronkers, 1972].

In terms of potentials, the attracting potential at X and at time t is

$$
\begin{equation*}
f_{g}=K M / \rho_{x}-K M / \rho_{0} \tag{2.8}
\end{equation*}
$$

and the potential of the constant vector field of the centrifugal force is

$$
\begin{equation*}
f_{c}=K M \text { a } \cos \Phi_{\mathrm{mx}} / \rho_{0}^{2} \tag{2.9}
\end{equation*}
$$

where $\Phi_{m x}$ is the zenith distance as shown in Figure 2-3, and a is the mean radius of the earth. From equations 2.8 and 2.9 and making use of the definition of the tide generating force given above, the tide generating potential $\left(V_{m}\right)$ due to the moon at X and at lime t is [Dronkers, 1972].

$$
\begin{equation*}
\mathrm{v}_{\mathrm{m}}=\operatorname{KM}\left[\frac{1}{\rho_{\mathrm{x}}}-\frac{1}{\rho_{0}}-\mathrm{a} \cos \Phi_{\mathrm{mx}} / \rho_{0}^{2}\right] \tag{2.10}
\end{equation*}
$$

Figure 2-4 shows the distribution on the earth of tide forces of lunar origin. At point A nearest to the moon, the force of attraction is greater than the centrifugal force. The resultant is the tidal force (F_{t}) towards the moon. At C, the centre of the earth, both centrifugal and the gravitational forces are equal. The tidal force at the centre consequently is zero. At B farthest from the moon where the centrifugal force is greater than the attractive force, the tidal force is directed away from the moon.

We can express ρ_{x} (equations 2.10) in terms of ρ_{0} and Φ_{mx} using the cosine formula of plane trigonometry given by

$$
\begin{equation*}
\rho_{\mathrm{x}}^{2}=\rho_{0}^{2}+\mathrm{a}^{2}-2 \mathrm{a} \rho_{0} \cos \Phi_{\mathrm{mx}} \tag{2.11}
\end{equation*}
$$

Equation 2.11 can be rewritten as

$$
\begin{equation*}
\frac{1}{\rho_{x}}=\frac{1}{\rho}\left[1-2 \frac{\mathrm{a}}{\rho_{0}} \cos \Phi_{\mathrm{mx}}-\left(\frac{\mathrm{a}}{\rho_{0}}\right)^{2}\right] \tag{3.12}
\end{equation*}
$$

When $\frac{l}{\rho_{x}}$ is expanded in powers of the parallax a / ρ_{0} by means of a Taylor series, expansion in zonal harmonics is obtained and equation 2.10 is given as [Godin, 1972]

$$
\begin{align*}
V_{m}= & K M / \rho_{0}\left[P_{0}\left(\Phi_{\mathrm{mx}}\right)+\left(\mathrm{a} / \rho_{0}\right) \mathrm{P}_{1}\left(\Phi_{\mathrm{mx}}\right)+(\mathrm{a} / \rho)^{2}\right. \\
& \left.\mathrm{P}_{2}\left(\Phi_{\mathrm{mx}}\right)+\left(\mathrm{a} / \rho_{0}\right)^{3} \mathrm{P}_{3}\left(\Phi_{\mathrm{mx}}\right)+\ldots \ldots\right] \tag{2.12a}
\end{align*}
$$

The first term of the expansion

Figure 2-4

Distribution of Tidal Force

$$
\begin{equation*}
\mathrm{v}_{0}=\mathrm{KM} / \rho_{0}, \tag{2.13a}
\end{equation*}
$$

can be overlooked because it is a constant and hence has no physical significance.

The second term

$$
\begin{equation*}
\mathrm{v}_{1}=\mathrm{KM} / \rho_{\mathrm{O}}^{2} \mathrm{a} \cos \Phi_{\mathrm{mx}} \tag{2.13b}
\end{equation*}
$$

is the lunar gravitational force at the centre which is equivalent to the centrifugal force.

The third term is

$$
\begin{equation*}
\mathrm{V}_{2}=\mathrm{KM} \mathrm{a}^{2} / \rho_{0} \frac{1}{2}\left(3 \cos ^{2} \Phi_{\mathrm{mx}}-1\right) . \tag{2.13c}
\end{equation*}
$$

This is the significant term as far as tidal potential is concerned. The fourth term is

$$
\begin{equation*}
\mathrm{V}_{3}=\mathrm{KM} \mathrm{a} \frac{3}{\rho_{0}^{4}} \frac{1}{2}\left(5 \cos ^{3} \Phi_{\mathrm{mx}}-3 \cos \Phi_{\mathrm{mx}}\right) . \tag{2.13d}
\end{equation*}
$$

For practical purposes, the fourth term is of little significance. It must be considered when we are required to determine the potential with a nigher degree of accuracy. Henceforth in this report, V_{2} is the tidal potential. It is decomposed into constituent frequencies and this, as has been mentioned, is the first step in the harmonic analysis of tidal records.

We can rewrite equation 2.13 as

$$
\begin{equation*}
\mathrm{V}_{\mathrm{m}}=\frac{3}{2} \mathrm{KM} \mathrm{a}^{2} / \rho^{3}\left(\cos ^{2} \Phi_{\mathrm{mx}}-\frac{1}{3}\right) \tag{2.14}
\end{equation*}
$$

The principal variable in the tide generating potential defined by equation 2.14 is the zenith distance $\Phi_{m x}$. This quantity changes due to two effects [Dronkers, 1964], namely,
(i) the daily rotation of the earth about its axis (24 hours) combined with the motion of the moon in its orbit (50 minutes per day) giving a total periodicity of 24 hours, 50 minutes,
(ii) effects due to moon's motion in its orbit during a lunar month which results in a mean monthly periodicity of its declination δ of 27.3 mean solar days.

The other variable in the potential that must be accounted for is ρ_{0}, the mean distance of the moon to the earth which varies due to the irregular elliptical nature of lunar orbit.

The expression of the potential as a function of time dependant variables and as a function of position on the earth surface is achieved by transforming our Horizon co-ordinate system to the Hour Angle system using [Smart, 1971]

$$
\begin{equation*}
\cos \Phi_{\mathrm{mx}}=\sin \phi \sin \delta+\cos \delta \cos \phi \cos \mathrm{t}, \tag{2.15}
\end{equation*}
$$

where ϕ is the geodetic latitude, δ is the declination and t is the hour angle. We can evaluate $\cos ^{2} \Phi_{\mathrm{mx}}$ in terms of ϕ, δ and t which after some manipulation yields

$$
\begin{align*}
V_{m}= & G(a, \rho)\left[\cos ^{2} \phi \cos ^{2} \delta \cos 2 t+\sin 2 \phi \sin 2 \delta\right. \\
& \left.\cos t+3\left(\sin ^{2} \phi-\frac{1}{3}\right)\left(\sin ^{2} \delta-\frac{1}{3}\right)\right], \tag{2.16}
\end{align*}
$$

in which $G(a, \rho)$ is defined as the Doodson constant, namely $G(a, \rho)=\frac{3}{4} \mathrm{KM} \mathrm{a} \mathrm{a}^{2} \mathrm{c}^{3}(\mathrm{c}$ is the mean semi-axis of the orbital ellipse of the moon).

Equation 2.16 contains the variables ρ, δ, t which are dependant on time. The first term of the equation containing cos $2 t$ includes the semi-diurnal constituents with periods approximating half a lunar day. The second term containing cos t determines the diurnal constituents with periods approximating a lunar day. The third term is independent of t and hence contains the long period constituents. It is only subject to variations in declination δ and distance ρ of the celestial body. We have now been able to decompose the tidal potential into 3 frequency bands

$$
\begin{aligned}
& 0 \text { - for long period constituents, } \\
& 1 \text { - for diurnal cons ituents, } \\
& 2 \text { - for semi-diurnal constituents. }
\end{aligned}
$$

This is only a step towards the complete decomposition of the tidal potential into the numerous periodic constituents.

For the complete decomposition, the work of Darwin and Doodson are important. Darwin's d.composition provides readily the most important constituents and their relative importance while Doodson's method is more suitable for rigorous developments and provides a greater number of
constituents.

2.1.3 Development According to Darwin

This development is based on deriving relations for $\sin \delta$ and $\cos \delta \cos t$, which occur in equation 2.16 in terms of
t - the local solar time,
s - the longitude of the moon referred to the equator,
h - the mean ecliptic longitude of the sun.
Darwin used the old lunar theory and all quantities were given with respect to the moon's orbit projected onto the celestial equator. He considered

> P - the ecliptic longitude of the moon's perigee,
> n - the ecliptic longitude of the moon's nodes,
> Ps - the ecliptic longitude of the sun's perigee,
as constant over one year.
Referring to Figure $2-5$, the relations are derived from right spherical triangles MAM' and $M X^{\prime} M^{\prime}$ and the oblique triangle MAX'. A is a point of intersection of the lunar orbit and the equator, X^{\prime} and M^{\prime} are the projections of X and M onto the equator [Dronkers, 1964 Page 59]. From triangle MAM' and $M^{\prime} X^{\prime}{ }^{\prime}$, the sine rule of spherical trigonometry yields

Figure 2-5

Orbital Purampeturs

$$
\begin{align*}
& \sin \delta=\sin I \sin (s-v+k) \tag{2.17}\\
& \cos \delta \cos t-\cos x \tag{2.18}
\end{align*}
$$

where I is the angle between the orbit of the moon and the celestial equator, s is the longitude of the mean moon on the equator. v is the distance between the referred equinox γ^{\prime} and the intersection of the lunar orbit with the equator at A, X is tine arc $M X$, and arc $A M=s-v+k . k$ is the difference between the true longitude of the moon (s') measured from $\gamma^{\prime}\left(\gamma^{\prime} M\right)$ and the longitude of the mean moon in the equator s. From oblique triangle MAX' and using the cosine formula we have that

```
cos}x=\operatorname{cos}(150tx+h-v)\operatorname{cos}(s-y+k
    + sin(150tx + in - v) sin(s -v+k) cos I
```

in whicii n is the mean ecliptic longitude of the sun and v is the right ascension of $A, 15^{\circ}$ of arc is equal to one hour in time. The terms $\sin ^{2} \delta, \sin 2 \delta \cos t$ and $\cos ^{2} \delta \cos 2 t$ which are consained in the potential formula (equation 2.16), can be determined from equations $2.17,2.18$ and 2.19 in terms of the orbital elements $t x, s, i n$ and v. When these are substituted back into equation 2.16 , we obtain a series of harmonic terms of which the arguments depend on the rotation of the earth ($15^{\circ} \mathrm{tx}$), the mean motion of the moon in its orbit (s) and the mear motion of the earth in orbit (in) namely.

$$
\begin{align*}
V_{m}= & G(a, \rho)\left\{\operatorname { c o s } ^ { 2 } \phi \left[\cos ^{4} \frac{I}{2} \cos \left(30^{\circ} t x-2 s-2 h-2 v-2 v-2 k\right)\right.\right. \\
& +\frac{1}{2} \sin ^{2} I \cos \left(30^{\circ} t x+2 h-2 v\right) \\
& \left.+\sin ^{4} \frac{I}{2} \cos \left(30^{\circ} t x+2 s+2 h-2 v-2 v+2 k\right)\right] \\
& +\sin 2 \phi\left[\sin I \cos ^{2} \frac{I}{2} \cos (15 t x-2 s+h+2 v-v\right. \\
& \left.-2 k-90^{\circ}\right)+\frac{1}{2} \sin 2 I \cos \left(15 t x+h-v+90^{\circ}\right) \\
& \left.+\sin I \sin ^{2} \frac{I}{2} \cos \left(15^{\circ} t x+2 s+h-2 v-v-2 k+90^{\circ}\right)\right] \\
& \left.+\left(1-3 \sin ^{2} \phi\right)\left[\frac{2}{3}-\sin ^{2} I+\sin ^{2} I \cos (s-v+k)\right]\right\} \tag{2.20}
\end{align*}
$$

In the development for solar constituents, the terms v and v will vanish and angle I will change to ε.

2.1.4 Development According to Doodson

Doodson's method principally involves the use of a rigorous expansion of the ecliptic longitude and latitude of the moon. For the development of $\sin \delta$ and $\cos \delta \cos t$, he introduced the ecliptic longitude λ_{m} and latitude β_{m} of the moon and the local siderreal time θ of the point X (Figure 2-3) on the earth's surface. The equations are

$$
\begin{equation*}
\sin \delta=\sin \varepsilon \sin \lambda_{m} \cos \beta_{m}+\cos t \sin \beta_{m} \tag{2.21}
\end{equation*}
$$

$\cos \delta \cos t=\cos \beta_{m} \cos \lambda_{m} \cos \theta+\left(\cos \varepsilon \cos \beta_{m} \sin \lambda_{m}-\right.$

$$
\begin{equation*}
\left.-\sin \varepsilon \sin \beta_{m}\right) \sin \theta \tag{2.22}
\end{equation*}
$$

where ε is the obliquity of the ecliptic.
Finally the potential V_{m} is developed as the sum of ueriodic functions of six variables, namely, tx, s, h, P, n and $P s$.

Doodson obtained 400 periodic constituents from his development of which the principal ones are listed in Table 2-1 [Vanic̄ek, 1973].

The constituent frequencies can be described in mathematical terms using Doodson numbers and the astronomical variables, namely

$$
\begin{aligned}
\omega_{k}=\bar{k} \bar{f}= & k_{1} f_{1}+k_{2} f_{2}+k_{3} f_{3}+k_{4} f_{4}+k_{5} f_{5}+k_{6} f_{6} \\
& \left(k_{X}=0 \pm 1 \pm 2\right)
\end{aligned}
$$

\bar{f} is a six dimensional vector whose components are the basic frequencies of the motions of the earth, the moon and the sun, namely

$$
\begin{aligned}
& f_{1}^{-1} \text { is the period of the earth's rotation } \tau x \text { (} 1 \text { day } \text {), } \\
& f_{2}^{-1} \text { is the period of moon's orbital motion } s(1 \text { month }), \\
& f_{;}^{-1} \text { is tho period of earth's orbital motion } \dot{h} \text { (} 1 \text { year), } \\
& f_{4}^{-1} \text { is the period of lunar periqee } \dot{\mathrm{p}} \text { (} 8.85 \text { years), } \\
& f_{5}^{-1} \text { is the period of regression of lunar nodes } \dot{\text { i }} \text { (} 18.61 \text { years), } \\
& \mathrm{f}_{6}^{-1} \text { is the period of solar perigee } \dot{\mathrm{P}} \text { s (} 21000 \text { years). } \\
& f_{G} \text { is usually omitted because it is insiginificant. } k_{X}=0 \text {, } \\
& \text { 1, } 2 \text { refers to the tidal species, (for long period. } 1 \text { for } \\
& \text { diurnal and } 2 \text { for semi-diurnal. }\left(k_{1}, k_{2}\right) \text { is called the group } \\
& \text { number, }\left(k_{1}, k_{2}, k_{3}\right) \text { is called the onstituent number. } \\
& \text { With the constituent frequencies determined, whici } \\
& \text { are the same anywhere on the earth's surface, the first step } \\
& \text { in the harmonic analysis is now conyleted. In the next }
\end{aligned}
$$

Symbol	Velocity per hour	Amplitude 1.0^{5}	Origin (L, lunar; S, solar
		Long period components	
Mo	$0^{\circ}, 000000$	+ 50458	L constant flattening
S_{0}	$0^{\circ}, 000000$	+ 23411	S constant flattening
S_{a}	$0^{\circ}, 041067$	+ 1176	S elliptic wave
$\mathrm{S}_{\text {sa }}$	$0^{\circ}, 082137$	+ 7287	S declinational wave
M_{m}	$0^{\circ}, 544375$	+ 8254	L elliptic wave
M_{f}	$1^{\circ}, 098033$	+ 15642	I declinational wave
	Diurnal components		
Q_{1}	$13^{\circ}, 398661$	+ 7216	L elliptic wave of O_{1}
O_{1}	$13^{\circ}, 943036$	+ 37689	L principal lunar wave
M_{1}	14*, 496694	- 2964	L elliptic wave of ${ }^{\mathrm{m}_{\mathrm{K}}}{ }_{1}$
π_{1}	$14^{\circ}, 917865$	+ 1029	S elliptic wave of P_{1}
P_{1}	$14^{\circ}, 958931$	+ 17554	S solar principal wave
${ }^{3} 1$	$15^{\circ}, 000002$	- 423	S elliptic wave of ${ }^{5} \mathrm{~K}_{1}$
m_{K}	$15^{\circ}, 041069$	- 36233	L declinational wave
${ }^{5} \mathrm{~K}_{1}$	$15^{\circ}, 041069$	- 16817	S declinational wave
ψ_{1}	$15^{\circ}, 082135$	- 423	S elliptic wave of ${ }^{5} \mathrm{~K}_{1}$
ϕ_{1}	$15^{\circ}, 123206$	- 756	S declinational wave
J_{1}	$15^{\circ}, 585443$	- 2964	L elliptic wave of ${ }^{\mathrm{m}} \mathrm{K}_{1}$
OO_{1}	$16^{\circ}, 139102$	- 1623	L declinational wave
		Semi-diurnal com	nents
$2 \mathrm{~N}_{2}$	$27^{\circ}, 895355$	+ 2301	L elliptic wave of M_{2}

Table 2-1 Principal Tidal Constituents As Derived by Doodson.

Table 2-1 -continueã.

Symbol	Velocity per hour	Amp: : itude 10^{5}	origin (L, lunar; S, solar)
${ }^{2}$	270,968208	+ 2777	L variation wave
N_{2}	$28^{\circ}, 439730$	+ 17387	L major elliptic wave of M_{2}
v_{2}	280, 512583	+ 3303	L evection wave
M_{2}	280,984104	+90812	L principal wave
λ_{2}	$29^{\circ}, 455625$	- 670	L evection wave
L_{2}	290,528479	- 2567	L minor elliptic wave of M_{2}
T_{2}	290,958933	+ 2479	S major elliptic wave of S_{2}
S_{2}	$30^{\circ}, 000000$	+ 42286	S principal wave
R_{2}	$30^{\circ}, 041067$	- 354	S minor elliptic wave of s_{2}
$\mathrm{m}_{\mathrm{K}_{2}}$	$30^{\circ}, 082137$	+ 7858	L declinational wave
${ }^{5} \mathrm{~K}_{2}$	$30^{\circ}, 082137$	+ 3648	S declinational wave
	Ter-diurnal component		
M_{3}	$43^{\circ}, 476156$	- 1188	L principal wave

section, the least squares harmonic analysis of observed tidal records, to determine the tidal constants H_{k} and g_{k}, where H_{k} is the amplitude of the constituent k and g_{k} the phase lag of the constituent k at the observed station, is described.

2.2 Least Squares Harmonic Analysis and Prediction of Tides

The height of tide $h(t)$ at any place and at any time t can be expressed as the sum of harmonic terms [Dronkers, 1972]

$$
\begin{equation*}
h(t)=s_{0}+\sum_{k=1}^{\infty} H_{k} \cos \left(\omega_{k} t+\alpha_{k}\right) \tag{2.24}
\end{equation*}
$$

where s_{0} is the height of mean water level above the datum in use, ω_{k} is the constituent frequency, H_{k} is the amplitude of the constituent k and α_{k} is the initial phase of the constituent. The number of constituents included will depend on the accuracy required for prediction. For ordinary hydrographic works, the constituents $M_{2}, S_{2}, N_{2}, O_{1}, K_{1}, P_{1}$ are sufficient to yield an accuracy of 0.2 m in a prediction. α_{k} depends on the varying mean longitudes of the moon's perigee and sun's perigee with periods of approximately 8.61 and 21000 years respectively and the ecliptic longitude of the moon's ascending node with a period of 18.61 tropical years. To take these effects into account, f_{5} and f_{6} constituents are eliminated and a node factor f_{k} and a correction for equilibrium argument U_{k} are introduced.

Equation 2.24 is rewritten as

$$
\begin{equation*}
h(t)=s_{0}+\sum_{k=1}^{N} f_{k} H_{k} \cos \left(\omega_{k} t+\left(v_{k}+u_{k}\right)-X_{k}\right) \tag{2.25}
\end{equation*}
$$

in which $\left(V_{k}+U_{k}\right)$ is the value of the equilibrium argument of the constituent k when $t=0$, generally called the astronomical argument, X_{k} is the phase lag of the tidal constituent behind the phase of the corresponding equilibrium constituent at Greenwich, N is the number of constituents in use.

All tide observations are made on local standard time, often referred to as zone time and denoted as ZT'. Equation 2.25 therefore has to be modified so that allowance is made both for the zone time and the local longitude since the meridian of the observing station and the meridian defining zone time are usually not coincident (Figure 2-6).

If ($V_{k}-U_{k}$) is the phase of the equilibrium constituent k at the Greenwich, $\mathrm{P}(=0,1,2)$ is the tide species number, 0 for long period, 1 for diurnal and 2 for semi-diurnal and λ_{x} is the geodetic longitude of the point, say X_{2} (Figure 2-6) west of the Greenwich, then $\left(V_{k}+U_{k}\right)-P \lambda_{x}$ is the phase expressed in Greenwich mean time of the equilibrium constituent k of the tide species P at the point X_{2} west of Greenwich. This is now transformed into the zone time of the place. If the correction for zone time is ΔT (where ΔT is negative west of Greenwich and positive east of Greenwich) and the frequency of the constituent is ω_{k}, we must subtract $\omega_{k} \cdot \Delta T$ from the phase of the equilibrium tide. Thus with respect to the point X_{2} west of Greenwich, $V_{k}+U_{k}-P \lambda+$ $\omega k . \Delta T$ is the phase of the equilibrium tide expressed in the local zone time.

If g_{k} is the phase lag X_{k} corrected for longitude and

Figure 2-6
Time Relationships
zone time, then we have that

$$
\begin{align*}
\mathrm{v}_{\mathrm{k}}+\mathrm{U}_{\mathrm{k}}-\mathrm{g}_{\mathrm{k}} & =\mathrm{V}_{\mathrm{k}}+\mathrm{U}_{\mathrm{k}}-\mathrm{P} \lambda-\omega_{\mathrm{k}} \cdot \Delta \mathrm{~T}-\mathrm{X}_{\mathrm{k}}! \\
\mathrm{g}_{\mathrm{k}} & =\mathrm{X}_{\mathrm{k}}+\mathrm{P}_{\lambda}+\omega_{\mathrm{k}} \cdot \Delta \mathrm{~T} . \tag{2.26}
\end{align*}
$$

The determination of H_{k} in equation 2.25 and g_{k} in equation 2.26 are the objectives in the harmonic analysis of tides. They are determined from a series of observed tides at a tide gauge station and are called the harmonic constants for that station. The estimation of these constants for a station is improved when more observations are available.

From equation 2.25, using trigonometric relations for compound angles

$$
\begin{align*}
& \left.f_{k} H_{k} \cos \left[\omega_{k} \cdot t+\left(V_{k}+U_{k}\right)-X_{k}\right)\right] \equiv f_{k} H_{k} \cos \left(\dot{(}_{k}+U_{k}\right) \\
& \\
& \left.-X_{k}\right) \cos \left(\omega_{k} \cdot t\right)+\left(f_{k} H_{k} \sin \left(\left(v_{k}+U_{k}\right)-X_{k}\right)\right. \tag{2.27}\\
& \\
& \\
& \sin \left(\omega_{k} \cdot t\right) .
\end{align*}
$$

If we let

$$
\begin{align*}
& f_{k} H_{k} \cos \left(\left(V_{k}+U_{k}\right)-x_{k}\right)=A_{k}, \tag{2.28}\\
& f_{k} H_{k} \sin \left(\left(V_{k}+U_{k}\right)-X_{k}\right)=B_{k}, \tag{2.29}
\end{align*}
$$

equation 2.25 is rewritten as

$$
\begin{equation*}
h(t)=S_{0}+\sum_{k=1}^{N} A_{k} \cos \left(\omega_{k} \cdot t\right)+\sum_{k=1}^{N} B_{k} \sin \left(\omega_{k} \cdot t\right) \tag{2.30}
\end{equation*}
$$

Equation 2.30 is a trigonometric polynomial that can predict the observed time series $h(t)$ at time t in the given interval of time. Least squares approximatior methodology [Vanicek and Wells, 1972; Moritz, 1977; Appendix I] can be used to determine the coefficients S_{0}, A_{k}, B_{k}
$(k=1,2,3, \ldots N)$. The number of coefficients to be solved is

$$
\begin{equation*}
\mathrm{U}=2 \mathrm{~N}+1, \tag{2.31}
\end{equation*}
$$

where N is the number of constituent frequencies used.
We can choose our base functions as

$$
\begin{equation*}
\psi \equiv\left\{1, \cos \omega_{1} t, \sin \omega_{1} t \cdots \cdots \cos \omega_{N} t, \sin \omega_{n} t\right\} \tag{2.32}
\end{equation*}
$$

The Vandermonde's design matrix A is

$$
\underset{\operatorname{MxU}}{A}=\left[\begin{array}{lllll}
1, & \cos \omega_{1} t_{1}, & \sin \omega_{1} t_{1}, & \ldots & \cos \omega_{N} t_{1}, \tag{2.33}\\
1, & \sin \omega_{N} t_{1} \\
1, & \cos \omega_{1} t_{2} & \sin \omega_{1} t_{2}, & \ldots & \cos \omega_{N} t_{2}, \\
1, & \sin \omega_{N} t_{2} \\
1, & \cos \omega_{1} t_{m}, & \sin \omega_{1} t_{m} & \cdots & \cos \omega_{N} t_{m}, \\
\sin \omega_{N} t_{m}
\end{array}\right]
$$

in which m equals the number of measurements $h(t)$ that have been made. For weights, we can consider each observation as having been made independently with equal amount of reliability. The error in observations $\left(\sigma_{X_{L}}\right)$, can be taken to be equal to the resolution of the tide gauge used so that

$$
\underset{m \times m}{\Sigma_{\mathrm{L}}}=\operatorname{diag}\left(\sigma_{\mathrm{L}_{1}}^{2}, \quad \sigma_{\mathrm{L}_{2}}^{2} \cdots \cdots \sigma_{\mathrm{L}_{\mathrm{m}}}^{2}\right)
$$

and the corresponding weight matrix is

$$
\underset{\operatorname{mxm}}{\mathrm{p}}=\Sigma_{\mathrm{L}}^{-1}=\operatorname{diag}\left(\begin{array}{llll}
\frac{1}{2}, & \frac{1}{2}_{2}, & \cdots & \frac{1}{\sigma_{2}} \tag{2.34}\\
{ }_{\mathrm{L}_{1}} & { }_{\mathrm{L}_{2}}
\end{array}\right)
$$

in which σ_{0}^{2} (the a priori variance factor) is taken as unity. The solution for the vector of coefficients is given as

$$
\begin{equation*}
\hat{C}=\left(A^{T} P A\right)^{-1} A^{T} P F, \tag{2.35}
\end{equation*}
$$

in which $\hat{C}=\left[S_{0}, A_{1}, B_{1}, A_{2}, B_{2} \ldots A_{k}, B_{k}\right]^{T}$.
The solution for the residual vector is

$$
\begin{equation*}
\hat{V}=A \hat{C}-F \tag{2.36}
\end{equation*}
$$

where F is a vector of observed heights.
The associated variance covariance matrix of the vector of coefficients is

$$
\begin{equation*}
\sum_{\hat{c}}=\hat{\sigma}_{0}^{2}\left[\mathrm{~A}^{\mathrm{T}} \mathrm{PA}\right]^{-1} \tag{2.37}
\end{equation*}
$$

where $\hat{\sigma}_{0}^{2}$ is the estimated variance factor given by

$$
\begin{equation*}
\hat{\sigma}_{0}^{2}=\frac{\hat{\mathrm{V}}^{\mathrm{T}} \mathrm{P} \hat{\mathrm{~V}}}{\mathrm{df}} \tag{2.38}
\end{equation*}
$$

df represents the degree of freedom given in this case by the number of observations minus the number of coefficients $(d f=m-u)$.

With the coefficients S_{0}, A_{k}, B_{k} determined, equations $2.26,2.28$ and 2.29 yield the harmonic constants H_{k} and g_{k}. Note that if however it is not intended to preciict the tides in the past or in the future, the constants need not be computed. The tide at any time t in the time interval can be predicted using the polynomial.

From 2.28 and 2.29

$$
\frac{\mathrm{f}_{\mathrm{k}} \mathrm{H}_{\mathrm{k}} \sin \left(\left(\mathrm{~V}_{\mathrm{k}}-\mathrm{U}_{\mathrm{k}}\right)-\mathrm{X}_{\mathrm{k}}\right)}{\mathrm{f}_{\mathrm{k}} \mathrm{H}_{\mathrm{k}} \cos \left(\left(\mathrm{~V}_{\mathrm{k}}+\mathrm{U}_{\mathrm{k}}\right)-\mathrm{X}_{\mathrm{k}}\right)}=\tan \left(\left(\mathrm{V}_{\mathrm{k}}+\mathrm{U}_{\mathrm{k}}\right)-\mathrm{X}_{\mathrm{k}}\right)=\frac{\mathrm{B}_{\mathrm{k}}}{\mathrm{~A}_{\mathrm{k}}}
$$

or

$$
\begin{equation*}
\left(\left(V_{k}+U_{k}\right)-X_{k}\right)=\tan ^{-1}\left(B_{k} / A_{k}\right) \tag{2.39}
\end{equation*}
$$

and

$$
\mathrm{f}_{\mathrm{k}} \mathrm{H}_{\mathrm{k}} \cos \left(\left(\mathrm{~V}_{\mathrm{k}}+\mathrm{U}_{\mathrm{k}}\right)-\mathrm{X}_{\mathrm{k}}\right)=\mathrm{A}_{\mathrm{k}}
$$

$$
\begin{equation*}
\mathrm{H}_{\mathrm{k}}=\mathrm{A}_{\mathrm{k}} / \mathrm{f}_{\mathrm{k}} \cos \left(\left(\mathrm{~V}_{\mathrm{k}}+\mathrm{U}_{\mathrm{k}}\right)-\mathrm{X}_{\mathrm{k}}\right) \tag{2.40}
\end{equation*}
$$

or

$$
\begin{align*}
& f_{k} H_{k} \sin \left(\left(V_{k}+U_{k}\right)-X_{k}\right)=B_{k} \\
& H_{k}=B_{k} / f_{k} \sin \left(\left(V_{k}+U_{k}\right)-X_{k}\right) \tag{2.40i}
\end{align*}
$$

To completely solve our problem, we have to determine the astronomical argument $\left(V_{k}+U_{k}\right)$ and the nodal factor $\left(f_{k}\right)$. The values are usually tabulated in tide tables (eg. Admiralty Tide Tables), or they can be computed.

The astronomical argument is given as [Godin, 1972; pp. 171-178]

$$
\begin{equation*}
\mathrm{v}_{\mathrm{k}}(\mathrm{t})=\mathrm{k}_{1} \hat{\tau}+\mathrm{k}_{2} \hat{\mathrm{~S}}+\mathrm{k}_{3} \hat{\mathrm{~h}}+\mathrm{k}_{4} \hat{\mathrm{P}}+\mathrm{k}_{5} \hat{\mathrm{~N}}+\mathrm{k}_{6} \hat{\mathrm{Ps}} \tag{2.41}
\end{equation*}
$$

where $\hat{\tau}, \hat{S}, \hat{h}, \hat{P}, \hat{N}$ and \hat{P}_{S} are the values of the astronomical variables at the instant of time t from the origin of time and are given as

$$
\begin{aligned}
& \hat{S}=S_{0}+\Delta t \dot{S}, \\
& \hat{\mathrm{~h}}=\mathrm{h}_{0}+\Delta t \dot{\mathrm{~h}}, \\
& \hat{\mathrm{~F}}=\mathrm{P}_{0}+\Delta t \dot{\mathrm{P}}, \\
& \hat{\mathrm{~N}}=\mathrm{N}_{0}+\Delta t \dot{\mathrm{~N}}, \\
& \hat{\mathrm{P}}=\mathrm{Ps}_{0}+\Delta \mathrm{t} \mathrm{Ps}_{\mathrm{s}}, \\
& \hat{\tau}=0.0416(\mathrm{hh} \mathrm{~mm})+\hat{\mathrm{h}}-\hat{\mathrm{S}} .
\end{aligned}
$$

$S_{0}, h_{0}, P_{0}, N_{0}$ and P_{0} are the values of the astronomical variables at the time $\mathrm{t}=0$, hh mm represents the hours and minutes of the day, $\dot{S}, \dot{\mathrm{~h}}, \dot{\mathrm{P}}, \dot{\mathrm{N}}$. $\dot{\mathrm{P}}$ s are the rates of change of the astronomical variables in cycles per muan lunar day. U_{k} is the phase of the astronomical argument $\left(V_{k}\right)$ at
time $\mathrm{t}=0$.
The nodal (modulation) factor is given by [Godin, 1972]

$$
\begin{equation*}
\mathrm{f}_{\mathrm{k}}=1+\sum_{j=1}^{\mathrm{n}}\left|\mathrm{r}_{\mathrm{kj}}\right| \exp \left[2 \pi i\left(\Delta \mathrm{k}_{4}(j) \hat{\mathrm{P}}+\Delta \mathrm{k}_{5}(j) \hat{\mathrm{N}}+\mathrm{k}_{6}(j) \hat{\mathrm{P}}_{\mathrm{S}}\right)\right] \tag{2.42}
\end{equation*}
$$

in which $r_{k j}$ is a complex number which depends on Δk_{4}, $\Delta \mathrm{k}_{5}$ and $\Delta_{6} \mathrm{k}_{6}$. The j 's inside the differences in Doodson numbers indicate that they depend on a specific constituent within a cluster.

It is important to note that in the discussion so far, there was no mention of removing the noise part of the observed series before the analysis is made. The harmonic constants obtained are therefore likely to include other effects beside those of the astronomic forces and are consequently in a certain measure variable. The harmonic analysis should be based on a series of very selective filterings so as to permit isolation of an oscillation having a maximum tide/noise ratio. Godin [1972] has given several filters that could be used to eliminate the noise part or suppress certain frequencies.

Vanicek [1970] pointed out that there is an obvious danger in removing the noise part of a series when the magnitudes are not known. On the other hand, it is usually equally deterimental to leave these constituents unattended because they may distort the spectral image of the series to a considerable degree. He described a method of least squares spectral analysis that could be used to analyse a time series and locate the frequencies accurately
without first removing the noise part.
Mosetti and Manca [1972] described a number of methods for separating a certain number of tidal constituents by means of successive approximations and thus to completely extract astronomic tide from the tidal records. The frequency interval in which the tidal constituents occur are divided into a number of wave groups, the periods within each group being very close to each other but sufficiently distinct from the periods of constituents in all other groups. By drawing the graph of oscillations in each group, it is easy to see that the modulations are perturbed to some extent due to interference phenomena from waves within the group. If we are dealing with series extending over a fairly long period, it is possible to evaluate the intervals on the record that are least perturbed and where the amplitudes vary with regularity dictated by astronomic laws. The harmonic constants can then by computed for those intervals.

2.3 Tidal Analysis and Prediction by Response Method

2.3.1 General

Munk and Cartwright [1966] presented an entirely different method of tidal analysis and prediction. They applied the theory of time series to the tidal observations at a gauge station to determine certain coefficients which replaced the amplitudes H_{k} and the phase $1 a g s g_{k}$ of the tidal constituents as in the harmonic analysis. Even
though the theory of this method is more involved than the harmonic method, the authors claim that the response method gives a simpler and physically more meaningful representation of tides than the harmonic method. Unlike the traditional harmonic method which attempts to express the tides as the sum of harmonic functions of time, the response method expresses tide as the weighted sum of the past, present and future values of a relatively small number of time varying input functions.

Dronkers [1972] described the method as a more empirical modification of the equilibrium tide based on the theory of time series. He added that the principal advantage of the response method is that the total number of coefficients is less than the number of constituents used for the harmonic prediction of comparable accuracy. In the response method we deal with complete potential instead of a set of discrete frequencies as in the harmonic method.

Lambert [1974] noted that the principal advantage of response method over the harmonic method lies in the fact that separate admittance functions (Fourier transform of response weights) can be calculated for sufficiently distinct uncorrelated inputs, thus making the method adaptable for earth tide analysis.

The response method of tide analysis and prediction as developed by Munk and Cartwright [1966] is applied to various observed series to obtain frequency dependent
admittances that describe the tidai characteristics in a similar sense to what can be deduced from the traditional harmonic constants. To bridge the gap between the response and harmonic methods, Zetler, Cartwright and Munk [1969] have described procedures for deriving harmonic constants from the response admittances. They showed that the harmonic constants H_{k} and g_{k} of a tide constituent k can be determined for a place using response analysis and the result is compatible with the conventional harmonic analysis.

2.3.2 Brief Outline of the Theory of Response Method

The tidal potential can be generated as a time series $V(t)$ and an attempt can be made at predicting the height of tide for a time t as the weighted sum of the past and present values of the potential,

$$
\begin{equation*}
\tilde{h}(t)=\sum W(s) V(t-\tau s) \tag{2.43}
\end{equation*}
$$

The weights $W(s)$ are determined such that the prediction error $h(t)-\tilde{h}(t)$ is a minimum in the least squares sense, ts is the time lag used in the argument of the potential.

The weights represent the sea level response at the place of interest to a unit impulse

$$
V(t)=\delta(t)
$$

In the response approach of Munk and Cartwright, V(t) is expressed in spherical harmonics as

$$
\begin{equation*}
V(\phi, \quad \lambda, \quad t)=g \sum_{n=0}^{n} \sum_{m=0}^{n}\left[a_{n}^{m}(t) U_{n}^{m}(\phi, \lambda)+i b_{n}^{m}(t) V_{n}^{m}(\phi, \lambda)\right] . \tag{2.44}
\end{equation*}
$$

Here $U_{n}^{m}+i V_{n}^{m}$ are a set of complex spherical harmonics of order m and degree $n, a(t), b(t)$ are the amplitudes of the real and imaginary parts of the spherical harmonics and can be computed for any desired time interval for any location.

The prediction formalism becomes [Munk and Cartweight, 1966]

$$
\begin{equation*}
\tilde{h}(t)=\sum_{m n} \sum_{s}\left[U_{n}^{m}(s) a_{n}^{m}(t-\tau s)+i v_{n}^{m}(s) b_{n}^{m}(t-\tau s)\right] \tag{2.45}
\end{equation*}
$$

Letting

$$
W_{n}^{m}(s)=U_{n}^{m}(s)+i V_{n}^{m}(s)
$$

and

$$
C_{n}^{m}(t-s)=a_{n}^{m}(t-\tau s)-i b_{n}^{m}(t-\tau s),
$$

equation 2.45 is rewritten as

$$
\begin{equation*}
\tilde{h}(t)=\sum_{m n} \sum_{S} W_{n}^{m}(s) C_{n}^{m}(t-T s) \tag{2.46}
\end{equation*}
$$

The weights $\mathbb{W}_{\mathrm{n}}^{\mathrm{m}}(\mathrm{s})$ define the relation between the linear part of the tide and the equilibrium tide, thus the determination of $\mathbb{W}_{n}^{m}(s)$ is the essential point in the response method.

3.0 Introduction

In Chapter II we have seen how the tidal constituent frequencies are obtained from the decomposition of tidal potentials and how the tidal characteristic for a location, that is, the tidal constants (amplitude H_{k} and phase lag g_{k} for any constituent k) for major constituents can be determined using the harmonic or response methods of tidal analysis. In this chapter, the types and methods of constructing cotidal charts and their uses, are discussed.

3.1 Types of Cotidal Charts

3.1.1 Range/Time Cotidal Charts

Most often, a range/time cotidal chart is constructed by graphical means. On it, two sets of curves connect points having equal range differences (or range ratios) and points having simultaneous high and low waters [Admiralty Manual of Hydrographic Surveying, 1969]. All cotidal curves indicate a relationship to the tides at the reference gauge station. Figure 3-1 illustrates a typical range/time cotidal chart. The range curves (shown by pecked lines) indicate the range ratios of the tide at the reference station A. At B for example, the tidal range is 0.65 times the range at A. The time curves (shown by full lines) indicate time lags or corrections wh: ch must be applied to the times of high or low waters at the reference gauge station to obtain the times of high or

Figure 3-1

Range/Time Co-Tidal
Chart
low waters at a place of interest.
To construct this type of cotidal chart, simultaneous tide observations are made at the reference station and at other well distributed temporary tide stations such as at points B, C, D and E in Figure 3-1. From mean high waters and mean low waters, the mean range is obtained for each station. The range ratios are determined from the relation: mean range at a gauge station/mean range at the reference station. The mean time lag for each station is determined by finding the mean time differences between the occurrence of high and low waters at the reference station and at other gauge stations. Both sets of cotidal curves are interpolated in between stations as contours are interpolated in between spot heights for a topographic map.

3.1.2 Amplitude/Phase Cotidal Charts

This type of cotidal chart is referred to as being semi-graphical. It is more difficult to produce and more complicated to use than a range/time cotidal chart but, could be more reliable and more versatile. The number of such charts needed for an area would be equal to the number of constituent frequencies being taken into account for our tidal predictions. For ordinary practical purposes in hydrographic surveying, four major constituents are considered, namely $\mathrm{M}_{2}, \mathrm{~S}_{2}, \mathrm{~K}_{1}$ and O_{1} [Admiralty Manual of Hydrographic Surveying, 1969]. This means that four cotidal charts would be needed each containing two sets of
curves. Figure 3-2 illustrates on such cotidal chart of an area for the M_{2} constituent. The full lines connect points having equal values of phas 1 ag g_{m} in degrees and the pecked lines connect points having equal amplitudes H_{m}.

To produce the amplitude/phase cotidal charts, tide gauges are set up at well distributed locations in the area such that tidal characteristics should as much as possible vary linearly from one gauge station to another. This means that there should be no major physical features or structures which may influence the propagation of tidal waves between any two tide stations. (For example, Larsen [1977] in his study of the tides in the Pacific Ocean near the Hawaiian Islands, observed that the phase lag of the M_{2} semi-diurnal tide differs by 46° between the nearby tide stations at Mokuoloe and Honolulu that are on the opposite sides of the Hawaiian ridge but differs by only 15° between Mokuoloe and a distant station at Hilo that are on the same side of the ridge. Also for the K_{1} diurnal tide, the differences are found to be 8° and 3° respectively). Tides are observed at the stations for a minimum period of 29 days. The tidal records are then analysed using the harmonic or the response method to determine the harmonic constants H_{k} and g_{k} for each constituent frequency at each gauge station. The amplitude and phase lag curves aro then interpolated as contours are interpolated for a topographic map.

Figure 3-2
Amplitudefplruse Ce-Tidel Chart for H_{2}

The amplitude/phase cotidiil chart cannot be used to directly convert tide readings made at the reference station to those observable at any other place as is the case with the range/time cotidal charts. With it however. tide at any point of interest in the area covered by the chart can be predicted at any time t using equation 2.25 .

Interpolating between gauge stations has been the classical method of producing amplitude/phase cotidal charts. Presently a more meaningful method of producing this type of cotidal chart is through the solution of numerical schemes. Luther and Wunsh [1974] however used 350 sets of constants, obtained partly from the publications of the International Hydrographic Bureau (IHB) and partly from other investigators, to produce the cotidal charts for the central Pacific ocean which they claim are comparable with the numerical charts of Pekeris and Accad [1969] and Hendershott [1972].

3.2 Numerical Schemes

The various numerical schemes for the production of cotidal charts stem from various solutions of the Laplace tidal equations [Bye and Heath, 1975; Hendershott and Munk, 1970]

$$
\begin{align*}
& \frac{\partial u}{\partial t}-f v=\frac{g}{a \cos \phi} \cdot \frac{\partial(\xi-\bar{\xi})}{\partial \lambda} . \tag{3.1}\\
& \frac{\partial v}{\partial t}+f u=\frac{-g}{a} \cdot \frac{\partial(\xi-\xi)}{\partial \phi}, \tag{3.2}\\
& \frac{\partial \xi}{\partial t}+\frac{1}{a \cos \phi}\left(\frac{\partial u_{Q}}{\partial \lambda}+\frac{\partial v_{Q}}{\partial \phi} \cos \phi\right)=0, \tag{3.3}
\end{align*}
$$

where ϕ, λ are the geodetic latitude and longitude respectively,
u, v are the latitudinal and longitudinal components of the fluid velocity,
a is the earth mean radius,
$f(=2 \Omega \sin \phi)$ is the Coriolis parameter in which Ω_{6} is the angular velocity of the earth,
Q is the undisturbed depth of the ocean,
ξ is the elevation of the sea surface above the undisturbed level, and $\xi(=\mathrm{V} / \mathrm{g})$ is the equilibrium tide.

The Laplace tidal equations representing equations of motion, though they look simplified, are difficult to solve even in the case of uniform depth covering the globe. The early solutions were given by Lord Kelvin in 1845 and Hough in 1897 who replaced the Laplace power series in sine with an expansion in spherical harmonics thus regarding the earth's rotation as very small. In 1898, Lord Kelvin introduced the concept of f-plane approximation in which he considered the oscillations of the horizontal sheet of fluid of uniform depth rotating about its normal and this reduces the Laplace tidal equations to [Hendershott and Munk, 1970]

$$
\begin{align*}
& \frac{\partial u}{\partial t}-f v=-g \cdot \frac{\partial(\xi-\bar{\xi})}{\partial x}, \tag{3.4}\\
& \frac{\partial v}{\partial t}+f u=-g \cdot \frac{\partial(\xi-\bar{\xi})}{\partial y} . \tag{3.5}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \xi}{\partial t}+Q\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=0 \tag{3.6}
\end{equation*}
$$

in which x, y are the Cartesian conrdinates in the plane of the fluid. Larsen [1977] used the f-plane solution to produce the cotidal charts for the Pacific ocean near the Hawaiian Islands. He approximated the Island as an elliptically shaped cylinder with the plane ocean taken to be tangent to the earth at the coordinates $\phi_{0}=20.7^{\circ} \mathrm{N}$ and $\lambda_{0}=156.8^{\circ} \mathrm{W}$ which corresponds to the coordinates of the centre of the elliptically shaped Island. On the plane ocean, he took the rectangular coordinate system with the X-axis eastwards and normal to the axis of the ridge formed by the island and the Y-axis northwards and parallel to the ridge axis and with the origin at the tangent point $\left(\phi_{0}\right.$, $\left.\lambda_{0}\right)$.

The boundary condition assumes that the velocity normal to the coast vanishes and free tide solutions are added in order to fit the observed tide at the boundary. The cotidal charts for the various constituents are constructed by mapping the amplitude and phase of the total tide, that is the resultant of the equilibrium tide, forced tide and free tide, as a function of the elliptic coordinates. The author evaluated the accuracy of the cotidal chart by comparing the observed tides at some locations with the values of tides predicted by the model. He observed that the plane wave model of the tides connect the tidal observations together in a simple way and thus
allows the tide to be interpolated between gauge stations and extrapolated into the ocean beyond the tidal sites.

Rossby in 1939 introduced the beta-plane approximation. In this, the Laplace tidal equations are written as in $f-p l a n e$ approximation but with the coriolis parameter made a linear function of y, namely

$$
\begin{equation*}
f=f_{0}+\beta y \tag{3.7}
\end{equation*}
$$

The variation of f with y corresponds to an expansion of the coriolis parameter about the latitude ϕ_{0}

$$
\begin{equation*}
2 \Omega \sin \phi=2 \Omega \sin \phi_{0}+\left(\frac{2 \Omega}{a}\right) \mathrm{a}\left(\phi-\phi_{0}\right) \cos \phi_{0}, \tag{3.8}
\end{equation*}
$$

in which β is of the order $\frac{2 \Omega}{a}$.
When $\beta=0$, we then have f-plane approximation.
With the advent of large computers, the application of the method of finite differences to the tidal problems become popular. Freeman and Murty [1976] studied the cooscillating and independent tides in Hudson Bay and James Bay by applying the finite differences to solve the Laplace tidal equations. They linearised the equations of motion in spherical polar coordinates and vertically integrated retaining variable coriolis, pressure gradient, bottom stress and direct tidal potential terms. The equations thus solved in the model are

$$
\begin{align*}
& \frac{\partial u}{\partial t}=2 \Omega v \sin \phi-\frac{g h}{a \cos \phi} \cdot \frac{\partial \eta}{\partial \lambda}-\frac{T_{B \lambda}}{\rho}+\overline{\mathrm{F}}_{\lambda}, \tag{3.8}\\
& \frac{\partial v}{\partial \mathrm{t}}=-2 \Omega u \sin \phi-\frac{\mathrm{gh}}{\mathrm{a}} \cdot \frac{\partial \eta}{\partial \phi}-\frac{\mathrm{T}_{\mathrm{B}} \phi}{\rho}+\overline{\mathrm{F}}_{\phi}, \tag{3.9}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial \eta}{\partial t}=\frac{1}{a \cos \phi}\left(\frac{\partial u}{\partial \lambda}+\frac{\partial v}{\partial \phi} \cos \phi\right), \tag{3.10}
\end{equation*}
$$

where T_{β} is the bottom stress, $\bar{F}_{\lambda}, \bar{F}_{\phi}$ are the horizontal components of the tide generating force, η is the deviation of the water level from the mean tide level, h is the water depth and p is the density of water.

The cooscillating tide is modeled by setting the tide generating force terms to zero and specifying the free surface elevation across the mouth of the Hudson Bay by

$$
\begin{equation*}
\eta_{k}^{1}(\phi, \lambda)=H_{k}(\phi, \lambda) \cos \left(\omega_{k} t-g_{k}(\phi, \lambda)\right), \tag{3.11}
\end{equation*}
$$

where η_{k}^{l} belongs to the constituent k at the open mouth boundary location and is referred to the mean tide level.

The independent tide is modeled by setting the normal velocity on the open mouth boundary to zero and specifying the tide generating force. For example, for M_{2}

$$
\begin{align*}
& \overline{\mathrm{F}}_{2} \lambda=\frac{-48 \cdot 8}{a} \cdot g h \cos \phi \sin \left(\omega_{m} \mathrm{t}+2 \lambda+\omega_{\mathrm{m}} \mathrm{~T}\right), \quad(3 . \tag{3.12}\\
& \overline{\mathrm{F}}_{2} \phi=\frac{-48 \cdot 8}{\mathrm{a}} \cdot \mathrm{gh} \cos \phi \sin \phi \cos \left(\omega_{\mathrm{m}} \mathrm{t}+2 \lambda+\omega_{\mathrm{m}} \mathrm{~T}\right), \tag{3.13}
\end{align*}
$$

and for K_{1}

$$
\begin{align*}
& \overline{\mathrm{F}}_{1} \lambda=\frac{-28.5}{a} \cdot \mathrm{gh} \sin \phi \sin \left(\omega_{\mathrm{k}} \mathrm{t}+\lambda+\omega_{\mathrm{k}} \mathrm{~T}\right), \tag{3.14}\\
& \overline{\mathrm{F}}_{1^{\phi}}=\frac{-28.5}{a} \cdot \mathrm{gh}\left(\sin ^{2}{ }_{\phi}-\cos ^{2} \phi\right) \cos \left(\omega_{\mathrm{k}} \mathrm{t}+\lambda+\omega_{k} \mathrm{~T}\right) . \tag{3.15}
\end{align*}
$$

Here T is the number of hours from the Greenwich mean time to the local zone time. The linear form of bottom friction due to Heaps is used and is given as

$$
\begin{equation*}
T \beta_{\lambda}=\frac{P R}{h} U . \quad T \beta_{\phi}=\frac{P R}{h} V . \tag{3.16}
\end{equation*}
$$

The authors used a rectangular grid of 15 and 10 minutes of arc in longitudinal and latitudinal directions respectively. The grids are drawn so that the fluid velocity components (U, V) are defined on the closed boundary locations and the water levels (n) at the open boundary at the mouth of the Bay. In the formulation of the numerical scheme, central finite differences are used in both space and time. Using a leap-frog scheme, water levels (n) are computed at even time steps (i.e. $i=2,4,6,8 .$.) and the horizontal flow components (U, V) computed at odd time steps (i.e. i $=1,3,5,7 \ldots$.

The numerical scheme is thus given by [Freeman and Murth, 1976]

$$
\begin{align*}
& \frac{U_{k j}^{i+1}-\mathrm{U}_{k, j}^{\mathrm{i}-1}}{2 \Delta \mathrm{t}}=2 \Omega \mathrm{~V}_{\mathrm{kj}}^{\mathrm{i}} \sin \phi_{j}^{-} \frac{\mathrm{gh}_{\mathrm{kj}}}{\operatorname{acos} \phi_{j}}\left(\eta_{k+1, j}^{i}-\eta_{\mathrm{k}-1, j}^{i}\right) \\
&-\frac{1}{\rho} \mathrm{~T}_{\lambda_{k, j}}^{i-1}+\overline{\mathrm{F}}_{\lambda_{k}, j}^{\mathrm{i}}, \tag{3.17}
\end{align*}
$$

$$
\frac{\mathrm{V}_{k, j}^{i+1}-\mathrm{V}_{k, j}^{i-1}}{2 \Delta t}=-2 \Omega U_{k, j}^{i} \sin \phi_{j}-\frac{\mathrm{gh}_{k, j}}{a}\binom{i}{\eta_{k, j+1}-\eta_{k, j-1}^{i}}
$$

$$
\begin{equation*}
-\frac{1}{\rho} T_{B}^{i}{ }_{\phi i, j}^{i}+\overline{\mathrm{F}}_{\phi, j}^{\mathrm{i}} \tag{3.18}
\end{equation*}
$$

$$
\eta_{k, j}^{i+1}-\eta_{k, j}^{i-1}=-\frac{1}{a \cos \phi_{j}}\left(\frac{U_{k+1, j}^{i}-U_{k-1, j}^{i}}{2 \Delta \lambda}\right.
$$

$$
\begin{equation*}
\left.+\frac{\mathrm{V}_{\mathrm{k}, j+1}^{\mathrm{i}} \cos \phi_{j^{+}}-\mathrm{v}_{\mathrm{k}, \mathrm{j}-1}^{\mathrm{i}} \cos \phi_{j-1}}{2 \Delta \phi}\right) \tag{3.19}
\end{equation*}
$$

and the output of the computations are U, V and η as functionstime. From these parameters, the current ellipses and the co-phase and co-amplitude lines are constructed.

In numerical schemes, the problem generally posed is to solve the Laplace tidal equations in their primitive form or after elimination of one or two dependent variables with prescribed boundary conditions. For example
(i) Vanishing normal velocity at coast lines [Pekeries and Accad, 1967],
(ii) Specified or observed values of the constituents at the coastal stations only [Hendershott, 1966],
(iii) Specified or observed values of the constituents at selected coastal and island stations plus vanishing normal velocity at the remaining coastal boundary points [Larsen, 1977].

3.3 Uses of Cotidal Charts

Cotidal charts are found useful in many situations.
They are useful in the study of the impact of large engineering structures on the tidal regime, for example, the proposed tidal power project on the Bay of Fundy in Eastern Canada [Atlantic Tidal Power Engineering and Management Committee Report, 1969; Garrett and Greenberg, 1976].

They are indispensable in navigation especially when deep draught ships have t… navigate through a complex
estuary where drying sand banks alternate with deeps such as that obtained in the port of London [White, 1971]. Here deep draught tankers navigate to Thameshaven and Coryton to evacuate oil from the principal oil refineries. In such a situation the pilot and the captain of the vessel would want the information on
(i) the critical depths in the channel at chart datum,
(ii) the points along the track where these critical depths occur,
(iii) the times the tidal heights at these points would be sufficient for safe passage of a vessel with a particular draught,
(iv) the latest times along the route that the passage depths are available.

If the underkeel clearance is not so critical, this information can easily be obtained using cotidal charts and appropriate up to date navigation charts and tide tables. If the underkeel clearance is critical, the use of cotidal chartsis supplimented by several radio linked tide gauges.

The application of prime concern here is the use of cotidal charts for the reduction of sounding data. As was shown previously, all depth measurements are reduced to the chart datum; therefore the height of tide at time t must be subtracted from the depth sounded at the time t. This implies that we should observe tides at the same time we
take our soundings. If we are working on the coast or on the inland tidal waters, it is possible to establish tide gauges close to the sounding area and observe tides at the same time. If we are involved with extensive sounding offshore, the possibilities of observing tides close to the sounding area are remote. It becomes more feasible to do the tidal reductions using predicted tides, and when this is the case, the use of cotidal charts become convenient.

Range/time cotidal charts can be used in which case we only need to observe or predict tides at the reference station and then obtain the equivalent at the desired locations, or, we can use amplitude/phase cotidal charts and predict the tides at the desired locations independent of a reference station. Finally, a combination of the two approaches can be used.

The Canadian Hydrographic Service has done some automated tidal reductions using digitized range/time cotidal charts of the Hudson Bay and the Lower St. Lawrence River [Tinney, 1977]. In these schemes, the cotidal charts were digitized by breaking the survey area into equal size blocks based on lines of latitude and longitude and approximating the boundaries of the cotidal zones with the edges of those blocks. Those digitizations were coded and stored in the computer. To locate a particular block and retrieve the cotidal values, the geodetic coordinates (ϕ, λ) of the position of the sounding were used.

The choice of the size of the blocks would obviously

Figure 3-3
depend on the amount of computer space available and the accuracy requirements. With smaller size blocks, the zone boundaries would be better approximated but more computer space would be required. Figure $3-3$ shows the digital breakdown of the cotidal chart used for the Hudson i3ay. Block sizes of 5^{\prime} latitude and 10^{\prime} longitude were used giving a total of 13,986 blocks dividing the Bay into 93 reduction zones. The tide station at Churchill served as the reference station for the cotidal chart and during the survey, the predicted heights from the reference station were used instead of the observed heights. However, in the survey of the Lower St. Lawrence River with Pointe-an-Pēre as the reference station, observed tides were used.

IV THE PROPOSED ANALYY'ICAL SCHEME

4.0 Introduction

The proposed analytical scheme is aimed at achieving automated tidal reductions using little computer space and time and with advantageous accuracy and flexibility. Figure 4-1 illustrates the proposed scheme in a flow-chart. It shows that we can work with amplitude/phase cotidal model or range/time cotidal model. The same objective is achieved using either model but it does not necessarily mean that the same degree of accuracy and flexibility is attained. Basically the data requirements for either are the same except that with amplitude/phase cotidal model, the amplitude H_{k} and the phase $\operatorname{lag} g_{k}$ for each constituent k we wish to take into account and at each observation station are required. With the range/time cotidal model, we require the mean range ratios and the mean differences of the times of occurrence of high and low waters between each tide gauge station to be considered and a reference gauge station. With the range/time cotidal model, we have the option of carrying out the tidal reduction based on the observed tides or on the predicted tides at the reference station.

In each case, the aim is to produce an analytical cotidal model using observed data or existing cotidal charts. The analytical model could then be stored conveniently in a computer so that when observed sounding

Figure 4-1 The Proposed Scheme - Flow Chart
Amplitude/Phase Co-tidal Chart
$\phi_{0}, \lambda_{0}:$ RATA
$\phi_{i}, \lambda_{1}:$ Obs. Stn
$H_{k_{i}}, g_{k_{i}}$
$F_{k}, U_{k} \frac{\text { OR }}{}$

Existing Cotidal
Charts

data are input, the output would be reduced soundings. The theory and mathematical models for the two approaches are basically the same. In Section 4.1 of this chapter, the mathematical models are discussed, and in Section 4.2 the data requirements are explained explicitly.

4.1 Models

Earlier, it was shown that the tides are functions of time and position on the surface of the earth and that the tidal characteristics, that is, the amplitude H_{k} and the phase lag g_{k} for the constituent k are constant for a place. These constants can be estimated by performing harmonic or response analysis of a long period tidal records. Knowing the estimated tidal constants for a place, the tide at the place can be predicted at any time t.

Now suppose we consider a section of a body of tidal water, not so extensive in area and where the constants H_{k} and g_{k} are defined at a reference station whose geodetic coordinates are $\left(\phi_{0}, \lambda_{0}\right)$, and at several other points $P_{j}\left(\phi_{j}, \lambda_{j}\right)$ within the area. We can define mathematically surfaces that can describe the distribution of those constants with reference to the primary station. The aim is to approximate, in the Least Squares sense, the amplitude and phase lag fields by surfaces described by two dimensional algebraic polynomials. The coefficients of these polynomials are determined in such a way as to fit the observed data in the Least Squares sense. Using this
technique, the amplitudes H_{k} and the phase $l a g g_{k}$ can be predicted at any point of interest $P_{i}\left(\phi_{i}, \lambda_{i}\right)$ within the area by the polynomials

$$
\begin{align*}
& \tilde{\Delta}_{k}\left(x_{i}, \quad y_{i}\right)=\sum_{j=0}^{\ell} C_{j}^{H} \psi_{j}\left(x_{i}, y_{i}\right) \tag{4.1}\\
& \tilde{\Delta} g_{k}\left(x_{i}, \quad y_{i}\right)=\sum_{j=0}^{\ell} C_{j}^{g} \psi_{j}\left(x_{i}, y_{i}\right) \tag{4.2}
\end{align*}
$$

where $\tilde{\Delta} H_{k}\left(X_{i}, y_{i}\right)$ and $\tilde{\Delta} g_{k}\left(x_{i}, y_{i}\right)$ are the predicted differences in amplitude and phase lag respectively for the constituent k between the reference station and the point i, C_{j}^{H} and C_{j}^{g} are the coefficients of the polynomials, $\psi\left(x_{i}, y_{i}\right)$ are base functions (two dimensional) of the approximating polynomials, and ℓ is the number of base functions. The selection of the prescribed functions ψ can be, from the theoretical point of view, purely arbitrary. The sufficient and necessary condition for the prescribed runctions $\psi \equiv\left\{\psi_{1}, \psi_{2} \cdots \psi_{\ell}\right\}$ to create a base is that they are linearly independent on the functional space $\left(G_{m}\right)$. If and only $i^{f} \psi$ is a base can the coefficients of the best fitting polynomial be uniquely determined [Vanic̄ek and Wells, 1972].

Even though the position of a point may be expressed in terms of geodetic coordinates $\left(\phi_{i}, \lambda_{i}\right)$, it is more convenient to work with local orthogonal coordinates (x_{i}, y_{i}). The relationship between the two systems is defined as

$$
\begin{align*}
& \mathrm{x}_{\mathrm{i}}=\mathrm{R}_{0}\left(\phi_{\mathrm{i}}-\phi_{0}\right) \tag{4.3}\\
& \mathrm{y}_{\mathrm{i}}=\mathrm{R}_{0} \cos \phi_{0}\left(\lambda_{\mathrm{i}}-\lambda_{0}\right) \tag{4.4}
\end{align*}
$$

where R_{0} is the mean radius of curvature of the earth computed at the reference station and is given by [Krakiwsky and Wells, 1971]

$$
\begin{equation*}
R_{0}=\sqrt{ } M_{0} N_{0} \tag{4.5}
\end{equation*}
$$

in which

$$
\begin{equation*}
M_{0}=a\left(1-e^{2}\right) /\left(1-e^{2} \sin ^{2} \phi_{0}\right)^{3 / 2}, \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{0}=a /\left(1-e^{2} \sin ^{2} \phi_{0}\right)^{1 / 2} \tag{4.7}
\end{equation*}
$$

The first eccentricity squared is

$$
\begin{equation*}
\mathrm{e}^{2}=\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) / \mathrm{a}^{2} \tag{4.7b}
\end{equation*}
$$

and for the Clarke 1866 ellipsoid, the semi-major axis $\mathrm{a}=6378.2064 \mathrm{~km}$, while the semi-minor axis $\mathrm{b}=6356.5838 \mathrm{~km}$.

Regarding the choice of base functions, we can use mixed algebraic functions which are particularly simple to deal with [Nassar and Vanicek, 1975], namely,

$$
\begin{equation*}
\psi=\left\{x^{\ell} y^{j}\right\}, \quad(\ell, j=0,1,2 \ldots n) \tag{4.8}
\end{equation*}
$$

where n is the degree of the polynomial. Equation 4.1 and 4.2 can now be rewritten as

$$
\begin{align*}
& \tilde{\Delta} H_{k}\left(x_{i}, y_{i}\right)=\sum_{\ell, j=0}^{n} C_{j}^{i} x_{i}^{\ell} y_{i}^{j}, \tag{4.9}\\
& \tilde{\Delta} g_{k}\left(x_{i}, y_{i}\right)=\sum_{\ell, j=0}^{n} C_{j}^{g} x_{i}^{\ell} y_{i}^{j} . \tag{4.10}
\end{align*}
$$

The problem is to solve for the coefficients $C^{H}{ }_{j}$ and $C^{g}{ }_{j}$ of the polynomials. The number of coefficients U to be solved for is determined from the relation

$$
\begin{equation*}
\mathrm{U}=(\mathrm{n}+1) \mathrm{d} \tag{4.11}
\end{equation*}
$$

where n is the degree of the polynomial and d is the dimensionality of the base functions.

4.2.1 Least Squares Solution of the Models

To determine the unknown coefficients $C^{H}{ }_{j}$ and $C^{g}{ }_{j}$ of the models represented by equations 4.9 and 4.10 , observation equations can be written for each data point i where the amplitude difference ΔH_{k} and the phase lag difference $\Delta \mathrm{g}_{\mathrm{k}}$ referred to a reference station are known. The equations are

$$
\begin{align*}
& \tilde{\Delta} \mathrm{H}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)+\mathrm{V}_{\mathrm{H}_{\mathrm{ki}}}=\Delta \mathrm{H}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \tag{4.12}\\
& \tilde{\Delta} \mathrm{g}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)+\mathrm{V}_{\mathrm{E}_{\mathrm{ki}}}=\Delta \mathrm{g}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \tag{4.13}
\end{align*}
$$

where $\tilde{\Delta} H_{k}$ and $\tilde{\Delta} g_{k}$ are the predicted values, $V_{H_{k i}}$ and $V_{g_{k i}}$ are the residuals of observations, and the terms on the right hand side $\left(\Delta H_{k}\right.$ and $\left.\Delta g_{k}\right)$ are the known or observed values. Substituting equations 4.9 and 4.10 into equations 4.12 and 4.13 yields

$$
\begin{align*}
& \sum_{\ell, j=0}^{n} C_{\ell j}^{\mathrm{H}} x_{i}^{\ell} y_{i}^{j}+V_{H_{k i}}=\Delta H_{k}\left(x_{i}, y_{i}\right), \tag{4.14}\\
& \ell, \sum_{j=0}^{n} C_{\ell j}^{g} x_{i}^{\ell} y_{i}^{j}+V_{g_{k i}}=\Delta g\left(x_{i}, y_{i}\right) . \tag{4.15}
\end{align*}
$$

Putting equations 4.14 and 4.15 in matrix form we have

$$
\begin{align*}
& \underset{\operatorname{mxu}}{\mathrm{A}} \underset{\mathrm{C}}{\mathrm{C}^{\mathrm{H}}}+\underset{\mathrm{mx} 1}{\mathrm{~V}_{\mathrm{H}}}=\underset{\mathrm{mxl}}{\mathrm{~L}_{\mathrm{H}}}, \tag{4.16}\\
& \underset{\operatorname{mxu}}{\mathrm{~A}} \underset{\mathrm{C}}{\mathrm{C}^{\mathrm{g}}}+\underset{\mathrm{mx} 1}{\mathrm{Vg}_{\mathrm{g}}}=\underset{\mathrm{mx} 1}{\mathrm{~L}_{\mathrm{g}}} . \tag{4.17}
\end{align*}
$$

It is pertinent to note here that equations 4.16 and 4.17 are the same as the observation equations for a parametric case
in the least squares adjustments. The parametric least squares adjustment differs only in purpose and notations from the least squares approximation of a function (F) defined on a discrete or compact domain (M) [Vanic̄ek and Wells, 1972]. The purpose of the least squares approximation is to find an approximating polynomial (P_{n}) for a given function or for a given set of functional values. The purpose of the least squares adjustment is to find the least squares statistical estimates of unknown parameters which are related to the observed values by linear (or linearized) mathematical models.

The matrix A is known as Vandermonde's design matrix and is given by
C^{H} and C^{g} are the vectors of coefficients. V_{H} and V_{g} are the vectors of residuals of the observations L_{H} and L_{g}. L_{H} and L_{g} are the vectors of observed values (or the functional values) at the discrete points i. The solution of the system of equations given by 4.16 and 4.17 for the coefficients, using least squares approximation methodology [Vanic̀ek and Wells, 1972; Christodoulidis, 1973; Balogun, 1977; Appendix I] is given by

$$
\begin{equation*}
\hat{\mathrm{C}}=\mathrm{N}^{-1} \mathrm{U}, \tag{4.19}
\end{equation*}
$$

where N is the Gram's matrix defined by

$$
\underset{\mathrm{uxu}}{\mathrm{~N}} \equiv\left[A^{T} \mathrm{PA}\right] \equiv\left[\begin{array}{ccc}
\left\langle\psi_{0} \psi_{0}\right\rangle,\left\langle\psi_{0} \psi_{1}\right\rangle & \cdots & \left\langle\psi_{0} \psi_{\mathrm{u}}\right\rangle \tag{4.20}\\
\left\langle\psi_{1} \psi_{0}\right\rangle,\left\langle\psi_{1} \psi_{1}\right\rangle & \cdots & \left\langle\psi_{1} \psi_{\mathrm{u}}\right\rangle \\
\left\langle\psi_{\mathrm{u}} \psi_{0}\right. & ,\left\langle\psi_{\mathrm{u}} \psi_{1}\right\rangle & \cdots
\end{array}\right\rangle
$$

and

$$
\begin{equation*}
\underset{\mathrm{uxi}}{\mathrm{U}} \equiv \mathrm{~A}^{\mathrm{T}} \mathrm{PL} \equiv\left\langle\mathrm{~L}, \psi_{\mathrm{i}}\right\rangle \tag{4.21}
\end{equation*}
$$

The sign < > indicates a scalar product [Appendix I]. Since our prescribed functions form a base, the Gram's determinant must be different from zero and must have an inverse.

The solution for the residual vector is given by

$$
\begin{equation*}
\hat{\mathrm{V}}=\mathrm{AC}-\mathrm{L} \tag{4.22}
\end{equation*}
$$

The associated variance covariance matrix for the coefficients is given by

$$
\begin{equation*}
\sum_{\hat{c}}=\hat{\sigma}^{2} N^{-1}, \tag{4.23}
\end{equation*}
$$

where $\hat{\sigma}^{2}$ is the a posteriori variance factor given by

$$
\begin{equation*}
\hat{\sigma}^{2}=\hat{\mathrm{V}}^{\mathrm{T}} \mathrm{P} \hat{\mathrm{~V}} / \mathrm{df}, \tag{4.24}
\end{equation*}
$$

in which $d f$ represents the degree of freedom given by

$$
\begin{equation*}
\mathrm{df}=\mathrm{m}-\mathrm{u} . \tag{4.25}
\end{equation*}
$$

P is the weight matrix

$$
\begin{equation*}
\mathrm{p}=\sum_{\mathrm{L}}^{-1}=\operatorname{Diag}\left[\frac{1}{\sigma_{L_{1}} 2}, \frac{1}{\sigma_{L_{2}}{ }^{2}} \cdots \frac{1}{\sigma_{\mathrm{L}_{\mathrm{m}}}{ }^{2}}\right] \tag{4.26}
\end{equation*}
$$

where σ_{L} is the standard error of the observables. The weight matrix is diagonal when we are dealing with statistically independent observables, that is, the observations are assumed uncorrelated.

For statistical reasons, we may wish to work with orthogonal bases, and usually the base ψ is not an orthogonal one. Schmidt's orthogonalization process [Appendix I] may be applied to obtain an orthogonal base Ψ^{*}. Using an orthogonal base, the normal equation is

$$
\begin{equation*}
\mathrm{A} *{ }^{\mathrm{T}} \mathrm{PA} * \hat{\mathrm{C}} *=\mathrm{A} *{ }^{\mathrm{T}} \mathrm{~T}_{\mathrm{PL}} \tag{4.27}
\end{equation*}
$$

Again setting

$$
\mathrm{A} *^{\mathrm{T}} \mathrm{PA} *=\mathrm{N}^{*},
$$

and

$$
\mathrm{A} *{ }^{\mathrm{T}} \mathrm{PL}=\mathrm{U} *
$$

we have that

$$
\begin{equation*}
\hat{\mathrm{C}}^{*}=\mathrm{N}^{-1} \mathrm{U} * . \tag{4.28}
\end{equation*}
$$

A* is the Vandermonde's design matrix obtained using the orthogonal base. \hat{C}^{*} is a vector of Fourier coefficients, N^{*} is the Gram's matrix, this time diagonal because we are dealing with orthogonal base functions and is given by

$$
\begin{gather*}
\mathrm{N}^{*} \tag{4.29}\\
\mathrm{uxu}
\end{gather*} \equiv\left[\begin{array}{ccc}
\left\langle\psi_{0}^{*} \psi_{0}^{*}\right\rangle & 0 & 0 \\
0 & \left\langle\psi_{1}^{*} \psi_{1}^{*}\right. & 0 \\
0 & 0 & \left\langle\psi_{\mathrm{u}}^{*} \psi_{\mathrm{u}}^{*}\right.
\end{array}\right]
$$

and U^{*} is given by

$$
\underset{\mathrm{uxl}}{\mathrm{U} *} \equiv\left[\begin{array}{cc}
\left\langle\psi_{0}^{*}\right. & \mathrm{L}> \tag{4.30}\\
<\psi_{1}^{*} & \mathrm{~L}> \\
\vdots & \\
\left\langle\psi_{\mathrm{u}}^{*}\right. & \mathrm{L}>
\end{array}\right] .
$$

The associated variances are given by

$$
\begin{equation*}
\sum_{\hat{c} *}=\hat{\sigma}^{2} * \mathrm{~N}^{*^{-1}}, \tag{4.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\sigma}^{2} *=\hat{\mathrm{v}^{\mathrm{T}}} \mathrm{~T}_{\mathrm{P}} \hat{\mathrm{~V}}^{*} / \mathrm{df} \tag{4.32}
\end{equation*}
$$

The solution of normal equation becomes trivial as the normal equation matrix N^{*} (Grams matrix) is diagonal and each Fourier coefficient can be solved for independently.

We subject the Fourier coefficients to statistical screening by comparing each coefficient against j times its standard error. [Christodoulidis, 1973], that is, if

$$
\begin{equation*}
\left|\hat{\mathrm{C}}_{\mathrm{i}}^{*}\right|<j \sigma_{\mathrm{c}}^{i} \hat{i}^{*} \tag{4.33}
\end{equation*}
$$

then \hat{C}_{i}^{*} is statistically insignificant at that level and is discarded. j takes the values 1,2 or 3 depending upon what level of significance of their standard deviations we wish to test the coefficients. The discarded Fourier coefficients are set equal to zero. Once the appropriate Fourier coefficients are discarded, the residuals, the variance factor and the variances are recomputed using only the accepted coefficients. The residuals are given by

$$
\begin{equation*}
\hat{\mathrm{V}}^{1}=\mathrm{A} * \hat{\mathrm{C}}^{*}-\mathrm{L} . \tag{4.34}
\end{equation*}
$$

The a posteriori variance factor is recomputed by

$$
\begin{equation*}
\hat{\sigma}^{2 * I}=\hat{\mathrm{V}} * I^{\mathrm{T}} \hat{\mathrm{~V}} * \mathrm{I} / \mathrm{df} \mathrm{I}, \tag{4.35}
\end{equation*}
$$

where

$$
d f^{l}=m-u+d,
$$

in which d represents the number of Fourier coefficients discarded. The new variances are

$$
\begin{align*}
& \sum_{\hat{c} * 1}=\hat{\sigma}^{2 * I} N^{*-1} \text {. } \tag{4.36}\\
& \text { Using the transformation matrix (see Appendix I) } \\
& \underset{u \times x}{3} \equiv\left[\begin{array}{ccccc}
1 & \beta_{12} & \beta_{13} & \ldots & \beta_{1 u} \\
0 & 1 & \beta_{23} & \ldots & \beta_{2 u} \\
0 & 0 & 0 & & 1
\end{array}\right] \tag{4.37}
\end{align*}
$$

and the remaining statistically significant Fourier coefficients, the original coefficients are computed by

$$
\begin{equation*}
\hat{\mathrm{C}}=\mathrm{B} \hat{\mathrm{C}}^{*} . \tag{4.38}
\end{equation*}
$$

The correct number of original coefficients are obtained even though we are solving for them using fewer number of Fourier coefficients. If, however, the last Fourier coefficients are the ones discarded, a fewer number of original coefficients will be recovered. The variancecovariance matrix of the original coefficients can be computed using the variance-covariance law, namely,

$$
\begin{equation*}
\sum_{\hat{c}}=B \sum_{\hat{c} * I} B^{T}, \tag{4.39}
\end{equation*}
$$

where $\sum_{\hat{c} * 1}$ is given by equation 4.36 .

Once we have computed the coefficients of the original polynomials and their variance-covariance matrix from the statistically significant Fourier coefficients, statistically significant surfaces which describe the distributions of amplitudes and phase lags (or range ratios and time differences) in the area of interest have been obtained. Analytical cotidal models for amplitudes and phase lags (or range ratios and time differences) have thus been obtained. With the analytical models, the values of the amplitude and phase lags (or range ratio and time lags) can be predicted for any point $\mathrm{P}_{\mathrm{i}}\left(\phi_{\mathrm{i}} \lambda_{\mathrm{i}}\right)$ in the area using equations 4.1 and 4.2 . The prediction variance covariance matrix is given by

$$
\begin{equation*}
\sum_{\tilde{H}}=J \sum_{\hat{c}} J^{T} \tag{4.40}
\end{equation*}
$$

in which J is Jacobian of transformation defined by A matrix.

4.3 Data Requirements and Reduction Algorithms

4.3.1 Amplitude/Phase Cotidal Model

As previously noted, to produce cotidal models for amplitudes and phase lags, we need to define the amplitudes and the phase lags of each constituent frequency at a reference station and at several other observation stations adequately distributed in an area of interest. Working with four major constitue: :ts, eight analytical models are needed to describe the tidal characteristics of the area. For a fair estimate of the amplitudes and the phase lags, the tidal analysis must be made from

369 days of tidal records, and for a barely acceptable estimate, observation should cover a period of 29 days. The more observations added in the analysis, the better will be the estimate of the harmonic constants.

It may not be easy to adequately distribute observing stations and obtain sufficient data to enable the production of a desired analytical model. An alternative is to use cotidal charts, produced from the numerical schemes such as those described in III, Section 3.2, as a source of data. The cotidal charts are digitized as mentioned in Section 3.3 and the digitized values are used in the least squares polynomial approximations to produce the analytical cotidal models. As a check on the compatibility of the analytical models and the original chart, the area is grided at close intervals and the amplitudes and phase lags predicted at the grid intersections using equations 4.1 and 4.2. The co-amplitude and co-phase curves can then be easily drawn in.

If the amplitude/phase cotidal models are being used for the reduction of soundings, the reduction algorithms can be summarized in steps as follows:
(i) At each sounding location i, the depth $\left(D_{i}\right)$, the time (t) and the geodetic coordinates (ϕ_{i}, λ_{i}) are observed.
(ii) With the observed geodetic coordinates $\left(\phi_{i}, \lambda_{i}\right)$, the amplitudes and phase lags
of the constituents being used can be predicted using the analytical models.
(iii) Using the tide prediction approach as described in II section 2.2 and the predicted amplitudes and phase lags from (ii) above, the height of tide $h_{i}(t)$ at the sounding location above chart datum are predicted.
(iv) The sounding reduced to the chart datum is $d_{i}=D_{i}-h_{i}(t)$

4.3.2 Range/Time Cotidal Model

Some assumptions must be made at the outset for this model. Considering a body of water of relatively small extent, such that one can safely assume that the meteorological variables in the area are not remarkably different from place to place, it can be further assumed that given any two points $A(\phi, \lambda)$ and $B(\phi, \lambda)$ in the area, the tides at A bear constant relationships with the tides at B. Those relationships will change when there are marked topographical changes due, for example, to errosion, engineering structures, which tend to change the pattern of the propagation of tidal waves. If we establish the relationship existing between a reference station and any other point, it is possible to predict with some degree of certainty the tides at that other point from the observed (or predicted) tides at the reference station.

The relationships between the tides at any two stations can be established from the ratio of their ranges and the difference in the times of occurrence of high and low waters. In other words, it is assumed that the unwanted noise has perturbed observations equally so that when the range ratios and time differences are determined, the unwanted noise is eliminated.

To produce range ratios and time lags cotidal models, we require
(i) the mean range $R_{m 0}$ at the reference station and the mean ranges $R_{m j}$ at discrete points $\left(\phi_{j}, \lambda_{j}\right)$; the range ratios are then given as

$$
\begin{equation*}
r_{j}=R_{m j} / R_{m 0} \tag{4.42}
\end{equation*}
$$

(ii) the mean time differences between the times of high and low waters at the reference station and at the discrete points given in minutes of time.

If the sounding reduction is to be done with range/time analytical cotidal model, the reduction aligorithms can be summarized in the following steps:
(i) The tide is observed at the reference station to cover the time interval M (the soundings are also performed within the same interval of time). A least squares approximation of the observed series at the reference
station is done so that at any time t in the interval, the height of tide can be predicted.
(ii) At each sounding location i, the depth (D_{i}), the time (t) and the geodetic coordinates $\left(\phi_{i}, \quad \lambda_{i}\right)$ are observed.
(iii) With the observed geodetic coordinates $\left(\phi_{i}, \lambda_{i}\right)$, the range ratio $\left(r_{i}\right)$ and time difference (correction to time) are predicted using the analytical models.
(iv) Using the corrected time at the reference station and the approximating polynomial from step (i) above, the height of tide ($\left.h_{0}(t)\right)$ at the reference station is predicted.
(v) The height of tide at the observed location i is computed from the relation

$$
h_{i}(t)=h_{0}(t) \times r_{i}
$$

(vi) The reduced sounding is

$$
\begin{equation*}
d_{i}=D_{i}-h_{i}(t) \tag{4.44}
\end{equation*}
$$

It is more convenient and simple to work with range/
time cotidal models because (i) unlike the amplitude/phase models where 2 x NCON (NCON is the number of constiturnts used) analytical models are needed to describe the tides, only two models are needed to completely describe the tides, (ii) working with range/time cotidal models allows

```
us to use the observed tides at the reference station to reduce soundings instead of the predicted tides.
```

5.0 Data

To test the proposed analytical scheme, there was unfortunately no adequate data immediately available. HowEver, the tidal information for sec:ondary ports on the Bay of Fundy, published in the Canadian Tides and Current Tables, 1978 by the Canadian Hydrographic Service was minimally adequate for testing the analytical range/time cotidal models. This tidal information is given with reference to the Port of Saint John. In Table 5-1, the data as extracted are tabulated for 35 secondary stations (Figure 5-1).

The predicted tides for the Port of Saint John from January $1-15$, 1978, were extracted from the same Canadian Tides and Current Tables, 1978 and treated as observed tides in the computations. The zero hour of the day the observation started is taken as the origin of time and times are given in hours from the origin of time. The observations are treated such that the period of the sounding exercise is covered, in other words, it is assumed that the tides were observed at Saint John throughout the period of the sounding. In Table 5-2, the tides as supposedly observed are tabulated and from Table $2-1$ the following 7 major constituent frequencies are uscd.

Symbol	Frequency (deg./hr)
M_{2}	28.984104
$\mathrm{~S}_{2}$	30.00000

Index No.	Location Name	Zone Time(ZT)	Latitude	Longituda	Mean Range	Range Ratio(r)	Mean Time Diff. (min)	Remark	
0065	Saint John	+4	45	16	-66	04	25.10	1.0	0.0
0001	Outer Wood Is1.	+4	44	36	-66	48	16.60	0.6614	-28.5
0015	Welshpool	+4	44	53	-66	57	16.90	0.6733	+5.0
0040	St. Andrews	+4	45	04	-67	03	22.60	0.9004	+15.5
0060	Partridge Is1.	+4	45	14	-66	03	25.00	0.9960	-10.0
0129	St. Martins	+4	45	21	-65	32	30.15	1.2012	+9.0
0140	Herring Cove	+4	45	34	-64	58	33.25	1.3247	+19.0
0150	Cape Enrage	+4	45	36	-64	47	35.40	1.4104	+17.0
0160	Grindstone Is1.	+4	45	44	-64	37	38.30	1.5359	+20.0
0170	Hopewell Cape	+4	45	51	-64	35	39.90	1.5896	+19.0
0190	Pecks Point	+4	45	45	-64	29	38.70	1.5418	+19.0
0215	Joggins Wharf	+4	45	41	-64	28	38.15	1.5199	+18.5
0225	Cape Capstan	+4	45	28	-64	51	33.05	1.3167	+11.0
0235	West Advocate	+4	45	21	-64	49	32.90	1.3107	-1.0
0240	Cape D'or	+4	45	18	-64	47	36.55	1.4562	+16.5
0245	Port Greville	+4	45	40	-64	56	36.70	1.4622	+30.0
0247	Diggent River	+4	45	24	-64	27	39.50	1.5737	+33.0
0250	Cape Sharp	+4	45	22	-64	23	37.95	1.5120	+48.5
0260	Five Isl.	+4	45	23	-64	08	43.05	1.7151	+56.0
0270	Burnstooat Head	+4	45	18	-63	48	44.30	1.7649	+67.0
0285	Avon Port	+4	45	06	-63	13	45.05	1.7948	+32.5
0290	Cape Blomidon	+4	45	16	-64	21	29.80	1.1873	+46.0
0300	Scots Bay	+4	45	19	-64	26	37.10	1.4781	+14.5

Table 5-1 Bay of Fundy - Tidal Information on Secondary Port.

Index No.	Location Name	Zone Time (ZT)	Latitude	Longitude	Mean Range	Range Ratio (r)	Mean Time Diff. (min)	Remark	
0305	Baxter Harbour	+4	45	14	-64	31	37.4	1.4900	+12.0
0312	Ile Haute	+4	45	15	-65	00	34.15	1.3606	0.0
0315	Margaretsville	+4	45	03	-65	04	31.75	1.2649	-12.0
0320	Parkers Cove	+4	44	48	-65	32	26.60	1.0598	-14.0
0325	Digby	+4	44	38	-65	45	25.25	1.0060	-9.0
0330	Deep Cove	+4	44	24	-65	50	24.00	0.9562	-15.5
0335	Sand Cove	+4	44	30	-66	06	21.15	0.8426	-18.0
0336	East Sandy Narro.	+4	44	29	-66	05	19.10	0.7610	-37.0
0337	Tiverton	+4	44	23	-66	13	17.45	0.6952	-45.0
0340	West Port	+4	44	16	-66	21	18.10	0.7211	-34.0
0345	Lighthouse Cove	+4	44	15	-66	24	17.90	0.7131	-34.0
0353	Church Point	+4	44	20	-66	07	18.10	0.7211	+18.0
0355	Meteghan	+4	44	12	-66	10	16.90	0.6733	+18.0

* Data used in test computations

Table 5-1 (cont'd).

Station: Saint John

Coords.: | Lat. |
| :--- |
| $\underline{\text { Long. }}=4516^{\prime} \mathrm{N}$ |
| $04^{\prime} \mathrm{W}$ |

Time Zone: +4

Date: Jan. 1-15, 1978

Time (Hrs)	Height (m)	Time (Hrs)	Height (m)	Time (Hrs)	Height (m)
03.833	7.4	128.500	8.1	253.167	8.4
10.250	1.3	134.833	0.6	259.333	0.2
16.250	7.3	141.083	7.7	265.500	8.0
22.350	1.2	147.333	0.8	271.917	0.6
28.667	7.4	153.417	8.3	278.000	8.1
35.00	1.2	159.833	0.3	284.333	0.4
41.250	7.3	166.083	7.8	290.500	7.8
47.250	1.2	172.167	0.6	296.667	0.8
53.500	7.6	178.25	8.4	302.833	7.8
59.917	1.2	184.917	0.2	309.083	0.7
66.083	7.3	190.917	8.0	315.333	7.6
72.417	1.1	197.00	0.5	321.500	1.0
78.583	7.7	203.333	8.5	327.750	7.4
84.833	1.0	209.667	0.1	334.167	1.0
91.083	7.4	215.750	8.1	340.250	7.4
97.417	1.1	222.083	0.4	346.500	1.3
103.583	7.9	228.167	8.5	353.000	7.1
109.915	0.8	234.667	0.1	359.167	1.3
116.167	7.5	240.750	8.0		
122.333	0.9	246.915	0.5		

Table 5-2 Tide Observations.

Symbol	Frequency (deg. $/ \mathrm{hr}$)
O_{1}	13.943036
$\mathrm{~K}_{1}$	15.041069
P_{1}	14.958931
$\mathrm{~K}_{2}$	30.082137
$\mathrm{~N}_{2}$	28.439730

5.1 Computations and the Results

The computations have been completed in three steps. First, least squares approximations were done to determine the coefficients of the polynomials that will predict the range ratio (r_{i}) and the time difference (correction to time) at a point $P_{i}\left(\phi_{i}, \lambda_{i}\right)$. Second, a least squares polynomial approximation of the observed time series at the reference station (Table 5-2) was completed to determine the coefficients of the polynomial that will predict the height of tide $\bar{h}_{0}(t)$ at the reference station at any time $t \varepsilon M$. Finally, using the results of the first two steps. the observed geodetic coordinates at a point $\mathrm{P}_{\mathrm{i}}\left(\phi_{i}, \lambda_{i}\right)$ and the observed time at the location, the height of tide at the ship was computed for the determination of the reduced depth.
5.1.1 Determination of the Coefficients of the Approximating Polynomials

Of the 35 secondary gauge stations spread around the Bay of Fundy, 21 of them that are located around the main body ofthe Bay were used. Because of the intervening
peninsula which bifurcates the Bay at about longitude $64^{\circ} 55^{\prime}$, the tidal wave propagation have been greatly affected along the two branches. A single analytical cotidal model for the entire area could not therefore be produced. The Bay has been divided into three sections numbered I, II and III in Figure $5-1$. We have used the 21 secondary stations to model section I (those stations marked with * in Table 5-1 under remarks column). It should be noted that the origin of the local Cartesian coordinate system is approximately at the centre of the area being modelled $\left(\phi_{0}=45^{\circ} 05^{\prime} 00 N\right.$, $\left.\lambda_{0}=65^{\circ} 35^{\prime} 00 W\right)$. The data at the reference station (Saint John) was not fixed giving a total of 22 data points for the approximation.

Using equation 4.11 , it was deduced that the highest degree of polynomial possible with 22 data points is 3 , giving a total of 16 coefficients and 6 degrees of freedom. This does not however mean that the polynomial of degree 3 will give a better approximation than polynomials of desee 1 or 2. In Table 5-3 the degrees of the polynomials and their associated a posterori variance factors are tabulated. Two of the functions (Range ratio and Function A) have their variance factors reach a minimum at degree 2 , while the variance factor of the third function (Function B) varies more slowly at degree 2. The conclusirn is that the polynomial of degree 2 will give the best approximation with th: s data.

The approximation for time lag required some extra

n	Degree of Freedom (df)	Std. Dev. of Obs. ${ }^{\sigma}{ }_{L}(m)$	$\begin{aligned} & \text { Range Ratio } \\ & \hat{\sigma}_{0}^{2} \end{aligned}$	Function $A=\underset{\alpha_{0}}{\alpha_{0}^{2}} \cos (v)$	Function $B=\underset{\substack{\sigma_{0}^{2} \\ 0}}{\sin (v)}$
1	18	0.1	0.94497	14.02610	20.60978
2	13	0.1	0.84280	12.40109	13.66546
3	6	0.1	1.14585	17.50086	13.43903

Table 5-3 A Posterori Variance Factor for Various Degrees of the Polynomials.
data manipulation. First, the time differences given in minutes were converted to angular measure using the relation

$$
\begin{aligned}
12 \mathrm{hrs} & =360^{\circ} \\
1 \mathrm{hr} & =30^{\circ} \\
1 \mathrm{~min} & =0.5^{\circ}
\end{aligned}
$$

(the Bay of Fundy tide is mainly semi-diurnal). Attempts to approximate the time lag converted to angular measure yielded large variance factors which of course decreased with increase in the degree of the polynomial. Unfortunately the highest degree of polynomial with the data available is 3. The conclusion reached was that the time lag distribution is not simple enough to be approximated by lower degrees of the polynomials.

From Chapter II

$$
\begin{align*}
h(t) & =\frac{1}{2} R \cos \left(\omega_{k} t+\alpha_{k}\right) \\
& =\frac{1}{2} R \cos \alpha_{k} \cos \omega_{k} t+\frac{1}{2} \Gamma \sin \alpha_{l} \sin \omega_{k} t \\
& =A \cos \omega_{k} t+B \sin \omega_{k} t \tag{5.1}
\end{align*}
$$

where

$$
\begin{align*}
& A=\frac{1}{2} R \cos \alpha_{k} \tag{5.2}\\
& B=\frac{1}{2} R \sin \alpha_{k} \tag{5.3}
\end{align*}
$$

α_{k} is time lag (or phase lag), and R is the mean tide range at the station.

Also

$$
\begin{equation*}
\alpha_{k}=\operatorname{Arctan}(B / A) \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2} R=\left(A^{2}+B^{2}\right)^{1 / 2} . \tag{5.5}
\end{equation*}
$$

A and B can therefore be evaluated at each station using equations 5.2 and 5.3 respectively. We can now seek for the polynomials that can predict A and B at any point P_{i} ($\phi_{\mathrm{i}}, \lambda_{\mathrm{i}}$). Once A and B are predicted, the predicted time lag (phase lag) can be obtained using equation 5.4. The associated variance (assuming no correlation between A and Beg. $\sigma_{A B}=0$) is given by

$$
\begin{equation*}
\sigma_{\alpha}^{2}=\left(\frac{\partial \alpha}{\partial A}\right)^{2} \sigma_{A}^{2}+\left(\frac{\partial \alpha}{\partial B}\right)^{2} \sigma_{B}^{2} \tag{5.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{\partial \alpha}{\partial A}=\frac{1}{1+(B / A)^{2}} \times\left(-B / A^{2}\right)=\frac{B}{A^{2}(1} \frac{B}{\left.+(B / A)^{2}\right)}, \tag{5.7}\\
& \frac{\partial \alpha}{\partial \dot{B}}=\frac{1}{1+(B / A)^{2}} \times \frac{1}{A}=\frac{1}{A\left(1+(B / A)^{2}\right) .} \tag{5.8}
\end{align*}
$$

σ_{A}^{2} and σ_{B}^{2} are prediction variances of A and B respectively from the least squares approximations. For weighting, is was assumed that all the stations have been observed independently with equal amount of care. The standard error of the observed range was set at 0.1 m .

If observed data is used, it is pertinent to note the following:
(i) The standard error of the observed mean range should be computed from the observed data using the relation

$$
\begin{equation*}
\sigma_{R}=\sqrt{ }\left(R_{m D}-\bar{R}_{m}\right)^{2} / n \tag{5.9}
\end{equation*}
$$

where $R_{m D}$ is the daily mean range, \bar{R}_{m} is the mean of mean ranges, n is the number of observations.
(ii) A and B should be computed from equation 5.1 in the least squares sense using observed heights and the dominant constituent frequency in the semi-diurnal or diurnal band, depending on the type of tide.

In Table 5-4, the Fourier coefficients and their associated standard deviations for the range ratio and time lag are tabulated. The last four Fourier coefficients in the range ratio and function A have been eliminated, and in function B, two of the Fourier coefficients have been eliminated in the middle. In Table 5-5, the original coefficients of the polynomials are tabulated. Because of the discarding of the last four Fourier coefficients in the range ratio and function A, only five original coefficients can be recovered. In function B where the Fourier coefficients discarded are not the last ones, all the 9 original coefficients were recovered. (Note, each Fourier coefficient was tested against its standard deviation)

To compare the analytical cotidal model with other cotidal charts, the area was divided into a rectangular grid of 10^{\prime} latitude and 10^{\prime} longitude (Figure 5-2), and the values of range ratios (r) and time lags have been

RAHGERATIO		TIME LAG			
Coeff. ($\mathrm{C}_{\text {r }}$)	${ }^{\circ} \mathrm{C}_{r}$	Coeff. (C_{A})	${ }^{\sigma} C_{A}$	Coeff. $\left(\mathrm{C}_{3}\right)$	${ }^{\circ} C_{B}$
1.049	0.01957	3.970	0.07508	0	0
$0.4623 \mathrm{E}-5$	0.330E-6	0.1783E-4	$0.1265 \mathrm{E}-5$	$0.4906 \mathrm{E}-5$	0.1237E-5
$0.1940 \mathrm{E}-10$.6191E-11	$0.7554 \mathrm{E}-10$	$0.2375 \mathrm{E}-10$	0.7091E-10	$0.2321 \mathrm{E}-10$
$0.2126 \mathrm{E}-5$	0.5570E-6	$0.8618 \mathrm{E}-5$	$0.2138 \mathrm{E}-5$	$0.3977 \mathrm{E}-5$	0.2089E-5
-0.2648E-10	0.1350E-10	-0.1140E-9	$0.5178 \mathrm{E}-10$	0	0
0	0	0	0	0.1728E-14	0.1004E-74
0	0	0	0	0.2869E-9	0.1042E-9
0	0	0	0	0.2024E-14	$0.1582 \mathrm{E}-14$
0	0	0	0	-0.5218E-19	0.3350E-19

Table 5-4 Fourier Coefficients After Discarding those of them greater than their Standard Deviations.

RANGE RATIO		TIMELAG			
Coeff. (C_{r})	${ }^{6} C_{r}$	Coeff. ($\mathrm{C}_{\text {A }}$)	${ }^{\circ} C_{A}$	Coeff. (C_{B})	${ }^{\circ} \mathrm{CB}$
1.120	0.03537	4.264	0.1357	-0.5691	0.16978
$0.4041 \mathrm{E}-5$	0.5680E-6	$0.1550 \mathrm{E}-4$	0.2179E-5	0.8730E-5	$0.3614 \mathrm{E}-5$
$0.1364 E-10$	$0.7644 \mathrm{E}-11$	0.5374E-10	$0.2932 \mathrm{E}-10$	$0.1484 \mathrm{E}-9$	$0.4318 \mathrm{E}-10$
$0.1247 \mathrm{E}-5$	$0.7150 \mathrm{E}-6$	$0.4835 \mathrm{E}-5$	0.2742E-5	$0.1695 \mathrm{E}-4$	0.5526E-5
-0.2648E-10	0.1350E-10	-0.1140E-9	0.5177E-10	-0.2617E-9	0.1938E-9
0	0	0	0	-0.3887E-14	0.2208E-14
0	0	0	0	0.4269E-9	0.1391E-9
0	0	0	0	0.5786E-15	$0.1834 \mathrm{E}-14$
0	0	0	0	-0.5218E-19	0.3349E-19

Table 5-5 The Original Coefficient of the Polynomials and their Associated Standard Deviations.

Figure $5-2$
Grid Numbering

Figure 5-3
Bay of Fundy - Range/Time Co-Tidal Curve from the
Analytical Co-Tidat Models

1．u	LAIIVLE	LCNGItude	frange katio	EIGMA	11mic lás	SIUMA	
1		－ce．le6e 70	C．986543	c．44050－01	－12．330520	コロッ：こっ．	01
＜	45．cくC6．C	$-と \in .1 \leftharpoonup \in \in 70$	C．940E71	$0.361 \in 0-01$	－2¢．00と4E1	0.7 cedo	01
\pm	44．どここご36	－¢ $6.16 \in \in 70$	0.595155	$0.30150-01$	－ 3 －2342ころ	O．1．15	01
4	ム4．ももいビアC	－と 6.1 ecelo	0.340530°	0．2727ن－01	－Ј ．57EEJ1		01
\sim	くさ．1くらとうく	－ct．ccccuc	1．CEぐ16	c．43030－01	－13．6915とを	0.0 ± 190	01
\checkmark	4 －¢ C Co＝	－$\epsilon \in \cdot \operatorname{cccco}$	c．9E2ce4	0．3624D－01	－26．041555	0.72 とこう	01
7	$44 . と こ ろ こ こ し$	－te．ccocoo	c．943749	c．31450－01	－31．705547	0．$\because 5120$	01
\cdots	44．cceczo	－ce．00Joje	c．904E17	C．25E4D－01	－ 50.424472		01
＇		－6¢．とここころC	1．0ヒス 57	C．413EL－01	－1\％．ちこコと45	0．t3790	01
1）	4さ．しここくらし	－¢ ，8ここころС	1．0こり77E	0．35900－01	－24．c31－82	0.04020	$\because 10$
11		－65．0ころこミ0	C．gCEらとO	c．$=3250-01$	－てと・157とき？		j1
$1<$	44．したじすく		0.964185	c．34010－01	－24．345502	0.53700	01
13	4 5 －10ccoc	－¢E，¢ Є EヒてC	1.107604	0．3と72じ－01	－11．16ここ 16	c．a．zsso	01
14	$45.6 く 6 く し く$	－cE．téte\％	1.021246	0．35150－J1	－20．ど1く5	$0 \cdot 6+200$	01
$1 \because$	$44 \cdot 2 こ ろ こ こ し$	－ce．ccoçu	1．0548ど7	0．3ヒ7どくー0！	－20．0VESして	C－0゙ご）	C！
io		－6E．500000	1．17764\％	0．4110c－31	c． $276 \leq 73$		01
i 1		-6 e．scccoc	1.157 こと	0．3．j25c－01	－と．ら37よじ心		01
10	4ことくくくご	－CE．ECLCOC	1.137400	$0.3+750-01$	－！S．ssecot	0．4 021$)$	01
17	$49 \cdot 635 \mathrm{Sc}$	－CE． coccoc	1.117477	0．3－300－01	－15．とアムざい	U．．．： 6	01
\therefore.	4 ¢．		d． 2 csecd	0．35030－0：	6．641768	0．4．4．02	01

21		－CE．こここここ0	1，2：1718	0．3105i－01	－¢．17と430	2．32272 1
＜ 2	4＊．しくらこう	－と¢・こここミこし	1．15c233	0．35310－01	－10．0122こ5	－．SL20） 1
i． 3	4 E．\＃¢ Jjuc	－te．16ヒビ 0	1．2む40ヵ5	U．42100－01	21．12EもE¢	0．55500 心！
24	45．$=: 3036$	－¢－1c0670	1.277837		と．3012cs	3．36y3： 31
$\cdots 8$	ムE． 160 ¢		1．27C7ソ0	0．2587Lー01	－1．2171ど	いのこてミニン $0:$
こ	4．．いいいくく		1．263743	－ 3 3csuc－01	－こ．0こしくと4	－04198）01
c． 7	4E．	－tE．ここちcoo	1．3357t6	－ごさこてじーコ1	$16.4 こ こ 540$	－JSUう）し1
－	いことこここここし	－ $6 \operatorname{csccccc}$	1.035157	C．2831L－01	7．2うど4も7	O．？c40\％ 1
\cdots	4s．isicto	－65．こccccc	1．334 47	0．3：24－10－01	3．ぐ1く4アど	－． 20.00001
\therefore	，¢．－こしくこく	ーとム．とここここし	1.351325	0．431\％に－31	$1 \mathrm{coylc口us}$	」．ひくこんス vi
\therefore ：		－－」•dここここし	1．357150	c．31／0レ－01	7．417く，	
－	いE．．6－clC		1．4C2ss4	c．4cs70－01	と．うりことこ1	3．313j 3
4		－ 6 c．16－ct 70	$0.80 .365 \%$	U．2351L－01		－ $0601 \% 01$
4	ッち．しくしくい	－CE．ミミこここ	0.003441	c．3018じ－ 31		－7727－ 2
$\cdots \cdot$		－－．．ここここせ	－0．351こミニ	C．2505u－01	－32．び4C57L	
4	44．．．6．c\％		c．755cze	－．273でし01	－30．40265j	－$-77,=11$
\cdots		－－－＝－¢	$\therefore .747117$	－301．1－01	－35．ひインちら」	U．6：1ij il

Table 5－6 Predicted Values at Grid Intersections

Amplituge of the Main Semi-Diurnal Tide in Feet-- $\mathbf{2}^{\prime}$ - - -
Phase Lag of the Main Semi-Diurnal Tide - - 150° \qquad
($30^{\circ}=$ Approx. 1 hr . in time)

Figure 5-4

The Average Progression of Semi-Diurnal

Tide in the Bay of Fundy (Dohler, 1966)
predicted at each grid intersertion. The co-range curves and the co-time curves were plotted as shown in Figure 5-3.

Figure 5-2 shows the grid numbering, and in Table 5-6, the predicted values at each grid intersection and their associated standard deviations are tabulated. The cotidal curves from the proposed analytical models compared favourably with the cotidal curves (Figure 5-4) taken from 'Tides in Canadian Waters' [Dohler, 1966] showing the progression of semi-diurnal tides in the Bay of Fundy.

5.1.2 Least Squares Polynomial Approximation of Observed Time Series at the Reference Station

In this case, the heights of the tide defined at discrete times $\left(t_{i}\right)$ in the time interval M are given and it is required to determine the coefficients of the polynomial that will best predict the height of tide $h(t)$ at any other time $t \varepsilon M . \quad A$ one dimensional trignometric polynomial (Eqn. 2.30 , Chapter II, Section 2.2) and the 7 constituent frequencies listed on page 82 have been used. The number of coefficients is given by

$$
\begin{equation*}
U=2 \mathrm{Ncon}+1 \tag{5.10}
\end{equation*}
$$

where Ncon is the number of constituent frequencies being used. For weighting, it was assumed that each height was observed independently, with equal amount of care and precision, and $\sigma_{h(t)}=0.05 \mathrm{~m}$. The weight matrix is therefore

$$
\underset{\operatorname{mxm}}{\mathrm{p}}=\operatorname{Diag}\left(\begin{array}{llll}
\frac{1}{\sigma_{h_{1}}^{2}} & \frac{1}{\sigma_{\mathrm{h}_{2}}^{2}} & \cdots & \frac{1}{\sigma_{\mathrm{h}_{\mathrm{m}}}^{2}} \tag{5.11}
\end{array}\right)
$$

In Table 5-7, the Fourier coefficients and the recovered coefficients of the approximating polynomial of the observed time series, and their associated standard deviations are tabulated. Two Fourier coefficients were discarded in the middle of the series thus all the 15 original coefficients were recovered.

5.1.3 Tidal Reduction

For this set of computations, simulated sounding observations (corresponding in location to the 22 data points and with all observations made within the time interval M) were used to illustrate a proposed reduction algorithm. At each sounding location i, the depth (D_{i}), the time (t) and the geodetic coordinates (ϕ_{i}, λ_{i}) or the local Cartesian coordinates $\left(x_{i}, y_{i}\right)$ are observed.

The arguments of the approximating polynomials for range ratios and time lags are the local Cartesian coordinates (x, y) and the argument of the approximating polynomial for the heights of tide at the reference station is the time (t). With the polynomial coefficients and their associated standard deviations stored in the computer, only the arguments (x_{i}, y_{i}) are needed to predict the range ratio $\left(r_{i}\right)$ and the time lag $\left(t_{c}\right)$. The time lag is, in a sense, the correction to be applied to the observed time at the ship (sounding location i) to get the equivalent time at the reference station. With the equivalent time at the reference station computed, the height of the tide at the reference station is predicted

FOURIER COEFFS. AFTER TEST AGAINST THEIR STD. DEVS.		COEFFICIENTS OF THE ORIGINAL POLYNOMIAL	
Coeff. (F_{C})	$\begin{gathered} \text { Std. Dev. } \\ \sigma_{C} \\ \hline \end{gathered}$	Coeff. (c)	Std. Dev.
4.279	$0.5861 \mathrm{E}-2$	4.279	0.6227E-2
-5.339	$0.9072 \mathrm{E}-2$	-1.951	0.1423
2.335	0.02048	2.226	0.1081
0.4590	0.9760E-2	-0.1756	0.2113
-0.0496	0.8784E-2	0.2592	0.3972
0.0360	$0.3436 \mathrm{E}-2$	0.0678	0.0100
-0.0909	$0.8295 \mathrm{E}-2$	-0.1031	$0.8507 \mathrm{E}-2$
-0.1338	0.8309E-2	-0.2305	0.0319
0.1584	0.8360E-2	0.0335	0.0322
0	0	0.1392	0.0382
0	0	0.0832	0.0229
-0.4193	0.0954	0.4132	0.1602
0.9868	0.1508	-0.0302	0.3586
0.4479	0.0840	0.7741	0.1272
0.4300	0.1259	0.4300	0.1259

Table 5-7 Coefficients of the Polynomial for the Observed Time Series at the Reference Station.
using the known time as the argument of the predicting polynomial. The height of tide at the ship, which is the required reduction, is obtained using equation 4.43. The reduced sounding is computed using equation 4.44. Applying the law of propagation of errors, the standard deviation of reduced sounding is given by

$$
\begin{equation*}
\sigma_{d_{i}}=\left(\left(\frac{\partial d_{i}}{\partial D_{i}}\right)^{2} \quad{ }^{\sigma}{ }^{2} D_{i}+\left(\frac{\partial d_{i}}{\partial h_{i}(t)}\right)^{2} \sigma^{2} \sigma_{\mathrm{i}}(\mathrm{t})\right)^{1 / 2} \tag{5.12}
\end{equation*}
$$

where ${ }^{\sigma} D_{i}$ is the standard deviation of the depth sounded, $\sigma_{h_{i}}(t)$ is the standard deviation of the predicted height at the $\operatorname{ship}, \frac{\partial d_{i}}{\partial D_{i}}=1$ and $\frac{\partial d_{i}}{\partial h_{i}(t)}=1$. The heights of the tide at the ship, required to reduce the soundings, are tabulated in Table 5-8 along with their estimated standard deviations. The predicted time lags and range ratios are compared with the original data set (observed values) as shown in Table 5-9. At this stage it is important to mention that normality in the distribution of residuals was assumed and chi square tests on the variance factor performed at 95% confidence level. The test passed for the range ratio and observed time series approximations but failed for the time lag. There are several possible reasons for the failure of this test and as such a definite conclusion cannot be made without performing several other statistical tests [Vanicek and Krakiwsky, Charter 13, 1978]. However, it can be concluded from our earlier discussions (section 5.1) that eithe the time lag is not simple enough to bo approximated by the lower order polynomial or the information available is
not sufficient to approximate the time lag. In the present circumstance it may be safer $t 0$ assume σ_{0}^{2} known and equal to 1 , so that

$$
\begin{equation*}
\sum_{\hat{c}}=\sigma_{0}^{2} N^{-1} \tag{5.13}
\end{equation*}
$$

num	1．alituaf	しくべいしだ			1tME Al Htt	ItEl AT Ref．	Hig Matil	TIUE At ShIf	－Stucv
1	4．．jeccco	－じ・とるしくど	12．000	\therefore ○ 50		6．tes	1.403	5.516	O．Ester Jo
a	4こ．うく6しく	－－4．7以ミこミこ	13．ceu	3． 3.5	\therefore－1：4	7．161	1.410	1 c ．1ヵ3	c．52080 0．
z	4」．ぐこここころ		14.0 くり	4.90	4.274	7.218	1．933	11.105	c．55730 00
4	4ち．çいCCO	－cs．cococo	13．730	$4 . e ? 3$	$4 \cdot 75{ }^{2}$	し．¢こ¢	1.335	5.255	C．ECTEL 00
E	4う．－Cbくい	－cercceto	12010	5.117	¢040．	t．314	1．731	8.246	
\＆	4．00に6くじ	－¢ ¢．fこごここう	12．cos	\therefore－5co	6．775	4．こら4	1.100	4． 834	C．45400 CO
7	44．4．6．6し	－－－とこここご	1？．cıv	$25^{5} 5.5$	r．5．31a	4．0．E	10.011	こ．0．7	－．9s291） 00
0	＋4．jしくcci	－cc．10：cio	1）．13）	2E•G3＊	20．0．6	7．3．91	0．0．Es	c．116	0．63200 00
＇	44．413こここ	－cc．cもここここ	12.680	2＇sedec	25．047	7.02 .6	0.829	E．82．8	$0 . E<6=0.00$
10	44．actcer	－tc．こsccco	G－（te）	30．300	30.737	5.819	0.0 cs	3.865	c． $7 \operatorname{cosc} 00$
11	44．ごこししいし	－to．40cccu	9．E00	31.500	$32 . J 20$	3．ET 71	0.643	2.491	U．Eイタ4D
1.	44.3 ごミミ．	－tc．1100ct	ひーモくひ	$\equiv \mathrm{P} .25 \mathrm{c}$	12．425	3.253	0.173	2．53：	0．「：しくら10 0
1.	＋4．000ccou	－ec．lceter	7．しど	ここ．とこコ	こ2．	C．73á	0.121	2.007	－．4y， 1010
14	64．cocicc	－Ce．eccoco	¢．750	33.750	こ4．2ヶ5	1.315	0.65%	0.30 .1	－．こここ4\％U
$1:$		－co．sscocu	3． 3 －	$\therefore 5.167$	2¢．111	1.265	（）． 7 sc 2	0.900	0.3172030
14	－ouccet	－ciecocose	12．0．j	4こ．ごこ	45.0 cu	2.862	－をここて	2．36：	c．5＞0icus
17		－－u．csclco	13．：00	40.583	40.700	1.254	1．c27	1.329	0.4 こutc 30
1！＇	$4 \mathrm{C} \cdot \mathrm{Brat}$	－＋－－¢ここここ	14．2：	145．50？	14E．4．is	2．11\％	1.170	2.470	c．Jubicon
13	as．secest	－1．4．becetic	13．3．30	14.7 .300	14E．SEE	c．C17	1.340	2.714	0.5303 c 3
$\therefore 0$	aboriccuc	－¢4．783コこ3	10．dou	152． 300	152.05	7.340	1.404	10.305	－．9E440 0
c 1	45.4 cecer	－¢ヶ．とこくくくC	15．ごら）	155．517	165．744	1， 13.32	1.306	と．501	C．E34Ci CC
¢ 2	4Soctetcy	－ce．ctets	13．6\％）	150．250	156．300	5．0ヶ， 3	1．0う\％	E．2t7	c． 2341000

Table 5．8 Tidal Reductions

Station Index No	Obs. Time Lag	Predicted Time Lag	Diff.	0 bs . Range Ratio	Predicted Range Ratio	Diff.
0065 (22)	0	-3	+3	1.0	1.032	-0.032
0001 (14)	-28	-32	+4	0.661	0.655	+0.006
0015(15)	+5	+3	+2	0.673	0.752	-0.079
0040(16)	+16	+16	0	0.900	0.827	+0.073
0060(17)	-10	-7	-3	0.996	1.027	-0.031
0129(18)	+9	+8	+1	1.201	1.170	+0.031
0140(19)	+19	+20	-1	1.325	1.346	-0.021
0150(20)	+17	+12	+5	1.410	1.404	0.006
0225(21)	+11	+10	+1	1.317	1.386	-0.069
0235(1)	-1.0	+8	-9	1.311	1.403	-0.092
0240(2)	+16	+8	+8	1.456	1.418	+0.038
0305(3)	+12	+14	-2	1.490	1.538	-0.048
0312(4)	0	+5	-5	1.361	1.335	+0.026
0315(5)	-12	+1	-13	1.265	1.306	-0.041
0320(6)	-14	-16	+2	1.060	1.100	-0.040
0330 (7)	-16	+1	-17	0.956	0.911	+0.045
$0335(8)$	-18	-26	+8	0.843	0.828	+0.015
$0336(9)$	-37	-24	-13	0.761	0.829	-0.068
034(10)	-34	-26	-8	0.721	0.668	+0.053
0345(11)	-34	-31	-3	0.713	0.643	+0.070
0353(12)	+18	-10	+28	0.721	0.778	-0.057
0355(13)	18	+5	$+13$	0.673	0.721	-0.048
Summary:						
Time Lag : $0<$ Diff. $<\|28\|$ Range Ratio : $10.005 \mid<$ Diff. $<\|0.1\|$ Time Lag, RMS of the Diff. (observed-predicted) $=9.44 \mathrm{~min}$ Range Ratio, RMS of the Diff. (observed-Predicted) $=0.0505$						

Table 5-9 Difference Between Predicted and Observed Values.

* Numbers in brackets corresponds to the serial numbers in Table 5-8.

The objective of this worl has been to produce analytical cotidal models, using observed data or existing cotidal charts, which could be stored conveniently in a computer so that when observed sounding data are input, the output would be reduced soundings. The principal advantages of the proposed analytical scheme are the following.
(i) The analytical models can be obtained and updated using the observed data in addition to that of already produced charts. This allows up-dating the model when more observations are available.
(ii) This scheme does not require large computer storage space. For example, instead of storing many digitized numbers, the digitized values are used to determine a few coefficients of the best approximating polynomials.
(iii) These models allow for the rigorous propagation of errors. With associated estimated standard deviations, the reliability of the final result can be easily obtained.
(iv) A degree of flexibility is offered. It is convenient to use data from existing cotidal charts, observations or a combination of the two.

Least squares polynomia] approximation is applied to either
(i) recover a function $F(x)$ from a known set of its values, or
(ii) to replace the known function in further computations by a more trackable polynomial. The problem of least squares polynomial approximation as applied in this work is that defined by (i) above. It would be interesting to view the problem as in (ii) above and apply it to the Laplace tidal equations to obtain the necessary polynomials.

From the test computations using the data on the Bay of Fundy, the computer effective run time is 28.46 secs and the storage space is 336,136 Bytes for Least squares polynomial approximation for range ratios and time lags. For the polynomial approximation for time series at the reference station the effective run time is 23.03 secs and the storage space is 299,288 Bytes. For the Tidal Reduction therefore we have a total of 42 coefficients and their associated standard deviations to store in the computer. In the program to execute this for 22 sounding stations, the time of execution was 0.76 sec and the storage space used was 14,480 Bytes. The result also shows that the water level at a location $\left(\phi_{i}, \lambda_{i}\right.$! can be predicted with a standard deviation ($\sigma_{h_{i}}$) of 0.5 m or better.

It is recommended that the prediction of tides at the reference station with the polynomial should be done
strictly within the time interval M used in the least squares approximation of the observed series. When extrapolation is required, it is advisable to use the amplitude/ phase analytical cotidal models and carry out the prediction using the procedure described in Chapter II, Section 2.2.

Finally, since the data immediately available was not adequate to fully test the proposed analytical schemes, it is suggested that proper data be obtained to facilitate complete testing.

REFERENC:S

'Admiralty Manual of Hydrographic Surveying,' Vol. 2 (1969) Hydrographer of the Navy, Taunton, Somerset.

Atlantic Tidal Power Engineering and Management Committee, (1969), 'Report on the Feasibility of Tidal Power Development in the Bay of Fundy, Appendix 1 ,' Tides and Tidal Regime.

Balogun, A.A.: (1977), 'Parameterization of Systematic Errors in Terrestrial Geodetic Networks; M.Sc.E Thesis, University of New Brunswick. Fredericton.

Bye, J.A.T and R.A. Heath.: (1975), 'The New Zealand Semidiurnal Tides,' Journal of Marine Research, Vol. 33.
'Canadian Tide And Current Tables,' Vol. I, (1978), Canadian Hydrographic Service, Ottawa.

Cartwright, D., W. Munk, and B. Zetler.: (1969), 'Pelagic Tidal Measurements,' National Institute of Oceanography, U.K.

Christodoulidis D.: (1973), 'Determination of Vertical Crustal Movements From Scattered Relevelings,' M.Sc.E Thesis, University of New Brunswick. Fredericton.

DeWolfe, D.L.: (1977), 'Tidal Measurement Program of the Bay of Fundy-Gulf of Maine Tidal Regime,' Light House \#15, The Journal of the Canadian Hydrographer's Assoriation.

Dohler, G.: (1966), 'Tides in Canadiin. Waters,' Canadian Hydrographic Services, Marine Science Branch, Department of Mines and Technical Surveys, Ottawa.

Dohler, G.C. and L.F. Ku.: (1969), 'Presentation and Assessment of Tides and Water Level records for Geophysicai Investigations,' Symposium on Recent Crustal Movements, Ottawa.

Dronkers, J.J. and J.C. Schonfeld,: (1954), 'Tidal Computations in Shallow Water,' Research Division, Rijkswaterstaat, the Netherlands.

Dronkers, J.J.: (1960), 'Tidal Computations in Coastal Areas,' Delta Project, A symposium; American Society of Civil Engineers, New York.

Dronkers, J.J.: (1964). 'Tidal 'omp:tations in Rivers and Coastal Waters,' North-Holland Publishing Company, Amsterdam.

Dronkers, J.J.: (1970), 'The Morphological Changes in the neighbourhood of Rotterdam Europort and the New Approach Channel,' Paper presented at the Centenary Conference on Ports and Harbour Managements, Calcutta.

Dronkers, J.J.: (1970), 'Research for the Coastal Area of the Delta Region of the Netherlands,' Coastal Engineering Vol. III, pp. 1783-1801.

Dronkers, J.J.:(1972), 'Tidal Theory and Computations,' Hydraulic Dept. of Delta Works, The Hague, the Netherlands.

Freeman, N.G. and T.S. Murty,: (1976), 'Numerical Modelling of Tides in Hudson Bay,' Journal of Fisheries Research Board of Canada 33: 2345-2361.

Gallagher, S. Brent and W.H. Munk,: (1971), 'Tides in Shallow Water and Spectroscopy,' Dept. of Oceanography, University of Hawaii, Honolulu.

Garrett, C. and D. Greenberg,: (1976), 'Predicting Changes in Tidal Regime: The Open Boundary Problem,' Journal of Physical Oceanography, Vol. 7, March 1977.

Garrett, C.J.R. and W.H. Munk.: (1971), 'The age of the tide and the Q of the ocean,' Deep-sea Research, Vol. 18, pp. 493-503, Pergaman Press, Great Britain.

Godin, G: (1972), 'The Analysis of Tides,' University of Tornnto Press, Toronto.

Gordeev, R.G.; B.A. Kagan and E.V. Prlyakov: (1976), 'The Effects of Loading and Self-Attraction on Global Ocean Tides: The Model and the result of a Numerical Experiment,' Journal of Physical Oceanography, Vol. 7, pp. 161-170.

Hendershott, M. and W. Munk: (1970), 'Tides,' Scripps Institution of Oceanography, La Jolla, California.

Hendershott, M.C. (1972), 'The Effects of Solid Earth Deformation on Global Ocean Tides', Journal of Genphysical Research, Vol. 29, pp. 380-402.

Hendershott, M.C. (1972), 'Ocean Tides,' Paper presen'ed at the lst GEOP. Research Conference on Tides, Columbus.

Krakiwsky, E.J. and D.E. Wells. (1971), 'Coordinate Systems in Geodesy'. Lecture \because © te:; \#16, University of New Brunswick, Frederictor

Krakiwsky, E.J: (1975), 'A Synthesis of recent advances in the method of Least Squares,' Lecture notes \#42, Dept. of Surveying Engineering, University of New Brunswick, Fredericton.

Lambert, A.: (1974), 'Eartin Tide Analysis and Prediction by the Response Method,' Journal of Geophysical Research, Vol. 7, \#32, pp. 4952-4960.

Larsen, J.C.: (1977), 'Cotidal Charts for the Pacific Ocean near Hawaii Using F. Plane Solution,' Journal of Physical Oceanography, Vol. 7, pp. 100-109.

Luther S. Douglas and C. Wunsch,: (1974), 'Tidal Charts of the Central Pacific Ocean,' Journal of Physical Oceanography, Vol. 5, 1975.

Mosetti, F. and Manca.: (1972), 'Some Methods of Tidal Analysis,' Inter. Hydro. Review, Vol. 49, Monaco.

Munk, W.H.: (1968), 'Once Again - Tidal Friction,' Journal of Royal Astronomical Society Vol. 9, pp. 352-375, Sunfield and Day Ltd., Sussex.

Munk, W.H. and D.E. Cartwright.: (1966), 'Tidal Spectroscopy and Prediction,' Philosophical Transactions of the Royal Society of London, Vol. 259, pp. 533-581, May 1966.

Munk, W., Snodgrass F. and M. Wimbush.: (1969), 'Tides Offrhore: Transition from California Coastal to Deep-Sea Waters,' Geophysical Fluid Dynamics. Vol. 1, pp. 161-235.

Munk, W.H. and B.D. Zetler.: (1975), 'The Optimum Wiggliness of Tidal Admittances,' Journal of Marine Research, Supp. 33: pp. 1-13.

Nassar M.N. and P. Vanic̄ek.: (1975), 'Levelling and Gravity,' Technical Report No. 33, University of New brunswick, Fredericton.
'Our Restless Tides,' (1977), U.S. Department of Comnerce, National Oceanic And Atmos heric Administration, National Ocean Survey.

Schwarz, II. R.: (1973), 'Numerical Analysis of Symmetric Matrices,' Prentice-Hall, Inc. New Jersey.

Thomson, D.B.:(1974), 'Mean Sea Level,' Dept. of Surveying Engineering, University of New Brunswick, Fredericton.

Tinney, B.: (1977), 'Automated Tidal Reduction,' Light House \#15, Journal of the Canadian Hydrographers' Association.

Vanicek, P.: (1970), 'Further Development and Properties of the Spectral Analysis by Least Squares,' Department of Surveying Engineering, University of New Brunswick, Fredericton.

Vanicek, P.: (1973), 'The Earth Tides,' Lecture Note \#36, Dept. of Surveying Engineering, University of New Brunswick, Fredericton.

Vaniceek, P.: (1974), 'Introduction to Adjustment Calculus,' Lecture Note \#35, Dept. of Surveying Engineering, University of New Brunswick, Fredericton.

Vanicek, P. and D.E. Wells,: (1972), 'The Least-Squares Approximation and Related Topics,' Lecture Note \#22. Dept. of Surveying Engineering, University of New Brunswick, Fredericton.

Vanicek, P. and E.J. Krakiwsky.: (in prep.), 'The Concept of Geodesy'.

Von Arx, S.W.: (1962), 'An Introduction to Physical Oceanography,' Addison-Wesley Pub. Comp. Reading.

Wells, D.E. and E.J. Krakiwsky.:(1971), 'The Method of Least Squares,' Lecture Note \#18, Dept. of Surveying Engineering, University of New Brunswick, Fredoricton.

Wemelsfelder, P.J. (1970), 'Mean Sei Level as a fact and as an illusion,' Symposium on Coastal Geodesy, Munich.

White, J.C.E. (Lt. Commander): (1971), 'Hydrographic and Tidal Information for Deep Draught Ships In a Tidal Estuary,' Paper presented at the XIIIth Inter. Cong. of Surveyors, Wiesbaden.

Zetler, B., D. Cartwright and W. Munk.: (1969), 'Tidal Constants Derived from Response Admittances', Sixth International Symposium on Earth Tides, Strasbourg.

Zetler, D.B. and R.A. Cumming: (1966), 'A Harmonic Method for predicting Shallow-Water Tides,' Journal of Marine Research, 25(1). pp. 103-113.

Zetler, B. et al: (1975), 'Mode T'ides,' Journal of Physical Oceanography, Vol. 5, 430-441.

> A P P E N D I C E S

Least squares polynomial approximation is applied to either
(i) recover a function $F(x)$ from a known set of its values, or
(ii) replace the known function $F(x)$ in further computations by a more trackable polynomial.

The problem of least squares polynomial approximation as used in this report is that defined by (i) above. A brief outline of the least squares approximation theory due mainly to Vanicek and Wells, [1972] is here given.

Given:
(i) a function F defined on a finite set M $M \equiv\left\{X_{1} X_{2} \ldots X_{m}\right\}, \quad M$ discrete $M \equiv[\mathrm{a}, \mathrm{b}]$, M compact
(ii) a base $\psi=\psi_{1}, \psi_{2} \ldots \psi_{u}$, a set of u linearly independent prescribed functions from the functional space $G m$,
(iii) a weight function W, defined and non-negative on M ,
then the problem of least squares approximation is to determine the vector of coefficient ($C_{1}, C_{2} \ldots C_{u}$) of a generalized polynomial Pn which minimizes the weighted distance $P(F, P n)$ defined as

$$
\begin{align*}
& P(F, P n) \equiv\left(\sum_{X \in M} W(x)(F(x)-P n(x))^{2}\right)^{1 / 2}, \\
& P(F, P n) \equiv\left(\int_{M} W(x)(F(x)-P n(x))^{2}\right)^{1 / 2} . \tag{1.1}
\end{align*}
$$

The approximating polynomial is given by

$$
\begin{equation*}
P n=\sum_{i=1}^{n} C_{i} \psi_{i} \tag{I.3}
\end{equation*}
$$

The scalar product of two functions $G, H \varepsilon G m$ is defined as

If the product of two functions $G, H \varepsilon G m$ is zero, then the functions are orthogonal. If the base functions are orthogonal,

If $i=j$, it means

$$
\begin{aligned}
& k_{i}=\left\langle\psi_{i} \psi_{i}\right\rangle=\left\|\psi_{i}\right\|^{2}, \varepsilon E^{+} \\
& \text {or } \\
& \left\langle\psi_{i} \psi_{i}\right\rangle=\left\|\psi_{i}\right\|^{2} \delta_{i j},
\end{aligned}
$$

where $\delta_{i j}$ is known as Kronecker delta and is defined as

Returning to the problem of least squares approximation we are seeking for the coefficients $C_{1}, C_{2} \ldots C_{u}$ of the polynomial Pn that would make the distance $||P n-F||$ the minimum. This means minimizing the Eucleidean distance

$$
\sum_{X \in M} W(x)(F(x)-P n(x))^{2}
$$

with respect to $C_{1}, C_{2} \ldots C_{u}$. The condition is written as

When the partial derivatives of the above w.r.t individual C's are equated to zero, the minimum distance is obtained.

Minimizing we have

$$
\frac{\partial \sum_{x \in M}^{\partial C_{i}}}{}\left[W(x)\left(\sum_{j=1}^{u} C_{j} \psi_{j}(x)-F(x)\right)^{2}\right]
$$

$$
=2 \sum_{X \in M} W(x) \sum_{j=1}^{u}\left(C_{j} \psi_{j}(x)-F(x)\right) \frac{\sum_{j} C_{j} \psi_{j}(x)}{\partial C_{i}}
$$

$$
=2 \sum_{X \in M} W(x) \sum_{j=1} C_{j} \psi_{j}(x)-F(x) \psi_{i}(x)
$$

$$
=2 \sum_{X} W(x) \sum_{j}^{u} C_{j} \psi_{j}(x) \psi_{i}(x)-2 \sum_{X} W(x) F(x) \psi_{i}(x)
$$

$$
\begin{equation*}
=0 \tag{I.8}
\end{equation*}
$$

From the definition of the scalar product, the above can be written as

$$
\begin{align*}
& \text { Min } \\
& C_{1}, C_{2}, \ldots C_{u} \in \rho^{2}(P, F) \\
& =\mathrm{Cin}_{1}, \mathrm{C}_{2}, \ldots \mathrm{C}_{\mathrm{u}} \in \mathrm{E} \sum_{\mathrm{X} \in \mathrm{M}} \mathrm{~W}(\mathrm{x})(\operatorname{Pn}(\mathrm{x})-\mathrm{F}(\mathrm{x}))^{2} \\
& =\operatorname{Min}_{1}, C_{2}, \ldots C_{u} \in E \sum_{X \in M} W(x) \sum_{i=1}^{u}\left(C_{i} \psi_{i}(x)-F(x)\right)^{2} . \tag{I.7}
\end{align*}
$$

$$
\begin{equation*}
\sum_{j=1}^{u}\left\langle\psi_{i}, \quad \psi_{j}\right\rangle C_{j}=\left\langle F, \quad \psi_{i}\right\rangle \tag{1.9}
\end{equation*}
$$

Equation I. 9 gives the system of normal equations which can be solved to obtain the coefficients $C_{1}, C_{2}, \ldots C_{u}$. Putting I. 9 in matrix form we have

$$
\begin{equation*}
\left[\left\langle\psi_{i} \psi_{j}>\right] C=\left[\left\langle F, \psi_{i}\right\rangle\right] .\right. \tag{I.10}
\end{equation*}
$$

Letting

$$
\begin{equation*}
N=\left[\left\langle\psi_{i}, \quad \psi_{j}\right\rangle \bar{J}\right. \tag{I.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{U}=\left[\left\langle\mathrm{F}, \psi_{\mathrm{i}}>\right]\right. \tag{I.12}
\end{equation*}
$$

the solution of normal equation is given by

$$
\begin{equation*}
\mathrm{C}=\mathrm{N}^{-1} \mathrm{U} \tag{I.13}
\end{equation*}
$$

N is the Gram's matrix and Gram's determinant $\operatorname{det}(N) \neq 0$ because we are dealing with linearly independent base functions Ψ. Equation 1.13 therefore has a ique solution.

If we are dealing with orthogonal system of base
functions Ψ^{*}, then

$$
N^{*}=\operatorname{Diag}\left[\left\langle\psi_{i}^{*} \psi_{i}^{*}\right\rangle\right]=\operatorname{Diag}\left(| | \psi_{i}^{*}| |^{2}\right)
$$

The solution of the normal equation becomes trivial and is given by

$$
C^{*}=\left\langle F, \quad \psi_{i}^{*}\right\rangle /\left|\left|\psi_{i}^{*}\right|\right|^{2}, \quad i=1,2, \ldots \mathrm{u} .(\mathrm{I} .14)
$$

Each Fourier coefficient $C *$ can be solved independently.
The system of base functions ψ often encountered are not usually orthogonal. The system can however be orthogonalised using Schmidt's orthogonalization process. The
procss works as follows:
i) choose

$$
\begin{equation*}
\psi_{1}^{*}=\psi_{1} \quad X \in N \tag{I.15}
\end{equation*}
$$

ii) define

$$
\begin{equation*}
\psi_{2}^{*}=\psi_{2}+\beta_{2,1} \psi_{1}^{*}, \quad X \varepsilon M, \beta_{2,1} \varepsilon E \tag{I.16}
\end{equation*}
$$

Multiplying the above equation $I .16$ by $W \psi_{1}^{*}$ and summing up all the equations for all the X yields

$$
\begin{equation*}
\left\langle\psi_{2}^{*}, \psi_{1}^{*}\right\rangle=\left\langle\psi_{2} \psi_{1}^{*}\right\rangle+\beta_{2,1}\left\langle\psi_{1}^{*}, \psi_{1}^{*}\right\rangle \tag{I.17}
\end{equation*}
$$

To make the system orthogonal, $\left\langle\psi_{2}^{*}, \psi_{\perp}^{*}\right\rangle$ must be zero. The unknown coefficient $\beta_{2,1}$ can be determined from

$$
\begin{equation*}
\beta_{2,1}=\left\langle\psi_{2}, \quad \psi_{1}^{*}\right\rangle /\left\langle\psi_{1}^{*}, \quad \psi_{1}^{*}\right\rangle \tag{I.18}
\end{equation*}
$$

iii) Define next

$$
\begin{equation*}
\psi_{3}^{*}=\psi_{3}+\beta_{3,2} \psi_{2}^{*}+\beta_{3,1} \psi_{1}^{*}, \quad X \varepsilon M, \beta_{3,2}, \beta_{3,1}{ }^{\varepsilon} \tag{I.19}
\end{equation*}
$$

Multiplying by $W \psi_{1}^{*}$ and W_{2}^{*} yield respectively

$$
\begin{aligned}
& \left\langle\psi_{3}^{*}, \psi_{1}^{*}\right\rangle=\left\langle\psi_{3}, \psi_{1}^{*}\right\rangle+\beta_{3,2}\left\langle\psi_{2}^{*}, \psi_{1}^{*}\right\rangle+\beta_{3,1}<\psi_{1}^{*}, \psi_{1}^{*}> \\
& \left.\left\langle\psi_{3}^{*}, \psi_{2}^{*}\right\rangle=\left\langle\psi_{3}, \psi_{2}^{*}\right\rangle+\beta_{3,2}<\psi_{2}^{*}, \psi_{2}^{*}\right\rangle+\beta_{3,1} \psi_{1}^{*}, \psi_{2}^{*}>
\end{aligned}
$$

By reason of orthogonality,

$$
\left\langle\psi_{3}^{*} \psi_{1}^{*}=\left\langle\psi_{2}^{*}, \psi_{1}^{*}\right\rangle=\left\langle\psi_{3}^{*}, \psi_{2}^{*}\right\rangle=\left\langle\psi_{1}^{*}, \psi_{2}^{*}\right\rangle=0\right.
$$

We the refore have that

$$
\left\langle\psi_{3}, \psi_{1}^{*}\right\rangle+\beta_{3,1}\left\langle\psi_{1}^{*}, \psi_{1}^{*}\right\rangle=0
$$

$$
\left\langle\psi_{3} \psi_{2}^{*}>+\beta_{3,2}<\psi_{2}^{*}, \psi_{2}^{*}=0\right.
$$

that is

$$
\begin{align*}
& \beta_{3,1}=\left\langle\psi_{3}, \psi_{1}^{*} /\left\langle\psi_{1}^{*}, \psi_{1}^{*}\right.\right. \tag{I.20}\\
& \beta_{3,2}=\left\langle\psi_{3} \quad \psi_{2}^{*}>/\left\langle\psi_{2}^{*}, \psi_{2}^{*}\right.\right. \tag{I.21}
\end{align*}
$$

The process can be generalized for any coefficient $\beta_{j i}$ thus

$$
\begin{equation*}
\beta_{j i}=\left\langle\psi_{j} \psi_{i}^{*}\right\rangle /\left\langle\psi_{i}^{*} \psi_{i}^{*}\right\rangle \tag{I.22}
\end{equation*}
$$

Expressing the original system in terms of the orthogonal system we have

$$
\begin{aligned}
\psi_{1} & =\psi_{1}^{*} \\
\psi_{2} & =-\beta_{2,1} \psi_{1}^{*}+\psi_{2}^{*}, \\
\psi_{3} & =-\beta_{3,1} \psi_{1}^{*}-\beta_{3,2} \psi_{2}^{*}+\psi_{3}^{*} \\
\cdot & \cdot \\
\cdot & \psi_{u}
\end{aligned}
$$

Putting it in matrix form we have

$$
\left[\begin{array}{l}
\psi_{1} \tag{I.23}\\
\psi_{2} \\
\psi_{3} \\
\psi_{u}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-\beta_{2,1} & 1 & 0 & \cdots & 0 \\
-\beta_{3,1}, & \beta_{3,2}, & 1 & \cdots & 0 \\
-\beta_{u, 1}, & -\beta_{u, 2} & \beta_{u, 3} \cdots & 1
\end{array}\right]\left[\begin{array}{c}
\psi_{1}^{*} \\
\psi_{2}^{*} \\
\psi_{3}^{*} \\
\psi_{u}^{*}
\end{array}\right]
$$

$\beta_{j i}$ is defined by equation I. 22 .

$$
181
$$

Letting

$$
\underset{\mathrm{uxu}}{\mathrm{u}}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-\beta_{2,1} & 1 & 0 & \cdots & 0 \\
-\beta_{3,1} & -\beta_{3,2} & 1 & \cdots & 0 \\
-\beta_{u, 1} & -\beta_{u, 2} & -\beta_{u, 3} & \cdots & 1
\end{array}\right] \text {, }
$$

equation I. 23 is written as

$$
\begin{equation*}
\psi=\mathrm{B} \psi^{*} \tag{I.24}
\end{equation*}
$$

B is the transformation matrix that transforms non orthogonal system to orthogonal system. It is an $u x u$ triangular matrix and the determinant $\operatorname{det}(B) \neq 0$.

If we have that

$$
\Psi^{\top} \mathrm{T}=\Psi *^{\mathrm{T}} \mathrm{C} *
$$

using equation I. 24 , we can transform the Fourier coefficients into the coefficients of the original base functions, thus

$$
\begin{gather*}
\left(\mathrm{B} \Psi^{*}\right)^{\mathrm{T}} \mathrm{C}=\Psi^{*} \mathrm{C}^{*} \\
\mathrm{C}=\left(\mathrm{B}^{\mathrm{T}}\right)^{-1} \mathrm{C}^{*} \tag{I.25}
\end{gather*}
$$

The computer programs used in the computations are in three parts, namely
(i) Least squares polynomial approximation for cotidal curves,
(ii) Least squares polynomial approximation of observed time series at the reference station, (iii) Tidal reductions.
II. 1 Least Square Polynomial Approximation for the Cotidal Curves

Figure $A-1$ is the flow chart describing the program. INPUTS
lst card, FORMAT(5X, 7I4)
ID - The dimension of the polynomial
N - The degree of the polynomial
M - Number of data points for the approximation
NPP - Number of grid points for prediction. If there is no prediction $N P P=0$

INDEX - Code for the type of function to be approximated. If index $=1$, the polynomial approximation for range ratio (amplitude) is performed. If index $=2$, the polynomial approximation for time lag (phase lag) is performed.

Figure II-1 Polynomial Approximation of Cotidal Curves - Flow Chart

ID - Code for orthogonal or non ortiogonal solution, l - for orthogonal solution

2 - for non ortnogonal solution.
ITEST - Code for testing Fourier coefficients 0 - for no test

1 - against its Standard Deviation
2 - against 2 times its Standard Deviation
3 - against 3 times its Standard Deviation.

2nd Card: FORMAT(5X, I5, 5X, F10.6, 5X, F10.6 5X, F10.6, 5X, F10.6)

This card contains the identification number, latitude ϕ and longitude λ of the reference station, the range ratio (amplitude) and time lag (phase lag) at the reference station.
n cards: Format as in the second card. Each card contains, station identification number, latitude (ϕ), longitude (λ) of the data points, the range ratio (amplitude diff.) and the time lag (phase lag diff.) at each data.

NPP cards: FORMAT(5X, I5. 5X, F10.6, 5X, F10.6) If there are no prediction at the grid points, these cards will be omitted. Each card contains the grid point numuer, the geodetic coordinates of the grid

```
points (\phi, \lambda).
```


SUBROUTINES:

SUBROUTINE CARTE; computes the local cartesian coordinates ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) given the geodetic coordinates of the points (ϕ_{i}, λ_{i}), the geodetic coordinates of the origin of the local system (ϕ_{0}, λ_{0}) and the dimensions of the ellipsoid.

SUBROUTINE VANDE - computes the prediction matrix given the geodetic coordinates (ϕ, λ) of the prediction points, the number of prediction points, the dimension of the polynomial and the number of coefficients.

SUBROUTINE APPROX. - does the Least Square approximation of the function given the number of coefficients, the number of data point, the Vandermonde's matrix, the weight matrix and the functional values.

SUBROUTINE ORTHO - orthogonalizes the Vandermonde's matrix using Gram Schmidt method, computes the Fourier Coefficients of the orthogonalized matrix, derives the coefficients of the Vandermonde's matrix, computes the variances of the Fourier Coefficients and the variance-covariance matrix of the original coefficients.

SUBROUTINE PRED. - predicts the function values at the grid points and computes the variance-covariance matrix of the prediction.

```
@JUG CKENMA/O゙
```



```
    PFLCFANE TL CCINSTFUCT ANALYTICAL COTIDAL CHARTS USING ANALYSED *
            IICALCCNSTANT LF FANÖE HATIDS AND TIME DIFF. REF.TUU A STANOAR*
            C STATICN CH CIGITIZEC VALULS FFUM EXISTING COTIDAL GHART
        THISLSES THE LAT. AND LCNG. CF CISCRETE POINTS,THE AMPL.AND
        PHASE LAGS CF FANGE RATICS ANE TIME OIFFSO AT THE PUINTS AS
        IFE INFUTS TC CCMPUTE THE CLEFFICIENTS CFF THE BEST PREDICIING
        PLLYNCNIALS AT ANY CIFER PCINT.
        GLICE IO SUNE NETATICNS USKC IN TFE FPOGRAM
        INPLT:
            FHI - LATITUUE GF STM.I
            ALCA - LCNGITULE CF STN. I
            FH,FG - ANPLITUDE AND FHASE LAG LR RANGE RATIO ANL TIME
                    OIFF.IN NINLIES CF TIME.
                            IU - DINENSIUN UF THE AFPFIOX.
            - DEGFEE CF THE FCLYNGMIAL
            * - NUNEEF CF OESERVATICNS
            IC - CLEE FCR CRTHCGONAL CR NCN CRTHOGONAL SOLUTICN.
                    1 - FOF UFTHUGCNAL SQL. 
                    COOE FOF TESTING FOURIER COEFFS.
                    O - NC TEST
                    1 - AGAINST ITS STD DEV.
                    2 - AGAINST 2 TIMES ITS SID. DEV.
                    3 - AGAINST 3 TIMES ITS SID. DEV.
            NPF: - NOE OF GRICFFGINTS FGR PFEDICIIONOIF THERE IS
        OC.TFLI:
            L - NC&LF CUEFFICILNTS FEQUIREO. (WHEN THE NQ&CLF COEFF**
                    EXCEEC THE NC OF CBS THE PRCGRAM IS ABORTEDI
            C,CA,CE - VECTORS CF CCEFFICIENTS.
    SEE SLLRCLTINE URTHC FUR NURE EXPLANATIGNS OF OUTPUT NUTATIGPS
```



```
        *
                    MAIN FGOGHAME
            INHLICIT FIEAL*&(A-H,O-Z)
            UINENSICNPHI(SO),ALON(5O),FH(50),FG(5C),A(50,50),P(50,50)
            -CUVAF(5C,5E),VAR(50,50),C(50),EN(50,5C),X(50),Y(E0),V(50).
```



```
            •A((EC),VAFF(EO)
            LINENSICN ALAT(SO),NL:NG(50),PM(50,SO), PFH(50):PF心(5O)
            CIMENSICN ALFHA(EO,EC:,W(5O),FC(5O),SLMFC(50),SGN(5O),STCP(SO),
```



```
            UIMEASICNFA(50),FG(50),FA2(50),FB2(EC),WA(50),HE(50),CA(50).
    * (b(50),CCA(5C,50),COU(50,50),PFA(50),PFE(50),VAFPA(50.50).
    * VAFivis(SC.5G).E(2.2).AR(50.50),FR(50)
            IKCA=1CA=ILEEICC=EO
            HtiC=2OC2C5.OCO
            FI=3.1415O2もENO
```

```
REAC IN PRGG:ANE SPECIFICATIDN
HEAC (E, 140) IC, N, N, NPP, INCEX: IO.ITEST
FCFMA才(E), 7I4)
CONFLTE NU. CF COEFFICIENTS ANC CEGREE UF PCLY AND DEGREE UF LF FFEELOM. IF DF IS LERO CR NEGATIVE GIVE WARNING AND STOP
\(L=(\Lambda+1) * * 10\)
IU \(F=M-L\)
IF (ILt•LEOC)IFEN OC
FRIAT, 'FFCGRAME SFECIFICATICN INADEQUATE
STLF
ELSE DO
continle
HEAD IN [ATA EN THE STANCARC OR FIEFP STATICN
FEAD (E, 2CU)NLMC, FFIO, ALCNO, FHO,FCU
FCFMAT ( \(5 x, 15,5 x, F 10,6,5 X, F 10,6,5 X, F 10,6,5 X, F 10,6)\)
FCFMAT(EX,IE,5X,F10.6, EX,F10.6)
READ IN DATA FFEM OTHEF STATIGNS
L1 \(1=1, M\)
```



```
CCATINUE
PAINT ALL TFE INPUT DATA
FHINTIUI
```



```
-110', 10x. 1 IME LAG')
```



```
NUNC, PHIU.ALUNC.FHC.FGC
PHINIIOE,NUN(I), FHI(I), ALLN(I), FH(I), FG(I)
CCNIINLE
FFINTIZ1
FCHMAT(//.5X.'LEG.CF PLLY.', EX.'NO.OF OES.'. SX, 'NU.CF CUEFF.',
FEINJIZAN N NLCN
FCrNAT 1 (1) IE \(12 \times\)
FFIN113C
FLFMATK
```



```
(A:L (AFTE (N,PRI,ALON,PHIU,ALONO,X,Y)
DU \(4 \quad:=1, N\)
FFIN 1111,NUN (I), X(I), Y(1)
FUんM, AT (/, 6X, 14, 4X,F15, 6, 7X,F15.6)
CUNTINLE
C
\(1 n=6\)
\(\subseteq 1 C M A=1 \cdot C O C\)
```

 CU E I=1.M
 A(1.\nu)=C.00
 cONTINUE
 LDF=N+1
 OO 7 IRCF=1.N
 ICCP=C
 CU 1FI=1.ICF
 I A = I-1
 CC 14 J=1.ICF
 JA=\-1
 ICCF=ICCF+1
 A(IRCF,I(DF)=x{(RUP)**IA*Y(IRDP)**JA
 ccntinle
 cCNTINLE
 clatinue
 GLNTINUE
 FLFMAT(//, EX,'VENDENLND NATHIX')
 FFINT.'
 CALL NCLIO(A,ICA,N,L)
 Letefnine tre valles at the dischete points
 IF(NFF.EC.C) GO TO ST
 CC44 I=1,NFF
 FEAD(E,ICOJNGRIO(I),ALAT(I),ALCNG(I)
 CCNIINLE
 (ALL CAHTE(NHP,ALAT,ALLNG,FHIO,ALCNO,XP,YP)
 CALL VANCE(NPP,L,ICP,ALAT,ALCNG,PHIC,ALCNO,XP,YP,PM)
 ccatinle
 CO 15 I SIG=1, INDEX
 IF(ISIG.EG.IJTHEN CO
 FRINT,i++ FGLYNOMIAL AFPGOXINATICN FCR'fANGE RATIO'
 FHINTIOE
 FしFMAT(4x. ***')
 IF ANFLITLDE OF FANGE RAIIC IS TC APPROXIMATED PROCEED,
 CTHEFWISE GC TC STATEMENT NC 46
 IF(IC.EG.1)EC TC 40
 FUGNAIICA CF wElGHT mAThix
 CL & I= 1,M
 CC & = = = %M
 F(1,)}=\mathbf{C}.0
 ccailave
 ECG 1=1,M
 J=1
 F(l,j)=1CO.CLO
 ccailaue
    ```

```

 (ALL AFPFFUX(L,N,A,F,FH,EN,C,V,AC,U,CCVAF,AFVF)
 FAIN1:OS
 FCFMAT(ICX,'VECTCR LF CCEFFICIENTS')
 CALL NCLTU(C,ICA,L,1)
 p&i人tice
 FLFNAI(ICX,•FESICLAL',EX,'VECTCH'()
    ```
```

 (ALL NCLTO(V,ICA,N,1)
 PRINTIC7,APVF
 1U7 FUFNAT(IOX,'A FCSTEFIOFI VARIANCE FACTOR=',F1O.E)
 FFINTICE
 FCFMAT(IOX,'VAFIANCE CUVARIANCE MATRIX OF THE COEFFICIENTS')
 CALL NCLID{CEVAF,ICA,L,L)
 PFINT11C
 FCFMAT\/人,5X,'FCLYNCNIAL APFFOX CF THE GIVEN FUNCTILNS')
 CALL NOLID(AC,IDA,M,1)
 IFIIC.EC.2)GC TO 51
 e CCNTINLE
 CO57 I=1.N
 n(I)=10C.OCC
 cENtINUE
 c
108
FERFORN LEAST SGUARES APPROX LSING CRTHCGCNAL EASE FUNCTICNS
EY CALLING THE SLEROLTINE CFTHO
CALL LHTHU(N,L,SIGMA,A,IDA,SIGNFC,VFC,NPC,ITEST,V,CGVAF,FH,
n,(,ALPHA,FC,SLNFC,SGN,STDP, IW)
FFIN11ミミ
CC 47 I=1,L
FFIN1134,FC(1),SLMFC(I)
CCNTINUE
FKIN1IZ5
CU 4E I=1.L
FFINT1こ6,C(I)
CCNTINLE
FFINT.'NC. CF COEFF.CF CFIGN.POLY.AFTEF TEST=, NPC
FFIN1137
CALLNCLTD(CCVAF.ICA,L,L)
FFINT13\&
OU 4G I=1,M
FFINT13E,V(I)
CCNTINLE
PFINI,: A FCSTECRI VARIANCE FACTCR= ,VFC
CENTINLE
C
IF PJECICTICN IS FEGUIRED CALL THE SLQROUTINE PREO
IF(NFF.EG.C) GC TG GE
CALL FFEC(NPP,L,PM,C,COVAR,FMT,PFH,PMCO,VAR)
ELSE CC
C
If AFPHCX IS FOR TIME LAG (PHASE LAG)PFOCEED
FRIN1.'\& FCLYNCMIAL PFREXINATICN FOR TIMELAG'
HFINI1OE
CK=0.E*F
FU=EE.1C/3.2\&CE
ER=C.1254PI/18C.
EWF=C.1C
DC OC I=1,M
FC OC(I=I:M
F=FU\#FH(I)/E.
FA(1)=f\&[CCS(PF)
FE!(I)=R*CS\N(FH)

```

```

 n\inz(I)=1.,EFF**2
 C
6O CC人TINLE
C
1 7
1E
F(I.J)=nA(I)
ccNtinle
PFINT14C
(ALL APFFOX(L,N,A,P,FA,EN,CA,V,AC,L,CCA,APVF)
fFINTlOE
CALL NCLTO(CA,IDA.L.1)
FRINT1OE
CALL NCLTO(V.ICA,N,I)
FFINTICJ,APVF
DC IG I=I,N
DU le J=1,N
F(1,J)=0.0CO
CCNTINLE
CC lG I=1,N
F
CCNIINLE
HFINTIJS
CALL APFFOX(L,N,A,P,FH,EN,CE,V,AC,U,CUE,APVF)
FHINTIOE
CA!LNCLTD(CE,ICA.L.1)
cn!l NCl
FHIIV1IOE
(ALL NCLTU(V,ICA,M,1)
FRINIIG?.AFVF
IF(IC.EG.2)GC TO 56
S2 FIND PCLYFONIAL APFROX. FUR FUNCTIONS FA,FE
C FFiNI:AO
FUHMAT(//,SX,'FCLYNCMIAL AFFFOXINATICN FOR FUNCTICN FA')
CALL LFTHU(N,L,SIGMA,A,IDA,SIGMFC,VFC,NPC,ITEST,V,COA,FA,WA,CA,
* Alfia,FC.SUNFC.SCN.STDP, (w)
FGIN11: E
C[F5%i=1,L

```

```

 CCNIIALE
 pF!N|!ご
 CL
 FRINT13GOC&(1)
 ccatinle
 FHINT.'AC. LF GCEFF.OF CFIGN.POLY.AFTER TEST =',NPC
 HFINTIE7
 (ALL MULTO(CCA,ICA,l.L)
 ffinllag
 COEE I=1.N
    ```

```

 segcuntinue
 FKIAT,'A PCSTECFII VAKIANCE FACTCR=, VFC
 C
134
C
\becauseGMAT(/I,EX.'FCLYNCMIAL AFIFCXINATICN FOR FUNCTICN FG')
1 9 7
190
159
200
201
202
203
204
204
206
206
207
208
209
210
<11
212


```
        5C
    12E
    CALL LRTFO(N,L,SIGMA,A,IDA,SIGMFC,VFC,NPC,ITEST,V,COB,FU,WB,CB,
    * ALHHA,FC,SLNFC,SCN.STUP.IW)
            FFINTIZ3
            CO \inI I=1,L
            FHINT134,FC(1),SUNFC(1)
            CLNTINLE
            FFINT135
            CC E2 I=1,L
            FFINTIב\epsilon,CE(I)
            CCNTINUE
            FFINT,'NC CF PCLY.AFTER TFSST=',NFC
            FFINT137
            CALL NCLTO(CCE,ICA,L,L)
            CALLNCL
            CGINI13E
            CL63 I=1,N
            FHINTIE\epsilon,V(I)
            CCNTINUE
            PRINT,'A PCSTECFI VARIANCE FACTCF=',VFC
            56 CCNTINLE
                    c
                    IF THEFE IS NU FFECICTICN STATEMENT NO GE IS EXCUTED
            IF(NFF.EC.C) GC TO SE
FREDICTIRA CF FLNCTICNS FA,FE AT GRIC POINTS
            (ALL FREC(NPP,L,FN,CA,CCA,FMT,PFA,PMCC,VAFPA)
            (ALL FREL(NFF,L,FN,CE,(CE,FNT,FFE,PMCG,VARPG)
        CCMFLIE TFE PRECICTEC TIME LAG ANC ASSOCIATEO VAFIANCES
            DO & I=1,NFF
            FFG(1)=L&TAN(PFE(I)/PFA(I))/CK
            E(1,1)=(1./(1.+(PFE(I)/FFA(I))**2))*(-PFE(I)/PFA(I)**2)
            E(1:2)=(1./(1. +(FFG(I)/PFAA(I))**E))*(1./PFA(I))
            CCNPLTE VIFIANCES
            VAfP(I)=E(1,1)**2*VARPA(I,I)+B(1,2)**2*VARPE(I.I)
            SICMAF(I)=DSGRT(VAFIP(I))/CK
            CONIINLE
            ENC IF
                CENTINLE
            CCAIINUE
            HFINT:*** FFECICTION
                                    MATRIX *****
            MFINT,'*** FFECICTION
            (ALL NCLLTO(FN,ICA,NFP,L)
            FH1NT12G
            EF.IN1127
            FEFNAT(//,EX,'(ARTES:AN CUOROS. CF GHID FUINTS')
            CC SC I=1,NFF
            FFINT111,NGGIC(I),XP(I),YP(I)
            CCNTINLE
                F!IN
            FCFBAT(:1%./1.5X, PREDICTED FANGE RATICS AND TIME LAGS AT THE G
            *RIDFF(INIS')
```

```
            LO 45 I=1.NFP
```

 LO 45 I=1.NFP
 ALAT(1)=ALAT(1)*180./P
 ALAT(1)=ALAT(1)*180./P
 ALLNC(I)=ALCNG(I)*1&O./FI
 ALLNC(I)=ALCNG(I)*1&O./FI
 CICNAF(I)=OCCRT VAR(1, 1)
 CICNAF(I)=OCCRT VAR(1, 1)
 FHINI142,NGFIU(I),ALAT(I),ALINNG(1),PFH(I),SIGMAK(I),PFG(I),
 FHINI142,NGFIU(I),ALAT(I),ALINNG(1),PFH(I),SIGMAK(I),PFG(I),
 * CIGNAF(I)
 * CIGNAF(I)
 45
 45
 centinle
 centinle
 Lu ce I=1.L
 Lu ce I=1.L
 J=1
 J=1
 n{ITE(7.145)((I),CCVAR(1.J)
 n{ITE(7.145)((I),CCVAR(1.J)
 CCNTINLE
 CCNTINLE
 CCG7 I=1.L
 CCG7 I=1.L
 j=1
 j=1
 WFITE(7,145)CA(I),COA(1,J)
 WFITE(7,145)CA(I),COA(1,J)
 CCNIINLE
 CCNIINLE
 LG &E I=1,L
 LG &E I=1,L
 J=1
 J=1
 nfl\te(7.14E)(EE(I),CCB(I,J)
 nfl\te(7.14E)(EE(I),CCB(I,J)
 CCNJINLE
 CCNJINLE
 FCFNAT(/1,5X,'FLLFIER CCEFFICIENT',IOX,VVARIANCES')
 FCFNAT(/1,5X,'FLLFIER CCEFFICIENT',IOX,VVARIANCES')
 FUFNAT(/,8x,E11.4,10X,E11.4)
 FUFNAT(/,8x,E11.4,10X,E11.4)
 FLFN.&T(/, EX, VECJOR GF CRIGINAL CCEFFICIENTS')
 FLFN.&T(/, EX, VECJOR GF CRIGINAL CCEFFICIENTS')
 FCFNA$1.5X.E11.4)
FCFNA\(1.5X.E11.4)
FCFMAT{/\prime, EX,VAFIANCE-COVAFIANCE NATRIX OF THE COEFF.')
FCFMAT{/\prime, EX,VAFIANCE-COVAFIANCE NATRIX OF THE COEFF.')
FCFNAT(/1,GX, VECTCR UF FESICUALS!)
FCFNAT(/1,GX, VECTCR UF FESICUALS!)
FCFMAI\//.4X,NC',GX,'LATITUCE',EX,'LCNGITUCE',IOX,'RANGE RATIC
FCFMAI\//.4X,NC',GX,'LATITUCE',EX,'LCNGITUCE',IOX,'RANGE RATIC
 * !.4X,'SIGMA!.7X,'TINE LAC',SX,'SIGNA')
 * !.4X,'SIGMA!.7X,'TINE LAC',SX,'SIGNA')
 FLFNAT(/,.3X,14,5X,F10.6,6X,F10.G,6X,F10.G,6X,E11,4,GX,F10.O.
 FLFNAT(/,.3X,14,5X,F10.6,6X,F10.G,6X,F10.G,6X,E11,4,GX,F10.O.
 * EX.EN1.4j
 * EX.EN1.4j
 FOFNAT(EX,EE11.4
 FOFNAT(EX,EE11.4
 STCP
 STCP
 STCF
 STCF
 C
 C SUEFCUTINL (ARTEIM,ALAT,ALUN.PHIC.ALCNO.X,Y)
 C SUEFCUTINL (ARTEIM,ALAT,ALUN.PHIC.ALCNO.X,Y)
 CCCFES..LATITLCE AND LCNGITUOE..
 CCCFES..LATITLCE AND LCNGITUOE..
 INFLICIT FEAL*&(A-F,O-Z)
 INFLICIT FEAL*&(A-F,O-Z)
 C[NENSICN fLAT(5O),ALON(50))
 C[NENSICN fLAT(5O),ALON(50))
 FA=\epsilonこ73こC0.4CO
 FA=\epsilonこ73こC0.4CO
 FB=\epsilonミE\epsilonEと3.ECC
 FB=\epsilonミE\epsilonEと3.ECC
 PI=亏\mp@code{14jr.g-cco}
 PI=亏\mp@code{14jr.g-cco}
 EC=(FA**E-FE**2)/fAA**2
 EC=(FA**E-FE**2)/fAA**2
 FHIF=FHIC*FI/180.
 FHIF=FHIC*FI/180.
 ALCNR=ALCNO*PI/180
 ALCNR=ALCNO*PI/180
 xM=((1.-EC)*FA) (DSQRT(i.EEC*(OSIN(PHIR)**2))**ב)
 xM=((1.-EC)*FA) (DSQRT(i.EEC*(OSIN(PHIR)**2))**ב)
 XN=&A/OSCRT(1.-EC*(DSIN(FHIR)**2))
 XN=&A/OSCRT(1.-EC*(DSIN(FHIR)**2))
 H=CSC&T(XM*XN)
 H=CSC&T(XM*XN)
 DC 4 I=I.N
 DC 4 I=I.N
 ALAT(I)=ALAT(I)*FI/180
 ALAT(I)=ALAT(I)*FI/180
 ALCN(l)=ALCA(1)*N(1180
 ALCN(l)=ALCA(1)*N(1180
 x(I)=Fi*(ALAT(1)-PHIR)
 x(I)=Fi*(ALAT(1)-PHIR)
 Y(I)=R*CCOS(PHIF)*(ALCN(I)-ALCNR)
 Y(I)=R*CCOS(PHIF)*(ALCN(I)-ALCNR)
 4
 4
 CGNTINUE
 CGNTINUE
 FETCFN
 FETCFN
 FETLFN
 FETLFN
 ENC
```
            ENC
```

```
LO & I=1.L
LUS J=1.L
[N(I,J)=EN(I,J)*1.CO-2C
ccnJinle
CALLNINVO(EN,IFCA,L,DETA,IWI,IWE)
Lu G I=1.L
DC & J=1.L
EN(1,J)=EN(I,J)*1.OD-20
    cunIINlE
6
(ALL NMLLO(C,IEC,EN,IUA,U,IDE,L,L,1)
    CCNPLTE FESLLALS
        CALL NMLLD\AC,ICC,A,IUA,C,IDC,N,L,I)
        CALL NSUEU(V,ICC,AC,IDA,F,IICC,M,Ij
C CCNPLTE A FCSTEFICFI VARIANCE FACTCR
            CALL IFNSU(VT,1,V,ICA,N,1)
            CALL NNLLC(VIF,I,VT,1,P,IOE,1,M,M)
            CALL NMLLO(VF,1,VTP,1,V,IOE.1,N,I)
            ICF=N-L
            AD\F=VF(1)/ICF
C CGNPUTE VARIANCE CGVAKIANCE MATRIX CF CEEFFICIENT
            CC 1C I=1,L
            C0 1C J J=1,L
            CCVAF(I,J)=AFVF*EN(I,J)
            CGNJINUE
            FETUHM
    16 FETU
C
    GUBFLLTINE (HCLC(A,IHCA,NA,CETA,#)
C THE LSE CH THIS SUEFLUTINL IS CFITICNAL
C MATKIX INVEHSICN LSING CHCLESKI DECCMFGSITICN
C INFLT AHGLMENIS
CA = A,K&AY CCNIAINING FOSITIVE DEFINITE SYNNETFIC INFUT MATFIX
C IFCA = FCW CIMENSICN CF AHFANY CONTAINING INPLT MATRIX
C NA = SI2L CF INFLINNTRIX
C UUTFLT AFGUNENTS
CETA - DETEFIMINFNT CF INHUT MATRIX
C A = CCNTAINE INVEFSE CF INPUT NATHIX (INPUT DESTROYED)
```

```
DCUELE FFECISICN A,CETA,SUM.SQRT,DSGRT,ABS,UAGS,SING
DIMENSICA A(IFI[A,NA)
SCRT(SUN)=CSQHI\(SLN)
AES(LETA) = CAES(CETA)
LATA SING/1C-EC%
C CFCLESKI CLECUMFCSITICA OF INPUY MATRIX INTO TRIANGULAR MATKIX OOOCTA4O
&NA \bulletLT. 1) GC 10 18
    CETA = A(i, 1)
    A(1.1)=SCFT(A(1.1))
    IF(NA , ECGI) CC,iO)
    IF(NA •EC. 1) CC TO 6
    CC 1 ! = 2, NA (1,1) =A(1,1) / A(1.1)
    OCA(1,1)=, (NA
                SLN=C!
            J1=J=1
            DCC E K = 1,J N
```
\(0 C O C 7300$
00007310
00007320
00007320
00007330
00007340
00007340
00007360
00007350
00007350
00007370
00007380
00007380
00007390
$\checkmark 0007400$
00007410
00007420
00007430
$000 C 7440$
00007450
00007460
00007460
$0 C 007470$
00007480
$000 C 7490$
$000-7500$
00077500
00007510
00007520
00007530
טOCC7540
$00 C C 7540$
00007550
```A(J,J)=@GFT(A{J,J)-SLM) UEIA =DETA * (A(S,N) SLM) IF(J •EU. NA) GC TGS J人 = J + 1 OC 4 1 = J2,NA             SLMM=KO             \subseteqLN= =SLN+4 A(I,K)* A(J,N)```

```        ANINL心```
© IF(AGS(CETA) •LT. SING) GC TCIE
C Inverisicn OF LCHEF TRIANGULAR MATHIX
KUST $1=1$.nA
$A(1,1)=10, A(1.1)$
7 CLNTINUE
IF(NA -EG•1) CCTO 10
N1 = NA - 1
UO $5 J=1 . N 1$

$S L_{1}^{L}=C$.
$11=1-1$
DC $\varepsilon_{K} K=J, 11$

$1 C D C 15 J=1 \cdot N A$
IF(J, EQ•1) \&C IC 12
$J 1=j-1$
DC $111=1 . J 1$
$\wedge(1, j)=A(\ldots, 1)$
OC $\begin{aligned} & 14 \quad \dot{l}= \\ & \therefore L M=\end{aligned}$
$\because C M E K$

$A(\mathbb{S}, \mathrm{~N})=S \mathrm{SLN}^{+}$
ccn(INした
HEILRT
1e hFitE(E,17) DETA

FEAMATI!
16 AFIIE (G,19)
IS FCRMAT(ICX, MAIFIX GF DIMENSLCN ZERC IN CHCLD.)
HETLFA 1
END
SUBFCLTANE CRTFC(A,N,SICN, PHI,NRC, SIGNAF,VFC,NPC,INDEX,V,SLMD,F,WOOOC7彐7O
8.GALF SA. SUE SUNC,SCZ, STEF,IW)
THC(A,N,SICNBPHI,MR
C, SUNC,SC2,STEP, IW)
C ITIS SUEFC TINE UHTHUGCNALIZES THE NATRIX PHI LSING THE GKAM-SCHNIUT OOOCTBGO
C NETHLC, CLAFLTES THE FOUKIET SEEFFICIENJS OF THE GRTHUGUNALIZEO MATRIXOCOCTAOC
C METHCES CL"FLTES TFE FOLKIETE GEFFICIENIS OF THE GRTHOGUNALIZEO MATRIXOCOCTAOO
C UGKIVES THE CUEFFICIENTS GF YII CCNFUIES THE VARIANCES UF THE FOUFIER OOUOTAIO
C CCEFFICIEATS ANE THE VAFIANCE-CCVAFIANEE MATHIX OF THE COEFFICIENTS
NDPLJ:
1 PHi CHTCNAL - CCLLG EE FUNCTICN SUAFRCGFAN INSTEAES - AN N UY M OOCOCT430
1. PHICYMTLAAL - CCLLU EE FUNCTICN SUBFRCGFAN INSTEALY - AN N GY M OCOOZ44O
COATA:AINGTAE EASE FUNCIICNS EVALUATED FUR EACH GQSERVATIUN OOCCTASO
Z. N - THI NLNGER GF CGSEFVAIIONS OOOO746O

- W- AFEGCILR LF LENGTH N GCNTAINING THE COMPLTED HEIGHT FUNCTICNSOOOOTABO
00007490


``` ```
IF I.IESIESAUAINSI JIN. INE IIS SIANEARD EEVIATICNO
``` ```
IF I.IESIESAUAINSI JIN. INE IIS SIANEARD EEVIATICNO
IF., IESTS AGAINET THICK 1IS ST.CEVIATION
``` ```
IF., IESTS AGAINET THICK 1IS ST.CEVIATION
``` ```


``` ```
00007580
``` ```
00007580
INPLICIT FEML*C(A-F.L-Z)
INPLICIT FEML*C(A-F.L-Z)
30007750
30007750
I. ALFHA - AN MAC GY M MATRIX CUNTAINING THE NLPHA'SGUSEU IN CLMPUTIOOOOTGIO
``` ```
I. ALFHA - AN MAC GY M MATRIX CUNTAINING THE NLPHA'SGUSEU IN CLMPUTIOOOOTGIO
``` ```



``` ```
DINENSICN ALFHA(EO,5C),W(EO),F(5C),C(5O),D(5O)
``` ```
DINENSICN ALFHA(EO,5C),W(EO),F(5C),C(5O),D(5O)
DINENSICN ALFHA(EO,5C),W(EO),F(5C),C(50),D(5O)
DINENSICN ALFHA(EO,5C),W(EO),F(5C),C(50),D(5O)
* FHI(ECGEC)
* FHI(ECGEC)
CTLSI FOFHIVEC,SCSATVE [EEFEES LFF FFEECOM
CTLSI FOFHIVEC,SCSATVE [EEFEES LFF FFEECOM
IF (N.LI.M)GC 3U :こ0
IF (N.LI.M)GC 3U :こ0
OOOC7E30
OOOC7E30
```000C75こ0```
000C75こ0
00007530
00007530
0ごく7540
0ごく7540
000C7590
000C7590
00007\&40
00007\&40
C OETCGNLNE TIC ALPHAOS FCF, COMPLTATION CF CRTHCGCNALIZEO MATRIX
C OETCGNLNE TIC ALPHAOS FCF, COMPLTATION CF CRTHCGCNALIZEO MATRIX
000078\&%
000078\&%
OCCC7850
OCCC7850
IC CC \# ==k.M
IC CC \# ==k.M
OCCC7850
OCCC7850
IF(J.NE.K) GOIC G
IF(J.NE.K) GOIC G
00c07860
00c07860
ALPHA(K,K)=1.LO
ALPHA(K,K)=1.LO
0007870
0007870
<cru z
<cru z
0007880
0007880
\& SC1=0.CC
\& SC1=0.CC
SC2(K)=C.DC
SC2(K)=C.DC
SC3=C.DC
SC3=C.DC
OC \& 1=1.N
OC \& 1=1.N
F=PMI(I,K)
F=PMI(I,K)
IF(K.EG.1) EU TC 4
IF(K.EG.1) EU TC 4
K1=K-1
K1=K-1
K1=k-1 _ = = 1.k
K1=k-1 _ = = 1.k
= F=P\&ALPFA(Jl,K)*NトI(I,JI)
= F=P\&ALPFA(Jl,K)*NトI(I,JI)
E F=P+ALPFA(Jl,K)*NFI(I,JI
```    E F=P+ALPFA(Jl,K)*NFI(I,JI```


```        S(3=5C3+F(1)*h(I)*F```
S(3=5C3+F(1)*h(I)*F
< SC2(K)=SC2(K)+k(i)\not=p**2.
< SC2(K)=SC2(K)+k(i)\not=p**2.
ALPHA(J,K)=-SC1/SCE(K)
ALPHA(J,K)=-SC1/SCE(K)
ALPHA(K,J)=ALFF\&(%.K)
ALPHA(K,J)=ALFF\&(%.K)
= CCNTINUE
= CCNTINUE
C DETEFNINE THE FCUFIER CCLFFICIENTS FOR THE GRTHOGONALIZED MATRIX
C DETEFNINE THE FCUFIER CCLFFICIENTS FOR THE GRTHOGONALIZED MATRIX
C(K)=SしまノSCこ(K)
C(K)=SしまノSCこ(K)
k=k+1
k=k+1
IF(N.EG.2) (O TC 34
IF(N.EG.2) (O TC 34
IF(N.EE.2)
IF(N.EE.2)
OOCO7890
OOCO7890
OOOC7GOC
OOOC7GOC
00007910
00007910
00007920
00007920
000C7940
000C7940
000C7940
000C7940
OCOC796O
OCOC796O
U0007970
U0007970
00007980
00007980
0077990
0077990
000C7990
000C7990
00008000
00008000
00008010
00008010
00008020
00008020
0008020
0008020
0COC8030
0COC8030
00:08040
00:08040
0008050
0008050
00008060
00008060
0008070
0008070
COC8080
COC8080
0008090
0008090
DETIGNINGY\&E AINHAO: ROR :O,MMSHTING EMF CCEFFICXENTS OF PHI
```DETIGNINGY&E AINHAO: ROR :O,MMSHTING EMF CCEFFICXENTS OF PHI```
```        jk=K-1     & JL=K         jk=jk-1         j =K - JK-1         CL E LN=1.JJ         JL=JL-1     & ALPFA(JK,K)=ALF{A(JK,K) FALFHA(.SK,JL)*ALPHA(K,.LL)         IF(JK.NE.1) GC 1O S         IF(KOLTOA) &C TC 10 C detefmine tre last fulfier cuefficient     34 SCZ(K)=C.OC         SC2CKO=C         DC 7 I=1.N         F=PrI(1,k)         k 1=k-1         CC 1 J=1,K1     1 F=P+ALFFA(J,K)\not=FHI(I,J)         SC2(K)=SC2(K)+N(1)*P**2     7 SC3=S(3+F(1)*n(1)#p         ((K)=\leqslantCミノSCz(k) G uetefnine tre ccefficients of fhi         ICEKT=1         1COLNT=C     OCC CCNTINO     OCC CCNTINLUE         CC 13 I= 1.N         C(1)=C(1)         IF(I.EG.N) GU IC 13         I= I +1         C(IN)=D(I)+AL     1 4     C(I)=D(I)+ALPHA(I,J)*C(J)     1% LLNIINUE 00008410 CONPLTE THE vAFIANCE CF THE FCURIER COEfFICIENTS AND THE VARIANCE-COVAOOOCE430 C MATFIX CF THE CCEFFICIENTS COCC844O         LC:E I=1.N     \epsilon S\operatorname{LMO}(1,j)=0.00         SC4=0.0.C         CC <2 1=1.N         FN=C.OC         CC ह1 J=1,N     21FN=FN+U(j)*FHI(I.J)         V(I)=F(i)-FN         v=V(I)**2     zz sc4=sc4+V2**(I)         SIGNAF=SC4/(N-N+ICCUNT)*SIGMM         VFC=\subseteqIGMAF         IF(ICEKT-EG.Z) VFC=SC4/(N-NFC)*SIGMA         TF(NNIEX.EG.O) NPC=N         UC द& I=1,N         SLM(ili)=Si(CNAF/\subseteqCE(1)         IF(ILEKI.EGG1) GO TC 2B         IF(C(I).EG.ODO)SLNC(I)=.300         CCNIINLE         ccez l=1,N         CO     23 SUMD(J,K)=SLMC(_,K)+ALPHA(J.1)*ALPHA(K,I)*SUMC(1)         CC 2A I=1.N         IT= 1+1```

00068110
$000 C 8120$ 00CC81う0 $00 C C 8150$ occcelso
00008160
$000 C E 170$
000 C8180
00008190
00068200
00008210
OCEC8220

00008230
0ccce25c
o oocez60
0
0
0 0082270
00008280
$00 c c 8280$
$006 C 8280$
00008290
00008290
OCcCE＝00
OOOCE310
0 OOOB320
000 C 8330
00008340
0 Ccc8350
00008360
0008 060
0
0
0 0 C 03730
00008380
0008390
$000 C 8400$
00008410
$000 C 8420$
$40 O O C 8430$
OOCC8440
COCC8440
$000 C 8450$
oOUCE450
$000 C 8460$
$J 0008470$
00008480
OCCC8490 00008510 00008520 00008520
00002530 00008530 000 C8540 00008550
00008560
$000 C E 570$ 00008560 00008540 OCOC\＆EOU 00008610

00008630 $0 C O C 8640$ ocorecto ocorevso 006.8600 $000 c \varepsilon \in 70$ 00008680 $000 c 8690$ 00008700 00008710

\＄Gi

| LATITLUE 4ら・Cとここごロ <br> $45 . \therefore$ C6c70 |
| :---: |
| 44.0 CCCUU |
| 44．どとこここの |
| $45 . む$ ¢CE 70 |
| 45・でこ 3 ここu |
| $45 \cdot 35 C C l 0$ |
| から・ちくもくて心 |
| 45.0 CCVO |
| 45.4 Ct 70 |
| 45．3EこCCJ |
| 4 ¢－j CCCCU |
| 45.2 こここ0 |
| 45.2 こCCCO |
| 45．0iticio |
| $44 . \therefore$ UCしU |
| ．14＊＊．jCC．） |
| 44．シijC0J |
| 44 （6こう3） |
| 44 －大と大とう |
| 44.2 ごしくし |
| 4＊＊ここさミコリ |
|  |

LCNCITUUE

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

range ha tio $0.000 C 00$ 1．000000 o．Etiluo C． 673300 C． 5034 CO C－990J00 1． 101 ECO 1． 3247 C 1.410400 1．ミ16700 1． 310700 1.310700
1.450200 $1.450 \hat{2} 00$
1.4511000
 1．264900 1．çsiso 0.556200 0.842600 C．7E1000 3．721100 C．713100 0.073500

TIME LAG
0.000000
0.000005
$-28 \cdot 50 C 000$ 5.000000
15.500000
$-10.000000$ 5.000000 15.030000 17.000000 11.000000 $-1.000000$
$16.5 \cdot 0000$
12.500000
12.00000
12.000000
C．000000
12.0100000
$-14.000000$
$-15.50000 \mathrm{C}$
$-10.000000$
$-37.000000$
$-34.000000$
10.000000
10.000000
II. 2 Least Squares Polynomial Approximation of Observed Time Series

Figure A-2 is the flow chart describing the program.
The program uses any number of constituent frequencies - ICON and the required number of coefficients is computed from

$$
\mathrm{U}=2 * \mathrm{ICON}+1 .
$$

INPUTS
lst card: FORMAT Free, contains the following:
M - number of observations
ICON - number of constituent frequencies
ITEST - code for testing Fourier Coefficients
0 - for no test
1 - test against its Standard deviation
2 - test against 2 times its Standard deviation
3 - test against 3 times its standard deviation
ICON cards: FORMAT(10X, F15.6)
Each card contains one constituent frequency.
ICON cards: FORMAT(5X, F10.6, 5X, F10.6)
Each card contains the nodal (modulation)factor and the astronomical arguments required if harmonic constants are to be computed. If harmonic constants are not being computed, these cards should be omitted.

M cards: FORMAT(5X, F10.3, 5X, F10.3),
each card contains the observed height and the time of observation.

SUBROUTINES:
The subroutines used are APPROX and ORTHO as in the previous case.

Figure II-2 Polynomial Approximation of Observed Time Series - Flow Chart


```
 &JUE CKLN*A/C
```




```
 TRIUNCNLTAIL FCLYALMIAL. THE FRUGHANE LSES ANY NUNEER OH
 CONSIITCENT FHEGCENCIESAICCH- THE NUMBEFR OF COEFFICIENT -L
 CONFLTEC FFCN IHE NUNEER CF CCNSTITUENTS.
 |NPし\\subseteq:
 FRGGFAM SPECIFICATIUN,
 N=NUNUEF LF CESERVEC HEIGHIS
 CCN = NLNEEF CF CUNSTITLENT FFEGUENCIES DEINE USED
 ITEST = CLCE FCF TESTING FCUFIEF CCEFFICIENTS
 C FCHANTEST
 C - FCF NCTESJ
 - ACAINST STANOAFD DEVIATICN
 < - TLST. AGAINST 2 TIMES THE STANCAGD ELVIATILN
 # - ILST AGAINST 3 TINES THE STANLAGFD LEVIATIUN
 IC = CCDE FLFINETHCO OF APFROXNAIILA
 1 - FOF APFRCXNATICN USING OFTHOGCNALISED DAES FUNCTIUNS
 z - FUH APFRCXIMATICN USING LEAST SGUAFES NETHOD NITH NCN
 LFTHCCCNAL EASE FUNCTCNS
 AFC = CUDE FCF THE CENPLTATICN UF HARNONIC CCNSTANTS
 O - NU FARNCNIC CUNSTANT NEEO EE CONPUTED
 1- CCNFLTE THE HAFNCNIC CCNSTANTS
 CATA.
 n= CCNSTITUENT FKEQUENCY
 FH = CESEFVED HEIGHT IN NETRES
 T = OESERVEE TINE IN FCURS
 FK= UESEKVEC TINE INFCURS
 FK= NCDAL FACTCR
 VK = ASTFCNGNICAL AKGLNGNT
afleicit REAL*E(A-F, O-2
IINENSI(N FF(60), I(60), A(00,60),W(60),P(60,60), EN(EO,OU)
```




```
CINENSICN FHASE(20), HK (20), VK(20),VKR(20), XKAPA (20),FFK(20)
* SlGNA(2C),E(2C),phil(30)
CINENSICA ALFHA(GO,GO), HT (EO), SUNFC(EC),STCP(GO),SC2(GO).
```



```
\(I K C A=1 C A=1 C E=1 C C=00\)
\(F I=3.1415 S E \in E D C\)
```

```
HEAC IN CCNPLTATICN SPCIFICATICN
```

HEAC IN CCNPLTATICN SPCIFICATICN
C
HE!D,N,ICLN,ITESI,IC,NHC
CONPLTE TFE NLNEER LF GUEFFICIENT AND THE DEGREE CF FFEEDGN
C

```
```

L=z\&ICCN+

```
L=z&ICCN+
 LCR=N-L
 LCR=N-L
 Cr=N-L
 Cr=N-L
 AFH=1
 AFH=1
 IW=C
 IW=C
```

    Lu <0 1=1,ICCN
    HEf[(E,11z)n(1)
    112
    ICHNAT(1UX,F1E.6)
            CCNIINCE
            LC
            GEAE(E,1zi)FK(1),VK(1)
        FChNAT(Ex,Fic.E,EX,F1U景)
            いKん(I)=VK(1)*#!/186.
            clonimule
    FEAD IN THE CESERVED IIME ANO MEEGHT, NCTE THE OFIEIN FORE TIME
    CAN EETMAKEN AS LEFFKU
            DC <1 1=1,N
            HEAC(E,N1F)fr:(1),T(1)
        FLFMAT(EX,F1C.4,EX,F10.3)
            CLNIINLE
        EFFOKF=O.CS
    FRINT LLT THE INPLT DATA
            FHINT.,*** GCNSTITUENT FFECUENCIES ******'
            LC z人堷 1=1.1CCN
            &FINT112,w(1)
            CCNTINUE
            CCNTINLE
            FLGNILIM, 5x, 'rEIGHT GUSERVEC',5X.'TIME OF CBS.",
            FLFNAI(1/OS
            CC 2` I= 1,N
            FHINT124,FF(1),T(1)
            FCFNAT(EX,FIC.4,10X,F1C.E)
            ccatinue
            cENVEFT FFEGLENCIES TL RAEIAN NEASLPE
            LC 2S K=1,1CCN
            n(k)=n(K)*F1/1&C.
            ccajinue
    fugMaticn cF vancencND mateix
CU <4 1=1,N
LU 24 J=1,L
A(L,J)=C.CDO
CCNTINLE
CC 2s 1=1.N
j=1
f(I,N)=1.CDO
k=c
Luc% J=E.L,2
k=k+1
A(l,J)=LCCE(n(K)*T(I))
cCNTINLE
k=c
cu <\& ~=コ,L,2
k=k+1
f(1,J)=c\leqIN(n(K)*T(|))
ccatINCE
ccaTANLE

```
 FFInt THE NATFIX A
 FCITNAT (//, ICX, VECTOF CF CCEFFICIENTS')
 CALL NCUTC(C.ICA.L.1)
 FFilNTI17

 CALL NELTC(V.ICA.M.I)
 FFINT, INUNEEF OF DEGREES CF FFEEDCN=, IDF
 FFINT, INUNEEF OF OEGREES CF FHEEDCN=, IDF
FRINTIIG, IFVF

 FFINT119
 FCFNAT(/), IOX, VAFIANCE CCVARIANCE MATFIX OF THE COEFF. *)
 (ALL AKUTE (CGVAR.ICA,L.L)
 IF (IC.EC.2)CL TO 40
 CLNIINしE
 CU \(\begin{gathered}0 \\ 0 \\ 1=1 . N\end{gathered}\)

 3e CALL CFTFCIN,L,APW,A,ICA,SIGN,VFC,NPC,ITEST,V,COVAR,FH,
 * WT,C,ALFFA,FC, SUNFC, SCE, STDF, In)
 Fhintile
 CC ヨ \(\quad\) =1, L
 FFINTICE,FC(I).SLMFC(I)
 CENTINUE

 FRINT127
 [0 シu \(1=1, L\)
 FFiNT1zE.C(I)
 FFATLKE
CCNINLE
 FHINTI2S
 CALL NCCTI) (CLVfK, ICA.L.L)
 FFINTIBO

 35
 CCNTINLE

 POFN\&TICN CF WEICFT MATKIX
 \(C O \quad \Xi 0 \quad 1=1, N\)
 \(\begin{array}{cc}C C & 0 \\ F(1, j)=0 \cdot \mathrm{CCO}\end{array}\)
 \(F(1, J)=0 . C C O\)
 CCNIMNした。
 CCIININ1,N
 \(J=1\)
 F(1, j) =1・ノEHFCF**2
 cCATINLE
 FEFFCRM THE LEASt SUUARES APFFCX. Ey CALLING THE SUGROUTINE
 APFRCX
 (ALL APFFUX (L,N,A,F,FH,EN,C,V,AC,U,CCVAF,APVF)
 FFIAT110
 FRINT1< \(\varepsilon\) •V(I)
CO
01
103
FKIAT, \(* * *\) vandencic mathix \(* * *\) •
 CALL NCLIE(A,ICA,N,L)
 \(c\)
 30
 (ALL APFFUX(L,N,A,F,FH,EN,C,V,AC,U,CCVAF,APVF)
 IFIC.E
 IF(IU.EC.1)CCTC 35

 ALL CFTHCIN,L,APW,A,ICA,SICN,VFC,NPC,ITEST,V,COVAR,FH,
\(i\)

UC \(4 \subseteq 1=1.5 C\)
\(T F=I\)
Fli（ 1 ）\(=1.0\)
\(\operatorname{LC} 4 \in K=1 \cdot 1 C(N\)
\(J く ゙=2\) 4 \(k\)
\(j \leq=2 \nless k+1\)
\(F H 1(\nu C)=C \operatorname{ccs}(K(K) * T F)\)
FHI \((J \subseteq)=\operatorname{CoIN}(K(K) * T P)\)
CLNIINUE
\(\subseteq し N=C\)
〔しNVA＝〕
［C 47 IF \(=1, L\)
Fト＝（（IF）\＆ト -1 （IF）
JV＝FトI（IF）＊Z \＆（CVAF（IF，IF）
SLA＝ELN＋FH
SLNVA＝SLNVA＋FV
CCNTINUE
\(\subseteq T D=C \leq C F 1(S L N V A)\)
ムR11E（
CCATIAUE
CC \(4 \varepsilon \quad I=1\) ．
WFITE（7，42）（（1），CUVAF（1，I）
CCNTINLE
FCFNA）（Ex，E11．4，5x，E11．4）
FUFMAT（＇1：，1EX，HCUHLY FHLCICTICNS IN THE TIME INTEFVAL＇）
TOFMAI（／ノ，EX，＇TINE IN HCLKS：，JX．＇FF．FEIGHTS＇．JX．＇STD．EFF．LF
＊Fr：－1：1くな！－

FLhMA1（／／，EX．＇FULKIER COEFFS．＂．10X．VAFIANCES＇）
FLFNAT（／，5X，E11．4．10X，E11．4）

＋CFMAT（ \(1,5 \times\) ，E11 4 ）
FLFNAT（1／， 5 ，VAFIANCE CCVAFIANCE NATRIX OF CFIGINAL CGEFF．
FCGMAT（1，Ex：VECTUR OF RESIDUALS•）
IFINHC．EC．C）ECIC 11

\(J=I+1\)
\(1 A=1 / 2\)
FHASE（1A）＝CATAN2（C（J），C（1））
\(t(I A)=1 \cdot /(F K(I A) * D C C S(\operatorname{FHASE}(I A)))\)
\(+K(\mid A)=\) C（I）\＃E（IA）
LKト（ \((A)=2 . * F[-V K R(I A)\)
XKDFA（IA）\(=V K R(I A)-P H A S E(L A)\)
L• 1,1 ）\(=(1 . /(1 .+(C(J) / C(I)) * * 2)) *(-1 * C(J) / C([) * * 2)\)
tif \((1, z)=(1 . /(1 .+(C(J) / C(1)) * * 2)) * 1 。 / C(1)\)
\(\leq 1 C N A F(1 A)=E F(i, 1) * * \hat{z} * C C V A R(I, I)+E F(1,2) * * 2 * C U V A F(J, J)\)
EA（1，1）＝1．／FK（IA）＊CCCS（FHASE（IA））
FA \((1,2)=((1) \neq C S I N(\) PHASE \((I A)) /(F K(I A) * D C O S(P H A S E(I A)) \neq 2)\)
SicMAA（IA）＝E\＆（1，1）＊＊E＊CCVAF（I，1）＋EA（1，2）＊＊2＊SIGMAF（IA）
CCNTINLE
fた1NT1白元
FCFMA1（／／，EX，＇CCNSTITUENT＇，5X，＇ANFLITUOE＇，5X：＇SIGMA AMPL．＇．IOX， －frasl lfg＇，Ex．＇signa prase．）

LK \(=4 \quad k=1.1\) CLN


```

4. H - A VECICR CF LENGTH N CCNTAINING THL COMPLTED HEIGHIT FUNCTIONSOCCC7ABI
3.F - FUNCTICNAL valle:S
00007440
E. SIGNA - TFE A FFICFI VAFRIANCE FACTCF
OCOC75OO
5. NFE - THE NAXINUM FUK DINENSICN OF FHI
\varepsilon. MRE - TFE MAXINUN CULUNN DIMENSICN OF NHI OCOOTEZO
```
 00007540
 000
 06067550
00007560
\(0 C 0 C 7570\)
00007500
00007750
 INPLICIT KEAL*E (A-F, O-Z)
IOE IW - MFITE CCCE CF THE CCNFUTEF
 130007590
 OLTFLTS:
 1. ALFHA - AN MRC EY N MATRIX CONTAINING TFE ALPHATS USEO IN COMPLTIOOOOTEIO
 THE CKTHOGCMALILEU MAIFIX ANC IN CCNFUTING THE CGEFFICIENTS OF PHOOOCTEZO
 - C - THE M FOUFIFF COEFFICIENIS OF THE CHTHOGONALIZED MATRIX OCOCTEBO
 - C - TFE M CUEFFICIENIS CF THE INFUT NATFIX PFI
 - CJF IFE M CUEFFICIEN

 00007650
 OOOCTEGO
 E. SUMU - THE VAFIANCE-COVARIANCE MATFIX CF THE COEFFICIENTS
 E SC2 - IFE SUUAFES CF THE NUKNS DF THE CRTHOGUNALIZEL MATFIX
7. SIGMAF - THE FCUFIEF PCLYNUMIAL A PDSTECRI VARIANCE FACTOR
 7. SIGMAF - THE FCUFIEF PCLYNUMIAL A PDSTECRI VARIANCE FACTOR
 E. V- IFEN FESICUALS FGLYNCNIAL A PGSTEDFI VARIANCE FACTOR
 S. VFC - THE CKIGINAL FCLYNCNIAL A PGSTEDFI VARIANCE FACTUR
 11. STLP - VECIUF AGAIAST WHICR IFE AESCLUTE VALUES OF FUURIER
 CUEFFICIENTS ARE TESTED
 00007670
 00007670
 \(0 C 0 C 7680\)
 0000769
 00007700
 00007710
00007720

 \(\operatorname{SUNC}(E O, \in O)\), SCCE(EU),V(EC), STDP(6C),FHI(60.60)
 1 FUG NEGATIVE CEGFEES OF FREECCM
 IH (N.LT.M) GC 101 CO
 \(K=1\)
 \(K=1 \quad(N, N)=1 . \operatorname{LC}\)
C UEIEFNINE TFE ALPHA'S FLR COMPLTATICN OF CRTHOGCNALIZEO MATRIX
 10 CC J J K K M M
 IF(J.AE,K) CU IC
 ALPHA \((K, K)=1 \cdot C O\)
 CO \(10 \equiv\)
 e \(\leq \mathbb{C} 1=\mathrm{C} \cdot \mathrm{CC}\)
 \(\leq C 2(K)=C . D C\)
 \(\subseteq C 3=0.0 C\)
 \(C C(\ddot{C} 1=1, N\)
\(\rho=P H I(1, k)\)
 IF(K•EG.1) (UTE 4
 \(k 1=K-1\)
 CO 5 J1 \(=1, K 1\)
 \(F=P: A L K \vdash A(J 1, K)\) *FトI (1, J1)
 \(F=P: A L F F A(J l, K) \times F F I(I, J\)
\(E C 1=S C 1+H(1) * P H I(1, j) * F\)
 \(S C 1=\leq C 1+H(1) * P H 1(1)\)
\(\leq C 3 .: S C 3+F(1) * W(1) \neq P\)
 \(=\begin{aligned} & \leq C 3: S C 3+F(1) * W(1) * P \\ & \leq C 2(K)=S C 2(K)+K(1) * F * * *\end{aligned}\)
 \(=\begin{aligned} & S C 2(K)=\leq C 2(K)+K(1) * F * * \\ & A L P+A(\sim, K)=-S C 1 / S C 2(K)\end{aligned}\)
 \(A L P H A(\sim, K)=-S C 1 / S C 2(K)\)
SLNHA \((K, J)=i L F H A(\Omega, K)\)
 ALNHARK,
CCNTIALE
C UEIEFNINL THE FEUFIEF CCEFFICIENTS FOH THE CKTHUGUNALIZED MATRIX
 (\((K)=\leq \subset ミ / S C\) (\((K)\)
 \(k=k+1\)

00007840
```

    G. INCEX - HEFMITS CFTICNAL TES: FCFY STATISTICAL SIGNIFICANCE OCCOTSBO
    UF FCLFIER CUEFFICIENTSO**OOCURIEF CUEFFICIENTS AEANCUNED
    IF O,SIATISTICAL IEST FOF FCURIEFF CUEFFICLIENTS AEANOUNEO
    IF 1.TESTS AGAINST UNE TIME ITS STANDARD DEVIATICN
    IF 2,TESTS AGAINST TWICE ITS STGDEVIATIUN
    IF 3,TESISAGAIN
    ```
00067850
\(0 C 0 C 7860\)
\(000 \mathrm{C7E7C}\)
00067880
00007890
\(000 C 7900\)
\(000 c 7910\)
00067910
00067520
\(060 C 7920\)
00007940
000 C 7550
00067960
00007970
0 ccc7580
00007990
00007990
000080.10
00008010
00068010
0002820
00028020
0.068030
000 c 3040
0 coceoso
\(000 c 806\)
000 Cg 070
\(000 c 8080\)

\(000 C 3090\) -OOCE100 OOOCE110 CCOC8120 \(000 c 8130\) 00008140 OCOCE150
\(000 c 8100\) OCCCE170 \(000 C 8180\) oOCCE190 OCCCE200 00009210 CCCC8220 \(000 c 8230\) 000 c 825 J COCE260 00008270 0000827 \(0 C G C 8280\) \(000 C 8590\)
\(0 C O C 8300\) OCOC8 300 \(000 C 8310\) \(000 c 8320\) 000 C8 33 00008340 0 CCC8350 000 CB 60 OOCCEコフO \(000 c 8=80\) 00008390 0000840 \(000 c 8400\) COC8410 OCCCE42 00008440 \(0 C O C E 450\) 0000846 0 COCE47 00008480 \(000 C 8490\) \(00 C C 8510\) 00008520 0 CCC85=0 00008540 \(\checkmark C U O E=5\) \(\checkmark\) COORESO 00068560 00008570 0008580 00068590 OCCCEEO 00008610

\section*{II. 3 Tidal Reductions}

Figure \(A-3\) is the flow chart describing the tidal reduction computations.

The program uses as input the following:
- the results of computations 1 and 2, that is; the coefficients of the approximating polynomials \(C_{r}, C_{A}\) and \(C_{B}\) and their associated standard deviations.
- the observed data at each sounding namely: the depth sounded (D), time of sounding (\(t\)) and the geodetic coordinates (\(\phi, \lambda\)) or the local Cartesian coordinates (x, y). The observed data at each sounding are punched in one card and read into the computer one card at a time.

The SUBROUTINE PREDICT used in this program is different from the SUBROUTINE PRED. The subroutine predict uses prediction vector and predicts for one point at a time while the Subroutine Pred uses prediction matrix and predicts for all the points at once.

Figure if-3 Tidal Reductions - Flow Chart

```

    #JUB CKEN*A/G,TINE=8,PAGES=10
    ```

```

    FFCGFAN TC IMFLINENT TIUAL FEUUCTICNS USING ANALYTICAL CCIIUAL
    CHART IN FEAL TINE.
        N=CECFEE UF FOLY.NOR FORANGE INATIN S
        L=NUN.UF CUEFFS. IN THE FULY.
        LT=NUN.CF CUEFFS IN THE FULY.OF THE TIME SEFIES AT THE REF. STATICN
        ACLN= NUN CF CCNSTITUENT FREG USEU IN REAL IIME APPRUX AT REF. STN
        ITYPE= TYE TYPE OF INFOKMATICN
                1- FOFLLAT. LCNG.GIVEN
                E-FGR X,Y CCCFIDS.GIVEN
        ISFLIT = CODE INDICATING WETHEFR THE TIME LAG IS SPLIT INTO
        FUNCTICN A AND B
            1-FUF NO SPLIT
            z - FOF SPLIT
        CT= FCEY. CUEFFS FFUR REAL TIME AT THEZ REF STNO
        CH=PCLY. CCEFFS.FGR KANGE RATIO
        VACT,VACF= ASSOCIATED VARIANCES FCR CT,CR RESPECTIVELY
        CA.CE=CCEFFS.OF PULY. FOR TIME LAG
            VACA,VACE=ASSCCIATED VARIANCES FCR CA CB RESPECTIVELY
        CECLAL, XLANO SECLAU = LATITUDE OF REF, STN. IN DEGREE,MIN.
        ANO SECCNDS
        DEGLCC, XLUNO,SECLOU = LONGITUDE CF REF. STN.IN CEGREES NIN.
            ANC SECONDS
        T. XMIN = OESERVEC TIME IN HOURS AND NINS.
        CEFTFC = OESERVEO DEPTH IN METRES
        UE゙GLA,XLAMIN.SECLA = OESERVED LATITUDE IN DEGREES,MINS. ANO SECS.
        DEGLC:XLCMIN,SECLU = UESERVED LCNGITUUE IN DEGREES.NINS.ANO SECS.
    ```

```

            IMPLICIT REAL*&(A-H,O-Z)
            CINENSICN (T(30),CR(3U), PHIT(30),PHIR(30),CA(30),CB(30).
    * VACT(30),VACF(30),VACA(30),VACE(30).H(300).STE(300),PHI(300).
        * AL[NG(3CC),W(1C),TL(30C)
            HI=3.141592EE
            CK=0.5*P1/18C
            FEAD(E, 4C)L,LT,N,NCON,ITYPE,ISPLIT
            UO 1 K=1,NCCN
            NO K=1,NCCN
            F(G)
            h(K)=W(K)*FI/180
            CCNTINUE
            CC E I=1,LT
            FE:AD(G.4S)CT(I),VACT(I)
            CCNTINUE
            DG }7\mathrm{ I=1.L
            FCAD(E.45)(FR(I).VACR(I)
            CGNTINUE
            EO 8 I=1.L
            HEAD(E,45)CA(1),VACA(I)
            CENTINUE
            IF(ISFLIT.EG.1)GO TO 10
            CLG l=1.L
            HE゙AO(E.4S)CE(I),VACE(I)
            MEAOTENGE
    So CCNTINUE

```
 FEAD(E.44)DE(LAO,XLANO,SECLAO,DEGLCO,XLOMU,SECLUU
 CALL CEGHAO(CEGLAO. XLANC.SECLAC.PHIO)
 CALL LEGFAO(CEGLCO.XLONO.SECLUG,ALON)
 WHITE(E,E7)
 HFITE(G,5G)
 KULNT=O
 CONIINUE
 IF{ITYPE.EG.1)THEN CO
 FEAD(E,E5)T,XMIN,DEPTHC,DEGLA,XLAMIN,SECLA,DEGLC,XLOMIN,SECLG
 IF(T.LI.O.O)CO TIJ 39
 KCLNT=KCLCNT+1
 CALL CEGFAD(EECLA, XLAMIN,SECLA, XLAT)
 CALL LEGRAD(LEGLA, XLAMIN,SECLA,XLATIG)
 CALL CEGFAO (CEGLC,XLCMIN,SECLG,XLCNG,
 CALL CA
 FEAD(E,CC)T, XMIN,DEPTHC,X,Y
 IF(T.LI.O.OIGU TO 3G
 END IF
C
CCMFUTE IFE VECTCH PHI FOR PREDICTION
 IOF=N+1
 DO 4 K=1.IDF
 KA=K-1
 KA=K-1 , IOP
 OU E j=1.IOP
 A=J-1
 I=I+1
 FHIR(I)=x**KA*Y**JA
 5 CONTINUE
 CCNTINUE
 CALL FREICT(L,FHIR,CR,VACR,R,STDR)
 CALL FHDICT(L,FHIR,CA,VACA,A,STOAJ
 IF(ISFLIT.EO.1)GO TO 11
 CALL FRCICT(L,PHIR,CH,VACB,B,STDE)
 JC=OATAN(E/A)/CK
 EL=(1•/(1\bullet+(E/A)**2))*(-E/A**2)
 Q2=(1./(1.+(E/A)**2))*(1./A)
 VATC=EB1**2*STDA+B2**2*STDES
 IF(ISFLIT.EC.ZIGCTOI2
TC=A
\veeATC=STCA
12 CCNIINLE
TL(KCLNT)=TC
TCF=7C/EC.
1OH=7+XMIN/EC
TAF=TCH-TCH
C
CCNFUTE FHI FCF THE PREDICTION OF HEIGHT AT THE REF. STATICN
FHIT(1)=1.0
K=C
OO 3 I=2,LT,2
IA=1+1
k=k+1
PHIT(I)=CCCS(W(K)*TAR)
PHII(IA)=USIN(W(K)*TAR)
3
CCNTINUE
CALL FFUICT(LT,FHIT,CT,VACT,HTC,ETDH)
FTIDL=FTC*N
```

STOEV＝DSGRT（Fれ $2 * S T D H+H T C * * 2 * S T D F)$
UEFTH＝DEFTHC－HTICE
STCER＝USGRT（•O1＊＊2＋STOEV＊＊2）
F（KOLAT）＝HTICE
STE（KCLNT）＝STCEV
FHI（KCUNT）＝XLAT
ALCNG（KCLNT）$=X L C \cap G$
$X L A T=X L A T * I E C$ •／PI
XLCNE＝XLCNC＊1 $80 . / \mathrm{I}$
ARITE（G，EI）KCUNT，XLAT，XLCNG，CEPTHU，TGH，TAR，HTO，R，HT IOE，STDEV
GUTC2
CCNTINUE
NOBS＝KCLNT
AFITE（6，42
OU 1 三 KCLNT＝1，NCES
WFIJE（E．41）KCUNT．TLIKUUNT）
CCNTINしE
FUFMAT（＇1＇，EX，＂PRECICTED TINE LAGS＇）
FGFNAT（／．3X．13．5X，F6．2）
FOFMA1（EX，© Iコ）
FCFNAT（5X，F10．E）
FOFNAT（EX．EE11．4
FUFMAT（Ex，SFE． 2 ）
FORMAT（ $5 \times 3$ ，3FG．2，？F12．っ）
FORMAT（5x，6F6．？）



＊．$\rightarrow$ ．＇TIDF AT SHIC＇．Zx．＇STIEV＇I


STOD
run
（
GUE3ROUT INF CAFTE（AI，AT，ALOQ，PHIO，ALDNC，X，Y）
THIS SUQROLTINE CCMPUTES THE CARTESIAN CCOFDS FROM THE LAT．
ANC LCNGDTUCE
INFLICITAEAL*E(f-H, C-Z)
$R A=t=78200 \cdot 4 C O$
$F E=\epsilon 356 E E 3 \cdot 8 C 0$
Fl=コ・141 592 ESOO
$E C=(F A * * \varepsilon-R E * * 2) / R A * * 2$
$X N=((1-E C) \neq F A) /(D S G R T(1-E C *(D S I N(P H I O) * * 2)) * * 3)$
$X N=F A / D \subseteq C R T(1 .-E C *(D S I N(F H I C) * * 2))$
$K=[S C F I(X M * X N)$
$h=[S C F I(X M * X N)$
$X=R \neq(A L A T-F H I O)$
$x=R *\{A L A T-F H I C)$
$Y=A * C C O S(P H I C) *(A L O N-A L O N U)$
Y=H*LC
FETLFA
ENC
SUEFCLTINE FHCICT(L,PHI,C,VAF,PV,STDEV)
C THIS SLERCUTINE PHEDICTS VALUES OF THE FUNCTION USING THE CEEFF.
CF THE FCLYNCMIAL ANC TFE EASE FUNCTIUNS.

```
122
123
124
125
126
127
128
12%
1<9
131
l
133
134
136
137
138
139
140
IMFLICIT FREAL*E(A-H,C-Z)
C1NENSICN FHII(30),C(30),VAR(こ0)
SLN=C.O
SUNVA=C.
CC 1C I=1,L
FUn=Fr-I(i)*C(1)
VA=F+1(I)**E*VAF(I)
SLN=SLM+FUN
SUNVA=SLNVA+VA
 10
CCNTINCE
FV=SLM
\subseteqTCEV=SLNVA
FTCEV=
ENC
C
SLGFCLTINE LEGRAD(A,B,C,GLT)
CCCNVEHTS CEG, NIN, SEC TC HAUIANS
INPLICIT REAL*E(A-F,N-Z)
*LT=(A+E/OC.ODO+C/3600.0NO)*OAFSIN(1.ODO)/90.ODO
FETUFA
END
\(\$ 60\)
```

This appendix has been added to supplement the information given in Sections 1.0 and 1.1 of this report. The information given here has been taken directly from the Hydrographic Tidal Manual 1970 [Energy, Mines, and Resources Canada]. The descriptions and definitions presented concern tidal waters; for similar information regarding non-tidal waters, the reader is referred to the above mentioned reference.

Chart datum is the datum plane adopted for a published chart. It is a low water datum which by international agreement is so low that the water level will seldom fall below it. It is the level above which tidal predictions and water level records are based. The datum is only used within a gauge location and differs from place to place depending on the range of tide or water level.

For tidal waters, the Canadian Hydrographic Service has adopted the level of Lower Low Water Large Tides (see Figure III-1) as its reference for chart datum, and Higher High Water Large Tides as a reference for elevations.

A sounding datum is the reference surface to which soundings are reduced during the course of a hydrographic survey. It is the datum used when compiling a "field sheet" for a survey. It may or may not be the same as chart datum.

When selecting a datum, the following must be considered:
(i) the datum should be sufficiently low so that under normal weatner conditions there will always be at least the charted depth of water,
(ii) the datum should not be so low that it gives an unduly pessimistic impression of the least depth of water likely to be found,
(iii) the datum should be in close agreement with those of neighbouring surveys.

The following are the definitions of various reference surfaces (datum planes) and water level variations in tidal waters used by the Canadian Hydrographic Service.

```
Graphical representations of several of these are given in
```

Figure III-1.
(i) Higher High Water Large Tides (H.H.W.L.T.) is the highest predictable tide from the available tidal constituents, with the astronomical (nodal) factor $f_{k}$ close to unity.
(ii) Higher High Water Mean Tides (H.H.W.M.T.) is the mean of the predicted heights of the higher high waters of each day.
(iii) Lower Low Water Mean Tides (L.L.W.M.T.) is the mean of the predicted heights of the lower low waters of each day.
(iv) Lower Low Water Large Tides (L.L.W.L.T.) or Lowest Normal Tides (L.N.T.) is the lowest predictable tide from the available tidal constituents, with the astronomical (nodal) factor $f_{k}$ close to unity.
(v) Mean Water Level (M.W.L.) is the mean of hourly water levels for a period of observations.
(vi) Mean Tide Level (M.T.L.) is the mean of all high and low water heights over a period of observation.
(vii) Charted Elevation is the vertical distances between an object and the reference surface of Higher High Water Large Tides.
(viii) Charted Depth is the vertical distance from the chart datum to the sea floor.



[^0]:    Figure III-1 Reference Surfaces and Water Level Variations158

[^1]:    *Note: The earth-moon system is used here to develop the equations for tidal potential. The same develol ment resulting in similar equations can be used for the sun or any other heavenly body.

