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ABSTRACT

In Hydrographic Surveying, soundings are reduced to a
chart datum established at a reference gauge station from
a long period of tidal observations. Unfortunately, due to
the variations in tidal characteristics from place to place,
soundings can only be reduced to tne chart datum within the
vicinity ol the gauge station. As we move away from the
gauge station, it becomes necessary to obtain new information
on the tidal characteristics and apply necessary corrections
to the chart datum to obtain an appropriate sounding datum
for reducing the soundings.

To reduce soundings means to subtract the heights of
tide, at the'sounding locations and at the times of
soundings, froﬁ the depths sounded to obtain the depths
referenced to the chosen datum. Manual reduction of sound-
ings is a tedious aspect of the ficld hydrographer's list
ol chores. Therevhave been some attempts to automate the
tidal reductions using digitized cotidal charts.

The objective of this work has bLeen to develop
alternative approaches to automated tidal reductions, namely,
using analytical cotidal models. The range ratio and time
lag fields have been approximated by surfacesdescribed by
two dimensional éigebraic polynomials (Pn(¢,x)). The
observed time sefies at a reference station has been

~nroximated by one dimensional trigonometric polynomial



With the coefficients of these Polynomials stored in
Lhe computer, the range ratio and the time lag at any point
(¢i, Ai) in the area can readily be predicted and the height
of tide at the point and at time t can be predicted from
the predicted height of tide at the reference station.

Test computations, using data from the 'Canadian Tides
and Current Tables, 1978' for the pay otf Fundy have been
done. It has been shown that the water level (h) at a loca-
tion (¢i, %j) can be predicted with a standard deviation

(ohi) of 0.5 m or better.
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I. INTRODUCTION

1.0 Chart Datum and Other Water Levels

The hydrographic surveyor must refer all his depth and
height measurements to a reference datum. This reference
datum, generally called chart datum, is a low water datum
which by international agreement is so low that water level
will seldom fall below it. The chart datum is, for purposes
of integration and consistency, normally tied to the
Geodetic datum which is usually defined by the mean sea
level. For example, over a period of some years; tide
gauges in Canada have been tied to the Geodetic Survey of
Canada Datum (G.S.C.D.) [Atlantic Tidal Power Engineering
and Management Committee Report, 1969]. This geodetic datum
is based on the value of the mean sea level prior to 1910
as determined from a period of observations at tide gauge
stations at Halifax and Yarmouth, Nova Scotia and Father
Point, Quebec on the East Coast, and at Prince Rupert,
Vancouver and Victoria on the Pacific. Mean Sea Level
(M.S.L.), as its name implies, is the mean level taken up
by the sea. It is determined at a tide gauge station f{rom
a long period of tide observations The geoid, which is

supposed to be the datum for the heights, is defined as



"that equipotential surface which on the average coincides
with the mean sea level" [Thomson, 1974]. It therefore
leaves the problem of mean sea level determination to be
solved in order to define a height datum.

It is not easy to determine mean sea level since the
actual level of the sea is continuously changing.
Wemelsfelder [1970] , in his paper titled, 'Mean Sea Level
as a Fact and as an Illusion', outlined two concepts of mean
sea level: the Physical concept and the Emperical concept.
The Physical concept according to him 'is that of a common
parlance', it is the concept used in the verbal description,
"the height of the mountains above sea level'". This concept
has the intent to overlook every motion of the sea, it
intends to say, no waves, no tides, no storm surges, no
wind influences, no seasonal changes, no density anomalies,
no temperature anomalies. The mean sea level is rather
conceptualized as, 'a physical object existing primarily
in space, the way in which the ocean spans the earth.’

The emperical concept tries to quantify the mean sea
level as the mean observed water levels at a tide gauge
station over a period of time. This mean level even on the
same sea varlies from one tide gauge location to another and
varies also with different time epochs. Wemelsfelder, [1970],
enumerated 33 factors influencing the variations in the mean

sea level and grouped them under global, regional, 1lccal



and instrumental influences. Bomford, [1971], observed that
apart from tidal forces whose mean effect over a long period
should be zero. other forces cause the mean sea level to
depart appreciably from an exact level (equipotential)
surface. Thomson [1974}, furthér noted that, 'the problem of
determining the true physical surface of the oceans is
analogous to that of using Stoke's formula for geoid deter-
mination - we would require an infinite number of tide
gauges, atmospheric sensors, sea temperature and density
determinations;. vIt appears then that mean sea lével, thus
the geoid, cannot be easily determined.

The various other water levels*that can be.used as a
datum, or that will be relevant to the subject matter of
this work, will now be briefly defined and each ié
illustrated in Figure 1-1.

The average of recorded values of all the high and low
waters over a periéd is called the Mean Tide Level (M.T.L.).
It is obtained more easily than mean sea level and as such
is sometimes used in calculations instead of the M.S.L.

The average throughout the year of heights of high
waters during the spring tides is termed Mean High Water
Springs (M.H.W.Sl); The average throughout the year of the
heights of low water during the spring tides is called Mean
Low Water Springs (M.L.W.S.).

Mean High Water Neaps (M.ii.W.I.) is the average

*see Appendix I11 for further details regiarding definitions used in
Canada.
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throughout thevyear of heights of high waters dﬁring the
neap tides and . the average throughout the year of heights
of low water dﬁring the neap tides is called Mean Low Water
Neaps (M.L.W.N.).

The highest tide which can be predicted to occur under
average meterélogical conditions and under any combination
of astronomical conditions is termed Highest Astronomical
Tide (H.A.T.), while the lowest predictable tide is called
the Lowest Astronomical Tide (L.A.T.).

Chart datum, as previously stated, is a low water
level. It is the datum to which all soundings on published
charts are reducedvand to which tidal predictions and tide
readings are ‘referenced. Ideally, Lowest Astronomical Tide
level should be taken as chart datﬁm. But, since we cannot
accurately define it, we choose chart datum arbitrarily as
close to L.A.T. as possible such that, (i) tides will
seldom fall below it, (ii) it is not so low as to give

unduely shallow depths.



1.1 Sounding Datum

When a chart datum is chosen, it can only be used with-
in the vicinity of the gauge location [Atlantic Tidal Power
Engineering and Management Committee, 1969]. Depending on
the variation of tidal characteristics, it is not advisable
to reduce depth measurements to this chart datum if the
reference tide gaﬁge is more than 8 km away [Admiralty
Manual of Hydrographic Surveying, 1969]. This leads to the
necessity of establishing a local sounding datum. In the
Admiralty Manuai of Hydrographic Surveying, 1969 , the
following rules are given as a guide to the choice of
sounding datum:

(i) if possible, a sounding datum should agree with
the chart datum.

(i1) changeé in a sounding datum within the area of
infefest must be made whenever the nature and
range of tides alter appreciably. It is difficult
to lay down precise figures, but a difference in
range of about one metre between two places would
normally indicate the necessity for a change of
datum somewhere between them.

(iii) the time difference between tides experienced at
two places will not have any effect on the
difference of sounding ditum between two points.

It may however have a considerable effect on the
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value of the reduction required to reduce soundings
to datum. Therefore, it is important, even if the
sounding datum does not alter, to obtain time
differences between tidal stations so that time
differences may be interpolated and applied 'to
observed heights of tide used for the reduction of
soundings.

(iv) If there is any doubt in the surveyor's mind
concerning the behaviour of the tide, he should set
up another tide gauge to find out what is happening.

Figures 1-2 and 1-3 show how the tidal ranges change
dlong the southern and northern coasts of the Bay of Fundy.

At Yarmouth, the range at the spring tides is about 4.9

metres (16 feet). The range increases to the east and at

Burnt Coat Head, a distance of about 290 km away, the range

reaches about 16.7 metres (55 feet). Along the northern

coast, the range is about 8.5 mteres (28 feet) at Eastport,

Me. and increases going eastward, and at Joggins Wharft,

the range is about 12.2 metres (40 feet).

If a datum was established at Yarmouth or Eastport, Me.

‘for the reduction of soundings, as the soundings progressed

eastwards, the sounding datum should be altered. The ideal

thing is to alter a sounding datum in a series of steps.

Figures 1-2 and 1-3 depict the alteration of a sounding

datum in steps of 0.6 m (2 feet). The correction to be
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applied to a chart datum (established datum at the reference

station) to obtain the sounding datum is given by [Admiralty

Manual of Hydrographic Surveying, 19697,

d =

r
h - H—— , . . . (1.1)

where h is the height of the M.S.L. above the zero of

the new reference gauge, H is the height of the M.S.L. above

the established chart
new reference station
established reference
(2 feet) the sounding
Figure 1-4 illustr

in an estuary or a riv

datum, r
and R is
station.
datum is
ates how

er. The

is the range of tide at the
the range of tide at the

It means that when |d| > 0.6
changed by 0.6 m (2 feet).
a sounding datum could change

configuration of the land

and the slope of the sea bed will influence the tidal

characteristics and hence the tidal ranges. The range of

the tide increases at first proceeding up a river and then

starts to decrease until it reaches zero at a point inland

where the river ceases to be tidal.

It is not possible to establish one sounding datum tor

a hydrographic survey which covers a long stretch of coast-

line and where tidal conditions are unknown. Tidal informa-

tion in the area must be built up and a sounding datum

transferred gradually along the coast as the survey

progresses. A hydrographic surveyor on a sounding mission

could be met with any of the following situations regarding

sounding datum:

m
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(1)

(ii)

(iii)

12

a chart datum has already been established
within the sounding area,

a chart datum has been established near the
sounding area,

a chart datum has not previously been es-

tablished anywhere nearby.

The actions corresponding to the above situations are:

(1)

(ii)

(iii)

the surveyor should recover the established
chart datum and use it,

the surveyor should transfer the datum to the
survey area; in other words, he should obtain
a sounding datum for the area to be surveyed
referenced to the established chart datum,
the surveyor should aim at establishing a

chart datum.



1.2 Reduction of Soundings

Figure 1-1 illustrates the realtionship between a
sounding at a time t and the chart datum. The height of tide
at time t must be subtracted from the depth sounded to yield
a reduced sounding. Manual reductions of soundings in tidal
waters is a tedious aspect of the field hydrographer's tasks.
It requires that a tide gauge be set up in the survey area
and the rise and fall of tides observed while the sounding
is performed. From the observed heights, it is bossible to
plot a curve showing the variations in the water levels and
to reduce the soundings to a suitable reference plane.

Figure 1-5 il}ustrates a typical reduction curve [Admiralty
Manual of Hydrographic Surveying, 1969]. It has been drawn
from the height observations at half hourly intervals with
additional readings on either side of the high water. The
reductions are scaled in steps of one metre and noted in the
form of a table. For example, the reduction is 5 m from
1247 hrs to 1342 hrs, 6 m from 1343 to 1446 hrs.

For inshore surveys, it is usually convenient to set up
a tide gauge and observe the tides while sounding is
proceeding, If we are sounding offshore, the problem
becomes complicated. It may be possible to use drying banks,
islets or temporary structures such as drilling rigs as sites
for tide gauges. Another possibility in the near future

will be the use of automatic sea bhed tide gauges [ DeWolfe, 1977 ]
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In the absence of the above alternatives, tidal observations
could be made from an anchored survey vessel using an echo
sounder.

If the cotidal charts for the area of interest are
available or could be constructed, the necessary tidal
information for the reduction of the sounding can be recqvered
from them. The objective of this report is to offer an
automated analytical alternative to the manual task of tidal
reduction of soundings through the use of tidal observations
or cotidal chart information or a combination of the two.

Before describing the proposed scheme, an understanding
of tidal theories and phenomena, analysis and prediction of
tides, and the types and construction of cotidal charts are
pertinent. Chapter II covers the theory of tide generation,
harmonic analysis and prediction of tides. Chapter III is
devoted to the types, construction and uses of cotidal

charts.



1I ANALYSIS AND PREDICTION OF TIDES

Z.0 Introduction

When the water levels h(t) have been observed at
times t relative to a chosen datum at a tide gauge
station, we have obtained a record distributed in time
space (time series) and defined at the discrete time
intervals. There is a trigonometric polynomial, Pn(t),

of the form

h(t) =

0(aicos wit + b181n mit), (2.1)

I~

i
which can predict this time series at any fime t in the
interval. The analysis of this time series means the
determination of tne real numbers as, bi’ and Wy - If we
seek a least squares solution to this problem, we would
have a system of normal equations that would be nonlinear.
The presence of the non-linear trigonometric terms as
unknowns leads to a serious problem which may or mayv not
have a solution [Vanicek and Wells, 1972]. 1If, however,
the frequencies w; are known, the coefficients ay and bi
can be determined using least squares harmonic analysis.

The first and basic problem of harmonic tidal analysis,
therefore, is the determination of the constituent fre-
quencies Wy - This is the first step in the complete de-
composition of the observed time series into individuval
trigonometric terms. The first practical attempt at the

determination of the constituent frequencies was made by

16
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Darwin in 1886 using the orbital theories of the moon

and the sun. 1In 1921, Doodson improved on the method

by making a more complete expansion of the tidal potential
using the modern luni-solar orbital theories.

The careful analysis of the tides at Honolulu and
Newlyn by Munk and Cartwrignht [1966], indicated that the
spectrum of a tidal record is a continuous function of
frequency  over the low frequency band, but that it
approximates closely a line spectrum over the other fre-
quencies - 'the constituent lines emerge from the noise
background as trees from grass' [Godin, 1972]. As long as
we do not work with the low frequency band, (as is
generally thg case in Hydrographic Surveying),'it is
reasonable to assume that to a good order of approxima-
tion the spectrum of a tidal record is a line spectrum.

We can therefore treat the observed heights as a problem

of spectral analysis of a time series. Letting

and

oy = Arctan (bk/ak)'

equation 2.1 can be rewritten as
[ee)

ﬂ(t) =3 chos(wkt + o
k=0

K (2.2)

where Hk is the amplitude of the constituent frequency Wy s

ak is the phase of the constituent at time t = 0. If the

function is defined on the finite set M = {0, +1, +2, +3,

+£}, the frequency w, is given by



0 1

Wy = n/lk . (2.3)

Hk is obviously a non negative real number that describes
the magnitude of the constituent frequency wk. By plotting
the amplitude against integer frequencies, a visual inter-
pretation of the contributions of the individual constituent
frequencies (Figure 2-1) can be made. This represents the

discrete transformation of the function from time space into

trequency space [Vanicek and Wells, 1972].

112 H3 Hk

/L 2n/L  3n/k

Figure 2-1

Line Spectrum of Function h(t)

Munk and Cartwright, [196G6] introduced an entirely
different method of tidal analvsis which they called the
response method. 1In this method, the potential is generated

as a time series V(t) and an a:tempt is made at the
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prediction of height of the tide at a time t as the weighted
sum of the past and present values of the potential

h(t) = ] W(s)V(t - 7). (2.4)

s
The weights W(s) are determined such that the prediction
error h(t) - ﬁ(t) is a minimum in the least square sense.
In this chapter, the theory of tidal generation and

the traditional harmonic analysis and prediction of tides
are described. The thinking behind the response analysis

and prediction is briefly outlined.

2.1 Theory ot Tide Generation

2.1.1 The Movements of the Moon (Real) and the Sun (Apparent)

The-moon and the sun are the principal tide generating
agents. Other heavenly bodies are either too distant
or have too little mass to exert any significant force'on
the earth's surface. Figure 2-2 shows the relationship be-
tween the orbit of the moon and the apparent orbit of the
sun. The sun moves in an apparent path around the earth on
a plane called the ecliptic once every 3€5.25 solar davs.
For our present purposes, this movement can be regarded as
uniform and inciined at an angle of 23° 27' (obliquity of
the ecliptic) to the celestial equator. The point where
the ecliptic crosses the celestial equator from south to
north (B in Figure 2-2) is called the Vernal equinox or
the first point of Aries T.

The moon moves eastwara around the earth in an orbit
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Figure 2-2

The RelationsHip Between the Orbital Motlons

of thre Moo and the Sun
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inclined at abouf 5° 9' [Admiralty Manual of Hydrographic
Surveying, 1969] to the ecliptic and crosses the ecliptic
at the nodes. It takes approximately 27.2122 mean solar
days for the moon to travel from the ascending node F to
the ascending node K (Figure 2-%Z). As indicated in

Figure 2-2, the lunar orbit does not cross the ecliptic

at the same place consecutively. The nodes continually
move westward along the ecliptic and this nodal movement

or regression, as it is often called, has a period of 18.61
tropical years (one tropical year = 365.2422 mean solar days).
Due to the nodal regressién, the obliquity of the lunar
orbit with respect to the celestial equator varies pro-

gressively between a maximum and a minimum, namely,

Max. 23° 27' + 5° 9' = 28° 36' ,

23° 27' - 5° 9

Min. 18° 18" .

2.1.2 The Tide Generating Forces and Potentials

To derive the mathematical expression for the tide
generating forces of the moon and ti:e sun, the principal
factors to be taken into consideration afe:
(i) the revolution of the moon around the earth in
an orbit inclined to the equator,

(ii) the motion of the earth around the sun alocong
the ecliptic which is also inclined to the
equatorial plane,

(iii) the rotation of the earth around its axis.
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The tide generating forces at the earth's surface
result from a combination of two basic forces; (i) the
force of gravitation exerted by the moon (and sun) upon
the earth, and (ii) centrifugal forces produced by the
revolutions of the earth and the moon (and the earth and
the sun) around their common centre of mass known as the
barycentre.

The magnitude of centrifugal force produced by the
revolution of the earth-moon system around barycentre
(which lies apbroximately 1709 km beneath the earth's
surface on the side towards the moon and along the line
connecting centres of mass of the earth and of the moon)
is the same at any point on or beneath the earth's sur-
face [National Ocean Survey, 1977]. Its magnitude is

[Godin, 19727
_ 2
FC = KM/QO ,

where p, is the distance between the centres of mass
of the earth and of the moon (Figure 2-3), K is the
universal gravitational constant, and M is the mass

of the moon.* The gravitational force exerted by the
moon is différent at different positions on or beneath

the earth's surface because the force of attraction

*Note: The earth-moon system is used here to develop
the equations for tidal potential. The same develo} ment
resulting in similar equations can be used for the sun or
any other heavenly bady.



Figure 2-3

Effects of the Bravitétional Attraction

OFf a Peavenly Body M on the Earth
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between two bodies is a function of the distance between

them. This gravitational force at 0 (Figure 2-3) is

_ 2
Fg, = KM/py (2.6)

and at X is

2
Fg = KM/pX ) (2'7)

where p is the distance between the centre of mass of the
moon and point X on the earth's surface, The tide generat-
ing force due to the moon M at point X (Figure 2-3) on the
earth's surface is defined as the difference between the
gravitational force at X and that at the resultant centre
of mass of the earth-moon system where the gravitational
and centrifugal forces are in equilibrium [Dronkers, 1972].
In terms of potentials, the attracting potential at

X and at time t is

fg = KM/p, - KM/p, , (2.8)

and the potential of the constant vector field of the
centrifugal force is

fc = KM a cos me/pg , (2.9)
where ¢mx is the zenith distance as shown in Figure 2-3,
and a is the mean radius of the earth. From equations
2.8 and 2.9 and making use of the definition of the tide

generating force given above, the tide generating potential

(Vm) due to the moon at X and at time t is [Dronkers, 1972].
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_ 1 1 R 2
vV = KM[E - = - a gos me/po] . (2.10)

m « Po

Figure 2-4 shows the distribution on the earth of tide
forces of lunar origin. At point A nearest to the moon, tho
force of attraction is greater than the centrifugal force.
The resultant is the tidal force (Ft) towards the moon. At
C, the centre of the earth, both centrifugal and the gra-
vitational forées are equal. The tidal force at the centre
consequently is zero. At B farthest from the moon where the
centrifugal force is greater than the attractive force, the
tidal force is directed away from the moon.

We can express Py (equations 2.10) in terms of Po and

¢mx using the cosine formula of plane trigonometry given by

2 _ 2 2 .
Py = Po + a® - 2ap0 cos ¢mx . (2.11)
Equation 2.11'can be rewritten as
1 a a |2 o
= ==l - 2= cos ¢ _ (=17 . (2.12)
R °0 mx o
When 1 is expanded in powers of the parallax a/pO by means

[
X
of a Taylor series, expansion in zonal harmonics is obtained

and equation 2.10 is given as [Godin, 1972]
n
Vi, = KM/po[PoCe ) + (a/pdP (e ) + (2/p)

Po(o,_ ) *+ (a/pg) Pye ) + ,....]. (2.12a)

mx mx

The first term of the expansion
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Figure 2-4

Distribution of Tidal Force



V0 = KM/pO s (2.13a)
can be overlooked because it is a constant and hence has no

physical significance.

The second term

- 2 .
V) = KM/pg a cos o . . (2.13b)

is the lunar gravitational force at the centre which is
equivalent to the centrifugal force.

The third term is

2

V, = KM az/pO %(3 cos™o

2 - 1) . (2.13c¢)

This is the significant term as far as tidal potential

is concerned. The fourth term is

3

V, = KM a 3 1(5 cos™ o
mx

3 53 z - 3 cos @mx).

(2.134)

For practical purposes, the fourth term is of little
significance. It must be considered when we are required
to determine the potential with a higher degree of accuracy.
Henceforth in this report, V2 is the tidal potential. It

is decomposed into constituent frequencies and this, as

has been mentioned, is the first step in the harmonic
analysis of tidal records.

We can rewrite equation 2.13 as

_ 3, 2, 3,...2 1
Vm =3 KM a®/p"(cos me - §) . (2.14)
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The principal variable in the tide generating potential
defined by equation 2.14 is the zenith distance ¢mx’ This
quantity changes due to two effects [Dronkers, 1964],
namely,

(i) the daily rotation of the earth about its

axis (24 hours) combined with the motion

of the moon in its orbit (50 minutes per

day) giving a total periodicity of 24 hours,

50 minutes,

(ii) effects due to moon's motion in its orbit

during a lunar month which results in a mean

monthly periodicity of its declination § of

27 .3 mean solar days.
The other variable in the potential that must be accounted
for is Pg» the mean distance of the moon to the earth which
varies due to the irregular elliptical nature of lunar
orbit.

The expression of the potential as a function of time
dependant variables and as a function of position on the
earth surface is achieved by transforming our Horizon
co-ordinate system to the Hour Angle system using [Smart,

1971]

cos ®mx = sin ¢ sin § + cos § cos $ cos t (2.15)

’

where ¢ is the geodetic latitude, ¢ is the declination and
t is the hour angle. We can evaluate cosZ<I>mx in terms of

¢, &§ and t which after some manipulation yields
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2 2 . .
Vo, = G(a, p) [cos™d cos”§ cos 2t + sin 26 sin 2§

cos t + 3(sin%y - %)(sinzd - iy, (2.16)

wir

in which G(a, p) 1s defined as the Doodson constant, namely
3

G(a, p) = v KM &%c3(c is the mean semi-axis of the orbital
ellipse of the moon).

Equation 2.16 contains the variables p, §, t which are
dependant on time. The first term of the equation con-
taining cos 2t includes the semi-diurnal constituents with
periods approximating half a lunar day. The second term
containing cos t determines the diurnal constituents with
periods approximating a lunar day. The third term is
independent of t and hence contains the long period con-
stituents. it is only subject to variations in declina-

tion & and distance p of the celestial body. We have now

been able to decompose the tidal potential into 3 frequency

bands
0 - for long period constituents,‘
1 - for diurnal cons!ituents,
2 - for semi-diurnal constituents.

This 1is only a step towards the complete decomposition of
the tidal potential into the numerous periodic constituents.
For the complete decomposition, the work of Darwin and
Doodson are important. Darwin's d-:composition provides
readily the most important constituents and their relative
importance while Doodson's method is more suitable for

rigorous developments and provides a greater number of



constituents.

30

2.1.3 Development According to Darwin

This development is based on deriving relations for

sin 8§ and cos § cos t, which occur in equation 2.16 in

terms of

h -

Darwin used the

the local solar time,

the longitude of the moon referred to
the equator,

the mean ecliptic longitude of the sun.

old lunar theory and all quantities were

given with respect to the moon's orbit projected onto the

celestial equator. He considered

P - the ecliptic longitude of the moon's

perigee,

n - the ecliptic longitude of the moon's

nodes,

Ps - the ecliptic longitude of the sun's

perigee,

as constant over one year.

Referring to Figure 2-5, the relations are derived

from right spherical triangles MAM' and MX'M' and the

oblique triangle MAX'. A is a point of intersection of

the lunar orbit and the equator, X' and M' are the

projections of X and M onto the equator [Dronkers, 1964

Page 59]. From triangle MAM' and MX'M', the sine rule of

spherical trigonometry yields



Figare 2-5

Otbital Paranrebors
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sin ¢ = sin I sin(s - v + k). (2.17)

|

cos § cos t - cos X, (2.138)
where I is the angle between the orbit of the moon and the
celestial equator, s is the longitude of the mean moon on
the equator, vy is the distance between the referred equinox
v' and the intersection of the lunar orbit with the equator
at A, X 1is the‘arc MX' and arc AM = s - y + k. Kk is the
difference between the true longitude ot the moon (s') mea-
sured from v' (y'M) and the longitude of the mean moon in tne
equator s. From oblique triangle MAX' and using the cosine

formula we have that

cos ¥ = cos(1&tx+ h - v) cos(s -y + k)

+ sin(l15°tx + b - v) sin(s -y + k) cos I
(2.19)

in wnichi b is the mean ecliptic longitude of the sun and

v is the rigint ascension of A, 15° of arc is equal to one
hour in time. The terms sin2é, sin 2§ cos t and cosza cos 2t
which are contained in the potential formula (equation 2.16),
can be determined from equations 2.17, 2.18 and 2.19 in

terms of the orbital elements tx. s, h and v. When these

are substituted back into equation 2.16, we obtain a series
of harmonic terms of which the arguments depend on the
rotation of the earth (15°tx), the mean motion of the moon

in its orbit (s) and the mean motinn of the earth in orbit

() namely,
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Vm = G(a, p){cosz¢[cos4 % cos(30°tx - 28 - 2h - 2v- 2v - 2k)
1 . 2 o
+ 5 sin®“I cos(30°tx + 2h - 2v)

+ sin4 % cos(30°tx + 2s + 2h - 2v - 2v + 2k)]

2

+ sin 2¢[sin I cos cos(1l5 tx - 2s + h + 2y - v

DO

_ 2k - 90°) + % sin 21 cos(15 tx + h - v + 900)

2

+ sin I sin cos(15°tx + 25 + h - 2v - v - 2k + 900) ]

|

21 + sin®1 cos(s - v + k)1}.

+ (1 - 3 sin2¢)[% - sin
(2.20)

In the development for solar constituents, the terms v

and v will vanish and angle I will change to ¢.

2.1.4 Devefbpment According to Doodson

Doodson's method principally involves the use of a
rigorous expansion of the ecliptic longitude and latitude
of the moon. For the development of sin § and cos § cos t,
he introduced the ecliptic longitude xm and latitude Bm of
the moon and the local siderreal time 6 of the point X

(Figure 2-3) on the earth's surface. The equations are

sin § = sin € sin A_ cos B_ + cos t sin B , (2.21)
m m m
= + i -
cos § cos t cos Bm cos Am cos 0 (cos ¢ cos Bm sin Am
- sin ¢ sin Bm)sin 8, (2.22)

where € is the obliquity of the ecliptic.
Finally the potential Vm is developed as the sum of periodic

functions of six variables, namely, tx, s, h, P, n and Ps.
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Doodson obtained 400 periodic constituents f{rom his
development of which the principal ones are listed in Table
2-1 [Vanicek, 1973].

The constituent frequencies can be described in mathe-
matical terms using Doodson numbers and the astronomical
variables, namely

Wy = kf = k,f, + k2f2 + k3f3 + k4f4 + k5f5 + k6f6

(2.23)

f is a six dimensional vector whose components are the basic
frequencies of the motions of the earth, the moon and the

sun, namely

f;l is the period of the earth's rotation tx (1 day),
f;l is the period of moon's orbital motion $ (1 month),
f;l is the period of carth's orbital motion h (1 year),
f;l is the period of lunar perigee P (8.85 years),
fgl is the period of regression of lunar nodes N (18.61 years),
fél is the period of solar perigece Ps (21000 years).
f6 is usually omitted because it is insiginificant. ky, = 0,

1, 2 refers to the tidal species, 0 for long period. 1 for
diurnal and 2 for semi-diurnal. (kl’ kz) is called the group
number, (kl' k2, k3) is called the constituent number.

With the constituent freqguencies determined, which

are the same anywhere on the earth's surface, the first step

in the harmonic analysis is now completed. In the next
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Amplitude 10°

Symbo% Velocity Origin
per hour (L, lunar; S, solar
Long period components
Mo 0°,000000 + 50458 L constant flattening
SO 0°,000000 + 23411 S constant flattening
Sa 0°,041067 + 1176 S elliptic wave
Ssa 0°,082137 + 7287 S declinational wave
Mm 0°,544375 + 8254 L elliptic wave
Mf 1°,098033 + 15642 L declinational wave
Diurnal components
Ql 13°,398661 + 7216 L elliptic wave of Ol
Ol 13°,943036 + 37689 L principal lunar wave
M, | 14°,496694 - 2964 I elliptic wave of mxl
m 14°,917365 + 1029 S elliptic wave of P
Pl 14°,958931 + 17554 S solar principal wave
5, 15°,000002 - 423 S elliptic wave of le
", |15°,041069 - 36233 L declinational wave
°k, | 15°,041069 - 16817 S declinational wave
¥ 15°,082135 - 423 S elliptic wave of S:l
¢l 15°,123206 - 756 S declinational wave
3, |15°,585443 - 2964 L elliptic wave of mKl
OOl 16°,139102 - 1623 L, declinational wave
Semi-diurnal compcnents
2N2 27°,895355 + 2301 L elliptic wave of M2
Table 2-1 Principal Tidal Constituents As Derived

by Doodson.




Table

2-1 —-continued .

Amp Litude 105

Symbol Velocity Origin

per hour (L, lunar; S, solar)
M, 27°,968208 + 2777 L variation wave
N2 28°,439730 + 17387 L major elliptic wave of M2
v, 28°,512583 + 3303 L evection wave
M2 28°,984104 + 90812 L principal wave
A2 29°,455625 - 670 L evection wave
L2 29°,528479 - 2567 L minor elliptic wave of M2
'I‘2 29°,958933 + 2479 S major elliptic wave of 52
52 30°,OOOOOQ + 42286 S principal wave
R2 30°,041067 - 354 S minor elliptic wave of 82
R 30°,082137 + 7858 L declinational wave
°K, 30°,082137 + 3648 S declinational wave

Ter-diurnal component

M 43°,476156 - 1188 L principal wave
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section, the least squares harmonic analysis of observed

tidal records, to determine the tidal constants H, and g

k k’
where Hk is the amplitude of the constituent k and 81 the
phase lag of the constituent  at the observed station,

is described.

2.2 Least Squares Harmonic Analysis and Prediction of Tides

The height of tide h(t) =t any place and at any time
t can be expressed as the sum of harmonic terms [Dronkers,

1972]

h(t) = s, + kglﬂkCOS(wkt + o) (2.24)

where So is the height of mean water level above the datum

in‘use, Wy iszthe constituent frequency, Hk is the amplitude
of the constituent k and O is the initial phase of the
constituent. The number of constituents included will

depend on the accuracy required for prediction. For ordinary

0O p

2} N2’ 1) Kl) 1

are sufficient to yield an accuracy of 0.2 m in a prediction.

hydrographic works, the constituents M2’ S

O depends on the varying mean longitudes of the moon's
perigee and sun's perigee with periods of appfoximately 8.61
and 21000 years respectively and the ecliptic longitude of
the moon's ascending node with a period of 18.61 tropical

years. To take these effects into account, f5 and f6 con-

stituents are eliminated and a node factor fk and a correc-
tion for equilibrium argument Uk are introduced.

Equation 2.24 is rewritten as
N
h(t) = sg + kzlf‘Hk cos(u,t +(V, + U) - X)), (2.25)
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in which (Vk + Uk) is the value of the equilibrium argument
of the constituent k when t = 0O, generally called the
astronomical argument, Xk is the phase lag of the tidal
constituent behind the phase of the corresponding equilibrium
constituent at Greenwich, N is the number of constituents in use.

All tide observations are made on local standard time,
often referred to as zone time and denoted as ZT. Equation
2.25 therefore has to be modified so that allowance is made
both for the zone time and the local longitude since the
meridian of the observing station and the meridian defining
zone time are usually not coincident (Figure 2-6).

If (Vk - Uk) is the phase of the equilibrium constituent
k at the Greenwich, P(= 0, 1, 2) is the tide species number,
0 for long period, 1 for diurnal and 2 for semi-diurnal and
AX is the geodetic longitude of the point, say X2 (Figure 2-6)
west of the Greenwich, then (Vk + Uk) - PAX is the phase
expressed in Greenwich mean time of the equilibrium consti-
tuent k of the tide species P at the point X2 west of
Greenwich. This is now transformed into the zone time of
the ﬁlace. If the correction for zone time is AT (where AT
is negative west of Greenwich and positive east of Greenwich)
and the frequency of the constituent is Wy, We must subtract
wk.AT from the phase of the equilibrium tide. Thus with

respect to the point Xz west of Greenwich, Vk + U - P +

K
wk.AT is the phase of the equilibrium tide expressed in the
local zone time.

If 8y is the phase lag Xk corrected for longitude and



 Figure 2-6

Time Rel atvonships
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zone time, then we have that

Vk + Uk - gy Vk + Uk - P) - wk.AT - Xk!

=N Xk + P) + wk‘AT‘ . (2.26)

The determination of Hk in equation 2.25 and &) in equation
2.26 are the objectives in the harmonic analysis of tides.
They are determined from a series of observed tides at a tide
gauge station and are called the harmonic constants for that
station. The estimation of these constants for a station

is improved when more observations are available.

From equation 2.25, using trigonometric relations for

compound angles

kak cos[wk.t + (Vk + Uk) - Xk)] = £ H cos((Vk + U

KK K)

- xk)éos(wk.t) + (£ H, sink(vk + U - X))

sin(wk.t). (2.27)

If we let
kak cos((Vk + Uk) - Xk) = Ak , (2.28)
kak sin((Vk + Uk) - Xk) = B, (2.29)

equation 2.25 is rewritten as

N N
h(t) = SO + z Ak cos(mk.t) + Bksin(wk.t) . (2.30)
k=1 k=1
Equation 2.30 is a trigonometric polynomial that can

predict the observed time series h(t) at time t in the
given interval of time. Least squares approximatior metho-
dology [Vanicek and Wells, 1972; Moritz, 1977; Appendix 1]

can be used to determine the coefficients S B

or A By
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(k =1, 2, 3, ... N). The number of coefficients to be
solved is

U = 2N + 1, (2.31)
where N is the number of constituent frequencies used.

We can choose our base functions as

Yy = {1, cos wyt, sin wyt ... ... cos th, sin wnt}.
(2.32)
The Vandermonde's design matrix A is
1, cos wltl' sin wyty, ... cos mNtl’ sin thIW
A = 1, cos “1t2 sin w;ts, cos thz, sin “Ntz .
MxU ;
1, cos wltm’ sin wltm cos thm’ sin thm_
(2.33)

in which m equals the number of measurements h(t) that have
been made. For weights, we can consider each observation

as having been made independently with equal amount of
reliability. The error in observations (OXﬁ’ can be taken
to be equal to the resolution of the tide gauge used so that

s 2 2 2
EL = diagloy , of ... o] |,
1 2 m
mxm

and the corresponding weight matrix is

1
9+ s Tg ] , (2.34)
o
m

’

p = Eil = diag

i
mxm (0]

o8 ot L
1 2
in which og (the a priori variance factor) is taken as unity.
The solution for the vector of coefficients is given
as

c = (aTpa)~1 aTpr | (2.35)
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. . A . T
in which C = [so, Ay By, Ay By .. AL, B, ]

The solution for the residual vector is
V =AC - F , (2.36)
where F is a vector of observed heights.
The associated variance covariance matrix of the vector of

coefficients is

_ ~2.,T -1
bg = og[A™PA] , (2.37)
where 83 is the estimated variance factor given by
/\T/\
~2 _ VPV
99 T 4t , (2.38)

df represents the degree of freedom given in this case by
the number of observations minus the number of coefficients
(df = m - u).

With the coefficients SO, Ak, Bk determined, equations
2.26, 2.28 and 2.29 yield the harmonic constants Hk and g -
Note that if however it is not intended to preaict the tides
in the past or in the future, the constants need not be
computed. The tide at any time t in the time interval can

be predicted using the polynomial.

From 2.28 and 2.29

ikgk :ZZEEZK ; Ek; : iki = tan((Vy + Up) - X)) = gg ;
k 'k k k k k
or
_ -1
((V, + U) - X ) = tan” (B /A), (2.39)
and
£ H cos((V +U) - X)) =4,
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Hk = Ak/fk cos((Vk + Uk) - Xk) (2.40)
or

fkhk sin((Vk + Uk) - Xk) = Bk ,

Hk = Dk/fk 51n((Vk + bk) - Xk) (2.40o)

To completely solve our problem, we have to determine the
astronomical argument (Vk + Uk) and the nodal factor (fk).
The values are usually tabulated in tide tables (eg. Admiralty
Tide Tables), or they can be computed.

The astronomical argument is given as [Godin, 1972;

pp. 171-178]

Vk(t) = klt + kZS + k3h + k4P + k5N + k6Ps . (2.41)

where ?, S, h, P, N and Ps are the values of the astronomical
variables at the instant of time t from the origin of time

and are given as

s = Sy + At S,

h =h0+Atﬁ,

P o= Py + At P,

N —N0+AtN,

ﬁs = Pso + At Ps,

T = 0.0416 (hh mm) + h - S

SO’ hO’ PO’ NO and Pso are the values of the astronomical
variables at the time t = 0, hh mm represents the hours
and minutes of the day, S, h, ﬁ, N, Ps are the rates of

change of the astronomical variables in cycles per mcan lunar

day. Uk is the phase of the astronomical argument (Vk) at



44

time t = 0.
The nodal (modulation) factor is given by [Godin, 1972]

n
_ 0 . o2 PN
fk =1+ ¥ lrkjlexp[Zn 1(Ak4(3)P + AKS(J)N + LG(J)PS)],

3=1
(2.42)
in Which rkj is a complex number which depends on Ak4,
Ak5 and Ak6. The j's inside the differences in Doodson
numbers indicate that they depend on a specific constituent
within a cluster.

It is important to note that in the discussion so far,
there was no mention of removing the noise part of the ob-
served series before the analysis is made. The harmonic
cohstants obtained are therefore likely to include other
effects beside those of the astronomic forces and are conse-
quently in a certain measure variable. The harmonic ana-
lvsis should be based on a series of very selective
filterings so as to permit isolation of an oscillation
having a maximum tide/noise ratio. Godin [1972] has given
several filters that could be used to eliminate the noise
part or suppress certain frequencies.

Vanicek [1970] pointed out that there is an obvious
danger in removing the noise part of a series when the
magnitudes are not known. On the other hand, it is
usually equally deterimental to leave these constituents
unattended because they may distort:t the spectral image of
the series to a considerable degree. He described a method

of least squares spectral analysis that could be used to

analyse a time series and locate the frequencies accurately
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without first removing the noise part.

Mosetti and Manca [1972] described a number of methods
for separating a certain number of tidal constituents by
means of successive approximations and thus to completely
extract astronomic tide from the tidal records. The Ifre-
quency interval in which the tidal constituents occur are
divided into a number of wave groups, the periods within
each group being very close to each other but sufficiently
distinct from the periods of constituents in all other
groups. By drawing the graph of oscillations in each group;
it is easy to see that the modulations are perturbed to
some extent due to interference phenomena from waves within
the group. If we are dealing with series extending over a
fairly long period, it is possible to evaluate the intervals
on the record that are least perturbed and where the ampli-
tudes vary with regularity dictated by astronomic laws.

The harmonic constants can then by computed for those

intervals.

2.3 Tidal Analysis and Prediction by Response Method

2.3.1 General

Munk and Cartwright [1966] presented an entirely
different method of tidal analysis and prediction. They
applied the theory of time series to the tidal observations
at a gauge station to determine certain coefficients which
replaced the amplitudes Hk and the phase lags B of the

tidal constituents as in the harmonic analysis. Even
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though the theory of this method is more involved than the
harmonic method, the authors claim that the response method
gives a simpler and physically more meaningful representation
of tides than the harmonic method. Unlike the traditional
harmonic method which attempts to express the tides as the
sum of harmonic functions of time, the response method
expresses tide as the weighted sum of the past, present

and future values of a relatively small number of time
varying input functions.

Dronkers [1972] described the method as a more
empirical modification of the equilibrium tide based on
the theory of time series. He added that the principal
advantage of the response method is that the total number
of coefficients is less than the number of constituents
used for the harmonic prediction of comparable accuracy.
1n the response method we deal with complete potential
instead of a set of discrete frequencies as in the harmonic
method.

Lambert [ 1974] noted that the principal advantage of
response method over the harmonic method lies in the fact
that separate admittance functions (Fourier transform of
response weights) can be calculated for sufficiently dis-
tinct uncorrelated inputs, thus making the method
adaptable for earth tide analysis.

The response method of tide analysis and prediction
as developed by Munk and Cartwright [1966] is applied to

various observed series to obtain frequency dependent
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admittances that describe the tidai characteristics in a
similar sense to what can be deduced from the traditional
harmonic constants. To bridge the gap between the response
and harmonic methods,Zetler, Cartwright and Munk [1969] have
described procedures for deriving harmonic constants from
the response admittances. They showed that the harmonic
constants Hk and gk of a tide constituent k can be deter-

mined for a place using response analysis and the result is

compatible with the conventional harmonic analysis.

2.3.2 Brief Outline of the Theory of Response Method

The tidal potential can be generated as a time series
V(t) and an attempt can be made at predicting the height of
tide for a time t as the weighted sum of the past and
present values of the potential,

h(t) = § W(s) V(t - ts). | (2.43)

The weights W(s) are determined such that the prediction
error h(t) - ﬁ(t) is a minimum in the least squares sense,
s is the time lag used in the argument of the potential.

The weights represent the sea level response at the place
of interest to a unit impulse

V(t) = §(t),

In the response approach of Munk and Cartwright, V(t) is
expressed in spherical harmonics as

n n
Vo, A, t) =g Y [ag(t)U(e, A) +bp(£)Vi(e, M)
n=0 m=0 (2.44)



48

Here Uz + i V: are a set of complex spherical harmonics
of order m and degree n, a(t), b(t) are the amplitudes of
the real and imaginary parts of the spherical harmonics and
can be computed for any desired time interval for any
location.

The prediction formalism becomes [Munk and Cartweight,
1966]

h(t) =mg g[ug(s) ag(t - 18) +1V2(s) b?(t - 1) ].

(2.45)

Letting

m _ R |

Wn(s) = Un(s) + i Vn(s)
and

m _ .m . ..M

Cn(t - s8) = an(t - Ts) - i bn(t - T8),
equation 2.45 is rewritten as

h(t) = YV Wi(s) cl(t - Ts). (2.46)

mn s

The weights Wﬁ(s) cdefine the relation between the linear
part of the tide and the equilibrium tide, thus the
determination of Wg(s) is the essential point in the

response method.



IIT COTIDAL CHARTS AND THEIR USES

3.0 Introduction

In Chapter II we have seen how the tidal constituent
frequencies are obtained from the decomposition of tidal
potentials and how the tidal characteristic for a location,

that is, the tidal constants (amplitude H, and phase lag

k
8y for any constituent k) for major constituents can be
deiermined using the harmonic or response methodsof tidal
analysis. In this chapter, the types and methods of

constructing cotidal charts and their uses, are discussed.

3.1 Types of Cotidal Charts

3.1.1 Range/Time Cotidal Charts

Most offen, a range/time cotidal chart is constructed
by graphical means. On it, two sets of curves connect
points having equal range differences (or range ratios)
and points having simultaneous high and low waters
[Admiralty Manual of Hydrographic Surveying, 1969]. All
cotidal curves indicate a relationship to the tides at the
reference gauge station. Figure 3-1 illustrates a typical
range/time cotidal chart. The range curves (shown by
pecked lines) indicate the range ratios of the tide at
the reference station A. At B for example, the tidal
range is 0.65 times the range at A. The time curves (shown
by full lines) indicate time lags or corrections wh: ch must
be applied to the times of high or low waters at the

reference gauge station to obtain the times of high or

49
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Figure 3-1

Range/ Time Co-Tidal
Chart
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low waters at a place of interest.

To construct this type of cotidal chart, simultaneous
tide observations are made at the reference station and at
other well distributed temporary tide stations such as at
points B, C, D and E in Figure 3-1. From mean high waters
and mean low waters, the mean range 1s obtained for each
station. The range ratios are determined from the relation:
mean range at a gauge station/mean range at the reference
station. The mean time lag for each station is determined
by finding the mean time differences between the occurrence
of high and low waters at the reference station and at
other gauge stations. Both sets of cotidal curves are
interpolated in between stations as contours are inter-

polated in between spot heights for a topographic map.

3.1.2 Amplitude/Phase Cotidal Charts

This type of cotidal chart is referred to as being
semi-graphical. It is more difficult to produce and
more complicated to use than a range/time cotidal chart
but, could be more reliable and more versatile. The number
of such charts needed for an area would be equal to the num-
ber of constituent frequencies being taken into account
for our tidal predictions. For ordinary practical purposes
in hydrographic surveying, four major constituents are

considered, namely M 82‘ Kland O1 [Admiralty Manual of

2?
Hydrographic Surveying, 1969]. This means that four

cotidal charts would be needed each containing two sets of
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curves. Figure 3-2 illustrates one such cotidal chart of
an area for the M2 constituent. The full lines connect
points having equél values of phasc lag Zm in degrees and
the pecked lines connect points having equal amplitudes
Hm‘

To produce the amplitude/phase cotidal charts, tide
gauges are set up at well distributed locations in the area
such that tidal characteristics should as much as possible
vary linearly from one gauge station to another. This
means that there should be no major physical features or
structures which may influence the propagation of tidal
waves between any two tide stations. (For example, Larsen
[1977] in his study of the tides in the Pacific Ocean near
the Hawaiian Islands, observed that the phase lag of the
M2 semi-diurnal tide differs by 46° between the nearby
tide stations at Mokuoloe and Honolulu that are on the
opposite sides of the Hawaiian ridge but differs by only 15°
between Mokuoloe and a distant station at Hilo that are
on the same side of the ridge. Also for the Kl diurnal
tide, the differences are found to be 8° and 3° respectively).
Tides are observed at the stations for a minimum period of
29 days. The tidal records are then analysed using the
harmonic or the response method to determine the harmonic
constants Hk and 8y for each constituent frequency at each
gauge station. The amplitude and phase lag curves ar~ then

interpolated as contours are interpolated for a topographic

map .
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The amplitude/phase cotidal chart cannot be used to
directly convert tide readings made at the reference sta-
tion to those observable at any other place as is the case
with the range/time cotidal charts. With it however. tide
at any point of interest in the area covered by the chart
can be predicted at any time t using equation 2.25,

Interpolating between gauge stations has been the
classical method of producing amplitude/phase cotidal
charts. Presently a more meaningful method of producing
this type of cotidal chart is through the solution of
numerical schemes. Luther and Wunsh [1974] however used
350 sets of constants, obtained partly from the publications
of the International Hydrographic Bureau (IHB) and partly
from other investigators, to produce .the cotidal charts
for the central Pacific ocean which they claim are comparable
with the numerical charts of Pekeris and Accad [1969] and

Hendershott [1972].

3.2 Numerical Schemes

The various numerical schemes for the producticn of
cotidal charts stem from various solutions of the Laplace

tidal equations [Bye and Heath, 1975; Hendershott and Munk,

19707
A g 9 (L - &) Y
5t~ 'V T 3 cos ¢ - A : (3.1)
dv _—g (& -%)
B-E + fu = a . 3¢ ) (3.2)

Ju av

Q
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cos ¢ = 0O , (3.3)
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where ¢, A are the geodetic latitude and longitude respecti-

vely,

u, v are the latitudinal and longitudinal components

of the fluid velocity,

a is the earth mean radius,

(= 202 sin ¢) is the Coriolis parameter in which ¢

is the angular velocity of the earth,

Q is the undisturbed depth of the ocean,

¢ is the elevation of the sea surface above the

undisturbed  level, and

E(= V/g) is the equilibrium tide.
The Laplace tidal equations representing eqguations of
metion, though they 1o§k simplified, are difficult to solve
even in the case of uniform depth covering the globe. The
early solutions were given by Lord Kelvin in 1845 and
Hough in 1897 whé replaced the Laplace power series in sine
with an expansion in spherical harmonics thus regarding
the earth's rotation as very small. In 1898, Lord.
Kelvin introduced the concept of f-plane approximation
in which he considered the oscillations of the horizontal
sheet of fluid of uniform depth rotating about its normal
and this reduces the Laplace tidal equations to [Hendershott

and Munk, 1970]

au _ - _ o 8leg - &)
. fv g. X , (3.4)
a_‘.': + fu = - g'&*:___a_). . (3.5)
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P
in which x, y are the Cartesian coordinates in the plane
of thne fluid. Larsen [1977] used the f-plane solution to
produce the cotidal charts for the Pacific ocean near the
Hawaiian Islands. He approximated the Island as an ellip-
tically shaped cylinder with the plane ocean taken to be
tangent to the earth at the coordinates bg = 20.7°N and
AO = 156.8°W which corresponds to the coordinates of the
centre of the elliptically shaped Island. On the plane
ocean, he took the rectangular coordinate system with the
X-axis eastwards and normal to the axis of the ridge formed
by the island and the Y-axis northwards and parallel to the
ridge axis and with the origin at the. tangent point (¢0,
AO).

The boundary condition assumes that the velocity nor-

mal to the coast vanishes and free tide solutions are
added in order to fit the observed tide at the boundary.
The cotidal charts for the various constituents are con-
structed by mapping the amplitude and phase of the total
tide, that is the resultant of the equilibrium tide, forced
tide and free tide, as a function of the elliptic coordi-
nates. The author evaluated the accuracy of the cotidal
chart by comparing the observed tides at some locations
with the values of tides predicted by the model. He

observed tnat the plane wave model of the tides connect

the tidal observations together in a simple way and thus

=0 . (3.6)
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allows the tide to be interpolated between gauge stations
and extrapolated into the ocean beyond the tidal sites.
Rossby in 1939 introduced the beta-plane approxima-
tion. In this, the Laplace tidal equations are written as
in f-plane approximation but with the coriolis parameter

made a linear function of y, namely

f = fo + By (3.7)

The variation of f with y corresponds to an expansion of

the coriolis parameter about the latitude 6o

2Q sin ¢ = 2Q sin bg * (%?)a(¢ - ¢glcos 9o (3.8)

in which g is of the order 2%.

Whén g = 0, we then have f-plane approximation.

With the advent of large computers, the application
of the method of finite differences to the tidal problems
become popular. Freeman and Murtyi[1976j studied the
cooscillating and independent tides in Hudson Bay and
James Bay by applying the finite differences to solve the
Laplace tidal equations. They linearised the equations
of motion in spherical polar coordinates and vertically
integrated retaining variable coriolis, pressure gradient,
bottom stress and direct tidal potential terms. The

equations thus solved in the model are

du _ . _ __gh dn _ ‘B , %

7t 20 v sin ¢ 2 cos o A 5 + FA . (3.8)
A 5 _gh 3n _ B¢ ¥

ot 20 u sin ¢ 2" 30 - + F¢ , (3.9)



an 1 au , 9V cos ¢ (3.10)
3t a cos ¢ |9\ 3¢ ' )

where TB is the bottom stress, ?A’ f¢ are the horizontal
components of the tide generating force, p is the deviation
of the water level from the mean tide level, h is the water
depth and p is the density of water.

The cooscillating tide is modeled by setting the tide

generating force terms to zero and specifying the free

surface elevation across the mouth of the Hudson Bay by

np(o. A) = H (s, 2) coslu,t - g (6. M), (3.11)

where ni belongs to the constituent k at the open mouth

boundary location and is referred to the mean tide level.
The independent tide is modeled by setting the normal

velocity on the open mouth boundary to zero and specifying

the tide generating force. For example, for M2

= - 48.8 }

FZA = ——-5——.gh cos ¢ Sln(wmt + 2) + me), (3.12)

F2¢ = :—%§é§.gh cos ¢ sin ¢ cos(mmt + 2) + mmT),
(3.13)

and for Kl

= _ - 28.5 . ) \ :

Fox o= —-—5—~.gh sin ¢ Slﬂ(wkt + 2+ wkl), (3.14)

= - 28.5 . 2 2

Pl¢ = ———E——.gh(81n ¢ — CcOS ¢)COS(wkt + X+ ka).
(3.15)

Here T is the number of hours from the Greenwich mean
time to the local zone time. The linear form of bottom

friction due to Heaps is used and is given as
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_ PR . w - PR
T8, =5 U TB, =7V | (3.16)

The authors used a rectangular grid of 15 and 10 minutes
of arc in longitudinal and latitudinal directions respecti-
vely. The grids are drawn so that the fluid velocity
components (U, V) are defined on the closed boundary locations
and the water levels (n) at the open boundary at the mouth
of the Bay. In the formulation of the numerical scheme,
central finite differences are used in both space and time.
Using a leap-frog scheme, water levels (n) are computed
at even time steps (i.e. 1 =2, 4, 6, 8..) and the hori-
zontal flow components (U, V) computed at odd time steps
(i.e. i =1, 3, 5, 7 ...).

The numerical scheme is thus given by [Freeman and

Murth, 1976]

i+l i-1
Ukj - J - 9] Vi sin ¢ - ~EE§Q——“ ni -
2ht Kj j & cos gy k+l,] k-1,
1 i-1 | =i
- =T . + F . 3.17
o Bk, Ak, ( )
i+1 i-1
v . -V . gh, .
K, J kK, _ _ A : - k,J | i i
26T 20 Uy j sin 047 — l”k j+1 ”k,J—l}
lq + Fh (3.18)
o i, j d)k.] ’
(i s
i+l i-1 _ 1 Yee1,3 = Yk-1,5
",i 7 "k, a cos ¢ 2AA

, (3.19)
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and the output of the computations are U, V and n as func-
tions time. From these parameters, the current ellipses
and the co-phase and co-amplitude lines are constructed.

In numerical schemes, the problem generally posed is to
solve the Laplace tidal equations in their primitive form
or after elimination of one or two dependent variables with
prescribed boundary conditions. For example

(i) Vanishing normal velocity at coast lines

[Pekeries and Accad, 1967],

(1ii) Specified or observed values of the consti-
tuents at the coastal stations only [Hendershott,
19667,

(iii1) Specified or observed values of the consti-
tuents at selected coastal and island sta-
tions plus vanishing normal velocity at the
remaining coastal boundary points [Larsen,

19777.

3.3 Uses of Cotidal Charts

Cotidal charts are found useful in many situations.

They are useful in the study of the impact of large
engineering structures on the tidal regime, for example,
the proposed tidal power project on the Bay of Fundy in
Eastern Canada |Atlantic Tidal Power Engineering and
Management Committee Report, 1969; Garrett and Greenberg,
19767 .

They are indispensable in navigation especially

when deep draughtbships have t.» navigate through a complex
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estuary where drying sand banks alternate with deeps such
as that obtained in the port of London [White, 1971]. Here
deep draught tankers navigate to Thameshaven and Coryton
to evacuate o0il from the principal oil refineries. In such
a situation the pilot and the captain of the vessel would
want the information on
(i) the critical depths in the channel at
chart datum,
(ii) the points along the track where these
critical depths occur,
(iii) the times the tidal heights at these
points would be sufficient for safe
prassage of a vessel with a particular
draught,
(iv) the latest times along the route that
the passage depths are available.
If the underkeel clearance is not so critical, this infor-
mation can easily be obtained using cotidal charts and
appropriate up to date navigation charts and tide tables.
If the underkeel clearance is critical, the use of cotidal
chartsis supplimented by several radio linked tide gauges.
The application of prime concern here is the use of
cotidal charts for the reduction of sounding data. As was
shown previously, all depth measurements are reduced to the
chart datum; therefore the height of tide at time t must be
subtracted from.fhe depth sounded at the time t. This

implies that we should observe tides at the same time we
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take our soundings. If we are working on the coast or on
the inland tidal waters, it is possible to establish tide
gauges close to the sounding area and observe tides at the
same time. If we are involved with extensive sounding
offshore, the possibilities of observing tides close to the
sounding area are remote. It becomes more feasible to do
the tidal reductions using predicted tides, and when this
is the case, the use of cotidal charts become convenient.

Range/time cotidal charts can be used in which case
we only need to observe or predict tides at the reference
station and then obtain the equivalent at the desired loca-
tions, or; we can use amplitude/phase cotidal charts and
predict the tides at the desired locations independent of
a reference station. Finally, a combina?ion of the two
approaches can be‘used.

The Canadian Hydrographic Service has done some auto-
mated tidal reductions using digitized range/time cotidal
charts of the Hudson Bay and the Lower St. Lawrence River
[Tinney, i977]. In these schemes, the cotidal charts were
digitized by breaking the survey area into equal size blocks
based on lines of latitude and longitude and approximating
the boundaries of the cotidal zones with the edges of those
blocks. Those digitizations were coded and stored in the
computer. To locate a particular block and retrieve the
cotidal values, the geodetic coordinates (¢, A) of the
position of the sounding were used.

The choice of the size of the blocks would obviocusly
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depend on the amount of computer space available and the
accuracy requirements. With smaller size blocks, the zone
boundaries would be better approximated but more computer
space would be required. Figure 3-3 shows the digital break-
down of the cotidal chart used for the Hudson Bay. Block
sizes of 5' latitude and 10' longitude were used giving a
total of 13,986 blocks dividing the Bay into 93 reduction
zones. The tide station at Churchill served as the reference
station for the cotidal chart and during the survey, the
predicted heights from the reference station were used
instead of the observed heights. However, in the survey
of the Lower St. Lawrence River with Pointe-an-Pere as the

reference station, observed tides were used.



IV THE PROPOSED ANALYTICAL SCHEME

4.0 Introduction

The proposéd analytical scheme is aimed at achieving
automated tidal reductions using little computer space and time
and with advantageous accuracy and flexibility. Figure 4-1
illustrates the proposed scheme in a flow-chart. It shows
that we can work with amplitude/phase cotidal model or
range/time cotidal model. The same objective is achieved
using either model but it does not necessarily mean that
the same degree of accuracy and flexibility is attéined.
Basically the data requirements for either are the same
except that with amplitude/phase cotidal model, the ampli-
tude Hk and the phase lag 8y for each constituent k we wish
to take into account and at each observation station are
required. With the range/time cotidal model, we require
the mean range ratios and the mean differences of the
times of occurrence of high and low waters between each tide
gauge station to be considered and a reference gauge
station. With the range/time cotidal model, we have the
option of carrying out the tidal reduction based on the
observed tides.or on the predicted tides at the reference
station.

In each case, the aim is to produce an analytical
cotidal model using observed data or existing cotidal
charts. The analytical model could then be stored con-

3

veniently in a computer so that when observed sounding

65
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data are input, the output would be reduced soundings.
The theory and mathematical models for the two approaches
are basically the same. In Section 4.1 of this chapter,
the mathematical models are discussed, and in Section 4.2

the data requirements are explained explicitly.

4.1 Models

Earlier, it was shown that the tides are functions of
time and position on the surface of the earth and that the
tidal characteristics, that is, the amplituge Hk and the
phase lag &) for the constituent k are constant for a place.
These constants can be estimated by performing harmonic
or response anélysis of a long period tidal records.
Knowing the estimated tidal constants for a place, the
tide at the place can be predicted at any time t.

Now suppose we consider a section of a body of tidal
water, not so extensive in area and where the constants
H and g, are defined at a reference station whose geodetic

k

coordinates are (¢O, A and at several other points

o)
Pj(¢j, Aj) within the area. We can define mathematically
surfaces that can describe the distribution of those con-
stants with reference to the primary station. The aim is
to approximate, in the Least Squares sense, the amplitude
and phase lag fields by surfaces described by two dimen—

sional algebraic polynomials. The coefficients of these

polynomials are determined in such a way as to fit the

observed data in the Least Squares sense. Using this
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technique, the amplitudes Hk and the phase lag 8 can be
predicted at any point of interest Pi(¢i, Ai) within the

area by the polynomials

£

AHk(Xi’ yi) = jZOCJ wj(xi. Vl) (4.1)
L

X = g
J:

where Ahk(Xi, yi) and Agk(xi, yi) are the predicted
differences in amplitude and phase lag respectively for
the constituent k between the reference station and the

point i, CH and C? are the coefficients of the polynomials,

J

w(xi, yi) are base functions (two dimensional) of the
approximating polynomials, and £ is the number of base
functions. The selection of the prescribed functions y
can be, from the theoretical point of view, purely arbitrary.
The sufficient and necessary condition for the prescribed
functions ¢ = {wl, wz Ce wﬂ} to create a base is that
they are linearly independent on the functional space (Gm).
If and only if ¢y is a base can the coefficients of the best
fitting polynomial be uniquely determined [VaniEek and Wells,
19727].

Even though the position of a point may be expressed

in terms of geodetic coordinates (¢i,x ), it is more con-

i
venient to work with local orthogonal coordinates (Xi’ yi).
The relationship between the two systems is defined as

<
I

Ry cos ¢5(h; = xg) . (4.4)
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where RO is the mean radius of curvature of the earth
computed at the reference station and is given by [Krakiwsky

and Wells, 1971]

R

o~ /MONO (4.5
in which
2 2 .. 2 3/2

MO = a(l - e7)/(1 - e"sin ¢O) / , (4.6)

and
- 2.2 (172

NO = a/(l - e“sin ¢O) . 4.7)
The first eccentricity squared is

e? = (a® - b2)/a2, (4.7b)

and for the Clarke 1866 ellipsoid, the semi-major axis

a = 6378.2064\km, while the semi-minor axis b = 6356.5838 km.
Regarding the choice of base functions, we can use

mixed algebraic functions which are particularly simple to

deal with [Nassar and Vanicek, 1975], namely,
(L, 3 =0, 1, 2 ... n) (4.8)

where n is the degree of the polynomial. Equation 4.1 and

4.2 can now be rewritten as

~ _ oL o3

RE (%, V) = , foc FIE SR S (4.9)
yJ=

~ = n g XE i)

Re (%, ) = . ) oC ;X (4.10)
»yJ=

03

The problem is to solve for the coefficients CHJ ana C 5
of the polynomials. The number of coefficients U to be

solved for is determined from the relation

U = (n + 1)d. (4.11)
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where n is the degree of the polynomial and d is the dimen-

sionality of the base functions.

4.2.1 Least Squares Solution of the Models

To determine the unknown coefficients CHj and ng of
the models represented by equations 4.9 and 4.10, obser-~
vation equations can be written for each data point i where
the amplitude difference AHk and the phase lag difference
Agk referred to a reference station are known. The equations

are

<

~
+

<

I

AHy (%,

K = AHk(Xi, yi)’ (4.12)

>
[l
o
~
W
H-
<
~
+
<
1l

Ag (X5, Y4), (4.13)

where AH, and Kg are the predicted values, V and V

k k Bri ki
are the residuals of observations, and the terms on the
right hand side (AHk and Agk) are the known or observed

values. Substituting equations 4.9 and 4.10 into equations

4.12 and 4.13 yields

Tl Wbyl v = s (x. L vy (4.11)
Ry . H‘— sy . ’ o A
£,5=0 j i7i ki k' i i ‘
n L
g J =
, §=OCKJ X{¥y o+ Vg = Ae(xy, vy (4.15)

Putting equations 4.14 and 4.15 in matrix form we have

H

A C + Vy = LH s (4.16)
mxu uxl mx1 mx1

A C® o+ Vg =Lg . (4.17)
mxu uxl mx1 mx1

It is pertinent to note here that equations 4.16 and 4.17 are

the same as the observation equaticns for a parametric case
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in the least squares adjustments. The parametric least
squares adjustment differs only in purpose and notations
from the least squares approximation of a function (F)
defined on a discrete or compact domain (M) [Vanicek and
Wells, 1972]. The purpose of the least squares approxima-
tion is to find an approximating polynomial (Pn) for a
given function or for a given set of functional values.
The purpose of the least squares adjustment is to find the
least squares statistical estimates of unknown parameters
which are related to the observed values by linear (or
linearized) mathematical models.

The matrix A is known as Vandermonde's design matrix

and is given Dby

-

¢0<x$y§>, wl(xgy%), wz(xgyf), co b Gy

A = wo(xgyg), wl(xgyé), wz(xoyz), ...'wu(xgyg)
mxu _

Do(xoydy, b Gy ), by (x oy ), L. b (xhyD)

— (4.18)
CH and C® are the vectors of coefficients. VH and Vg are
the vectors of residuals of the observations LH and Lg

LH and Lg are the vectors of observed values (or the
functional values) at the discrete points i. The solution
of the system of equations given by 4.16 and 4.17 for the
coefficients, using least squares approximation methodology

[VaniEek and Wells, 1972; Christodoulidis, 1973; Balogun,

1977; Appendix I] is given by
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~

c =Ny, (4.19)

where N is the Gram's matrix defined by

[<Wovo> <Yp¥1> -+ <Uguy>|
N = [aTPay = [ Vv <vivy> e <Ypdy>| (4.20)
uxu
[ <Yu¥o > <Wy¥1> - <Yyly”
and
U= A'PL = L, g (4.21)

The sign < > indicates a scalar product [Appendix I].
Since our prescribed functions form a base, the Gram's
determinant must be different from zero and must have an

inverse.

\

The solution for the residual vector is given by

Vv =AC-1L . (4.22)

The associated variance covariance matrix for the coeffi-
cients is given by

is = PNt (4.23)
where 82 is the a posteriori variance factor given by

52 = ¢Tp¥/ar | (4.24)

in which df represents the degree of freedom given by
df = m - u . (4.25)

P is the weight matrix

1 1 1

P = Zil = Diag][
(4.26)
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where o1, is the standard error of the observables. The
weight matrix is diagonal when we are dealing with statis-
tically independent observables, that is, the observations
are assumed uncorrelated.

For statistical reasons, we may wish to work with
orthogonal bases, and usually the base ¥ is not an ortho-
gonal one. Schmidt's orthogonalization process [Appendix I]
may be applied to obtain an Qrthogonal base y*. Using

an orthogonal base, the normal equation is
a*Tpax Cx = axTpr, (4.27)

Again setting

A*xTPAx = Nx |

and
axTpL = U*
we have that
ox = nxlux (4.28)

A* is the Vandermonde's design matrix obtained using
the orthogonal base. C* is a vector of Fourier coefficients,
N* is the Gram's matrix, this time diagonal because we

are dealing with orthogonal base functions and is given by

<¢,(’§ xps > 0 0
* *
N* = 0 (1’)1 q)l> 0 , (4.29)
uxu
x  *
0 0 <Pu ¥y
— s

and U* is given by
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* L
Ux = |<V1 (4.30)
uxl X
*
<Py Pj

The associated variances are given by

~2 1

Taw = 07 % N¥T° (4.31)
where
52% = 9xTpy/ar | (4.32)

The solution of normal equation becomes trivial as the normal
equation matrix N* (Grams matrix) is diagonal and each Fourier
coefficient can be solved for independently.

We subject the Fourier coefficients to statistical
screening by comparing each coefficient égainst J times

its standard error. [Christodoulidis, 1973], that is, if

A X R
]Cil < J og; , , (4.33)

then 6; is statistically insignificant at that level and

is discarded. j takes the values 1, 2 or 3 depending upon
what level of significance of their standard deviations we
wish to test the coefficients. The discarded Fourier co-
efficients are set equal to zero. Once the appropriate
Fourier coefficients are discarded, the residuals, the
variance factor and the variances are recomputed using only
the accepted coefficients. The residuals are given by

gxd = AxCx - L | (4.34)
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The a posteriori variance factor 1s recomputed by

521

1 Tpgx1/qsl (4.35)

where

atl =m - u + 4d ,

in which d represents the number of Fourier coefficients
discarded. The new variances are

~2%1
o .

Lokl = N*=1 (4.36)

Using the transformation matrix (see Appendix I)

_ _
1 Bia  By3 Biu
3 = |o 1 8 B
Lo 23 2u (4.37)
0 0 0 1

and the remaining statistically significant Fourier

coefficients, the original coefficients are computed by
~ A :
C = BCx . (4.38)

The correct number of original coefficients are obtained
even though we are solving for them using fewer number of
Fourier coefficients. If, however, the last Fourier
coefficients are the ones discarded, a fewer number of
original coefficients will be recovered. The variance-
covariance matrix of the original coefficients can be

computed using the variance-covariance law, namely,
| T
Ie =B lga B, (4.39)

where 26*1 is given by equation 4.36.
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Once we have computed the cocfficients of the
original polynomials and their variance-covariance matrix
from the statisticaliy significant Fourier coefficients,
statistically significant surfaces which describe the
distributions of amplitudes and phase lags (or range ratios
and time differences) in the area of interest have been
obtained. Analytical cotidal models for amplitudes and
phase lags (or range ratios and time differences) have
thus been obtained. With the analytical models, the
values of the amplitude and phase lags (or range ratio
and time lags) can be predicted for any point Pi(¢ixi)
in the area using equations 4.1 and 4.2. The prediction

variance covariance matrix is given by

by =30 d" | (4.40)

in which J is Jacobian of transformation defined by A matrix.

4.3 Data Requirements and Reduction Algorithms

4.3.1 Amplitude/Phase Cotidal Model

As previously noted, to produce cotidal models for
amplitudes and phase lags, we need to define the ampli-
tudes and the phase lags of each constituent frequency
at a reference station and at several other observation
stations adequately distributed in an area of interest.
Working with four major constitue:ts, eight analytical
models are needed to describe the tidal characteristics
of the area. For a fair estimate of the amplitudes and

the phase lags, the tidal analysis must be made from
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369 days of tidal records, and for a barely acceptable
estimate, observation should cover a period of 29 days.
The more observations added in the analysis, the better
will be the estimate of the harmonic constants.

It may not be easy to adequately distribute observing
stations and obtain sufficient data to enable the produc-
tion of a desired analytical model. An alternative is
to use cotidal charts, produced from the numerical schemes
such as those described in III, Section 3.2, as a source
of data. The cotidal charts are digitized as mentioned in
Section 3.3 and the digitized values are used in the least
squares polynomial approximations to produce the analytical
cotidal models. -As a check on the compatibility of the
analytical models and the original chart, the area is
grided at close intervals and the amplitudes and phase lags
predicted at the grid intersections using equations 4.1
and 4.2. The co-amplitude and co-phase curves can then
be easily drawn in.

If the amplitude/phase cotidal models are being used
for the reduction of soundings, the reduction algorithms
can be summarized in steps as follows:

(i) At each sounding location i, the depth

(Dj), the time (t) and the geodetic co-
ordinates (¢i, Ai) are observed.
(ii) With the observed geodetic coordinates

(¢i, Ai), the amplitudes and phase lags
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of the constituents being used can be
predicted using the analytical models.

(iii) Using the tide prediction approach as
described in II Section 2.2 and the
predicted amplitudes and phase lags
from (ii) above, the height of tide
hi(t) at the sounding location above
chart datum are predicted.

(iv) The sounding reduced to the chart

datum is di = Di - hi(t) (4.41)

4.3.2 Range/Time Cotidal Model

Some assumptions must be made at the outset for this
model. Considering a body of water of‘relatively small
extent, such that one can safely assumé that the meteoro-
logical variables in the area are not remarkably different
from place to place, it can be further assumed that given
any two points A(¢, A) and B(¢, A) in the area, the tides
at A bear constant relationships with the tides at B.
Those relationships will change when there are marked
topographical changes due, for example, to errosion,
engineering structures, which tend to change the pattern
of the propagation of tidal waves. If we establish the
relationship existing between a reference station and any
other point, it is possible to predict with some degree of
certainty the tides at that other point from the observed

(or predicted) tides at the reference station.



79

The relationships between the tides at any two sta-
tions can be established from the ratio of their ranges
and the difference in the times of occurrence of high
and low waters. In other words, it is assumed that the
unwanted noise has perturbed observations equally so
that when the range ratios and time differences are deter-
mined, the unwanted noise is eliminated.

To produce range ratios and time lags cotidal
models, we require

(i) the mean range RmO at the reference station

and the mean ranges ij at discrete points
(¢j, Aj); the range ratios are then given
as .

r; = B /R, (4.42)

(ii) the mean time differences between the times
of high and low waters at the reference
station and at the discrete points given in
minutes of time.

If the sounding reduction is to be done with range/time
analytical cotidal model, the reduction aligorithms can
be summarized in the following steps:

(i) The tide is observed at the reference

station to cover the time interval M
(the soundings are also performed
within the same interval of time). A
least squares approximation of the

observed series at the reference
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station is done so that at any time t in
the interval, the height of tide can be
predicted.

(ii) At each sounding location i, the depth (Di),
the time (t) and the geodetic coordinates
(¢;, Aj) are observed.

(iii) With the observed geodetic coordinates
(¢i, Ai), the range ratio (ri) and time
difference (correction to time) are pre-
dicted using the analytical models.

(iv) Using the corrected time at the reference
station and the approximating polynomial
from step (i) above, the neight of tide
(ho(t)) at the reference station is
predicted.

(v) The height of tide at the observed loca-
tion i is computed from the relation

= I a7
hi(t) ho(t) X Iy . (4.45)

(vi) The reduced sounding is

d; = D; - h(t) . (4.44)

It is more convenient and simple to work with range/
time cotidal models because (i) unlike the amplitude/phase
models where 2 x NCON (NCON is the number of constiturnts
used) analytical models are needed to describe the tides,
only two models are needed to completely describe the

tides, (ii) working with range/time cotidal models allows
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us to use the observed tides at the reference station to

reduce soundings instead of the predicted tides .



V. TEST COMPUTATIONS AND THE RESULTS

5.0 Data

To test the proposed analytical scheme, there was
unfortunately no adequate data immediately available. How-
ever, the tidal information for secondary ports on the Bay
of Fundy, published in the Canadian Tides and Current Tables,
1978 by the Canadian Hydrographic Service was minimally ade-
quate for testing the analytical range/time cotidal models.
This tidal information is given with reference to the
Port of Saint John. In Table 5-1, the data as extracted
are tabulated for 35 secondary stations (Figure 5-1).

The predicted tides for the Port of Saint John from
January 1-15, 1978, were extracted from the same Canadian
Tides and Current Tables, 1978 and treated as observed
tides in the computations. The zero hour of the day the
observation started is taken as the origin otf time and
times are given in hours from the origin of time. The
observations are treated such that the period of the
sounding exercise is covered, in other words, it is
assumed that the tides were observed at Saint John through-
out the period of the sounding. In Table 5-2, the tides
as supposedly observed are tabulated and from Table 2-1

the following 7 major constituent frequencies are usci.

Symbol Frequency (deg./hr)
M2 28.984104
S2 30.00000
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Index| Location Name .ZOne Latitude Longitude{ Mean Range. Mgan Time Remark

No. Time(ZT) Range| Ratio(r)] Diff.(min)
© . 5 T

0065 | Saint John +4 45 16 | -66 04 |25.10{ 1.0 0.0 Ref. St.
0001 | Outer Wood Isl. +4 44 36 | -66 48 |16.60f 0.6614 -28.5 *
0015 | Welshpool +4 44 53 | -66 57 [16.90f 0.6733 + 5.0 *
0040 | St. Andrews +4 45 04 | -67 03 {22.60] 0.9004 +15.5 *
0060 | Partridge Isl1. +4 45 14 | -66 03 |25.00{ 0.9960 -10.0 *
0129 { St. Martins +4 45 21 -65 32 [30.15) 1.2012 + 9.0 *
0140 | Herring Cove +4 45 34 | -64 58 |33.25] 1.3247 +19.0 *
0150 | Cape Enrage +4 45 36 | -64 47 [35.40| 1.4104 +17.0 *

‘ 0160 | Grindstone Isl. +4 45 44 | -64 37 |38.30f 1.5359 +20.0
0170 | Hopewell Cape +4 45 51 | -64 35 |39.90{ 1.5896 +19.0
0190 | Pecks Point +4 45 45 | -64 29 |38.70f 1.5418 +19.0
0215 | Joggins Wharf +4 45 41 | -64 28 |[38.15] 1.5199 +18.5
0225 | Cape Capstan +4 45 28 | -64 51 133.05] 1.3167 +11.0 *

235 | West Advocate +4 45 21 | -64 49 |32.90| 1.3107 - 1.0 *
0240 | Cape D'or +4 45 18 | -64 47 |36.55| 1.4562 +16.5 *
0245 | Port Greville +4 45 40 | -€4 56 |36.70| 1.4622 +30.0
0247 | Diggent River +4 45 24 | -64 27 |39.50| 1.5737 +33.0
0250 | Cape Sharp +4 45 22 | -64 23 |37.95] 1.5120 +48.5
0260 | Five Isl. +4 45 23 | -64 08 |43.05| 1.7151 +56.0
0270 | Burnstooat Head +4 45 18 | -63 48 [44.30| 1.7649 +67.0
0285 | Avon Port +4 45 06 | -63 13 |45.05( 1.7948 +32.5
0290 | Cape Biomidon +4 45 16 | -64 21 ]29.80| 1.1873 +46.0
0300 | Scots Bay +4 45 19 | -64 26 |37.10| 1.4781 +14.5
Table 5-1 Bay of Fundy - Tidal Information on Secondary Port.
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Index | Location Name Zone ~Latitude Longitude| Mean Range Mean Time Remark
No. Time (ZT) Range | Ratio (r) | Diff.(min)

0305 | Baxter Harbour +4 45 14 -64 31 37.4 1.4900 +12.0 *
0312 | I1e Haute +4 45 15 -65 00 34.15| 1.3606 0.0 *
0315 | Margaretsville +4 45 03 -65 04 31.75| 1.2649 -12.0 *
0320 | Parkers Cove +4 44 48 -65 32 26.60( 1.0598 -14.0 *
0325 | Digby +4 44 38 -65 45 25.25| 1.0060Q - 9.0

0330 | Deep Cove +4 44 24 -65 50 24.00| 0.9562 -15.5 *
0335 | Sand Cove +4 44 30 -66 06 21.15| 0.8426 -18.0 *
0336 | East Sandy Narro. +4 44 29 -66 05 19.10| 0.7610 -37.0 *
0337 | Tiverton +4 44 23 -66 13 17.45| 0.6952 -45.0

0340 | West Port +4 44 16 -66 21 18.10| 0.7211 -34.0 *
0345 | Lighthouse Cove +4 44 15 -66 24 17.90| 0.7131 -34.0 *
0353 | Church Point +4 44 20 -66 07 18.10| 0.721) +18.0 *
0255 | Meteghan +4 44 12 -66 10 16.90 | 0.6733 +18.0 *

* Data used in test computations

Table 5-1

(cont'd).
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Station: Saint John Time Zone: + 4
Coords.: Lat. = 45 16'N
Long. = 66 04'W Date: Jan. 1-15, 1978
Time (Hrs Height(m)}j Time (Hrs)| Height(m)} Time (Hrs)| Height(m)
03.833 7.4 128.500 8.1 253.167 8.4
10.250 1.3 134.833 0.6 259.333 0.2
16.250 7.3 141.083 7.7 265.500 8.0
22.350 1.2 147.333 0.8 271.917 0.6
28.667 7.4 153.417 8.3 278.000 8.1
35.00 1.2 159.833 0.3 284 .333 0.4
41.250 7.3 166.083 7.8 290.500 7.8
47.250 1.2 172.167 0.6 296.667 0.8
53.500 7.6 178.25 8.4 302.833 7.8
59.917 1.2 184.917 0.2 309.083 0.7
66.083 7.3 190.917 8.0 315.333 7.6
72.417 1.1 197.00 0.5 321.500 1.0
78.583 7.7 203.333 8.5 327.750 7.4
54 .833 1.0 209.667 0.1 334 .167 1.0
£ 91.083 7.4 215.750 8.1 340.250 7.4
97.417 1.1 222.083 0.4 346.500 1.3
103.583 7.9 228.167 8.5 353.000 7.1
109.915 0.8 234.667 0.1 359.167 1.3
116.167 7.5 240.750 8.0
122.333 0.9 246.915 0.5

Table 5-2 Tide Observations.
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Symbol Frequency (deg./hr)
O1 13.943036
K, 15.041069
P1 14.958931
K2 30.082137
N2 28.439730

5.1 Computations and the Results

The computations have been completed in three steps.
First, least squares approximations were done to determine
the coefficients of the polynomials that will predict the
range ratio (ri) and the time difference (correction to
time) at a pqint Pi (¢i, xi). Second, a least squares
polynomial apbroximation of the observed time series at the
reference station (Table 5-2) was completed to determine
the coefficients of the polynomial that will predict the
height of tide Eo(t) at the reference station at any time
t € M. Finally, using the results of the first two steps,
the observed geodetic coordinates at a point Pi(¢i, ki)
and the observed time at the location, the height of tide
at the ship was computed for the determination of the
reduced depth.

5.1.1 Determination of the Coefficients of the Approximating
Polynomials

Of the 35 secondary gauge stations spread around the
Bay of Fundy, 21 of them that are located around the main

body ofthe Bay were used. Because of the intervening
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peninsula which bifurcates the Bay at about longitude 64° 55",
the tidal wave propagation have been greatly affected along
the two branches. A single analytical cotidal model for
the entire area could not therefore be produced. The Bay
has been divided into three sections numbered I, II and III
in Figure 5-1. We have used the 21 secondary stations to
model section I (those stations marked with * in Table 5-1
under remarks column). It should be noted that the origin
of the local Cartesian coordinate system is approximately
at the centre of the area being modelled (¢O = 45° 05' OON,
AO = 65° 35' O0OW). The data at the reference station
(Saint John) was not fixed giving a total of 22 data points
for the approximation;

Using equation 4.11, it was deduced that the highest
degree of polynomial possible with 22 data points is 3,
giving a total of 16 coefficients and 6 degrees of freedom.
This does not however mean that the polynomial of degree 3
will give a better approximation than polynomials of degree
1 or 2. In Table 5-3 the degrees of the polynomials and
their associated a posterori variance factors aré tabulated.
Two of the functions (Range ratio and Function A) have their
variance factors reach a minimum at degree 2, while the variance
factor of the third function (Function B) varies more
slowly at degree 2. The conclusion is that the polynomial
of degree 2 will give the best approximation with th:s
data.

The approximation for time lag required some extra
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Degree of| Std. Dev. Range Ratio Function Function
Freedom of Obs. 32 A= Rﬁgos(v) B = R"%in(v}
(df) 9L (m) 0 00 00
18 0.1 0.94497 14.02610 20.60978
13 0.1 0.84280 12.40109 13.66546
6 0.1 1.14585 17.50086 13.43903
Table 5-3 A Posterori Variance Factor for Various Degrees

of the Polynomials.
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data manipulation. First, the time differences given in

minutes were converted to angular measure using the

relation
12 hrs = 3607,
1 hr = 30°,
1 min = 0.5",

(the Bay of Fundy tide is mainly semi-diurnal). Attempts

to approximate the time lag converted to angular measure
yielded large variance factors which of course decreased
with increase in the degree of the polynomial. Unfortunately
the highest degree of polynomial with the data available

is 3. The conclusion reached was that the time lag dis-
tribution is not simple enough to be approximated by lower
degrees of the polynomials.

From Chapter II

1
= = )
h(t) 5 R cos(mkt + At
=1 R t + Lr sin @, sin w,t
=35 COs a, COS Wy 5 & k K
= A cos wkt + B sin wkt, (5.1)
1
where A = 5 R cos oy (5.2)
1 . '
B‘= 5 R sin o . (5.3)

O is time lag (or phase lag), and R is the mean tide range
at the station.
Also

o = Arctan (B/4) , (5.4)
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iR = (4% + p%)/? (5.5)

A and B can therefore be evaluated at each station using
equations 5.2 and 5.3 respectively. We can now seek for
the polynomials that can predict A and B at any point Pi
'(¢i, Ai). Once A and B are predicted, the predicted time
lag (phase lag) can be obtained using equation 5.4. The
associated variance (assuming no correlation between A and

B eg. oap = 0) is given by

2 _ (3012 2, (9g)2 2
O [aAJ op * laB op (5.6)
where
o0 = 1 - I 2 = B
A T Tx a/mz * 0B T ma sEme
(5.7)
a0 = 1 i l = 1
a8 T+ (B/A)2 * A - A(L ¥ (B/A)2)”  (°-8)

gi and Og are prediction variances of A and B respectively
from the least squares approximations. For weighting, i
was assumed that all the stations have been observed inde-
pendently with equal amount of care. The standard error
of the observed fange was set at 0.1m.
If observed data is used, it is pertinent to note the
following:
(i) The standard error of the observed mean raunge
should be computed from the observed data
using the relation

.9)

[¥1]

_ 5 \2
og = Y1(Ryp - B)7/n. (
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where R, is the daily mean range, ﬁm is the

D
mean of mean ranges, n is the number of obser-
vations.

(ii) A and B should be computed from equation 5.1

in the least squares sense using observed
heights and the dominant constituent frequency
in the semi-diurnal or diurnal band, depending
on the type of tide.

In Table 5-4, the Fourier coefficients and their asso-
ciated standard deviations for the range ratio and time
lag are tabulated. The last four Fourier coefficients
in the range ratio and function A have been eliminated,
and in function B, two of the Fourier coefficients have
been eliminated in the middle. 1In Table 5-5, the original
coefficients of the polynomials are taﬁulated. Because
of the discarding of the last four Fourier coefficients
in the range ratio and function A, only five original
coefficients can be recovered. In function B where the
Fourier coefficients discarded are not the last ones, all
the 9 original coefficients were recovered. (Note, eacih
Fourier coefficient was tested against its standard
deviation)

To compare the analytical cotidal model with other
cotidai charts, the area was divided into a rectangular
grid of 10' latitude and 10' longitude (Figure 5-2)., and

the values of range ratios (r) and time lags have been



greater than their Standard Deviations.

RAWGE RATIO .TIME LAG
Coeff.(Cr) ocr Coeff.(CA) QCA' Coeff.(CB) OCB
1.049 0.01957 3.970 0.07508 0 0
0.4623E-5 | 0.330E-6 0.1783E-4 0.1265E-5 | 0.4906E-5 |0.1237E-5
0.1940E-10| .6191E-11{ 0.7554E-10 | 0.2375E-10| 0.7091E-10 [0.2321E-10
0.2126E-5 | 0.5570E-6 | 0.8618E-5 0.2138E-5 | 0.3977E-5 |0.2089E-5
-0.2648E-10| 0.1350E-10{-0.1140E-9 0.5178E-10 0 0
0 0 0 0 0.1728E-14 |0.1004E-14
0 0 0 0 0.2869E-9 |0.1042E-9
0 0 0 0 0.2024E-14 |[0.1582E-14
0 "0 0 0 -0.5218E-19 |0.3350E-19
L
Table 5-4  Fourier Coefficients After Discarding those of them
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RANGE RATIO TIME LAG
Coeff.(C,) o, Coeff.(Cp) o Coeff.(Cp) % |
1.120 0.03537 4.264 0.1357 -0.5691 0.16978
0.4041E-5 | 0.5680E-6 | 0.1550E-4 0.2179E-5 | 0.8730E-5 |0.3614E-5
0.1364E-10| 0.7644E-11| 0.5374E-10 0.2932E-10{ 0.1484E-9 |0.4318E-10
0.1247E-5 | 0.7150E-6 | 0.4835E-5 0.2742E-5 | 0.1695E-4 |0.5526E-5
-0.2648E-10| 0.1350E-10|-0.1140E-9 0.5177E-10{-0.2617E-9  |0.1938E-9
0 0 0 0 -0.3887E-14 |0.2208E-14
0 0 0 0 0.4269E-9 |0.1391E-9
0 0 0 0 0.5786E-15 |0.1834E-14
0 0 0 0 -0.5218E-19 [0.3349E-19
Table 5-5 The Original Coefficient of the Polynomials

and their Associated Standard Deviations.
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predicted at each grid intersection. The co-range curves and
the co-time curves were plotted as shown in Figure 5-3.

Figure 5-2 shows the grid numbering, and in Table 5-6, the
predicted values at each grid intersection and their asso-
ciated standard deviations are tabulated. The cotidal curves
from the proposed analytical models compared favourably with
the cotidal curves (Figure 5-4) taken from 'Tides in Canadian
Waters' [Dohler, 1966 showing the progression of semi-diurnal
tides in the Bay of Fundy.

5.1.2 Least Squares Polynomial Approximation of Observed
Time Series at the Reference Station

In this case, the heights of the tide defined at dis-
crete times (t;) in the time interval M are given and it is
required to determine the coefficients of the polynomial
that will best predict the height of tide h(t) at any other
time t ¢ M. A one dimensional trignometric polynomial (Eqn. 2.30,

Chapter 11, Section 2.2) and the 7 constituent frequencies
listed on page 82 have been used. The number of coefficients
is given by

U= 2 Ncon + 1 , _ (5.10)
where Ncon is the number of constituent frequencies being
used. For weighting, it was assumed that each height was
observed independently, with equal amount of care and
precision, and Oh(t) = 0.05 m. The weight matrix is

therefore

P = Diag

. 5 5 ce (5.11)



101

In Table 5-7 , the Fourier coefticients and the
recovered coefficients of the approximating polynomial

of the -observed time series, and their associated standard
deviations are tabulated. Two Fourier coefficients were

discarded in the middle of the series thus all the 15 ori-

ginal coefficients were recovered.

5.1.3 Tidal Reduction

For this set of computations, simulated sounding ob-
servations (corresponding in location to the 22 data points
and with all observations made within the time interval M)
were used to illustrate a proposed reduction algorithm.

At each sounding location i, the depth (Dj), the time (t)
and the geodet;c coordinates (¢i, Ai) or the local Cartesian
ccordinates (Xi’ yi) are observed.

The arguments of the approximating polynomials for range
ratios and time lags are the local Cartesian coordinates
(x, y) and the argument of the approximating polynomial for
the heights of tide at the reference station is the time (t).
With the polynomial coefficients and their associated standard

)

deviations stored in the computer, only the arguments (xi, Y5
are needed to predict the range ratio (ri) and the time lag
(tci). The time lag is, in a sense, the correction to be
applied to the observed time at the ship (sounding locatinn
i) to get the equivalent time at the reference station.

With the equivalent time at the reference station computed,

the height of the tide at the reference station is predicted



FOURIER COEFFS. AFTER TEST
AGAINST THEIR STD. DEVS.

COLFFICIENTS OF THE ORIGINAL
POLYNOMIAL

Coeff.(F:) Std. Dev. Coeff.(C) Std. Dev.

O I

4.279 0.5861E-2 4.279 0.6227E-2
-5.339 0.9072E-2 -1.951 0.1423
2.335 0.02048 2.226 0.1081
0.4590 0.9760E-2 -0.1756 0.2113
-0.0496 0.8784E-2 0.2592 0.3972
0.0360 0.8436E-2 0.0678 0.0100

-0.0909 0.8295E-2 -0.1031 0.8507E-2
-0.1338 0.8309E-2 0.2305 0.0319
0.1584 0.8360E-2 0.0335 0.0322
0 0 0.1392 0.0382
0 0 0.0832 0.0229
-0.4193 0.0954 0.4132 0.1602
0.9868 0.1508 -0.0302 " 0.3586
0.4479 0.0840 0.7741 0.1272
0.4300 0.1259 0.4300 0.1259

Table 5-7 Coefficients of the Polynomial for the
Observed Time Series at the Reference

Station.
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using the known time as the argument of the predicting poly-
nomial. The height of tide at the ship, which is the
required reduction, is obtained using equation 4.43. The
reduced sounding is computed using equation 4.44. Applying
the law of propagation of errors, the standard deviation
of reduced sounding is given by

) .
_—1]2 02 , _—3 2 9 1/2

d,
1
944 Di * |3Eicty| “bi(t) . (5.12)

where ODi is the standard deviation of the depth sounded,

Ohj(t) is the standard deviation of the predicted height at
ad. ad;

i _ i _ . .
gﬁ; = 1 and §E;T€7 1 . The heights of the tide

at the ship, required to reduce the soundings, are tabulated in

the ship,

Table 5-8 along with their estimated standard deviations.

The predicted time lags and range ratios are compared with
the original data set (observed values) as shown in Table
5-9. At this stage it is important to mention that normality
in the distribution of residuals was assumed and chi square
tests on the variance factor performed at 95% confidence
level. The test passed for the range ratié and observed

time series approximations but failed for the time lag. There
are several possible reasons for the failure of this test

and as such a definite conclusion cannot be made without
performing several other statistical tests [Vaniéek‘and
Krakiwsky, Chapter 13, 1978]. However, it can be concluded
from our earlier discussions (Section 5.1) that eithe the
time lag is not simple encugh to be approximated by the

lower order polynomial or the information available is
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not sufficient to approximate the time lag. In the present
circumstance it may be safer to assume og known and equal
to 1, so that

Io = o2 Nl (5.13)
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Station | Obs. Predicted Diff'T—bBE‘ Predicted DiFf
Index Noj Time Lag| Time Lag "] Range RatiocjRange Ratio :
0065(22) 0 -3 +3 1.0 1.032 -0.032
0001(14)} -28 -32 +4 0.661 0.655 +0.006
| 0015(15)] +5 +3 +2 0.673 0.752 -0.079
0040(16)| +16 +16 0 0.900 0.827 +0.073
0060(17)| -10 -7 -3 0.996 1.027 -0.031
0129(18)| +9 +8 +1 1.201 1.170 +0.031
0140(19) +19 +20 -1 1.325 1.346 -0.021
0150(20) +17 +12 +5 1.410 1.404 0.006
0225(21) +11 +10 +1 1.317 1.386 -0.069
0235(1) -1.0 +8 -9 1.311 1.403 -0.092
0240(2) +16 +8 +8 1.456 1.418 +0.038
0305(3) +12 +14 -2 1.490 1.538 -0.048
0312(4) 0 +5 -5 1.361 1.335 +0.026
0315(5) -12 +1 -13 1.265 1.306 -0.041
0320(6) -14 -16 +2 1.060 1.100 -0.040
0330(7) -16 +1 -17 0.956 0.9M +0.045
0335(8) -18 ~26 +8 0.843 0.828 +0.015
0336(9) -37 -24 -13 | 0.761 0.829 -0.068
034¢{10) -34 - ~26 -8 0.721 0.668 +0.053
034511) | -34 -31 -3 0.713 0.643 +0.070
0353(12) +18 -10 +28 0.721 0.778 -0.057
0355(13) 18 +5 +13 0.673 0.721 -0.048
Summary :

Time Lag : 0< Diff< [2g

Range Ratio : 0.005 < Diff.< [0.]]

Time Lag, RMS of the Diff- (observed-predicted) = 9.44 min
Range Ratio, RMS of the Diff- (observed-Predicted) = 0.0505

Table 5-9 Difference Between Predicted and Observed Values.

* Numbers in brackets corresponds to the serial numbers in Table 5-8.




The objective of this work has been to produce analyti-
cal cotidal models, using observed data or existing cotidal

charts, which could be stored conveniently in a computer

VI CONCLUSIONS AND RECOMMENDATIONS

so that when observed sounding data are input, the

output would be reduced soundings.

of the proposed analytical scheme are the following.

(1)

(ii)

(iii)

(iv)

The analytical models can be obtained and
updated using the observed data in addition
to that of already produced charts. This
allows up-dating the model when more obser-
vations are available.

This‘scheme does not require large computer
storage space. For example, instead of
storing many digitized numbers, the digiti-
zed values are used to determine a few co-
efficients of the best approximating poly-

nomials.

‘These models allow for the rigorous propa-

gation of errors. With associated esti-
mated standard deviations, the reliability
of the final result can be easily obtained.
A degree of flexibility is offered. It is
convenient to use data from existing co-
tidal charts, observations or a combination

of the two.
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The principal advantages
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Least squares polynomial approximation is applied
to either

(i) recover a function F(x) from a known set of

its values, or
(ii) to replace the known function in further
computations by a more trackable polynomial.
The problem of least squares polynomial approximation as
applied in this work is that defined by (i) above. It
would be interesting to view the problem as in (ii) above
and apply it to the Laplace tidal equations to obtain the
necessary polynomials.

From the test computations using the data on the Bay
of Fundy, the computer effective run time is 28.46 secsand
the storage space is 336,136 Bytes for Least squares poly-
nomial approximation for range ratios and time lags. For
the polynomial approximation for time series at the ref-
erence station the effective run time is 23.03 secsand the

storage space is 299,288 Bytes. For the Tidal Reductiou

therefore we have a total of 42 coefficients and their
associated standard deviations to store in the computer.
In the program to execute this for 22 sounding stations,
the time of execution was 0.76 sec and the storage space
used was 14,480 Bytes. The result also shows that the
water level at a location (¢i, Aii can be predicted with
a standard deviation (ohi) of 0.5 m or better.

It is recommended that the prediction of tides at

the reference station with the polynomial should be done



strictly within the time
squares approximation of
polation is required, it
phase analytical cotidal
tion using the procedure

Section 2.2,
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interval M used in the least

the observed series. When extra-
is advisable to use the amplitude/
models and carry out the predic-

described in Chapter II,

Finally, since the data immediately available was

not adequate to fully test the proposed analytical schemes,

it is suggested that proper data be obtained to facilitate

complete testing.
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APPENDICES



I OUTLINE OF THE LEAST SQUARES APPROXIMATION THEORY

Least squares polynomial approximation is applied to
either
(i) recover a function F(x) from a known set of
its values, or
(ii) replace the known function F(x) in further
computations by a more trackable polynomial.
The problem of least squares polynomial approximation as used
in this report is that defined by (i) above. A brief out-
line of the least squares approximation theory due mainly
to Vanicek and Wells, [1972] is here given.

Given:

(i) a function F defined on a finite set M

M = {Xl X2 ... Xm}, M discrete
M = [a, b], M compact
(ii) a base V¥ = wl’ wz C. . wu . a set of n

linearly independent prescribed fﬁnctions
from the functional space Gm,
(iii) a weight function W, defined and non-nega-
tive on M,
then the problem of least squares approximation is to deter-
mine the vector of coefficient (Cl‘ C2 - Cu) of a genera-
lized polynomial Pn which minimizes the weighted distulice

P(F, Pn) defined as
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g 1/2
P(F, Pn) = [ Yy OW(x)(F(x) - Pn(x)) }
XEM
M discrete (I1.1)
oy 1/2
P(F, Pn) = U W(x)(F(x) - Pn(x)) ]

M M compact (1.2)

The approximating polynomial is given by
¥ I
Pn = ¥ Ciwi . (1.3)

i=1
The scalar product of two functions G, H € Gm is defined as

z W(x).G(x).H(x), M discrete

_— XeM
<G, H> =
\
I W(x).G(x).H(x). M compact
i (I.4)

If the product of two functions G, H ¢ Gm is zero, then the

- functions are\orthogonal. If the base functions are ortho-

gonal,
. # 0 i=j
i
<P > =/////k (I.5)
iwj \\\\‘0 oy
. i J

If i = j, it means
2 +

ki = <wi wi> = Ilwill , € E
or
2
Uy vy> = |Iwill 513 ’
where Gij is known as Kronecker delta and is defined as
) =‘/1 P (I.6)
1] T~~~

0 i#3
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Returning to the problem of leust squares approximation we
are seeking for the coefficients Ci’.CZ ce Cu of the poly-
nomial Pn that would make the distance ||Pn - F|| the

minimum. This means minimizing the Eucleidean distance

}OW(x)(F(x) - Pn(x))2

XeM
with respect to Cl’ C2 ... Cu' The condition is written as
Min 2
Cyy Cy, oo C e p%(P, F)
= Min 9
c,, C,, ... C_ € E ? W(x)(Pn(x) - F(x))
1 2 u &
XeM
= Min u o
C,, Ch, ... C e E ) W) ) (C.y.(x) - F(x))“.
1 2 u L . ivi
XeM i=1

(1.7)
When the partial derivatives of the above w.r.t individual
C's are equated to zero, thne minimum distance is obtained.
Minimizing we have
) [W(x><_§

XeEM j=1
39C,
1

2

51 Cy ()

u
2] W(x) ) (C(x) - F(x) —d—
XEM j=1 99 i

2) W(x) Y Cwu.(x) - F(x)y.(x) ,
XeM j=1 9 '

u
20 W(x) [ Co.(x, (x) - 2] W)F(x)p,(x) ,
x j 9 X

=0 . (1.8)
From the definition of the scalar product, the above can be

written as
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u
jzl<¢i, b>Cy = <F, yy>. (1.9)

EquationI.9gives the system of normal equations which can
be solved to obtain the coefficients Cl’ C2, ... Cu’ Putting

I.9 in matrix form we have

[<vj ¥4>1C = [<F, y;>]. (I.10)
Letting
N = [<¥;, ¥520, (I.11)
and
U= [<F, p;>], (1.12)

the solution of normal equation is given by

c=x1u. (1.13)

N is the Gram's matrix and Gram's determinant det(N) # O

because we are dealing wifh linearly independent base

functions Y. Equation I.13 therefore has a unique solution.
If we are dealing with orthogonal system of base

functions ¥*, then

IZ

N* = Diag{<y; v,>] = Diag(||v;|1%).

The solution of the normal equation becomes trivial and
is given by

* Lok, .
C* = <F, ¢i>/||wi||2, i=1,2, ...u. (I.14)

Each Fourier coefficient C* can be solved independently.
The system of base functions ¥ often encountered are
not usually orthogonal. The system can however be orthogona-

lised using Schmidt's orthogonalization process. The



procss works as follows:

i) choose

*
by = by Xe M (I.15)
ii) define
S = ¥ B E
Vg =Wy ¥ By g ¥y, XM By ¢

1

(1.16)
Multiplying the above equationlI.16 by WwI and summing up

all the equations for all the X yields

*

* * *
Vg, ¥y> =<¥y by> + By

1<w;, RN (1-17)

X *
To make the system orthogonal, < wz, wl>>must be zero. The

unknown coefficient 82 1 can be determined from
*

* b 3
52,1 —<lll2, ¢1>/<llll, lbl>. (I.18)
iii) Define next
* % *
_ 1
by =g * By oV v By ¥, XEM, By, By e
(1.19)
* *
Multiplying by le and sz yield respectively
* * * * * * *
! { = N 1 '
Wy, Wy m g, Wy w By a<lg, W+ By qaly, Uy,
* * * I , * *
Vg, Vo> = Vg, Vo> + By gcly, Vs + Bg oy, by

By reason of orthogonality,

* * * * * * * *
Wy V=l Vs T clgl Vs = by, Wy 5= 0L

We therefore have that

* *

*
g, Uy >+ By <),
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* * *
Yy g >t By ocbg. Wy =0,
that is
~ * * * I
83'] _<l\U3' lbl> /<w1, w-l,\ . ( ZO)
* * * -
By o T<Ug bg>/<vg, by (I.21

The process can be generalized for any coefficient @ji thus

_ % * * (I
Byg = <y by <y wy> - - 22)

LExpressing the original system in terms of the orthogonal

system we have

*
vy TV
: * *

¢2=—82’1U)1+‘P2 ,

; * * *
Y3 T B3 1 ¥y T B3 n ¥y tug,

_ * * * *
Yo T 7By, Uy T Bu,2 L) Buu-1 Yu-1 ¥y

Putting it in matrix form we have

s — —

B 7 *

™ 1 0 0 ... ol v

. _ *

Vo Bg 1 1 0 01 1vs

= | . (1.23)

vy By 10 By o» 1 --- 01 |vs

1 *

Yu _Su 1’ -8 8u 3 " wu
- 7 I ' u’2 ’ p— _..__J

Bji is defined by equation I.Z2.



Letting
1 0 0 0 |
62’1 1 0 ce 0
B = ,
uxu —83’1 _83’2 1 0
__—pu,l _Bu,2 _Bu,B 1

equation 1.23 is written as

*
¢ = By . (I.24)

B is the transformation matrix that transforms non ortho-
gonal system to orthogonal system. It is an u x u tri-

angular matrix and the determinant det(B) # O.

If we have that
vTe = wxTex

using equation 1.24, we can transform the Fourier coefficients

into the coefficients of the original base functions, thus
* T *T
(BY )y C =Y C(Cx

c = (3Htex . (1.25)



II DBRIEF DESCRIPTION OF THE COMPUTER PROGRAMS USED

The computer programs used in the computations are in
three parts, namely
(i) Least squares polynomial approximation for
cotidal curves,
(ii) Least squares polynomial approximation of
observed time series at the reference station,
(iii) Tidal reductions.

II1.1 Least Square Polynomial Approximation for the Cotidal
Curves

Figure A-1 is the flow chart describing the program.
INPUTS
1st card, FORMAT(S5X, 7I4)
ID - The dimension of the polynomial
N - The degree of the polynomial
M - Number of data points for the approximation
NPP - Number of grid points for prediction. If
there is no prediction NPP = O
INDEX - Code for the type of function to be approxi-
mated. If index = 1, the polynomial approxi-
mation for range ratio (amplitude) is per-
formed. If index = 2, the polynomial
approximation for time !ag (phase lag) is

performed.



LLO

Figure I1I-1 Polynomial Approximation of Cotidal Curves - Flow Chart

READ DATA -]

Compute Reg.No. ot Co-

Yes [

efts. Is df. negative?

No

CALL CHARTE
(converts ¢, X to x, y)

CALL VANDE
(Forms Vandermonde's Matrix)

Poly. Approx. For Range

u~\\gize warning

PHASE
or Phase?
SPLIT:
RANGE FA = 3R cos Vv )
_ iD o3 Define
FB = 4R sin v Weights
Define Weights
Solution by -
orthogonalization? {ES 1
NO _ CALL ORTHO
CALL APPROX. (does L.S. Approx with 0.B.F)
l(does L.S.Approx with N.0.B.F)

Prediction at Grid
Points?

YES

CALL CARTE !

NO

<«

CALL VANDE

CALL P"ED
J

[ PRINT RESUL1S }
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ID — Code for orthogonal or non orthogonal
solution, 1 - for orthogonal solution
2 - for non ortnogonal solution.

ITEST - Code for testing Fourier coefficients
0 - for no test
1 - against its Standard Deviation
2 - against 2 times its Standard Deviation

3 - against 3 times its Standard Deviation.

2nd Card: FORMAT(5X, I5, 5X, Fl0.6, 5X, F10.6
5X, Fl10.6, 5X, Fl10.6)

This card contains the identification
number, latitude ¢ and longitude A of the
“~ reference station, the range ratio (ampli-

tude) and time lag (phase lag) at the
reference station.

n cards: Format as in the second card. Each card
contains, station identification number,
latitude (¢), longitude (2) of the data
points, the range ratio (amplitude diff.)
and the time lag (phase lag diff.) at
each data.

NPP cards: FORMAT(5X, I5. 5X, F10.6, 5X, F10.6)

If there are no prediction at the grid
points, these cards will be omitted.
Each card contains the grid point numoer,

the geodetic ccordinates of the grid
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points (¢, A).

SUBROUTINES :
SUBROUTINE CARTE; computes the local cartesian co-
ordinates (Xi’ yi) given the geodetic coordinates
of the points (¢i, Ai), the geodetic coordinates
of the origin of the local system (¢0, AO) and

the dimensions of the ellipsoid.

SUBROUTINE VANDE - computes the prediction matrix
given the geodetic coordinates (¢, A) of the pre-
diction points, the number of prediction points,
the dimension of the polynomial and the number

of coefficients.

SUBROUTINE APPROX. - does the Least Square approxi-
mation of the function given the ﬁumber of coeffi-
cients, the number of data point, the Vandermonde's

matrix, the weight matrix and the functional values.

SUBROUTINE ORTHO - orthogonalizes the Vanderwmonde's
matrix using Gram Schmidt method, computes the
Fourier Coefficients of the orthogonalized matrix,
derives the coefficients of the Vandermonde's
matrix, computes the variances of the Fourier Co-
efficients and the variance-covariance matrix of

the original coefficients.

SUBROUTINE PRED. - predicts the function values
at the grid points and computes the variance-co-

variance matrix of the prediction.
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PRUCRAME TU CONETRUCT ANALYTICAL COTIDAL CHARTS USING ANALYSED *
TICAL CONSTANT LR RANGE RATIUJS AND TIME DIFFe REF TG A STANCARX%
C sTATICH Ch CIGITIZEC VALULS FRUM EXISTING COTIDAL CHART

S THE LAT e AND LCNG. €5 CISCRETE POINTS, THE AMPL «AND

GE CR RANGE RATICS AND TIME LCIFFSe AT THE PUCINTS AS

1S TC CCMPUTE ThHE CCGEFF ICIENTS CF THE BEST PREDICTING
ALS AT ANY CTFEER PCINT.

E T SONE NCTATICNS UstC IN THE FKROGRAM
T

LI O I 3R 2R O 2R

*

2

*

*

¥

*

%

*

*

3

%

» FHI - ULATITUDE GF STH.I

* ALUN = LCNGITULE CF STNhNe I )
3 FiHsFG = ANPLITUDE AND PHASE LAG LR RANGE RATIGC ANL TIME
» ODIFF«IN MINUTES CF TIME,

] ID = DINENSIUON OF THE AFPRUXe ’

* N - DEGFEE (CF THE FCLYNUMIAL

* M - NUMEEFR CF OBSEKRVATICNS

* IC - CCLLE FCR CRTFCGUNAL CR NCN CRTHOGONAL SOLUTICNS
* 1 - FOR URTHUGCNAL SQOLe.

] 2 = FCR NCN URTEOGOUNAL SCL»
Y

%

*

%

*

*

*

*

*

»

»

*»

*

*

+

*

]

*

LR K O I

ITEST 3 CUODE FOR TESTING FOURIER COEFFS.,

- NG TEST

- AGAINST ITS STD DEV.

- AGAINST 2 TIMES ITS STDe DEVe

- AGAINST 3 TIMES ITs STDs DLV,

MPEI - NOe COF GRIC FCINTS FOR PRECICTIONSIF THERE 1S
N3 PREDICTIGN AT GRIL FOINTS NPP=0

(N = O

OLTFL TS
L = NCos ULF CUEFFICILUNTYSE KEGUIRED. (WHEN THE NGCe CGF CCGEFF
EXCEEC THE NC. OQF CBS THE PRCGRAM 1S5 AUOGRTED)

L L
L d
G

CsCAS,CE = VECTCGRS CF CCEFFICLENTS.

*
*
*
SEE SULLRCULTINE URTHC FUR MURE EXPLANATICNS OF QUTPUTY NUTATIGHNS *
*
*
*

kA% R ook o Aok X Ak k% b A b bk ok ok ok ok vk ok ok ok ok ok ok ok ok & ok ok 3k ak ok ook o ok koK Kb ok ok ok Ok R Rk
* MAIN FLOGRAME

cocconcCcoCCncCCcoC O COCOCCOCrTNCCCC OO

1 IMELICIT REAL*8(A=F,40-2) .

2 CIVENSICN PHICE0)+»ALONCSO0) »FH(S0)+FG(5C)»A(50450)+4P(50,450)
* s CUVARL(SC4S5C) s VARIS0»50 I +C(SOIEN(EC+SC)Y»X(50)sY{(SO)+V(ED),
* LU0 )« NULMIEC) I NGRIDI(SD) s XP(S50)+sYF(50)sPMT(S0+50),F/MCT(50450)
4 vACLEC) s VARF(EQ)

3 CIMENSICN ALATA(S0) +»ALINC(50)PM(S04S0)sPFH(50)sPFG(50)

4 CIMENSTICN ALFHA(EOL,SC. 4w (50) +FC(S0) +SUMFC{S50) »SGN(50),STCR(50),
* B(53),SIGMAF(ED)+SIGMARSO) :

S DIMERNSICN FA(SO) »FBISI)FA2(50)FB2(EC)WA(S0) 4%ELST),CA(S50),
* C3(50)4CLA(S5C,50)+COBIS0+50) PFA(S0)PFBI(S0) s VARPA(S0,50),
* VAFRPE{SCsSC) sE{2+2)sAR(E0.S50)+FR(50)

3] IKCA=JCA=1LE=ICC=EO0

7 HH{=20€2C5.0C0

8 FI=3.141£92€5D0C
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lagl}
Fe,]

(N m—

A=1,C0C

KEAC IN PRUGGEAME SPECIFICATION

KEAC (SS9 140 }ICsN s N NPP, INCEX. [QLITEST

FCRMAT(EX>s7214)

CONMFLTE MU CF COEFFICIENTS ANC CECREE UF PCLY AND CEGREE UF

CF FRECELCOM IF CF IS ZERQO CR NEGATIVE GIVE WARNING AND STQOP
L=(N+1)2%]D
IDF=M=L

IF(I1LFeLESC)THEN DC
FRINT o *"FRCGRANME SFECIFICATICN INADEQUATE!
STCF
eLSE DC
CNC i F

CCNTINLE

READ IN LATA CN THE STANCARC OR REFe. STATICN

FE#D(E,2C Q)hLMCoFFlO ALCNO,FHOLFCO
FCRMAT(EX CSeSXsFl0e69S5XsF10e6s5XsF10a6+5X+F104€)
FCRMET(EX '[-05X9f10 EsEX9F10e6)

REAC IN DATA FRCM CTHER STATIGONS

CC 1 I=1,M

FEAD(SEs ZCOINUMC T )y PHIC(I ) sALUNTIL) »FH(IL)FG(IT)

CCANTINUE
PRINT ALL THE INPUT DATA

FRINTL1O1

FCRNAT (/7 +8Xe "NU" o+8Xs "LATITUDE' s 10Xy *LONGITUDE *»10X,'RANGE RA

$TI0*, 10X, TIME LAG?) )

FCFMAT(EXQ1407X0F1006;9X;F1C.509XiF10.609XvFlOoé)
FRINTI02 NUMCsPHIUWALCNC FRCELFGC
CC 3 I=1,M .
PRINT1I0ZoNUN(I)oFHI(I) ALUN(L) FFR(1)FG(I)

CUNITINUE

FRINT121
FURMAT(Z7Z7¢SX+'CEGeLF PULLY ' EX s 'NOeUF CESe' +sS5Xys *NUSLY CUEFF L
SXe'LEGeCF FFRELCUN?) ’

FRINTIZZ N sNsL s [DF
FCENAT( /708X 001 2012XeI3515Xs12420X,13)
FRINT13C ' :
FLUEMAT(//7eEX 2 ' CARTESIAN CLURDs OF THE GIVEN STATIUNSY)
FRINT127
FORMAT(/2/70SX 3" ETNe NUo " 3EX 9" X~CULCRD & ? 315X+ ' Y=COCRD&*)
CALL CARTE(NPFISALON,PHIUOALONGsX,Y) '

DU 4 1=1,4WM
FRINTI1 I SJNUNMCTI Yo X{(TI)sY (1)
FORMAT( /46Xl 34X eF154Cs7XsF1566)
CUNTINLE
COUNMPLITIL FCR A NATHLX

L31



47 CuU € 1=1,M
48 CC 5 u=1,L
4 A(Loevld=ColDO
S0 5 COMTINUE
€1 ICF=M+1
52 DO 7 1IRCF=1.4V
53 ICCP=C
€4 Cu 13 =14,ICF
€Y IA=1-1
cC CC 14 J=1,1CF
S7 JA=zU-1
58 ICCF=ICCF+1
59 A(IRCF s ICOF)=X{IRLP)*x*xTAXY(IRDP)*%JA
60 14 COCNTINLVE
cl 132 CONTINLE
62 7 CUNTINUE
€3 FRINT12E
[ l12€ FGFRMAT(/7/7eEX s VENDEMUND NATKIX')
cH FRINT,?! '
€O CALL MCLID (A ,ICA,LN,LL)
C
C CETERMINE TFE VALULES AT THE DISCRETE FOINTES
C
e7 IF(NFFeLEGCeC) GC 10 S7
[5Xs} CC 44 I=1.NFF
€Y READ(S21COINGRID(L ) yALAT(I ) s ALCNG(I)
7C 44 CCNTINLE
71 CALL CARTEINPP ALAT JALULNGsFPHIOZALCNOs XPyYPR)
72 CALL VANCC(NPP sL +ICPJALAT ALCNGPHIC,ALCNO s XP,sYP,4PM)
73 S 7 CCNTINLE
74 CO 15 1SIC=1,1INDEX
75 IF{ISIG.EC.1)TFEN CC
76 FRINT o' 4+ POLYNOMIAL AFPROXIMATICN FQOR RANGE RATIO!
77 FRINT102
74 103 FURMABT({AXe " #h %k kk ko d kXK AT S kAR AR b h kb ko Ak hkkk? )
C
C IF ANMFLITLDE UF FANCE RAYIC IS5 TC APPROXIMATED PROCEED,
C CTFERWISE GC TC STATEMENT NC 46
C
74 IF({LC.EGel)CC TC 4606
C FORNATICN CF WEICHT MATHKRIX
g0 CC € [=14.M
6l CC E J=1oM
8e F(lsd)=CeDO
82 8 CCANTINUE
13X CC 5 1=1,M
€< J=1
80 F(l1.4)=1C0.C00
&7 “ CUMYTINUE
C
C FERFURKN THE LEAST SGULARES APPROX BY CALLING THE SUBRGUTINE APFROX
C
88 CALL APFROX{LIN AL FsFHIENVCesVoACUsCCVARyAFVF)
8y . FRINT10E
Y0 10€ FLFNAT(ICXO'\ECTCQ GF CCEFFICIENTSY )
g1 ALL MCLIU{CICAL 1) :
92 5151106
@3 1C¢ FURMATULLICX y *RESTICUAL "y EXH P VECTCK )

82T
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107 FUFR FCSTERIORT VARIANCE FACTOR =',F10.€)

10¢& FURMAT 'VARKTIANCE CUVARIANCE MATRIX QF THE COEFFICIENTS!)

CCVEARLICALL L)

o X
”e

11¢ FCFM
CA

Sxe'FCLYNCNMIAL APPROX CF THE GIVEN FUNCTIUNS')
(AC»IDAySM,1)

)L 70 51

4¢€

57

FPERFO
ey C

LEAST SCUAKES APPRUX USING CRTHUGUNAL EASE FUNCTIUNS
LING THE SULERGUTINE CRTHO

LL CKRTEUO(N 3L +SIGMA LA, IDAZWSIGNFC 4y VFC I NPCHITESTsVsCUOVARFH,
CrALPFASFC ,SUMFC +sSANsSTDP, IW)
1 12

- e

s L
FC(1) ¢SUMFC (L)
47

OTNAUCTTsON DT NAsSsON M
cCxTOoOoTne > T O~COMT

— =
T

e LW tuOiu o«C =~ C et
nenmaitbe

(il e
Qe

L
’

"
-7 D7 Z 7N 2787

- ek \

(1)
4¢€ CCN

[m]
3

CF COEFF.CF CRIGNePOLY.AFTER TEST =',NPC

e ot P Y ot ad =) ed

TO(CCVEAR ZICA,LsL)

— e 27

oM
vIr)

- b=

Mot >7me

45 CCN

o 7

A FLSTEUGRI VARIANCE FACTCR= '3 VFC
51 CCNTINLE :

IF PRECICTICMN IS REGWUIKED CALL THE SUBROUTINE PRED

IF(NFF.EGC.C) GC TU G&
CALL FRED (NPP yLsPMsCyCOVARIFMT 4PFHPMCOWVAR)

ELSE CC
IFF AFPKCX I& FOR TIME LAG (PHASE LAG)PRKRCCEED
PFRINT "4 ¢ FCLYNCMIAL PFRCXIMATICN FOR TIME LAG?
BRINTI10Z
CK=) «S*xF1/1E8C,
FU=:€e1C/342ECE
Efi=C.,125%P 1/18C.
ERF=CalC
DC GC I=14M
FH=FC (I )ACK
R=RUOAFH(I) /72«
FA(L)=R*CCCS(PF)
FERIL)=R*CSIN(PH)
WAL S Y= 1 /M Ak D

4



141 wWB(Il)=1esERR*%Z

C
C FCh CRTHCCCNAL EASE FUNCTICNS STAEMENT 52 1S EXCUTED
C .
142 [3X9) CCRTINLE
C
143 ILF(1IC+ECel)CC TU 52
144 CU 17 1=1.M
149 CC 17 J=1a4WN
146 F(lsJ)=CelO
147 17 CONTINUE
148 CC 1& I=1,M
149 w=1
159 P(ledJdd=waA(1l)
151 l1& CCNTINUE
1€2 PRINT14C
153 CALL APFRUOX(LaNyAsP s FALENSCASVL,AC,LCLCALAPVF)
1E€4 FRINTI10C
1€¢ CALL MCLTD(CA,LIDAL 1Y)
10 FRINT10E€
1€7 CALL MCLTD(VJICAWW,1)
158 FRINTICT7+APVF
1956 CG 1€ 1I=14W
1€0 DU 1€ J=1l4¥
1¢1 F{(lysJd)=23.0CO
lo2 1€ CCNTINLE
163 CC 1G 1=1,¥
1€4 w=1
1€9% F(leyJd)l=nE(l)
1€6 16 CCNTINLUE
l1e¢7/ FRINT13S
lecy CALL APFROX(LoN oA PsFBIyENsCEWV I ACyU,LCUB+APVF)
169 FRINTI10E
170 CALL MCLTD(CESICALL WY
171 FRitv110€
172 CALL NCLTOD(V,4ICAsM,y1)
173 FRINTIC7,AFVF
174 IF(ICeEGs2)CC 10 56
175 5e CCNTINLUE
C FIND PCLYMOMIAL APFROX e FUR FUNCTIONS FALFE
C
176 FRINT14Q
177 14¢C FURMAT(//sSX o' FCLYNCMIAL AFPFGXINAT‘CN FOR FUNCTICN FAY)
1748 CALL LRTHU (M sL o SICMA A3 IDAWSIGMFC oy VFCoNPCH ITESTsV+COAsFAIWA,CA
* ALFHAGFCsSUNMNFC sSCNoSTORP s iW)
179 FRINT1Z:
189 CL 53 1=1,L
1yl TERINTIZ44FC(L) sSUMFC(L)
182 53 CUNT INUVE
184 PRINTLZE
164 CC €4 I=1sL
1¢€¢€ FRINTI3€E.,C4(L)
18¢ 54 CCATINLE ' .
187 FRINTe*'NCe (F CUCEFFSUF CRIGNPOLYSAFTER TEST =1 ,NPC
188 FRINT137?
186 CALL FULTD(CCASICA L L)
160 FRINT13E
191 CO €5 1=1,N
1v2 BRINTIZE,v L)

0€T
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CONTINUE

FRINTS* A2 PCSTECKRT VAKIANCE FACTOR=',VFC

FRINT136S

FLURMAT( /77 S X" FCLYNCMIAL AFSROCXIMATICN FOR FUNCTICN

CALL LRTFO(M )Ly SIGMALASIDAWSIGMFC s VFCINPC,y ITEST s VeCUBSFUsWBICB»

» ALPHAJFCosSUMFC+aSCNySTOP+1W)

FRINT132

CC €1 I=1,L
FRINTI34,FC(1),SUMFC(1)

CLUMTINLE

FRINT13E

CC €2 1=1,L

FRINT12€4CE(I)

CCMTINUE

FRINT»'NC CF PULYLAFTER TEST=? 4NFC
FRINT137 .

CALL NMCULTID(CCESICALL,LL)

PRINT13E

CL 63 I=1,.V

PRINT1Z2€,v(1)

CUNTINUE

PRINT,*A PCSTECRI VARIANCE FACTCR='",VFC
CCNTINLE

IF THEFE 15 Nu FRECICTICN STATEMENT NO 68 IS EXCUTED
IF(NFFJEC.C) GC TCO Sé

PREDICTLIELN CF FUNCTILCNS FA,FE AT GRIC POINTS
CALL FREC(NPPIL 4FNeCAyCCAWFMT4PFALPMCCy VARPA)

CALL FREL(NFFJL FNCE+CCEWFNMTLFFESPMCG,VARPB)

CCMFUTE THE PRECICTELC TIME LAG ANC ASSOCIATED VARIANCES
CO €4 [=1,NFF
FFC(II=CATAN(PFE(I)/PFA(T1))/CK
E(ls1)=(1e/7(1e+(PFE(L)/FFA(L))*%2) )% (=PFB(L)/PFA(]L)%%2)
E(142)=(1e/(1e+(FFBLI)/PFA(I))IXx%xZ2))%(1s/PFA(L))
COMPLTE VARIENCES
VAEP (1)=E(141)*%Z2%kVARPA(L+»1)+B(1+2)%%xZ2%xVARPE(Ll.1)
SICMAF( 1 )=DSCRT(VARP (1) ?/CK
CGONTINLE
ENC 1F
COCNTINLE
CCANTINUE
PRINT»**%%x PRECICTIGON MATRIX ®%x%x¢
CAaLtL NMCULTOD(FN,,ICAZNPP,L)
FRINT12EC
FLINTI27
FLRMAT(//7eSE X9 CARTESIAN CUQORCSe CF GRID FUINTS')
CC 5C 1=1,NPF
FRINTILLIWNGRIC (L) o XP(1),,YP(1)
CUNTINLE
FRINTL1ES
FCRirAT ("1 2 //sSX»'PREDICTED RANGE RATIUS AND TIME LAGS
*RID FCLCINTIS?)
FRINT141

FEe)

AT THE G

€1
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LO ¢ I=1.L
CO € J=1,L
ENC(Isuld=EN(LlsJ)®]l,CO~-2C

5 CUNTINMNLE

CALL MINVDI(CNZIRCALLOETALIWlIWE)

CO € 1I=1,L
DC ¢ J=1,L
ENCIyJ)SENCIyJ)*1 40D-20
CUNTINUE

CALL MMULO(C sILCCIENs IDALUS IDEBsL oL o1)

CCMPLTE HESCULALS
CALL MMULD(AC,ICCy A, IDACH»IDCoMNylL,1)
CALL MSULEU(V JICCWACH+IDALF,ICCoM, 1)
CCMPLTE A FCSTERICRLI VARIANCE FACTCR
CALL TRANSO(VTeleVs ICAINMN,1)
CALL MNLLO(VIF 31 sVT41,4P,I0DBsl1eMyNM)
CALL MMULLD(VF 41l oVIP 31 ,V,IDEW14NM,y1)
ICF=N=L
APNVF=VF (1) /1ICF )
CCMPUTE VARIANCE CGOGVAKIANCE MATRIX CF CCGEFFICIENT
CC 1C I=1,L .
CO 1C J=1,L
CCVAFILl s J)=2FVF*EN(TI4J)
1C CGNTINUE
1€ FETURN
ENC
SUBFRLUTINE CHCLC(A, IRCAYNALZLETA,*x)
THE LSO CF THIS SUEBKCUTINE IS CPITIGNAL
MATKIX INVERSIOCN USING CHCLESKI DECCMECSITIUON
INFLT AROGUMENTS
A = AhikcAY CUNTAINING FOSITIVE DEFINITE SYNMETRIC INFUT MATRIX
IRCA = KCw CIMEMSIUCN CF AKRAY CONTAINING INPUT MATRIX
NA = £120 C+ INFUT MATRIX
GUTFUT ARGUNMENTS
DETA = DETERMINENT CF INPUT MATKRIX
A = CCNTAINZ INVERSE CF INPUT NMATKRIX (INPUT DESTROYED)
* = ELkGOK KLETURN (TZKEN IF NA JLTe 1 OR IF DETA «LTe SING)
DCUELE FFECISION AL CETASSUMSQRTIDSCRTABS+DABS,» SING
DIMENSILN £{LKRCAINA)
SCGRT(SUNMI=CEQRT(SLN)
AES(LCETA) = CARES(CETA)
LATA SINGrZLIC=EC/
CHFULESK ] CECOMFLSITION OF INPUYT MATRIX INTO TRIANGULAR MATKIX
;F(hA ol Te 1) GG 10 18
CETA = A(1,1)
A(ls1) = SCGFT(£(1 1))
IF(NA oECs 1) CC TQ 6
CC 1 | = 2+NA
1 A(lsl) = A(Llsl) /7 A(l41)
CC & g = 2¢NA
SULM = Co.
J1 = J - 1
DC ¢ kK = 1,41
c SLM = SUM + A(J,K]} *x 2
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A(Jdsd) = SURTLALJWJ) = SULM) 0C007870
DETA = DETA * (A(JsJd) = SUM) 00007560
IF(Jd e NA) GC TU S gocc7e80
Jz = 4 + 1 J00C7590
DL 4 1 = J2,0MA 00007600
SLM = Ca 20007610
DC 2 K = 1,4l 00007€290
3 SLM = SUM ¢ A(LK) % A{Jdsn) 0C007€30
4 AlLsJd) = (A(Lyed) = SUM)Y / A(UJi 00007€40C
S CCNTINLE 0G007€50
5 LF(ABS(CETA) oL1e SING) GC TC 1€ 0C007€60
INVERSICN UOF LCWER TRIANGULAR MATKI X 00007670
CU 7 1 = 1.0A 0CCQ7€E0
AlLosl) = 1o 7 A(L.1) 000607690

7 COCNTINUE
IF(NA «ECe 1) CC TG 1C 00607700
Nl = NA = 1 00007710
VU S J = 1401 Q6007720
Je = 4 + 1 00007730
DC G I = J2.MA 00007740
SULM = Co. 00007750
i1 =1 - 1 00007760
BC € K = J,ll Q0007770
& SLM = SUM + A(l K} * A(KyJ) 00007780
S A(lsdd = = £A(1,1) * SUN Q0CQ7790
COCNSTRUCTICN OF INVERSE (QF INPULT NMATRIX 00007800
1C DC 15 J = 14NA 900C7810
IF(J +EGe 1) CC 1C 12 00C007E&E20
J1 = J4 - 1 00007830
DC 11 1 = 1,J1 QQoQc7840
11 Allss) = Aol 000o7aeso
12 DG 14 1 = JabA 00007860
UM = Co OC007E70
ol 12 K = [.NA 00007880
13 SLNM = SUNM ¢+ A(Kei} % A(KeJ) 0C0C7890
14 A(L +d) = ESULW 00007500
1& COCNTLINLE 000C7910
KETLRN 00007620
1¢ WhlTUL(E,17) DETA 00007930
17 FLEMAT(10Xe P SINGULAK MATRIX IN CHGCLO. DET =',E2045) 0C007s40
RETURN 000075850
1t aRLTIE(6419) 000C76€0
16 FURMAT(ICXs*MATRI X CF DIMENELCN ZERC IN CHCLD?') 000C7s70
KETURN 1 Q0CC7680
END 00CC76S50
SUBKBCULT INGE CRTHFG(ING Ny STIGHL 3PHTISMREy SICMAF JVFC yINPCy INDEX Vs SULMD WF «w000C7370
& 9 ALE 1A, Cy SUMC oSC2:5TEFR, IW) QQQC7380
THIS SUERCCTINE URTHFUGCONALLZOS THE MATRIX PHI USING THE GRAM=-SCHMIDT 0Q0C7390
METHFOUE, CUHMELTES THE FOUKIER CCEFFICIENTS COF THE CRTHUGUNALIZED MATRIXQCO0C740¢C
DERIVES Tre CUEFFICIENTS GF v i1 yCCMFUITES THE VARIANCES COF THE FOUKIER 00007410
CCEFFICIENIS ANC THE VARIANCE ~CCVARIANLE MATRIX OF THE COEFFICILIENTS ggccecrs20
INPLT S 2 000¢C 430
1e PHI(LPTIGNAL = CLCLLL BE FUNCTION SUBFRCGRAM INSTEAL) - AN N BY M 0C007440
CONTALMNING THE EASE FUﬁL][ONS CVALUQTED FOR EACH GCQRBSERVATIUN 0QLC7450
Se N = TFH{ NUMNBER GF CBS&RV&IIUNS : 000074€¢0
e N = TFE NUNBEK UFAEAS& FUunCT ICNS (EQUAL CR GREATER THAN 2) aQCC7470
Ge W = A VOCTILR UF LEN@TH M CCNTAINING THE COMPUTED WEIGHT FUNCTIULNSO0Q007480
. . €1 hns T IFNAL VALLES - - - -~ QggQQravyQ
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PSR =
L=~NCw

C Le SIGHMA = 1+0 A FrRICKL VARIANCE £ ACTCK DOUCTEQOD
C 7. NKC = TFiL MAXIMUM ECw LIthJXLh GF PKrI aLeg7sicC
C £e MRL = THL MAXINULM CULLUMN ClLAENSLUN CGF PHI D00C7520
C se INCLX = PLRAITS LETICNAL TEs f*UfQ STATISTICAL STIGNIBTOANCL 0CCC7530
C CF FLuhRidik CUEFFICICNTS e e oo 0CSC7540
C [f CeSTATISTICAL 15T FOR ECURIER COLFFICIENTS AEANCONED V0007550
C IF Lo 1ESTS AGAINET bt TIME 1TS STYTANCARD CEVIATIUON 0CGC7500
C [F Z42TESTS AGAINST TwicCiZ 118 STCEVIATICN 0000787C
C IF 3,TJLSTS AGAINST ThkEbk TIMES TS ST .O0EVIATICN cC0C7580
IMPLICIT REAL*B(A-F,L=2) J0007750
C 1Ce Iw - WkRITE CLCE CF TFHE CUNMFUTER 03067590
C ULTIPLIS ¢ QCOC7€0¢
C 1e ALFHA = AN MKC HY M MATRIX CUNTAINING THE ALPHA'S USED IN CLCMPUTI0000761C
C THE (KTFOCOCNALIZEC MATRIX AND IN CCMPUTING THE CUEFFICICNTS OF PHOOUCC7€20
C cae €C = THE M FUULKIER CUOEFFICLENTS CF THE CRTHGGCOCNALIZED MATKHIX V0007€30
C . C = TFE M C(OEFFICIENTS UF THE INPUT MATRIX PHI VCO0C7€40
C 4o SUNC = THLC VARIANCES CF THE FUURIER CCEFFICLENTS 000C7€¢5¢0
C €4 SUND - THE VARIANCE-CUVARIANCE MATKIX CF THL CUEFFICICENTS 00007660
C €. SC& = TFE SQUARES CF ThHE NCHMS CF ThHE CRTHFOGGONALILZED MATKIX 0C0Q7¢€7¢
C 7¢ SICMAF = TFE FCUURIEK PULYNUMIAL A POSTEGRI VARIANCE FACTLR 00007€80
C €e V = TFE N FESICUALS 000C7€90
.C Ge VFC = THE CRIGINAL FCLYNCMIAL A PCSTEGKRI VARIANCE FACTOR 00007700

C 10e NPC - NUMEEK CF TFE CUEFFICIENTS OF Tht ORIGINAL POLYNUOMIAL 000C771
C ACTER THE STATISTICAL TEST IS FERFORMED 00007720
C 11e STCP = VECIOR AGAINST WHICK TRHE ABSOLUTE VALUES CF FUUKRIER 00007730
C COEFFICIENTS ARE TESTEC 00007740

DINENSICN ALFHA(SO+5C) v (S0)+F(SC)H»C(30),0(50)
CINEMNSLOCN SUNMD(S04950)s SUMC(S0)4SC2IM)I+V{S50)+STDP(50),
* PHI(EC,EC)

C TEST FOF NCCGATIVE CECGREES CF FRELCOM 0Q0C7800
IF (N.LTeM) GG 10U 100 V0007810
K=1 00007820
ALPHA(NN)=1.C0 QGO0C7E30
C DETECHMINE ThD ALPHA'S #(CH COMPULTATION CF CRTHGGCNALITIZED MATRIX 00007&40
I1C CC Z J=KoM 0CccC?785u
IF{ JeNEeK) CQ TC € 00CcQ07860
ALPFRA(K yK)=14L0 00007870
cu 1o 2 00007E8C
€ £Cl=0.CC 00607890
SC2(K)=C.DC 000C7s0C
SC3=C.¢C 00007910
CC ¢ 1=1eN 00007920
P=PRI(IL+K) V00C7G40
IF(KeEQel) CGu TC 4 00007950
Kl=K=1 0C0C7960
CU £ Jl=1+Kk1 V0007670
E F=P4ALPFA(JL+K)IAPET(LWJ1) 00007980
4 SC1=_Cl4w(L)RPHILI(LyJ)¥*P 000C7990
SC3=SC3AFCTIIxwW(T) 4P 00008000
2 SC2(K)ITSC2U(K) +w L )¥Px¥2 00V08Q10
ALPHA (J oK )==5C1/SCZ2(K) Quoe8020
ALPHA(K s J)=ALFFE(L W K) gcoceo30
S CONTINUE 00:°08040
C DE]&kNIAC THE FCURIER CCLFFICIENTS FOR THE GRTHUGONALTZED MATRIX 00008050
C(K)=sC3rssCe(K) J00¢80C60
K=K 41 00008070
IF(N.ECe2) CO TC 24 pcoceo8n
IF(K<LTeZ) Cu TC 1C 00008090
C DETIRNINE THE AILPRACI, 00 ) UMODTING ¥TME CCEFFLCIENTS OF PHI URVEoN R -3 RV

IET
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447
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451
482
453
4c4
455
45¢
487

4y
459
- ¥ 3xe]
401
4€2
4¢3
464
4C5
466
4¢7

4¢d
4069
470
471
472
473
474
475
470
477
478
47
480
4€1l
4562
4E€3
454
s
480
4&7
48
483
4$Q
4G}
492
a Gl

JK=K=1

S JL=K
Jk= JK=1
Ju= K= JK=1
CC € Wi=1,4dd
JL=JlL -1

€ ALPFA(JKWKISALFIA(JIK,K) PALFHA (K, JLIXALPHA(K,.'L)

[F(JKeNEW1) GC 10 S
IF(KeblLToM) ¢C TC 10

C DETERMINE TFHE LAST FUULRILER CUEFFICIENT

34 sC2(K)=C.DC

€C3=0.0C
pC 7 I=1.N
F=PFI(1l.sk)
Kl=K=-1
CC 1 uy=1,K1
1 FEPH+ALFFA(JKIFIFHI(TVU)
SC2(K)I=SC2(K)+w (1l )*Pxx*xp2
7 SC3=SC24F(1)1xn(1)*P
C(K)=8C3rS5Cz(K)
C DETERNINE TrHL CCEFFICIENTS CF PHI
ICEKT=1
I1COUNT=C
10CC CCNTINUE
CC 13 I=1.¥
C(L)=C(1l)
IF{1+EG.VN) CUL T1C 12
1I=1+41
DG 14 J=11 M
14 C(I)=D(L1)+ALPHA(I »J)*C(J)
12 CUNTINUE :
C CONPULTE TFHE VAKLIANCE CF THE FCURIER
C MATRIX CF THE CCEFFICIENTS
CC 1T I=1,W
CC 19 Jd=14b
1€ SUMU(14J)=C.00
SC4=Q0,.,CC
CC 22 1=14N
Fh=C.0C
CC Z1 J=1¥
21 FN=SEN4D (J)PHIL T J)
VIII)=F(1)=-FN
ve=Vv{[)*42
ce SC4=SCa+\2*0( 1)
CSIGNAF=SCA/ (N-NATCCUNT I *STGCMA
VFC=S IGMAF
IF(ICEKT «EC Q2 ) VFC(=SCA/(N~-NFC)*SIGMA
TECINALEXeEGeQ ) NPC=N
DC 2& I=1sV
SLMC{ i)=SICMAF/ECE(T)
IF(ICZKT+ECel) GO TC 28
IFCC(1)«EGCDO) SULNMC(I)=000
28 CUNTINLE
CC 23 I=14W
CO 23 d=1,1
CQ 22 K=Jd,1
23 SUMD(J.K)=¢
CC <4 I=1,N
TI=141

COEFFICIENTS ANC THE VARIANCE-CQOVA

SLMC (oK) FALPHA(U T ) RALPHA(K, 1) #SUMC{1)

ogoca1l1o

0po0C8120
00cCcC8130
00008140
occcelsc
00008160
Q0QCe17Q
00ccCe189
00008199
000C8290
00008210
0Ci(C8220
Go0Q08230
gccceasce

@®MmmkD

8230
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(0]
C
C
Q
C
0
c
08360
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Q
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]
8420
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C
C

C8460

CCOO0OOCOOD COBOCLCLOODOTCOLOLTCOOOCLDOODVOOOOOOCO
POOCOOOOO 0000000000000 O0000C000A00D0N00LC
QOCOoOCTOOC OCO00O0OQCOOVCOLOCOOLOCCOCCOO0N0OCONDOC
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4492 JeOINLL X eEGe0) CL TL 4C
46 LELICERTECe2 ) (L (L 40
JFE RV PINLEX=CFLLAT(INDEX)
GOl LC 31 I=1.W
Sué STOFRC D)=t INCLX®LSGRILEUNCOTD))
03 IF(DAES(C(Td) el TusSTURP (L)) GU TU
5Ca (Y S O |
&£053 S c C(1)=Cb¢
HUG JCULNT=T1COULNT +1
SRV SLMC(1)=CDC
S0 31 CUNT INUE
S0Y NFC=C
vic CL 23 1=1.¥
Hll IF(C(L) N CDO) NFC=1
Sl 3 COCNTINLE
513 ICEKRT=2
14 ¢cU 16 1CCo
515 4C FETUKN
L16 1CC wR1IYE(IWy1C2)
517 102 FLRMAT('C ,**ERKGIH NeEGATIVE DEGREES UF
Slyu HETURN
Hly t ND
6L
NU LATITULUE LCNCITUDLE
1UL0 45 4GCEZIZZD -6565833250
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120 44 oSV 3GLU LS8 I2320
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330 44 ¢3CuCCY ~LE«103000
die 44 (t 33335 ~t6heCG T332V
240 44 2LELTO -6€e3L00CH
349 44 ,2500LC0 -6€Ce4.CCCC
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11.2 Least Squares Polynomial Approximation ol Observed
Time Series

Figure A-2 is the flow chart describing the program.
The program uses any number of constituent frequencies - ICON

and the required number of coefficients is computed from
U = 2%ICON + 1

INPUTS
1st card: FORMAT Free, contains the following:
M - number of observations
ICON - number of constituent frequencies
ITEST - code for testing Fourier Coefficients
0 - for no test

1

test against its Standard deviation
2 - test against 2 times its Standard deviation

3

test against 3 times its standard deviation

ICON cards: FORMAT(10X, F15.6)
Each card contains one constituent frequency.
ICON cards: FORMAT(5X, Fl10.6, 5X, F10.6)
Each card contains the nodal (modulation) factor
and the astronomical arguments required if
harmonic constants are to be computed. 1If
harmonic constants are not being computed,
these cards should be omitted.
M cards: FCRMAT(5X, F10.3, 5X, F10.3),
each card contains the observed height and

the time of observation.
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SUBROUTINES :
The Subroutines used are APPROX and ORTHO as in the

previous case.
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FigureII-2  Polynomial Approximation of Observed Time Series - Flow Chart

SN

~ START

{//, READIDATA i:]

COMPUTE REQ. NO. OF COEFFS. | YES PRINT

, WARNING
[S DF NEGATIVE? .
L

FORM VANDERMONDE'S MATRLX

———)

t DEFINE WEIGHTS

|

IS SOLUTIOH BY
YES CALL

ORTHOGONALIZATLON? > ORTHO ]

NO

CALL APPROX

ARE HARMONIC - YES COMPUTE
CONSTANTS NEEDED? - —>  HARMUNIC
L_CONSTANTS _.

NO

~

PRINT RESULTS

-————————— - -




PR K x A p Ry # o p ok b o Bk xR A Bk B N b X ok ok b sk bk Xk Bk b Aok R ok ok kg ok o ok b ok e ok kX B o Bl b ko i o X b ok b R R b Xk k% ko A XX
HJUE CKkLNWA/C

G A ARt Ak dm kA A Aok X h A% A g b hoh ok b n A p A A A bk Ak bk b koh kb % ¥k A OR R ok ok ok Kk
C ¥ x*”
C * FRUCGRANM TC APFFUXe THE QOBSERVIDO TIME SERIES (KEIGRTS UF TICE) EBEY *
C x TRIGNCMLTHRIC FCLYNCMIALS THL FRUGKANE LSES ANY NUNMEE!C OF *
C * CONSTLTULENT FRECUENCEIES-TICCHN=- THE NUMUBER UF COEFFILICIENT =L 1S x
C *» CONFLTEL FRCM THE NUMBER CF CURSTITUENTYS. *
C * INPLT S *
C * FRUGFAM SPCECIFICATICN,
C * M = NUNDBER UF CEBSERVEC HLCICHTS *
C * ICCN = NUNMEEF CF CUNSTITULENT FREGUENCIES DEINC USED *
C 3 ITEST = CUCE FUR TESTING FCURIEKR CCEFFICIENTS %
C * C _ FCK NC TEST *
C » 1 _ FOR TEST ACAINST STANDARD OCVIATICN %
C *  _ TLST ACAINST 2 TIMES THE STANLAKD OCLVIATIUN %
C * S _ ILST AGAINST 3 TINMES THC STANCARD CLVIATIGN *
C * IC = CCDE FUKR METHUCDL CF APFROXNMATICN *
C * 1 _ FOR /PFRUXMATILN USING CRTHOGCNALISED BAES FUNCTIUNS *
C * 2 _ FUK AMPFRCXIMATICN USING LEAST SGUARES METFOD WITH NCON *
C * CRTFGCOUNAL EASE FUNCTCNE *
< * NC = CODE FCR THE CCMPUTATICN OF BHARMUNIC CCNSTANTS %
C * O _ MU FARNUNIC CUNSTANT NEEDO EE CONMPUTED %*
C * | CCMFLTE THE HARNCNIC CCNSTANTS *
C b CATA, *
C * v = CCANSTITUENT FKREGQUENCY *
C % FH = CESERVED FLIGHT IN VMETRES *
C * 1 = GESERVEL TIME IN FCURS *
C * FK = MNCOAL FACTGCR *
C 2 VK = ASTRONGMICAL ARGUNMUNT *
C * %
C * : *
G AR A Ak A o d b A ook R oy b b bk ok ok o b ok ok ok ook b kbR ok R A ok Kk ok K Ok K % K ok oK KK
[\
1 IMFLICELT REAL*E(A-+,0-2)
CINENSLION FFRA(OO)»T(60)+sA(0LO0s60) s WIED)P(O0+60),EN(EOLU)
* yClEC)s V(EC) yAC(ED) yCUVAR(GOsGC) yVAR(EC 60 ) o VT(60) VTP {60),
» IN1CC0) +IW2(€0)£T(E04,60)sATP(EC€EQ)HU(EQ)
3 DINENSICN FHASE(ZQ)yHKIZ0) s VK(20)sVKR(20) +XKAPA(20),FK(20)
* sSIGNATZC) »E(2C),PRTI(30)
4 CLIMENSTIUN ALFHA(60+60) ¢0T(E0)s SUNFCIEC)+STCP(60)»SC2(60)
* FC(O6C)sBP{Zy2)sBA(2+2) vSIGMAA(EQ) +SIGNAF (B0
1] IRCA=ILA=ICE=ICC=060
¢ FI=2.1415%2¢€SDC
C
L FEAC IN CCMPULTATICN SPCIFICATICN
C
/ RE SO oMy TCUN o ITEST o ICWNHC
C
C COUNPLTE THFE NUNMNBER CF (UEFFICIENT AND THE DEGREE CF FRELODOGW
C
£ L=z 1CCNAL
9 1Cf=N-L
10 AkFw=1,0
11 Iw=c

-~
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FRINT CLT THE INPLTY DATA

FRINT," % 4x% COCNSTITUENT FRECUENCIES A x%x%x?
LC 22 1=1.1CCN
PRINTI1IZ2.Ww (1)

CLNTINUE
FRINTI14
FURNAT(/Z7/70SX " FETIGHT CUSERVEC' 3SXo!'TIME CF CBS. ')
CC 23 I=1,¥
FRINTI2G4,FF(1)sTC1L)
FORMAT(IEX,F1Cad4,10X,F1C,3)
CONT INUE
CCANVERT FREQUENCIES TU RACIAN NEASLRE
CC 26 K=1,1CCN
W(k)=w(K)XF1l/s71EC.
CCMNTINUE
FURMAT LN CF CEMUND MATRIX
CO 24 [=14WM
CO 24 Jy=1,L
AL sd)=CaClO
CONTINLE
CC 25 1=1,NM
J=1
£(1s4)=1.CCO
K=(C
CU 27 =2l 2
K=K+l
A(Led)=LCCE(M(KRIET(L))
COCNT INLE
kK=C
CU 28 u=3.Ls2
kK=K+1
AL 4J)=CSINCAWEKIXT(L))
CONT INLE
COCNTINLUE

KVED TIME AND HEIGRT. NCTE THE ORICIN FOUR
ZUKRKO HOUR OF THEFIRST CAY OF UBSERVATION--
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€2
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€4
€3
ce
c?

¢y
cy
70
71
72
73
74
75
7¢
77
78
79
BC

oc

-

[aXa¥e!

cooe

FFRINT THE MATRIX #

30

31

118
116

3¢

37

36

FIRINT o %22 VANDGEMCNC MATHIX #»x*¢

CALL NMCUTL (AL ICAWN,LL)
IF(IU.EGCe1)CC TC 23S
FORNMETION CF WEICHT MATHIX

-~
—
7
c
m

FERFCRM TIrE LEAST SQUARES APFRCX. EY CALLING THE SUBRUOUTINE

APFRCX

CALL APFRUX{(LoNosAYFsFHWENYCoVIACIUsCCVARIYAPVF)
FRINTLILO
FOURNAT(//1CXx s *VECTCR (F CCEFFICIENTSY)
CALL NMCUTCIC,1CAWL,1)

FRINTL117
FCRMATHL//7 42 1CXx s '"RESTDUAL ' 10X s " VECTLR")
CALL NCUTC(VsICAMe1)
FRINT o '"NUNMNEEF OF ODEGREES CF FKREEDCNM=1',IDF
FRINT1184,2FVF
FORMAT{//70v1CXs'A PCSTERIGCKRI VARIANCE FACTCIC =" ,F10e0)
FFINTL11Y
FCRNAT(/7 910X '"VARKIANCE CUVARIANCE MATRIX OF TFHE COEFF e ¥)
CALL MOCUTL(COVARZICASL L)
IF(IC«ECe2)CL TU 40
CCNTINLUE
CU 36 1I=1N
WT(L)=) e /CRRCFR*%2
CUNTINLE
CALL CRTIFC (ML 9 2PW o A3 ICAsSICVMIVFCNPCHITESTyVsCOVARWFH,
WT s CoALFFAWFCy SUNFCySCZ29STDF oI M)
FRINTIRE
CC 37 [=1,L
FRINTLIZ2€ FC(T)SUMFC(])
CUNTINUE
FRINT'FLURIER CCEFFe =A PUSTECRIL VeFez= ' ,SIGWN
FRINTS'"MC LF CRIGINAL CCEFFL AFTER TEST= *4NPC
FIRINTL1I27
CO 28 TI=1,L
FRINT1ZELCC(I])
CCNTINLUE
FRINTL12¢
CALL MCULID(CCVARLICAWL L)
FRINTI130
O 3G =1,V
FRINT1ZE,V (1)
CCNTINLE
FRINT," & FCSTECRI VeFe CRIGINAL FULLYNONMIAL =',VF(

vl
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158y XKEFA(K)=XKARA(K)*[8BD/F1
160 SICN2H(K)=CSCHRT(SIGMAF(K)) *1tEQ0./P1
lol SIGMAA(K)=CECRTI(SIGMAA(K))
12 PRINTIZ2Zsn (K)o FK(K)ySIGMAA(KY s XKAPA(K) 4SIGMAF(K)
163 le i FURMAT (/3 SX ol 12 e +v3XeFlO0e€sOXsELLeds10XsFlCe€yEXsELLIwY)
1€4 J4 CCNTINUE
1¢5 41 CCAMTINUE
1¢cc STCF
1¢7 ENC
C
1¢8 SUERCLT INL AFPRUX{Ls N A FsFoEN9sCoVeACsUyCOVARYAPVF)
C
C I EEEEEEEEEREEERERFFAEEEEERERERRERE ERERERERERE R R R ER R RERER R R R R R R0 2 8
C * THIS SUBFROULTINE CULES THE LEAST SCUARES APFRUXIMATIGN *
(& * CF TFL GIVEN FUNCT IUNS ARND RETURNS THE VECTOR UF C(CCEF *
C * FICIENTS TCLCETHFER wlITH TFHE VvAKke CCVAE MATRIX *
o B A %k A Rk A % %ok ok kox % % ok & dk ook ok Xk ok koo b ok 3k Ak b ok ok koo %ok ok Kk Xk X ko % ko kK X ok kN ok ok ok g ¥
C
1¢6 IMFLICIT REAL¥E(A=1-gL~2)
170 CINMUENSICN A2{EUOv60) yFlOO4EQ)+EN(ECLEQ)AC(EQ)C(E6EC)F(HO)
* CUVAR(GCIEC) sATF(C O 960 ) 9AT(ELCIEO) s VTP (1+460),VE(1),U(EDQ),
L] IWLT(EC) s IWZ(EQ) s VT (146C)sV(ECHL)
171 IRCA=ICA=ICE=ICC=60
172 CALL TRNSD(ATLICCEsALWIDAWNMWL)
173 CALL MMULD (ATF W ICCyATH ICAsP» IDBsL e M,WV)
174 CALL MMULDI(ENSILCCIATFSICAVASIDEJLaM,L)
17% CALL MMULUC(USZILCJATP SIDAF 4 ICBILsMs1)
17¢ CALL MINVODC(ENyIKOALL OETA Il IWwEZ)
197 CALL NMMULD(C+IOCENsIDASULDEWLSL 1)
« CLNMPLTE KESCULALS
17¢ CALL MMULD(ACYICCsALWIDAWCLICCoyM,yL 1)
179 CALL NMSUED(VS4ICCsACIDAWF» IDCoaM,s 1)
C COMFUTE 2 FOUSTERICFL VARIANCE FACTCR
lau CALL TRANSR(NVTI»1oVy IDAWNLT)
141 CALL NMMULCA(VIP 31 oVT sl eF s IDBsy14MyNM)
12 CALL MMLLD(VF 21 oVTPslsVsIDEsloN,y1l)
183 ICF=M=L
164 APVIF=VF (L) /ICF
C COCMPUTL VARIANCE CCVARIANCE MATRIX CF COEFFICIENT
1ey CC 1¢ (=1L
18cC CC 1C J=1,1L
187 CUVAR(TL o J)=AFVFRXEN(TI,J)
18y 1¢ CCAMTINLE
les 1€ FLTURN
190 EnC
C
191 SLUECULTINE CRTFCA(N s MNeS1CMASFHIZMKL o SIGMAF y VFC ¢NPCy INDEX sV e SUMDSF yWOC0OC7270
SeCe ALFHA, CoySUNC 4,SC2sSTOFs I W) 060072380
C
C THIS SUERLUTINE CRTFECCCANALIZES THE MATKRI PHI USING THE GRAM=SCHMIDT 000073990
C METFCCy CUMFLTES THE FOUKIER CCEFFICIENTS QF THE CRTHOGCNALIZELD MATKIXO0¢007400
C DERIVES THE COEFFICIENTS CF PERILCCMFUTES TFE VARIANCES CF THE FUOURIER 00QC741G
C CCCFFICIENTS ANC TFE VAKRIANCE-CCVAKIANCE MATRIX OF THE CCEFFICIENTS 0CcoC7420
C INFLTSs @ 0C0C7430
C e PHI(LPTILNAL = CLULL EE FUNCTICN SUBFRCCRAM INSTEAC) - AN N BY M 0CCC7440
C CUNTAINING THE EASE FUNCTICIVS EVALUATED FGR EACH CUSERVATIAN 00007450
. Ze N = THE NUMUEFR CF LESERVATICLNS JC0C7400C

9vT



192

)mfvmm».-.- — -
CococviVvy v oW <
LW~Ccvra~s coOe (&

)
(o]
&

(& Ze M = TFL NUNDER UF EASE FUMCTICNS (EQUAL Ck GREATER THAN 2)
C be W — P VECICR CF LEMNGTH N CCNTAINING THL CGMPUTED WEIGHT FUNCTIONSOCCC7480)
C 5¢ F = FUNCTICNAL VALUES 00007490
[ €Ee SIGMA = TFE A FRICFRI VARIANCE FACTCK Qcac7500
C 7« NRC = THE NMAXIMUM RUw DINENSICN GF FHI 00047510
C £« MRL = TFE MAXIMNUM CULUMN CIMENSICN OF PHI 0C0Q7€20
C GSe INCEX = PEKMITS CFTICNAL TES? FCKR STATISTICAL SIGNIFICANCE 0GG075830
C UF FULULRIER CUEFFICIENTSeoee 000607540
C {F O,STATISTICAL TEST FOR FCURIER CCEFFICIENTS ABANCUONED 0COC7E5Q
C IF 1,TESTS ACAINST UNE TIME ITS STANDARD OCEVIATICHN 00007560
C IF 2,TESTS AGAINST TWICE 1TS ST.DEVIATIUN ococ7s7a
C [F 3,TESTS AGAINST THKEE TINEC ITS ST.DEVIATIUN 000C7£80
IMPLICIT KEAL*E (A=t,0-2) gQagr7?s0
C 1Ce IW = ARITE CCCE CF TrHE CCNMPUTER 30007590
C QUTFLTS ¢ 0C00Q07€00
C 1e ALKHHA - AN MRC EY M MATRIX CONTAIN[NG THE ALPHA'S USCED IN COMPLTIOQ0Q7€10
C THE CRTIFOCUNALIZED MAIRIX ANC IN CCMPUTING THE COLEFFICIENTS QOGF PHOOOCT7€20
C Ze C = TFE M FOURIEF CUEFFICIENTS OF THE CUKRTKHOUOGUNALIZED MATRIX OGCOC7€30
C Ze C - THE M CUEFFICIENIS CF THE INFUT MATRIX PHI1 00007¢€40
C 4e SUNC = THE VARIANCES QOFf THE FQURIER COEFFICIENTS 00007650
C €e SUMD = THE VAFIANCE-COVARIANCE MATRIX CF THE COEFFICIENTS 000G07€60
C €e SC2 - VFE SUULRES CF TERE NUORNMS OF THE CRTROGCNALIZEL MATKIX 000387670
C 7¢ SIGMAF = TFHE FCUKRIER PCLYNUMIAL A POSTECRI VARIANCE FACTOR QC0C7€80
C Ee V - T+tE N RESILUALS Q0007€90
C Se VFC = THE (RICGINAL FCLYNCMIAL A PUSTEORI VARIANCE FACTOR 0C0Q7700
C 10+ NPC - NUMEER CF Tt+E CUEFFICIENTS CF THE ORIGINAL FCLYNOMITAL 00007710
C AFTER TEE STATISTICAL TEST 1S PERFGRMED 00007720
C 11e STLP = VECIUR AGAINST wHICH THE AEBSCLLUTE VALUES OF FUOUKIER 96007730
C CUEFFICILIENTS ARE TESTED 00007740

DIMENSICN ALFHE(EQC+60) su(60)sF(60),CLEQ0)+sDIED)sSUMC(ED)

* SUMC (EDs€EQ) 4 SC2(EL) 4 VIEC)STDP(6EC)2FHLI(60460)

C TEST FUR NECGATIVE CEGREES OF FREEOCM ogocczeaQo
lF (NeLTeM) GC 10 1CO 00007810
=1 000Q7820
ﬁLPhA(N.N)~l Lc 000C7€30
C DETERMINE TrE ALPHA'S FLR COMPLTATICN GCF CRTHUOGCNALIZED MATRIX 00007840
10 COC 3 J=keM 000C7850
IF({JeNE oK) CO 1C € 0C0C7860
ALPHA(K,k})=1.C0 occcve7c
¢g 10 3 0goc78840
€ S(1=C.CC 00007890
SC2(K)=Ce.CC 000C7S00
£C3=0.0C 000C7S810
CC 2 1=1aN QCca(C?7s2¢0
P=PHI(f,4K) Q0007540
IF(KeEGal) CU TC 4 000C76S0
Kil=k=-1 g00C7960
CO €& Jl=1,4K1 000C?7670
COFzPALEFA(JLLK)IFETI(LYJ) 0CCcC7s890
4 SCl=SCl1+n(l)xPhI(Lr»J)*¥ 00007G90
SC3:8C34F(1)%xw(1)2P 0C008090
2 SC2(K)=SCZ2(R)4n (I )XpFx*y 29400084010
ALPFA(L 2K)==-5C1/S5C2(K) 00028020
ALPHA(K yu )= iLFFELL oK) 3.€¢C8C30
S CONTINLE 000C8040
C UETERNINL THE FCURIER CCEFFICIENTS FOR THE CRTRUGUNALIZEDC MATRIX 0C0CRe050
C(KJ)=sCZ2rsS5CelkK) 00008000
K=K +1 000C8070
TEdw_Fe.2) CcU 1€ Z4 ooocease

Jg0C7470

LPT
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11.3 Tidal Reductions

Figure A-3 is the flow chart describing tne tidal

reduction computations.

The program uses as input the following:

- the results of computations 1 and 2, that is;
the coefficients of the approximating poly-
nomials Cr’ CA and CB and their associated
standard deviations.

- the observed data at each sounding namely:
the depth sounded (D), time of sounding (t)
and the geodetic coordinates (¢, X) or the
local Cartesian coordinates (x, y). The
observed data at each sounding are punched
in one card and read into the computer one
card at a time.

The SUBROUTINE PREDICT used in this program is different
from the SUBROUTINE PRED. The subroutine predict uses
prediction vector and predicts for one point at a time
while the Subroutine Pred uses prediction matrix and

predicts for all the points at once.
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Figure11-3 Tidal Reductions - Flow Chart

READ DATA

-

A

READ OBS. DATA
(one set at a time)

|

CALL CARTE
(converts ¢, A to x, y)

|

COMPUTE PREDICTION
VECTOR (PH1)

1

CALL PREDICT
(Predicts range ratios,
time lags and heights) t

1

COMPUTE HEIGHT OF TIDE AT SHIP
HENCE COMPUTE REDUCED DEPTH

|

PRINT RESULTS

ARE
0BS. DATA

FINISHED?
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READ (S444)DECLAOWXLANMOL,SECLAO,DECGLCO+XLAOMU,SECLUOU
CALL CEGKRAD{(CEGLAU+XLANC+SECLAC,.PHIQ)
CALL LEGRAC(CECGLLCUWXLOMO»SECLUGYALON)
WRITE(ESE7)
WRITE(G4£6)
KULNT=9

2 CCNTINUE
IF(LTYPELEGCLLITHEN CC
READ(EVEE)T 9 XMINIDEPTHC +DEGLAWXLAMINGZSECLALDEGLO,,XLOMIN,SECLG
IF (T LT 400)C0O T 39
KOCUNT=KIULNT+1
CALL LEGRAC(CECGLA, XLAMINJSECLAsXLAT)
CALL LEGRAUC(CEGLUXLCMIN,SECLUO,XLGNG)
CALL CARTE(XLAT I XLCNG,PHIOLALLNsXyY)
ELSE CC
READ(E.CC)JQXMIN'DEPTHCvXQY
IF(T «LT aCe0)GU TO 39
END IF

CCMFUTE THE VECTCKR PHI FUR PREDICTION

IDF=N+1
I=C
0U 4 K=1,1DFP
KA=K=1
DO £ u=1,10F
JA=J-1
I=1+1
FHIR(I)=Xx*x*kAXYX%)kJA

S CCANTINUE

q CCANTINUE
CALL FRUICT(L+PHIRCRyVACRsR+sSTDR)
CALL FRDICT(L,FHIRsCA,WACA,A,STDA)
IF(ISFLITLEC.1)GQ0 TO 11
CALL FRODICT(LWPHIRyCB,VACB,B+sSTDE)
IC=0CATAN(B/A)/CK
El=(1e/(1e+(E/A)RX2))X(-B/A%%2)
B2=(1e/(1ea+(E/ZA)%X%X2) )% (1s/A)
VATC=B14#2*%STDA+B2*x%2%3STD0B

11 [IF(ILSFLITSEC2)CGC TG 12
TC=A
VAIC=STCA

12 CCNTINLE

TLIKCUNT)=TC
TCH=T1C/€C,
TOR=T+XMIN/ZEC.
TAR=TCLH~TCHh

COUNPUTE FHI FCR THE PREDICTION OF HEIGHT AT THE REF.
FHIT(1)=1.0

)% TAR)
K) *TAR)

~x

CALL FRU[
LTIOL=1TLC

yPHI T CTHVACT sHTGCy» STDH)
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STDE\ZDSCRT(F**2*CTDH+HTC**2*5TDF)
DEFTH=DEFTHC~-HTICE
STLCER=VDSEGRT (+01%%2+STPDEVX%2)
F{KOUNT )=HTICE
STE(KCUNT)=STCEYV
PHI(KCUNT)=XLAT
ALCANGIKCUNT )=XLCNG
XLAT=XLATX*X1EGC./P1
XLCNC=XLOUNC*180./7P 1
RRI}E(%OC‘)KCURT'XLAT s XLCNG s CEPTHU»TOUHTARZHTO, R, HT[DF.&TDLV
Cca
36 CCMNTINMNUE
NOBS=KCLUNT
WRITE(642)
DO 132 KOUUNT=14NCES
WRITE(E 41 IKCUNT W TLIKUOUNT)
13 CCNTINVE
4z FGRMAT( "1 ,SX, "PRECICTED TINE LAGS')
41 FCRNAT(/+3Xes139S5XsFEe2)
4Q FOFRMAT(SEX,€12)
50 FCRMAT(SXyF10e€)
4 FORMAT(EXy2ELLl o4)
595 FUFMAT(EXxySFE€oz)
A0 FORMAT(S5Xy 3FGe24?2F1245)
4N FORMAT(SXe 6F 66 2)
“7 FOFRMAT( "1 '3/ /4SX 3 'TIDAL ' ,3Xe 'REDUCTICNS!')
~n FOPMAT(/Z7/7e 3X 4" NUMY ,AX, 'LATITUNFEY (AXY 4 'LONGITUNDF ! 44X, 'ORS, NFPTH!
* 33X « ' TIMF AT QHID"GXy'T'”C AT RFEF',,2X, 'TIDE AT RFF? 12X TPR, RATIO
U DOX, "TIDE AT SHIDPY 42X 'STNEV )
€1 FORMAT (/4 3X o1 3, QX'F’O Nl Y F12eC s SXaFT7ey7XyFT7e39AXaT 7Tey 7Y 4F7
e e AX s F7e 46X 37 76392X 41" 04)
STOP
D
QUBBDUTTNE CARTE (AL AT, ALLOMN +PHTI Oy ALONC 4 X ,Y)
THI S SUBKOUTINE CCMPUTES THE CARTESIAN CCORDS. FROM THE L AT
ARNC LCNGITUCE
IREREIEERERRESRERRREEESSE RS ES R LR R ER SRR RRRRRRRRR R R AR R R R R RER R R RN
INFLICIT REALX*XE(F~-h,oC—-2)
RA=€278206.4C0
FE=€3506S€3 .8C0
Fl=326141592€500
ECT=(RA*XXZC=REFXRZ ) /RAX*2
XN=((1e~EC)I?*RA)/(DSCRT (1 e—ECH*{DSIN(PLIOC)**Z2))%%x3)
XN=RA/DSCRT(1s~EC*X(DSIN(FHIC)®%2))
R=CSCRT (XM*XN)
X=R*(ALAT-FHIC)
Y=+*CCOS(PKHIC) *{ ALON=~ALONU)
RETUFRN
ENC

SUERCLTINE FRCICT(L.PHIZCoVAR,PV,STDEV)
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IMFLICLT REALXE(A=H,C-2)
CIMENSTICN FHI(30),C(32)sVAR(ZD)
SUNM=CeD
SUdVA=C L C
CC 1C I=1,tL
FUN=FET(L1)2C (L)
VA=zPF1I(I)*¥*Z23VEAK(])
SUM=SULMAFUN
SUNVA=SLNV A+ VA

10 CCMNTINUE
PVv=SLM
STCEV=SULMNVA
RETURN
ENC

SLUFRCUTINE CEGRAD(A8,C,0CLT)
C .
C CUNVERT S CECy NMNINy SEC TG KADLANS

C
INPLICIT REAL*E(A=F,U=2)
uLT‘(A+b/bC.OD04L/36OO 000)*DARSIN(10000)/90 00V
RETURN
END
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I1I CANADIAN DEFINITIONS OF CHART AND SOUNDIN< DATUMS

This appendix has been added to supplement the information given in
Sections 1.0 and 1.1 of this report. The information given here has been

taken directly from the Hydrographic Tidal Manual 1970 [Energy, Mines, and

Resources Canada]. The descriptions and definitions presented concern tidal
waters; for similar information regarding non-tidal waters, the reader is

referred to the above mentioned reference.

Chart datum is the datum plane adopted for a published chart. It
is a low water datum which by international agreement is so low that the water
level will seldom fall below it. It is the level above which tidal pre-
dictions and water level records are based. The datum is only used within a
gauge location and differs from place to place depending on the range of tide

or water level.

For tidal waters, the Canadian Hydrographic Service has adopted the

level of Lower Low Water Large Tides (see Figure III-1) as its reference for

chart datum, and Higher High Water Large Tides as a reference for elevations.

A sounding datum is the reference surface to which soundings are
reduced during the course of a hydrographic survey. It is the datum used when
compiling a 'field sheet' for a survey. It may or may not be the same as

chart datum.

When selecting a datum, the following must be considered:
(i) the datum should be sufficiently low so that under normal weather
conditions there will always be at least the charted depth of water,
(ii) the datum should not be so low that it gives an unduly pessimistic
impression of the least depth of water likely to be found,
(iii) the datum should be in close agreement with those of neighbouring

surveys.



157

The following are the definitions of various reference surfaces

(datum planes) and water level variations in tidal waters used by the

Canadian Hydrographic Service.

Graphical representations of several of these are given in

Figure III-1.

(1)

(i1)

(iii)

(iv)

)

(vi)

(vii)

(viii)

Higher High Water Large Tides (H.H.W.L.T.) is the highest predictable

tide from the available tidal constituents, with the astronomical
(nodal) factor f, close to unity.

Higher High Water Mean Tides (H.H.W.M.T.) is the mean of the predicted

heights of the higher high waters of each day.

Lower Low Water Mean Tides (L.L.W.M.T.) is the mean of the predicted

heights of the lower low waters of each day..

Lower Low Water Large Tides (L.L.W.L.T.) or Lowest Normal Tides (L.N.T.)

is the lowest predictable tide from the available tidal constituents,
with the astronomical (nodal) factor fk close to unity.

Mean Water Level (M.W.L.) is the mean of hourly water levels for a

period of observations.

Mean Tide Level (M.T.L.) is the mean of all high and low water heights
over a period of observation.

Charted Elevation is the vertical distances between an object and the

reference surface of Higher High Water Large Tides.

Charted Depth is the vertical distance from the chart datum to the sea

floor.
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