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ABSTRACT 

In Hydrographic Surveying, soundings are reduced to a 

chart datum established at a reference gauge station from 

a long period of tidal observations. Unfortunately, due to 

the variations in tidal characteristics from place to place, 

soundings can only be reduced to the chart datum within the 

v icin_i ty or the gauge station. As we move away from the 

gauge station, 'it becomes necessary to obtain new information 

on the tidal characteristics and apply necessary corrections 

to the chart datum to obtain an appropriate sounding datum 

for reducing the soundings. 

To reduce soundings means to subtract the heights of 

tide, at the sounding locations and at the times of 

soundings, from the depths sounded to obtain the depths 

rPfcrenced to the chosen datum. hlanual reduction of sound­

ings is a tedious aspect of the field hydrographer's list 

of ehorcs. There have been some attempts to automate the 

tidal reductions using digitized cotidal charts. 

The objective of this work has l;een to develop 

alternative approaches to automated tidal reductions, namely, 

using analytical cotidal models. The range ratio aHd time 

lag fields have been approximated by surfacesdescribed by 

two dimensional algebraic polynomials (Pn(~.A)). ThP 

observed time series at a referenc.P station has he~''ll 

--"'roxima ted by one dimensional trigonometric polynomial 



Wi til tiH· coe f ficj en ts or t.iH•sc Pu lynorni a 1 s s t.o rr·d in 

the computer, the range ratio and 1he time lag at auy point 

(¢., >..)in the area can readily bE' predicted and the height 
1 1 

of tide at the point and at time t can be predicted from 

the predicted height of tide at thP reference station. 

Test computations, using data from the 'Canadian Tides 

and Current Tables, 197R' for the Bay of Fundy have been 

done. It has been shown that the water level (h) at a loca-

tion (<Pi' >.i) can be predicted with a standard deviation 

(c!hi) of 0.5 m or better. 

iii 
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I. INTRODUCTION 

1.0 Chart Datum and Other Water Levels 

The hydrographic surveyor must refer all his depth and 

height measurements to a reference datum. This reference 

datum, generally called chart datum, is a low water datum 

which by international agreement is so low that water level 

will seldom fall below it. The chart datum is, for purposes 

of integration and consistency, normally tied to the 

Geodetic datum which is usually defined by the mean sea 

level. For bxample, over a period of some years, tide 

gauges in Canada have been tied to the Geodetic Survey of 

Canada Datum (G.S.C.D.) [Atlantic Tidal Power Engineering 

and Management Committee Report, 1969]. This geodetic datum 

is based on the value of the mean sea level prior to 1910 

as determined from a period ot observations at tide gauge 

stations at Halifax and Yarmouth, Nova Scotia and Father 

Poj_nt, Quebec on the East Coast, and at Prince Rupert, 

Vancouver and Victoria on the Paci fie. Mean Sea Lend 

(M.S.L.), as its name implies. is the mean level taken up 

by the sea. It is determined at a tide gauge station from 

a long period of tide observations The geoid, which is 

supposed to be the datum for the lwights, is defined as 
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"that equipotential surface which on the average coincides 

with the mean sea level" [Thomson, 1974]. It therefore 

leaves the problem of mean sea level determination to be 

solved in order to define a height datum. 

It is not easy to determine mean sea level since the 

actual level of the sea is continuously changing. 

Wemelsfelder [1970] , in his paper titled, 'Mean Sea Level 

as a Fact and as an Illusion', outlined two concepts of mean 

sea level: the Physical concept and the Emperical concept. 

The Physical concept according to him 'is that of a common 

parlance', it is the concept used in the verbal description, 

"the height of the mountains above sea level". This concept 

has the intent to overlook every motion of the sea, it 

intends to say, no waves, no tides, no storm surges, no 

wind influences, no seasonal changes, no density anomalies, 

no temperature anomalies. The mean sea level is rather 

conceptualized as, 'a physical object existing primarily 

in space, the way in which the ocean spans the earth.' 

The emperical concept tries to quantify the mean sea 

level as the mean observed water levels at a tide gauge 

station over a period of time. This mean level even on the 

same sea varies from one tide gauge location to another and 

varies also with different time epochs. Wemelsfelder, [1970], 

enumerated 33 factors influencing the variations in the mean 

sea level and grouped them under global, regional, 1< cal 
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and instrumental influences. Bamford, [1971], observed that 

apart from tidal forces wpose mean effect over a long period 

should be zero. other forces cause the mean sea level to 

depart appreciably from a.n exact level (equipotential) 

surface. Thomson [ 1974] , further noted that, 'the problem of 

determining the true physical surface of the oceans is 

analogous to that of using Stoke's formula for·geoid deter-

mination - we would require an infinite number of tide 

gauges, atmospheric sensors, sea temperature and density 

determinatioris'. It appears then that mean sea level, thus 

the geoid, cannot be easily determined. 

The various other water levels*that can be used as a 

datum, or that will be relevant to the subject matter of 

this work, will now be briefly defined and each is 

illustrated in Figure l-1. 

The average of recorded values of all the high and low 

waters over a period is called the Mean Tide Level (M.T.L.). 

It is obtained more easily than mean sea level and as such 

is sometimes used in calculations instead of the M.S.L. 

The average throughout the ye~r of heights of high 

waters during the spring tides is termed Mean High Water 

Springs (M.H.W.S.). The average throughout the year of the 

heights of low water during tht~ spring tides is called Mean 

Low Water Springs (M.L.W.S.). 

Mean High Water Neaps (M.:i.W.Il.) is the average 

*see Appendix Ill for further details reg;~rding definitions used in 
Canada. 
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throughout the year of heights of high waters during the 

neap tides and the average throughout the year of heights 

of low water during the neap tides is called Mean Low Water 

Neaps (M.L.W.N.). 

The highest tide which can be predicted to occur under 

average meterological conditions and under any combination 

of astronomical conditions is termed Highest Astronomical 

Tide (H.A.T.), while the lowest predictable tide is called 

the Lowest Astronomical Tide (L.A.T.). 

Chart datum, as previously stated, is a low water 

level. It is the datum to which all soundings on published 

charts are reduced and to which tidal predictions and tide 

readings are'referenced. Ideally, Lowest Astronomical Tide 

level should be taken as chart datum. But, since we cannot 

accurately define it, we choose chart datum arbitrarily as 

close to L.A.T. as possible such that, (i) tides will 

seldom fall below it, (ii) j_t is not so low as to give 

unduely shallow depths. 
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1.1 Sounding Datum 

When a chart datum is chosen; it can only be used with­

in the vicinity of the gauge location [Atlantic Tidal Power 

Engineering and Management Committee, 1969]. Depending on 

the variation of tidal characteristics, it is not advisable 

to reduce depth measurements to this chart datum if the 

reference tide gauge is more than 8 km away [Admiralty 

.Manual of Hydrographic Surveying, 1969]. This leads to the 

neyessity of establishing a local sounding datum. In the 

Admiralty Manual of Hydrographic Surveying, 1969 , the 

following rules are given as a guide to the choice of 

sounding datum: 

(i) if possible, a sounding datum should agree with 

the chart datum. 

(ii) changes in a sounding datum within the area of 

interest must be made whenever the nature and 

range of tides alter appreciably. It is difficult 

to lay down precise figures, but a difference in 

range of about one metre between two places would 

normally indicate the necessity for a change of 

datum somewhere between them. 

(iii) the time difference between tides experienced at 

two places will not have any effect on the 

difference of sounding d~' tum between two points. 

It may however have a considerable effect un the 
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value of the reduction required to reduce soundings 

to datum. Therefore, it is important, even if the 

sounding datum does not alter, to obtain time 

differences between tidal stations so that time 

differences may be interpolated and applied ·to 

observed heights of tide used for the reduction of 

soundings. 

(iv) If there is any doubt in the surveyor's mind 

concerning the behaviour of the tide, he. should set 

up another tide gauge to find out what is happening. 

Figures l-2 and l-3 show how the tidal ranges change 

along the southern and northern coasts of the Bay of Fundy. 

At Yarmouth~ the range at the spring tides is about 4.9 

metres (16 feet). The range increases to the east and at 

Burnt Coat Head, a distance of about 290 km away, the range 

reaches about 16.7 metres (55 feet). Along the northern 

coast, the range is about 8.5 mteres (28 feet) at Eastport, 

Me. and increases going eastward, and at Joggins Wharf, 

the range is about 12.2 metres (40 feet). 

If a datum was established at Yarmouth or Eastport, Me. 

for the reduction of soundings, as the soundings progressed 

eastwards, the sounding datum should be altered. The ideal 

thing is to alter a sounding datum in a series of steps. 

Figures 1-2 and 1-3 depict the altPration of a sounding 

datum in steps of 0.6 m (2 feet). The correction to be 
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applied to a chart datum (established datum at the reference 

station) to obtain the sounding datum is given by [Admiralty 

Manual of Hydrographic Surveying, 1969], 

d = h - H-r-
R ' ( 1.1) 

~here h is the height of the M.S.L. above the zero of 

the new reference gauge, H is the height of the M.S.L. above 

the established chart datum, r is the range of tide at the 

new reference station and R is the range of tide at the 

established reference station. It means that when lal > 0.6 m 

(2 feet) the sounding datum is changed by 0.6 m (2 feet). 

Figure l-4 illustrates how a sounding datum could change 

in an estuary or a river. The configuration of the land 

and the slope of the sea bed will influence the tidal 

characteristics and hence the tidal ranges. The range of 

the tide increases at first proceeding up a river and then 

starts to decrease until it reaches zero at a point inland 

where the river ceases to be tidal. 

It is not possible to establish one sounding datum tor 

a hydrographic survey which covers a long stretch of coast-

line and where tidal conditions are unknown. Tidal informa-

tion in the area must be built up and a sounding datum 

transferred gradually along the coast as the survey 

progresses. A hydrographic surveyor on a sounding mission 

could be met with any of the following situations regarding 

sounding datum: 
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(i) a chart datum has already been established 

within the sounding area, 

(ii) a chart datum has been established near the 

sounding area, 

(iii) a chart datum has not previously been es­

tablished anywhere nearby. 

The actions correspondi_!lg to the above situations are: 

(i) the surveyor should recover the established 

chart datum and use it, 

(ii) the surveyor should transfer the datum to the 

survey area; in other words, he should obtain 

a sounding datum for the area to be surveyed 

referenced to the established chart datum, 

(iii) the surveyor should aim at establishing a 

chart datum. 
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1.2 Reduction of Soundings 

FigurP l-1 illustrates the realtionship between a 

sounding at a time t and the chart datum. The height of tide 

at time t must be subtracted from the depth sounded to yield 

a reduced sounding. Manual reducttons of soundings in tidal 

waters is a tedious aspect of the field hydrographer's tasks. 

It requires that a tide gauge be set up in the survey area 

and the rise and fall of tides observed while the sounding 

is performed. From the observed heights, it is possible to 

plot a curve showing the variations in the water levels and 

to reduce the soundings to a suitable reference plane. 

Figure 1-5 illustrates a typical reduction curve [Admiralty 
"\ 

Manual of Hydrographic Surveying, 1969]. It has been drawn 

from the height observations at half hourly intervals with 

additional readings on either side of the high water. The 

reductions are scaled in steps of one metre and noted in the 

form of a table. For example, the reduction is 5 m from 

1247 hrs to 1342 hrs, 6 m from 1343 to 1446 hrs. 

For inshore surveys, it is usually convenient to set up 

a tide gauge and observe the tides while sounding is 

proceeding. If we are sounding offshore, the problem 

becomes complicated. It may be possible to use drying banks, 

islets or temporary structures such as drilling rigs as sites 

for tide gauges. Another possibility in the near future 

will be the use of automatic sea bed tide gauges[DeWolfe,l977J. 
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In the absence of the above alternatives, tidal observations 

could be made from an anchored survey vessel using an echo 

sounder. 

If the cotidal charts for the area of interest are 

available or could be constructed, the necessary tidal 

information for the reduction of the sounding can be recovered 

from them. The objective of this report is to offer an 

automated analytical alternative to the manual task of tidal 

reduction of soundings through the use of tidal observations 

or cotidal chart information or a combination of the two. 

Before describing the proposed scheme, an understanding 

of tidal theories ~nd phenomena, analysis and prediction of 

tides, and fhe types and construction of cotidal charts are 

pertinent. Chapter II covers the theory of tide generation, 

harmonic analysis and prediction of tides. Chapter III is 

devoted to the types, construction and uses of cotidal 

charts. 



II ANALYSIS AND PREDICTION OF TIDES 

2.0 Introduction 

When the water levels h(t) have been observed at 

times t relative to a chosen datum at a tide gauge 

station, we have obtained a record distributed in time 

space (time series) and defined at the discrete time 

intervals. There is a trigonometric polynomial, Pn(t), 

of the form 

n 
b(t) = I (a.cos w.t + b.sin ~.t), 

. 0 1 1 1 1 
1= 

(2.1) 

which can predict this time series at any time t in the 

interval. The analysis of this time series means the 

determination of tile real numbers a., b., and w.. If we 
1 ' 1 1 

seek a least squares solution to this problem, we would 

llave a system of normal equat]()ns that would be nonlinear. 

The presence of the non-linear trigonometric terms as 

unknowns lends to a serious problem which may or may not 

have a solution [Vani~ek and Wells, 1972]. If, however, 

the frequencies w. are known, the coefficients a. and b. 
1 1 1 

can be determined using least squares harmonic analysis. 

The first and basic problem of harmonic tidal analysis. 

therefore, is the determination of the constttuent fre-

quencies w.. This is the first step in the complete de­
l 

composition of the observed time series into individual 

trigonometric terms. The first practical attempt at the 

determination of the constituent frequencies was made by 

16 
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Darwin in 1886 using the orbital theories of the moon 

and the sun. In 1921, Doodson improved on the method 

by making a more complete expansion of the tidal potential 

using the modern luni-solar orbital theories. 

The careful analysis of the tides at Honolulu and 

Newlyn by Munk and Cartwright [1966], indicated that the 

spectrum of a tidal record is a continuous function of 

frequency w over the low frequency band, but that it 

approximates closely a line spectrum over the other fre-

quencies - 'the constituent lines emerge from the noise 

background as trees from grass' [Godin, 1972]. As long as 

we do not work with the low frequency band, (as is 

generally t~e case.in Hydrographic Surveying), it is 

reasonable to assume that to a good order of approxima-

tion the spectrum of a tidal record is a line spectrum. 

We can therefore treat the observed heights as a problem 

of spectral analysis of a time series. Letting 

and 

equation 2.1 can be rewritten as 

00 

h(t) = y Hkcos(wkt + ak), 
k=O 

(2.2) 

where Hk is the amplitude of the constituent frequency wk' 

ak is the phase of the constituent at time t = 0. If the 

function is defined on the finite set M = {0, ±1, ±2, ±3, 

... ±!}, the frequency wk is ~iven by 
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(2.3) 

Hk is obviously a non negative real number that d0scribes 

the magnitude of the constituent frequency wk. By plotting 

the amplitude against integer frequencies, a visual inter-

pretation of the contributions of the individual constituent 

frequencies (Figure 2-1) can be made. This represents the 

discrete transformation of the function from time space into 

frequency space [Vanicek and Wells, 1972]. 

H H1 n2 H3 ~--··---'---=--- --'---=---·-'-::-=----1 
0 nfl 2nfl 3nfl 

Figure 2-l 

Line Spectrum of Function h(t) 

Munk and Cartwright, [ 1966] introduced an en tin:' 1 y 

different method of tidal analysis which they called the 

response method. In this method, the potential is generated 

as a time series V(t) and an a~tempt is made at the 



prediction of height of the tjde at a time t as the weighted 

sum of the past and present values of the potential 

h(t) =I W(s)V(t- Ts). 
s 

(2.4) 

The weights W(s) are determined such that the prediction 

error h(t) - h(t) is a minimum in the least square sense. 

In this chapter, the theory of tidal generation and 

the traditional harmonic analysis and prediction of tides 

are described. The thinking behind the response analysis 

and prediction is briefly outlined. 

2.1 Theory of Tide Generation 

2.1.1 The Movements of the Moon (Real) and the Sun (Apparent) 

The·moon and the sun are the principal tide generating 

agents. Other heavenly bodies are either too distant 

or have too little mass to exert any significant force on 

the earth's surface. Figure 2-2 shows the rela tiC>nship be-

tween the orbit of the moon and the apparent orbit of the 

sun. The sun moves in an apparent path around the earth on 

a plane called the ecliptic once every 365.25 solar days. 

Fur our present purposes, this movement can be regarded as 

uniform and inclined at an angle of 23° 27' (obliqui~y of 

the ecliptic) to the celestial equator. The point where 

the ecliptic crosses the celestial equator from south to 

north (D in Figure 2-2) is called the Vernal equinox or 

the first point of Aries T. 

The moon moves eastward around the earth in an orbit 
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of tM Moo~ and the Sun 
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inclined at about 5° 9' [Admiralty Manual of Hydrographic 

Surveying, 1969] to the ecliptic and crosses the ecliptic 

at the nodes. It takes approximately 27.2122 mean solar 

days for the moon to travel from the ascending node F to 

the ascending node K (Figure 2-2). As indicated in 

Figure 2-2, the lunar orbit does not cross the ecliptic 

at the same place consecutively. The nodes continually 

move westward along the ecliptic and this nodal movement 

or regression, as it is often called, has a period of 18.61 

tropical years (one tropical year= 365.2422 mean solar days). 

Due to the nodal regression, the obliquity of the lunar 

orbit with respect to the celestial equator varies pro-

gressively between a maximum and a minimum, namely, 
' 

~ax. = 23° 27' + 5° 9' = 28° 36' 

Min. = 23° 27' 

2.1.2 The Tide Generating Forces and Potentials 

To derive the mathematical expression for the tide 

generating forces of the moon and tl.e sun, the principal 

factors to be taken into consideration are: 

(i) the revolution of the moon around the earth in 

an orbit inclined to the equator, 

(ii) the motion of the earth around the sun along 

the ecliptic which is also inclined to th~ 

equatorial plane, 

(iii) the rotation of the earth around its axis. 
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The tide generating forces at the earth's surface 

result from a combination of two basic forces; (i) the 

force of gravitation exerted by the moon (and sun) upon 

the earth, and (ii) centrifugal forces produced by the 

revolutions of the earth and the moon (and the earth and 

the sun) around their common centre of mass known as the 

barycentre. 

The magnitude of centrifugal force produced by the 

revolution of the earth-moon system around barycentre 

(which lies approximately 1709 km beneath the earth's 

surface on the side towards the moon and along the line 

connecting centres of mass of the earth and of the moon) 

is the same at any point on or beneath the earth's sur-

face [National Ocean Survey, 1977]. 

[Godin, 1972] 

2 
= KM/po , 

--

Its magnitude is 

where p0 is the distance between the centres of mass 

of the earth and of the moon (Figure 2-3), K is the 

universal gravitational constant, and M is the mass 

of the moon.* The gravitational force exerted by the 

moon is different at different positions on or beneath 

the earth's surface because the force of attraction 

*Note: The earth-moon system is used here to develop 
the equations for tidal potential. The same develo1ment 
resulting in similar equations can be used for the sun or 
any other heavenly body. 
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between two bodies is a function of the distance between 

them. This gravitational force at 0 (Figure 2-3) is 

and at X is 

2 
Fg0 = KM/P 0 ~ 

2 
Fg = KM/px ~ 

(2.6) 

(2,7) 

where Px is the distance between the centre of mass of the 

moon and point X on the earth's surface. The tide generat-

ing force due to the moon M at point X (Figure 2-3) on the 

earth's surface is defined as the difference between the 

gravitational force at X and that at the resultant centre 

of mass of the earth-moon system where the gravitational 

and centrifugal forces are in equilibrium [Dronkers, 1972]. 

In terms of potentials, the attra~ting potential at 

X and at time t is 

(2.8) 

and the potential of the constant vector field of the 

centrifugal force is 

2 
fc = KM a cos ~mx/Po , (2.9) 

where ~mx is the zenith distance as shown in Figure 2-3, 

and a is the mean radius of the earth. From equations 

2.8 and 2.9 and making use of the definition of the tide 

generating force given above, the tide generating potential 

(Vm) due to the moon at X and at Lime t is [Dronkers, 1972]. 



= KM[l_ 
p 

X 
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(2.10) 

Figure 2-4 shows the distribution on the earth of tide 

forces of lunar origin. At point A nearest to the moon, th~ 

force of attraction is greater than the centrifugal force. 

The resultant is the tidal force (Ft) towards the moon. At 

C, the centre of the earth, both centrifugal and the gra-

vitational forces are equal. The tidal force at tbe centre 

consequently is zero. At B farthest from the moon where the 

centrifugal force is greater than the attractive force, the 

tidal force is directed away from the moon. 

We can express px (equations 2.10) in terms_ of Po and 

~mx using th~ cosine formula of plane trigonometry given by 

Equation 2.11 can be rewritten as 

1 = - [L -
p 

cos <P mx-
2 

( ~ ) J 
Po 

(2.11) 

(2.12) 

When 1 
Px 

is expanded in powers of the parallax afpo by means 

of a Taylor series, expansion in zonal harmonics is obtained 

and equation 2.10 is given as [Godin, 1972] 

The first term of the expansion 
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(2.13a) 

can be overlooked because it is a constant and hence has no 

physical significance. 

The second term 

2 v1 = KM/p0 a cos ~mx . (2.13b) 

is the lunar gravitational force at the centre which is 

equivalent to the centrifugal force. 

The third term is 

2 1 2 
v 2 = KM a /Po 2 (3 cos ci>mx - 1) . (2.13c) 

This is the significant term as far as tidal potential 

is concerned. The fourth terrr1 is 

= KM a ~4 ~(5 cos3 ct> - 3 COS ~mx). 
Po .... mx 

(2.13d) 

For practical purposes, the fourth term is of little 

significancr. It must be considered when we are required 

to determine the potential with a nigher degree of accuracy. 

Henceforth in this report, v2 is the tidal potential. It 

is decomposed into constituent frequencies and this, as 

has been mentioned, is the first step in the harmonic 

analysis of tidal records. 

We can rewrite equation 2.13 as 

(2.14) 
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The principal variable in the tide generating potential 

defined by equation 2.14 is the zenith distance~ mx 

quantity changes due to two effects [Dronkers, 1964], 

namely, 

(i) the daily rotation of the earth about its 

axis (24 hours) combined with the motion 

of the moon in its orbit (50 minutes per 

day) giving a total periodicity of 24 hours, 

50 minutes, 

(ii) effects due to moon's motion in its orbit 

during a lunar month which results in a mean 

monthly periodicity of its declination o of 

27.3 mean solar days. 

This 

The other variable in the potential that must be accounted 

for is p0 , the mean distance of the moon to the earth which 

varies due to the irregular elliptical nature of lunar 

orbit. 

The expression of the potential as a function of time 

dependant variables and as a function of position on the 

earth surface is achieved by transforming our Horizon 

co-ordinate system to the Hour Angle system using [Smart, 

1971] 

cos ~ = sin ¢ sin o + cos o cos ~ cos t , mx (2.15) 

where ¢ is the geodetic latitude, c is the declination and 

t is the hour angle. We can evaluate cos2~mx in terms of 

¢, o and t which after some manipulation yields 
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V G(a, p) [eos 2 .p cos2 o cos 2t + sin 2¢ sin 2o 
m 

t 3( . 2 l) ( . 2 .l' cos + S1n ~ - 3 Sln u (2.16) 

in which G(a, p) is defined as the Doodson constant. namely 

G( a, p) = ~ KM. rf;c3( c is the mean semi-axis of the orbital 

ellipse of the moon). 

Equation 2.16 contains the variables p, o, t which are 

dependant on time. Th~ first term of the equation con-

taining cos 2t includes the semi-diurnal constituents with 

periods approximating half a lunar day. The second term 

containing cos t determines the diurnal constituents with 

periods approximating a lunar day. The third term is 

independent of t and hence contains the long period con-

stituents. It is only subject to variations in declina-

tion o and distance p of the celestial body. We have now 

been able to decompose the tidal potential into 3 frequency 

bands 

0 - for lon~ period constituents, 

l- for diurnal constituents, 

2 - for semi-diurnal constituents. 

This is only a step towards the complete decomposition of 

the tidal potential into the numerous periodic constituents. 

For the complete decomposition, thr' work of Darwin and 

Doodson are important. Darwin's d•,eomposi tion provides 

readily the most important constituents and their relative 

importance while Doodson's method is more suitable for 

rigorous developments and pro"i.des a greater number of 



30 

constituents. 

2.1.3 Development According to Darwin 

This development is based on deriving relations for 

sin o and cos o cos t, which occur in equation 2.16 in 

terms of 

t - the local solar time, 

s - the longitude of the moon referred to 

the equator, 

h - the mean ecliptic longitude of the sun. 

Darwin used the old lunar theory and all quantities were 

given with respect to the moon's orbit projected onto the 

celestial equator. He considered 

p - the ecliptic 

perigee, 

n - the ecliptic 

nodes, 

Ps - the ecliptic 

perigee, 

as constant over one year. 

longitude of the moon's 

longitude of the moon's 

longitude of the sun's 

Referring to Figure 2-5, the relations are derived 

from right spherical triangles MAM' and MX'M' and the 

oblique triangle MAX'. A is a point of intersection of 

the lunar orbit and the equator, X' and M' are the 

projections of X and M onto the equator [Dronkers, 1964 

Page 59]. From triangle MAM' and ~IX'M', the sine rule of 

spherical trigonometry yields 
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sin !) sin s j_ n ( s - \_I + k ) . 

cos 6 cos t - cos x. 

(2. 17) 

(2.18) 

where I is the angle bctwP.en the orbit of the moon and the 

celestial equator, s is thP. longitude of the mean moon on 

the equator, v is the distance between the referred equinox 

y' and the intersection of the lunar orbit with the equator 

at A, X is thP. arc MX' and arc AM = s - v + k. k is the 

difference between the true longitude of the moon (s') mea-

sured from -,' ( y '_M) and the longi t 11de of the mean moon in the 

equator s. From oblique triangle MAX' and using the cosine 

formula we have that 

cos X = cos( 15"tx + h - v) cos(s - \_) + k) 

+ sin ( 15 o t x + ll - v) sin ( s - v + k) cos I 

' (2.19) 

in wi1icii h is tlle mean eel ipti c 1 ongi tude of the sun and 

v is the right ascension of A, 15° of arc is equal to one 

hour in time. 2 2 The terms sin 6, sin 26 cost and cos 6 cos 2t 

whie~1 are contained in the potential formula (equation 2. lG), 

can be determined from equations 2.17, 2.18 and 2.19 in 

terms of the orbital elements tx, s, h and v. When these 

are substituted back into equation 2.16, we obtain a series 

of harmonic terms of which the arguments depend on the 

rotation of the earth (l5°tX), the mean motion of the moon 

in its orbit (s) and the mean motion of the earth in orbit 

(h) namely. 



2 [ 4 I Vm = G(a, p){cos $cos ~ cos(30°tx- 2s- 2h - 2v- 2v- 2k) 

+ ~ sin2 I cos(30°tx + 2h - 2v) 

+ sin4 ~ cos(30°tx + 2s + 2h- 2v- 2v + 2k)J 

+ sin 2¢[sin I cos2 ~ cos(l5 tx - 2s + h + 2v - v 

- 2k - 90°) + ~ sin 2I cos(l5 tx + h - v + 90°) 

+sin I sin2 ~ cos(l5°tx + 2s + h- 2v- v- 2k + 9Qo)] 

(2.20) 

In the development for solar constituents, the terms v 

and v will vanish and angle I will change toE· 

\ 

2.1.4 Development According to Doodson 

Doodson's method principally involves the use of a 

rigorous expansion of the ecliptic longitude and latitude 

of the moon. For the development of sin o and coso cos t, 

he introduced the ecliptic longitude Am and latitude Bm of 

the moon and the local siderreal time 8 of the point X 

(Figure 2-3) on the earth's surfacP. The equations are 

sin o = sin E sin Am cos Bm + cos t sin Bm , (2.21) 

cos 6 cos t = cos sm cos Am cos 8 + (cos E cos Bm sin Am -

- sin E sin Sm)sin 8. (2.22) 

where E is the obliquity of the ee I ip tic. 

Finally the potential Vm is developed as the sum of ~eriodic 

functions of six variables, namely, tx, s, h, P, n and Ps. 
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Doodson obtained 400 periodic constituents from his 

devP1opment of whic.h the principal ones are listed in Table 

2-l [Vanicck, 1973]. 

The constituent frequencies can be described in mathe-

mat ica l terms using Doodson nun1bers and the ast ronomi ca 1 

variables, namely 

wk = ~1 = k 1 f 1 + k 2 f 2 + k 3 f 3 ~ k 4 f 4 + k 5 f 5 + k6 f 6 , 

(2.23) 
Ckx = o ± 1 ± 2). 

f is a six dimensional vector whose components are the basic 

frequencies of the motions of the earth, the moon and the 

sun, namely 

fi 1 is the period of the earth's rotation TX (1 day), 

-l £2 is the period of moon's orbital m9tion ~ (1 month), 

f-l is tiH· pt~riod of earth'~ orbital motion li. ( 1 year), . :J 

f~ 1 is the period of lunar perivee P (8.R5 ypars), 

-l r 5 is the period of regression <)f lunar nodes N (J8.61 years), 

-1 . 
£6 is the period of solar perig,~e Ps (21000 years). 

f 6 is usually omitted because it is insiginificant. kx = 0, 

l, 2 refers to the tidal species, 0 for long period, J for 

diurnal and 2 for semi-diurnal. (k 1 , k 2 ) is called the group 

number. (k 1 . k 2 , k 3 ) is called the constituent number. 

With the constituent freq~lPnc j es determined, whic ·l 

are the same anywhere on the e:1 rth' '> surface, the first step 

in the harmonic analysis is DO\\ co11:pleted. In the next 



Symbol Velocity 
per hour 

M 
0 

s 
0 

s a 

s 
sa 

M 
m 

\fil 

<Pl 

0°,000000 

0°,000000 

0°,041067 

0°,082137 

0°,544375 

1° 1 098033 

13°,398661 

13°,943036 

14°,496694 

14°,958931 

15°,000002 

15°,041069 

15°,041069 

15°,082135 

15°,123206 

15°,585443 

16°,139102 

27°,895355 
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Origin 
(L, lunar; S, solar 

Long period components 

+ 50458 L constant flattening 

+ 23411 S constant flattening 

+ 1176 S elliptic wave 

+ 7287 S declinational wave 

+ 8254 L elliptic wave 

+ 15642 L declinational wave 

Diurnal components 

+ 7216 

+ 37689 

- 2964 

+ 1029 

+ 17554 

- 423 

- 36233 

- 16817 

- 423 

- 756 

- 2964 

- 1623 

L elliptic wave of o1 

L principal lunar wave 

m 
L elliptic wave of K1 

s elliptic wave of P1 

S solar principal wave 

s 
S elliptic wave of K1 

L declinational wave 

S declinational wave 

s 
S elliptic wave of K1 

S declinational wave 

m 
L elliptic wave of K1 

L declinational wave 

Semi-diurnal components 

+ 2301 L elliptic wave of M~ 
"'· 

Table 2-1 Principal Tidal Constituents As Derived 
by Doodson. 
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Table 2-1 -colltinued • 

Symbol Velocity Amr- :. i tude 105 Origin 
per hour (L' lunar; S, solar) 

112 27°,968208 + 2777 L variation wave 

N2 28°,439730 + 17387 L major elliptic wave of M2 

v2 28°,512583 + 3303 L evection wave 

r-12 2f! 0 1 984104 + 90812 L principal wave 

>..2 29°,455625 - 670 L evection wave 

L2 29°,528479 - 2567 L minor elliptic wave of M2 

T2 29°,958933 + 2479 s major elliptic wave of s 2 

52 30°,000000 + 42286 s principal wave 

R2 30°,041067 - 354 s minor elliptic wave of s 2 

~2] 30°,082137 + 7858 L declinational wave 

SK 30°,082137 + 3648 s declinational wave 2 

Ter-diurnal component 
I 

I 
M3 43°,476156 

I 
- 1188 

I 
L principal wave 
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section, the least squares harmonic analysis of observed 

tidal records, to determine the tidal constants Hk and gk' 

where Hk js the amplitude of the eonstituent k and gk the 

phase lag of the constituent k at the observed station, 

is described. 

2.2 Least Squares Harmonic Analysis and Prediction of Tides 

The height of tide h(t) :;~t any place and at any time 

t can be expressed as the sum of harmonic terms [Dronkers, 

1972] 
00 

(2.24) 

where s 0 is the height of mean water level above the datum 

in use, wk is the constituent frequency, Hk is the amplitude 

of the constituent k and ak is the initial phase of the 

constituent. The number of constituents included will 

depend on the accuracy required for prediction. For ordinary 

hydrographic works, the constituents M2 , s2 , N2 , o1 , K1 , P1 

are sufficient to yield an accuracy of 0.2 m in a prediction. 

ak depends on the varying mean longitudes of the moon's 

perigee and sun's perigee with periods of approximately 8.61 

and 21000 years respectively and the ecliptic longitude of 

the moon's ascending node with a period of 18.61 tropical 

years. To take these effects into account, f 5 and f 6 con­

stituents are eliminated and a node factor fk and a correc­

tion for equilibrium argument Uk are introduced. 

Equation 2.24 is rewritten as 
N 

h(t) == s 0 + kil fkHk c.os(tJ.Jkt +(Vk + Vk) - Xk), (2.25) 
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in which (Vk + Uk) is the value of the equilibrium argument 

of the constituent k when t = 0, generally called the 

astronomical argument, Xk is the phase lag of the tidal 

constituent behind the phase of the corresponding equilibrium 

constituent at Greenwich, N is the number of constituents in use. 

All tide observations are made on local standard time, 

often referred to as zone time and denoted as ZT. Equation 

2.25 therefore has to be modified so that allowance is made 

both for the zone time and the local longitude since the 

meridian of the observing station and the meridian defining 

zone time are usually not coincident (Figure 2-6). 

If (Vk - Uk) is the phase of the equilibrium constituent 

k at the Greenwich, P(= 0, l, 2) is the tide species number, 

0 for long period, l for diurnal and 2 for semi-diurnal and 

Ax is the geodetic longitude of the point, say x2 (Figure 2-6) 

west of the Greenwich, then (Vk + Uk) - PAx is the phase 

expressed in Greenwich mean time of the equilibrium consti­

tuent k of the tide species P at the point x2 west of 

Greenwich. This is now transformed into the zone time of 

the place. If the correction for zone time is AT (where AT 

is negative west of Greenwich and positive east of Greenwich) 

and the frequency of the constituent is wk' we must subtract 

wk.AT from the phase of the equilibrium tide. Thus with 

respect to the point X2 west of Greenwich, Vk + Uk - PA + 

wk.AT is the phase of the equilibrium tide expressed in the 

local zone time. 

If gk is the phase lag Xk corrected for longitude and 



39 

f\r~Ute 2-6 

T\me Re\ati'Ortsbtps 



40 

zone time, then we have that 

(2.26) 

The determination of Hk in equation 2.25 and gk in equation 

2.26 are the objectives in the harmonic analysis of tides. 

They are determined from a series of observed tides at a tide 

gauge station and are called the harmonic constants for that 

station. The estimation of these constants for a station 

is improved when more observations are available. 

From equation 2.25, using trigonometric relations for 

compound angles 

• 
fkHk cos[wk.t + (Vk + Uk) - Xk)] = fkHk cos((Vk + Uk) 

sin(wk. t). 

If we let 

equation 2.25 is rewritten as 

N 
h(t) = s0 + I Ak cos(wk.t) + 

k=l 

N 
I Bksin(wk. t) • 

k=l 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Equation 2.30 is a trigonometric polynomial that can 

predict the observed time series h(t) at time t in the 

given interval of time. Least squares approximatior metho-

dology [Vanicek and Wells, 1972; Moritz, 1977; Appendix I] 

can be used to determine the coefficients s0 , Ak' Bk 
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(k = 1, 2, 3, ... N). The number of coefficients to be 

solved is 

U = 2N + 1, (2.31) 

where N is the number of constituent frequencies used. 

We can choose our base functions as 

~ = {1, cos w1t, sin w1 t ...... cos wNt, sin wnt}. 

(2.32) 

The Vandermonde's design matrix A is 

1' cos wltl, sin wltl, cos wNtl' sin wNtl 

A 1' cos wlt2 sin wlt2, cos wNt2, sin wNt2 
MxU 

1 ' cos w1 tm, sin wltm ... cos wNtm, sin wNtm 

(2.33) 

in which m equals the number of measurements h(t) that have 

been made. For weights, we can consider each observation 

as having been made independently with equal amount of 

reliability. The error in observations (OX~· can be taken 

to be equal to the resolution of the tide gauge used so that 

LL = diag[ o~1 • 2 aq. OL 
2 mxm 

and the corresponding weight matrix is 

p = I~l = diag[ l 2 , 
1 

!~J (2.34) 2 , 
mxm OL oL 

1 2 

2 in which o 0 (the a priori variance factor) is taken as unity. 

The solution for the vector of coefficients is given 

as 

c (2.35) 
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T 
in which 2 = [s0 . A1 . B1 , A2 . B2 .. Ak, Bk] 

The solution for the residua] vector is 

,., 
V = AC - F 

where F is a vector of observed heights. 

(2.36) 

The associated variance covariance matrix of the vector of 

coefficients is 

(2.37) 

where a~ is the estimated variance factor given by 

(2.38) 

df represents the degree of freedom given in this case by 

the number of observations minus the number of coefficients 

( df = m - u). 

With the coefficients s0 , Ak, Bk determined, equations 

2.26, 2.28 and 2.29 yield the harmonic constants Ilk and gk. 

Note that if however it is not intended to pretiict the tides 

in the past or in the future, the constants need not be 

computed. The tide at any time t in the time interval can 

be predicted using the polynomial. 

From 2.28 and 2.29 

fkHk sin((Vk - Uk) - Xk) 
tan((Vk + Uk) X ) 

Bk 
= - = 

fkHk cos((Vk + Uk) Xk) k Ak ' 

or 

(2.39) 

and 
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(2.40) 

or 

( 2. 40.-::.) 

To completely solve our problem, we have to determine the 

astronomical argument (Vk + Uk) and the nodal factor (fk). 

The values are usually tabulated in tide tables (eF,. Admiralty 

Tide Tables), or they can be computed. 

The astronomical argument is given as [Godin, 1972; 

pp. 171-178] 

A A 

Vk(t) = k 1 ~ + k 2S + k 3h + k 4P + k 5N + k6Ps (2.41) 

A 

where T, S, b, P, Nand Ps are the values of the astronomical 

variables at the instant of time t from the origin of time 

and are given as 

s so + t.t s , 
h ho + t.t h, 

p = Po + t.t P, 

N No + llt I~ , 

Ps Ps0 + t.t Ps, 
A A 

T = 0.0416 (hh mm) + h s 

s 0 , h 0 , P0 , N0 and Ps0 are the values of the astronomical 

variables at the time t = 0, hh mm represents the hours 

and minutes of the day, S, 6, ~. ~. ~s are the ~ates of 

change of the astronomical variables in cycles per muan lunar 

day. Uk is the phase of the astronomical argument (Vk) at 



time t = 0. 

The nodal (modulation) fae.tor is given by [Godin, 1972] 
no 

fk = 1 + I jrk.jexp[2n i(6k4 (j)P + 6k5 (j)N + k6 (j)Ps)J, 
j=l J 

(2.42) 

in which rkj is a complex number which depends on L\k 4 , 

6k5 and 6k6 . The j's inside the differences in Doodson 

numbers indicate that they depend on a specific constituent 

within a cluster. 

It is important to note that in the discussion so far, 

there was no mention of removing the noise part of the ob-

served series before the analysis is made. The harmonic 

constants obtained are therefore likely to include other 

effects beside those of the astronomic forces and are conse-

quently in a certain measure variable. The harmonic ana-

lysis should be based on a series of very selective 

filterings so as to permit isolation of an oscillation 

having a maxi~um tide/noise ratio. Godin [1972] has given 

several filters that could be used to eliminate the noise 

part or suppress certain frequencies. 

Vanicek [1970] pointed out that there is an obvious 

danger in removing the noise part of a series when the 

magnitudes are not known. On the other hand, it is 

usually equally deterimental 1o leave these constituents 

unattended because they may distort the spectral image of 

the series to a considerable degree. He described a method 

of least squares spectral analysis that could be used to 

analyse a time series and locate the frequencies accurately 
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without first removing the noise part. 

Mosetti and Manca [1972] described a number of methods 

for separating a certain number of tidal constituents by 

means of successive approximations and thus to completely 

extract astronomic tide from the tidal records. The fre­

quency interval in which the tidal constituents occur are 

divided into a number of wave groups, the periods within 

each group being very close to each other but sufficiently 

distinct from the periods of constituents in all other 

groups. By drawing the graph of oscillations in each group, 

it is easy to see that the modulations are perturbed to 

some extent due to interference phenomena from waves within 

the group. ~f we are dealing with series extending over a 

fairly long period, it is possible to evaluate the intervals 

on the record that are least perturbed and where the ampli­

tudes vary with regularity dictated by astronomic laws. 

The harmonic constants can then by computed for those 

intervals. 

2.3 Tidal Analysis and Prediction by Response Method 

2.3.1 General 

Munk and Cartwright [1966] presented an entirely 

different method of tidal analysis and prediction. They 

applied the theory of time series to the tidal observations 

at a gauge station to determine certain coefficients which 

replaced the amplitudes Hk and the phase lags gk of the 

tidal constituents as in the harmonic analysis. Even 
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though the theory of this method is more involved than the 

harmonic method, the authors claim that the response method 

gives a simpler and physically more meaningful representation 

of tides than the harmonic method. Unlike the traditional 

harmonic method which attempts to express the tides as the 

sum of harmonic functions of time, the response method 

expresses tide as the weighted sum of the past, present 

and future values of a relatively small number of time 

varying input functions. 

Dronkers [1972] described the method as a more 

empirical modification of the equilibrium tide based on 

the theory of time series. He added that the principal 

advantage of the response method is that the total number 

of coefficients is less than the number of constituents 

used for the harmonic prediction of comparable accuracy. 

ln the response method we deal with complete potential 

instead of a set of discrete frequencies as in the harmonic 

method. 

Lambert [ 1974] noted that the principal advantage of 

response method over the harmonic method lies in the fact 

that separate admittance functions (Fourier transform of 

response weights) can be calculated for sufficiently dis­

tinct uncorrelated inputs, thus making the method 

adaptable for earth tide analysis. 

The response method of tide analysis and prediction 

as developed by Munk and Cartwright [1966] is applied to 

various observed series to obtain frequency dependent 
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admittances that describe the tidal characteristics in a 

similar sense to what can be deduced from the traditional 

harmonic constants. To bridge the gap between the response 

and harmonic methods, Zetler, Cartwright and Munk [1969 J have 

described procedures for deriving harmonic constants from 

the response admittances. They showed that the harmonic 

constants Hk and gk of a tide constituent k can be deter­

mined for a place using response analysis and the result is 

compatible with the conventional harmonic analysis. 

2.3.2 Brief Outline of the Theory of Response Method 

The tidal potential can be generated as a time series 

V(t) and an attempt can be made at predicting the height of 

tide for a time t as the weighted sum of the past and 

present values of the potential~ 
~ 

h(t); I W(s) V(t- TS). (2.43) 

The weights W(s) are determined such that the prediction 

-error h(t) - h(t) is a minimum in the least squares sense, 

TS is the time lag used in the argument of the potential. 

The weights represent the sea level response at the place 

of interest to a unit impulse 

V(t) ; o(t). 

In the response approach of Munk and Cartwright, V(t) is 

expressed in spherical harmonies as 

n n 
V(~, A, t) ; g l I [a~(t)U~(~, A) +ib~(t)V~(~. A)]. 

n;Q m;Q 
(2.44) 
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t• um + . vm nere 1 n n 
are a set of compl\:~x spherical harmonics 

of order m and degree n, a(t), b(t) are the amplitudes of 

the real and imaginary parts of the spherical harmonics and 

can be computed for any desired time interval for any 

location. 

The prediction formalism becomes [Munk and Cartweight, 

1966] 

-hCt> = I 

Letting 

W~(s) 

and 

mn 

U~(s) + i V~(s) . 

C~(t- s) = a~(t- TS) - i b~(t- TS), 

equation 2.45 is rewritten as 

-
h( t) = L I Wm(s) Cm(t- Ts). 

mn s n n 

(2.45) 

(2.46) 

The weights Wm(s) define the relation between the linear n 

part of the tide and the equilibrium tide, thus the 

determination of Wm(s) is the essential point in the 
n 

response method. 



III COTIDAL CHARTS AND THEIR USES 

3.0 Introduction 

In Chapter II we have seen how the tidal constituent 

frequencies are obtained from the decomposition of tidal 

potentials and how the tidal characteristic for a location, 

that is, the tidal constants (amplitude Hk and phase lag 

gk for any constituent k) for major constituents can be 

determined using the harmonic or response methodsof tidal 

analysis. In this chapter, the types and methods of 

constructing cotidal charts and their uses, are discussed. 

3.1 

3.1.1 

Types of Cotidal Charts 

Range/Time Cotidal Charts 

Most often, a range/time cotidal chart is constructed 

by graphical means. On it, two sets of curves connect 

points having equal range differences (or range ratios) 

and points having simultaneous high and low waters 

[Admiralty Manual of Hydrographic Surveying, 1969]. All 

cotidal curves indicate a relationship to the tides at the 

reference gauge station. Figure 3-1 illustrates a typical 

range/time cotidal chart. The range curves (shown by 

pecked lines) indicate the range ratios of the tide at 

the reference station A. At B for example, the tidal 

range is 0.65 times the range at A. The time curves (shown 

by full lines) indicate time lags or corrections wh~ch must 

be applied to the times of high or low waters at the 

reference gauge station to obtain the times of high or 

4!1 
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low waters at a place of interest. 

To construct this type of cotidal chart, simultaneous 

tide observations are made at the reference station and at 

other well distributed temporary tide stations such as at 

points B, C, D and E in Figure 3-1. From mean high waters 

and mean low waters, the mean range is obtained for each 

station. The range ratios are determined from the relation: 

mean range at a gauge stationjmean range at the reference 

station. The mean time lag for each station is determined 

by finding the mean time differences between the occurrence 

of high and low waters at the reference station and at 

other gauge stations. Both sets of cotidal curves are 

interpolated in between stations as contours are inter­

polated in between spot heights for a topographic map. 

3.1.2 Amplitude/Phase Cotidal Charts 

This type of cotidal chart is referred to as being 

semi-graphical. It is more difficult to produce and 

more complicated to use than a range/time cotidal chart 

but, could be more reliable and more versatile. The number 

of such charts needed for an area would be equal to the num­

ber of constituent frequencies being taken into account 

for our tidal predictions. For ordinary practical purposes 

in hydrographic surveying, four major constituents are 

considered, namely M2 , s2 . KJ. and o1 [Admiralty Manual of 

Hydrographic Surveying, 1969]. This means that four 

cotidal charts would be needed each containing two sets of 



curves. Figure 3-2 illustratt~s on•· such eotidal chart of 

an area for the M2 constituent. The full lines connect 

points having equal values of phas<' 1 a.g g in degrc~~s and 
m 

the pecked lines connect points having equal amplitudes 

H . m 

To produce the amplitude/phase cotidal charts, tide 

gauges are set up at well distributed locations in the area 

such that tidal characteristics should as much as possible 

vary linearly from one gauge station to another. This 

means that there should be no major physical features or 

structures which may influence the propagation of tidal 

waves between any two tide stations. (For example, Larsen 

[1977] in his study of the tides in the Pacific Ocean near 

the Hawaiian Islands, observed that the phase lag of the 

M2 semi-diurnal tide differs by 46° between the nearby 

tide stations at Mokuoloe and Honolulu that are on the 

opposite sides of the Hawaiian ridge but differs by only 15° 

between Mokuoloe and a distant station at Hilo that are 

on the same side of the ridge. Also for the K1 diurnal 

tide, the differences are found to be 8° and 3° respectively). 

Tides are observed at the stations for a minimum period of 

29 days. The tidal records are then analysed using the 

harmonic or the response method to determine the harmonic 

constants Hk and gk for each constituent frequency at each 

gauge station. The amplitude and phase lag curves ar~ then 

interpolated as contours are interpolated for a topographic 

map. 



. -. 
'' 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

e.a _. 
/ 

Fflme 3-2 

Atnpf'tt~ CtF--TiAf Chart fbr ~ 

-



The amplitude/phase coticlal cltart cannot be used to 

directly convert tide readings mad•c' at the reference sta-

tion to those observable at auy other place as is the case 

with the range/time cotidal charts. With it however. tidP 

at any point of interest in the area covered by the chart 

can be predicted at any time t using equation 2.25. 

Interpolating between gauge stations has been the 

classical method of producing amplitude/phase cotidal 

charts. Presently a more meaningful method of producing 

this type of cotidal chart is through the solution of 

numerical schemes. Luther and Wunsh [1974] however used 

350 sets of constants, obtained partly from the publications 

of the International Hydrographic Bureau (IHB) and partly 

from other investigators, to produce .the cotidal charts 

for the central Pacific ocean which they claim are comparable 

with the numerical charts of Pekeris and Accad [1969] and 

Hendershott [1972]. 

3.2 Numerical Schemes 

The various numerical schemes for the production of 

cotidal charts stem from various solutions of the Laplace 

tidal equations [Bye and Heath, 1975; Hendershott and Munk, 

1970] 

au fv g act, - ~ )_ ( 3. 1) TI - a cos <P CIA. 

av + fu = ~ acs - 0 (3.2) at a a¢ 

5 + l ['uQ avQ ·] 0 (3.3) at a cos <P 
ax-+~ cos ' 
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where •· A are the geodetic latitude and longitude respecti­

vely, 

u, v are the latitudinal and longitudinal components 

of the fluid velocity, 

a is the earth mean radius, 

f(= 2n sin $) is the Coriolis parameter in which Q 

is the angular velocity of the earth, 

Q is the undisturbed depth of the ocean, 

~ is the elevation of the sea surface above the 

undisturbed level, and 

t(= Vfg) is the equilibrium tide. 

The Laplace tidal equations representing equations of 

motion, thou~h they look simplified, are difficult to solve 

even in the case of uniform depth covering the globe. The 

early solutions were given by Lord Kelvin in 1845 and 

Hough in 1897 who replaced the Laplace power series in sine 

with an expansion in spherical harmonics thus regarding 

the earth's rotation as very small. In 1898, Lord 

Kelvin introduced the concept of f-plane approximation 

in which he considered the oscillations of the horizontal 

sheet of fluid of uniform depth rotating about its normal 

and this reduces the Laplace tidal equations to [Hendershott 

and Munk, 1970] 

au fv a (E; - D (3.4) - = - g. 
at ax 

av fu a(~ - ~) (3.5) + = - g. 
at aY 



l_S_ + Q(au 
at ax 

+ av) 
(ly 

0 . 

in which x, y are the Cartesian coordinates in the plane 

( 3. 6) 

of the fluid. Larsen [1977] used the f-plane solution to 

produce the cotidal charts for the Pacific ocean near the 

Hawaiian Islands. He approximated the Island as an ellip-

tically shaped cylinder with the plane ocean taken to be 

tanga1t to the earth at the coordinates <f>o = 20.7 °N and 

Ao = l56.8°W which corresponds to the coordinates of the 

centre of the elliptically shaped Island. On the plane 

ocean, he took the rectangular coordinate system with the 

X-axis eastwards and normal to the axis of the ridge formed 

by the island and the Y-axis northwards and parallel to the 

ridge axis and with the origin at the tangent point (<f>o• 

The boundary condition assumes that the velocity nor-

mal to the coast vanishes and free tide solutions are 

added in order to fit the observed tide at the boundary. 

The cotidal charts for the various constituents are con-

structed by mapping the amplitude and phase of the total 

tide, that is the resultant of the equilibrium tide, forced 

tide and free tide, as a function of the elliptic coordi-

nates. The author evaluated the accuracy of the cotidal 

chart by comparing the observed tjdes at some locations 

with the values of tides predicted by the model. He 

observed that the plane wave model of the tides connect 

the tidal observations together in a simple way and thus 
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allows the tide to be interpolated between gauge stations 

and extrapolated into the ocean beyond the tidal sites. 

Rossby in 1939 introduced the beta-plane approxima-

tion. In this, the Laplace tidal equations are written as 

in f-plane approximation but with the coriolis parameter 

made a linear function of y, namely 

The variation of f with y corresponds to an expansion of 

the coriolis parameter about the latitude <Po 

2n sin <I> = 2n sin <Po + c 2~)a(<jl - <t>o)cos <Po· 

in which B is of the order 2n 
a 

When 8 = 0, we then have f-plane approximation. 

With the advent of large computers, the application 

(3.7) 

(3.8) 

of the method of finite differences to the tidal probl~ms 

become popular. Freeman and Murty [1976] studied the 

cooscillating and independent tides in Hudson Bay and 

James Bay by applying the finite differences to solve the 

Laplace tidal equations. They linearised the equations 

of motion in spherical polar coordinates and vertically 

integrated retaining variable coriolis, pressure gradient, 

bottom stress and direct tidal potential terms. The 

equations thus solved in the model are 

au 2n sin <I> -~- .Q.n TB>. 
F>. (3.8) at = v --- + a cos <I> a>. p 

av gh .ill TB 
Fct> - 2n u sin cj> - --~ + (3.9) at . a 3<1> 0 



__ l __ ~~~ + ~~ cos ¢} ' 
a COS¢ 'Oil O'f' 

( 3. 10) 

where TB is the bottom stress, ~\' ~¢ are the horizontal 

components of the tide generating force, n is the deviation 

of the water level from the mean tide level, h is the water 

depth and ~ is the density of water. 

The cooscillating tide is modeled by setting the tide 

generating force terms to zero and specifying the free 

surface elevation across the mouth of the Hudson Bay by 

(3.11) 

l 
where nk belongs to the constituent k at the open mouth 

boundary location and is referred to the mean tide level. 

The independent tide is modeled by setting the normal 

velocity on the open mouth boundary to zero and specifying 

the tide generating force. For example, for M2 

- 48 · 8 gh cos~ sin(w t + 2A + w T), a · ·-v m m ( 3. 12) 

~2¢ - !8 · 8 .gh cos cp sin ¢ cos(t•Jmt + 2\ + 11\mT), 

and for K1 

- 28.5 h 
a .g 

- 28.5 h( . 2 . g Sln q a 

(3.13) 

(3.14) 

2 
cos ¢)cos(wkt +A+ wkT) . 

(3.15) 

Here T is the number of hours from the Greenwich mean 

time to the local zone time. The linear form of bottom 

friction due to Heaps is used and is given as 



TS <P = !_Jh~ V . (3.16) 

The authors used a rectangular grid of 15 and 10 minutes 

of arc in longitudinal and latitudinal directions respecti-

vely. The grids are drawn so that the fluid velocity 

components (U, V) are defined on the closed boundary locations 

and the water levels (n) at the open boundary at the mouth 

of the Bay. In the formulation of the numerical scheme, 

central finite differences are used in both space and time. 

Using a leap-frog scheme, water levels (n) are computed 

at even time steps (i.e. i = 2, 4, 6, 8 .. ) and the hori-

zontal flow components (U, V) computed at odd time steps 

(i.e. i = 1, 3, 5, 7 ... ). 

The numerical scheme is thus given by [Freeman and 

Murth, 1976] 

ui+l _ ui-1 
kj k,j 

2L1t 
i ghkj oj[nLl,j 

) 

at vkj sin \~ .-
ll!-l,jJ J a cos 

1 Tf3 i-1 -i (3.17) Ak,j + FA.k . ' p ,J 

- 2~ ui sin <P.-
k' j J 

ghk 'j l( i i l 
a llk,j+l - llk,j-1 

1 Ti -i (3.18) f3 <P . . + Fcp . p l,J k,J 
i ui . 

i-1 1 uk+l · -i+1 k-l,J 
llk . - Ilk . = - 'J 

'J 'J a cos <Pj 2f:.?t 

cos 
(3.19) 



and the output of the computati.ons are U, V and n as func­

tionstime. From these parameters, the current ellipses 

and the co-phase and co-amplitude lines are constructed. 

In numerical schemes, the problem generally posed is to 

solve the Laplace tidal equations in their primitive form 

or after elimination of one or two dependent variables with 

prescribed boundary conditions. For example 

(i) Vanishing normal velocity at coast lines 

[Pekeries and Accad, 1967], 

(ii) Specified or observed values of the consti­

tuents at the coastal stations only [Hendershott, 

1966] . 

(iii) Specified or observed values of the consti­

tuents at selected coastal and island sta­

tions plus vanishing normal velocity at the 

remaining coastal boundary points [Larsen, 

1977]. 

3.3 Uses of Cotidal Charts 

Cotidal charts are found useful in many situations. 

They are useful in the study of the impact of large 

engineering structures on the tidal regime, for example, 

the proposed tidal power project on the Bay of Fundy in 

Eastern Canada [Atlantic Tidal Power Engineering and 

Management Comn1ittee Report, 1969; Garrett and Greenberg, 

1976]. 

They are indispensable in navigation especially 

when deep draught ships have t.• navigate through a complex 
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estuary where drying sand banks alternate with deeps such 

as that obtained in the port of London [White, 1971]. Here 

deep draught tankers navigate to Thameshaven and Coryton 

to evacuate oil from the principal oil refineries. In such 

a situation the pilot and the captain of the vessel would 

want the information on 

(i) the critical depths in the channel at 

chart datum, 

(ii) the points along the track where these 

critical depths occur, 

(iii) the times the tidal heights at.these 

points would be sufficient for safe 

passage of a vessel with a particular 

draught, 

(iv) the latest times along the route that 

the passage depths are available. 

If the underkeel clearance is not so critical, this infor­

mation can easily be obtained using cotidal charts and 

appropriate up to date navigation charts and tide tables. 

If the underkeel clearance is critical, the use of cotidal 

chartsis supplimented by several radio linked tide gauges. 

The application of prime concern here is the use of 

cotidal charts for the reduction of sounding dat~. As was 

shown previously, all depth measurements are reduced to the 

chart datum; therefore the height of tide at time t must be 

subtracted from the depth sounded at the time t. This 

implies that we should observe tides at the same time we 
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take our soundings. If we are working on the coast or on 

the inland tidal waters, it is possible to establish tide 

gauges close to the sounding area and observe tides at t.he 

same time. If we are involved with extensive sounding 

offshore, the possibilities of observing tides close to the 

sounding area are remote. It becomes more feasible to do 

the tidal reductions using predicted tides, and when this 

is the case, the use of cotidal charts become convenient. 

Rangejtime cotidal charts can be used in which case 

we only need to observe or predict tides at the reference 

station and then obtain the equivalent at the desired loca­

tions, or, we can use amplitude/phase cotidal charts and 

predict the tides at the desired locations independent of 

a reference station. Finally, a combination of the two 

approaches can be used. 

The Canadian Hydrographic Service has done some auto­

mated tidal reductions using digitized rangejtime cotidal 

charts of the Hudson Bay and the Lower St. Lawrence River 

[Tinney, 1977]. In these schemes, the cotidal charts were 

digitized by breaking the survey area into equal size blocks 

based on lines of latitude and longitude and approximating 

the boundaries of the cotidal zones with the edges of those 

blocks. Those digitizations were coded and stored in the 

computer. To locate a particular block and retrieve the 

cotidal values, the geodetic coordinates (¢. A) of the 

position of the sounding were used. 

The choice of the size of the blocks would obviously 
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depend on the amount of computer space available and the 

accuracy requirements. With smaller size blocks, the zone 

boundaries would be better approximated but more computer 

space would be required. Figure 3-3 shows the digital break­

down of the cotidal chart used for the Uuds<Jn ~ay. Ulock 

sizes of 5' latitude and 10' longitude were used giving a 

total of 13,986 blocks dividing the Bay into 93 reduction 

zones. The tide station at Churchill served as the reference 

station for the cotidal chart and during the survey, the 

predicted heights from the reference station were used 

instead of the observed heights. However, in the survey 

of the Lower St. Lawrence River with Pointe-an-Pere as the 

reference station, observed tides were used. 



IV THE PROPOSED ANALYTICAL SCHEME 

4.0 Introduction 

The proposed analytical scheme is aimed at achieving 

automated tidal reductions using little computer space and time 

and with advantageous accuracy and flexibility. Figure 4-l 

illustrates the proposed scheme in a flow-chart. It shows 

that we can work with amplitude/phase cotidal model or 

range/time cotidal model. The same objective is achieved 

using either model but it does not necessarily mean that 

the same degree of accuracy and flexibility is attained. 

Basically the data requirements for either are the same 

except that with amplitude/phase cotidal model, the ampli-

tude Hk and the phase lag gk for each constituent k we wish 

to take into account and at each observation station are 

required. With the range/time cotidal model, we require 

the mean range ratios and the mean differences of the 

times of occurrence of high and low waters between each tide 

gauge station to be considered and a reference gauge 

station. With the range/time cotidal model, we have the 

option of carrying out the tidal reduction based on the 

observed tides or on the predicted tides at the reference 

station. 

In each case, the aim is to produce an analytical 

cotidal model using observed data or existing cotidal 

charts. The analytical model could then be stored con-

veniently in a computer so that when observed sounding 

65 
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Figure 4-1 fhe Proposed Scheme - Flow Chart 
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data are input, the output would be reduced soundings. 

The theory and mathematical models for the two approaches 

are basically the same. In Section 4.1 of this ehapter, 

the mathematical models are discussed, and in Section 4.2 

the data requirements are explained explicitly. 

4.1 Models 

Earlier, it was shown that the tides are functions of 

time and position on the surface of the earth and that the 

tidal characteristics, that is, the amplitude Hk and the 

phase lag gk for the constituent k are constant for a place. 

These constants can be estimated by performing harmonic 

or response analysis of a long period tidal records. 

Knowing the ~stimated tidal constants for a place, the 

tide at the place can be predicted at any time t. 

Now suppose we consider a section of a bo~~ of tidal 

water, not so extensive in area and where the constants 

Hk and gk are defined at a reference station whose geodetic 

coordinates are (~0 , A0 ), and at several other points 

P/~j' Aj) within the area. We can define mathematically 

surfaces that can describe the distribution of those con-

stants with reference to the primary station. The aim is 

to approximate, in the Least Squares sense, the amplitude 

and phase lag fields by surfaces described by two dimen­

sional algebraic polynomials. The coefficients of these 

polynomials are determined in such a way as to fit the 

observed data in the Least Squares sense. Using this 
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technique, the amplitudes Hk z<nd tl1e phase lag gk ean be 

predicted at any point of interest ~i(~i' li) within the 

area by the polynomials 

.t H I C. ~1-(X., yi). 
j~O J J l 

(4.1) 

.t \ c~ olo ( ) L '~' j xi· Y i ' . 0 J 
(4.2) 

J= 

where ~Hk(xi, Yi) and ~gk(xi, yi) are the predicted 

differences in amplitude and phase lag respectively for 

the constituent k between the reference station and the 

point i, C~ and C~ are the coefficients of the polynomials, 

lji(xi, yi) are base functions (two dimensional) of the 

approximating polynomials, and .t is the number of base 

functions. The selection of the prescribed functions ljJ 

can be, from the theoretical point of view, purely arbitrary. 

The sufficient and necessary condition for the prescribed 

functions ljJ ~ {¢ 1 , ¢ 2 ... ~.e_} to create a base is that 

they are linearly independent on the functional space (G). 
m 

If and only i~ ljJ is a base can the coefficient~ of the be8t 

fitting polynomial be uniquely determined [Vani~ek and Wells, 

1972]. 

Even though the position of a point may be expressed 

in terms of geodetic coordinates (¢i.li)' it is more con­

venient to work with local orthogonal coordinates (xi, y 1 ). 

The relationship between the two systems is defined as 

(4.3) 

(4.4) 
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where R0 is the mean radius of curvature of the earth 

computed at the reference station and is given by [Krakiwsky 

and Wells, 1971] 

(4.5) 

in which· 

(4.6) 

and 

N /(1 2 . 2 )1/2 
0 = a - e s1n ~ 0 (4.7) 

The first eccentricity squared is 

2 2 2 2 e = (a - b )/a , (4.7b) 

and for the Cla.Ike 1866 ellipsoid, the semi-major axis 

a= 6378.2064 km, while the semi-minor axis b = 6356.5838 km. 

Regarding the choice of base functions, we can use 

mixed algebraic functions which are particularly simple to 

Jeal with [Nassar and Vanicek, 1975], namely, 

(4.8) 

where n is the degree of the polynomial. Equation 4.1 and 

4.2 can now be rewritten as 

l;Hk( xi' Yi) f CH. xi. j (4.9) = Y. 
J i 1 

1., j=O 

~gk( xi' y i) = ~ cg. X£. y~ (4.10) 
J "i 1 

.t, j=O 
CH. The problem is to solve for the coefficients and cg. 

J J 

of the polynomials. The number of coefficients U to be 

solved for is determined from the relation 

U = (n + l)d. (4.11) 
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where n is the degree of the polynomial and d is the dimen-

sionality of the base functions. 

4.2.1 Least Squares Solution bf the Models 

To determine the unknown coefficients CH. and Cg. of 
J J 

the models represented by equations 4.9 and 4.10, obser-

vation equations can be written for each data point i where 

the amplitude difference ~Hk and the phase lag difference 

~gk referred to a reference station are known. The equations 

are 

~Hk(Xi' Yi) + v~ = ~Hk(X.i, y i). (4.12) 
1-Iki 

~gk(Xi' Yi) + v 
gki 

= ~gk(Xi' y i). (4.13) 

where 6Hk and ~gk are the predicted values, v 
Hki 

and v 
gki 

are the residuals of observations, and the terms on the 

right hand side (~Hk and ~gk) are the known or observed 

~alues. Substituting equations 4.9 and 4.10 into equations 

4.12 and 4.13 yields 

n ~~ l .J· 
I C,,e. V L X.Y. + H.· = 

l,j=O J 1 1 ki 
(4.1-1) 

n ,e . 
I c~. x.y~ + Vgk· = ~g(x., Y.). 

l,j=O ~J l l 1 1 1 
(4.15) 

Putting equations 4.14 and 4.15 in matrix form we have 

A en + VH = Lu (4.16) 
mxu ux1 mxl mx1 

A cg + Ve- = Lg (4.17) 
mxu ux1 mxl mxl 

It is pertinent to note here that equations 4.16 and 4.17 are 

the same as the observation equations for a parametric case 
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in the least squares adjustmen1:s. The parametric least 

squares adjustment differs only in purpose and notations 

from the least squares approximation of a function (F) 

defined on a discrete or compact domain (M) [Vanicek and 

Wells, 1972]. The purpose of the least squares approxima-

tion is to find an approximating polynomial (Pn) for a 

given function or for a given set of functional values. 

The purpose of the least squares adjustment is to find the 

least squares statistical estimates of unknown parameters 

which are related to the observed values by linear (or 

linearized) mathematical models. 

The matrix A is known as Vandermonde's design matrix 

and is given ,by 

0 0 
J.ll o< xl y 1)' 

0 l 
J.ll1 ( xl Y 1)' 

0 2 
J.ll2(xlyl), 

n n 
J.llu(xlyl) 

0 0 0 1 0 2 J.llu(x~y~) A -
1Vo<x2y2)' J.ll1 ( x2y2)' tJ;2(x Y ), 

mxu 

(4.18) 

H C and Cg are the vectors of coefficients. VH and Vg are 

the vectors of residuals of the observations LH and Lg 

~ and Lg are the vectors of observed values (or the 

functional values) at the discrete points i. The solution 

of the system of equations given by 4.16 and 4.17 for the 

coefficients, using least squares approximation methodology 

[Vani~ek and Wells, 1972; Christodoulidis, 1973; Balogun, 

1977; Appendix I] is given by 
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where N is the Gram's matrix defined by 

N 
uxu 

and 

T 
- [A PA J _ 

T 
U =A PL = <L, ~ 1.> ux l 

(4.19) 

(4.20) 

(4.21) 

The sign < > indicates a scalar product [Appendix I]. 

Since our prescribed functions form a base, the Gram's 

determinant must be different from zero and must have an 

inverse. 

The solution for the residual vector is given by 

V = AC - L (4.22) 

The associated variance covariance matrix for the coeffi-

cients is given by 

\ ~ = ~2 -1 
L a N , c 

(4.23) 

where &2 is the a posteriori variance factor given by 

(4.24) 

in which df represents the degree of freedom given by 

df = m - u . 

P is the weight matrix 

p = I -1 
L 

= Diag[-1-2 1 
OL1 ' OL2 2 

(4.25) 

1 ] 
OL 2 

m (4.26) 



73 

where oL is the standard error of the observables. The 

weight matrix is diagonal when we are dealing with statis-

tically independent observables, that is, the observations 

are assumed uncorrelated. 

For statistical reasons, we may wish to work with 

orthogonal bases, and usually the base ~ is not an ortho-

gonal one. Schmidt's orthogonalization process [Appendix I] 

may be applied to obtain an orthogonal base ~*· Using 

an orthogonal base, the normal equation is 

(4.27) 

Again setting 

A*TPA* = N* 
' 

.\ 

and 

A*TPL =· U* ' 
WE' have that 

C* = N*-lU* (4.28) 

A* is the Vandermonde's design matrix obtained using 

the orthogonal base. t* is a vector of Fourier coefficients, 

N* is the Gram's matrix, this time diagonal because we 

are dealing with orthogonal base functions and is given by 

<1/J~ 1/1~ > 0 0 

0 * * 0 
N* <1/Jl WI> (4.29) -

uxu 

0 0 * * <1/J u 1/1 u' 

and U* is given by 



71 

* <\IJo L> 

* L> U* - <\jJl (4.30) 
uxl 

* L> <wu 

The associated variances are given by 

\ "2 N*-1 Lc* = a * • (4.31) 

where 

(4.32) 

The solution of normal equation becomes trivial as the normal 

equation matrix N* (Grams matrix) is diagonal and each Fourier 

coefficient can be solved for independently. 

We subject the Fourier coefficients to statistical 

screening by comparing each coefficient against j times 

its standard error. (Christodoulidis, i973], that is, if 

j a"* c. 
l 

(4.33) 

then a~ is st2tistically insignificant at that level and 
l 

is discarded. j takes the values 1, 2 or 3 depending upon 

what level of significance of their standard deviations we 

wish to test the coefficients. The discarded Fourier co-

efficients are set equal to zero. Once the appropriate 

Fourier coefficients are discarded, the residuals, the 

variance factor and the variances are recomputed using only 

the accepted coefficients. The residuals are given by 

A 1 A 

V* = A*C* - L (4.34) 
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The a posteriori variance factor is recomputed by 

(4.35) 

where 

l df = m - u + d , 

in which d represents the number of Fourier coefficients 

discarded. The new variances are 

(4.36) 

Using the transformation matrix (see Appendix I) 

l 812 813 81u 

B - 0 l 823 82u (4.37) u X U 

0 0 0 l 
'· 

and the remaining statistically significant Fourier 

coefficients, the original coefficients are computed by 

A A 

C = BC* (4.38) 

The correct number of original coefficients are obtained 

even though we are solving for them using fewer number of 

Fourier coefficients. If, however, the last Fourier 

coefficients are the ones discarded, a fewer number of 

original coefficients will be recovered. The variance-

covariance matrix of the original coefficients can be 

computed using the variance-covariance law, namely, 

(4.39) 

where Lc*l is given by equation 4.36. 
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Once we have computed the co(~fficients of the 

original polynomials and their variance-covariance matrix 

from the statistically significant Fourier coefficients, 

statistically significant surfaces which describe the 

distributions of amplitudes and phase lags (or range ratios 

and time differences) in the area of interest have been 

obtained. Analytical cotidal models for amplitudes and 

phase lags (or range ratios and time differences) have 

thus been obtained. With the analytical models, the 

values of the amplitude and phase lags (or range ratio 

and time lags) can be predicted for any point Pi(~iAi) 

in the area using equations 4.1 and 4.2. The prediction 

variance covariance matrix is given by 

(4.40) 

in which J is Jacobian of transformation defined by A matrix. 

4.3 Data Requirements and Reduction Algorithms 

4.3.1 Amplitude/Phase Cotidal Model 

As previously noted, to produce cotidal models for 

amplitudes and phase lags, we need to define the ampli­

tudes and the phase lags of each constituent frequency 

at a reference station and at several other observation 

stations adequately distributed in an area of interest. 

Working with four major consti tue::ts, eight analytical 

models are needed to describe the tidal characteristics 

of the area. For a fair estimate of the amplitudes and 

the phase lags, the tidal analysis must be made from 
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369 days of tidal records, and for a barely acceptable 

estimate, observation should cover a period of 29 days. 

The more observations added in the analysis, the better 

will be the estimate of the harmonic constants. 

It may not be easy to adequately distribute observing 

stations and obtain sufficient data to enable the produc-

tion of a desired analytical model. An alternative is 

to use cotidal charts,produced from the numerical schemes 

such as those described in III, Section 3.2, as a source 

of data. The cotidal charts are digitized as mentioned in 

section 3.3 and the digitized values are used in the least 

squares polynomial approximations to produce the analytical 

cotidal models. As a check on the compatibility of the 

analytical models and the original chart, the area is 

grided at close intervals and the amplitudes and phase lags 

predicted at the grid intersections using equations 4.1 

and 4.2. The co-amplitude and co-phase curves can then 

be easily drawn in. 

If the amplitude/phase cotidal models are being used 

for the reduction of soundings, the reduction algorithms 

can be summarized in steps as follows: 

(i) At each sounding location i, the depth 

(Di), the time (t) and the geodetic co-

ordinates (~i' Ai) are observed. 

(ii) With the observed geodetic coordinates 

(~., A.), the amplitudes and phase lags 
l l 
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of the constituents being used can be 

predicted using the analytical models. 

(iii) Using the tide prediction approach as 

described in II Section 2.2 and the 

predicted amplitudes and phase lags 

from (ii) above, the height of tide 

h.(t) at the sounding location above 
1 

chart datum are predicted. 

(iv) The sounding reduced to the chart 

datum is d. =D. - h.(t) 
1 1 1 

4.3.2 Range/Time Cotidal Model 

(4.41) 

Some assumptions must be made at the outset for this 

model. Considering a body of water of relatively small 

extent, such that one can safely assume that the meteoro-

logical variables in the area are not remarkably different 

from place to place, it can be further assumed that given 

any two points A(~, A) and B(¢, A) in the area, the tides 

at A bear constant relationships with the tides at B. 

Those relationships will change when there are marked 

topographical changes due, for example, to errosion, 

engineering structures, which tend to change the pattern 

of the propagation of tidal waves. If we establish the 

relationship existing between a reference station and any 

other point, it is possible to preclict with some degree of 

certainty the tides at that other point from the observed 

(or predicted) tides at the reference station. 
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The relationships between the tides at any two sta-

tions can be established from the ratio of their ranges 

and the difference in the times of occurrence of high 

and low waters. In other words, it is assumed that the 

unwanted noise has perturbed observations equally so 

that when the range ratios and time differences are deter-

mined, the unwanted noise is eliminated. 

To produce range ratios and time lags cotidal 

models, we require 

(i) the mean range RmO at the reference station 

and the mean ranges R . at discrete points 
mJ 

(~j' Aj); the range ratios are then given 

as'· 

( 4.42) 

(ii) the mean time differences between the times 

of high and low waters at the reference 

station and at the discrete points given in 

minutes of time. 

If the sounding reduction is to be done with range/time 

analytical cotidal model, the reduction aligorithms can 

be summarized in the following steps: 

(i) The tide is observed at the reference 

station to cover thP- time interval M 

(the soundings are also performed 

within the same interval of time). A 

least squares approximation of the 

observed series at the reference 
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station is done so tl1 at :t t any time t in 

the interval, the height of tide can be 

predicted. 

(ii) At each sounding location i, the depth (D1 ), 

the time (t) and the geodetic coordinates 

( <Pi, ;>..i) are observed. 

(iii) With the observed geodetic coordinates 

( <Pi, ;>..i), the range ratio ( r i) and time 

difference (correction to time) are pre-

dieted using the analytical models. 

(iv) Using the corrected time at the reference 

station and the approximating polynomial 

from step (i) above, the height of tide 

(h0 (t)) at the reference station is 

predicted. 

(v) The height of tide at the observed loca-

tion i is computed from the relation 

h 0 (t) x ri . 

(vi) The reduced sounding is 

d. =D. - h 1.(t) . 
1 1 

(4.4::,) 

(4.44) 

lt is more convenient and simple to work with range/ 

time cotidal models because (i) unlike the amplitude/phase 

models where 2 x NC()N (NCON is the number of constltw,nts 

used) analytical models are needed to describe the tides, 

only two models are needed to completely describe the 

tides, (ii) working with rangejtime cotidal models allows 
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us to use the observed tides at the reference station to 

reduce soundings instead of the predicted tides . 



V TEST COMPUTATIONS AND THE RESULTS 

5.0 Data 

To test the proposed analytical scheme, there was 

unfortunately no adequate data immediately available. How­

ever, the tidal information for secondary ports on the Bay 

of Fundy, published in the Canadian Tides and Current Tables, 

1978 by the Canadian Hydrographic Service was minimally ade­

quate for testing the analytical range/time cotidal models. 

This tidal information is given with reference to the 

Port of Saint John. In Table 5-l, the data as extracted 

are tabulated for 35 secondary stations (Figure 5-l). 

The predicted tides for the Port of Saint John from 

January l-15, 1978, were extracted from the same Canadian 

Tides and current Tables, 1978 and treated as observed 

Lides in the computations. The zero hour of the day the 

observation started is taken as the origin of time and 

times are gjven in hours from the origin of time. The 

observations are treated such that the period of the 

sounding exercise is covered, in other words, it is 

assumed that the tides were observed at Saint John through­

out the period of the sounding. In Table 5-2, the tides 

as supposedly observed are tabulated and from Table 2-l 

the following 7 major constituent frequencies are uscJ. 

Symbol 

M2 

s2 
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Fn-quency ( deg. fhr) 

28.984104 

30.00000 



Index 
l~o. 

0065 
0001 
0015 

0040 
0060 
0129 

0140 
0150 
0160 

0170 
0190 
0215 
0225 
0235 
0240 
0245 
0247 
0250 
0260 
0270 
0285 
0290 
0300 

one Latitude Long1tude Mean Range t·1ean T1 me 
Time(ZT) Range Ratio( r) Diff. (min) 

-0 I 0 

Saint John +4 45 16 -66 04 25.10 1.0 0.0 
Outer Wood Isl. +4 44 36 -66 48 16.60 0.6614 -28.5 

Welshpoo1 +4 44 53 -66 57 16.90 0.6733 + 5 ,l) 

St. Andrews +4 45 04 -67 03 22.60 0.9004 +15.5 

Partridge Isl. +4 45 14 -66 03 25.00 0.9960 -10.0 

St. Martins +4 45 21 -65 32 30.15 l. 2012 + 9.0 

Herring Cove +4 45 34 -64 58 33.25 l. 3247 +19.0 

Cape Enrage +4 45 36 -64 47 35.40 1 .4104 +17.0 

Grindstone Isl. +4 45 44 -64 37 38.30 1 . 5359 +20.0 

Hopewell Cape +4 45 5'1 -64 35 39.90 1.5896 +19.0 

Pecks Point +4 45 45 -64 29 38.70 1.5418 +19.0 

Joggins ~~harf +4 45 41 -64 28 38.15 1.5199 +18.5 

Cape Capstan +4 45 28 -64 51 33.05 l. 3167 + 11.0 

VJes t Advocate +4 45 21 -64 49 32.90 1. 3107 - 1.0 
Cape D 'or +4 45 18 -64 47 36.55 1 . 4562 +16.5 

Port Greville +4 45 40 -64 56 36.70 1.4622 +30.0 

Diggent River +4 45 24 -64 27 39.50 1.5737 +33.0 

Cape Sharp +4 45 22 -64 23 37.95 1. 5120 +48.5 

Five Isl. +4 45 23 -64 08 43.05 1. 7151 +56.0 

Burnstooat Head +4 45 18 -63 48 44.30 1 . 7649 +67 .0 

Avon Port +4 45 06 -63 13 45.05 1./948 +32.5 

Cape Blomidon +4 45 16 -64 21 29.80 1.1873 +46.0 

Scots Bay ~4 45 19 -64 26 37.10 1. 4 781 +14.5 
- -·----

Table 5-l Bay of Fundy -Tidal Information on Secondary Port. 

Remark 

Ref. St. 

* 
* 
* 
* 
* 
* 
* 

* 
* 
* 

I 
' 

' 

I 

co 
w 



---- -

1 Index Location Name Zone L:;titude Longi tuje 1'1ean Range ~1ean Time Remark No. Time ( ZT) Range Ratio t r) Di ff. (min) 
1 

0 I 0 I 

0305 Baxter Harbour +4 45 14 -64 31 37.4 1.4900 +12.0 * 
0312 I 1 e Haute +4 45 15 -65 00 34.15 1. 3606 0.0 * 
0315 Margaretsvil1e +4 45 03 -65 04 31.75 '1.2649 -12.0 * 
0320 Parkers Cove +4 44 48 -65 32 26.60 1.0598 -14.0 * 
0325 Digby +4 44 38 -65 45 25.25 1. 0060 - 9.0 

0330 Deep Cove +4 44 24 -65 50 24.00 0.9562 -15.5 * 
Ct; 

0335 Sand Cove +4 44 30 -66 06 21 .15 0.8426 -18.0 * .:~ 

0336 East Sandy Narro. +4 44 29 -66 05 19.10 0. 7610 -37.0 * 
0337 Tiverton +4 44 23 -66 13 17.45 0.6952 -45.0 

0340 West Port +4 44 16 -66 21 18.10 0. 7211 -34.0 * 
0345 Lighthouse Cove +4 44 15 -66 24 17.90 0. 7131 -34.0 * 
0353 Church Point +4 44 20 -66 07 18.10 0. 7211 +1~.0 * 
0355 Meteghan +4 44 12 -66 10 16.90 0.6733 +18.0 * _j 

-· -- ------ ··--- --------~------------- ~-~ ~ 

* Data used in test computations 

Table 5-1 (cont'd). 
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Station: Sajnt John 

Coords.: Lat. 45 16'N 

Time (Hrs 

03.833 

10.250 

16.250 

22.350 

28.667 

35.00 

41.250 

47.250 

53.500 

59.917 

66.083 

72.417 

78.583 

84.833 

91.083 

97.417 

103.583 

109.915 

116.167 

122.333 

~L-------=~6~6~~o~4~·=w­ong. 

.Height(m) Time (Hrs) 

7.4 128.500 

1.3 134.833 

7.3 141.083 

'1.2 147.333 

7.4 153.417 

1.2 159.833 

7.3 166.083 

1.2 172.167 

7.6 178.25 

1.2 184.917 

7.3 190.917 

1.1 197.00 

7.7 203.333 

1.0 209.667 

7.4 215.750 

1.1 222.083 

7.9 228.167 

0.8 234.667 

7.5 240.750 

0.9 246.915 

Time Zone: + 4 

Date: Jan. 1-15, 1978 

Height(m) Time (Hrs) Height(m) 

8.1 253.167 8.4 

0.6 259.333 0.2 

7.7 265.500 8.0 

0.8 271.917 0.6 

8.3 278.000 8.1 

0.3 284.333 0.4 

7.8 290.500 7.8 

0.6 296.667 0.8 

8.4 302.833 7.8 

0.2 309.083 0.7 

8.0 315.333 7.6 

0.5 321.500 1.0 

8.5 
\ 

327. 750 7.4 

0.1 334.167 1.0 

8.1 340.250 7.4 

0.4 346.500 1.3 

8.5 353.000 7.1 

0.1 359.167 1.3 

8.0 

0.5 

Table 5-2 Tide Observations. 
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Symbol Frequency (deg:fhr) 

13.943036 

15.041069 

14.958931 

30.082137 

28.439730 

5.1 Computations and the Results 

The computations have been completed in three steps. 

First, least squares approximations were done to determine 

the coefficients of the polynomials that will predict the 

range ratio (r.) and the time difference (correction to 
1 

time) at a point Pi ($i' Ai). Second, a least squares 
'· 

polynomial approximation of the observed time series at the 

reference station (Table 5-2) was completed to determine 

Lhe coefficients of the polynomial that will predict the 

height of tide 60 (t) at the reference station at any time 

t E M. Fina1ly, using the results of the first two steps. 

the observed geodetic coordinates at a point P 1 (~i' Ai) 

and the observed time at the location, the height of tide 

at the ship was computed for the determination of the 

reduced depth. 

5 .1.1 Determination of the Coefficients of the Approxim_ating 
Polynomials 

Of the 35 secondary gauge stations spread around the 

Bay of Fundy, 21 of them that are located around the main 

body ofthe Bay were used. Because of the intervening 
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0 
peninsula which bifurcates the Bay at about longitude 64 55', 

the tidal wave propagation have been greatly affected along 

the two branches. A single analytical cotidal model for 

the entire area could not therefore be produced. The Bay 

has been divided into three sections numbered I, II and III 

in Figure 5-l. We have used the 21 secondary stations to 

model section I (those stations marked with * in Table 5-l 

under remarks column). It should be noted that the origin 

of the local Cartesian coordinate system is approximately 

at the centre of the area being modelled (¢0 = 45° 05' OON, 

:>.. 0 = 65° 35' OOW). The data at the reference station 

(Saint John) was not fixed giving a total of 22 data points 

for the approximation. 

Using equation 4.11, it was dedueed that the highest 

degree of polynomial possible with 22 data points is 3, 

giving a total of 16. coefficients and 6 degrees of freedom. 

This does not however mean that the polynomial of degree 3 

will give a better approximation than polynomials of de~ree 

l or 2. In Table 5-3 the degrees of the polynomials and 

their associated a posterori variance factors are tabulated. 

Two of the functions (Range ratio and Function A) have their 

variance factors reach a minimum at degree 2, while the variance 

factor of the third function (Function B) varies more 

slowly at degree 2. The conclusir,n is that the polynomial 

of degree 2 will give the best approximation with th:s 

data. 

The approximation for time lag required some extra 



n 

1 

2 

3 

89 

Degree of Std. Dev. Range Ratio Function Function 
Freedom of Obs. "2 A = R __ ~os(v) B = R sin{v) 
( df) al (m) 

ao a (J2 
0 0 

18 0. 1 0.94497 14.02610 20.60978 

13 0. I 0.84280 12.40109 13.66546 

6 0.1 1.14585 17.50086 13.43903 

Table 5-3 A Posterori Variance Factor for Various Degrees 
of the Polynomials. 
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data manipulation. First, thP time differences given in 

minutes were converted to angular measure using the 

relation 

12 hrs 

1 hr 30°, 

1 min 0.5''. 

(the Bay of Fundy tide is mainly semi-diurnal). Attempts 

to approximate the time lag converted to angular measure 

yielded large variance factors which of course decreased 

with increase in the degree of the polynomial. Unfortunately 

the highest degree of polynomial with the data available 

is 3. The conclusion reached was that the time lag dis-

tribution is not simple enough to be approximated by lower 

degrees of the polynomials. 

From Chapter II 

A cos wkt + B sin wkt, (5.1) 

where A 
1 

R (5.2) 2 cos Clk 

B 
1 R sin (5.3) = 2 Clk . 

ak is time lag (or phase lag), and R is the mean tide range 

at the station. 

Also 

~ = Arctan (B/A) , (5.4) 
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(5.5) 

A and B can therefore be evaluated at each station using 

equations 5.2 and 5.3 respectively. We can now seek for 

the polynomials that can predict A and B at any point P. 
l 

(¢i' Ai). Once A and Bare predicted, the predicted time 

lag (phase lag) can be obtained using equation 5.4. The 

associated variance (assuming no correlation between A and 

B eg. cAB = 0) is given by 

2 = raa12 2 + raa12 2 
aa l-aAJ oA laBJ on , 

(5.6) 

where 

B 
= 

A2(1 + (B/A)2) ' 

Cla I 1 
()0 - 1 + (B/A)2 X A = 1 

A(l + (B/A)2)· 

(5.7) 

(5.8) 

2 d 2 d" t· . fA dB t· 1 aA an oB are pre 1c 1on var1ances o an respec 1ve y 

from the least squares approximations. For weighting, i' 

was assumed that all the stations h~ve been observed inde-

pendently with equal amount of care. The standard error 

of the observed range was set at O.lm. 

If observed data is used, it is pertinent to note the 

following: 

( i) The standard error of the observed mean ra11be 

should be computed from the observed data 

using the relation 

(5.9) 
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where R Dis the daily mean range, R is the m m 

mean of mean ranges, n is the number of obser-

vat ions. 

(ii) A and B should be computed from equation 5.1 

in the least squares sense using observed 

heights and the dominant constituent frequency 

in the semi-diurnal or diurnal band, depending 

on the type of tide. 

In Table 5-4, the Fourier coefficients and their asso-

ciated standard deviations for the range ratio and time 

lag are tabulated. The last four Fourier coefficients 

in the range ratio and function A have been eliminated, 

and in function B, two of the Fourier coefficients have 

been eliminated in the middle. In Table 5-5, the original 

coefficients of the polynomials are tabulated. Because 

of the discarding of the last four Fourier coefficients 

in the range ratio and function A, only five original 

coefficients can be recovered. In function B where the 

Fourier coefficients discarded are not the last ones, all 

the 9 original coefficients were recovered. (Note, each 

Fourier coefficient was tested against its standard 

deviation) 

To compare the analytical cotidal model with other 

cotidal charts, the area was divided into a rectangul:1r 

grid of 10' latitude and 10' longitude (Figure 5-2), and 

the values of range ratios (r) and time lags have been 
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R A i~ G E R A T I 0 T I ~1 E LAG d 
Coeff.(Cr} ac Coeff.(CA) aCA Coeff.(C3 aCB 

r 

1.049 0.01957 3.970 0.07508 0 0 

0.4623[-5 0.330[-6 0.1783E-4 0.1265[-5 0.4906[-5 0.1237[-5 

0 .1940E-10 .6191E-ll 0.7554E-10 0.2375E-10 0.7091E-10 0.2321E-10 

0.2126E-5 0.5570E-6 0.8618E-5 0.2138E-5 0.3977E-5 0.2089[-5 

-0.2648[-10 0.1350E-10 -O.ll40E-9 0.5178E-10 0 0 

0 0 0 0 0.1728E-14 0.1004[-14 

0 0 0 0 0.2869[-9 0.1042E-9 

0 0 0 0 0.2024E-14 0.1582E-14 

0 0 0 0 -0.5218E-19 0.3350[-19 

'----

Table 5-4 Fourier Coefficients After Discarding those of them 
greater than their Standard Deviations. 
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R AN G E R A T I 0 T I M E L A G 

Coeff.(Cr) oCr Coeff.(CA) OCA Coeff. (C8 °CB 

1. 120 0.03537 4.264 0.1357 -0.5691 0.16978 

0.4041£-5 0.5680£-6 0.1550£-4 0.2179£-5 0.8730£-5 0.3614£-5 

0. 1364E-1 0 0. 7644E-ll 0.5374E-10 0.2932£-10 0.1484E-9 0.4318E-10 

0.1247E-5 0.7150£-6 0.4835E-5 0.2742E-5 0.1695£-4 0.5526£-5 

0.2648£-10 0.1350E-10 -0.1140£-9 0.5177£-10 -0.2617£-9 0.1938£-9 

0 0 0 0 -0.3887£-14 0.2208£-14 

0 0 0 0 0.4269£-9 0.1391£-9 

0 0 0 0 0.5786£-15 0. 1834E-14 

0 0 0 0 -0.5218E-19 0.3349£-19 

L__ 

Table 5-5 The Original Coefficient of the Polynomials 
and their Associated Standard Deviations. 
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predicted at each grid interst::·('tion. The co-range curves and 

the eo-time curves were plotted as shown in Figure 5-3. 

Figure 5-2 shows the grid numbering, and in Table 5-6, the 

predicted values at each grid intersection and their asso-

ciated standard deviations are tabulated. The cotidal curves 

from the proposed analytical models compared favourably with 

the cotidal curves (Figure 5-4) taken from 'Tides in Canadian 

Waters' [Dobler, 1966] showing the progression of semi-diurnal 

tides in the Bay of Fundy. 

5.1.2 Least Squares Polynomial Approximation of Observed 
Time Series at the Reference Station 

In this case, the heights of the tide defined at dis-

crete times (ti) in the time interval M are given and it is 

required to determine the coefficients pf the polynomial 

that will best predict the height of tide h(t) at any other 

time t s M. A one dimensionai trignometric polynomial (Eqn. 2.30, 

Chapter II, Section 2.2) and the 7 constituent frequencies 

listed on page 82 have been used. The number of coeffici<:'nts 

is given by 

U = 2 Neon + 1 (5.10) 

where Neon is the number of constituent frequencies being 

used. For weighting, it was assumed that each height was 

observed independently, with equal amount of care and 

precision, and oh(t) = 0.05 m. The weight matrix is 

therefore 

[
. 1 

P = Diag .--2 
mxm 0 h 

1 

(5.11) 
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In Table 5-7 , the Fourier. coc~fficients and the 

recovered coefficieQts of the approximating polynomial 

of the -observed time series, and their associated standard 

deviations are tabulated. Two Fourier coefficients were 

discarded in the middle of the series thus all the 15 ori-

ginal coefficients were recovered. 

5.1.3 Tidal Reduction 

For this set of computations, simulated sounding ob-

servations (corresponding in location to the 22 data points 

and with all observations made within the time interval M) 

were used to illustrate a proposed reduction algorithm. 

At each sounding location i, the depth (Di), the time (t) 

and the geode~ic coordinates (~i' A1 ) or the local Cartesian 

coordinates (xi, yi) are observed. 

The arguments of the approximating polynomials for range 

ratios and time lags are the local Cartesian coordinates 

(x, y) and the argument of the approximating polynomial for 

the heights of tide at the reference station is the time (t). 

With the polynomial coefficients and their associated standard 

deviations stored in the computer, only the arguments (xi, yi) 

are needed to predict the range ratio (ri) and the time lag 

(tci). The time lag is, in a sense, the correction to be 

applied to the observed time at the ship (sounding location 

i) to get the equivalent time at thP reference station. 

With the equivalent time at the reference station computed, 

the height of the tide at the reference station is predicted 



- ---· ·------·------
FOURIER COEFFS. AFTER TEST COEFFICIENTS OF THE ORIGINAL 
AGAINST THEIR STD. DEVS. POLYNOMIAL 

Coeff.(Fc) Std. Dev. Coeff.(C) Std. Dev. 
Or a,.. 

4.279 0.5861E-2 4.279 o.6227E-2 

-5.339 0. 9072E-2 -1.951 0.1423 

2. 335 0.02048 2.226 0.1081 

0.4590 0.9760E-2 -0.1756 0. 2113 

-0.0496 0.8784E-2 0.2592 0. 3972 

0.0360 0.8436E-2 0.0678 0.0100 

-0.0909 0.8295E-2 -0.1031 0.8507E-2 

-0.1338 0.8309E-2 -0.2305 0.0319 

0.1!:>84 0.83601::-2 0.0335 0.0322 

0 0 0.1392 0.0382 

0 0 0.0832 0.0229 

-0.4193 0.0954 0.4132 o_ 1602 

0.9868 0.1508 -0.0302 0.3586 

0.4479 Q_Q840 0. 7741 0. 1272 

0.4300 0.1259 0.4300 0.1259 

Table 5-7 Coefficients of the Polynomial for the 
Observed Time Series at the Reference 
Station. 

--
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using the known time as the argument of the predicting poly-

nomial. The height of tide at the ship, which is the 

required reduction, is obtained using equation 4.43. The 

reduced sounding is computed using equation 4.44. Applying 

the law of propagation of errors, the standard deviation 

of reduced sounding is given by 

1/2 

(5.12) 

where OD· is the 
1 

standard deviation of the depth sounded, 

Ohi(t) is the standard deviation of the predicted height at 
adi CJd. 

the ship, l and l 
1 The heights of the tide an1 

= 
ahi(t) 

at the ship, required to reduce the soundings, are tabulated in 

Table 5-8 alorig with their estimated standard deviations. 

The predicted time lags and range ratios are compared with 

the original data set (observed values) as shown in Table 

5-9. At this stage it is important to mention that normality 

in the distribution of residuals was assumed and chi square 

tests on the variance factor performed at 95% confidence 

level. The test passed for the range ratio and observed 

time series approximations but failed for the time lag. There 

are several possible reasons for the failure of this test 

and as such a definite conclusion cannot be made without 

performing several other statistical tests [vanicek and 

Krakiwsky, Chapter 13, 197M]. However, it can be concluded 

from our earlier discussions (~ection 5.1) that eithe the 

time lag is not simple enough to bP approximated by the 

lower order polynomial or the info~mation available is 
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not sufficient to approximate the time lag. In thP pr<>sent 

2 circumstance it may be safer i<l assume o0 known and equal 

to 1, so that 

I2 (5.13) 
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-"r-eo"--" Station Obs. Predicted Di ff Obs. . Predicted. Di ff. Index No Time Lag Time Lag · Range Rat1o Range Rat1o 
">< 

0065(22} 0 -3 +3 1.0 1. 032 -0.032 
0001(14) -28 -32 +4 0.661 0.655 +0.006 
0015 ( 15) +5 +3 +2 0.673 0.752 -0.079 

" 0040( 16) +16 +16 0 0.900 0.827 +0.073 
0060{ 17) -10 -7 -3 0.996 1.027 -0.031 

0129(18) +9 +8 +1 1 . 201 1.170 +0.031 
0140(19) +19 +20 -1 1. 325 1. 346 -0.021 
0150(20) +17 +12 +5 l. 410 1. 404 0.006 
0225(21) +11 +10 +1 1 . 317 1. 386 -0.069 
0235( 1) -1.0 +8 -9 1 . 311 1.403 -0.092 

0240(2) +16 +8 +8 1. 456 1.418 +0.038 
0305(3) +12 +14 -2 1. 490 1. 538 -0.048 
0312(4) 0 +5 -5 1. 361 1 .335 +0.026 
0315( 5) -12 +1 -13 1. 265 1. 306 -0.041 
0320( 6) -14 -16 +2 1. 060 1.100 -0.040 

0330( 7) -16 +1 -17 0.956 0.911 +0.045 
0335( 8) -18 -26 +8 0.843 0.828 +0.015 
0336( 9) -37 -24 -13 0. 761 0.829 -0.068 
0340:1 0) -34 -26 -8 0. 721 0.668 +0.053 
034!i 11 ) -34 -31 -3 0. 713 0.643 +0.070 

0353( 12) +18 -10 +28 0. 721 0.778 -0.057 
0355(13) 18 +5 +13 0.673 0. 721 -0.048 

--

Summar~: 

Time Lag . o< Diff.< 12~ 
Range Ratio . 10.0051 < Diff.< I o .11 
Time Lag, RMS of the Diff. (observed-predicted) = 9.44 min 
Range Ratio, RNS of the Diff. {observed-Predicted) = 0.0505 . 

Table 5-9 Difference Between Predicted and Observed Values. 

* Numbers in brackets corresponds to the serial numbers in Table 5-8. 



VI CONCLUSIONS AND TmCOMMENDATIONS 

The objective of this work has been to produce analyti-

cal cotidal models, using observed data or existing cotidal 

charts, which could be stored conveniently in a computer 

so that when observed sounding data are input, the 

output would be reduced soundings. The principal advantages 

of the proposed analytical scheme are the following. 

(i) The analytical models can be obtained and 

updated using the observed data in addition 

to that of already produced charts. This 

allows up-dating the model when more obser-

vations are available. 

(ii) This scheme does not require large computer 

storage space. For example, instead of 

storing many digitized numbers, the digiti-

zed values are used to determine a few co-

efficients of the best approximating poly-

nomials. 

(iii) 'These models allow for the rigorous propa-

gation of errors. With associated esti-

mated standard deviations, the reliability 

of the final result can be easily obtained. 

(iv) A degree of flexibility is offered. It i~ 

convenient to use data from existing co-

tidal charts, observations or a combination 

of the two. 
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Least squares polynomiaJ approximation is applied 

to either 

(i) recover a function F(x) from a known set of 

its values, or 

(ii) to replace the known function in further 

computations by a more trackable polynomial. 

The problem of least squares polynomial approximation as 

applied in this work is that defined by (i) above. It 

would be interesting to view the problem as in (ii) above 

and apply it to the Laplace tidal equations to obtain the 

necessary polynomials. 

From the test computations using the data on the Bay 

of Fundy, the computer effective run time is 28.46 secsand 

the storage space is 336,136 Bytes for Least squares poly­

nomial approximation for range ratios and time lags. For 

the polynomial approximation for time series at the ref­

erence station the effective run time is 23.03 secsand the 

storage space is 299,288 Bytes. For the Tidal Reductiou 

therefore we have a total of 42 coefficients and their 

associated standard deviations to store in the computer. 

In the program to execute this for 22 sounding stations, 

the time of execution was 0.76 sec and the storage space 

used was 14,480 Bytes. The result also shows that the 

water level at a location (~i' Ai: can be predicted with 

a standard deviation (obi) of 0.5 m or better. 

It is recommended that the prediction of tides at 

the reference station with the polynomial should be done 
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strictly within the time inte~val M used in the least 

squares approximation of the observed series. When extra­

polation is required, it is advisable to use the amplitude/ 

phase analytical cotidal models and carry out the predic­

tion using the procedure described in Chapter II, 

Section 2a2a 

Finally, since the data immediately available was 

not adequate to fully test the proposed analytical schemes, 

it is suggested that proper data be obtained to facilitate 

complete testing. 
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A P P E N D I C E S 



I OUTLINE OF THE LEAST SQUARES APPROXIMATION THEORY 

Least squares polynomial approximation is applied to 

either 

(i) recover a function f(x) from a known set of 

its values, or 

(ii) replace the known function F(x) in further 

computations by a more trackable polynomial. 

The problem of least squares polynomial approximation as used 

in this report is that defined by (i) above. A brief out-

line of the least squares approximation theory due mainly 

to Vanicek and Wells, [1972] is here given. 

Given: 

(i) a function F defined on a finite set M 

., 1 X X 
111--ll 2 M discrete 

M _ [a, b], M compact 

(ii) a base'= ~ 1 • ~ 2 ... ~u . a set of u 

linearly independent prescribed functions 

from the functional space Gm, 

(iii) a weight function W, defined and non-nega-

tive on M, 

then the problem of least squares approximation is to deter-

mine the vector of coefficient (C 1 . c2 ... Cu) of a genera­

lized polynomial Pn which minimizes the weighted distuuce 

P(F, Pn) defined as 
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P(F, Pn) - (X~M W(x}(F(x) Pn(x)) 
2) 1/2 . 

M discrete (I. 1) 

P(F, Pn) - (J W(x)(F(x) - Pn(x)) 2) .l/2 

M .M compact (I. 2) 

The approximating polynomial is given by 

n 
Pn = I C.l)J. 

1 1 
. (I. 3) 

i=l 
The scalar product of two functions G, H E: Gm is defined as 

I W(x) .G(x) .H(x), M discrete 

---- XE:M 
<G, H> = ..__ 

f W(x) .G(x) .H(x). M compact 

M 
(I. 4) 

If the product of two functions G, H E: Gm is zero, then the 

functions are orthogonal. If the base functions are ortho-

gonal, 

<l)J. ,,, .> 
1 'I' J 

i = j 

i :f j 

If i j, it means 

or 

2 <w. w. > = 111/J ·II o. · , 
1 1 1 lJ 

where 0 ij is known as Kronecker delta 

--1 i = j 
0 .. = 

1J 
. ...___ 

0 i :f j 

(I .5) 

and is defined as 

(I. 6) 



Returning to the problem of le:•st squares approximation we 

are seeking :for the coefficients c 1 , _c2 ... Cu of the poly­

nomial Pn that would make the distance I IPn - Fl I the 

minimum. This means minimizing the Eucleidean distance 

I W(x)(F(x) - Pn(x)) 2 
Xt:M 

with respect to c1 , c2 ... Cu The condition is written as 

Min 
c1 , c2 , ... cu s p 2 (P, F) 

== Min 
cl, c2, ... c € E ) W(x)(Pn(x) - F(x)) 2 

u l..· 

XEM 

Min u 2 
cl, c2, ... c € E I W(x) L (C.l/J.(x) - F( x)) . u . 1 1 1 XE:M 1== 

(I. 7) 

When the partial derivatives of the above w.r.t individual 

C 's are equated to zero, the minimum distance is obtained. 

Minimizing we have 

a I 
Xt:M 

a c. 
1 

== 2 I 

u 
[W(x)( I C.ljl .(x) - F(x)) 2] 

j==l J J 

u 

XEM 
W(x) I (C.l/1 .(x) - F(x)) 

. l J J J= 

o I C .lj! . ( x) 
. J J 

aci 

2 I W(x) I C.l/J .(x) - F(x) ljli(x) 
XEM j==l J J 

u 
2 I w ( X ) I c .l/J . ( X )l/1 . ( X ) 

X j J J 1 
2 I w ( X ) F ( X )l/J i ( X ) 

X 

0 . (I. 8) 

From the definition of the scalar product, the above 0an be 

written as 
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u 
L <~ .• ~.>C.= <F, ~i>. 

j=l 1 J J 
CI. 9) 

Equationi.9gives the system of normal equations which can 

be solved to obtain the coefficients c1 , c2 , ... Cu. Putting 

I. 9 in m·atrix form we have 

Letting 

and 

U = [<F, ~i >], 

the solution of normal equation is given by 

-l . 
C=\N U. 

( 1.10) 

( I.ll) 

( 1.12) 

( 1.13) 

N is the Gram's matrix and Gram's determinant det(N) ~ 0 

because we are dealing with linearly independent base 

functions '¥. Equation 1.13 therefore has a unique solution. 

If we are dealing with orthogonal system of base 

functions ~*, then 

- * * I *·1 2 N* = DiagL <~i ~i>] = Diag( I ~i I ) . 

The solution of the normal equation becomes trivial and 

is given by 

* 1· *I. 2 C* = <F, ~i>/ l~i I , i = 1, 2, ... u. (1.14) 

Each Fourier coefficient C* can be solved independently. 

The system of base functions f often encountered are 

not usually orthogonal. The system can however be orthogona-

lised using Schmidt's orthogonalization process. The 



procss works as follows: 

i) choose 

ii) define 

* 1)!1 
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X t: M (I. 15) 

* * tjJ 2 ::: tjJ 2 + 6 2 l ~I 1 ' X £ M, f3 E E 
2 1 (.!.16) ' 

* Multiplying the above equation I .16 by WtjJ 1 and summing up 

all the equations for all the X yields 

* * * * * <tjJ2' tjJl> == <tjJ2 tjJl> + 6 2 {tPl, tPl> 
' 

(I. l 7) 

* * To make the system orthogonal,< tjJ 2 , tjJ 1 > must be zero. The 

unknown coefficient 62 1 can be determined from 
' 

(I. l~) 

iii) Define next 

* ,,, * D * D B t/1~ == l)J3 + 6 3,2 '~'2 + fJ3,1 1Pl, X EM, f-13,2' 3,1 t: 

(I. 19) 

* * Multiplying by W1)! 1 and w~ 2 yield respectively 

* * * * * <l)J 3 ' l)J 2 > == < t/13 ' 1/J 2 > + B 3 , 2< t/1 2 ' tP 2 > + f3 3 , 1 < t/1 i ' tP ~ > · 

By reason of orthogonality, 

* * <1)! 1' t/12 > = 0 . 

We therefore have that 



that is 

* * * 
< tJ; 3 tJ; 2 > + B 3, 2<tJ; 2 · tJ; 2 ' = 0 ' 

* "' * B 3 , 1 = < tjJ 3 · tj; 1> I <tJ; 1 ' t/J 1> 

* * * s 3 . 2 =< tJ; 3 tJ; 2 >I<~ 2 ' ~~ 2> 

(I. 20) 

(I. 21) 

The process can be g·eneralized for any coefficient 8 .. thus 
,> J 1 

* * * B j i = < tjJ j 1/J i >/ <1/J i tj; j> (I. 22) 

Expressing the original system in terms of the orthogonal 

system we have 

* tj; 1 = tj;l 

* * * * tjJu =- Bu,l wl- £u,2 tj;2 · ·· - Bu,u-1 t/Ju-1 + tJ;u 

Putting it in matrix form we have 

* l/Jl 1 0 0 0 tj;l 

tj;2 -62 1 1 0 0 tj;~ 
' 

= * ( I.23) 
tjJ3 -s3,1' 83 2' 1 0 tjJn 

' 
,:) 

* tjJ -(3 u 1' -B s ... 1 tVu u . u,2 U, 3 

B .. is defined 
Jl 

by equation I.22. 



Letting 

1 0 

-(32 1 1 
' 

B 
uxu -(33.1 - (3 3 2 

' 

-Bu 1 
' 

-su,2 

equation 1.23 is written as 

* ljJ == BljJ • 

1~~ 

0 0 

0 0 

1 0 

-su 3 ... , 1 

(1.24) 

B is the transformation matrix that transforms non ortho-

gonal system to orthogonal system. It is an u x u tri-

angular matrix and the determinant det(B) r 0. 

If we have that 

using equation I.24, we can transform the Fourier coefficients 

into the coefficients of the origjnal bas.; functj_ons, thus 

* M" 

(BII' ) 1 C 

C == (BT)-lC* . (I. 25) 



II DRIE.F DEI:>CR!PT!ON OF TliE COMPUTER PROGRAMS USED 

The computer programs used in the computations are in 

three parts, namely 

(i) Least squares polynomial approximation for 

cotidal curves, 

(ii) Least squares polynomial approximation of 

observed time series at the reference station, 

(iii) Tidal reductions. 

II.l Least Square Polynomial Approximation for the Cotidal 
Curves 

Figure A-1 is the flow chart describing the program. 

INPUTS 

lst card, FOR.MAT(5X, 7I4) 

ID - The dimension of the polynomial 

N - The degree of the polynomial 

M - Number of data points for the approximation 

NPP- Number of grid points for prediction. If 

there is no prediction NPP = 0 

INDEX - Code for the type of function to be approxi-

mated. If index= 1, the polynomial approxi-

mation for range ratio (amplitude) is per-

formed. If index = 2, the polynomial 

approximation for time lag (phase lag) is 

performed. 



Figure Il-l Polynomial Approximation of Cotidal Curves - Flow Chart 

READ DATA J 
I 

Compute Req.No. ot Co- Yes 
c;;e warning ~ efts. Is df. negative? 

Ho 
CALL CHARTE 

(converts ~. A to x, y) 

CALL VANDE Matri:=J (Forms Vandermonde • s 

--
Poly. Approx. For Range 

or Phase? 

I 
RANGE 

Define \tJeights 

I 

Solution by 
orthogonalization? 

NO 

J 

PHASE 

'· 

SPLIT: 
FA = ~R cos v Define FB = iR sin v - weights 

I 

,-- CALL ORTHO 

- CALL APPROX. -~ ~ L.S. Approx with O.B.F) 

I (does L.S.Appr~x with r·L~ 

Prediction at Gn d --~ Y~_s ____ l-~ 
Points? j 

~NO -~ 

c· PRINT RESULlS -] 

I 
CALL CA;!H:_jE 
CALL VANDE 
CALL pr·ED 

~-~---
~----------------- --------------

~ 
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ID - Code for orthogonal or non orthogonal 

solution, 1 - for orthogonal solution 

2 - for non orthogonal solution. 

ITEST - Code for testing Fourier coefficients 

0 - for no test 

1 - against its Standard Deviation 

2 - against 2 times its Standard Deviation 

3 - against 3 times its Standard Deviation. 

2nd Card: FORMAT(5X, 15, 5X, Fl0.6, 5X, Fl0.6 

5X, Fl0.6, 5X, Fl0.6) 

This card contains the identification 

number, latitude ~ and longitude A of the 

\ reference station, the range ratio ( ampli­

tude) and time lag (phase lag) at the 

reference station. 

n cards: Format as in the second card. Each card 

contains, station identification number, 

latitude (¢), longitude (A) of the data 

points, the range ratio (amplitude diff.) 

and the time lag (pbase lag diff.) at 

each data. 

NPP cards: FORMAT(5X, 15. 5X, Fl0.6, 5X, Fl0.6) 

If there are nn prediction at the grid 

points. these ~ard~ will be omitted. 

Each card contains the grid point numJer, 

the geodetic coordinates of the grid 
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points ( ¢, ,\). 

SUBROUTINES: 

SUBROUTINE CARTE; computes the local cartesian co-

ordinates (x., y.) given the geodetic coordinates 
l l 

of the points ($i' >-.), the geodetic coordinates 
1 

of the origin of the local system ($0 , ;,0 ) and 

the dimensions of the ellipsoid. 

SUBROUTINE VANDE - computes the prediction matrix 

given the geodetic coordinates (¢, A) of the pre-

diction points, the number of prediction points, 

the dimension of the polynomial and the number 

of coefficients. 

SUBROUTINE APPROX. - does the Least Square approxi-

mation of the function given the number of coeffi-

cients, the number of data point, the Vandermonde's 

matrix, the weight matrix and the functional values. 

SUBROUTINE ORTHO- orthogonalizes the Vandermonde's 

rna trix using Gram Schmidt methc·d, computes the 

Fourier Coefficients of the orthogonalized matrix, 

derives the coefficients of the Vandermonde's 

matrix, computes the variances of the Fourier Co-

efficients and the variance-covariance matrix of 

the original coefficients. 

SUBROUTINE PRED. - predicts t!le function values 

at the grid points and computes the variance-co-

variance matrix of the prediction. 
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L + T~l5 ~~ES T~E LAT. AhO LCNG. c~ Cl5CRETE POINTS.THE AMPL.AND * 
C • PHA~E LAGS l~ ~ANGE RATlG~ A~D Tl~E DlFF~. ~T THE PUlNTS AS * 
L + 1 ~E I~FUlS TU CCMPUTE THE CGEfflCI~~TS CF THE BEST PREDICTING * 
L + PLL~~C~lALS Pl ANY ClrER PCI~T. * 
c • * 
L + GLIDE lU 5U~E NCTATICNS U~tC IN lrE PhOG~AM * 
L + INPLT: * 
(_ 

~~ 
l. 
(. 

(.. 

L 
c 
(. 

(. 

L 
c 
(. 
(.. 

(.. 

<.. 
l. 
L 
l 
c 
L 
c 
c 
c 
L 
c 
c. 
L 
(. 
(. 

c 

+ FHI- LATITUUC Gf STNol * 
+ ALL~ - LChGITUDE CF ST~. I 
+ FHoFG - A~PLITUOL AND PHASE LAG.·LR RA~GE RATIO ANC TIME 
+ OIFF.l~ ~~~~TES CF TIME. 
~ lU - Dl~ENSION UF lHE AFPROX. * ~ - DEGFEE Cf THE PCLY~UMIAL * ~- NU~EE~ CF OESE~~ATlCNS * 10 - ~CCE FGR ORT~CGONAL CR NCN CRlHOGONAL SOLUTION. 
+ 1 - FOR URTHOGC~AL SOL. 
~ 2 - PCR NC~ U~ThOGUNAL SCLo * llEST : COUE FOR TESTING FOURIER COEFFS. 
* 0 - NG TEST * 1 - AGAINST ITS STD DEV. 
* 2 - AGAINST 2 TIMES ITS STD. DcVe 
+ 3 - AGAINST 3 TIMES llS STD. D~V. * ~PP! - ~0. OF GRIC FGINTS FGR P~EClCTION.lF THEHE lS * ~0 PREDICTION AT GRID POI~TS NPP=O 

* Ol.TP~l: 

* 
* * * * * * * 
* * * * * * * * * • L - hLo LF <..~EFFICICNTS RECUIREO. t~HCN 

EXCEEC ThE ~C. OF CBS TH~ PROGRAM 
CoCA,CE - ~ECTG~S GF CCEFFlCIE~lS. 

TrE NU. UF COEFF* 
• • • 

IS AUORTEDJ 

* * • * 
i SEE SLLRClTINE GRTHC FUR MUR~ EXPLANATIG~S OF OUTPUT NUTATIUNS * 
• * 
~ * 
······~·~~·~~·~~~·~··********~·········••***~**********~*********** * MAIN P~OGRAME 

lM~Lltll REJL*8(~-ro0-Z) 
~l~E~~~l~ Phl(~OJ.ALON(50JoFH(SO),FG(50).A(50o50loPC50o~0) * • C u \i /l r.; ( S C • 5 C ) , V ~ '' (50 , 50 l o C ( 50 ) o t:N ( 50 • 5 C ) , X ( 50) , Y ( 50 ) , V ( 50 ) , * ~{~Ol.Nl~(5aJ,NG~l0(5Q),XPC50),YP(50),PMT(50o50loPMC0(50o50) 

" 11'<. t ~tl, >vAf.P c=o, 
CP'I;t-~1(1' ~LPT (50) ol\l:f'-iG(50),PM(50o50)oPFH(!30)iPF~(50) 
CH,t:I\!:IC~ ALFHA( ~0 ,5c.: ow(50) ,FC(!30) oSl.~FC(50) ,SGN(50 ),STCP(!50) • 

* D(5J),~IGtvf.FC!:O)oSIGI~AH·.50) 
lJ I t.< E 1\ !: 1 C N f • A ( 5 0 ) , r- U ( 5 •J ) , J= t'\ 2 ( 50 ) , F I:J 2 ( 5 C ) , 'W A ( 50 J • W t=· l !3 0 ) , C A ( 5 0 l • * Ca<~Ol,CLA(5C,50),COUC~0,50),PFA(50),pFB(50)•VARPA(50,50), 

+ ~A f; iJ li { 5 C , 5 () ) , t: ( 2 , 2 ) , A f<! 50 , 50 ) , F R (50 ) 
l~CA=lCI~ICE=ICC=~O 

11HC=20<: 2C:5 • OCO 
Fl=.3el41~9C::!!:lJO 

1-' 
~.J 
m 



9 
lv 

(. 

c 
c.: 

11 
12 14(; 

(. 
(. 
(. 

c.: 
lJ 
14 
1 5 
lo 
17 
lts 
19 
20 

~ 
(. 

c 
~~ 
22 20 c 
23 10 0 

c 
c 
(. 

24 
25 
H:: 

{. 

c.: 
c 

27 
28 101 

2'i..l 10 2 
30 
31 
:!2 
3.3 3 

c.: 
34 
.35 1.31 

36 
37 13 2 
3e 
39 130 
40 
41 12i 
42 
4.3 
44 
45 11 1 
46 4 

c 
~ 

1'1.=!: 
SIGMJI=l.CDC 

f<L Jl C I 1\ P f\ 0 G F !1 P. t:: S P E. C IF I CAT I 0 I\ 

~ E ll C ( !:: , 14 b l J C, 1\ • ~, NP P, 11\ CCX • I 0 , l TEST 
Fl I'M A 1 ( !: > • 7 l 4) 

CO~PLlE ~u. CF COEFFICIEhlS tNC CE(HlE OF PGLY Al\0 CEGR~E UF 
CF f~CECOMe IF Of IS ZERO CR NEGATIVE GIVE WARNING AND STOP 

L=(l\+1),.*10 
IDF=M-L 

IF!lLf-eLI:.C)lt-:Et~; DC 
FRli\T, 1 F~CGRAME SPECIFICATICN INADEOUATE' 
~TCF 
lL~E oa 
(1\C IF 

CO 1\ 1 II\ l.. E 

hEAD 11\ CATA Cl\ ThE STAI\DARC OR ~EF. STATION 

~EJD(~t2C~)I\~MC,Ft-:IO,ALC!I;Q,FHO,FGU 
FC~MAl(~Xwl5o5X,Fl0.6o5XeF10.6,5XeF10.6t5X,FlO.c) 
FC~Mtl(5X.I~t5Xof(0.6o5X,Fl0.6) 

READ IN DATA F~CM OlHE~ STATIONS 

CC 1 l=loM 
f;EJl0(~,.2C0)1\l.iM( I ),PHI( I) tALON( I) ,FH( I},FG( 1) 
CCt-Tl"UE 

PRINT .ALL Tt·E JNPUT DA"TA 

H'lNllJ1 
f(f.~JIT (/.1,4Xt 'NO' ,ox, 'LAT lTUOE 1 ,lOXt 1 LONGITUDE' tlOX,'RANuE FiA 

>tTlO'.lOX, 1 1IME LAG') . 
Fl~MAT(EXel4t7X,FlQ.6,SX,FlC.6,S~~F10.€t9X,Fl0.6) 
Fhii\l102tN~~C,PHlU,ALO~C.F~C,FGC 
CC .J 1 = 1 ,M 
P .. II\ 110 2 , N U f.l ( I ) , F H 1 ( I ) • ALt..: II; ( 1 ) , F 1- ( 1 ) , F G ( 1 ) 

CCI\ IIN~E 

Ff'l", 12 1 
FC~MA1(11t5Xt 1 CEGotF PLLYo 1 oEX, 1 NOoOF OE~e 1 t5X, 1 NUoL~ CUEFF•'• 

• 5X, 1 CEG.CF f~ECI.:~'} 
F~IN11~2,No~tLtlDF 
~C~~Al(//,8Xti2,12X.IJ,l5Xti~.20Xtl3) 
FF<!I'.llJC 
FL~MPl{l/t5Xt 1 CARTESlhN CGURD, OF TH~ GIVEN STATI0N5') 
Fj.-;!,...1127 
fG~MAl(l/e~x.•srN. NL.' .ex,•x-ccc~o.•,tsx.•v-cacr.o.• 1 
CALL ~A~TE(f.I,Pt-I,ALQN,PI-lOtALONO,X,Y) 

DU 4 ! = 1 • ~ 
F~ 11\1111 ,NU,. (I) ,X( l ),"((I) 
f- 0 ., fJ ,q ( I • 6 X • 14 I 4 X • f 1 5 • (J • 7 X • F 1 5 • 6 ) 

tlJI\Tll\l..E 

<.L~PLII.: 1'(11 fl N ATfd )< 

t-1 
1:\:) 
--.) 



4 1 
4d 

4<;; 
50 
51 
52 
53 
~4 
5~ 
~{: 

57 
5C:J 
5"' 
60 
{; 1 
(;2 
(;J 
(;4 

(;~ 

t::() 

6 -, 
{Jb 
{:;Cj 

7C 
71 
72 
73 
74 
7 ~1 
76 
7 I 
7b 

7 •; 

E!O 
b1 
u ~. 

u<e 

8~ 

e '~ t:= 
80 
t 7 

bb 
8'i 
()O 
91 
Y2 
93 

c 

5 

1 4 
1 :: 
7 

12E 

L 
c. 
c. 

4 /~ 

,_, 7 

103 
L 
(._ 

<.. 
<.. 

c. 

H 

fj 

c 

c L.l !.: 1-= 1 • 1--1 
CC :.> ..;=1oL 

A( lo.JJ::C,lJO 
COI'Tli\UE 
llJF=I'tl 
DO 7 I R Cf-= 1 , I" 
ICCP:C 
CU 1:: I=lolCF 
1 A= I- 1 
CC 14 J=lolCP 
JA=J-1 
ICCF= ICCf.+l 
P( lRCf'ollDF)=X<lRUP)**IA*Y( lRDPJlt*JA 

((f\llNl..E 
CCNlli'LE 

Ct.;I\Tli\UE 
F~ll\1121:: 
FL.I~MAT(I/o~~.·~EI'DE~CND ~AThlX 1 ) 
FF<INT,' ' 
CALL IVLllDU.lCAof'oLJ 

CcTER~INE TrE V~L~ES AT THt DISCRETE POINTS 

lf(Nff-oECoC} GC TG S7 
CC 44 1=1,1\FF 
f; E AD ( ~ , 1 C 0 J 1\ GH 10 ( 1 ) , ALA T ( I ) , AL C l'o G ( l ) 

CCNIINLE 
lALL CP~TECI\PP,ALAToALLI\G,FHIOoALCNOtXP,YP) 

CALL ~AI\CC(I\PPoLolCPoALAToALCNGoPHIG,~LCNO,XP,YP,PM) 
CCI\111\LC 

CO 15 ISIG=l,li\OEX 
IF(lSIG.EG.lHrEI\ CC 

FRli\T, 1 t+ POLYNO~IAL AFPROXI~ATICN FOR "RANGE RATIO' 
H-<11\TlO:: 

FGFMA1(4Xo '**************••***•*******************' ) 

lF A~FLlTLOE U~ fA~CE RATIC IS TC APPHOXlMATEU PROCEED, 
CT~E~WISE GC TC ST~TEMENT ~C 46 

lF(lC.EG.lHC lC 46 
FC~~tliCI\ Cf WEIGHT MAT~IX 
CG E (=;ltM 
CG E ..:=1tM 
F(lo.Jl-=C.OO 
CCI\llt>UE 
CO 'I J.:1,M 
J= [ 
F(J.J)=lCOoCDO 
Cli\111\UI:: 

c Ft:I•FLf.;t-' lH~ LEAST SGL:AHt.S t.PPfWX BY CALLING THE SUBRGUTit-.1::. APPROX 
c 

10~ 

lOt 

CALL ~PF~U~(Lo~tAoFoFHoE~.C~V,AC,U,CCVARoAFVF) 
1=1-\It-.110~ 
FG~MA1(1CXo 1 ~ECTCR GF CCEFFICIENTS' 
CALL t-CL1lJ(C,lC.AoLol) 

Pfdl\l1C6 
Fl.} f.~,. 1 ( 1 c X. 'I~[~ l Cl; A L. '!;X t I ... E c T Cl'' 

f-' 
t-V 
00 



94 
95 
<.16 
91 

S!:l 
<,<;; 

100 
101 
102 
1 03 
104 
1 05 
106 
1 07 

108 

10':J 
110 
1 11 
112 
113 
114 
11 ~ 
116 
11 7 
110 
1 1 ':,1 
120 
121 
122 
123 
124 
125 

126 
127 
128 

1 2'-J 
130 
1 31 
132 
13.3 
1 34 
1.35 
1.36 
137 
1 38 
13:1 
1 A(\ 

107 

10e 

11 0 

4t 

57 
c 
c 
c 
c 

47 

4E: 

4S 

51 
c 

(ALL t-CLlO(\i.lCA,~.l} 

PF<lN11C7oAPVF 
FUF~A1(10Xo 1 JI FCSTE~lO~l VARIA~CE FACTOR =',FlO.El 
Pfdi\TlCE 

fC~M-1(10Xt 1 \/~~lANCE COVARIANCE MATRIX OF THE COEFF1ClENTS 1 ) 

CALL ~GL1D(C(VJR,1CA,L,L1 
PRll\lllC 
FCFMt1(//t5~t 1 FCL~NC~lAL APP~UX CF ThE GIVEN FU~CTILNS') 
CALL WOLlO(ACtlDAoMoll 
IF(1C.EG.2)G( 10 51 
CCI\111\l.E 
CO 57 l=lof>l 
'll(l)=lOC.OCC 
CCI\Tli\I.JE 

PERFORM LEAST SCI.JJIRES APPRUX I.JSII\G CRTHCGCNAL EASE FLI\CTICNS 
lY CALLII\G l~E SLEROI.JTINE CRTHU 

"' 
CALL lhT~O(~,L.SlGMAoAoiDAoSlG~FCoVFCoNPColT~ST,V,CGVARoFH, 
~,(,ALP~A,FC,SI.JMFCoSONoSTDPoiW) 
Fh 11\11:::: 
CC 47 l=loL 
PRU..T134,FC(l) eSli~FC(l) 
CC.I\111\I.JE:: 
I=HlN113!: 
Cu 4E l=ltL 

H111\T126,C(l) 
CCI\1 1M.!:.: 
P~lNlt'~C. (f (OEFFoCF C~lGN.POL~.AFlER TEST =• ,N~C 
PfdN11J7 
CALL f>CllO(CC~If'.ICA,LoLl 
~f'll\11.3t 
QC 4<; 1=1oM 
Pfdl\113c,V(I l 
CCI\T lM.E 
Pf'll\lo 1 A Fl.STEGRI VARIANCE FACTCR= 'oVFC 
CCI\1 11\LE 

C IF Pf'E:ClCllCI\ IS f.;EL.UlR£.:0 ((ILL ThE SulJROuTlNE PHI::D 
(. 

c 
c 
l.. 
c 

lF(I\F~oEGoC) GC TO ~e 
CALL FI'EC(NPP,L .. ~M.C,COVAR,FMT,PFHoPMCOoVAR) 
tLH CG 

1~ AFP~C) IS FOR TIME LAG (PHASE LAG)Pf'GCEED 

P~1Nlo 1 it FCLYNCMlAL PPRGXl~ATlCN FOR TIME LAG 1 

iJfdNll03 
(K::iJ o5*Fl/l€Co 
f:U:c!:olC/3o2cCE 
E r•:: C • 1 2 5 >I P I I 18 C • 
E I~ f.= C • 1 C 
DC 6 C 1 :: 1 , M 
t:H::f C (I) >ICK 
R=l'UHH(IJ/i2o 
fP ( 1 l::fi HCCS (PI-) 
F!J ( 1 )::I·HCS if\ (PH) 
lAo 1:!. f I I ,- 1 • / 1-' ,; r; ll • :;: 

!-' 
1:'-J 
(.;) 



1 4 1 

14 2 

143 
1 4 '• 
1 'I !;i 
146 
l 4 7 
14t.l 
14'J 
15i) 
1 51 
152 
1~3 
154 
1~5 
15u 
1~7 
158 
1 sg 
1 ( \,) 
1 (;; 1 
162 
UJJ 
1 t 4 
1 t 5 
lt.o 
l (c I 
lcB 
169 
170 
1 7 1 
1 7 c. 
173 
1 I 4 
175 

1 76 
17 7 
1/IJ 

1 7 '} 
1 tj:J 

1 u 1 
1 t) 2 
1BJ 
li.l4 
1 ct 
186 
lti7 
1etl 
189 
19U 
1 91 
1 ~2 

~t-3 (I).: 1 o/EF.f.; :H2 
c 
C FC~ t~ThCtC~~L Et~E FU~CTIC~~ STAEME~T 52 IS EXCUTED 
c 

c 

GC CU,lli\LE 

lF(lCoEColJGC 1U 52 
CIJ 17 1=1 ,M 
CG 17 .. =1 ,tJ 
F(l,J)=C.CO 

17 CO~lli\~E 
CC. le l=l,f'J 

.; = 1 
P( loJ)=\\1<(.1) 

lc tCI\TII\LE 
Pf'IN114C 
CALL APP~OX(LotioAoPoFA,(~,CA,VoAC,~,CCA,APVF) 
FE;I~llO!; 
CALL t.'CLTD(CP,lDAoL.l) 
FRINllOI: 
CALL tiC l.lO ( 'v tl CA or-\ .1) 
FF<ll\llC 7 tAP \If 
DG 1!: 1=1,Pt 
DU lt J=l,J< 
p.( loJ>=o.oco 

H CC~lll'-i{.E 
cc 1<; 1-=l,tJ 
-~=1 
F ( 1 • J ).:: II E ( 1 ) 

lS LC~llNl.E 
f-:blNllJ<; 
CALL APFROX(L,N,A,P,FH,E~,<;e,V,ACoUoCOB,APVF) 

Pkll\110f. 
C~ll 1-CLTD((E,ICAoL.l) 
F h it, 1 l 0 t 
tALL ~C\..1() ('v .ICAtl-lol) 
FR II\ T lC 7 ,AF\tf 
lf(lCoEGo2lGC TO 56 

52 Cll\1lNLE 
C fl~D PCLY~OMlAL APFGOX. FOR FUI\CTIONS FA.FE 
c 

1 '• c 

* 

53 

!", 4 

Fr.;If\1140 
fUhM~l(// 1 5X, 1 FCLY~CMlAL AFP~OXl~ATlCN FOR fUNCTILN FA') 
CALL LRTbU(~,L,SIGMA,A,lOA,SlGMFC,VFC,NPC,ITEST,v,CQA,FA.~A.CAo 
ALFhA ,FC oSl.JtvfC ,SCN oSlDP t lw J 
Ff,(Nll..:.:: 

C(. 5.:: 1=1 ,L 
r:H IN 1134tFC ( l) ,Sl..MFC( l) 
(.L~l 11\lif. 
Pr;ll\11~!: 

CC ~4 l=l,L 
~Hll\T13t.c.t. ( l> 
CCf'.TIH .. l 
F~l~l.'l\(. lf CCE~~.OF C~lGN.POLY.AFTER TEST =•,~PC 
t-:1111'.11::7 
( .A. L L I• U L 1 0 ( C C A , 1 C A , l. • L ) 
FM{I\11Jf: 
CO ~!; l=l,N 
PFll\TlJt:,V(l) 

f-' 
w 
0 



193 
1<:.14 

195 
19u 

197 

19U 
1S.9 
200 
201 
202 
203 
204 
205 
206 
207 
20fl 
209 
210 
211 
212 
213 

4:14 

215 

216 

217 

~= 

c 

13':. 
c 

cl 

t.;2 

63 

( 
5(: 

c 
c 
c 
( 

c. 
c 
c 

,. 

CUI'-T lf\lJ[: 
Flllf\1,'/l. PCSlELF<I VAI<l/11\CC fACTC.R=',VFC 

r:~ltdlJS 
f;:f-<M/11(//,~.X,'I=CLYI\LMIAL A~:-"f'GXl~ATICI\ FOR FUNCTlCN F13') 

CALL LRH'O(,.. ,L,SlGMA,AolDI\tSfGMFC,VFC,NPC, lTESToVoCOO,FuoWOoCl:lo 
ALPHA,FCoSL~FCoSCh-,STDPolW) 
I=Rll\113:! 
CU cl 1=1,L 
Ff' 1NT134 ,rc ( l) ,SUMFC( I) 
CLI'lll\l-l 
t=r;INliJ= · 
CC t2 l=loL 
PfdNTl.;t,CE( I} 
CCI'THUE 
1=~11\T,'I\C CF PGL'V.AFTE:R TESi= 1 oi'<I=C 
Ff;l!'.11J7 
CA~L ~GllD(CCEolCA,L,L) 
Pf\1Nf13€ 
CC 63 I=ltl~ 
P li l N 1 1 3 ~ , V ( l J 
COd lt-.lJE 
P~li\T,'A PCSTEC~I VARI~I\CE FACTC~='oVFC 

C.LI\111\l.E 

IF Tt-t:F-E lS /'.U FJ;EClCT ICN STATEMENT NO 'iS IS EXCUTED 

lF(I\FF.EC.C) GC TO se 
PRED1C11CI' CF FL~CTICNS FA,FE AT GRIC POINlS 

CALL ~REC(I\PP,L,F~oCA,CCAoF~T,PFA,P~CCoVAkPA) 

<ALL FREC(/'.FF,L,FN,CEoCCEoFMToFFE,PMCG,VARPBJ 

CCMFUlE l~E P~ECIClEC liME LAG ANC ASSOCIATED VAHlANCES 
218 DO t.4 1=1,/'.FF 
219 FFUU=CHJN(Pfe(I)IPF,6(1))/CI< 
2 21) E: { 1 , 1 ) ::: ( 1 • I ( 1 • -+ ( PF E ( 1 ) I P F-A ( 1 ) ) * * 2 J J *(- P F 8 ( l ) / PF A ( l ) * * 2 ) 
2 2 1 1: ( 1 , :2 l = ( 1 • I ( 1 • -+ ( P f B ( l ) I P FA ( I ) ) * * 2 ) ) * ( 1 • / PF A { I ) ) 

C CC,..PLTl ~JRlJNCES 
2 2 2 VA f; P ( 1 ) = t: ( 1 t 1 ) *>I< 2 *VA I~P A ( l t 1 J + 8 ( 1 t 2 ) ** 2 * V AR P 8 ( 1 , 1 ) 
2 2 3 S I 0~ A f ( l ) = 0 S CRT ( VA RP ( 1 ) ) / C K 
224 64 CGI\ll~LE 
225 t::"C lF 
226 ~€ CC~lii\LC 
227 15 CC~Tl~UE 
228 Phli'-T•'*** P~ECICTlON MATRIX ****' 
~29 CftLL ~CllO(F~oiCA,~PP,L) 
2~0 Fh1!'.112t 
2:!1 Fr.It-.1127 
232 1~6 fCF~t1(/loSXt 1 CARTESI4~ CUOROS. CF GHID FUlNTS'l 
233 ~C 5C l=loNPF 
234 Ff:;tN1111,NGI<lC(l)oXP(I),'tP(l) 
£35 5C Cl~l!Nl.E 
2 .3 c .-: :~ r " r 1 2 5 
2 .:i 7 1 2 t F C f. i• t T ( 1 1 ' , / I • 5 X , 1 P I~ E:.l.) I C 1 E 0 R A N G E R A 1 l 0 S A 1\ lJ T I M E L A G S A T T H E G 

HHD Fll"lS') 
2.3u Ff. 1~'<114 1 

r-' 
v:: 
r-' 



2.39 
240 
£'41 
242 
~43 

244 

245 
246 
247 
£:48 
24<;; 
2:::o 
2 51 
<:.52 
2~3 
2!:;)4 
2e~ 
2 tc 
257 
c. t (j 
.259 
260 
261 
c: 6;:: 
2 t:J 

2o4 

26~ 
2o6 
2 f:; ., 

L 

* 4!: 

b( 

b7 

uf.: 
1 ..• 

.) --
1J4 
13t 
lJ(; 
13 7 
13c 
1 4 l 

* 
1 '•" ,. 
1 4: 

CU 45 [.::1 ,1\FP 
ALftl(l)=ALAT(l)*lBO./Pl 
Alli\C( I )~ALCI'G( I )*1130,/P I 
5IC~~~(l)=OSCRl(VAR(l,l)) 
F ,:. I N 1 1 4 2 , N C: I~ 1 U { I ) , A L ft T ( I ) , ALi J N G ( 1 ) , P F H ( 1 J , S 1 G M A k ( I ) , P F G ( I ) , 
!:l<.:~Jit-=(1} 

CCI\111\li£: 

CU tf: l=l,L 
J=I 
\\I~ IT E ( 7 , 1 '* 5 ) < ( I ) , (. C V AR ( l , J ) 

CCNllNLE 
CC 67 l=l,L 
.J:: 1 
V.RlTE(7t14~lCA(I)oCUA( I,J) 

((.t\ 1 [1\t,.f_ 
CG u: l=l,L 
J= I 
llh ITt: ( 7,14!:) ( (; (I), CLD ( l, J) 
CCI>~ I lN Lt:: 

f- C J;f>i A 1 (II, 5 X,' FL l..h l t:;R C CEF F I C lENT 1 , 10 X, 'VARIANCES 1 ) 

FUf.,.Al(/,8.li,E11.4,10X,Ello4) 
fLf.NJl(//teX, 1 VECTOR UF ORIGINAL CCEFFICIEI\15 1 ) 

FCFf>I~1(1,5X,[11.4J 
FC~M~l(//o5Xw 1 VARIANCE-COVARIANCE ~ATRIX OF THE CUEfF. 1 ) 

FC~~A1(11o5Xo 1 VECTCR UF ~ESICUALS 1 ) 
F c f; M ~ 1 < 1 1 • 4 >~ , 1 r- c • , ex , • L" r 1 r u o E • , s x , • LC "G 1 T u o E • , 1 ox , 1 nANG E RAT 1 L 
1 t4X, 1 Sl<;MA 1 o7X, 'l!IYE LAC' o5Xt 'SIGMA') 
FLf.~Al(/,3Xol4,5~.Fl0.6t6X,Fl0.6t6XoFl0.6,6X.Ell.4ofX,FlOo6t 
tXoE11.4) 
FOf..~~l(!:X,O:Ello4) 
STCP 
Ef\C 

2b8 SU~~lliTlt>L CtHl~(M,ALATtAL~N,PHICtALGNO,X,Y) 

~:b9 
27C 
2 71 
<::. 72 
27:3 
2 74 
215 
276 
277 
<:.Hl 
'i. 7";; 
2UO 
2 f.J 1 
2b2 
2H3 
2 tJl~ 
2B~ 
2 l.l tJ 
2U .{ 

c 
C 1~15 S~B~ClTJ~E CCMPLlES THE CARTESIAI\ COCf;DS. x,y, fRGM GEO~RAPHICAL 
L ClCRC~ •• Lf.llTLLE Af\D LCNGITUQC,. 
c 
c 

4 

I~FLJ(ll REPL*8(P-r,O-Z} 
ClfVEf\~ICI\ /L~T(50) ,ALOtd50)i,X(50).Y(50J 
r.~=e.::7u<;co.~co 
r• B = t; .; ~ e ~ t: 3 • E c o 
P1=:!.1415<:>2<!;DC 
EC= ( f.oA**2-f<E **2) lr\ A**2 

FHIF=FrlC*Fl/100. 
tLC~R=~LCI\O*Pl/180. 

X M = { ( 1 •- H. ) >to FA J I ( D S 0 f~ T ( 1 •- E C * ( 0 S 1 N {PH 1 R l * * 2 J I** ::3 ) 
X 1'. :. f:; A I 0 S C R T ( 1 • - E ( * ( D S 1 t-. ( P H 1 R ) * * 2 ) ) 
~=CSC.f.TPM*.llf\J 

DC 4 l=ltN 
ALAT ( l )::ALIT (I )>I<Pl/180 • 
ALL~(l)=ILG~(ll*Pl/lUO. 

X(l>=f.ll (ALAT( 1)-PhlR) 
't( l)::f<*CCUS(PH[f<)*(ALGI\(1)-ALCNR) 

LCf~Tli\UE 
FEll..rl\ 
EI\C 

I-' 
':.u 
t·" 



(. 

2tld 
c.. 
(. 

c..c 
2 b'i 
290 

fYl 
292 

. 29.J 
2~4 40 
2~5 
21,1(; 
2S7 
291.i 
2f:l':i 
3vO 
J01 
.302 
30.3 4:! 
.304 I~ 2 
305 41 
30(: 
307 

<.: 

308 
\... 
(. 
(. 

c 
30Y 
.310 

311 
312 
313 
.314 
.31~ 
31o 
317 

31U 
c.. 
L 
c 
L 
L 
\... 

31<) 
320 

3 ;2 1 
3C.2 
423 
.] 2 (f 

-: ••t:: 

Tt-l~ 

fL~~ULTI~E Vft~CL(~P~oltlCP,ALAT.~LC~G,PHIU,ALC~U.XPeYPoPM) 
SUEf.;lLT ltd:: Ci.:iJ.Fl. TES 1hl Pt<E;;:; lCTlCf\ MATRIX PI>', 

IMfllC.ll ~EflL*B(A-~.G-Z) 
Cl~Ef\5IC~ P~(5Q,5Q),ALiT(5Q),PLC~G(50),XP(50),YP(50) 

tU 40 l= 1 ,f';PP 
CU 40 oo~=1 eL 
FM( leJ).:Q.CDO 
CCI\ll~l.E 
CC '1 1=1 oi\PP 
rccr=o 
LU 42 t<-=l,ICP 
I<A-=1<- 1 
[( 4..:i J::l, lCF 
.;A=.;- 1 
lCCf-= ICt:P-+1 
~M(lolCt~)=XP(l)**KA*YF(l)*~JA 

C l t- T ll'd .. C 
C{f\ll~I..E 
<..(~Tlf\I.JE 

HEllJI-<1\ 
EI\C 

~U~~CLTJI';E P~EO(NPF,LoP~tCoCO~A~oPMTePFe~MCC,~AH) 
1hl5 5L~RCLTli\E F~ECICT~ TtiE FUNCTICN VftLU~S AT THE G~ID POINTS 
Af\C CC~F~ltS TI-E F~ECICTION vARIAI\CE CCVARIAI\CE MATRIX. 

IMFLICIT Fc~L*E<~-HoO-Z) 
Cl~E~SIC!'; F~(50,5Q),C(5Q),PF(50),PMCU(50o5C),COVAR(5Q,50) 

~ ,v~~(~C.~t),fNl(~C,:C) 
lRL~=ICft=lCE=IDC=50 
CALL ~~LL~(PFelOC,PM,lDAtCtlDOt~PP,L,l) 
CALL T~~SC(FMT,IOE,PM,lOA,~PP,L) 
CALL M~LLC(FMCOolOC,PM,IDAoCCVA~,ID~ti\PP,L,L) 
C-LL ~M~LC(VARtiOC,PMCO.IDAoPMToiD8,NPP,L,NPP) 

F[lLR~ 
Ef\C 

~LE~CLTl~E ~FP~CX(L,MoAo~oFtENoCtVoAC,lJ,COVAN,APVF) 

····~··~~··~····•************************************************ * T~IS S~~~UUTINE CCES TI-E LEAST SQUARES APPRUXIMATION * 
~ CF T~E GlVCI\ fL~CTIC~S A~O RETURNS THE VECTCR OF COEF * * t"lCH.NlS J~GETHLI~ V.I1H THE VArl. CGVAE t-'ATRIX * 
··~·~··~~·····•••***************~···~··•**~*********************** 

IMI-LIC.IT f<E~l>tc(/o-1-,L·-Zl 
c l ~·F.: " s I c. 1\ f. ( ~ 0 • c:: 0 ) • p ( ~ (.; • 5 (.) ) t EN ( 50 ' 50 ) I A c (50 ) • c ( 5 J ) • f ( 50 ) ' * lLv~~(3Ce5C)oA1~(50,5Q),AT(50,SO),~TP(le50).VF(l),U(50), 

* ['.\l(~OltlWd(!:JJ,'vl{1,.3Q),V(50,1J 
If.<[~:: ICA= lCI.!=lC<.;=~O 

CALL lt.~!:lJ(Ill,lCE.A.lDAtt>'oL) 
CALL ~MLLlJ(ftTPtlUC,Al,lCA,F,ID8oL 1 ~ 1 N) 
CALL ~MLLO(EI\,lDC.ATP.IOA,A.IDBoL•~•L) 
r A I t i ' ' I I l \ I • r f' 1'". - A T C) I i""" A . C I I~ U _ I . U . -t \ 

r-' 



.J2(; 
:i 2 l 
3 2Cl 
.:J2S. 
.3 :3 1,) 
3 31 
.332 
333 
.334 6 

!:) 

LO ~ l=ltl 
lO ~ J::l,L 
l N ( I , J ) = f: I'; ( I , J ) * l • C 0- 2 C 
CC.I\llf\LE 

CALL 1-'li\\D(l:l\,lkC.II,L,DETAtlV.ltl'tl2) 
ClJ c I=l,L 
DC t. J::l,L 
E: N ( I, J ) :: E 1'-. ( I, J ) +1 • 0 0- 2 0 
COI\111'-.l.E 

335 CALL ,.ML;LO(C.lCC,EI\,IUA,UoiDE,Lololl 
C CC~PLTE ~[SCLAL5 

3.Ju CALL t-Ml.LD{.AC,ICC,.A,l!JA,C,IDC,~,Ltl) 
337 (.ALL t-Sl.;EU(\I.ICCoACol!JA,F,ICC,Mol) 

L ~C,.PLTf A FCSl~RlC~l VAHIANCE ~ACTCR 
33U CALL lf;l\~lJ(\lol•\t,IDAot-1.1) 
~3<.J CALL ,.IJLLD('-ll=.l,VT,1,PtiD8,l,M,M) 
340 CALL NMLLD(\F,1ovlP,l,\I,IDBoloiJtl) 
341 IDF=t--L 
J42 .AP\F=\IF(l)/ICF 

L C(t-PUTE VARIANCE CGV.AklANC~ MATRIX CF CCEFFICIENT 
343 CC 10 l:loL 
344 CO lC J=loL 
34!::1 CC\IJIF([,J)=.tFVF*Et..(I,J) 
34t lC CGI\111\UE 
347 16 ~El~~l\ 
34H Et-.C 

34 <J 

350 
.j~1 
3 5 ;_ 
J <~ ~ 

3 = '• 
J"-"' 
350 
357 
35!3 
35<; 
JlO 
Jul 
J62 
3(J3 
3t;4 
J(: ~ 

(. 

5 Ul::i f.. L \,; T If\ E C H C. L C ( .A , 1 h C A , N A , C ETA , * ) 
c 
c H[ LS( Cf Tl-15 ::iUU<CUl INL IS CPITlLt-.AL 
L MAlhlX lN\tEh~llf\ ~SING ChCLESKI lJECCMPGSITlUN 
c 
L l~l=ll A~~LM[~l~ 
C. A= .Af,f<AY Clf\lAlNI"G 1=~51;'1\/C DEFINITE S"t'IO~ET~l<.. INPUT MATHIX 
C lRC.A = ~0~ Cl~E~Sill\ CF AkRAY CONTAINING INP~T MATRIX 
c NA = ~IZC C~ l~F~l IJATRIX 
C L~lF~T ~~~U~E"l~ 
C !JElA = DElE~~~"~NT CF lh~UT MATRIX 
C A: CCNTAlN: ~~~ERSE CF INPUT ~AThlX (11\P\,;T DESTROYED) 
L * = Ef<kG~ f<llUf~f\ (T.tKEN IF NA .LT. 1 OR lF DETA .LT. SING) 
c 

DlUEL~ ~FECISllf\ ~.CETAoSUM.SORToOSGRl,A8SoDAUS,SlNG 
OlMEI\~ILf\ l(l~(~oNAJ 
SGRT(~Uf\IJ=C~Qkl (Slfll) 
~~S(CET.AJ = DAE~(CElA) 
t:ATA ~lt-<.dlC-!:C/ 

C L~CLESKl CECUMFlSITlt~ Of INPUT MATRIX INTO TRIANGULAR MATRIX 
•. :(f\A ell. 1) GG lC 18 
GE:TP = ~(1tl) 
A(l.ll = SGf.T(t(l,l)) 
IF(NA oEGo 1) GC 10 6 
CC 1 1 = 2 ,1\A 

A(lvl) = A(!tl) I A(l.l) 
DC 5 .J = 2ti\A 

SL."' = c. 
j 1 ::: J -
DC ~ I< = l,Jl 

;; SLM:: ~LM + A(J,l<l ** 2 

uC0C7260 
00007270 

\)0007280 
00007290 
OCOC7300 
uooo1:;1o 
00007320 
00007330 
00007340 
oooo73oO 
00007~50 
00007370 
00007380 
00007390 
J0007400 
00007410 
00007420 
00007430 
OOOC7440 
00007450 
00007460 
OC007470 
00007480 
OCCC7490 
0 oc -, 1500 
00007510 
00007520 
00007530 
00CC7540 
00007550 

,.... 
w 



.3(;6 
367 
3U:l 
3t~ 
370 
371 
372 
373 
.H4 
375 

37il 

377 
.3 7U 
37<; 
3eo 
381 
382 
3 8.3 
384 
385 
38ti 
3b 7 
3t•tl 
389 

.3Yil 
J<,l 
392 
3~3 
.3Y4 
395 
3<;t.. 
3~7 
J~d 
.3<:;9 
400 
401 
402 
403 
404 
405 
40(: 
407 
408 

409 

3 
4 
c:: 

A(J,J}-= ~(.Of:T(A(J,.J) ·- SLM) 
lJ E 1 fJ -= 0 E 1 A * ( A ( .; , J ) - 5 \., 1•1 ) 
lf(J oll..lo NJ'I) GC TL; 5 
.J2 ::: ,J + 1 
lJ(. 4 1 = J2ti'fl 

SLM = C. 
DC ~ K = 1 , ..J 1 

Sl~ ~ ~L~ + ~(I oK) * A(.J,~} 
A(loJ) = (t(l,J)- SU~) / A(J,Jl 

CCI\li"LE 

6 lf(AO!(CETA) oLlo SlNG) GC TC lf 
C 11\~EHSICN OF LC~E~ TRIANGULAR MATRIX 

CU ? 1 : 1 t I\ A 
A(l,l) == lo .I A(l,l) 

7 CCNlll\uE 
lF(I\A .EGo l) C:C TC lC 

1\ 1 ;:; 1\A - 1 
ou s J ::: 1 • "1 

Jc = J + 1 
DC c; I = .;2,".4 

Sl.M ::: Co 
11::: I - 1 
DC: € K = J , 11 

£l SLtJ. =SUM+ A(t,KJ * A(K,J) 
S 11 ([ , J .t .: - J! ( I, I) * SUN 

C CCNSTRUCTIQI\ OF 11\~ERSE OF INPLT ,...ATRlX 
lG DC 15 J:: t.NA 

IF(J .t:a. 1) GC 1C 12 
J1 = j - 1 
DC 11 1 ·= loJl 

11 A<t .. n = J'I< • .IJ 
12 DC 14 l = J,,.._, 

.': lM ~ C • 
CC 1:! I<= loNA 

1.:! SL,...: Sli,_ i A(K,~) * ll(t<.,J) 
l<'l A(l,J) = Sl..fl 
lt <.CI\Tll\l.E 

HCILRI\ 
1~ ~~lll(f,l7) DEl~ 
17 Fl~MAl(lOX. • 5lt-GLL-~ MATR[X 11\ CbGLOo OET =1 oE20.5) 

RElli~" J 
lt: 111r.lH:(6d9) 
19 FGRMA1(1CX,•M-1Rl~ GF OlMEI\SlCI\ ZERC 11\ CHCLD 1 ) 

f..iETl.j-;1\ 1 
E::"D 

OC007570 
00007560 
OOCC75tl0 
JOOC7590 
00007600 
00007610 
00007620 
\JC007630 
00007640 
oooon.5o 

00007€60 
00007670 
OC007€BO 
00007690 

00007700 
00007710 
00007720 
00007730 
00007740 
00007750 
00007760 
00007770 
00007780 
00007790 
00007800 
00007810 
00007820 
000078.30 
00007840 
oooo7eso 
00007860 
00007870 
00007880 
OOOC7890 
OOOQ7c;Oo 
OOOC7910 
0000'7920 
00007930 
00007940 
00007950 
OOOC7ii60 
000C7970 
OOCC7<;tJO 
OOOC7c;<.;o 

S~U~CLrl"l C~T~C("ofloSJGMf,PHI,~ROoSlGMAFeVFC,NPColi\D~X,V,SL~D,Fo~OOOC7370 
&, ,1\Lf- i.At <.,!:Uiw'C.SC2r'~TDP,lw) 000073~0 

C Tl-l!:l SUEI'L•;TlNE CJf.Olt-UGCNALlZCi THt ii'ATRI.X PHI LiSII\G THI:: (.,i<AM-SCH~IDT OOOC7390 
C ~ETI-LC, Cl''Fl.TE!: TI-E fOLikiE~ CCEFF1C1ENTS OF THE CRTHUGONALlZEO MATRIXOOOC7400 
~ Dt::ldvES TI-c; <.UEFFlClEf\lS Gf t- tl,CC,.,FUJES THE VARIJit-.CES UF ThE FOUE<lER 00007410 
l ~CEfFICl£~~S A~C T~E VA~lANCE·CCVARlANCE MATHIX OF THE COE~FI<.lE~TS OOCC7~20 
~ lt-PLlS : oooc.-.430 
L l• PHJ(LPllGI\J'IL - CCLL{; 1:3E t'UI\CTIGN SlJ8f::RCGfiAN lNSTEAC) -ANN BY M OC00/440 
C ((J 1\ T /l i f'. 11'-4 G Tt· E E ,ll S E F U t. L I t G N S LV A l lJ AT ED ~~ (J R EACH G 0 S E f-< VAT lU N 0 0 C C 7 4 50 
c 2. N- 11-L: NLIYBEI1 Gf COSERV/,JIUNS I 0000"7460 
l 2 • ,.. - l •· t 1\ L. "' li 1:: I' U F E A S E F (, r, C T 1 C N S i E C U A L C H G R t:. A T E H T H A N 2 J 0 0 C C 7 4 7 0 
<. 4 , W ... /1 V t C..: 1 1..1~ U F L E N G 1 H N l C N T A 1 N I N G l H E C 0 M P 1J T E D lr\ E I G H 1 F U 1\ C T ll N S 0 0 0 0 7 4 8 0 

c. • " ' :r r r "t At VA 1...1J E: S ~ _ _ ""' 0 0~ 0 7 4 t.; 0 

1-' 
~-:..1 



4 10 

4 1 1 
~~ 1 <:: 

4 l j 

4 l 4 
415 

4lo 
41 1 
4ld 
41'1 
~~ 2 I) 

421 
422 
42.3 
424 
'+ <:' ~ 
426 
421 
4~6 
424 
4.30 
431 
432 
4. ·~ 
434 

435 
4 .3 6 
~~ 3 7 
4..1J 

(.. 

(. 

(_ 

(_ 

l_ 

(. 

(_ 

(. 

L 

L 

L • ~ [ (, ·~ ;, - 1 r [ A F t< l C f. l 'vi\ I< l t. 1\ C F: r· .•\ ( T l fi 
-; , 1\ f' C - H· i~ ,.. A X I r. l.J tl I: C .. l~ 1 ld. 1\ ::.>l l. t, C F f-1 r· I 
i..;. :VI.'C- lll t<AXI~l.l<' CLllJf./H LI·IU,~.;[Lt'\ Uf- f..JH! 
~ . l h [ l X - P C f... .1 ! 1 ~ L F l I l ti A L T l ::. I f- G f~ ::0 1 A T I 5:: 1 l C.. A L S I (, h I t · I <... A r~ L l 

Ct- ~Lul~iCf< C.Lf:fl'lCICI\IS ••• , 
I f () , :; T fd 1 S 1 I CAL 1 l S 1 f- 0 f< t- C.lv R I U< CCL f r 1 (. I L f'. I S At. At, C L t-.l D 
L f l , I [ S 1 ::: A G A II\ :: l lJ 1·.1. 1 l to! E 1 T S SlAt, CAn 0 C E V I AT L L N 
1~ 2,1E51S AGAINST T~!CE I 1~ ST.CEVIATICN 
IF 3,1[~15 AGAINST Tbh[L TIMES 115 Sl .DEVIATICN 

l~PLIC[l ~[J\L*e<A-b,L-Z) 
1 C • I 'w - \\ f. 1 T l C l C E L ~ 1 t- ( C l rv F U 1 L ;, 

uoocn:oo 
uLOCl51C 
rJOOC7520 
OCCC75.JO 
OCJC75t+O 
00007550 
OCGC7560 
0000757C 
00007580 
J0007750 
00007590 

<.. ULlPLlS : JC007EOO 
<. lo ALFhfl- AI\ Mr'C fJY tl MATRIX CUNTAlNII\G Tt-C: ALPHA'S USEO II\ CLMPUT100007610 

lH[ l~l~UCCNPLIZEC MATRIX AND IN CCMPUTING THE COCFFlCIC~lS UF PHOOCC7620 L 
(. 

(. 

\.. 
L 
c 
(. 

(; 

.c 
(; 

(. 
(. 

c 

c• C - 1t-E M FU~~~E~ CUEFFICl~I\TS CF Th~ C~lhGGCI\ALIZEO ~AT~IX 00007630 
~. C- lt-E M <.OEFFlClEI\1~ UF ThE lNP~T ~Al~IX PHI UCOC7E40 
4. SU~C - lt-[ V~RIAI\CES Cf T~l F~URIE~ CCEFFICIENTS 00007650 
~. SU~O - lt-E V~~IA~CE-CUVARIANCE MAT~[X CF THC CO~FFlCICNfS 00007660 
(, ~C~ - lt-E ~QLA~ES CF ThE 1\C~MS CF ThE CRTt-OGO~ALlZED MATklX OC007E70 
7 1 Sl(;MM' - Tt-E FCUHIEf< PUL'rt-UMIAL A POSH:ORI VMHA,..,CC FACTLI< 00007680 
E. V - 1t-E N FESICU-LS OOOC7f90 
9. VFC - T~E CRIGINAL FCLYNC~lAL ~ PUSTEO~l VARIANCE FACTOR 00007700 

10. ~PC - ~LMEEk CF Tt-E CUEFFltlENTS OF Th~ OHlGINAL POLYNOMIAL OOOC7710 
M T E f' H E !: T P 1 I S l [ <.: A l T E S T l S FE k F 0 ~ME 0 •J 0 C 0 7 7 2 0 

11, 5TCP - VEC10k AGAl~ST ~HIC~ ThE AOSOL~TE VALUES GF ~CURIE~ 00007730 
tuEFflClt~1S AHE TESTED J0007740 

D l ~ E ~ ~ 1 C f\ /l L F ri ft ( ~ 0 , 5 C ) , 'to { 5 0 ) • F ( 5 C ) , C ( 5 0 ) , D ( 5 0 ) 
ClNE~tLC~ SU~U(~0,50)oSUNC(50),SC2(M).V(50),STDP(5UJ, 

:+ PHltec,ee> 
L TlST FO~ f\[(tTIVE EEG~EfS CF F~EEDOM 

IF (NoLT.MI GG lU !C:) 
OC10C7800 
00001810 
00007820 
OOOC7830 
oooo7e,~o 

OCGC785U 
00007860 
00007870 
00007880 
OOC07890 
OOOC7SOC 
00007910 
00007920 
l) 0 0 c 7 94 0 
00007950 
OCOC7960 
U0007S70 
00007980 
OCOC7990 
00008000 
00008010 
00008020 
OCOC80JO 
00\ 08040 
00008050 
JOOC8060 
00008070 
OCOC8000 
00008090 
UOCCBlOO 

K=l 
ALP r· A ( N , ~ ) : 1 • C 0 

C DET(f,f.'l~E TH .. /ILPHJ\ 1 S f'(f, COMPl..TI\TlON CF CRTH'GGCNALlZEO MATRIX 
lC CC 3 .,=t<,M 

LF(J,,._E.J<I CO 1( E 
.llLPI-P (I< ,I<.).: 1 • CO 
<:u lu 3 

6 ~C1=0 ,cc 
SC2(t<.}=C.DC 
SC3=C.DC 
DC 2 l=ltN 
P=Ph L ( I , K I 
lF(KocCloU <;u 1C 4 
K1=K-1. 
CU ~ J1:l,Kl 

5 F=P+ALP~-(Jl,K)~P~l(l,Jll 
4 .oC 1 =:.. C 1 Hd l ) ·:c PH I ( 1 , J) *1-J 

S C 3= S C 3 if ( Z l* \\ t I ) >+ P 
2 ~ C2 ( ,; ) :;: C 2 (I<) +I'd l ) * P * * 2 

ALP H A ( J • K J ::: - S C 1/ ~ ( 2 ( K ) 
ALPhA(I<.J)=~LFt-I(~,K) 

:; lCNlli\UE 
L DElE~~l~E TtE fCU~lER CCLFFICIE~TS FOR THE GRT~UGONALIZED MATRIX 

((Kl·=~L2/SC..2(K) 
K=Kil 
lf(~.u;.2) co 1c ~4 
lT(K,LTo2) CU TC lC 

C D E l i ~ r.' l 1\ F l I· E to I ~ f· I< ' ; ' ' r r : ~.~ ' • '·! r··' 'T 1 •.' c. r ""' r. r E F 1= 1 c ~ EN 1 s or PH 1 

i-' 
w 

'"" 



4.::~ 
440 
441 
442 
443 
444 
44~ 
446 
44 7 

'"4d 
449 

450 
451 
4!:2 
45.3 
4e4 
4b5 
45c 
4b7 

4EU 
45Y 
4tJO 
461 
4t2 
4(.3 
464 
465 
466 
4t: 1 

4 (" d 
4b~ 
470 
4 71 
472 
47J 
4 74 
475 
47u 
4 7 1 
478 
47<; 

'• 80 
481 
4o2 
463 
484 
4t!5 
~+au 
487 
4t-8 
4t:':l 
4<.i0 
491 
4<;.12 
IJ.~'l 

.j K= I<- I 
<; J L= I< 

JJoC=JK-1 
..i .,= K- JK- 1 
CL e Ll'l=loJJ 
JL= JL-1 

E. ALP 1- A ( J K , K ) ::ALP !· f\ ( J I< , I< ) t A L ~ H A ( . J k:. , j L ) * A L 1-' H A ( K , • I L ) 
lf'(JK,oi\Eell GC TO<;. 
lHKeLTofvl (;C lC 10 

C DElE~MlhE 11-£ LPSl fU~~lLR CUEFflCllNT 
34 SC2(K)=C.DC 

SC3=0.DC 
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II. 2 Least Squares Polynomial Appr;1xima tion o1:: ObsP!._"~Pd 
Time Series 

Figure A-2 is the flow chart describing the program. 

The program uses any number of constituent frequencies - ICON 

and the required number of coefficients is computed from 

INPUTS 

lst card: FORMAT Free, contains the following: 

M - number of observations 

ICON - number of constituent frequencies 

ITEST - code for testing Fourier Coefficients 

0 - for no test 

1 - test against its Standard deviation 

2 - test against 2 times its Standard deviation 

3 - test against 3 times its standard deviation 

ICON cards: FORMAT(lOX, F15.6) 

Each card contains one constituent frequency. 

ICON cards: FORMAT(5X, Fl0.6, 5X, Fl0.6) 

Each card contains the nodal(modulation}factor 

and the astronomical arguments required if 

harmonic constants are to be computed. If 

harmonic constants are not being computed, 

these cards should be omitted. 

M cards: FORMAT(5X, Fl0.3, 5X, Fl0.3), 

each card contains the observed height and 

the time of observation. 
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SUBROUTINES: 

The Subroutines used are APPROX and ORTHO as in the 

prevtous case. 
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~igureii-2 Polynomial Approximation of Observed Time Series - Flow Chart 

L~TA~~--=]-~ 
COMPUTE REQ. NO. OF cOEFFS. YES 
iS DF NEGATl VE? . 

I F0~1 VANDER1•10NDE' s f!ATRl X 
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l-
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PRINT 
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CALL l 
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1---------)- HAR~1Ui~IC 

CONSTAt!~~ 
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I CONSTANTS HEEDED? 

\No _ _____j 

~- ·------
~---'----

PRINT RESULTS ~ 

...----·--- ------------·----
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PRE.:DlCllC.I\ CF 1-t::lGttTS I..Sli'IG THE PlJLYI\U"'l~L FLR SOME TIMi..: 11\TE:~VALS 

111'lTE(E,1..32) 
1'tf~1Tl(t,lJ2) 

CC 4~ l=lo':C 
TP=l 
Flll(l):::l.O 
t.:C 4E t<.::1.tCt"' 
J(=2*!<: 
.J!;=2>tl<t-1 
t-:hl(.J():CCCS(I\(1< l*lP) 
Flll{J~)=C::>ll\ (V. (K l*TP) 
CLI\ll"l.JE 
Sl.t<=C 
~ l.. IV 'v A= ) 
CL 47 IF=lol 
Fh:((JP)*PI-l(IF) 
PV=Prl( lFl*.>t~li<CC.vAR(IP.lFl 
~ufo=!:L.IV H·H 
~l..fW'v/l=SL~V/l-+FV 
CCI\T 11\UE 
~TO=C~Cf.l(Sl.t-VJI) 
~<ol:(l1E(6,131)1Po5l..M,STD 
CCf\111\UE 
CC 4E: 1=1,L 
'A F< IT 1: ( 7 , 4 2 )( (l } • CU V AFd l .I ) 
CCI\111\l.E 
FC ~IV .111 (!: >, C: l le 1, 5X, E 11 • 4, 
Fuf:MAT ( '1' .l!:X,.'t--CU~LY FI-<LCICT 101\S IN ThE: TIME 11\iiERVAL' l 
rORMAl(l.lo~.>c,•·tlPIL IN HCl..HS 1 o5Xo 1 Ffi. t-EIGHTS 1 ,5Xo 1 STD. EfiJ.i. OF 

• r r: • I· L I ll- T :;.: • l 
f-u J... M /ll ( I , B ~ , f (; • 2 t <;X of 6 •::! o 1 2 X t F 1 0 • 5 ) 
Fl..i ~ M II 1 ( 1 / t 5 >< • 1 f U l.l< H. R C 0 1: F F 5 o 1 · t1 0 X • 1 \1 11 f' l AN C E S 1 l 
fL~~Jil(/,5X,Ell.4olOX,E1lo4, 
fC~MAl(//tt~.•vEClC~ CF C~lGlN~L CCEFFICl~~lS') 
t-Cf.MJl(.lo5X,El1.4) . 
FL~fWJll(//,~)1,•\/Af.OlANCE CCV.Af<lAI\CE ft',ATRl.>< CF CRlGli'<AL CUlf'f-•') 
FC~MJ1l(.l.lo5Xt 1 VEC1GR OF ~E:SlOUAL5') 
IF(hrC.ECeC)~Q TC 41 

CG :!3 1.:2,Lt2 
J=I-+1 
IA-=1/<: 
FH/I~~(lJ)=CilTA~2(C(J),C(lJ) 
l(l/11=1•/(FI<.( lA)-4<DC.CS(PHASE(lA))) 
t K ( l A ) . .:: ( ( I ) H3 ( l A ) 
\Kf.(lAJ:2.+Fl-V~R(lA) 
~Kilf.A(lill=VKR(IA)-P~ASE(lA) 

1.: P ( 1 , 1 ) = ( 1 .I ( 1 • + ( C { .J l/ C ( I ) ) .; ~ 2 ) ) >t ( - 1 * C ( J ) /C. ( [ ) * * t: ) 
t.!l= ( 1, 2) = ( 1 .; ( 1 • + (C. ( .J) /C ( l) J * :t2) l * 1 .IC (I) 
::: 1 OJ. H ( I. /J. J::: t: P ( 1 , 1 ) * * 2 *CCV A R ( 1, 1 ) -+ BP ( 1 , 2 ) * * 2 *CU V Af< ( .J • J) 
t:A(1 dl=ltlfl<( lAJ*DCCS(FI-IASE(IA)) 
E A I 1 t ~: l :: (( 1 H D S 1 f\ ( PH I~ 5 E:( I A ) ) / ( F K ( I A ) *DC 0 S ( PHASE ( l A ) ) * * 2 ) 
~ l l 1'1 /l t ( l t } = E J. ( 1 , 1 J + * 2 *C. t: VA I' ( l , 1 ) + E A ( 1 , 2 ) * * 2 + 5 I G M AF ( I A J 

t..LI\111\LE 
I-I; l I' T 1 1: <: 

r c ~~ M. .ll < 1 / , = )I • • c c "s 1 1 l u E" T • , 5 x , • A~ F L 1 1 u o E • • 5 x , • s 1 G I'A A AMP L • • , 1 ox , * 1 PI-I\!:L LtG 1 .~X, 1 S1Gft'A Pt-ASE') 
lH.: 24 1<=1 t [(C~ 

1-' ..,. 
'.:.. l 



1 5 ') 
ltJ() 
l () 1 
lb2 
16.3 

1 t 4 
leo 
lt(; 
1(;7 

tea 

lf:~ 
1 70 

l 7 1 
l 7 c. 
1 1 J 
1 7 4 
l 75 
176 
I 7 7 

1 7e 
1 , ... 

1 (j u 
1 tll 
1U2 
1 tJJ 
1 fJ /j 

l ~ ~ 
]{l(; 

liJ 7 
lUU 
lb'> 
1 y \) 

1 91 

l <.: ..; 

j4 
I. 1 

<.. 

<.. 
(.. 

(_ 

L 

<.. 
L 
( 

;. K /.f.' A ( I< I= X K /1 FA ( K ) * 1 8 0 • / F l 
:; 1 C ~. ~ f ( I< ) = C 5 r.: 1-i T i S I G M AF ( I< ) ) * 1 E 0 .1 P 1 
:: I G i-! ~ ~ ( I< ) = C !: G f< 1 ( S 1 G tv /1 A ( K I ) 
f-' h II\ T I 2 2 , w ( K ) , r- K ( 1< ) , S I G tl AA ( K ) , X K A P /1 ( K ) , S 1 G tv AF ( K ) 
F- L ~ IJ. f. T ( I I , ::; X , F 1 2 • L , 3 X o F 1 0 • c , 5 X , E 1 1 • 4 o 1 0 X o F I ;;_ • 6 , !";;X , t:: I l • 4 ) 

CCI\T 11\Uf: 
C.U·T lf\.UE 

~TCF 
ENC 

Suf~CLTli\L ~FP~GX!L.~,A,F,FolN,CoVoACoUoCOVARoAPVFl 

~~~*~~~~~*~~~~~4~*4***~~····~************************************ * lHlS 5LU~OL1[N[ CCES Tt-E LEAST SCUARES APF~UXIMATlGN * 
>+ U- Tt·C G lVU; FLI\CT lUI\S AI\LJ RETUR/\S THE VECTOH Uf COEf * 
* f- 1 C I l N 1 S T L C E 1 t- f: f< 11\ 1 l H T t- E V ~ 1-< • (. C VA E MAT f~ (X * 
~*~·~··~~********~************************************************ 

li\-\FL l<. IT REPL*ci.0-1-,L-Z) 
C I l'l 1\ ~ I C 1\ ~ ( t iJ , (, 0) , P ( 6 0, t. 0 ) , EN ( t C , (; 0) , A C ( 6 0) , (.. ( 6 0 ) t F ( 6 0) , * CwvP~(6CotC),AlP(c0,60),Af{6CotO),~TP(l,60J,VF(lJ,U(60), * Iwl(tC) .IW.C:(t:O),"l(lo6C),V(6Col) 
lFiC/1= lC/J= lCI::=ICC-=60 
CALL 1~/\EU(PltlCEoAtiOA,~tL) 
C 1\ L L t< i>1 I.. l 0 ( ~ l P , l C C • A T , I C A , P , 1 0 8 , L , M , tv ) 
tALL fvML.LO(EI\tlLCo/ITF.ICA,AoiDEol•"'•L) 
CALL t-'Ml.LlJ (L. t ll.C ,A1P .IDA ,F t IDBtLoMol) 
CALL tvii\"()(EI\,IhO.A,L,OtTA,ll'lltl'1.2) 
CALL t-11-IL:LO(CtlOC,E..I\tlDAtUolDEtLol.l) 

~ CL~~LTE ~ESCLALS 
CALL />IM\..LO (AC,lOC,~.IOAoC,ICC,~,L,l) 
(tiLL t<'SUEIJ (V, ICC oACo lOA.F, lDCtMo 1) 

C CCI'FLTE P ~lSTERlC~l v.A~I/Jf\.CE FACTC~ 
(~LL J"~f,~UI\ItloVelUAtf'iol) 
CALL r>MLLD(IJlPtleVTtlePoiDE!tloM,~) 
CALL ~~LLLJ(vF, loVTPoloVelD8oltfVol) 
ICf=fw-L 
.APvF=VF ( 1) /I CF 

c Cl~P~Tl VARl.ONCE CCVARIAI\CE MATRIX CF CO~FFIClENT 

t. 

(_ 

CC lC 1-=l,L 
CC lC J=loL 
CU'oftf. (I oJ) =~FVf *EN ( J ,J) 

1-: CCI'.TC1\l..E 
I ( f; L 1 l. r; 1\ 

CI\C 

S LU ~f.. l f 1 f'. [ CRT 1- C ( f'. , t<, 5 l G M A ~ F H I , f.' R C , S I G MAF- o V F C , NPC , 1 f\. uE X, V, !J UM () t f , W 0 G 0 C 7 3 7 0 
ooC,tL.f.HAo (,!:UfvC,SC?,SlOF, [V.J 000073F30 

L Tt-lS !:UU<lLllNt Cfdi-G(Cf\AlllES THE t.'ATfdX PHI USING T~E GRAM-SCHMIDT <.)0007390 
C Mfli-CC, <:u.q=LlE~. TI-C: fUURlE:k CCEFFlClEt\TS lJF THE OHHOGGNALllt:.U MAThlXOH.l07400 
L UL~I~lS TI-l L~~FF-IClEf\TS C~ ~t-loCCMFUlES TI-E VARIANCES CF THE FUUHlER OUOC741G 
C CC[ff ICllf'.l~ ANC 11-E vARIANCL-CCV/I~l~NCE MATRIX OF THE CCEfFICIENTS 00007420 
L li\FLlS : vCOC7430 
L 1. ~~il(tt11ILI\AL- (CULL: P.E f\..1\CTICN SlJ8FRCCf<AM lNSTEAC)- ANN BY M OCCC7440 
c C.UI\T,-11/\lf'.C: TH E.:ASE fUNCTlCi-iS EVALliATED FGR EACH Ct:l~ERVATIOI'. 00007450 
t. ;;. N- H-E I'<Lt<UE:~ cr U..:Sf:~VftTILI\S JCOC74b0 

I-' 

'"" Gl 



192 

lc,i:J 

1 <;14 
195 
1',{: 

1 <;. 7 
1 y d 
lS~ 
2(..0 
201 

·202 
203 
2 0'4 
~05 
206 
207 
2013 
<2 0 Si 
'1 0 
' 1 1 
212 
21..:! 
1:14 
215 

2lt 
21/ 
.• , 1 .. ..~ 

c 
c 
<.:. 
c 
c 
c 

(. 

c 
L 
L 
c 
c 

..: . 
4 • ,-
:J • 

c. 
7 • 
t: • 

<; • 

~ - l~l ~~~DE~ UF EASE fU~CTIC~S (EQ~AL C~ G~~ATEH THAN 
~ - ft V~CTCR CF LE~GTh ~ CC~TAINl~G l~L COMPGTED ~EIGHT 
F - FU~CTlCNAL VALLES 

2) JOOC7470 
FU~CTIONSOCCC7480 

00007490 
OCOC7~00 
000075\0 
00007!:20 

5lG~A- T~E A F~lC~l VARIA~CE fAtTC~ 
~RC - l~E ~AXl~UM RU~ Dl~E~~lC~ GF FHl 
MRC - l~E ~AXI~UM CULU~N DIME~SICN Of PHI 

INCE)t ~(~Mil~ C~TlCNAL lE~r FC~ STATISTICAL SIGNl~ICANCE OG007530 
U~ FLL~1ER LUEFFIClENTSa••• 00007540 
lF Q,51A115TICAL TEST fOR fCuRltR CC(FFlClENTS A~ANCUNEO OCOC7~50 
IF l,TES1S AGAINST UNl TIME ITS STANUA~O OEVIATICN 00007560 
IF 2,TES1S AGAINST TWICE ITS ST.DEVIATIUN OCOC7570 
lf J,TES15 AGAINST TH~EE Tl~ES 115 ST.OEVlATlL~ OOOC7EUO 

l~PLlCIT R~tL4E(--b,O-ZI 00007750 
C 10. l~ - ~~liE CCCE CF T~E CC~PUTE~ 00007590 
C OLTFLTS : 00007600 
L 1. ALHi.C- AI\ MHC EV tJ MATI~[X COI\lAII'<ING Tt·E ALPHA'S U::it;D IN COMPLT100007f10 
C T~E CHl~OCC~ALllEO MAl~iX AND IN CC~PUT[hG THE CUtFFIClEhTS OF PHOOOC7f20 
c 2. (- l~E ~ FOU~IE~ COEFFICiENTS OF THE L~l~OGUNALIZED MATRIX OCOC7E30 
c ~. C- l~E M CUEFFICIENIS OF THE IN~ul ~ftl~IX Phl 00007640 
C 4. SU~C- 1~E VARIAI\CES Of THE FOURIER COEFFICIENTS 00007650 
C ~. SUMu- THE V.C~IANCE-COVARIANCE ~AT~IX CF THE COEFFIClENrS OOOC7t60 
C to SC2- l~E 50Lt~E5 CF Th~ hUR~S OF THE CRlHOGCNALlZEG MATRIX 00007670 
C 7. SlGMAF - T~E FCU~lER PCLYhOMIAL A POSTECRI VARIANCE FACTOR OCOC7680 
C t• V- l~E N ~ESlC~ALS 00007€90 
c 
L 
c 
(. 

<;. \iFC - H-E lHlG 11\AL f-GLYNC~lAL A POSTEORI VARIANCE FACTOR 00007700 
lOa hPC - ~LMEEH CF l~E CUEFFICIE~TS CF THE ORIGINAL ~CLYNOMlAL 00007710 

AFTE~ TtE STATISTICAL TEST IS PERFORMED 00007720 
11. STUP - ~CClU~ ~G.C[~ST ~H[Ch T~E AESLLvTE VALUCS OF FUURltR 00007730 

c CUEFFIClE~lS ARE TESTED 00007740 
Dl~E~Sl(~ AlfHt(eOo60),.(60),F(6Q),C(60),Q(cO),SuMC(60lt 

* S U fJ C ( t. 0 , t 0 ) , !: C ~ ( C. 0 ) , V ( t C > , S T DP ( 6 C ) t F 1-i 1 ( 6 0 • 6 0 ) 
C TESl FUh ~E~ftTl\E CEG~EES OF FREEDOM 

It' (1'\aLloM) GC 10 lCO 
1<=1 
~LPhA(~ ,l").:l.t;C 

C UEJE~~~~E T~E ALPHA'S FLR COMPLTATlON OF CRThCGC~ALllEO MATRIX 
10 CC 3 .;:t<.,M 

lF(J.I\E.I<) CO lC f 
ALPhA {I< , I< ) : 1 • C 0 
GO 10 ~ 

t S(l=C .CC 
SC2(K):::C.DC 
sc3=o.oc 
cc ;:: t~l.~ 
P=P hI ( I ,I<.) 
lf(KaEG.lJ C:U TC 4 
1<1=1<-1 
CO :, Jl=l,Kl 

L F=Piftl~~~(Jl,K)~F~l(l,Jl) 
4 SCl=SC.l+II(IJ1<PI·d{loJJ*.,.: 

S C J., :.; C 3 t f ( 1 J *Ill ( I H P 
£ S C 2 ( t< ) = ~ C 2 ( I< ) + ~ ( I ) * F * * ~: 

~LPI- A( .. oi<J=-SC l/SC2(K) 
ALP H ft ( K , ...1 ) = _.l F t- J. ( .; • I< ) 

, CCN'T 11\\...E 
C UllE~~~~L l~l flU~l(~ CCEFflC(E~TS FO~ lHE C~ThUGG~ALlZED MATRIX 

<- (K J=~C.?/S(;:( I<) 
K =K + 1 
IFtlll_r-i_.;;l (:[J l( .24 

OOCC7800 
00007810 
00007820 
OOOC78JU 
0000784 0 
00007850 
OCOC7860 
OCOC787C 
00007880 
00007890 
OOOC7SOO 
00007910 
OCOC7<.i20 
00007940 
000 C7~5 0 
00007960 
00007970 
OCCC7<;8Q 
00007990 
000080•.)0 
1)0008010 
00008020 
a:ccecJc 
OOOCB04U 
OCOC8050 
OOOOtlOuO 
OOOC8070 

_o o o c e Otic 

f-1 
~ 
~J 



C:. 1 '.1 

<' 2 0 
.: 2 1 
2 ~-- 2 
L ;: .J 
i L 1~ 

~25 
Z2o 
221 
c c:e 

2.2'7 
z..;o 
c. .: 1 
<;..;2 
·t::...--
2..14 
") -~ r::; 
,_ __ 
23(.; 
231 
cJe 
2::.'} 
2ql) 

2 '• l 
242 
£:: '• J 
244 
24S 
~- 4 t.: 
247 
24B 

24'-1 
2SO 
251 
2t2 
253 
25 4 
z:.:t~ 
256 
2!;7 
2.5t 
2~9 
2 {,t) 

2tl 
2b?. 
2(;3 '6 ,. 
2t5 
2Ct 
2<J7 
26 f: 
2t<; 
270 
2 '1 
.-.. -,. .·_; 

IHI<.LT.;:) CU lC 10 
C DElE~~~~~ r~E ALP~''S L~lC (N CGMPUTI~G lhE CGEFflCIENTS UF PHI 

.JI<.=K- 1 

000Cd090 
JOOCelOO 
OOOC8110 
CCCC8120 
OOOC8130 
OOOC81'~0 
OCOC8150 

s ~l=l< 
J~·=JK-1 
" ,J::: 1-- - J K - l 
CC c Ll'<~l,JJ 

JL=JL-1 
t f. l P 1- A ( J I< , K l= A l F r A ( J K , I< ) +A L F h A ( J Y , J L ) *A Lf-' f Jl ( K , J L ) 

lF(Jt<.f\Eol) Gl 10 S 
I f' ( I< • l T • t• l C 0 1 C l 0 

C UElEh~l~E Tfl L"Sl FCL~l[~ COEFF!C!E~T 
34 SC2CKl:=o.uc 

~CJ=G.CC 
c c 7 1 = 1 • ~~ 
~::::PI-l(l,kl 

K 1= K- I 
CC 1 .J:l,Kl 
F::P+Al~t-.JI{.;,KHFhl.( I,J) 
~ C2 ( K ) ::: ~ l 2 ( I< ) + ~ ( 1 ) * P * * 2 

i ~C3=.SC3-H(l)*l\(l)*F 
C(K):::~C::tSC.C(I<) 

C UtlE~~l~£ Tf't CCEFFICIE~TS UF PHI 
lCEI<T=l 
lCOl~1:::C 

lOCC CCNTll\u[ 
cc 13 1=1.~ 
[([):(({) 

IF(l.E:O.tv.l GU lC 13 
l I= I-+ 1 
cc 14 J=lltt' 

14 CCI }:C( ll+ALPhP(l oJl*C(J) 
12 CC.Nlll'lJE 

<.. Clt~F~ll T~E VA~IA~CE CF T~E FGU~IER COEFFICIENTS AND THE 
C M~l~lY Lf J~l lllffJClEN~S 

UlJ l!;; I-=1•" 
CG 1~ J=I,r. 

1 ~ ;; lJ~·1 C ( I , J ) .: C • D 0 
~C4=C .DC 
cc 22 1=1,1\ 
FI'=C.CO 
cc cl .;=1·" 

c 1 F r-= F 1'0 t C ( J ) * F 11 1 ( 1 , J l 
. \1(1 l=f( lJ-FI\ 
v2=v<Il~*2 

~2 ~t4=SC4-+\2*~< ll 
SlGMAf=5C4/l~-,.~1CCl~Tl*SlG~A 
v f <.. = ·; 1 G 1-1 /l F 
IF( lt;f:Kl.l:(,o2) vFC-=~C4/{N-I\I=C)*!:lGMP 
1 F ( 1 i'~ C E X • ~ G • 0 l I' P C .: N 
Cl cU l=l,N 
SUM({ l)=~I(NAf-ISC<:( 1) 
lF( IDEKToEColl GC TC 28 
lF( C ( 1) .,u~ .CDC) Sl~C( I )::O!JC 

2E CCNTli\L[ 
cc <:3 I=I,/v' 
DC 2..3 ,=1,1 
DC 22 ·,::J,I 

~~ SUM0(0,K)=SLMD(-,KltALPHACJol )*PLPHA(K,ll*SUMC{l) 

000C8160 
OCCCel70 
OOOC8180 
OOOC8190 
DCCCc200 
00008210 
CCCC8220 
OOOC8230 
OOOC8250 
JCOC8260 
0000!:3270 
OCGC!:J2tjQ 
00006290 
occcs:::oo 
00008310 
IJOOC8320 
OOOC8330 
OOOC8340 
OCCC8350 
oooca:;6o 
OOGC8J70 
OOOC8380 
00008390 
00CCe40C 
OCOCS410 
OCCC€420 

VAniANCE-COVAOOOC8430 
Q000t:l440 
OCOC8450 
000013460 
OCOC€470 
OOOOtJ4oO 
OO<JC8490 
OOCC8510 
00008520 
OCGG8530 
00008540 
JC008550 
JCOC8560 
00008570 
J0008580 
OOOC8590 
OCCCE60C 
00008610 

00)C8630 
00JC8640 
OOOC8650 
oooost;uo 
ococet:·tc 
00008680 
00008690 

'--' 
,_. 
('f.) 



27J 
274 
~7!: 
276 
277 
27tJ 

~7<:; 

2tJO 
201 
2b2 
2t13 
2t14 
2e~ 
e:.ee: 
2b 7 
2e8 
2t1Y 
2<;0 
2<;1 
.1::.'12 
2s;3 
294 
2<.i5 
2iii(: 
2.~1 
298 
2~9 
300 

cc ~4 1=1·" 
1 r= I+ 1 
lf(li.Glo/11) Gl 1G ::C 
CL G4 J=lTw/11 . 

2 4 !; 1.-M C ( .; , l ) = ~ L M L; ( 1 , J ) 
30 CCNllt-L.E 

L UPlll~AL C~ElK FU~ STATISTICALLY SlGNlflCA~T FOURIER COEfFICIENTS 
1 F ( l r-. C E )< • E C • 0 ) C U l C 4 C 

32 

31 

..3~ 

40 
lOC 
lC~ 

$1,\J 

If( lCEI<1oE:Co2l (C TL 40 
PlNCE)=CtLC~T(l~CEX) 
cc ::1 l=ltf.l 
~ TD 1-l ( I ) =f. II\ C E .l< * C S G t' T ( S U 1-1 C ( 1 ) ) 
lF(C.AL;S(((ll).LleSTDP{1)) GC TC 32 
<;C TG .::1 
((lJ=COC 
lCGL.I\1= lCOI.t--1 _.1 
~l.MC( I) =COC 
CCNTli\UE 
t-~C-=0 
DC .33 1=1,,_. 
Jf(((l).I\E:oCDOl NPC=l 
CCN T 1 1\LE 
1CEKT=2 
GC lG lCCO 
f.CETI..I-11\ 
~f;l TE (l~ ol 00: J 
F-ORMJ.IT(IO'•'*E:r<f:CH* 1\EGATI'YE CEGREES OF FREECCM 1 ) 

f'ETUI'I\ 
E t-D 

*** ~CNSTITLEI\T F~ECL~NCIES ~·~~+* 
2Ee'lt!4104 
3C.CCCCCC 
1J.s4::o::L 
15oC4l~tS 
14.S5C!S31 
3CoC8Ll37 
.C€.43S7:!C 

~t.: [ljHl t.H.: ~ E I' \IE 0 
7.4JCC 
1.30CC 
'· ..30 cc 
1.2()(;(. 

lo40CC 
le20CC 
7.:JOCC 
1 • 20 OG 
7.(;JCC 
1 • 20 c; 0 
'· 30 c c lelUCC 
I. 70 C C 
l.GUCC 
7.40CO 
1-1tiCC 

Tl~t: cF ces. 
2 .s:: 3 

10e2!:C 
lfo2EC 
~t:.J~O 
a .t::c7 
~5.00C 
41e2!:C 
47.25C 
;~.sec 
:'i.S17 
66.083 
H o417 
7e.5c:! 
84oe::3 
sl.cc:: 
<;;"lo417 

OOCC8700 
0000b710 
OCOC8720 
·JOO 08730 

.OCOC8740 
00008760 
OOCC8750 
JOOOS770 

JOOC87d0 
OCOC8790 
00008600 
acoceeto 
000Ct3820 
OCOC8830 
JCOC8840 
00008850 
OOOC8860 
OOOC8870 
\JOOC€880 
OOOC8890 
00008900 
OOOC8910 
00008920 
oocc9g.3o 
00008940 
00008950 
OOOC€960 
00008<;70 
ococec.oao 

1-' 
,!>. 
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11.3 Tidal Reductions 

Figure A-3 is the flow chart describing the tidal 

reduction computations. 

The program uses as input the following: 

the results of computations 1 and 2, that is; 

the coefficients of the approximating poly­

nomials Cr, CA and CB and their associated 

standard deviations. 

- the observed data at each sounding namely: 

the depth sounded (D), time of sounding (t) 

and the geodetic coordinates(~. A) or the 

local Cartesian coordinates (x, y). The 

observed data at each sounding are punched 

in one card and read into the computer one 

card at a time. 

The SUBROUTINE. PREDICT used in this program is different 

from the SUBROUTINE PRED. The subroutine predict uses 

prediction vector and predicts for one point at a time 

while the Subroutine Pred uses prediction matrix and 

predicts for all the points at once. 
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Figure II-3 Tidal Reduct10ns - F"low Chart 

READ DATA 

READ OBS. DATA 
(one set at a time) 
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(converts <P, A to x, y) 

COf.1PUTE PREDICl)ON 

VECTOR ( PHl} 

CALL PREDICT 
(Predicts range ratios, 
time lags and heights) r 

.• 

C0~1PUTE HEIGHT OF TIDE AT SHIP 

HWCE CDr·1PUTE REDUCED DEPTH 

PRINT RESULTS 

NO 
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III CANADIAN DEFINITIONS OF CHART AND SOI.!NDIW; DATUMS 

This appendix has been added to supplement the information given in 

Sections 1.0 and 1.1 of this report. The information given here has been 

taken directly from the Hydrographic Tidal Manual 1970 [Energy, Mines, and 

Resources Canada]. The descriptions and definitions presented concern tidal 

waters; for similar information regarding non-tidal waters, the reader is 

referred to the above mentioned reference. 

Chart datum is the datum plane adopted for a published chart. It 

is a low water datum which by international agreement is so low that the water 

level will seldom fall below it. It is the level above which tidal pre­

dictions and water level records are based. The datum is only used within a 

gauge location and differs from place to place depending on the range of tide 

or water levgJ_. 

For tidal waters, the Canadian Hydrographic ,Service has adopted the 

level of Lower Low Water Large Tides (see Figure III-1) as its reference for 

chart datum, and Higher High Water Large Tides as a reference for elevations. 

A sounding datum is the reference surface to which soundings are 

reduced during the course of a hydrographic survey. It is the datum used when 

compiling a "field sheet" for a survey. It may or may not be the same as 

chart datum. 

When selecting a datum, the following must be considered: 

(i) the datum should be sufficiently low so that under normal weati1er 

conditions there will always be at least the charted depth of water, 

(ii) the datum should not be so low that it gives an unduly pessimistic 

impression of the least depth of water likely to be found, 

(iii) the datum should be in close agreement with those of neighbouring 

surveys. 
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The following are the definitio~s of various reference surfaces 

(datum planes) and water level variations in tidal waters used by the 

Canadian Hydrographic Service. 

Graphical representations of several of these are given in 

Figure III-1. 

(i) Higher High Water Large Tides (H.H.W.L.T.) is the highest predictable 

tide from the available tidal constituents, with the astronomical 

(nodal)factor fk close to unity. 

(ii) Higher High Water Mean Tides (H.H.W.M.T.) is the mean of the predicted 

heights of the higher high waters of each day. 

(iii) Lower Low Water Mean Tides (L.L.W.M.T.) is the mean of the predicted 

heights of the lower low waters of each day., 

(iv) Lower Low Water Large Tides (L.L.W.L.T.) or Lowest Normal Tides (L.N.T.) 

is the lowest predictable tide from the available tidal constituents, 

with the astronomical (nodal) factor fk close to unity. 

(v) Mean Water Level (M.W.L.) is the mean of hourly water levels for a 

period of observations. 

(vi) Mean Tide Level (M.T.L.) is the mean of all high and low water heights 

over a period of observation. 

(vii) Charted Elevation is the vertical distances between an object and the 

reference surface of Higher High Water Large Tides. 

(viii) Charted Depth is the vertical distance from the chart datum to the sea 

floor. 
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