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PREFACE 

This "manual" is the second of three being written to cover the 

correct and practical use of the geodetic information of the redefined 

Maritime Geodetic Network. While the first manual dealt with a single 

terrain point, this involves two points and the observations between 

them. The third manual will centre on terrestrial networks (many 

terrain"points and observations amongst them). 

This manual was written as' ~ guide to the use and interpretation 

of geodetic information for two terrain points. It is to serve mainly 

as a surveyors handbook for Geodetic Position Computations in the 

three-dimensional, ellipsoidal, and conformal mapping plane environments 

in the maritime provinces. No derivations or extensive explanations of 

the mathematical formulae are given. The equations required to solve 

the position and associated error transformation problems are stated, 

the notation used is explained, and a numerical example is presented. 

A reader desiring extensive background information as to the relevance 

of this manual, and a detailed explanation of the origins of the 

mathematical formulae, is referred to the reference material. It should 

be noted that the material presented in this manual has been rigorously 

developed. Approximations made, and their affects are clearly indicated. 

Further approximations, for whatever reasons, are left to the professional 

judgement of the surveyor • 

• This "f.tanual" was written in partial fulfillment of a contract 

(U.N.B. Contract No. 132 730) with the Land Registration and Information 

Service, Surveys and Mapping Branch, Summcrside, P.E.I. 
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1. INTRODUCTION 

In "A Manual for Geodetic Coordinate Transformations in the 

Maritime Provinces". [Krakiwsky et al, 1977], it was shown that a terrain 

point i could be described mathematically by any one of three different 

sets of coordinates (three-dimensional (X., y z.),ellipsoidal 
l. i' l. 

( ~. , A. ) , conformal mapping pl~ne (Xl.. , Y.)) and their associated 
l. l. . l. 

accuracies (variance-covariance matrices). Furthermore, it was shown, 

by rigorous coordinate and variance-covariance matrix transformations, 

that the coordinates and associated accuracies in all three systems 

were equivalent. In this second handbook, we introduce a second point 

j, and treat two different problems involving i and j simultaneously 

in each of the three-dimensional, ellipsoidal, and conformal mapping 

plane environments. 

One of the problems - the so-called inverse problem - involves 

the computation of the azimuths, distance , and associated accuracies 

between the two points. A rigorous procedure for each of the three 

environments is given, and it is shown, via appropriate "reductions", 

that the solutions are equivalent. 
. 

The other problem - the so-called direct problem - involves 

the computation of the coordinates and associated variance-covariance 

matrix of the second point j using observations made from i to j. 

Again, solutions are given for the three-dimensional, ellipsoidal, and 

conformal mapping plane environments and, using appropriate "reduction~" 

of observed and computed data and coordinate transformations, it is 

shown that the solutions are equivalent. 

1 
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Since this is th~ first time we introduce observed quantities 

directions, angles, azimuths, and distances,. some special attention is 

given to the ~eduction of observations. We begin with terrain angular 

and distance measurements as a result of our terrestrial observing 

procedures. After correcting for atmospheric and ~strumental effects, 

we are left with measurements that can be used directly in three-

dimensional position computations (Chapter 2). To express the computed 

coordinates of the new point in other than a topocentric coordinate 

system, say geodetic cartesian coordinates (X., Y., Z.), certain 
J J J 

coordinate transformations are required. If geodetic curvilinear 

(ellipsoidal) or conformal mapping plane coordinates are desired, the 

coordinate transformations outlined in'A Manual for Geodetic Coordinates 

Transformations in the Maritime Provinces'[Krakiwsky et al, 1977) are 

used. In most instances, however, the practicing surveyor finds it 

desirable to carry out position computations in the environment in which 

the coordinates of point j must be expressed, usually the surface of 

a reference ellipsoid or a conformal mapping plane. In this case, 

observations must be "reduced" to t;be appropriate surface prior to 

position computation. For ellipsoidal computations, the corrected 

terrain measurements must be reduced to the surface of the reference 

ellipsoid (Chapter 3), while for conformal mapping plane computations, 

one must first "reduce" measurements to the reference ellipsoid, thence 

make further "reductions" to expre~s the measurements correctly on 

the conformal mapping plane (Chapter 4). This entire process- terrain 

to ellipsoid to conformal mapping plane - is depicted, for a distance 

measurement, in Figure 1-1. This manual treats all of the reduction 
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processes required for position computations in the maritime provinces. 

In closing, the reader should take special note of the fact 

that the measurement reduction processes are reversible; that is, one 

may compute a distance on a conformal mapping plane and "reduce" it 

up to the terrain. This is an important point for surveyors who are 

often faced with the need for terrain values for computed distances 

and azimuths. This inverse reduction process is covered in Chapters 

3 and 4. 
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2. COMPUTATIONS IN THREE DIMENSIONS 

2.1 Notation 

Before giving the general concepts and various formulae, 

the notation used in this chapter is listed. 

ni= prime vertical deflection component ~t point i 

ti= meridian deflection component at point i 

Aazi: difference between astrono~c and geodetic azimuth from point i to point j 

rij: spatial distance from point ito point j (rij = lrijl> 

fi,li -geodetic latitude and longitude of a point i 

ti,·Ai - astronomic latitude and longitude of a point i 

z .. - zenith angle in the local astronomic system (measured from Z 
l.J 

axis) 

Aij - astronomic azimuth in the astronomic system of line ij 
..... 

Cr .. )G : position vector in Geodetic coordinate system 
l.J 

..... 
(rij)LG - position vector in Local Geodetic coordinate system 

h. - ellipsoidal height of a point i 
1. 

..... 
(rij)LA - position vector in Local Astronomic coordinates 

5 = 206264~8 •••• p - 6.48 X 10 /Tr 

2.2 General Concepts 

In chapter 5 of "Geodetic COordinate Transformations 

in the Maritimes",we saw that geodetic positions may be defined by a 

triplet of Cartesian coordinates (X,Y,Z)Gor by the triplet (f, )., h)G 
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referred to the reference ellipsoid. Computations of geodetic positions 

in three dimensions, for whic~ formulae are given in this chapter, 

are based on three dimensional Euclidean geometry and employ vector 

and matrix a~gebra. Since distances, zenith angles and azimuths of 

lines are actually observed in three dimensional space, they require 

no "reduction" to some surface and need only be corrected for refraction 

effects and instrumental corrections such as heights of instrument 

above the actual terrain point or zero error for electromagnetic 

distance measurements. 

Readers not familiar with tl;le AliTerage Terrestrial, Geodetic, 

Local Geodetic and L.ocal Astronomic coordinate systems are referred 

to, for example, Krakiwsky and Wells [1971]. 

It should be mentioned here that we present only 9ne 

method for solving the direct and inverse problems in the 3-D environment. 

There are other methods and the interested reader is referred to, for 

excurple, Krakiwsky ani Thomson {1974]. If the reader is unfamiliar with 

rotation matrices please review Appendix I before continuing. 

2.2.1 The Direct Problem 

The direct problem may be stated as; given the coordinates 

(Xi, Y i, Z i )G of point i, the terrestrial spatial distance r .. , astronomic azimut: l.J . 

-A .• , and zenith angle Z .. from.i to a second point j, compute the coordinates 
4J . l.J 

(X., Y., Z.) of point j. We note here that if we are given (ljl., A.., h. )G 
J J JG 1. 1. 1. 

of point i a coordinate transformation [Krakiwsky et al.,l977] yields 
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To solve the direct problem we must know the relationship 

between the Local Geodetic coordinate system and Geodetic system, and 

between the Local Astronomic system, where we observe, and the Local 

Geodetic system in which we compute. If we know these relationships the 

observed quantities of azimuth, zenith angle and distance can be used 

to determine.the coordinates of a secpnd point. 

The relationship between the Local Geodetic and Geodetic 

system is examined-first. From Figure 2-1 we can rotate the vector 

-+ 
(r ij) LG from the I.ocal Geodetic to the Geodetic system using [Krakiwsky 

and Wells, 1971]. 

(2-1) 

-+ We can then obtain the (rj)G using 

(2-2) 

Expanding (2-1) and substituting into (2-2) yields 

(2-3) 

(2-4) 



Figure 2-1 

Local Geodetic System Position Vector 
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(2-5) 

-Continuing and referring to Figure 2.2, the position vector 

(rij)LA can be written as a function of the observables, namely 

·ex.> "l . . sin z .. cos A .. l. l.J l.J l.J 
+ (Y.) + sin z .. ~in A •• (2-6) (r ij) LA = = rij l. l.J l.J 

(Z.) + z .. rij cos l. LA l.J 

The relationship betwe~n the_vector (~ij)LA and (~ij)LG is 

given by [Krakiwsky and Wells, 1971]. 

(2-7) 

ti and ~i are the meridian and priiDe vertical co~nents 

of the deflection of the vertical at the terrain point i. llaz .. is 
l.J 

the difference between the geodetic and astronomic azimuths of the 

terrain point i and is given by [Krakiwsky and Wells, 1971] 

Now (2-7) is expanded with (2-6) substituted in it. We are 

going to assume that the deflection components and Aaz are all less 

than 30~0 of arc in the maritimes which allows us to write with better 

than .01 m accuracy that 

r 1J. (sin z .. cos A .. + !Jaz .. sin z .. sin A .. + E;. cos z .. ) 
l.J l.J .l.J l.J l.J l. l.J 

+ 
(r1.J.)LG • r .. (-flaz .. sin z .. cos A .. + sin z .. sin A .. + n. cos z .. ) l.J l.J l.J l.J l.J l.J l.. l.J 

r 1 j (-E;. sin z .. cos A .. - 1"1. sin z .. sin A1.J. + cos Z .. ) l. l.J l.J l. l.J l.J 

(2-9) 



y 
LA 

ZLA 

10 
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l 

Figure 2-2 

Local Astronomic Observations 



.LJ. 

The quanti ties Aaz .. ,, . , F;. are all expressed in radians units. 
l.J l. l. 

Substituting (2-9) into (2-3),(2-4) ,and (2-5) the final solution for the 

geodetic coordinates of point j are 

(XJ.)G = (X1. )G - r .. [sin f, cos A. (sin Z .. cos A .. + 
l.J l. l. l.J l.) 

Aaz .. sin Z .. sin A .. + ~. cos z .. ) 
l.J l.J l.J l. l.J 

+ sin A. (-Aaz .. sin·z .. cos A .. + 
l. l.J l.J l.J 

sin z .. sin A .. + n. cos z .. ) 
l.) l.J l. l.J 

cos 411. cos A. (-~. sin z .. cos A .. -
l. l. l.J l.J 

n1. sin z 1.J. sin A .. + cos z .. )] 
l.J l.J 

(2-10) 

sin A .. + ~-cos z .. ) 
l.J l. l.J 

- cos A. (-ilaz .. sin Z .. cos A .. + sin Z .. sin A .. 
l. l.J l.J l.J l.J l.J 

+ n. cos z .. ) 
~ l.J 

- cos '· sin )., (-E;. sin z .. cos A .. - n. sin Z .. 
l. l. l. l.J l.J l. l.J 

sin A .. + cos z .. ) ] 
l.J l.J 

(2-11) 

and 

(Zj)G = (Zi)G + rij [cos +i (sin zij cos Aij+Aazijsin zij sin Aij 

sin A .. + cos z .. ) ] 
l.) l.J 

(2-12) 

This completes the direct problem. 
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2.2.2 The Inverse Problem 

The inverse problem may be stated as: given the coordinates , 

{Xi' Yi, Zi)G of a point i and (Xj, Yj, Zjh of a point j, compute the 

spatial distance r .. , the direct astronomic azimuth A .. , and 
~J ~J 

the direct zenith angle Zij. 

We begin by computing 

6X .. X. X. 
~J J ~ .. 

(ri.:i) G = 6Y .. = Y. Y. (2-13) 
~J J ~ 

6Z .. G z. G zi. G ~J J 

Taking the inverse of (2-1) yields [Krakiwsky and Wells, 

1971). 

Substituting (2-13) into (2-14) and expanding gives 

(6Y .. ) = 
~J LG 

and 

+ (6Z .. ) G cos IP ~ ' 
~J ·' ... 

(6Z .. ) LG = (6X .. ) cos IP. cos ~. + (6 Y .. ) G cos IP. sin ~. 
~J ~J G ~ ~ ~J ~ ~ 

(2-14) 

(2-15) 

(2-16) 

(2-17) 

We must now rotate the Local Geodetic vector into the Local Astronomic 

system. This is accomplished by taking the inverse of (2-7) which is 



.1.3 

(2-18) 

Making the same assumptions for small angles as mentioned in deriving 

(2-9) we can write 

(2-19) 

(6Y .. )LA= 6aZ. ,(6X .. )LG + (6Y .. )LG- 11. (6Z .. )LG 
1J 1 J 1J 1) 1 . 1J 

(2-20) 

and 

(6Zij)LA = ;i (6Xij)LG + 11i (dYij)LG + (6Zij)LG ' (2-21) 

where (6Xij)LG·,· (6Yij)LG' (6Zij)LG come from equations (2-15), (2-16) 

and (2-17) respectively and 6az .. ,n., ~. are expressed in radians. 
l.J 1 1 

Having obtained the Local Astronomic vector, the equations 

for the distance,azimuth,and zenith angle are given as 

rl.. J' = [ (6X .. ) 2G + (6Y .. ) 2G + (6Z .. ) 2G] 1/2 
l.J l.J l.J 

A •• 
l.J 

and 

(6Y .. ) LA 
-1. l.J 

= tan { ·,6X ) 
\ .. LA . l.J 

} I 

-1 (6Z .. )LA 
z .. = cos { l.J } • 

l.J r .. 
l.J 

This completes the inverse problem. 

(2-22) 

(2-23) 

(2-24) 
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2.3 Error Propagation 

It should be noted that the error propagation given here 

does not include any propagation through the various rotation matrices. 

That is n . , F;. , az .. , 41 • and ). . rotations are assumed errorless in 
~ ~ ~J ~ ~ 

equations (2-10) to (2-12) and (2-19) to (2-21). If the user is 

measuring azimuths with a standard deviation of less than 5 arc seconds 

then a more rigorous error propagation is advisable. 

2.3.1 Error Propagation in the Direct Problem 

Given the covariance matrix for the initial point i and the 

variances of the spatial distance, astronomic azimuth, and zenith distance, 

the covariance matrix is computed as follows for the second point 

j. 

The covariance matrix of the initial point i and the observations 

is given by 
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J 

~ 

2 
rad 

The variances of the astronomic azimuth and zenith angle 

2 
are in radians squared. To convert the variance from arc sec 

to rad 2 the variance is multiplied by 12 • 
p 

The output of the direct e~ror propagation must include the 

initial covariance information for the point i. To do this we 

simply supplement equations 2-10, 2-11, and 2-12 with three more 

equations of the form 
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X. = X. (2-26) 
l. l. 

Y. = Y, (2-27) 
l. l. 

and 
z. z. (2-28) 

l! l. 

The Jacobian of transformation is(taken in the order of 

equations (2-30) to (2-32) and (2-10) to (2-12)); 
ax. ax. 

e.g. B1 (1,1) = ____ J. = 1, B1 (4,4) • ~ ax. ar .. 

B1 = 

where 

B1 (4 ,4) 

l. l.J 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

--- --- _I_ 
I 

1 0 0 I B1 (4,4) B1 (4,5) B1 (4,6) 

0 1 0 B1 (5,4) B1 (5,5) B1 (5 ,6) 

0 0 1 B1 (6,4) B1 (6 ,5) B1 (6,6) 

=- [sin$. cos A. (sin Z .. cos A .. +6az .. sin z .. 
l. l. l.J l.J l.J l.] 

sin A .. 
l.J 

+ ~. cos z .. ) 
l. l.J 

+ sin >..~-flaz .. sin Z .. cos A .. + sin Z .. sin A .. 
I l.J l.J l.J l.J l.J 

+ nJ.. cos z •• > 
l.J 

+cos Z,.)], 
J.] 

(2, 29) 

(2-30) 



L1 

s1 (4,5) =- riJ' [sin+. cos A, (-sin Z .. sin A .. +~az .. sin Z .. 
1 1 1) 1) 1J 1J 

B1 (5,4) 

cos A .. ) 
1J 

+ sin A, (~az .. sin z .. sin A .. + sin z .. cos A .. ) 
1 1) 1) 1) 1J 1) 

- cos +i cos Ai (~i 

cos Aij)], 

sin Z .• sin A,. - 11. sin Z .• 
1) 1) 1 1) 

r .. [sin +~ cos A.. (cos z .. cos A .. +~az .. cos z .. 
1) - 1 1J 1) 1) 1) --

sin A .. - ~- sin z .. ) 
1) 1 1) 

+ sin A. (-~az .. cos z .. cos A .. + cos z .. sin A .. 
1 . 1) 1) 1) 1) 1) 

-n~ sin z .. ) 
- 1) 

- cos cfli cos A. (-~. cos z .. cos A .. - n. cos z .. 
1 1 1) l.J l. l.J 

sin A .. - sin z .. )] 1 
1) 1) 

= - [sin cfl. sin A. 
1 

(sin z .. cos A .. +~az .. sin 
1) 

z .. sin A .. 
1 l.J l.J l.J 

+ ~- cos z .. ) 
l. l.J 

- cos A. (-~azi. sin z .. cos A .. + sin z .. sin A .. + 
1 J l.J 1) l.J 1) 

+ l'li cos z .. ) 
1) 

l.J 

(2-31) 

(2-32) 

(2-33) 

-cos+~ sin A, (-~. sin z .. cos A1.j - n. sin z .. sin A .. 
- l. 1 l.J l. 1) l.J 

+ COS Z, , ) ] 1 
l.J 
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and 

B1 (6,6) = rij [cos 'i (cos z .. cos A .. +flaz. ·COS z .. sin A .. 
l.) l.J l.J l.) l.) 

- E;. sin Z .. ) 
]. l.J (2-38) 

+ sin ~i .( -E;. cos z .. cos A .. - T'li cos z .. 
]. l.J l.J l.) 

sin Aij - sin zij)] 

T 
Now with B1 equal to the transposed s1 matrix,. we may write ,using the 

covariance law [Vanicek, 1974] 

(2- 39) 

where c2 is the full variance covariance matrix of the two points i 

and j and has the form 

c = 2 

0 x.Y. 
]. ]. 

a x.z. 
]. ]. 

a 
X.Y. 

]. ]. 

2 
aY:. 

']. 

a Y.Z. 
]. ]. 

a Y.Y. 
l. J 

a 
x.z. 

]. ]. 

a Y.Z. 
]. ]. 

2 
az. 

l. 

az.x. 
]. J 

a z.z. 
]. J 

aY.X. 
']. J 

az.x. 
]. J 

a.x.Y. 
J J 

a x.z. 
J J 

a ~.Y. 
]. J 

a.Y.Y. 
]. J 

az.Y. 
l. J 

aX.Y. 
J J 

cr 2 
Y. 

J 

ax.z. 
]. J 

aY.Z. 
]. J 

ax.z. 
J J 

a Y.Z. 
J J 

a 2 z. 
J 

. 2 
All the elements of c2 are in units of m • 

This completes the error propagation in the direct case. 

· 2.3.2 Error Propagation in the Inverse Problem 

(2-40) 

In the inverse problem we are given the covariance matrix 

of points i and j • This is in the form of the matrix c2 described 
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in section 2.3.1. This matr~x is then used to derive the covariance 

matrix for the spatial distanc,e, astronimic azimuth, and zenith angle. 

The procedure is as follows. 

The Jacobian of transformation is (from equations (2-22), 

(2-23) and (2-24)) 

B2 (1,5) B2 (1,6) 

(2-41) 

B2 (3,3) B2 (3,4) 

The elements of B 2 are 

B2 (1,1) = 
- (6Xi1 )G 

r .. 
l.J 

B2 (1,2) = 
-(6Yij)G 

rij 

- (6Z .. )G 
B2 (1,3) = J.J 

r 
,ij 

·' 

(.6.X •. ) LA 
B2 (2 '1) • _ __:l.:...oJL...2=----2-

(6X .. )LA+ (6Y .. )LA 
l.J l.J 

[6az .. sin$. cos A, +sin A. + 
l.J l. l. l. 

n. cos $. cos A. - tan A .. 
l. l. l. l.J 

sin $. cos A. -6az .. sin A1. l. l. l.J 

+ ~ . cos '. cos A. ) ] I l. l. l. 
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(l1Xij} LA 
a2 (2 ,2} = --~2'--------:2- [l1azij sin cjJi sin ·\ - cos Ai + 

(l1X .. } + (l1'l .. )LA 
~J LA ~J 

n. cos cjJ. sin A. - tan A .. (sin cjJ, sin A, 
~ ~ ~ ~) ~ ~ 

+ l1az .. cos A. + ~. cos cjJ. sin A,}] 
~) ~ ~ ~ ~ 

(l1X .. ) LA 
~) 

2 2 
(l1X .. )LA+ (l1'l . . )LA 

~) ~) 

[-l1az . .'cos <P. + n; sin cjJ; 
~) ~ ... ... 

+ tan A. . (cos cjJ . - ~ . sin cjJ . ) 1 
~) ~ ~ ~ 

B2 (2,6} =- B2 (2,3) 

-1 

2 2 1/2 
[ ;l.. sin cjJ. cos A. + 

~ ~ 

((l1X .. )LA+ (l1'l . . )LA) 
~) ~) 

(6X .. )G 
sin A. 41·. cos A, + cos z .. ~) n. - cos 

l.. ~ l. ~ ~) r .. 
~) 

-1 B2 (3,2} [~i sin cjJi sin A, = - n. 
((l1X .. ) ~ + (l1'l . . ) ~) 1/2 

l.) ~) 

- cos cjJ. sin A. + cos z .. 
~ l. ~) 

-1 

(l1'l .. ) 
--...;.~;.;;,J_.:...G 1 ' 

r 
ij 

~ 

[-C; cos cjJ; - sin cjJ; 
( ( "X ) 2 + ( "'l .. ) 2LA. ) 1/2 ... ... ... u •. LA u 

~) l.) 

+ cos z .. 
~) r 

ij 

~ 
cos A, 

~ 
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B~ (3,4) = - B2 (3,li , 

With B~ equal to the transpose of B2 it follows that 

where c3 has the form 

2 

0·. 
r .. A •. 

l.J l.J. 

C1 
r .. Z •• 

l.J l.J 

with the units 

2 
m 

m.rad 

m.rad 

0 r .. A .. 
l.J l.J 

C1 
2 

. ~ij 

a. 
A .. z .. 

l.J l.J 

m·rad 

0 r .. z .. 
l.J l.J 

C1 
A •• z .. 

l.J l.J 
2 

oz 
ij 

(2-42) 

(2-43) 

m .rad 

2 rad 

2 rad 

To convert the rad 2 to arcsec2 the term is 

2 
multiplied by p • To convert the .. off diagonal m.rad to arcsec, 

the terms are multiplied by p. 
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2.4 New Brunswick Numerical Example 

2.4.1 Direct Problem 

The following information is given for the solution of the direct 

problem and its associat~d error propagation. 

The coordinates of point 1 are 

c~ > = 47° o3• 24"644 "'1 G • 

(Al)G = 65° 29 1 3~453 w I 

and 

The components of the deflection of the vertical of point 1 are 

and 

The observations are 

r12 = 2 500.0 m 

A12 = 45° oo• o~oo 

and 

Equation (2-8) gives 

-5 Aaz12 -= 3.1615 x 10 rad. 
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Also given is the associated covariance matrix. 

1. 0000 X 10-4 

-8.0000 X 10-8 

-8.0000 X 10-8 

LOOOO'x 10-4 

0 0 

0 0 

0 0 
I 

4.0 I 0 

0 0 

0 0 

0 0 -- ------------ - ----- - ___ ! ______ _ --------
cl = 0 

0 

0 

in units of 

2 arc sec 

2 arc sec 

2 arc sec 

2 arc sec 

0 

0 

0 

2 m 
--------·-

0 

0 

0 

: 7.840 X 10-4 0 

0 25.00 

0 0 

------~----

2 arc sec 

2 arc sec 

0 

0 

225.00 

The curvilinear coordinates ~ l)G, (Al)G, and (hl)G and their associated 

covariance matrix (top left (3,3) qu~drant of c1 ) must be converted 

to (Xl)G, (Yl)G, (Zl)G with its associated covariance matrix and the 

variances of the azimuth and zenith angle must be converted from 

2 2 arcsec to rad • 

The coordinates become (using equations from, for example, 

Krakiwsky et al. [1977]) 

and 
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The associated covariance matrix becomes, using equations from, 

for example,Krakiwsky et al. [1977] and multiplying the variances of 

the astronomic azimuth and zenith angle by 

c = 
1 

-. 365 -. 703 .• 808 0 

-. 703 1.587 -1.772 0 

.808 -1.772 2.188 I 0 --- - - -- - -.--- -- -·- - - -
0 0 

0 0 

0 0 

0 

0 

0 

:7.84 X 10-4 
I 

0 

0 

in units of 

2 2 2 
m m m 

2 2 2 m m m 

2 2 2 m .m m 

1 
2 I 

p 

0 

0 

0 -------
0 

5.876 X 10-lO 

0 

0 

0 

0 

0 

0 

5.288 X 

. --- --------------I· .. --- .... ---I m2 -- - - - - - - -

2 
rad. 

2 rad 

10-9 

The coordinates CX2)G, (Y2)G, (Z2)G using equations (2-10), (2-11) 

and (2-12) are 

and • 
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using formulae from,for example,I<rakiwsky et al.[l977], 

the Cartesian coordinates are converted to curvilinear coordinates 

yielding 

= 47° 4' 21~801 

= 65° 27' 39~788 w 

and 

Beginning the direct problem error propagation, the Jacobian 

of transformation, Bl' (equation (2- 29)) is 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 
Bl = ~·----- ----- ------- ----

1 0 0 .44275 2.1424 X 10 3 -6.4974 X 102 

0 1 0 .73091 -4.4319 X 102 1.6475 X 103 

0 0 1 .51937 -1.2027 X 10 3 -1.7646 X 103 

Using equation (2-39i the resultant covariance matrix c2 for 

·' points 1 and 2 is 

c = 2 

• 365 -. 703 .808 1 • 365 -. 703 .808 
I 

-. 703 1.587 -1.772 I -. 703 1.587 -1.772 
I 
I 

.808 -1.772 2.188 : .808 -1.772 2.188 ------------------ -------.-----I 
• 365 -.703 .808 I • 370 -.709 .813 

I 

-. 703 1.587 -1.772 : -. 709 1.602 -1.787 
I 

.808 -1.772 2.188 I .813 -1.787 2.205 

2 
where the units of all the elements are m 
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The lower right hand 3 x 3 sub matrix is converted to a 

covariance matrix of the curvilinear coordinates (using formulae from, 

for examplerKrakiwsky et al. [1977]) yielding 

c 
ell ,A ,h2= 

2 2 

in units of 

1.024 X 

-2.196 X 

-7.431 X 

2 arc sec 

2 arc sec 

10-4 

10-6 

10-s 

arcsec.m 

2.4.2 Inverse Problem 

-2.196 X 10-6 

1.052 X 10-4 

-1.093 X 10 ":'4 

2 arc sec 

2 arc sec 

arcsec.m 

· -7.431 x 10-s 

-1.093 X 10-4 

4.033 

arcsec.m 

arcsec.:m 

2 m 

In the inverse problem the coordinates of points 1 and 2 and 

their covariance matrix c2 are known(in this example as the results of 

the direct problem). Using equations (2-22), (2-23), and (2-24) the 

distance, astronomic azimuth and zenith distance are 

and 

r 12 = 2 SQO.OOO metres, 

A12 = 45°00' o~oo , 

. 
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The inverse problem J~cobian of transformation matrix B2 (equation 

(2-41)) is 

-.44275 -.73091 -.51937 .44275 • 73091 .51937 

B = -3.4373xlo-4 7.1106xlo-5 
2 

1.9295xlo-4 3.4373xlo-4 -7.1106xlo-5-i.9295xlo-

4 4 . -4 4 4 
1.0396xl0- -2.6359xl0- 2.8233xl0 -l.0396xl0- 2.6359xla- ·-2.8233x10-

Using equation (2-42) the resultant covariance matrix c 3 for the 

distance, astronomic azimuth and zenith distance is 

-4 X 10-ll 7.239 10-10 7.840 X 10 8.82 X 

c3 = 8.82. X 10-ll 25.00 -2.712 X 10-7 

7.239 X 10-lO -2.712 X 10-7 225.00 

in units of 

m.arcsec 

m.arcsec 

m.arcsec 

2 arc sec 

. 2 
arc sec 

m.arcsec 

2 
arc sec 

2 arc sec 

where m.rad have been converted to arc.sec by multiplication by p and 

2 . 2 2 
r~d have been converted to arcsec by multiplication by p~ Note that. 

the otf diagonal terms are negligible because of the nature of our example 

(see page 25) but the terms could be significant. 
2.5 Prince Edward Island Numerical Example 

2.5.1 Direct Problem 

The following information is given for the solution of the direct 

problem and its associated error propagation. 
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The coordinates of point 1 are 

and 

(cfll) G= 46° 42 1 28~'147 I 

()."l)G= 64° 29 1 34~014 W, 

The components of the deflection of the vertical of point 1 are 

The 

c -1 

~1 = 4~0 

and 

observations are 

:r:l2 = 2. 500.00 m 

Al2 = 135° oo• 0~00 

and 

z12 = 87° oo• 0~00 

~uation (2-8) gives 

-5 6az12= 2.9086 x 10 rad 

Also given is the associated covariance matrix 

1.0000 X 10-4 

-8.0000 X 10-8 

0 

0 

0 

0 

-8.0000 X 10-8 

1. 0000 X 10-4 

0 

0 

0 

0 

0 

0 

' 4.0. ___ ...l 

• 
0 I 

0 

0 

0 

0 

0 

7.840 X 10-4 

0 

0 

0 

0 

0 

0 

25.00 

0 

0 

0 

0 

0 

0 

225.00 



in units of 

2 arc sec 

2 arc sec 

2 arc sec 

2 arc sec 

-~----- -------

30 

m2 -- _,_ 
I 
I 

------- ______ ., 

2 arc sec 
2 arc sec 

covariance matrix (top left (3,3) quadrant of c1) must be converted to 

Cx1 >G' (Yl)G, (Zl)G with its associated covariance matrix and the 

variances of the azimuth and zenith angle must be converted from 

2 2 arc sec to rad • 

The coordinates become (using equations from, for example, 

Krakiwsky et al. [1977]), 

and 

(Xl)G = 1 886 820.969 m 

(Yl)G = -3 954 520.208 m 

The associated covariance matrix becomes, using equations from, 

for example,Krakiwsky et al. [1977] and multiplying the variances on the 

1 astronomic azimuth and zenith angle by ---
2 

0 
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.395 -.733 .839 0 0 0 

-.733 1.581 -1.759 0 0 0 

.839 -l. 759 2.164 0 0 0 
---- - ----------------- --- - -... -- - - ---c = 

l 0 

0 

0 

in units of 

2 
m 

2 
m 

2 
It\ 

0 

0 

0 

2 
m 

2 
m 

2 
m 

0 

0 

0 

I 
I 
I 
I 
I 
I 

2 
m 

2 
m 

2 
m 

7.84 

I 

X 10-4 0 0 

0 5.876 X 10-10 0 

0 0 5.288 X 10 

------,--- ------ ------

I 
I. 

m2 

2 
rad 

. 
2 rad· 

-5 

The coordinates (X2 )G~ (Y2 )G~ (Z2)G,using equations (2-10), (2-11) 

and 62-12) ,are 

and 

(X2)G = 1 889 ~06.235 m 

CY2>G = -3 955 000.606 m , 

(Z2) G = 4 618 305.724 m. 

Using formulae,from for example Krakiwsky et al. [1977],the 

above Olrtesian coordinates are conve:t:.ted to curvilinear coordinates 

yielding 
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and 

Beginning the direct problem error propagation, the Jacobian 

of transformation, B1 , (equation (2-29)) is 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 
Bl = ------- --------------~- - - ... - --

1 0 0 .87411 -1.0399x 10 
3 

-6.2476 X 102 

0 1 0 -.19216 -1.9200 x 1c? lo5241 X 10 3 

0 0 1 ; -o44611 -1.2105 x-10 3 -1.8806 X 10 3 

Using the equation (2-39) the resultant covariance matrix c 2 

for points 1 and 2 is 

0 395 -o733 o839 0 395 -o733 o839 

-o733 1.582 -1.759 -o73~ 1.582 -1.759 

o839 -1.759 2o164 • .839 -1.759 2ol64 
c2 

I = 
____________ ..,. ___ .,.._. _____ ----- -- ---

o395 -o733 o839 o398 -o737 o846 

-o733 1o582 -1.759 -o737 1.596 -1.773 

o839 -1.759 2o164 o846 -1.773 2ol84 

where the units of all the elements.are m.2 0 
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The lower right hand 3 x 3 sub matrix is converted to a covariance 

matrix of the curvilinear coordinates (using formulae from, for example , 

Krakiwsky et al. [1977)) yielding 

1.024 X 10-4 2.067 X 10-6 7.359 X 10-5 

c~2'A2,h2 • 2.067 X 10-6 1.050 X 10-4 -1.085 X 10-4 

7.359 X 10-5 -1.085 X 10-:4 4.030 

in units of 

2 2 arc sec arc sec arcsec.m 

2 2 arc sec arc sec arcsec.m· 

2 arcsec.m arcsec.m m 

2.5.2 Inverse Problem 

In the inverse problem the coordinates of points 1 and 2 and 

their covariance matrix c 2 are known (in this example the results of the 

direct problem). Using equations (2-22), (2-23), and (2-24) the distance, 

astronomic azimuth and zenith distance are 

= 2 500.000 m 

and 



34 

The inverse problem Jacobian of transformation matrix B2 

(equation (2-41)) is 

-.87411 .19216 .44611 .87411 -.19216 -.44611 

B2 = 1.6684xl0-4 3.0804xl0-4 -4 1.942lxl0 -1.6684xl0-4 -3.0804xl0-4 -1.942lxl0-4 

9.996lx1o-5 ~2.4385xlo-4 3.0090x1o-4 -9.996lx10-s 2.4385x1o-4 -3.0090xlo-4 

Using equation (2-42) the resultant covariance matrix c 3 for the 

distance, astronomic azimuth,and zenith distance is 

7".840 X 10-4 6.79 X 10-11 -2.751 X 10 
-9 

c3 = 6.79 X 10-11 25.00 -5.026 X 10-8 

-2·. 751 X 10-9 -5.026 X 10-8 225.00 

in units of 

2 m arcsec.m arcsec.m 

2 2 
arcsec.m arc sec arc sec 

2 2 
arcsec.m arc sec arc sec 

where m.rad have been converted to arcsec.m by multiplication by p and 

2 2 2 rad have been converted to acrsec by multiplication by p • Note that 

the off diagonal terms are negligible because of the nature of our example 

(see page 31) but the terms could be significant. 

2.6 Nova Scotia Numerical Example 

2.6.1 Direct Problem 

The following information is given for the solution of the direct 

problem and its associated error propagation. 



The coordinates of point 1 are 

and 

(~l)G= 44° 39' 3~123 

(Al)G= 63°00' 0~000 W 

35 

The components of the deflection of the vertical of point 1 are 

E: = 4~0 
1 

6~0 

The observations are 

= 2 500.0 metres 

= 225° oa o~·oo 

and 

Equation (2-8) gives 

-5 
Aaz12= 2.8377 x 10 rad 

Also given is the associated covariance matrix c1 

-4 -a l.OOOOxlO -8. OOOOxlO. 0 0 0 

S.OOOOxlO -a l.OOOOxlO 
-4 

0 0 0 

c = 0 0 4.0 0 0 

0 

0 

0 1 ---- -------- ---- -- -l- -- - --------------
0 0 0 ·I -4 

I 7.840xl0 0 0 
I 

0 0 0 I 0 25.00 0 I 
t 

0 0 0 I 0 0 225.00 I 
I 



in units of 

2 arc sec 

2 arc sec 

2 arc sec 

2 arc: sec 

---------- ---- . 2 
-I! - r--- -----

1 2 
I m 

2 ·arcsec 
2 

arcsec J 
The curvilinear coordinates (~l)G, (Al)G, and (hl)G and their associated 

covariance matrix (top left (3,3) quadrant of c1 ) must be converted from 

2 2 arcsec to rad • 

The coordinates become (using equations from, for example, 

Krakiwsky et al. [1977 ]) , 

and 

The associated covariance matrix becomes, using equations from, 

for example,Krakiwsky et al. [1977],and multiplying the variances on the 

astronomic azimuth and zenith angle 1 
by 2 1 

p 

.465 -.818 .886 I 0 0 0 I 
I 

-.818 1.654 -1.739 I 0 0 0 I 

I 
.886 -1.739 2.024 ·o 0 0 

c = --- --- - - -- __ J _____ ----1 I -4 ----- ·--
0 0 0 17.84xl0 0 0 

I 

0 0 0 0 5.876xlo-10 0 

0 0 0 0 0 5.288xl0-9 
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in units of 

2 2 2 
m m m 

2 2 2 m m m 

2 2 2 m m m 

(2-11) and (2-12) are 

(X2)G = 2 062 485.795 m 

and 

--- - ... - ... ----
2 rad 

2 rad 

(Z2 )~ using equations (2-10} 

Using formulae from, for example•Krakiwsky et al. [1977) 

the above cartesian coordinates are converted to curvilinear coordinates 

yielding 

and 

Beginning the direct problem error propagation, the Jacobian 

of transformation, B1 , (equation (2-29)) is· 
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1 0 0 0 0 0 
, 

0 1 0 0 0 0 

0 0 1 0 0 0 

Bl = ----------. --~ - ----- -- ----- --- .. --
1 0 0 I - • 38694 -2 .1362x10 3 -8.5928xl02 

f 

I 

3.0392xl02 3 0 1 0 : -. 79595 1.4825xl0 

0 0 1 
I 
I I -.46556 1.2558x103 -1. 8204x103 

Using equation (2-43) the resultant covariance matrix c 2 

for points 1 and 2 is 

.465 -.818 .886 .465 -.818 .886 

-.818 1.654 -1.739 -.818 1.654 -1.739 

.886 -1.739 2.024 .886 -1.739 2.024 
I 

c2 = - - - - - --- - - - ---r---- --.465 -.818 .886 I .4 72 -:-siS - '7§9'1 

-.818 1.654 -1.739 
I 

-.825 1.667 -1.753 

.886 -1.739 2.024 .893 -1.753 2.042 

where the units of all the elements are m 2 • 

The lower right hand 3 X 3 sub matrix is converted to a 

covariance matrix of the curvilinear coordinates (using formulae from, 

for example,Krakiwsky et al. [1977)) yielding 

1.024 X 10-4 -2.148 X 10-6 7.364 X 10-5 

c 
~2'A2,h2 = -2.148 X 10-6 1.046 X 10-4 1.035 X 10-4 

7.364 X 10-5 1.035 X 10-4 4.033 
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in units of 

2 2 
arc sec arc sec arcsec.m 

2 2 
arc sec arc sec arcsec.m 

2 arcsec.m arcsec.m m 

2.6.2 Inverse Problem 

In the inverse problem the coordinates of points 1 and 2 and 

their covariance matrix c2 are known (in this example the results of 

the direct problem). Using equations (2-22), (2-23), and (2-24} the 

distance, astronomic azimuth and zenith distance are 

= 2 500.00 m 

A 225° 00 I 0':00 12 = 

and 

The inverse problem Jacobian of transformation matrix B2 

(equation (2-41}} is 

• 38694 .79595 .46556 -.38694 -. 79595 -.46556 

B = -4 -5 -4 -4 -5 2. 0149x10-4 ' 2 
3.4273xl0 -4.876lxl0 -2.0149xlO -3.4273xl0 4.876lxl0 

1. 3748x10-4 -4 
2.9126x10-4 -4 -4 -4 -2. 3720xl0 -1. 3748xl0 2.3720xlO -2.9126xlo 
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Using equation (2-46) the resultant covariance matrix c3 for 

the distance, astronomic azimuth and zenith distance is 

7.840 X 10-4 

5.56 -11 
X 10 

c3 = 

-4.194 X 10-10 

in units of 

2 
m 

m.arcsec 

m •. arcsec 

5.56 X 10-ll 

25.00 

2.440 X 10-7 

m.arcsec 

2 arc sec 

2 arc sec 

-4.194 X 10-lO 

2.440 X 10-? 

225.00 

m.arcsec 

2 arc sec 

2 arc sec 

where m.rad have been converted to m.arcsec by multiplication 

by p and rad2 have been converted to arcsec2 by multiplication by p 2• 

Note that the off diagonal terms are negligible because of the nature 

of our numerical example (see page 36) but the terms could be significant. 
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3. Computations on the Ellipsoid 

In this chapter equations are given for the reduction of observed 

directions, angles, azimuths, distances and zenith distances, from the 

terrain to the reference ellipsoid (and conversely) , after which equations 

are given for computing the direct and inverse problems on the ellipsoid. 

3.1 Notation 

The notation used in this chapter is listed here for convenience. 

a_,b _ semi-major and semi-minor axes respectively of the Clarke 1866 

reference ellipsoid, 

a = 6 378 206.4 m 

b = 6 356 583.8 m 

e - first eccentricity of the reference ellipsoid 

2 2 2 2 
e = (a - b ) I a 

~.,A. : ellipsoidal coordinates of a point i 
l. l. . 

~ ·A m' m 
: mean ellipsoidal coordinates of two points i 

~. + ~. 
~ = l. J 

and 

m 2 

A 
m 

Ai + A . ... ____ .._J 

2 

(3-1) 

and j 

(3-2) 

(3-3) 

r .. -observed spatial distance between points i and j, corrected for 
l.J 

refraction and instrumental corrections 

Sij - distance between points i and j on the surface of the reference 

ellipsoid 

dij - observed horizontal direction on the terrain from terrain point i 

to point j 
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a. . _ geodetic azimuth on the ellipsoid from point i to point j 
l.J 

A.. _ terrain astronomic azim}lth from point i to point j 
l.J 

R : Euler radius of curvature in the azimuth a .. a 
M.N. l.J 

R 
]. ]. 

= 
a .. 2 2 

l.J M. sin a .. + N. cos a .. 
]. l.J ]. l.J 

(3-4) 

M. - radius of curvature of the ellipsoid in the meridian plane at 
]. 

point i 

2 
M. = a(l-e )/(1 

]. 

2 . 2 A. ) 3/2 
- e s1.n "'' ]. (3-5) 

N. - radius of curvature of the ellipsoid in the prime vertical plane 
]. 

at point i 

(3-6) 

M _ mean meridian radius of curvature, M = (~1. + M. ) /2 
m m 1. J 

(3-7) 

N - mean prime vertical radius of curvature; N = (N. + N. ) /2 
m m 1. J 

(3-8) 

Z .. -observed zenith distance on the·terrain from terrain point i 
l.J 

to point j, corrected for refraction and instrumental corrections 

h. - height of terrain point i above the reference ellipsoid measured 
]. 

along the ellipsoid normal 

~i - deflection of the vertical component in the meridian plane at 

point i 

ni - deflection of the vertical component in the prime vertical plane 

at point i 

a. 'k = terrain horizontal angle at point j from point i to point k 
l.) 

z.. : zenith distance corrected for terrain deflection of the vertical 
l.J 
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( ) 6 _ denotes an ellipsoidal quantity 

)a _ an approximate quantity 

H. - orthometric height of a terrain point j (height of point above 
J 

the geoid) 

N~ _ geoidal height of point j {geoid reference ellipsoid separation) 
J 

3.2 Reduction Formulae 

3.2.1 Introduction 

Upon examination of the various reduction formulae, it will 

be seen that the corrective terms are soroetimes functions of the 

position to be solved for or the quantity being corrected. If the 

position of the point being solved for is required, then the coordinates 

may be computed using the formulae, 

r .. cos (A •. 
,~ = 

'· + 
1J 1J 

J 1 M. 
1 

{3-9) 

'i + '·a 
fa = J 
m 2 

rij sin (A .. 
l.a = A. + 1] 

J 1 
Nm cos ·'m 

(3-10) 

Deflection components for horizontal control points will be 

given along with the published redefined coordinates. The means for 

computing t. and n.,for any new points.in the Maritimes,will be avail~ 
1 l. 

able through the Surveys and Mapping Divi~ion of L.R.I.S. Heights of 

points above the ellipsoid must be as accurate as possible and can be 

obtained by adding the orthometric height to the geoidal height, 



44 

h.·== H. + N~. 
J J J 

(3-11) 

, 
Although we are now working in the two-dimensional domain 

of the ellipsoidal surface, the heights of the points are needed for 

the reduction of various observed quantities to the ellipsoidal surface. 

The height H. is the orthometric height. The geoid height, N~, for 
J J 

known control points will be given along with the published redefined 

coordinates. As with ~. and n. methods for computing N~ for any 
J J J 

Maritime points will be available. 

Having reduced the observations, the direct and inverse 

position computations may be done on the ellipsoid surface using the 

Puissant's formulae or the Gauss Mid Latitude formulae (or any of 

many other equivalent formulae). Upon completion of the direct problem 

new coordinates for point 2 are available. These should now be used 

in the reduction formulae to obtain more precise corrections. This 

is most essential when the ellipsoida~ height difference of the two 

points is very large. The error propagation through the reduction 

formula are formulated assuming that the estimates of the second 
·' 

point are with 1" of their final value or approximately 30 metres. 

The coordinates obtained from the solution of the direct problem should 

therefore be tested against the estimates used in the reduction formulae. 



45 

3.2.2 Reduction of Horizontal Directions 

A horizontal direction is reduced from the terrain to the 

ellipsoid by [Krakiwsky, and Thomson, 1974]. 

h. 2 2 e d .. + (_J_ sin cjlj) dij = e a .. cos a .. cos 
1) M 1J l.J ·m 

2 2 2 sin 2a .. e s .. cos cjlm 
- ( l.J l.J ) 

2 
12 N.m 

e - ([~. sin a .. - n. cos a .. 1 cot z .. ) , (3-12) 
l. l.J l. l.J 1J 

where, 

Nm = 

Mm = 

cjl = m 

N. + N. 
a 

l. J 
2 

"M. + M~ 
1 J 

2 

"' ... a . .... + 't' 
l. J 

2 
a a a 

and N. and M. are evaluated at cjl. and a .. =A .. in a first approximation. 
J J J l.J l.J 

3.2.3 Reduction of Horizontal Angles 

Since a horizontal angle is actually composed of two directions, 

we reduce it from the terrain to the ellipsoid by applying equation 

~~ 
(3-\N twice. This yields 

e 
Bjik = 6jik + 

+ 

h. 2 c....l... e 
Mm •. 

l.J 

~ (- e 
Mm. 

l.~ 

2 2 
e s .. 

+ ( l.J 

2 

2 sin cjlj) a .. ·COS ~j cos 
l.J 

sin aik cos ~ik 
2 cos cjlk) 
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+([~~sin a .. - n. cos a .. ] cot z .. ) 
• ~J ~ ~J ~J 

- <I~i sin aik -·ni cos aik] cot zik) • (3-13) 

and all quantities are the same as those in section 3.2.2. 

3.2.4 Reduction of Zenith Distances 

A terrain zenith distance is reduced from the terrain to 

the ellipsoid [Krakiwsky and Thomson, 1974 ] 

z . . = z. . + ( ~. cos a. . + n. sin a .. ) • 
~J ~J ~ ~) ~ ~J 

(3-14) 

3.2.5 Reduction of Astronomic Azimuths 

The observed astronomic azimuth is best reduced from the 

terrain to the ellipsoid in a series of steps as follows. First 

a:. = A,. - n. tan cjli , ( 3-15) 
then ~J ~) ~ 

II 

a .. = a .. - ({~. sin a .. - ni cos a .. ) cot z .. ) , (3-16) 
~) ~) ~ ~J ~) ~) 

where Z .. has been corrected as described in section 3.2.4. The next 
~) 

reduction is ... II h. 2 ,; II 

a .. = a· .. + (_l_ e sin a .. cos a .. 
~J ~J Mm ~) ~J 

and finally, using sij as computed by equation 
2 2 2 

Ill e s .. cos cjl m sin 
a .. = a .. - ~J 

~) ~J 12 N.2 
m 

where a .. is the desired geodetic azimuth. 
~J 

3.2.6 Reduction of Spatial Distances 

II I 

2 a .. 
~J 

2 cos cjl j) , (3-17) 

( 3-20) 

) , ( 3-18) 

A terrain spatial distance, r .. , between two points i and j 
~J . 

(see Figure 1 below) is reduced from the terrain to the ellipsoid as 

follows [Krakiwsky and Thomson, 1974 ] • 
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Figure 3-1 

Spatial Distance Reduction 
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Compute, 
2 ~h2 1/2 {1: •• ) -

11. { 
~ 

] = 
0 h. h. 

{1 + .....!.) (1 + _J_) 
R R 

(3-19) 

Then the ellipsoid distance is given by 

-1 
11. 

s .. 2R sin 0 = (2R) , 
~J 

(3-20) 

where ~h = h. -h. ; 
J ~ 

and R + R a .. a .. 
R = ~J J~ 

2 

M.N. 
in which R 

~ ~ = a .. 2 2 ~J M. sin a .. + N. cos a .. 
~ ~J ~ ~J 

M~N. 

and R = a .. 2 2 J~ M. sin a .. + N. cos a .. 
J J~ J J~ 

3.2.7 Magnitude of Corrections 

To give the user an idea. of the magnitude of the various 

corrective terms several graphical tllustrations are given. It must 

be noted here that the graphs are used solely for illustration and 

should not be used to obtain the corrective terms. 

The first term illustrated is the so called gravimetric 

corrective term or deflection of the vertical term, Ci (which appears 

in the direction, angle, and astronomic azimuth reductions) , and is 

given as 

C" = p ( (-~~ sin a~J· + n. cos a . ) cot z .. ) • 
1 .... .... ~ iJ ~J 

(3-21) 
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An examination of Figure (3-2) shows that the corrective term, 

ci, can be significant and should be taken into account. 

The second corrective term to be examined is the skew normal 

correction (applied to directions, angles, and astronomic azimuths), which is a 

geometrical correction resulting from the height of the target above 

the reference ellipsoid. This takes the form 

(3-22) 

From Figure (3-3) it can be seen that the corrective term can be 

signigicant and should be taken into account for control surveys. 

The next ~erm to be examined is the normal section to 

ge?desic term (applied to directions, angles, and astronomic azimuths), 

·which is the result of the normal section-g~odesic separation,and is 

given by 

C" = p 
3 

2 2 2 -e S,. cos ~ 
l.J m 

sin 2 n .. 
l.l) (3-23) 

Examining Figure U-4)we see that the corrective terms are 

a magnitude smaller than those of the skew no·rmal and only become 

critical on longer lines. 

Distance reductions (3-21) and (3-22) are significant and 

should always be considered. Very often, however, the geoid-ellipsoid 

separation, N*, is neglected. It is well known that this leads to a 

scale error of 1 ppm for every 6 m of N* that is neglected. 

'Table 1 illustrates the errors introduced when H (orthometric height) 

is used in place of h (ellipsoidal height); that is, N is neglected. 
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As a final note the surveyor should be aware that errors 

introduced by improper reduction of observed quantities are systematic 

and propagate through a net~rk as such. 

Geoid Ellipsoid 
Distance Distance Difference ppm 
Hl = 75 m 

H2 = SO m 

8.027.95 

16 053.19 

24 075.71 

32 095.52 

40 112.60 

48 126.95 

56 138.57 

64 147.46 

72 153.6a 

sa 157.aa 

88 157.65 

96 155.55 

hl = 81 m 

h2 = 56 m 

8 027.94 

16 053.17 

24 075.69 

32 095.49 

40 112.56 

48 126.90 

56 138.52 

64 147.4a 

72 153.53 

8a 156.93 

88 157.57 

96 155.46 

Table 3-1 

Effect of Geoidal Height 

on Distance Reduction 

m 

.01 

.02 

.02 

.03 

.04 

.as 

.as 

.a6 

.a7 

.a7 

.a8 

.a9 

3.2.8 Error Propagation Through Reduction Formula 

1.2 X 10-6 

1.2 X 10-6 

.9 X 10-6 

.9 X 10 -6· 

1.0 X 10-6 

La X la-6 

a.9 X la-6 

a.9 X 10-6 

La X la-6 

a.9 X la-6 

a.9 X la-6 

a.9 X la-6 

The variance for the reduced quantities is taken to be the 

variance of the observation itself except for distances. This is 

not entirely rigorous but is practical for most surveying applications. 



For precise work such as firs~ order geodetic work the contributions 

could be significant. For exa~le if one assumed the conditions 

and 

cpi = 45° 
' 

n. = 20~0 
1 

~i = 20~0 

z .. = 75°, 
1] 

a .. = 45°, 
1] 

(a = 2~0 ), 
ni 

(a~. = 2~0 ), 
1 

the contribution of a and a~. to the standard deviation of a direction 
11i 1 

would be approximately 1~0. Assuming the same conditions the contributio 

to the standard deviation of an azimuth would be 2~4 • 

The same conditions would add approximately 2~0 to the standard 

deviation of the observed zenith distance. 

The propagation of errors through the distance reduction 

formulas concerns only the error in the ellipsoid height of the end 

points of the measured distance. The covariance matrix of the heights 

of the end points is needed and it has the form 

2 
a 
rij 

0 0 

0 
2 

(3-24) c = ah. a 
1 h.h. 

1. 1 J 
0 a a2 

m ~-
h.h. h. 

where all units are in l. J J 

The Jacobian of transforma.tion J!!atrix B1 is (from equation 

(3-19)) 

B1 (1, 2) B1 (1,3)] • (3-25) 



where 

and 

B1 (1, 1) = 

B1 (1,2) 1 = 
21 

1 

1 (1 
0 

:r;i. 
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h 
(1 + .::1) 

R 

2 r? (Ah - .. ) 
[ ]. 2Ah 

0 

h. 2 
R (1 + __:. ) 

R 

h, + --;::.:h~].;,;.' ---':""h,] I 

<1 + f> <1 + R> C1 + f> 

(Ah2 - r 2 
2Ah 

Bl (1,3) = -- [ i. 

21 
0 

h. 
R(1 + __:. 

R 

h. 2 
(1 + ~) 

R 

h. 
(1 + Rl.) 

h. 
(1 + ~) 

R 

With s1T equal to the transpose of s1 , the variance for the 

ellipsoid distance, S .. ,is 
l.J 

where c2 is given by 

2 
and is in units of m 

c = 
2 

2 a. 5 , 
ij 

3.3 "Reduction" of Computed Geodetic 

Quantities to the Terrain 

(3-26) 

It is sometimes desirable .to compare observed geodetic quantities 

(directions, azimuths, distances) with computed geodetic quantities. 

If the latter are given on the ellipsoid, they may be "reduced" to 

the terrain so that they may be compared with the observed quantities. 

In order to "reduce" the directions, horizontal angles, zenith 

distances, and azimuths, we simply re-arrange terms in equations (3-12), 

(3-13), (3-14) and (3-15) to (3-18) respectively. For example, to 
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"reduce" a direction from the ·ellipsoid to an observed direction on 

the terrain, we get 

d .. 
l.J 

e = d . . + (~. sin a . . - n. cos a . . ) cot z . . 
l.J l. l.J l. l.J l.J 

hi 2 2 
(- e sin a .. cos a .. cos cjiJ.} 
Mm l.J l.J 

2 2 2 e S. . cos cjl . sin 2 a .. 
+ ( l.J m l.J 

12 N2 
m 

(3-27} 

To reduce distances from the ellipsoid to the terrain we use 

a similar procedure. Re-arranq.rnent of terms in equations (3-19) and 

(3-20) yield 
s .. 

ft = 2R sin (_u) (3-28) ... 
0 2R 

and h. h. 
:t .. = [12 (1 + ....!.) (1 + i-> + ~h2]1/2 (3-29} 

l.J 0 R 

Note that in all these "reductions" to the terrain we should 

not expect to have complete agreement between the computed quantity 

and the newly observed quantity since both of these quantities have 

some statistical fluctuation. 

3.4 Puissant's Formula 

It should be noted here at the outset that the derivation of 

Puissant's formulae is based on a spherical approximation, thus they 

are correct to 1 ppm (part per million) at 100 km, beyond which they 

·-
break down rapidly (40 ppm at 250 km when cjl = 60°) [Bamford, 1971, 

p. 134]. 
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3.4.1 Direct Problem 

The direct problem is: given the geodetic quantities cf>,, A., S .. 
l. l. l.J 

aij' compute the geodetic coordinates cf>j, Aj. The solution for~. is 
J 

iterative and proceeds as [Krakiwsky and Thomson, 1974] 

2 s.. 2 
- _u2 tan cjl. sin a .. 

2N. l. l.J 

s .. 
6~ .k= [N~J cos a .. 

l. l.J 
l. 

3 s .. 
- _!.J.. 

6N~ 
cosa .. sin2a .. (1+3tan2 cf> 1.)], l.) l.J 

l. 

then, 
2 2 s .. cos a .. s .. tan~. sin a .. 

flcjlk+l [ l.J l.J l.J l. l.J = -M. 
l. 2M.N. 

l. l. 

3 sin 2 a .. (1 3 tan 2 
cf>. ) s .. cos a .. + 

l.J l.J l.J l. ] [1 -2 
6M.N. 

l. l. 

where the letter k is a iteration counter. 

Finally 

(3-30) 

(3-31) 

(3-32) 

Examining equation (3-31) it can be seen that llcf> is a function 

of 641 and therefore iteration is necessary. To accomplish this the 

solution flcjlk+l is substituted for flcjlk and flcjlk+2 is obtained. This 

process is repeated until the difference between successive llcf> values 

is less than 1 x 10-9 radians. This procedure is shown numerically in 

the example given in section 3.8, 3.9, and 3.10. 

and 

Now 
s .. 

fl~ - ..1:J_ N. 
J 

2 
s.. 2 2 

sin a .. sec +. (1 - _!l. (1 - sin a 1. J' sec cjiJ.)), ( 3-33) 
l.J J 6N~ 

J 

A. "" A. + fl~ • 
J l. 

( 3-34) 
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As a further step, one may compute the inverse azimuth. 

First compute 

lla • fl). sin 

-sin3 ,~. sec3 (~)) 
"'m 2 (3-35) 

then 

(3-36) 

3.4.2 Inverse Problem 

Puissant's inverse problem is: given cp., >... of point i and 
J. J. 

cpj' >.. 3. of point j, compute the quantities S .. , a .. and a ..• The 
l.J J.) J.l. 

solution proceeds as follows [Krakiwsky and Thomson 1974 1 

and 

or 

First compute, 
fl). N. 

sec cp. 

llcjl M. 
-1 

a .. = tan ------------------------~----------------------l.Jk 

(1 -

fl). N. 

M i 

J. 

3e2 sin 

2(1 - e 

cp. cos cp. llcjl 
J. J. 

2 sin 2 
q, i) 

cos aijk 3e2 sin·q,. cos <Pi ~f 
(l- ---2-....=....2--.....::..- ) 

2(1-e sin cp.) 
l. 

(3-37) 

(3-38) 

(3-39) 
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where A~ = ~j - ~i 

and 

A>. = >. • - >.. • 
J ]. 

Next,new values of a .. and 5 .. are computed as follows. 
l.J l.J 

Compute 

and 

Now 

and 

or 

3 
A' N (S •. ) 

Tl = _u_"' _j_ + l.J k 
sec $j 6N~ 

J 

sin a .. 
.l.Jk 

6N~ 
J 

. 3 2 .1. s1.n a. . sec ..,J. , 
l.Jk 

M. 
T2 = A$ l-------=1------

3e2 sin '· cos '· 
(1 - ----2--=1=-----=1:... • A~ ) 

2(1 - e sin2 ~.) 
]. 

(S .. ) 2 tan $1 sin2 a .. 
l.Jk l.Jk + - ;:.._ _______ .:.:.,_ 

2N. 
]. 

2 (1 + 3 tan $.) 
1 

s .. 
l.Jk+l -

sin a .. 
l.Jk 

cos a .. 
l.Jk 

(3-40) 

( 3-4l:) 

(3-42) 

(3-43) 

(3-44) 
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Note that the new a.. (eq~tion (3~43)) 1 is used in (3-43) or (3-44). 
l.Jk+l 

Now using the new values of S. . and a. . we may again compute updated 
l.Jk+l l.Jk+l 

values by returning to equations (3~40) 1 (3-41),. (3-42) and (3-43) or 

(3-44). This iteration process continues until changes in a .. and s .. 
l.J l.J 

are negligible (t.a .. < 1 X 10-9 radians). 
l.J -

Once we have obtained a final value for aij 1 - a .. is computed 
Jl. 

using equations (3-35) and (3-36). This completes the inverse problem 

using Puissant's formulae. 

3.5 The Gauss Mid-Latitude Formulae 

These formulae are also based on a spherical approximation of 

the earth and because of the degree of approximation should only be 

used for points separated by less than 40 km at latitudes less than 80° 

(Allen et al 1 1968] and are accurate to 2 ppm within these bounds. 

3.5.1 Direct Problem 

The direct problem is: given the quantities '. 1 ~. 1 S .. and a .. 1 l. l. l.J l.J 

compute the geodetic coordinates 'jl ~j. 

The first iteration is 

The solution is iterative. 

(3-45) 

(3-46) 

s. ·. sina .. 
~ l.J l.J 

6Ak - IN cos ' . ] 
m m 

(3-47) 
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and 

Then 

Aak • _&).k sin ' . m 

The second iteration proceeds as 

and 

s .. cos 

A'k+1 • 
l.J 

H 
m 

sin 

Aak 
(a .. 

l.J 
+-) 

2 

Aak 
(a .. + -2 ) 

l.) 

_A).k+1 • --------­
Nm cos 'm 

(3-48) 

(3-49) 

(3-50) 

(3-51) 

(3-52) 
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Having obtained a new _Aok+l we can return to (3-50) and repeat 

the procedure solving for This 

procedure is repented until the-difference between successive cycles 

is less than 1 x 10-9 radians for all quantities. Upon completion of 

the iterations we compute 

A. = A. + I:J.A 
J l. 

and as a further step we compute the inverse azimuth 

~ji • aij + I:J.a + 180 • 

3.5.2 Inverse Problem 

(3-53) 

(3-54) 

(3-55) 

The inverse problem is: given,,, A. of point i and'·' Aj 
l. l. J 

of point j, compute the direct and inverse geodetic azimuths a .. and 
l.J 

~ .. and the ellipsoid distanceS ..• The procedure is as follows. 
J l. l.J 

First 

I:J.' "" .. 
J cjli (3-56) 

I:J.A = A. - A. , 
and J l. 

(3-57) 

!J.s. = I:J.A sin ,_. . (3-58) 
m 

Next compute 

tJ. -l I:J.A N cos cjlm _ 
a • (a + ..J!. ) • tan [- m ) • 

m ij 2 _I:J., M. 
m 

(3-59) 

Then 

(3-60) 

and 

I:J.a + 180° (3-61) 



Finally, sij (• sji> is computed either from 

A). Nm cos tm 

sij • (3-62) 

sin (a •• + Aa·) 
l.J 2 

or 
M At 

sij 
• ....!1 (3-63) 

cos (a •. + b.a ) 
l.J 2 

3.6 Error Propagation Through Position 

Computations 

The notation tised in this section is identical with that used 

in Section 3. 5. This is because the Gauss Mid-Latitude formulae 

have been used for the generation of the necessary Jacobian matrix 

elements. This approximation amounts to errors well within 

the accuracy of the formulae themselves, that is less than 1 ppm at 

100 km. 

3.6.1 Direct Problem Error Propagation 

The direct problem error propagation proceeds in the following 

manner. The covariance matrix for point i is combined with the 

variance of the geodetic azimuth and the variance of the ellipsoidal 

distance to produce the covariance matrix c3• The form of c3 is 
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2 
0 0 a'. a 

1 'i>.i 

2· , . 
0 0 a a>.. 

c -
'i>.i 1 -•-... - .... - - - - --- ---3 2 
0 0 a a ij 

2 0 0 0 
s .. 

1J 

in units of 

rad 
2 rad~ 

rad 
2 

rad2 

2 2 
Arcsec may be converted to rad f~r use in the above 

1 covariance matrix by multiplying by_:2. 
p 

2 
m 

(3-64) 

To include the covariance information of point i in the output 

covariance matrix the equations 

and 

are required. 

>. ... A. ' 
1 1 

(3-65) 

(3-66) 

T,he Jacobian of transformation matrix B2 is (from equations 

( 3-66) , ( 3-67) , ( 3-53) and ( 3-54)) 

1 0 0 0 

0 1 0 0 
B • (3-67) 2 B2 (3,1) ·s2 (3,2) B2 (3,3) B2 (3,4) 

l B2 (4,1) B2 (4,2) B2 (4, 3) B2 (4,4) 



where, 
3 sii 

82(3,1) - 1 -

s .. sin 
l.J 

s .. sin 
82 (3,2) - l.J 

a A .X m 

4M 
m 

am sin 

21~ 
m 

- s .. sin a 
82(3,3) l.J m = 

Mm 

cos a 
82(3,4) 

m - M m-

82(4,1) s .. sin a (N - l.J m m 

65 

cos ' m 

+m -

sin +m -

1 s .. cos a m· 

2 

82(4,2) 

82(4,3) 

and 

2 2 
Nm cos 4Jm 

s .. cos 
1 - l.J = 

2~ 

-s .. 
l.J 

cos 

~ cos 

sin a 
m 

a m 

4lm 

>+ l.J 

4N m 

a sin 4Jm m 

cos +m 

I 

M.e 
2 

sin 
'· cos '· ' cos 

l. l. l. I'lL-) 
2 

(1 - e ) 

A.X • 

'1' With 82 equal to the transpose of 82 , the covariance matrix 

for poin~s i and j will then be 

(3-6 9 

where c4 has the form 
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2 
a fi a 41!'-i a fifj a fi'-j 

. , 
a-, >. 

2 
a '-i+j a,_i a '-i'-j i i 

c4 - -- --·-- ---- ,_ ...... - --2 
a cjlicjlj a '-ifj a fj a fj. '-j 

a., >. 
2 

a '-i'-j a fj'-j a,_ 
i j j 

All elements in c4 are in rad? which can be converted to 

arcsec2 by simply multiplying each element of c4 by p 2 

3.6.2 Inverse Problem Error Propagation 

The inverse problem error propagation proceeds as follows. 

First, the covariance matrix for the points i and j is written as 

c -4 

2 
acjl 

i 

acjli>.i 

acjlicjlj 

acjliA.j 

where all ·units, in c4 

matrix in arcsec2 

acjli>.i a 
cfli 'j 

a 
cjli).j 

a,_2 a a 
i >.icflj >.i>.j (3-69) 

a,_icflj a+ 
2 a 

j cjlj).j 

a>.iA.j acji.A.. a A. 2 

·' J J j 

are in rad2 which is obtained fzom a covariance 

l by .multiplying each element by 2 . 
p 



.Then usinq equations (3-.,-65), (3-66), ( 3-60) , (3-61) 

.j - .j 

).i - ).i 

the Jacobian of transformation 8 3 is 

1 0 0 0 

0 1 0 0 

0 0 1 0 

83 = 
0 0 0 1 

83(5,1) 83(5,2) 83(5,3) 83(5,4) 

83(6,1) 83(6,2) 83(6,3) 83(6,4) 

where 
A A. cos !jim 

8 3 (5, 1) = 8 (6, 1) -
2 3 

8 3 (5, 2) = 8 3 (6, 2) + sin cflm 

A>. cos +m 
8 3 (5, 3) = 8 3 (6, 3) - 2 

sin cflm_ 
8 3 (5, 4) = 8 3 (6, 4) - 2 

8 (6,1) • . 
3 

A>. N m cos cjl m 
--....... ~------.------ ('-----· - + ll>.N cos + . A+ 

('-~m:___.::m=-) 2) A+J.t 
A+ l·lm m 

(1+ 

1 
-- N sin +m) + 2 m 

fl). cos .... ,.m 
4 

a1onq with 

(3-70) 

(3-71) 

(3-72) 
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·[1 1 

0m ·• 2] 
- N cos q,. sin ~rn 

B3 (6.2) rn rn 
) 

2 AX N. cos A~ M 
1!\ m + (A~ M 

-) 
rn 

·[1 1 

)j 
AX - N cos 4J . 

- B3 (6,3) 
m m 

AX N ~m A~ M A~ cos 
+( m m 

a; M 
m 

M. 
2 sin ~j 4J; cos 4Jm e cos 

+ J 

2 2(1 - e) 

3 Nm cpm Mj 
2 sin ~j ~j cos e cos 

. 
2 

Mm (1 2 sin 2 
~j) - e 

1 AX cos ~m 
--N sin cp~. ) + 2 m 

4 

and 

1 Nm cos cp m sin 4Jm 
------------) + -------

2 A"A Nm cos ~m 
1 +(--------------

6~ Mm 

T 
Wi~ B4 equal to the transpose of B4 the covariance matrix 

for the points i and j and the direct (a .. ) and inverse (a.i) azimuths 
1J J 

is qiven by 
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where c5 has the form 

c = 
5 

: a+i aij 
I 
I 
I 
I 

. I 

a~i'lA .. 
l.J 

1 °A. a .. 
-- - - - • -- - -- --- ---- --- - - -e- - _J - u- -

a t a 2 
~j aij aij a~. a .. aA. a .. l. l.J l. l.J 

a •. a .. aA. a .. l. Jl. l. Jl. 
a•. a .. 

J J l. 
aA. a .. 

J J l. 
0 a .. a .. 

l.J J l. 

with all units . d2 l.n ra • 

a •. a .. l. Jl. 

aA. a .. l. Jl. 

a •. a .. 
J Jl. 

(3-74) 

aA. a '1. - .J ~ 

aa .. a .. 
l.J Jl. 

2 
aa .. 

Jl. 

If the accuracy of the distance and its relationship with the 

coordinates, and azimuths a .. and a .. is required, then using equations 
l..J J l. 

(3-64), (3-66) (3-70) and (3-71), plus 

a .. =a .. l.) l.) 
(3-75) 

and 

a4 • =a .. 
:Jl. )l. 

(3-76) 

the Ja~obian of transformation s 4, is 
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0 0 0 0 

0 0 0 0 

B ( 3, 1) 0 B (3,3) 0 

where 

a .. +a .. 
cos( l.J Jl. 

2 

3 ~4> M. 
+ l. 

2 (1 -

- M 
B (3,1) = --------~m~---------

4 - 180 

M 3 ~cj> M. 
J 

and 

i3 (3,3) = 
4 

+ 
a .. +a .. - 18"0 

( l.J Jl. ) 2 (1 -cos 
2 

a .. + a .. - 180 
~4> M sin ( l.J Jl. 

m 2 
2 2 a . . + a . . - 180 . 

cos ( -=~.LJ---J~~=------
2 

Bi3,6) = B 4(7,5). 

e 

1 0 

0 1 , ( 3-77) 

B (3,5) B.(3,6) 

2 
sin cj>. cos cj>. e 

l. l. 
a .. +a .. - 180 

2 
sin 

2 
4> i) cos( l.J Jl. ) e 

2 

2 
sin q,j cl>j e cos 

180( a .. +a .. -2 
sin 

2 
cj>j) ( l.J J~ ) cos 

2 

With B 4T equal to the transpose of B 4 the covariance matrix is 

T 
C 6 = B 4 C 5 B.4 , (3-78) 

where C 6 ~as the form 



c -6 

.in units of 

2 
a 
aij 

a a .. a .. 
l.J Jl. 

a 
a .. s .. 

l.J l.J 

2 
rad 

2 rad 

rad.m 
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a a .. 
l.J aji 

2 a 
a .. 

Jl. 

a 
a .. s .. 

Jl. 

2 rad 

2 rad 

rad.m 

l.J 

a 
aijsij 

a 
a .. s.j Jl. l. 

2 a s .. 
l.J 

rad.m 

rad.m 

2 m 

where the rad.m may be converted to arcsec.m by multiplying by p and 

rad2 may be converted to arcsec2 by multiplying by p 2• 
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3. 7 Introduction to tlumerical Exai!tDles 

3.7.1 Use of Comcuted Geodetic Azimuth 

Before commencing with the numerical examples for direct and 

inverse problems on the reference ellipsoid, let us examine the deter-

mination of the geodetic azimuth of a line by means other than the 

reduction of a terrain astronomic azimuth. A common situation is to 

know the geodetic coordinates of the instrument station i and those of 

t~e reference station j, along with the covariance matrix cc2) for those 

points •. The geodetic azimuth a .. for the line ij can be computed using l.J . . 

the Puissant'S(section 3.4) or Gauss ~id Latitude (section 3.5) inverse 

formulae. The covariance matrix involving ~le points and the azimuth 

can be derived using the inverse problem error propagation (section 3.6.2). 

The terrain angle ~jik (k is the unknown point) can be 

measured and then using the reduction formulae outlined in section 

e 3.2.3 the angle is reduced to the ellipsoid giving Bjik" This an~le 

is then added to a .. yielding 
l.J 

(3-79) 

The variance of aik is computed as 

(3-80) 

The c.3 matrix (equation 3-65) would take the form 

2 
0 a+ a 0 

i ·~i +iaij 
a a A ' 0 0 

+i>.i I Aiaij i I 

C3 - ------ - -- - -· - - - - ... . -
I 2 a a I a 0 

+taij Aia!j I aik . 
a2 I 

0 0 I 0 5ik I 

(3-81) 



in units of 

rad· 2 

2 rad. 

_2 . 2 
raa rad 
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I 

rad 2 

rad. 2 -.- ----
I rad 2 
I 

2 
Ill 

'l'he terms a . 
tiaij 

and a result from the fact that aiJ', 
Aiaij 

which was used in equation (3-79) to form aik' is derived from the 

coordinates of points i and j and therefore is correlated with point i • 
. 

'l'he a and a terms can be taken from the appropriate location 
. + iaij ).iaij 

in 'equation (3-74) •. 

Having obtained the above information (equations (3-79) and 

(3-81)) ·the direct problem can be solved using the Puissant or Gauss 

Mid-Latitude solution for the direct problem as outlined in Sections 

3.4.1 and 3.5.1. 

'l'he numerical examples that follow are done assuming that an 

astrono~ic azimuth has been determined by observation. 

3.7.2 Ellipsoid Direct Problem Flow Chart 

Figure (J-5) contains a flow chart which depicts the steps 

to be executed in doing the direct problem. The flow chart begins with 

the observed astronomic azimuth, zenith distance and spatial distance, 

followed by the reduction of these observations. These reduced observations 

are then used in either the Puissant or Guass Mid Latitude direct 

problem solution. 
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Observed Astronomic 
Azimuth and Zenith Observed Spatial 

Distance Ai..; zij 
Distance rij 1 2 

LaPlace Equation 
(3-15} Caj_.;> 3 

Compute Approximate 
a a 

'j' ).j 4 

Correction to Zenith 
Distance (3-14) zij 5 

Gravimetric Correction 
(3-16) a~. 

l.J 6 

Skew Normal Correction 
'" (3-17) aij 7 

Convert Spatial Distance 
~o Ellipsoidal Distance 
(3-19, 3-20) s .. 8 l.J 

Normal Section Correction 
(3-18) a .. 

l.J 9 - - -> h ............ Pr ....-.s f · t t . \...-...... \1.~ 

'I OR 
·~ 

Puissant's Direct Problem Guass Mid Latitude 
1n ... Direct Problem lOb 

are 

nd 
,.~- .j, 

1>.~ - ).j I <1 • .,. 

ll 

YES NO 

' 
., 

ENDl RETURN to 5 

Figure 3-5 

Ellipsoid Direct Problem Flow Chart 



7S 

3. 8 New Brunswick numerical Example 

3.8.1 Direct Problem 

The information given here for the solution of the direct 

problem on the reference ellipsoid and its associated error propagation, 

is identical to that used for the numerical example for the three 

dimensional case in Section 2.4. 

The coordinates of point 1 are 

• = 1 47° 03' 24:644 

>. -1 65° 29' 3:453 w 

.. -65• 29' 3:453 

and the associat d covariance matrix is 

J 
2.3504 X 10-l5 -1.8804 X 10-18 

c+i>.i - -1.8804 X 10-l8 2. 3504 X 10-15 

in units of 

] 
.. 

[ rad 2 rad. 2 

rad 2 rad·2 

The deflection of the vertical components for point 1 are 

and 

1\ - 6~0 1 

The observations are 

and 

r12 • 2 500.00 m • 

A - 45• oo• oo~oo 12 -

The variance of the astronomic azimuth is 

• 25'!00 arcsec2 

• 5.876 x 10-lO rad2 



76 

This value is taken to be the variance of the geodetic azimuth 

2 2 
aa • a ij A ij 

The ellipsoid heights of the two points are 

h1 • 100.00 m. 

h2 = 231.243 m. 

The covariance matrix c 1 of the spa~ial distance and heights is given by 

7.840 X 10-4 0 0 

c = 
1 0 4.0 4.0 

0 4.0 4.033 

in un.;.ts of 
2 

m 

l 2 2 
m. m 

2 2 
m· m 

The approximate coordinates for point 2 (equations (3-9) 

and (3-10)) are 

~a = 4'7°04' 21"889 'I' 2 • I 

and 

= -65° 27' 39~680. 

The corrected zenith distance (equation (3-14)) is 

zij • 87°00' 1:01 

The first steps through the azimuth reduction give. 

(equations(3-15), (3-16) and (3-17)) 

HI 

a12 • 44° 59' 53:64 

The distance is now reduced using equations (3-19), (3-20), 

and assuming 

"' 

and 
"' 
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The reduced distance is 

512 •2 496.488 m 

The variance of the distance is (using equation (3-26)) 

2 -4 2 a • 8.760 x 10 m • 
512 

The final correction to the azimuth (equation (3-18)) yields 

the geodetic azimuth 

a12 • 44° 59' 53~64 

The covariance matrix c3 (equation (3-64)) is given by 

2.3504 X 10-lS -1.8804 X l0-l8 0 0 

-1.8804 X 10-l8 2.3504 X 10-lS o. 0 
c -

X 10-lO . 3 
0 0 5.876 0 

0 0 0 8.760 

in units·of 

rad 2 

rad 2 

rad. 2 

rad 2 

rad 2 

The direct problem solution using the reduced quantities 

(s12 and a12> is done using Puissant's formulae. After the first 

iteration the difference in the ~+ terms is 

,~.1 - ~•21 - 0~18014 

• 8.733 x 10-7 rad 

After the second iteration 

1~+ 2 - ~+ 3 1 < 2 x 10-4 arcsec 

< 1 x 10-9 rad 

X 10-4 

This indicates that the stopping criteria has been met and from 

the final iteration of equation (3-31) 
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At • 57~157 • 

Now (from equation (3-32)·) 

• - 47° 04' 21~801 2 

then (from (3-33) and (3-34)) 

A • 65° 27' 39~787 W 
2 

- -65• 27' 39~787 

and finally (from (3-35) and (3-36)) 

22sooo• 54~89 a21 = 

At this ~int the approximate values fa, A~ are tested against 

the values above to see if they are within 1 arc second of the final 

coordinates as determined by Puissant's formulae. In this example 

and 

+ a -
2 

A a -
2 l.2 = 0 !'1079 

This indicates that there is no need to repeat the observation 

reduction process and the error propagation assumptions will be valid 

(see section 3.2.8~ If the magnitude of either coordinate difference 

had been greater than 1~0, the t 2 , 1.2 solved for using Puissant's 

a a formula would have become +2 , A2 and the whole process from where 

a a · +2 , A2 were first computed would have to be repeated. 

Turning to the direct problem error propagation (section (3.6.1)) 

the Jacobian matrix, s2 (equation (3-67)), of the direct error propagation 

is 
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1 0 0 0 

0 1 0 0 
B • 

X 10-4 10-4 X 10-7 2 1 1.0146 -2.7717 1.1100 X 

2.1732 X 10-4 9.99a5 X 10-l 4.0553 X 10 -4 1.624a X 10-7 

Using equation (3-6a) the covariance matrix, c4 , of points 

2 1 and 2 (converted to arcsec ) is 

1.000 X 10 -4 -a.OOQ X 10 -a . -4 
1.000 X 10 -S.a26 X 10 -a 

-a.ooo X 10 -a 1.000 X 10-4 -6.9a5 X 10-a 9.999 x 1o-5 

C4= 
1.000 X 10-4 -6.9aS 10-a 1.024 X 10-4 -6 

X -2.186 X 10 

-5.a26 X 10 -a 9.999 X lO-S -2.la6 X 10~6 1.051 X 10 -4 

3.a.2 In.verse Problem 

' 
In the inverse problem the coordinates of the two points 1 and 

2 are provided along with the corresponding variance covariance matrix. 

In this example, the coordinates are those determined in the direct 

problem (section J.a.l) 

.1- 47° 03' 24~644, 

A1 • 65° 29' 3:453 W 

- -65° 29' 3~453 , 

•2 • 47° 04 1 21~a01 1 

A • 65° 27' 39=7a7 W 
2 

• -6s• 27' 39~7a7 , 

and the covariance matrix, c4 , (section 3.a.l) is given in units of 

2 rad • 

Using Puissant's inverse formulae the solution of the inverse 

problem on the reference ellipsoid is executed. After the first iteration 

·the azimuth difference is 
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- 15~313 

Upon completeion of the second iteration 

I (a12> 2 - (a12> ~ < l x 10-9 rad· 

< 2 x 10-4 arcsec 

This indicates ~~at the stopping criteria has been met and from the final 

iteration (equations (3-42) and (3-43)) the-geodetic azimuth and 

distance are 

B • 
3 

and 

s12 • 2 496.488 m 

Finally (from equation (3-35) and (3-37)) 

The Jacobian of transformation, s 3, is (usin<.:! equation (3-72)) 

1 0 0 0 

0 1 0 0 

0 0· 1 0 

0 0 0 1 

1804.090 -1232.308 -1804.631. 1232.308 

1804.090 -1233.041 -1804.631 1233.041 

Using equation (3-73) the covariance matrix C (converted to 
5 



c-
5 

St 

~2.703xl0-5 -2.698xlo-5 

' -5 5 .3.658xl0 -3.659xl0-

c4 ~6-956xlo- 3 -6.958xlo-3 
I 
I l.OlOxl0-2 l.OlOxl0-2 

- - - - - - - - - - - - - - - - - - - - -,_ --- - - - - - -
2.703xlo-5 -3.658xlo-5 -6.956xlo-3 1.010x10-, 25.00 25.00 

2.698x1o-5 -3.659xlo-5 -6.958xlo-3 1.010x1o-21 25.00 25.01 

If error propagation for the computed distance is required, 

the Jacobian of transformation B4 is (using eq~ation (3-77)) 

B • 
4 

0 0 0 0 1 0 

0 0 0 0 0 1 

9.009x106 0 9.009xl0 6 0 1248.538 1248.538 

The covariance matrix c 6 is (using equation (3-78) and converting 

2 elements to arcsec.m and arcsec ) 

25.00 25.00 . 6.175 X 10-6 

c -6 
25.00 25.01 2.768 x 10-5 

6.175 X 10 -6 2.768 X 10 -s 8.759 X 10-4 
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3.9 Prince Edward Island Numerical Exa~le 

3.9.1 Direct Problem 

The information given here for the solution of the direct problem 

on the reference ellipsoid and its associated error propagation, is 

identical to that used for the numerical example for the three dimensional 

case in section 2.S. 

and its 

The coordinates of point 1 are 

• : 46° 42 1 28~147 I . 
1 

Al = 64° 29' 34~014 W 

: -64° 29 1 34~014 I 

covariance matrix is 

- [2-3504 X l0-l5 

c 
+iAi 1.8804 X 10-18 

in units of 

[rad: rad 

rad rad 

-1.8804 X 10-l8 

l X 10-l5 2.3504 

2. 

J 
2 



The deflection of the vertical components for point 1 are 

f;l - 4~0 

and 

The observations are 

and 

r 12 = 2 500.00 m 

A12 =135a 00' 0~00 

The variance of the astronomic azimuth is 

This value 

a 2 = 25~0 
A •• 

2 arc sec 
l.J 

= 5.876 x lo-10 rad 2 

is taken to be the variance 

2 2 
a = aA •• aij l.J 

of the geodetic azimuth 

The ellipsoid heights of the two points are 

h -- l 100.00 m 

h2 ,.. 231.31 m 
\ 

The covariance matrix c1 9f 

7.840 X 

c -1 0 

0 

in units of 

m-2 

the spatial 

10-10 

2 , 
m 

.2 m. 

distance and heights is given by 

0 0 

4.0 4.0 

4.0 4.032 
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The approximate coordinates for point 2 (equations 

(3-9) and (3-10)) are 

~a • 46° 41' 30:899 
2 

~a • 64° 28' 10:907 w 
2 

- -64° 28' 1o:8o1 • 

The corrected zenith distance (equation t3-14)) is 

z~. = 87°00'01:41 
l.J 

The first steps through the azimuth reduction give 

(equations(3-15), (3-16) and (3-17)) 

a" = 134° 59' 53~25 12 

The distance is now reduced using equations (3-19), (3-20) 

and assuming 

• a '" 12 

and 
• a "' 12 

The reduced distance is 

s12 • 2 496.484 m. 

The variance of the distance is (equation (3-26)) 

~ 

'l'he final correction to the azimuth (equation (3-18)) yields 

the geodetic azimuth 

134° 59' 53!'25 al2 • 



The covariance matrix c3 

C3 • 

in units of 

2 rad. 

2 rad 

2.3504 "X lo-15 

-1.8804 

0 

0 

X 10-18 

2 rao 

(equation (3-64)) 

-1.8804 X l0-l8 

2. 3504 X 10-15 

0 

0 

2 rad 

is given by 

0 

0 

5.876 X l:O-lO 

2 m 

0 

The direct problem solution using the reduced quantities 

<s12 and a12> is done using Puissant's formulae. After the first 

iteration the difference in the 6' term is 

-7 • 8.86 x 10 rad. 
After the second iteration 

2 x 10-4 arcsec 

< 1 x 10-9 rad. 

0 

0 

0 

8.761 X 10 

This indicates that the stopping criteria has been met and 

from the final iteration of equation (3-31) 

A+ -s7~174 

Now (from equation (3-32)) 

-4 
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and (from (3-33) and (3-34)) 

A • 64° 28' 10~933 W 
2 

- -64° 28' 10~933 , 

and finally (from (3-35) and (3-36)) 

a a At this point the approximate coordinate values ~ , A , are 

tested against the values above to see if they are within 1 arc second 

of the final coordinates as determined by Puissant's formulae. In 

this example 

~2 - ' - -0~074 a 2 
, . 

· .This indicates that there is no need to repeat the observation 

reduction process and the error propagation assumptions will be valid. 

(see section 3.2.8). If the magnitude of either coordinate difference 

had been greater than 1::0, the , 2a, A2a SQlved for using Puissant's formula 
a a a a would ha~e become ~ 2 , A2 , and the whole process from where ' 2 ,A2 were 

first computed would have to be repeat~d. . . . . .•. 
Turning to the direct problem err-ot:~propa9Qtion (Section 

(3.6.1)) the Jacobian matrix, B2 (equation (3-67)), of the direct 

error propagation is 

1 0 0 0 

B • 2 0 1 0 0 

1 1.0084 X 10-4 -2.7713 X 10-4 -1.1103 X 10-7 

-4 
1.0002 -4.0288 lo-4 1.6134 10":'7 2.1300 X 10 X X 

Using equation (3-681 the covariance matrix c4 , of points 1 

and 2 
2 (converted to arcsec ) is 



a7 

1.000 X 10 -4 -a -a.000 X 10. 1.000 X 10-4 -5.a71 X 10-a 

-a.ooo X 10-a 1.000 X 10-4 -6.992 X 10-a 1.000 X 10-4 

c -
X 10-4 4 1.000 -a 1.024 X 10-4 -6 -6.992 X 10 2.075 X 10 

10-a -4 . 
X 10-6 -4 -5.a71 X 1.000 X 10 2.075 1.051 X 10 

3.9.2 Inverse Problem 

In the inverse problem the coordinates of the two points 1 

and 2 are provided along with the corresponding variance covariance 

matrix. In this example, the coordinates are those determined in 

the direct problem (section 3.a.1) 

Al • 64° 29' 34~014 w 

-64° 29 1 34~014 

.2 - 46° 41. 30:973 

A2 • 64° 2a• 10~933 w 

- -64° 2a' 10~933 

and the covariance matrix, c4 (section 3.a.l) is given in units of 

2 rad • 

Using Puissant's inverse formulae the solution of the inverse 

problem on the reference ellipsoid is executed. After the first 

iteration the azimuth difference is 

I I -5 
(a12>1 - (a12>2 • 7.33 x 10 rad 

- 15~116 

upon completion of the second iteration 

l<a12>2 - (a12 >3 < 1 x 10-9 rad 

< 2 x 10-4 arc sec 



~4 
This indicates that the stopping criteria has been_ met and 

from the final iteration (equations ( 3-4 2) and ( 3-4 3) ) the geodetic 

azimuth and distance are 

and 

a •134° 59' 53~25 12 

s12 .. 2 496.484 m • 

Finally (from equation (3-35) and (3-37)) 

a 21 • 315°00' 53~71 

The Jacobian of transformation, a3, is (using equation 

(3-72)) 

1". 0 0 0 

0 1 0 0 

0 0 1 0 
B3"" 

0 0 0 1 

1804.096 1241.714 -1803.562 -1241.714 

1804.096 1240.986 -1803.562 -1240.986 

Using equation (3-73) the covariance matrix c 5 (converted 

to arcsec2) is 

1 2.671xlo-s 
I 

' -s •-3.64lxl0 

2.676x1o-5 

-3.64oxto-5 

cs • c 4 :-6.902x1o-3 -6.900x1o-3 
I 

j-l.Ollxl0-2 -l.Ollxl0-2 

---------- - - -- - - - - -- -- ---- - -·-- -- - - -- ---- --
2.67lx10-s -3.64lxlO-s -6.902x1o-3 -l.Ollxlo-2 • 2s.oo 2s.oo 

I -s -s -3 -2• 2.676x10 -3.640xl0 -6.900xl0 -l.Ol1xl0 1 25.00 24.99 
I 
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If error propagation for the co.uputed distance is r~uired, 

the Jacobian of transformation B4 is (using equatio.n (3-77)) 

0 0 0 0 1 0 

B • 4 0 0 0 0 0 
1 

9.007 X 106 . 
0 -9.006 106 0 -1247.958 X -1247.958 

The covariance matrix c 6 is (using equation (3....;78) and 

conver~ing elements to arcsec.m and arcsec2) 

25.00 . . -6] 25.00 5.904 X 10 

c - 24.99 -5 
[ 25.00 2. 712 X 10 

6 -6 -5 -4 5.904 X 10 2. 712 X 10 8.762 X 10 

3.10 ttova Scotia Numerical Examole 

3.10.1 Direct Problem 

The information given here for the solution of the direct. 

problem on the reference ellipsoid and its associated error propagation, 

is identical to that used for the numerical example for the three 

dimensional case Section 2.6. 

The coordinates of point 1 are 

.1 - 44° 39' 3~123 

A • 1 63° 00' 0~000 w 

• -6J•oo• o:ooo , 

and its covariance matrix is 

~2.3404 x 10-lS -1.8804 X 10-l8 ]· c 
• 1.8804 X 10-l8 X 10-!5 +iAi 2.3504 

in units of 

[rad2 rad2 

J rad2 rad2 
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The deflection of the vertical components for point 1 are 

and 

~ - 4~0 1 

1'11 - 6~0 

The observations are 

r 12 • 2 500.00 m , 

and 

The variance of the astrono~c azimuth is 

a 2 • 25~0 arcsec2 
Aij 

-10 2 
• 5.876 x 10 rad •. 

This value is taken to be the variance of the geodetic azimuth 

2 2 
a =a. 
aij .Aij 
. . 

The ellipsoid heights of the two points are 

h1 "' 100.000 m 

h2 • 231.414 m 

The covariance matrix c1 is given by (spatial distance and heights) 

cl • [7 .840 ~o 10-4 4~o 
4.0 

4~0 ] 
4.033 

in units of 

l 
• The approximate coordinates for point 2 (from equations (3-9) 

and (3-10)) are 

and 
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- -63. "01' 20~214 

The corrected zenith ~istance ( equation (3-14)) is· 

The first steps through the azimuth reduction give (equations 

(3-15), (3-16) and (3-17)·) 

The distance is now reduced using equations (3-19), (3-20), 

and assuming 

a =a "' 12 12 

and 

The reduced distance is 

s12 =2 496.479 m 

The variance of the distance is (using equation (3-26)) 

a 2 = 8.762 x 10-4 m2 
512 

The final correction to the azimuth (equation (3-18)) yields 

the geodetic azimuth 

c • 
3 

a • 224• 59' 54~011 • 12 

The covariance matrix c3 (equation (3-64)) is given by 

2. 3504 X 10-15 
. 

-1.8804 X 10-18 

-1.8804 X 10-18 

2.3504 X 10-15 

5.876 X 10-10 

-4 8.762 X 10 



in units of 
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2 
m 

The direct problem solution using the reduced quantities (s12 

and a12> is done using Puissant's formulae. After the first iteration 

the difference in the ~+ terms is 

,~.1 - ~.2, = 0~19667 

= 9.53 x 10-7 rad 

After the second iteration 

1~•2 - ~•31 < 2 X 10-4 arcsec 

< 1 X 10-g rad. 

This indicates that the stopping criteria has been met and 

from the final iteration of equation (3-31) 

ll+ - 57':198 • 

Now (from equation (3-32)) 

• • 44° 38 1 
2 5:925 I 

then (from (3-33) and (3-34)) 

A • 63° 2 
01' 20~088 w 

--63° 01 1 20~088 

and finally (from (3-35) and (3-36)) 

a 21 • 44~'58' 5~~73 
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,.a a At this point the approximate coordinate values ~ , ~ , are 

tested against the values above to see if they are within 1 arc second 

of the final coordinates as determined by Puissant's formulae. In 

this example 

a 
~2 - .2 = -0~071 

and 

~ a - ~ • -0~126 
2 2 

This indicates that there is no need to r~peat the observation 

reduction process and the error propagation assumptions will be valid 

(see section 3.2.8). If the magnitude of either coordinate difference 

had been greater than 1~0, the 92 , ~ 2 solved for using Puissant's 

f ,.a 'a d h 1 f ormula would have become v2 , A2 ~ t e who e process rom 

a a where +2 , ~2 - were first computed would have to be repeated. 

Tur.ni~q to the direct problem er~or propagation (section (3.6.1)) 

the Jacobian matrix, B2 (equation (3-67)), of the direct error propagation 

is 

1 ·0 0 0 

0 l 0 0 
B • 

x 1o-5 2.772. X 10-4 2 1 -9.740 -1.111. 

1.911 X 10-4 1.000 -3.884 X 10-4 -1.555 

• Using equation (3-68) the covariance matrix, c4,of points 1 

~nd 2 (converted to arcsec2) is 

X 10-7 

X 10-7 



1.000 X lo-4 -8.000 X lo-8 1.000 X 10-4 -9.912 X 10-8 

-8..000 X 10-Ef 1.000 X 10-4 -8.974 X 10-8 1.000 X 10-4 

c-
lo-4 10-4 4 

1.000 X -8.974 X 10~8 1.024 X -2.157 X 10-:6 

-9.912 X 10-8 1.000 X 10-4 -2.157 X 10 
-6 

1.047 X 10-4 

3.10.2 Inverse Problem 

In the inverse problem the coordinates of the two points 1 and 

2 are provided along with the corresponding variance covariance matrix. 

In this example, .the coordinates are those determined in the direct 

problem (section 3.8.1) 

A1 = 63° O' 0~000 W 

= -63 ex> • o~·ooo , 

= -63° Ql I 20" o 088 I 

and the covariance matrix, c4 , (section 3.8.1) is given in units of 

2 rad • 

Using Puissant's inverse formulae the solution of the inverse 

problem on the reference ellipsoid is executed. After the first 

iteration the azimuth difference is 

I (a ) (a ) I • 6.82 x 10-5 rad 12 1 - 12 2 

- 14~068 • 

U,pon completion of the second iteration 

I (a12>2- (a12>31 < 1 x 10-9 rad 

< 2 x 10-4 arcsec 



This indicates that the stcppin~ criteria has been met and 

·from the final iteration (from equations (3-42) and (3-43)) the geodetic 

azimuth and distance are 

a = 224° 59' 54~01 , 
12 

and 

512 ... 2 496.479 1:1. 

Finally (from equation (3-35) and (3-37)) 

a 21 = 44° sa• 57~73 •. 

The Jacobian of transformation, a 3, is (using equation (3-72J) 

1 0 0 0 

0 1 0 0 

0 0 1 0 
BJ • 

0 0 0 1 

-1803.329 1288.095 1802.832 -1288.095 

-1803.329 1287.392 1802.832 -1287.392 

Using equation (3-73) the covariance matrix c5 (converted to 

2 arcsec ) is 

•-2.482xlo-5 -2.48Gxlo-s 
I 

I-3.Sl2xlo-5 -3.5llxlo-s 

I -3 -3 
1 6.906xl0 6.904x10 

I -3 -3 
·-9.746xl0 -9.743xl0 -- -- ---- - - - - -- -- - -- --- - ,- -- -

-2.4B2x!o-5 -3.512xlo-5 6.906xlo-3 -9.746x1o- 3• 25.oo 25.00 
t 

. -5 -5 -J -31 
-2.486xl0 -3.511xl0 6.904xl0 -9.743x10 I 25.00 24.9.9 

If error propagation for the computed distance is required, 

the Jacobian of transformation B4 is (using equation (3-77)) 



B • 
4 

0 0 

0 0 

-9.003 X 106 0 

0 

0 

6 9.003 X 10 

0 1 0 

0 0 1 

0 -1247.826 -1247.826 

The covariance matrix c6 is (using equation (3-78) and convert~ng 
. 2 

elements to arcsec.m and arcsec ) 

c -6 

25.00 

25.00 

25.00 

24.99 

5.477 X 10-6 

2.522 X 10-5 

5.477 X 10-G 2.522 X 10~5 8.764 X 10-4 
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4. COMPtrrATIONS ON A CONFORMAL MAPPING PIJUm 

In Chapter 2, the solution of the direct and inverse problems 

in the 3-D environment were given. In Chapter 3 the reduction of 

observed quantities to the reference ellipsoid were treated for the 

solution of the direct and inverse problems on that surface. This 

chapter presents the completion of the process with the further reduction 

of the ellipsoidal quantities to the conformal mapping plane and the 

solution of the direct and inverse problems on that surface. 

4.1 Notation 

d .. : direction from point i to point j 
l.J 

(T-t) .. :arc to chord correction for line from point ito point j 
l.J 

X.,Y. :Mapped coordinates.of point i 
. 1. 1. 

xi,Ai :spherical coordinates of point i 

6Ai - spherical longitude of point to ~e mapped minus the spherical 

longitude of the origin 

6Ai• Ai- A0 (4-1) 

a,b - semi-major and semi minor axes respectively of the Clarke 1866 

reference ellipsoid, 

a • 6 378 206.4 m 

b • "6 356 583.8 m 

aij : geodetic azimuth from point i to point j 

Bijk : horizontal angle from point i to point k with instrument at 

point j 

Yi -meridian convergence at point i 

S .. : ellipsoid distance from point i to point j 
l.J 



1 .. 
l.J 
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distance from point i to point j 

s~.- projected geodesic length 
l.J 

+o'· >.0 , x0 , A0 ,X0 ,Y0 E coordinates of the origin of the projections 

k0 ~ scale factor at the origin of the double stereographic projection 

or scale factor at the central meridian of the 3° Transverse Mercator 

>.CM : geodetic longitude of central meridian 

R: ra~us of the conformal sphere (R •· (~m) 1/2 evaluated at 90 ) 

Xia' Yia: approximate mapped coordinates of point i 

)e _ ellipsoidal quantity 

)a _ approximate quantity 

Ni - Prime vertical radius of curvature at point i 

M. _ Meridian radius of curvature at point i 
l. 

.f->-i -=. geodetic longitude a~ point .minus. geodetic lo.ngitude at central 

meridian 

f.). • >. - ). 
· i i · CM 

(4-2) 

tij - grid azimuth from point i to point j. 

T .• 
_l.J 

- grid azimuth of the projected geodesic from point i to point j 

k .. -
l.J 

the line scale factor 

4.2 Reduction of Observations 

The quantities needed in the reduction of observations from the 

reference ellipsoid to the mapping plane are the (T-t) correction 

(sometimes called the "arc to chord" correction), the meridian convergence, 

and the~ scale factor [Bornford, 1971~ Krakiwsky, 1973). Specific 

formulae for these quantities must be derived for each projection and·are 

given in this chapter. 

4.2.1 Reduction of Horizontal Directions (Elliosoid to the 

~'.apping Plane) • 

e 
dij "" dij - (T-t) ij· • (4-3) 



gg 

y 

(T-t) ij 

X 
i 

Flgure 4-1 

REDUCTION OF HORIZONTAL DIRECTIONS 
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4.2.2 Reduction of Horizontal Angles Ellipsoid to the Mapping 

Plane) 

From Figure 4-2 

(4-4) 

4.2.3 Reduction. of Azimuth Ellipsoid to the flipping Plane) 

From Figure 4-3 

4.2.4 · Reduction of Distances Ellipsoid to the f"apping Plane) 

The distance on the plane from a point i to a point j is computed 

by; 

1.1. j - k . . s . . , 
1) 1) 

where k. . is the line scale factor of the line i to j. 
1) 

4.3 New Brunswick Stereographic Double Projection 

4.3.1 Direct Problem 

(4-6) 

The direct problem on tht! N.B. Stereographic projection plane 

is stated as: given the grid coordinates x.,Y. of point i and the 
1 l. 

astronomic aziJrn. .. th A_ ij and spatial distance r .. , to a point j , compute 
. ~J 

the grid coo~dinates X., Y. of the point j. The solution is as follows. 
. J J 

First the azimuth, A .. , and the distance,r .. ,must be reduced 
1) 1) 

to the geodetic azimuth, aij' and elliposid distance, Sij' as 

described in Chapter 3 •. These quantities must then be reduced 

to the conformal mapping plane. Beginning with the azimuth,the 

meridian convergence and (T~t) corrections must be applied. Meridian 

convergence is_given by (Thomson et al., 1977] 
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y 

j 

TANGENT TO PROJECTED GEODESIC 

(T-t) ik 

X 

i 

Figure 4-2 

REDUCTION OF HORIZONTAL ANGLES 
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P~ECTED GEODESIC 

X 
OF----------------------------------------~ 
i 

Figure 4-3 

REDUCTION OF AZIMUTH 
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_1 sin Mi (sin x. + sin x0 ) 

y • tan [·------~------~------~~----------------1. 
] . 

cos x . cos x + (1 + sin x.. sin X ) cos All.. 
1. 0 1. 0 1. 

The meridian convergence obtained from (4-7) is then applied 

to the geodetic azimuth yielding the grid azimuth of the projected 

geodesic Tij' namely 

a Ya 
T ij is used jn the computation of the approximate coordinates Xj 1 j 

for the second point , yielding 

X a • X + S s1.'n T 
j i ij ij 

and 

(4-7) 

(4-8) 

(4-9) 

(4-10) 

The (T-t) ij correction is· now written as [Thomson et al.,1977 1 

-1 
(T-t) .• • tari 

l.J 

in which 

AX~ AY. - AX. AY~ 
[--~]---1.~--~1.~--J~----------J I 

AX. AX.a + AY. AY.a +(2k R) 2 
1. ) 1. J 0 

AX. • X. -X 
1. 1. 0 

, 

and 

(4-11) 

(4-12) 
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The sign on the (T-t) correction must now be determined. 

Referring to Figure 4-3 it can be seen that the sign on the correction 

varies from quadrant to quadrant. To determine the sign the 

following tests must be performed. If the grid azimuth t .. is 
1J 

between the grid azimuth from point i to the origin and the grid 

azimuth from the origin to the point i then the sign on the correction 

(used in equations (4-3) and (4-5)) is positive. If the grid 

azimuth t .. is between the grid azimuth from the origin to the point 
1J 

i and the grid azimuth from the point i to the origin then the sign 

on the correction is negative. 

If the grid azimuth t .. is equal to either ·the grid azimuth 
1J 

from the point i to the origin or from the Qrigin to the point i, 

(T-t) = 0 [Thomson et al., 1977]. 
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It should be noted that (4-11) gives the (T-t) .. correction 
l.] 

for the mapping of the line from the conformal sphere to the plane and 

is missing an ellipsoidal term. This term has been proven insignificant 

[Thomson et al., 19.77 ] and can be safely neglected. The azimuth is 

now written as (equation (4-5)), 

Turning to the distance, and using the previously obtained 

approximate coordinates of point j the line scale factor kij is (following 
Simpson's rule) 

(4-13) 

where k. is the point scale factor at point i and is computed from 
l. 

[Thomson et al.,l977 ] 

(X. -X )2 + (Y. 
k l. 0 ' l. 

ki - 0 + --~--~----~~~-------
4 k R2 

0 

(4-14) 

and k.a is the approximate point scale factor at point j and is given 
] 

by [Thomson et al.,l977 ], 

(X~ - X ) 2 + (Y~ - Y ) 2 
ka • k + __ AJ _____ o ______ _.J _____ o ____ _ 

j 0 4 k R2 
.. (4-15) 

0 

km is the point scale factor at the midpoint of the line ij and is given 

by [Thomson et al.,l977] 

(X - X )2 + (Ya - y )2 
+ m o m o 

4 k R2 
(4-16) 

0 

·where xi + x.a 
xa • , 
m 2 (4-17) 
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and 

(4-18) 

The point scale factor given here (equation (4-14)) accounts 

only for the mapping of t~e conformal sphere on the plane. 
-7 

It is accurate to 1 x 10 [Thomson et al., 

1977) if it is used as an approximation to the scale factor for the 

mapping of ellipsoidal information on the conformal plane. The 

reduced distance is now written as(eq~tion (4-6)), 

To complete the direct problem we have 

. (4-19) 

and 

(4-20) 

4.3.2 Inverse Problem 

The inverse problem on the N.B. stereoqraphic plane is stated 

as: given the grid coordinates X., Y. of point i and the qrid 
1 1 

coordinates X., Y. of point j .compute the grid and geodetic azimuths 
J J . 

tij' tji' aij and aji' and the grid and geodetic distance 1ij and sij" 

If further reduction from the ellipsoid to the terrain is required 

refer to Section 3.3. The grid distance and azimuths are given respectively by 

1ij • [(Xj - Xi) 2 ~ (Yj - Yi) 2] 1/ 2 (4-21) 

and 

(4-22) 



lOB 

and 

From equations (4-S), (4-7), and (4-11) we have that 

and from equations(4-6) and (4-13) 

Since (T-t) .. =­
Jl. 

kij 

(T-t) .. , 
l.J 

then 

a . . = t . . + y . - (T-t) .. 
Jl. Jl. J l.J 

where yj is computed from equation (4-7). 

This completes the inverse problem. 

4.4 Prince Edward Island Stereographic Double Projection 

4.4.1 Direct Problem 

(4-23) 

(4-24) 

(4-25) 

(4-26) 

The direct problem on the P.E.I. Stereographic projection plane is 

given the grid coordinates x., Y. of point i and the astronomic azimuth, l. l. 

A and spatial distance,rl..J', to a point j, compute the grid coordinates ij 

xj' Yj of the point j. The solution is as follows. 

First the azimuth, Aij' and the distance rij ~t be reduced 

to the geodetic azimuth, aij' and the ellipsoid distance, Sij' as described 

in Chapter 3. These quantities must then be reduced to the conformal mapping 

plane. Beginninq with the azimuth, the meridian convergence and (T-tl" 

corrections must be applied. Meridian convergence is given by (Thomson et al. 

1977) 
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yi • tan 
sin 6A. (sin X· + sin x0 ) 

-1 I 1 1 ] .(4-27) 

The meridian convergence obtained from (4-27)is then applied to 

the geodetic azimuth yielding the grid azimuth of the projected 

geodesic, Tij' namely 

T · • ai. - y .• ij . J 1 
(4-28) 

Tij is used for the computation of approximate coordinates (Xja 1 Yja) 

for the second point, yi"elding 

x.a- X. + s .. S1n T1.J' I 
J 1 1J 

and 

a 
Yj • Y1. + S . . cos T. . • 

1J 1J 

The (T-t) correction is now written as [Thomson et al. 1 

1977 ) 

-1 
(T-t)ij =tan 

in which 

AX • i 

.6Y. -1 

AX a • 
j 

AY a • 
j 

AX a AY. - 6X. AY.a 
[--~j--~1~---=1----J~---------] I 

6Xi AXja + 6Y. 6Y.a +(2k R) 2 
1 J 0 

X -X 
i 0 

y - y 
i 0 

X.~ - X 
J o' 

Y a - y 
j 0 

(4-29) 

(4-30) 

(4-31) 

(4-32) 
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The sign on the (T-t) correction must now be determined. 

Referring to Figure 4-3 it can be seen that the sign on the correction 

varies from quadrant to quadrant. To determine the sign the 

following tests must be performed. If the grid azimuth t .. is 
1J 

.between the grid azimuth from point i to the origin and the grid 

azimuth from the origin to the point i then the sign on the correction 

(used in equations (4-3) and (4-5)) is positive. If the grid 

azimuth t .. is between the grid azimuth from the origin to the point 
1J 

i and the grid azimuth from th~ point i to the origin then the sign 

on the correction is negative. 

Xf the grid azimuth t .. is equal to either the grid azimuth 
1J 

from the point i to the origin or from the origin to the point i, 

(T-t) = 0 [Thomson et al., 1977]. 
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It should be noted that (4-31) gives the (T-t) .. correction for 
l.J 

the mapping of the line from the conformal sphere to the plane and is 

missing an ellipsoidal term. This term has been proven insignificant 

[Thomson et al.,l977 I and can be safely neglected. The azimuth is 

now written as (equation (4-S)), 

Turnipg to the distance and using the previously obtained 

approximate coordinates of point j, the line scale factor is (following 

Simpson's rule) [Thomson et al., 1977] 

kiJ' - £.!.. cL + .L + L))-1 
6 ki ka k~ 

m J 

(4-33) 

where ki is the point scale factor at point i and is computed from 

[Thomson et al.,l977 ]. 

(X. - X ) 2 + (Y. - Y ) 2 
+ l. 0 l. 0 

ki .. ko (4-34) 

kja is the approximate point scale factor at point j and is given by 

[Tholl'.son et al., 1977 ] 

km is the point scale factor computed at the midpoint of the 

line ij and is given by (Thomson et al.~ 1977) 

(X a X )2 + (Y a y )2 
ka • k + _m;;;;.. _ __..;o~-~~m;;...__~o 
m 0 4 k R~ 

0 

(4-35) 

(4-36) 
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where 
X. + x.a 

X a 1 J -m 
2 

(4-37) 

and 
Y. + Y a 

Y a 1 J = m 
2 

(4-38) 

~e point scale factor given here (equation (4-14)) accounts 

only for the mapping of the conformal sphere on the plane. 

-7 It is accurate to 1 x 10 [Thomson et al.,l977 ) if it is used as 

an approximation to the scale factor for the mapping of the ellipsoidal 

information on the conformal plane. The reduced distance is now 

written as (equation (4-6)), 

1 .. = k s .. 
1J ij 1J 

To complete the direct problem we have 

(4-39) 

and 

y • ... y. + 1 . . cos t .. 
J 1 1J 1J 

(4-40) 

4.4.2 Inverse Problem 

The inverse problem on the P.E.I. stereographic projection 

plane is stated as: given the grid coordinates Xi,Yi of point i and 

and the grid coordinates X.·, Y. of point j compute the grid and geodetic 
J .J 

azimuths ti. , t .. , a .. , a .. , and the grid and geodetic distances 1. . and 
J J1 1J J1 . 1J 

sij. If further reduction from.the ellipsoid to terrain is required, 

refer to Sec~ion ~- 3. The grid distance and azimuths are liven respectively 
2 2 1 2 

1ij ... [(Xj - Xi) + (Yj - Yi) ) , (4-41) 

by 
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_1 x. - xi: · 
tij • tan [Y~ _ Y. 1 

J l. 

t t + 1so• ji • ij 

From equations (4-S), (4-27) and (4-31) we have that 

a . . • t. . + yi + (T-t) . . , 
l.J l.J l.J 

and from equations (4-6) anc! (4-33) 

Since (T-t)ji =- (T-t)ij 

(4-42) 

(4-43) 

(4-44) 

(4-45) 

(4-46) 

where y. is computed from equation (4-27). This completes the inverse 
J 

problem. 

4.5 Nova Scotia 3° Transverse Mercator 

4.5.1 Direct Problem 

The direct problem on the N.S. 3° Transverse Mercator plane is stated 

as: given the grid coordinates X. , Y. of point i, the astronomic 
l. l. 

azimuth A ij , and spatial distance r ij to a point j , compute the grid 

coordinates Xj' Yj of the point j. 

As with all the map projections the first step is to reduce 

the observations A,. and ri. from the terrain to the ellipsoidal 
l.) J 

quantities of geodetic azimuth aij and ellipsoid distance Sij as described 

in Chapter J. These reduced .quantities must be reduced once more to obtain 

the grid azimuth tij and the chord distance 1ij" Beginning with the azimuth 

the meridian convergence and (T-t) corrections must be applied. 
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The meridian convergence accurate to 0~01 is computed using 

[Krakiwsky, 1973. l 

6A1 cos4 ~i (2-G22) 
+ ] • (4-47) 

15 

The values for Gl and G2 are given by 

2 b2 
~ _ (a - ) 2 ~ 

- cos "'J.' , 
b2 

(4-48) 

and 

G... • tan ~ .• -:z. J. 
(4-49) 

To evaluate (T-t) correction the approximate coordinates of 

point j are required. These can be computed by first computing the 

grid azimuth of the projected geodesic 

Using this 

and 

azimuth, T .. , the approximate coordinates are 
J.) 

X. a • X + S ' T ) i ij sJ.n ij 

(4-50) 

(4-51) 

(4-S2l 

The (T-t)ij correction, accurate to 0~02 for a 100 km line is 

given by (KraJdwsky, 1973) 

(Ya - y ) (6Xa r 
(26X. + 6Xa)2 + 2 AXi) I 

. (T-t) ij • ( j 
i j l. j ) I > (1 i"" (4-53 t 

6 R 2 27 R 2 
m~-N m 

I 

where R is the Gaussian mean radius evaluated at the mean latitude m 

+ and is given by 
m 
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R = { M il 
m m m 

The mapping plane coordinate d~fferences are computed by 

and 

AX~ = 
J 

a 
X. - X I 

J 0 

The azimuth is now written as (equation (4-4)) 

t .. = a .. - y - (T-t) .. 
l.J l.J . l.J 

(4-54) 

<4-s 5> 

(4-56) 

Turning to the distance, and using the previously obtained 

approximate coordinates we can write the line scale factor as [Krakiws~y, 

1973 1 

where 

and R m 

k .. = k ( 1 
l.J 0 

AX 2 
u 

+ -- ( 1 
6R 2 

m~--0, 

AX 2 
+ __ u_)) 

36R 2 
m 

X 2 • 2 a 2 
u (AXi) + AXi AXj + ( AXj) , 

is computed using (4-51). 

The distance R. • • then computed using 
l.J 

(4-6), namely 

-7 
The above formula is accurate to 1 x 10 for lines up to 

150 km in length [Krakiwsky, 1973 ). 

Fina1l~t, we write that 

(4-57) 

(4-58) 
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and 

Yj • xi + 1ij cos tij 

which completes the direct problem. 

4.5.2 Inverse Problem 

(4-59) 

(4-60) 

The inverse problem on the N.S. 3° Transverse Mercator projection 

plane is: given the grid coordinates X., Y. of point i and X., Y. of point 
l. l. ) ) 

j compute the grid and geodetic azimuths, ti"' t .. , ai"' and a .. , and 
. ) )l. ) )l. 

the grid and geodetic'distance 1.j and s ... ·If further reduction 
l. l.) 

from the ellipsoid to the terrain is required refer to Section 3.3. 

and 

The grid distance and azimuths are given respectively by 

tij • [(Xj - Xi)2 + (Yj - .Yi)2)1/2 

-l X. - X. 
[ J l. l ·' tij =tan Y. - Y. 

) l. 

(4-61) 

(4-62) 

t. . ... ti. + 180° • (4-63) 
)l. ) 

From equations (4-4), (4-47) and (4-SO) the geodetic-azimuth is 

and from equation (4-6) 

kij 
where kij is computed from (4-S7). 

Since (T-t)ji •- (T-t)ij 

(4-65) 

(4-66) 
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where yj is computed using equation (4-47). 

This completes the inverse problem on the N.S. 3° Transverse 

Mercator projection. 

4.6 Error Propagation 

4.6.1 Direct Problem Error Propagation 

The covariance matrix for the point i is combined with the variance 

of the plane azimuth and the variance of the plane distance to form 

the covariance-matrix c1 • The variance on the plane azimuth is taken 

to be equal to the variance on the observed astronomic azimuth and 

the variance on the plane distance is taken to be equal to the variance 

on the ellipsoidal distance. The matrix c1 has the fo:z:m 

where rae 2 

2 
D\ 

2 can be obtained from arcsec 

Using the equations 

, 

by multiplying by 
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X. • X. l. l. (4-67) 

yi = y 
i 

, (4-68) 

X. ., X + R. • • sin t .. 
and J i l.J l.J 

(4-69) 

Y. - y + R. • • cos t .. 
J i l.J l.J 

(4-70) 

the Jacobian of transformation matrix B1 is given as 

1 0 0 0 

0 1 0 0 

Bl = 
1 0 B1 (3,3) Bl (3~4) 

(4-71) 

0 1 B1 (4,3) Bl (4,4) 

in which 

B1 (3,3) sin t .. 
l.J 

B1 (3,4) = R. • • cos t .. 
l.J l.J 

B1 (4, 3) = cos t .. 
l.J 

and 

B1 (4,4) = ! .. sin t .. 
l.J l.J 

With B1 T equal to the transpose of s1 , the covariance matrix 

for the points i and j will then be 

. (4-72) 

where c2 has the form 

2 
ox a a a 

X.Y.- X.Y. XiYj i l. l. l. ) 
2 • a a"l.· ' a a 

c .. X.Y. • "l!Xj "{i"{j (4-73) l. l. l. 
2 

_______ .. ___ 
:--- z -~- , 

a a • 0 a x.x. Y1xj I X. XjYj l. J • J 
2 

oX.y oY.y a Oy, 

' Xj"l. l. j l. j • . J J 
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in which all units are in m2 

4.6.2 Inverse Problem Error Propagation 

The covariance matrix c2 (equation (4-73)) is known. Using 

equations 

I. .. =[(X.- X.)2 + (Y.- Y.)2]1/2' 
1J J 1 J 1 

and 

t .. 
1J 

-1 = tan 
(X. 

[ 1 

(Y. 
J 

- X.) 
1 1 

- y.) 
1 

the Jacobian of transformation, s2 ,is 

B = 
2 

where 

B~ (1 ,1) 

(Y. - y.) 
1 J 

1 .. 
2 

1J 

(X. - X.) 
] 1 

2 
.tij 

(Y. - y.) 
J 1 

2 

(Y. - y.) 
B2 (2,2) • 1 J 

1 
ij 

, . 

(4-74) 

(4-75) 

, (4-76) 
a2 (2,4) 



and 

B ( 2, 3) 
2 I. 

"ij 

(y. - y.) 
J l. 

I. 
ij 
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With B2T equal to the transposed B2 , the covariance matrix for 

the derived plane azimuth and distance is given by 

where c3 has the form 

in units of 

c -3 

[ 
rad2 

rad.m 

a· 
t .. R. • • 

l.J l.J 

2 
a.l. . 

ij 

rad•m 

m 
2 

I 

J 
The rad~ can be converted to 2 arcsec by multiplying 

2 by p • The m.rad can be converted to m.arcsec by 

multiplying by p. 

(4-77) 

(4-78) 

The variance on the plane azimuth is taken to be equivalent 

to the variance of the geodetic azimuth and the variance of the 

plane distance is taken to be equivalent to that of the ellipsoid 

distance. These are valid assumptions since the error propagation 

through the reduction equations proves instgnificant. 
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4.7 Introduction to Numerical Examples 

4.7.1 Use of Computed Grid Azimuths 

Before commencing with the numerical examples for direct 

and inverse problems on the mapping plane, let us examine the deter-

mination of the grid azimuth of.a line by means other than the 

reduction of a terrain astronomic azimuth. · A coJDIOOn situation is 

to know the grid coordinates of the instrument station i and those 

of the reference station j, along with. the covariance matrix (C2) 

for those points. The grid azimuth t. . for the line ij can be 
l.J 

comput~d using equation (4-75). The covariance matrix i,nvolving the 

points and the azimuth can be derived using the inverse problem 

error propagation (section 4.6.2). 

The terrain angle B j ik (k is the unknown point) can be 

measured and then using the reduction formulae outlined in Section 

3.2.3 the angle is reduced to the ellipsoid giving a;iX. This angle 

is then reduced to the mapping plane angle B. "k' using the reduction 
l.J 

formulae outlined in Section 4.2.2. This angle is then added to t .. 
l.J 

yielding 

(4-79) 

The variance tik is computed as 

(4-80) 

Equation (4-79) indicates that the grid azimuth tik is correlated to 

the grid azimuth tij which has been computed from the coordinates 

of point i and j. This implies that tik must be correlated to the 
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coordinates of points i and j. This is completely analagous to the 

development on the ellipsoid, Section 3.7. To obtain the necessary 

covariance information between point i and the azimuth tik we first 

expand the Jacobian of transformation, a2 , to account for the 

following equations namely 

and 

y. ""' Y. • 
~ ~ 

The resulting Jacobian, B3, is 

1 0 0 0 

B= 
3 

0 1 0 0 

(4-82) 

(4-83) 

With a 3T equal to the transposed B3, the covariance matrix 

for the derived plane azimuth and point i coordinates is given by 

c4 - a3 c2 B T 
3 

(4-84) 

where c4 has the form 

2 
ax a a 

XiYi x.t .. i ~ ~J 

c -4 a 
XiYi 

a 2 
yi 

a 
Yitij 

(4-85) 

C1 
Xitij 

C1 
Yitij 

2 a 
tij 
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in units of 

2 2 m.rad m m 

2 2 m.rad m m 

m.rad m.rad rad 2 

where m.rad can be converted to m.arcsec by multiplication by p 

2 2 2 and rad can be converted to arcsec by multiplication by p • 

Substituting at2 (equation (4-80)) for a~ in equation 
ik ij 

(4-85) and including the observed distance variance a1
2 , between 
ik 

the points i and k (k is the unknown point), we obtain the alternate 

expression for the covariance matrix c1 namely 

2 ' 

ax. a a 
0 

1 XiYi Xitij 

2 
0 aX.Y. aY. a 

Yit .. 1 1 1 1) 
c .. (4-86) 1 

2 a a a 0 
Xitij Y.t .. tik 1 1) 

0 0 0 
2 

a 
1ik 

where the new variance 2 is in units of 2 a m 
1ik 

4.7.2 Mapping Plane Direct Problem Flow Chart 

Figure 4-S contains the flow chart for the mapping plane 

direct problem. The purpose of this flow chart is to indicate the 

steps required to reduce the observations from the terrain to the 

mapping plane environment and then perform the direct problem on the 

mapping plane. The last decision box, 15, checks to see if the final 
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8 
Compute Approximate Coordinates 

xja • xi+ sij sin Tij 
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NB 4-11 

PEI 4-31 

12 
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Y. • y 
. ) i 
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14 
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coordinates of the point j are within 30 m of the approximate values. 

This is in keeping with the error propagation assumptions mentioned 

in Section 3.2.1 concerning the reduction formulae. 

4.8 New Brunswick Numerical Example 

4.8.1 Direct Problem 

The following information is given for the solution of the 

direct problem and its associated error propagation. 

The coordinates of point 1 are 

x1 = 377 164.887 m 

Y1 = 862 395.774 m 

Th~ geodetic azimuth is (see Section 3.8.1) 

44° .59' 53~64 a12 = 
and has a variance a 2 = 25.00 arcsec2 

al2 
The ellipsoid distance is (see 

s12 = 2 496.488 m 

and has a variance a 2 = 8.762 10-4 
X 

sl2 

Section 3.8.1) 

2 m 

The covariance matrix, c1 , 

4.455 X 10-2 -7.09 X 10-4 

for the above information is 

C • -7.09 X 10-4 
1 

in units of 

0 
0 

c -1 

9.535 -2 
X 10 

0 
0 

2 m 

2 
m 

8.762 

0 

0 

X 10-4 

0 

2 m 

0 

0 

0 
10-10 5.876 X 

The covariance matrix for the coordinate values has been 

obtained from the numerical examples used.in Chapters 2 and 3 and has 
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been converted to the mapping plane covariance matrix by formulae from, 

for example_, Kraldwsky et al., [1977]. As mentioned in section 4.6.1 

the variance of the pl~~ .: azimuth is taken to be equal to the variance 

of the observed astronomic azimuth and the variance of the plane distance 

is taken to be equal to the variance of the ellipsoid distance. 

Using equation (4-7) the meridian convergence is 

y = o• 44' 24~63 
1 

and from equation (4-8) the grid azimuth of the projected geodesic is 

are 

T12 • 44° 15' 29~01 • 

The approximate coordinates (from equations (4-9) and (4-10)) 

x2a • 378 907.164 m 

Y2a • 864 183.768 m 

The (T-t> 12 correction (using equation (4-11)) is 

(T-t> 12 = + o•oo• o~o4 

and the grid azimuth, t 12 , (from equation (4-5)) is 

The line scale factor, k12 , (from equation (4-13)) is 

kl2 - .999974 

and using equation (4-6) the chord distance ia 

112 • 2 496.423 m 

Using equations (4-19) and (4-20) the coordinates of point 2 are 
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x2 • 378 907.118 m, 

Y2. • 864 183.722 m. 

The x2;Y2 values are converted to the geodetic coordinates 

, 2 ,A 2 (using formulae f~m, for example, Krakiwsky et al., [1977]) 

yielding 

• - 47°04 1 21~801 2 

A2 = 65° 27' 39~787 w 

which are identical to the solutions obtained in the Three Dimensional 

and Ellipsoid examples (Sections 2.4.1 and 3.8.1 respectively.). 

Turning to the error propagation(Section 4.6.l)the Jacobian 

of transformation, B1 , is (from equation (4-71)) . 

1 0 0 0 

0 1 0 0 
B • 

1 
1 .69789 1787.948 0 

0 1 • 71620 -1742.231 

The covariance matrix for points 1 and 2 is (from equation 

(4-72)) 

4.455 X 10 
-2 -7.09 X 10-4 4.455 X 10 -2 -7.09 X 10-4 

-7.09 X 10 -4 
9.535 X 10 -2 -7.09 X 10-4 9.535 X 10-2 

c - -2 -4 X 10-2 -3 2 4.45S. X 10 -7.09 X 10 4.685 -2.101 X 10 

-7.09 X 10 -4 
9.535 X 10 -2 -2.101 X 10-3 9.758 X 10 -2 

in which all units are 
2 

in m • 
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The lower right hand (2 x 2) sub matrix is converted to the 

covariance matrix of the geodetic coordinates f 2 , l 2 (using formula 

from, for example, Krakiwsky et al., (1977]) yielding 

[ 

-4 1.024 X 10 

. -6 
-2.19 X 10 

2 in units of arcsec • It can be seen that this is 

equivalent to the covariance matrices derived in the Three Dimensional 

and Ellipsoidal examples (Sections 2.4.1 and 3.8.1 respectively). 

4.8.2 Inverse Problem 

In the inverse problem the coordinates of points 1 and 2 

along with the associated covariance matrix, c2 , are known (in this 

example the results of the direct problem). 

Th~ grid distance and the direct and inverse grid azimuths 

are (from equations (4-21), (4-22) and (4-23)) 

t 12 = 2 496.423 m 

tl2 - 44° 15 1 28~97 , 

and 

t21 - 224° 15 1 28~97 • 

The ellipsoidal ~istance s12 is (from equation (4-25)) 

s12 = 2 496.488 m 

The direct geodetic azimuth is (from equations (4-24)) 

a12 • 44° 59 1 53~64 

and then (from equation (4-26)) the inverse geodetic azimuth is 
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• 225°00' 54~89 a21 

The inverse problem error propagation begins with the 

Jacobian of transformation, B2 , (given by equation (4-76)) 

-2.8689 X 10-4 -4 
2.7956 X 10 -4 2.8689 X 10 -2.7956 X 10 

-.69789 -.71620 .69789 .71620 

The covariance matrix, c3 , (from equation (4-77)) is 

[ 25.00 0 

10-4] 
c3 .. 

0 8.762 X 

in units of 

= [ 

2 

l 
arc sec m.arcsec 

c3 

Jll.arcsec m2. 

2 obtained from 
2 

by multiplication where the arc sec have been the rad. 

by p2 and arcsec.m · 

multiplication by p. 

have been obtained from the rad.m by 

The variance of the plane azimuth is taken to be equivalent 

to that of the geodetic azimuth and the variance of the plane distance 

is taken to be equivalent to that of the ellipsoid distance (as 

described in Section 4.6.1). 

-4 
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4.9 Prince Edward Island Numerical Examole 

4.9.1 Direct Problem 

The followinq information is qiven for the solution of the 

direct problem and its associated error propaqation. 

The coordinates of point 1 are 

x1 • 585 855.446 m., 

Y 1 • 340 817. 760 m • 

The qeodetic azimuth is (see Section 3.9.1) 

a • 134° 59' 53~25 , 12 

and has a variance a 2 
al2 

2 
"" 25.00 arcsec 

The ellipsoid distance is (see Section 3·.9.2). 

s12 • 2 496.484 m. 
-4 2 and has a variance as • 8.762 x 10 m 

h . 12 i . f h abo . f . . T e covar1ance matr x, c1 , or t e ve 1n ormat1on 1s 

4.514 X 10-2 9.04 X 10-4 0 0 

c .. 
1 

9.04 X 10-4 

0 

0 

in Wlits of 

c -1 

9.534 X 10-2 

0 

0 

2 
m 

2 m 

0 

-4 
8.762 X 10 

0 

0 

0 

5.876 X 10-lO 

2 rad 
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The covariance matrix for the coordinate values has been 

obtained from the numerical examples used in Chapters2 and 3 and has 

been converted to the mapping plane covariance matrix by formulae from, 

for example, Krakiwsky et al., [1977]. As mentioned in Section 4.6.1 

the variance of the plane azimuth is taken to be equal to the variance 

of the observed astronomic azimuth and the variance of the plane distance 

is taken to be equal to the variance of the ellipsoid distance. 

Using equation (4-27) the meridian convergence is 

r1 --1 o as • 29~10 

and from equation (4-8) the grid azimuth of the projected geodesic is 

T12 • 136° OS' 22~3S 

The approximate coordinates (from equations (4-29) and 

(4-30)) are 

X a = S87 S86.841 
2 

m , 

Y a = 339 019.232 
2 

m. 

The (T-t> 12 correction (using equation (4-31)) is 

(T-t) 12 = 0° 0' 0~39 

and the grid azimuth, t 12 , (from equation (4-S)) is 

t • .136° OS' 21 ~96 
12 

The line scale factor, k12 , (from equation (4-33)) is 

k12 • l.QQQ QlJ 1 

and using equation (4-6) the chord distance is 

112 • 2 496.516 m 
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Using equations (4-39) and (4-40) the coordinates of point 

x2 • 587 586.867 m 

Y2 • 33~ 019.212 m 

The x2,Y2 values are converted to the geodetic coordinates 

, 2 ,A2 (using formulae from, for example, Krakiwsky et al., [1977]) 

yielding 

'2 = 46° 41' 30~973 

A2 • 64° 28' 10~933 w 

which are identical to the solutions obtained in the.Three Dimensional 

and Ellipsoidal examples (Sections 2.5.1 and 3.9.1 respectively) 

Turning to the error propagation(Section 4.6.l)the Jacobian 

of transformation, B1 , is (trom equation ·(4-71)) 

1 0 0 0 

0 1 0 0 
Bl .. 

1 0 • 69353 -1798.549 

0 l -.72042 -1731.421 

The covariance matrix for points l and 2 is (from equation 

(4-72)) 
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4.514 X 10 
-2 

9.04 lo-4 4.514 X 10~2 9.04 X 10 
-4 

X 

9.04 X 10 
-4 

9.54 10-2 9.04 X 10 
-4 

9.54 X 10 
-2 

X 

c - -2 10-4 2 
9.04 4.746 X 10-2 -3 4.514 X 10 X 2.296 X 10 

9.04 X 10 
-4 

9.54 X 10-2 2.296 X 10-3 9.755 X 10 
-2 

in which all units are .in m2 

The lower right hand (2 x 2). sub matrix is converted to the 

covariance matrix of the geodetic coordinates ~ 2 , A2 (using formula from, 

for example, Krakiwsky et al. [1977]) yielding 

[ 
1.024 X 10-4 

2.07 X 10-6 

2.07 X 10-6 ] 

1.050 X 10-4 

2 in units of arcsec • It can be seen th~t this is equivalent to 

the covariance matrices derived in the Three•Dimensional and Ellipsoidal 

examples (sections 2.5.1 and 3.9.1 respectively) 

4.9.2 Inverse Problem 

In the inverse problem the coordinates of points 1 and 2 

along with the associated covariance matrix, c2 , are known (in this 

example the results of the direct problem). 

The grid distance and the direct and inverse grid azimuth are 

(from equations (4-41), (4-42) and (4-43)) 

\ 2 • 2 496.517 m 

and 

t 21 • 316° OS' 21~96. 



The ellipsoidal distance 512 is (from equation (4-45)) 

512 • 2 496.484 m 

The direct geodeti~ azimuth is (from equation (4-44)) 

a • 134° 59' 53:25 
12 

and then (from equations (4-46)). the inverse geodetic azimuth 

is 

The inverse problem error propagation begins with the 

Jacobian of transformation, B2 , (given by equation (4-76)) 

[
2.8857 X 

-.69353 

-4 
2.7780 X 10 

.72042 

The covariance matrix, c3 , 

c3 • [
250.00 

in units of 

2 

-2.885.7 X 10-4 

.69353 

(from equation (4-77)) is 

[ arc sec m.arcsec ] c -3 2 m.arcsec m 

where the 2 have been obtained from the 2 by multiplication arc sec rad 

by p2 and arcsec.m have been obtained from the rad.m by 

multiplication by p. 

The variance of the plane azimuth is taken to be equivalen~ 

to that of the geodetic azimuth and the variance of the plane distance 

is taken to be equivalent to that of the ellipsoid distance (as described 

in Section 4.6.1). 
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4.10 Nova Scotia Numerical Example 

4.10,1 Direct Problem 

The following information is given for the solution of the 

direct problem and its associated error propagation. 

The coordinates of point 1 are 

x1 = 5 618 978.072 m 

Y1 = 4 946 528.965 m 

The geodetic azimuth is (see Section 3.10.1) 

224 59' 54~01 . al2 .. 

The ellipsoid distance is (see Section 3.10.2). 

s12 = 2 496.479 m 
• 2 . 10-4 m·2 .and has a var1ance as = 8.762 x 

The covariana~ matrix, c1 , for the above information is 

4.861 X 10-2 

-9.15 X 10-4 

c -1 
0 

0 

in units of 

r 
2 

m 

2 m 

c -1 

-9.15 X 10-4 0 0 

9.539 X 10-2 

0 

0 

2 m 

2 m 

0 

-4 
8.762 X 10 

2 
II\ 

0 

0 

0 

5.876 X 10-10 

2 . rad 
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The covariance matrix for the coordinate values has been 

obtained from the numerical examples used in Chapters2 and 3 and has 

been converted to the mapping plane covariance matrix by formulae 

from, for example, Krakiwsky et al., [1977]. As mentioned in Section 

4.6.1 the variance of the plane azimuth is taken to be equal to the 

variance of the observed astronomic azimuth and the variance of the 

plane distance is taken to be equal to the variance of the ellipsoid 

distance. 

Using equation (4-47) the meridian convergence is 

and from equation (4-8) the grid azimuth of the projected geodesic is 

are 

T12 - 223° 56' 38~~3 

The approximate coordinates (from equations (4-,55) and (4-56)) 

X a • 5 617 245.627 
2 

Y a • 4 944 731.455 
2 

m 

m 

The (T-t) 12 correction (using equation (4-50)) is 

(T-t> 12 --o·~o· o~s4 , 

and the grid azimuth, t 12 , (from equation (4-5)) is 

tl2 - 223° 56' 39~07 

The line scale factor, ~2 , (from equation (4-57)) is 

~2- 1.000 071 47" 
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and using equation (4-6) the chord distance is 

t 12 = 2 496.657 m 

Using ~quations (4-59) and (4-60) the coordinates of point 

2 are 

x2 • 5 617 245.499 m 

Y2 = 4 944 731.331 m 

The x2 , Y2 values are converted to the geodetic coordinates 

~2 , A2 (using formula from, for example, Krakiwsky et al., [1977]) 

yielding 

.2 - 44° 38' 5~925 

A2 = 63°01' 20.088 w 

which are identical to the ·solutions obtained in the Three Dimensional 

and Ellipsoid examples (Sections 2.6.1 and 3.lO.lrespectively). 

Turning to the error propagation (Section 4. 6 .• l)the Jacobian 

of transformation, B1 , is (from equation (4-71)) 

1 0 0 0 

B = 0 1 0 0 
1 

1 0 -.69396 -1797.634 

0 1 -.72002 1732.574 

The covariance matrix for points 1 and 2 is (from equation 

(4-72)) 
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4.861 X 10-2 -4 4.861 lo-2 -4 -9.15 X 10 X -9.15 X 10 

-9.15 ·-4 -2 lo-4 9.539 X 10-2 X 10 9.539 X 10 -9.15 X 

c = 
10-2 -4 -2 2 4.861 -2.Jl X 10-3 X -9.15 X 10 5.093 X 10 

-9.15 10-4 9.539 X 10-2 -3 -2 
X -2.31 X 10 9. 76lx 10 

in which all units are in metres2• 

The lower right hand sub matrix is converted to the covariance 

matrix of the geodetic coordinates ~ 2 , ~2 (using formula from, for 

example, Krakiwsky et al., [1977]) yielding 

[ 
1.024 lo-4 -6 

] 
X -2.15 X 10 

c -~2'~2 I 

-2.15 10-6 1.046 X lo-4 X 

in units of 2 It can be seen that this is equivalent to arcsec • 

covariance matrices derived in the Three Dimensional and Ellipsoidal 

examples (Sections 2.6.1 and 3.10.1 respectively). 

4.10.2 Inverse Problem 

In the inverse problem the coordinates of points 1 and 2 

along with the associated covariance matrix, c2 , are known (in this 

example the results of the direct problem) • 

The grid distance and the direct and inverse grid 

azimuths are (from equations (4-61), (4-62) and (4-63}) 

112 • 2 496.657 m 

tl2 - 223° 56' 39~07 

and 

t21 - 43° 56' 39~07 

the 
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The ellipsoidal distance s12 is (from equation (4-65)) , 
s12 = 2 496.479 m 

The direct geodetic azimuth is (from equation (4-64)) 

a a 224° 59' 54:01 12 

and then (from equation (4-66)) the inverse geodetic azimuth is 

a21 a 44° 58' 57:73 

The inverse problem error propagation begins with the 

Jacobian of transformation, B2 , (given by equation (4-76)) 

-4 
2.8839 X 10 -2.7795 X 10 

-4 -2.8839 X 10-4 2.7795 X 10-4 

B = 2 
• 69396 • 72002 -.69396 

The covariance matrix, c3 , (from equation (4-77)) is 

in units of 

c = 3 
[ 

2· arc sec 

.. m.arcsec 

0 

8.762 X 10-4 

m.arcsec· 

2 m . ] 
.. 

] . 
-.72002 

where the arcsec2~· nave been obtained from the rad 2 ·· by multiplication 

2 by p and ·arcsec.m have been obtained from the rad • m bY 

multiplication by.p. 

The variance ~f the plane azimuth is taken to be equivalent 

to that of the geodetic a~:imuth and the variance of the plane distance. 

is taken to be equivalent to that of the ellipsoid distance (as 

described in Section 4.6.1). 
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APPENDIX I 

Rotation and Reflection l-1atrices 

In Chapter 2 the .use of rotation is an important consideration. 

The rotation matrices R1 , R2 and R3 each rotate a coordinate system 

about a certain axis. An R1 rotation matrix rotates the Y and Z 

axes about the X axis (Figure A-la). An R2 rotation matrix rotates 

the X and z axes about theY axis (Figure A-lb). An R3 rotation 

rotates the X andY axes about the Z axis (Figure A-le). 

The positive direction of rotation for a right handed coordinate 

system is taken by convention to be counter-clockwise when viewed from 

the positive end of the axis about which the rotation takes place • 
. 

The rotation matrices are given by [Wells, 1971 ] 

1 0 0 

R (6) = 0 cos e sin e A-1 
1 I 

0 -sin e cos e 

cos e 0 -sin e 

R2 (6) = 0 1 0 , A-2 

sin e 0 cos e 
and 

cos a sin e 0 

R3 (6) .. -sin e cos a 0 , A-3 

0 0 1 

in which a is the angle of rotation. 
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z• z 
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(a) 

POSITIVE X ROTATION (~) 

z 

X 

X' 

(c) 

POSITIVE Z ROTATION (R3) 

Figure A-1 

ROTATION MATRICES 

)'Denotes New Position 
of Axis 

X 

X' 

.... ... z 

(b) 

POSITIVE Y ROTATION (R2) 
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Other important transformation matrices are the reflections 

P1 , P2,and P3• Their function is to interchange the positive and 

negative direction along each axis. The 21 reflection is used on the 

X axis (Figure A-2a). ~he P2 reflection is used on theY-axis 

(Figure A-2b). The P3 reflection is used on the z axis (Figure A-2). 

The reflection matrices are given by 

-1 0 0 

0 1 0 (A-4) 

0 0 1 

1 0 0 

0 -1 . 0 I (A-5) 

0 0 . 1 

1 0 0 

p = 
3 

0 1 0 (A-6) 

0 0 -1 

For further information about rotation and reflection matrices 

and their properties, the reader is referred to, for example, Wells 

[1971]. 
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y 

Figure A-2 
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APPENDIX II 

Covariance Law and the Jacobian of Transformation 

This appendix gives a short explanation of the covariance 

law of which the law of propagation of errors is a special case. 

To begin with consider a random variable x that can take 

on an infinite number of values. Let dx be the actual ~ in x, 

which is involved in the definition of the variance of x (o2 >~ namely* 
n 2 

.1:1 dx 
o2 a limit 1= (A-7) 

X 
n 

... 
If we do not know the actual error, but only an estimate of it - usually 

called the residual v. = x. - x , where x is the sample mean, 
1 1 

n 
l: 

i=l 
x./n , then the sample variance is defined as 

1 

2 
s = 

n 
l: 

i=l 
v. 

1 

n-1 

2 

Note that for s2 to be an unbiased estimate of o2 we need to define 

it with n-1 in the denominator. 

Let us now work our way up to the covariance law, in matrix 

form, by beginning with the simplest case: y is some function of x~ 

namely 

y • f(x) 

* the variance can be defined in the forms of mathematical expectations 

- a rigorous manner whi'ch is mJre appealing from the mathematical point 

of view. 

(A-8) 

(A-9) 
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Taking the total differential of the above yields 

3f(x) dx dy- ---ax 

Considering dy and dx to be (actual) errors, we sum the squares of n 

of these and then divide by n in the context of the above equation; 

this yields 

n n 
t dy2 2 t dx2 

=i=;;;.;l:;;.._ __ = (a f ( x) ) .:::.i==l=---
n ix. ~ 

and as n + ~, we get 

2 a 
X 

which is the formula for the propagation of errors from one variable 

x into another variable y. 

Let us now take the case that y is a function of two random 

variables x1 and x2 , i.e. 

Ta~~ng the total differential yields 

Considering dy, dx1 and x2 again to be actual errors, and 

(A-10) 

(A-ll) 

(A-12) 

(A-13) 

(A-14) 

squaring and summing the terms on both sides of the above equation results in 

n 
dy2 

n 
dx2 

n 
dx2 t t 2 t 

i=l .. (lf_)2 i•l 1 
+ (1!) i•l 2 

n ax1 n ax2 n 
n (A-15) 

t dx1 dx2 
+ 2 (.!! ) (lL) i•l 

ax1 ax2 n 
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after considering n ~ ~, we can write 

Note the newly introduced quantity a , the covariance between 
xl.x2 

n 

l: dxl dx2 
i=l = ..:;.....::,.... ___ _ 

n 

This quantity is zero if the errors dx1 and dx2 are statistically 

independent. 

Let us expand our IOOdel such that we have two random 

variables y1 and y2 which are both a function of the same two random 

variables x1 and x2 . In equation form we.hav~: 

Applying the concepts given above we can write the variance of y, as: 

the variance of y2 as: 

and the covariance between y1 and y2 as: 

(A-16) 

(A-17) 

. {A-18) 

{A-19) 

(A-20) 
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(A-21) 

The above three equations can be written in matrix form as 

follows: 

, 
(A-22) 

where the covariance matrix of ~ and x2 is 

[ a 2 
a 

l ~ xlx2 
c -xl, x2 

ax2xl 
a 2 

x2 

(A-23) 

The Jacobian of transformation from the x's to the y's is 

ayl ayl 

a~ ax2 
J = (A-24) 

ay2 3y2 

ax1 ax2 

and JT is the transpose of J (above). The resultant covariance matrix 

for the y' s is 

a 2 a 
yl yly2 

c - (A-25) 
yl,~2 2 

a a 
y2yl y2 
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The covariance law is valid for any number of y's and x's. 

In the case above 

where u = 2 and n = 2. 

c = J y 
c 

X 

uxu ~ nxn nxu 

Note, the covariance law is also valid in terms of the sample 

variances and covariances. The only thing that changes is the 

(A-26) 

interpretation of the results, which of course must be in terms of the sample 

values and not the true or actual variances and covariances. 




