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ABSTRACT

Mcdern trends dn geodesy demand an increased accuracy of
relative heights and height changes. Precise spirit levelling
is known to be the most accurate method available to meet such require-
ments. It is also known that unique height determination can be made
only by taking into account the convergence and irregqularities of the
equipotential surfaces of the earth's actual gravity field. 1In the
context of levelling, this is accomplished by supplementing the spirit
levelling with actual gravity values observed along levelling routes.

In Canada, and the U.S.A., because of the lack of actual
gravity values (during the period of building up and extending the
levelling networks) the normal gravity was used instead to define the
heights. The normal gravity values were computed along levelling
routes from a simplified mathematical model of the earth.

Two systems of heights - orthometric and dynamic - are used
in Canada, both taking into account only the broadest features of the
gravity field expressed via the computed normal gravity. This implies
the neglect of the effect of local irregularities of the actual gravity
field on the defined heights, which results in systematic distortions
of the computed heights.

The study contained herein focuses on the investigation of
the influence of actual gravity variations (anomalies) on heights
currently used in Canada. These influences are referred to here as
"GRAVITY CORRECTIONS", GC's. The GC's are to be added to the existing
height differences (based on normal gravity) to obtain the corresponding

rigorous height differences based on actual gravity.
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The GC's for three systems of heights - Dynamic, Helmert and
Vignal - are modelled in terms of practically obtainable quantities:
free-air gravity anomalies, observed heights and latitudes of levell-
ing bench marks along the levelling routes. Although the developed
formulae for the GC's can be readily used for the evaluation of these
corrections, tables are provided to facilitate field estimation of the
GC's.

Results based on real data indicate that the GC's can be
evaluated with adequate reliability, whether we use observed or pre-
dicted gravity anomalies, for all three systems of heights under
investigation. This reliability is characterized by the small standard
deviations associated with the GC's compared to the magnitude of the
corrections themselves.

The behaviour of GC's along real levelling lines and loops are
investigated and compared to the corresponding standard error, OAh’ of
precise levelling as specified in the Canadian specifications for
vertical control [Surveys and Mapping Branch, 1961; Boal, 1971b; Surveys
and Mapping Branch, 1973]. The results show that the influence of the
GC's on the derived heights of most of the bench marks along the
tested lines and loops is significant.

A computational approach, based on the least-squares surface
fitting techniques, is proposed for the prediction of GC's. The aim of
this approach is to treat the problem of GC's in two-dimensions, so as
to enable one to determine the geographical areas in Canada where
actual gravity influence on heights is significant and should be taken

into account. Gravity corrections within each 1° x 1° block, that vary
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with direction, have been predicted for the entire country, using real
gravity data supplied by the Earth Physics Branch, Ottawa.
Obtained results - compared to a prespecified significance criterion
of 0.14 mm/km (10% of the standard deviation of a height difference
in the Canadian Precise Level Net, CPLN) - reveal the significance of
the GC's, in practically all the Canadian areas, at least in the direc-
tion of its maximum value. In many cases, the GC even exceeds the
standard error of precise levelling, especially in Helmert system.
Based on the analysis and results of this study, it appears
necessary to begin basing the heights in Canada on actual gravity in
order to maintain the standard of accuracy required for the CPLN.
Such procedure was recommended by the International Association of
Geodesy as early as 1950 [IAG, 1950]. This has become feasible
since the coverage of the Canadian territory with gravity observations
has become sufficiently dense. The information and findings contained
in this thesis should thus contribute to the forthcoming new adjust-
ment and analysis of the CPLN, as planned by the Geodetic Survey of

Canada for early 1980's.
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CHAPTER 1

INTRODUCTION

1.1 Concept of Heights and Height Datums

The objective of this introductory section is to introduce the
concept of heights and their close connection with a complete geodetic
positioning system. It also inclﬁdes definitions of some of the related
terms associated with height datums, in view of the classical and modern
geodetic theories. Such terms are used frequently within the text of this
thesis.

It is well known that in order to completely define the location
of any point on the earth's surface, it is necessary to determine its
three coordinates referred to a three-dimensional (3-D) coordinate
system. In case of the geodetic coordinate system, the two-dimensional
(2-D) geographical coordinates (latitude ¢ and longitude A) of the point
in guestion - referred to a chosen reference ellipsoid - are determined.
In addition, its elevation, h, referred to an arbitrary or natural
surface known as the "height datum". [e.g.: U.S. Dept. of Commerce, 1961],
is needed. Consequently, such elevation h of the terrain point is known
as its "height", which constitutes the third dimension of a complete 3-D
geodetic position: [Hotine, 1969}. Thus, the height of a point
A (see Figure 1-1) is usually defined as the distance between an equi-
potential surface through the point in question and the corresponding
equipotential surface representing the height datum, measured along the

line of force or along its tangent [Mueller and Rockie, 1966].



In practice (e.g. in North America and other parts of the
world) the 3-D geodetic position has been conventionally split into
two parts and treated separately. The first, dealing with ¢ and A
only, is termed horizontal control. The second part, dealing with
h only, is referred to as vertical control. The associated reference
surfaces in both cases are usually known as geodetic datums. Discus-
sions concerning various geodetic datums can be found, e.g. in Jones
[1973] and Thomson [1976]. Definitions connected with height datums
only, for vertical control, are dealt with herein.

The height datum used in North America for vertical control
[Christodoulidis et. al., 1973] has been chosen to be the geoid. The
height h above the geoid is known as the orthometric height (Figure 1-1).

The geoid is defined as that particular equipotential surface
of the earth's actual gravity field which most nearly coincides with the
undisturbed mean sea level (MSL) [Mueller and Rockie, 1966; Rapp, 1973;
Lelgemann, 1976]. This is so because it is found useful, in practice,
that the zero- hsight contour should lie close to MSL [Bomford, 1971].
More sophisticated definitions of the geoid, which are considered out-
side the scope of this study, are given in many recent publications
[e.g.: Rapp, 1973; Lelgemann, 1976]. It is reported by Rapp [1975]
that the above definition of the geoid is now undergoing examination
and refinement because of the anticipated direct measurements to the
geoid from satellites by satellite altimetry.

The reference ellipsoid, which is usually the datum for hori-
zontal control networks, closely approximates the geoid [Heiskanen and
Moritz, 1967]. The separation N* (Figure 1-1) between these two

surfaces is known as the geoidal height (undulation), which is taken as
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positive when the geoid is above the ellipsoid [e.g. Merry, 1975]}. Many
studies have been done to design the best technique for a more accurate
determination of the quantity N*, however the achieved accuracy of N*

is still in the order of few metres [e.g.: Rapp, 1973; Merry, 1975;
John, 1976]. The sum of the orthometric height h and the geoidal height
N* is known as the ellipsoid height H (height above the ellipsoid)

[e.g. Krakiwsky and Wells, 1971]. This ° investigation considers
only the orthometric part h, above the geoid.

Details about the determination of MSL, and its role as a
vertical control datum, from tide-gauge records can be found in literature
[e.g. Simonsen, 1966; Bomford, 1971; Lennon, 1974]. It is now known that
MSL is not completely coincident>with the geoid, since it varies due to
spatial variations in temperature, pressure, salinity and other parameters
[Bomford, 1971]. This causes MSL to depart from an equipotential surface
[Vanfgék, 1972] by an amount estimated to be less than two metres
[Lisitzin.and Pattulo, 1961; Lelgemann, 1976]. Therefore, the adeption
of MSL as an approximation to the geoid to serve as a height datum,
or the choice of the geoid as the datum for studying MSL variations, is
one of the fundamental geodetic problems which is not settled yet [Rapp,
1973; Lelgemann, 1976].

In modern geodetic theories, the height datum is either the
quasigeoid, as used by Molodenskii [Molodenskii et. al., 1962], or the -
mean earth ellipsoid, as used by Hirvonen [Hirvonen, 1960]. The resulting
heights in both cases are known as normal heights hN (Figure 1-2 a,b) .,

Molodenskii's normal heights are referred to the quasigeoid,
(Figure 1-2a). The quasigeoid is a purely mathematical surface without

any physical meaning that departs from the geoid by at most a few metres
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under the continents and coincides with it on the seas [Muller, 1960].
It is the geometric locus of all points whése distances from the
physical surface of the earth are equal to their Molodenskii normal
heights. The quasigeoid is not generally an equipotential surface.

The Hirvonen = normal heights are measured from the mean
earth ellipsoid towards the terrain, generating another surface
called telluroid by Hirwvonen. Characteristics of the mean earth
ellipsoid can be found e.g., in Héiskanen and Moritz [1967], and
Vani¥ek [1971]. The telluroid (Figure 1-2b) is a continuous
surface . without physical meaning coinéiding with the ellipsoid
on the oceans; again, the telluroid is generaily not an equipotential
surface. On the islands and continents it displays the details
of the topographic irregularities [Hirvonen, 1960]. The telluroid
can be also interpreted as the geometric locus of all points whose
distances above the mean earth ellipsoid are equal te theiy respecitve
Hirvonen normal heights, and whose normal potential equals the
actual potential on the terrain.

The difference between the ellipsoid height H and the normal
height hN is known as the height anomaly . In case of Molodenskii
heights, ¢ is the separation between- the quasigeoid and the mean earth
ellipsoid Figure 1-2a)l. In case of Hirvonen heights,z is the sep-
aration between the telluroid and the physical surface of the earth.
The guantity ¢ plays a similar role as the quantity N¥*, in classical
geodesy, in computing the ellipsoid height H. Techniques for the
determination of ¢ in the above two cases are given in Molodenskii
et al. [1962] and Hirvonen [1960], respectively. 1In this study,

the normal height hN only is of interest.



1.2 Needs For Accurate Heights - Spirit Levelling

Accurate heights are needed for a multitude of applications.
In this section, only the basic practical and scientific geodetic
applications are considered. Some of these applications do not require
very accurate heights. Others demand high precision relative heights.
Both categories are summarized. Then, the method of spirit levelling
for relative height determination is outlined, because it is the only
tool to meet the current requirements of high accuracy.
From the basic definitions, given in the previous section, it
can be seen that the orthometric (or normal) height is a vital quantity
needed to compute the ellipsoid height H. The latter quantity, H, is
essential for many geodetic applications, amongst which are the following:
1. Reduction of observed distances and directions from the surface of
the earth to the computational reference ellipsoid, for rigorous
computations of horizontal geodetic networks [e.g.: Thomson et. al.,
1974; Mutajwaa, 1976];

2. 3-D geodetic computations [e.g. Heiskanen and Moritz, 1967; Hotine,

19691;

3. Relating the 3-D satellite coordinates with corresponding 2-D terrestrial

coordinates [e.g. Krakiwsky and Wells, 1971; Thomson, 1976].
The above particular practical applications do not require very accurate
heights h, since the accuracy of H is directly affected by the obtained

accuracy of N* (or ¢) which is of the order of few metres.

In view of modern trends of geodesy, one can notice the increasing

demand for precise estimates of relative heights and height changes
'V
[Surveys and Mapping Branch, 1974; Holdahl, 1974; Vanfgek, 1974; Vanicek,

1976al. Such quantities are useful for investigating and providing the



principal evidence on many scientific questions [Bomford, 1971; Clark

and Jackson, 19731 concerning the following problems:

1. Vertical crustal movements and related studies [e.q. Kukkamgki, 1955;
Korhonen, 1961; Holdahl and Morrison, 1973; Christodoulidis, 1973;
vanicek, 1975; Vanidek, 1976bl;

2. MSL time and space variations and its validity as a height datum
[e.g.: Braaten and McCombs, 1963; Lennon, 1974; Sharaf Eldin, 1975;
Van{gek, 1976c];

3. Earthquake prediction [e.g. Ellingwood, 1969], and search for safe
locations for nuclear power sites [Holdahl, 1976];

4. Hydraulic and other related engineering investigations [e.g.
Coordinating Committee on the IGLD-55, 1961];

5. Deformation of engineering structures [e.g. Penman and Charles,
197171;

6. 1Inclusion of precise height information into a more precise 3-D
adjustment of geodetic networks [e.g. Stolz and Gilliland, 1969].

To achieve the above requirements, the precise spirit levelling
is known to be the most accurate method to use for relative height
determination [Wassef, 1959; Krakiwsky, 1965; Heiskanen and Moritz,

1967; Bomford, 1971]. To utilise the full potential of spirit levelling,

all the systematic corrections - usually neglected in the past because

of the involved computational effort and sophistication in their
modelling - to the measured height differences from spirit levelling
should now be applied [e.g. Holdahl, 1974]. Also, the appropriate way
of assessment of weights for the observed height differences on the
basis of the actual obtained discrepancies of repeated measurements

should be considered [Wassef, 1959; Van{zék et. al., 1972].
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Precise levelled height differences)like any other measureable
physical quantities, are influenced by both systematic and random errors.
The main sources of systematic errors affecting precise spirit levelling
are outlined in the next section. On the other hand, the random
levelling errors are not discussed here any further. It suffices here,
for the purpose of this study, to mention that the accumulated standard
deviations of height differences derived from spirit levelling which are
deduced from the actually obtained discrepancies between forward and
backward levellings of each levelling section [e.g. Wassef, 1959;
Peterson, 1970; Boal, 1971, Vanfgek et. al., 1972] can be considered
as a measure of the influence of random errors in precise levelling.

This accumulated standard deviation is conventionally . the basic quantity
against which the influence of any systematic error affecting levelling

results is compared. Hence, this custom will be also followed here.

1.3 Systematic Errors in Spirit Levelling

The systematic errors in precise spirit levelling are discussed
in details in literature dealing with the subject matter [e.g.: Braaten
et. al., 1950; Kukkamaki, 1950; Entin, 1959; Kowakzyk, 1968; Bomford,
1971; Clark and Jackson, 1973; Holdahl, 1974]. Nevertheless, this section
is intended to serve as a guide to the reader. It outlines the main
systematic errors, along with brief explanation whenever necessary. It
also gives the appropriate references to investigations concerning each
respective source of error. Finally, it singles out the particular error
which is of interest in this study.

The precise spirit levelling field operations involve the
levelling of levelling instrument (level) and then reading a vertical

scale on a levelling rod (staff) back and forth along a levelling route,
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under certain atmospheric conditions. The systematic errors inherent
in such operation can be divided into two categories [Bomford, 19711]:

(i) Errors in the first category accumulate with the distance and
height differences along the levelling route. They can be mostly
eliminated either by following certain techniques in the process of
reading fore and back sights along the line, or by calibrating the used
instruments, modelling the errors and accounting for them. This category
includes errors due to: Collimation; earth curvature; symmetrical
refraction (these errors affect the equidistant fore and back sights
equally); systematic sinking or rising of the levelling instrument
between observing fore and back staves; systematic sinking or rising of
the staff between its use as a fore staff and as a back staff; errors
of staff length or systematic errors in its subdivisions and non-
verticality of the staff.

(ii) Errors in the second category accumulate with the height
difference, average heights and relative positions between bench marks
along the levelling line. The errors in this category cannot be elimin-
ated by special observing techniques. Therefore, such errors require
reliable estimates of theéir influences, which must be taken into account
in the rigorous computations of heights of vertical control points.

Since these errors are of some interest to us in this study, they will

be enumerated here:

1. Tidal effect, which is caused by the different attraction of the moon
and sun at the centre of the earth and at the observing station on

the earth's surface [Bomford, 1971]. This phenomenon results in a

slight variation of the direction of gravity with time at the observing

station from its mean. This problem is also complicated by yielding of

the earth itself, and by the attraction and loading of ocean tides
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[Lennon, 1974]. The theory, computation and implications of the tidal
correction as applied to precise levelling results have been discussed
in several publications [e.g. Kukkamaki, 1949; Braaten et al., 1950;
Jensen, 1950; Rune, 1950b; Simonsen, 1950; Egedal and Simonsen, 1955;
Simonsen, 1966; Holdahl, 1974];

Errors associated with the unequal refraction for the fore and back
sights [Kukkamgki, 1950; Simonsen, 1955; Strusinsky, 1959; Hyégnen,
1967; Straub, 1973; Holdahl, 1974]. This will occur especially when
the levelling route runs on a hilly or undulating terrain. There, the
height of the line of sight above the ground will differ considerably
even for equidistant fore and back sights. This situation results

in a residual refraction between the fore and back sights, which is
left over after eliminating the symmetrical part of the refraction,
and influences the levelled height difference;

The abrupt movements of the earth's crust due to earthquakes [Braaten
et. al., 1950], and the well known secular vertical crustal activities -
uplifts or subsidences. These affect the bench marks, and result in
differences between the bench marks' instantaneous heights and the
previously determined heights [Kukkamaki, 1955; Korhonen, 1961;
Holdahl and Morrison, 1973; Holdahl, 1975; Vanicek, 1975; Vanflek,
1976b];

The use of MSL, as determined from tide-gauge observations at various
coastal locations, as a datum for heights (with fixed values equal to
zero). This situation causes errors in the adjustment and analysis of
precise levelling networks [Lisitzin and Pattulo, 1961; Braaten and
McCombs, 1963; Simsonen, 1966; Ellingwood, 1969; Dohler, 1970;
Christodoulidis et. al, 1973; Lennon, 1974; Lelgemann, 1976; Vanfgék,

1976¢c], due to the sea surface slope which gives different values of
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MSL at different locations. Furthermore, there are problems connected
with maintaining and operating the tide-gauge itself [Lennon, 1974].
Suspected errors due to the differential illumination or solar radia-
tion or both on the levelling rod. In other words, due to variations

in the heating rate of the invar strips on the staff. Such systematic
error, if it'exists, would accumulate in the North-South :{N-S) direction
and would tend to be zero in the East-West (E-W) direction [e.g.

Egedal, 1950; Egedal and Simonsen, 1955; Edge, 1959; Bomford, 1971;
Balazs, 1975; Kakkuri, 1975]. This implies that levelling lines running
N-S or S-N are influenced systematically by this type of error. For
this reason, and also on the basis of the N-S discrepancies between

the results of geodetic and oceanographic levellings, such error was
hypothesized to exist as one of the as yet unknown systematic errors

in precise levelling needed to be investigated and accounted for. Some
precise levelling data show a slope of MSL from North to South, which

is opposite to the oceanographic findings [Balazs, 1975; Fisher, 1975].

Several studies are now underway by both oceanographers and geodesists

to solve this problem of N-S slope of MSL [Fisher, 1975].

Errors associated with the neglect of local irregularities of the earth's
gravity field (gravity anomalies) when correcting the observed height
differences for the global convergence of the equipotential surfaces.
Such errors occur when, in the correction formulae, the normal value
of gravity acceleration is used instead of the actual value (e.g.:
Rune, 1950; Vignal and Kukkamaki, 1954; Bursa, 1958; Braaten and McCombs,
1963; Krakiwsky, 1966; Christodoulidis and Van{gék,'l972; Holdahl,
1974; Nassar and Vanfgék, 1975].

The abové six systematic errors, inherent in precise spirit:

levelling can, in most cases, exceed the accumulated standard errors
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achieved from precise levelling [e.g.: Braaten et. al., 1950; Holdahl,
19741, and may cause significant regional distortions in the basic
national precise levelling netowrk [e.g. Vanfzék, 1970]. This is why
research in this area is being done, considering both existing and hypo-
thesized errors. The optimum goal of such research is to investigate
their existence, significance, modelling, computations and practical
applications.
The largest source of errors in the height determinations in

North America from precise spirit levelling is thought to be the last

one [Holdahl, 1974]. The investigations contained herein focuses on

this particular source and is introduced in more details in the subse-

quent sections.

1.4 Gravity Field_and Spi;it~Leve11ing

The purpose of this section is to present the connection bet-
ween the observed geometrical height differences from spirit levelling
and the actual gravity field of the earth. To begin with, some intro-
ductory remarks concerning the earth's actual gravity field are given.
Then the connection between the spirit levelling operations and the
characteristics of the gravity field is discussed.

The earth's gravity field is the resultant of two vector fields:
the gravitation acceleration, due to the attraction of earth masses; and
the centrifugdl acceleration, due to the earth's rotation. Instead of
using this vector field, it has been found convenient, in geodesy, [e.g.:
Heiskanen and Vening-Meinesz 1958; Heiskanen and Moritz, 1967; Vanfgék,
1971] to represent the earth's gravity field by a scalar potential field,
and by equipotential (geopotential) surfaces (sometimes referred to as
level surfaces). A geopotential surface is an equipotential surface of
the earth's actual gravity field on which the potential W, due to gra-

vitational and centrifugal effects, is constant and usually can be expressed
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as W = const. The geoid, as defined in section 1.1, is one of these
geopotential surfaces.

The geopotential surfaces are irregular, not parallel and
generally converging from the equator towards the pole, (Figure 1-3). The
direction of the gravity vector g is tangential to the curved lines of
force (plumblines), which are everywhere perpendicular to the geopotential
surfaces (Figure 1-3). The gravity direction is wusually referred to as.
the direction of plumbline or the direction of the vertical. The difference
of potential , dW, between two adjacent geopotential surfaces, W = const.
and W + dW = const. (Figure 1-3), is a constant value representing the
work done to move a unit mass from one geopotential surface to the other,
and is given by:

dw = =~ gidhi
where 9; is the magnitude of the gravity wvector and dhi is the differen-
tial distance separating the two geopotential surfaces in question at a
certain location i. Since the value of g varies from one place to another
while dW does not, one can see that the separation dh is not a constant
value. For instance, it is maximum at the equator, dhe, and minimum at the
pole, dhP (Figure 1-3). Such geopotential surfaces are physical but
intangible reality which affect the field of surveying in several ways,
one of which is the process of spirit levelling.

In spirit levelling one uses a mixture of a geometrical instru-
ment (the staff) and a gravitational instrument (the level) [Jackson,
1963; Clark and Jackson, 1973]. The bubble axis of the latter is aligned
tangentially to the local geopotential surface (Figure l1-4a), while the
cross hair reads a geometrical height difference, dh, on the staff.

According to section 1.1, the height hA of point A is defined
as the distance between A and the geoid, measured along the actual plumb-

line of A. On the other hand, due to the nature of spirit levelling,



15

Pole

const.

g3 = gravity vector
Geopotential at point 3

Surfaces

Equator

FIGURE 1-3
System of Geopotential Surfaces

and Plumblines




16

(a) Actual
Plumbline

/

Geopotential Surface

through point A

Local - T == —_——— . N
iquipotential _' - ~
Surfaces

= Zero-Height
Reference Point

(tide-gauge) AO
SUrf entlal
A A A
Of dh # Of dh # Of dh

Route I Route II Route III

(b)

rout

FIGURE 1-4

Observed Heights From Spirit Levelling



17

the measured height difference (sometimes referred to as instrumental
or levelled height difference) gives the geometric distance, dh, between
local geopotential surfaces above the earth surface, as opposed to
their separation, dh', within the earth's crust underneath the terrain
point A (Figure l1-4a). Realizing that hA = A{ * dh', and examining
Figure 1l-4a, one notices the fact that the sum of the measured dif-
ferential distances dh between the zero-height reference point 0 and the
point A, in gquestion, does not equal the height hA' simply because
dhi # dhi. Consequently, this sum depends on the selected path of the
levelling route between points 0 and A, and generally acquires a
different value for each different route connecting the same two points
as illustrated in Figure 1-4b. In other words, if a levelling route
goes over a closed circuit (loop), this sum will not generally be zero,
i.e.:

$ dan # 0.

On the other hand, if the observed gravity values, g, are
incorporated with the levelled height differences, dh, over the levelling
loop, and the differences in potential, dW = gdh, are used instead of
dh only, such loop misclosure vanishes. This is so because the potential
of the earth's gravity field has a unique value for each point. Hence,
it gives theoretically a zero misclosure over a closed loop, which can
be written as:

$ gdh =Ffaw =0 -
This approach is the basic concept behind the use of the so-called
"geopotential numbers" (to be explained in details in section 2.1) as

a common quantity for the unique definition of any system of heights

[Krakiwsky, 1965; Heiskanen and Moritz, 1967].
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An alternative approach, which was found convenient in practice,
is to apply appropriate corrections to the observed instrumental height
differences to account for the non-parallelism of geopotential surfaces.
These corrections have to be expressed in terms of actual gravity values
at the consecutive bench marks along the followed levelling route in
order to yield precise and unique heights of terrain points above the
chosen datum [e.g.: Vignal and Kukkamaki, 1954; Heiskanen and Moritz, 1967;
vanfdek et. al., 1972].

To conclude this section, one can say that the spirit levelling
results without being supplemented with gravity measurements are not
useful from the rigorous point of view [Heiskanen and Moritz, 1967],
since they lead in general to a misclosure, and consequently do not define

the heights of terrain points uniquely.

1.5 The Problem to be Investigated and its Background

In this section, a detailed discussion of the background of the
problem to be investigated herein is given. Appropriate references dealing
with the subject of heights and gravity are listed. The specific problem
of interest is introduced and defined. Results of previous investigations
of the problem are commented upon. In addition, reasoning and motivations
behind the present study are presented, with particular emphasis on the
Canadian precise levelling network.

In the previous section we commented on the necessity of cor-
recting the levelled height differences due to the non-parallelism of
the geopotential surfaces. This has to be performed in terms of observed

gravity for a unique definition of the sought heights. Canada and the



19

United States of America are, however, among the countries where the
gravity survey was not detailed enough to compute such required cor-
rections [Cannon, 1929; Rappeleye, 1948; Rapp, 1961; Krakiwsky, 1965;
Vanicek et. al., 1972] at the time of last adjustment of their networks.
This seemed natural, since no useful equipment for rapid and exact
determination of gravity at the physical surface of the earth existed
until the 1930's [Vykutil, 1964].Such a situation led to the substitution
of "normal gravity", Yy, for the actual gravity, g, in the observed height
correction-equations.

The values of y are computed via & theoretical formula. based
on an adopted mean earth ellipsoid, which is closely approximating the
geoid. Among other characteristics, this ellipsoid should have the
same mass, centre of gravity and angular velocity as the actual earth.
Sometimes, in practice, such an ellipsoid is referred to as the "normal
earth". The mean earth ellipsoid generates what is known as the normal
gravity field, which can be represented by the system of normal equi-
potential surfaces usually denoted by U = COnstGand the normal lines
of force (normal plumblines). One of them, denoted by UO = const., is
defined to be coincident with the surface of the ellipsoid itself, and
in addition, postulated to acquire the same potential value of the geoid
WO = const. (i.e. one can write: Uo = WO = const [e.g. Heiskanen and
Moritz, 1967]).

In reality, the actual values of gravity may differ considerably
from the calculated values of normal gravity. Consequently, the geopotential
surfaces will have undulations, as opposed to the idealized regular normal
equipotential surfaces. This is due to the local or regional topographical

and geological irregularities [Clark and Jackson, 1973]. 1In other words,
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the use of actual, instead of normal,gravity will reflect the local
circumstances under which the levelling was performed (e.g. showing the
effect of some existing local anomalous mass [Krakiwsky, 1965]) -

The use of normal gravity to correct the levelled height
differences accounts for the effect of the overall convergence of
equipotential surfaces (i.e. the long wave latitudinal features only) .
This implies that the differences between actual and normal gravity, which
represent the local irregularities of the actual gravity field (i.e. the
short wave features) are neglected. These neglected differences, usually
less than 200 mgals [Vanfgék, 19701, may be referred to as the neglected
gravity anomalies [Rune, 1950al. The influence of these anomalies on
the heights currently utilized in Canada constitutes the backbone of the
problem under investigation herein. Heights defined on the basis of
computed normal gravity only depend on an adopted formula of reference
and to that extent they are approximate quantities not representing
the reality [Clark and Jackson, 1973]. They can be considered, however,
as lower order heights from the point of view of rigor [Heiskanen and
Moritz, 1967; Vanfgék, 1972], since they are meant to approximate the
proper heights (based on actual gravity) and generally produce closing
errors [Ramsayer, 1965b].

A vast number of publications treating problems related to
heights and gravity have appeared. Among the main investigators in this
domain (listed here in chronological order) are: Helmert [1890]; Rune
[1950a]; Ledersteger [1954]; ¥ignal [1954]; Vignal and Kukkamaki [1954];
Bursa [1958]; Baeschlin [1960a]; Muller [1960]; Schneider [1960]; Rapp
[1961]1; Molodenskii et. al. [1962]; Vignal and Simonsen [1962]; Braaten
and McCombs [1963]; Weidauer [1963]; Krakiwsky and Mueller [1965, 1966];

Ramsayer [1965 a,bl; Heiskanen and Moritz [1967]; Meuller et. al [1968];
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Vanfg;k [1970]1; Bomford [1971]; Laflamme [1971]; Christodoulidis and
vanflek [19721; Vanicek et. al. [1972]; Pardalis [1973] and Holdahl
[1973, 1974, 1975al. Many specific works by these authors will be
found referenced in corresponding sections within the text of this
thesis.

Most of the above listed authors devoted their studies to
either one or more of the following aspects: The basic foundation of
the theory of heights and the role of actual gravity field into their
unique definition; spacing between and location of gravity stations along
levelling routes; the advantages and disadvantages of each known system
of heights as recommended for a particular country; the adjustment
procedures of precise levelling networks utilizing both spirit levelling
and observed gravity data; extensive analysis of errors and required
precisions in levelling and gravity observables to minimize the errors of
resulting heights. Some of them have also investigated the influence of
actual gravity (as opposed to the employed normal gravity) on heights
of bench marks along selected levelling profiles. The present study,
as pointed out earlier (section 1.3), concentrates only on this
very last problem.

All the previous investigators Jdealing with the problem on
hand have followed exactly the same approach, namely, studying individual
lines or loops. Their method was to compute the heights of all bench
marks along the chosen profile twice - once with normal and once with
actual gravity values. Then, the two sets of results were compared
either graphically or numerically. This procedure has been employed in
many parts of the World, especially in most of the Eurvopean countries and

North America. Individual cases of significant influence of neglected
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gravity irregularities along the tested levelling profiles were reported
in, e.g., [Rune, 1950a; Rapp, 1961; Braaten and McCombs, 1963; Krakiwsky,
1966; Christodoulidis and Vanfg%k, 1972; Van{gék et al., 1972; Holdahl,
1973]. Also, cases of insignificant influence were reported in, e.qg.
[Weidauer, 1963; Ramsayer, 1965b; Bomford, 1971]. Such analysis is
basically one-dimensional, and as such it is unable to reveal anything
concerning the neighbourhood of the tested line. This is why most of
these investigations have proved to be inconclusive.

On the international level, realizing the consequences of
neglecting the gravity anomalies on heights used in investigating scientific
problems related to deosciences and also to support the future technological
developments in geodesy (outlined in section 1.2), the International
Association of Geodesy (IAG) has passed a resolution recommending that
all member nations should observe gravity values at each bench mark of
their levelling networks and compute their heights properly on the basis
of actual instead of normal gravity [IAG, 1950, Vignal and Kukkamiki,
1954]. Although it was the aim of this resolution to settle the contro-
versial argument concerning the significance and consideration of gravity
influence, it was found that various opinions about this problem still
existed. While practising geodesists maintain that the effects of local
gravity irregularities on heights are negligible, and hence in many cases
it is doubtful whether the expensive determination of actual gravity at
bench marks is justified,; theoreticians keep showing that the effects are
significant, and thus cannot be neglected.

In Canada, two systems of heights are used - orthometric and
aynamic, both defined on the basis of normal gravity because of the lack

of gravity observations during the period of building-up and extending
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the Canadian precise level network prior to 1945 [GSC, 1972]. At
present, the situation is different. With the rapid extension of
regional gravity coverage in Canada occuring at the same time as the
availability of electronic digital computers, extensive geodetic invest-
igations using gravity data can now be undertaken [Shimazu, 1962;
Hamilton, 1963a; Nagy, 1963; Buck and Tanner, 1972; Nagy, 1973; Nagy,
1974; Vvalliant, 1975].

The Earth Physics Branch (EPB) carried out some studies about
the geophysical and geodetic uses of gravity data for Canada [Shimazu,
1962]. However, only the computations of deflections of the vertical
and geoidal heights have been considered. There is no attempt,in that
publication, to even mention the implications of gravity data on the
used precise levelling operations. This was surprising, at least in the
author's opinion, since Hamilton [1960] had already reported cases of
levelling loops with unusually large misclosures. The neglected gravity
anomalies were suspected to be the reason. However, subsequent studies
gave no definite answers. In addition, several localized studies under-
taken by the Geodetic Survey of Canada (GSC) into this problem have
proved inconclusive. The GSC [1972] is planning to recompute post 1944
precise levelling with observed gravity at all bench marks and compare
this with previous adjustments (based on normal gravity) to investigate
the distortions due to the neglect of gravity anomalies. 1In the spring
of 1964 a program to establish gravity values at bench marks throughout
Canada was initiated by the Gravity Division of the EPB. Results of this
project, which so far covers only one area in Eastern Ontario, are
documented in Hamilton and Buchan [1965] for 619 bench marks of precise

and secondary level network. Furthermore, preliminary experiments carried
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out at the Department of Surveying Engineering, University of New Brunswick
(UNB) , over some levelling profiles in Alberta showed significant gravity
influence on their heights [Christodoulidis and Van{gék, 19721.

Based on the general background presented above, the following
statement defines, in summary, the specific problem of the current
investigation. +1®his study focuses on investigating the influence
of neglected actual gravity irregularities (gravity anomalies) on the
height differences - derived from spirit levelling and defined on the
basis of normal gravity, with particular interest within the Canadian
territory. This influence, which can be viewed as the difference
between the height difference of a levelling section based on actual
gravity and the corresponding height difference based on normal gravity,
will be termed "GRAVITY CORRECTION" throughout this « thesis. Thus,
the "GRAVITY CORRECTION" dealt with in this study accounts for the
difference between normal gravity (which has been already accounted for
in the Canadian precise level network) and the actual gravity, i.e.,
it is solely due to the neglected "gravity anomalies".

In addition to the aforementioned reasoning, the forthcoming
readjustment of North American Geodetic Networks is another motivation
behind undertaking this research. At present, the emphasis of the
GSC is directed towards the horizontal networks. Efforts have been made
to investigate the effects of the neglect of local irregularities of the
gravity field on the reduction procedures of observed distances and
directions from the terrain to the computational reference ellipsoid
[e.g.: Thomson et. al., 1974; Mutajwaa, 1976]. On the other hand, the
GSC has the intention and plans to readjust the vertical control net

[Vanigék, 1970; McLellan, 1974; Young, 1974] in the near future, perhaps
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in the early 1980's [Young, 1975]. Hence, it appeared to be a necessity
to study the influence of the aforementioned "GRAVITY CORRECTIONS" on the
heights currently used in Canada. The contribution of this research should
be relevant to the planned new adjustment of the Canadian precise levelling

network (CPLN).

1.6 Objectives and Methodology of Investigation

On the basis of the presented controversy concerning the "GRAVITY
CORRECTIONS", it was felt that many questions needed to be answered and

many points needed to be clarified. These are:

Significance of the corrections - within a-certain geographical area.of

interest;

- Simplest - mathematical modelling of these corrections and methods of
their computations;

- Reliability of the corrections and feasibility of their practical
applications;

- Behaviour of the corrections and their influences along levelling profiles
(lines and loops);

- Data requirements for the numerical evaluation of the corrections,

especially gravity observations at bench marks for a levelling route

located in an area where gravity data (e.g. gravity maps) are already

available.
Accordingly, this thesis has two main objectives:
1. Formulation of a mathematical model for the gravity correction (for

three systems of heights: Dynamic, Helmert and Vignal) in terms of

practically obtainable quantities;
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2. Determination of the geographical areas where the gravity corrections
are significant and must be taken into account in order to maintain
the standard of accuracy required for the first-order levelling
newtowk.

To achieve the first objective, the mathematical background of the
theory of heights based on actual gravity and their counterparts based on
normal gravity had to be carefully documented. Then, the gravity
corrections had to be formulated in terms of free-air gravity anomalies,
levelled heights, and latitudes of the benchmarks (reasons to be stated
later).

To accomplish the second objective, the method of investigation
had to be based on a two-dimensional treatment of the problem. This
methodology differs congiderably from the approach used by other researchers
who had treated the problem in one-dimension. The technique used involves
two major steps. First, 2-D approximating polynomials are used to model
both the gravity and height fields, given through observed values at
discrete points within a unit block. Second, a 1-D polynomial is gener-
ated to approximate each of gravity and height profiles along simulated
levelling lines radiating, in all required directions, from the centre of
the block under investigation. This approach permits one to compute the
gravity correction along these simulated lines, to display their pattern
and to examine their significance in each block and each direction. When
such analysis is repeated for adjacent blocks, one has the opportunity of
studying the significance of the gravity corrections over the whole region.
This holds true providing that the region is sufficiently densely covered

with gravity and height data.



27

1.7 Scope and Summary of Contributions

The nature and characteristics of the problem on hand dictated
the format of the present thesis. . . The purpose of each Chapter is
briefly described below.

Chapter 2 gives the basic foundations of the theory of rigorous
heights, based on actual gravity. It also shows the appropriate way of
incorporating spirit levelling results with observed gravity data in the
form of actual geopotential numbers as a common basis for defining any
system of heights. It considers three systems of heights: Dynamic,
Orthometric (Helmert) and Normal (Vignal).

Chapter 3 deals with the theory of approximate heights based on
normal gravity, as used in Canada. Approximate orthometric and dynamic
systems are discussed. The adopted approach for the practical computations
in both systems is demonstrated. Differences in values of normal gravity-.
given by the Canadian adopted (USC&GS) formula and the 1967 International
.formula for normal gravity are ‘tabulated, for Canadian latitudes, in Appendix I.

Chapter 4 is devoted to the derivation of formulae for the gravity
corrections, in case of Dynamic, Helmert and Vignal systems of heights.
This is based on the formulations stated in chapters 2 and 3. Expressions
for the precision estimates of the gravity corrections are also developed.

Chapter 5 is included herein for the sake of completeness. It
discusses, in general terms, both precise levelling and gravity data
coverage in Canada, with reference to the historical and present status
in each case. The availability and format of the EPB point gravity data

file is explained in Appendix II.
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Chapter 6 analyses the significance and application of gravity
corrections to actual levelling lines and loops. Tables for practical
evaluation of the gravity corrections for Vignal, Dynamic and Helmert
systems are provided in Appendix III.

In Chapter 7, the second main objective of this. study is attained.
Development, testing and conclusions associated with the proposed technique
are given. Results of its application to the Canadian territory are
documented in several external Appendices (see Table of Contents).

Chapter 8 summarises the findings of this investigation. Conclusions
based on the obtained results are given. Recommendations for
related future studies are stated.

Finally, a list of 180 references, quoted within the text of the
present ‘thesis, is compiled in alphabetical order. Five internal
Appendices are included. For wreasons of volume, the remaining five
Appendices are external.

This research has resulted in several contributions which are
relevant to the problem of the influence of neglected gravity anomalies on
heights. Six of these contributions are considered, in the author's
opinion, to be the most significant. These are summarized below:

1. Development of rigorous formulae for the "GRAVITY CORRECTIONS"
(Chapter 4), as well as their precision estimates. These formulae
are in terms of practically obtainable quantities, namely: free-air
gravity anomalies, observed heights and scaled latitudes at con-
secutive bench marks along the followed levelling route. The formulae
are derived for Dynamic, Helmert and Vignal systems of heights. These
corrections can be evaluated and readily added to the existing height
differences to achieve the corresponding height differences based on

actual gravity.
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Construction of Tables (Appendix III) to facilitate the practical
computations of "Gravity Corrections", in case of Vignal, Dynamic

and Helmert systems. These Tables can be easily used even in the
field without the need for pocket calculators. The needed arguments
are observed heights (from levelling field books) and free-air

gravity anomalies (e.g. from a gravity anomaly contour map).

A complete discussion (Chapter 5) of precise levelling and gravity
data coverage in Canada, including its historical background, present
status, future plans and format of available data. This should contri-
bute valuable information for related future investigations.

A thorough discussion (Chapter 6) of the significance and practical
application of the developed gravity corrections. Clarification of
the controversial argument about the gravity correction accumulations,
cancellations and effects along levelling lines and loops.

Development of a tool (based on surface fitting techniques) that
allows one to determine the geographical area (with available gravity
and height information) where the gravity correction is significant
and in which direction should it be taken into account within the area
of interest. This technique has been applied to all areas in

Canada covered by sufficient point gravity and height data. Results
for all of Canada are given in the five . external Appendices
(available from the thesis supervisor).

Development and documentation of two computer program packages:

LOOPGC and AREAGC. The first is designed basically to compute the
accumulated gravity corrections and their standard deviations along
levelling lines or loops, and to display them for comparison against

the corresponding accumulated standard errors achieved in precise
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levelling, considering Helmert, Vignal and Dynamic Systems. The
second package is written specifically for the purpose of predicting
areas with significant gravity corrections, in Canada, using the
available EPB new gravity data file based on the 1967 system.

Both programs can . be obtained from the Surveying Engineering

Computer Library, U.N.B.



CHAPTER 2
HEIGHT SYSTEMS BASED ON ACTUAL GRAVITY

In this Chapter, the concept of geopotential numbers based
on actual gravity is introduced. The fundamental definitions of
rigorous heights based on actual geopotential numbers are given.
Three systems of heights: dynamic ., orthometric and normal, are
considered. The normal height system is treated herein, in spite of
its absence among the systems in use at present in Canada, because it
has been proposed by Vanféek et. al [1972] to be adopted for Canada

as a more modern system of heights.

2.1 Actual Geopotential Numbers

Actual geopotential numbers are basic to any definition of
height [e.g.: Heiskanen and Moritz, 1967]. The actual geopotential
number CA of a terrain point A (Figure 2.1) represents the amount
of work needed to lift a unit mass, along any route on or inside the
earth, from the geoid to the point A. In other words, CA is the
negative potential difference between the geopotential surface, W=WA,
through the terrain point A, and the particular reference geopotential
surface, W=WO, the geoid (section 1.1). It is defined as:

A A

Cp == (Wy - wo) == (= g gdh) = -(-Af g'dh'), (2-1)

[¢]
where g is the actual (observed) gravity on the earth's surface along

the levelling path from O on the geoid to the terrain point A, and dh

is the projection of a differential path increment onto the vertical.

31
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g' and dh' are the corresponding quantities along the plumbline of A
(inside the earth, see section 1.4). The reason for the negative sign
outside the parentheses in equation (2-1) is to make the geopotential
numbers increase upwards from the geoid to be consistent with the concept
of heights.

The geopotential numbers as obtained from the levelled
height differences and enroute gravity values can be used as a natural
measure of heights because they define heights of individual points
uniquely [e.g.: Krakiwsky, 1965]. The geopotential number is positive
above the geoid, negative below it, constant everywhere on the same
geopotential surface and equals zero for the geoid. They are usually
measured in geopotential units (g.p.u.) [Mueller and Rockie, 1966; Bomford,
19711, where: 1 g.p.u. = 1 kgal - metre. The reason for such choice
is to make the numerical value of the geopotential numbers approximately
equal to the heights of the corresponding points above sea level in
metres.

One also speaks about the actual geopotential number difference
AC__ between two terrain points A and B, which is given by:

AB

B

= - = .d -
ACAB CB CA Af g .dh , (2-2)

where the integration is carried out along the route following the
levelling line on the terrain between the two points A and B. This is

the only possible approach since the actual gravity g' cannot be observed
inside the earth. 1In practice, however, a continuous profile of observed
gravity g and height h, along the levelling path.. A to B, is not available.
Thus, the integral in equation (2-2) cannot be rigorously evaluated.
Consequently, this integral has to be replaced by summation over a set of

discrete points along the line AB where gravity and height difference
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are observed [e.g. Baeschlin, 1960b; Krakiwsky, 1965]. The evaluation

of ACAB will be then approximate only. The following formula is usually

used:
i=B-1 _
AC__ = z g.,. - Ah, ., (2-3)
AB i=A i]j 1]
Where: j=1i+1, (2-4a)
3. =X (q. + g (2-4b)
Ah.. =h, - h, . (2-4c)
1] J 1

Here, Ahij is the levelled (observed) height difference between the two
adjacent points i and j; 9; and gj are actual values at i and j. For AC
to be in g.p.u., Ah has to be in metres and a in kgals.

In practice, if g is not immediately available at each bench
mark i, j, ... , it can be interpolated from the existing gravity data
in the surrounding area either by least-squares surface fitting techniques
[Vanfgek, 1970; Van{gek et. al., 1972], or by graphical interpolation
from available gravity maps [Krakiwsky, 1966]. However, it can be
noticed from equation (2-3), that in order to obtain an adequate accuracy
of AC, the spacing between adjacent points (i and j) has to be approp-
riately close. The allowed spacing varies with terrain and with the
degree of variability of the gravity field [Baeschlin, 1960a; Levallois,
1964; Krakiwsky, 1965; Ramsayer, 1965al. Equation (2-3) thus indicates
that the actual geopotential number difference is a quantity that can
be measured by field procedures (spirit levelling and gravity observations)
and then computed to at least the same accuracy as other geodetic
quantities [Jackson, 1963]. An extensive analysis of required precisions
in the observed spirit levelling height differences and enroute gravity

values, to ensure minimum errors in the computed actual geopotential
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number differences, can be found in Krakiwsky [1966].

Theoretically, the actual geopotential number differences
around a closed circuit should have a zero closure [Heiskanen and
Moritz, 1967]. Consequently, it has been recommended by the IAG, since
1954, to perform the adjustment of precise levelling networks in terms
of geopotential numbers, before transforming them to the adopted system
of heights [Ellingwood, 1969]. This has been already executed in case
of the United European Levelling Net (UELN) [Alberda et. al., 1960;

K&3riainen, 1960; Alberda, 19631.

2.2 Dynamic Heights

The dynamic height hZ (based on actual gravity) of a terrain

point A is defined [e.g. Heiskanen and Moritz, 1967] as:

C

-2 -
hy, =3 (2-5)

where CA is the actual geopotential number of the point A in g.p.u., and
G is a "reference gravity" value. This reference gravity is usually
taken as the normal gravity on the mean earth ellipsoid (described in
section 1.5) computed for an adopted "reference latitude" ¢R, in Xgal.

G is generally selected close to the average value of gravity for the
area in question. For instance, it has been suggested [Vanfgék et. al.,

1972] that G = should be used for Canada, where Yo 500 is the
r

¥o,50°
normal gravity on the ellipsoid, computed from the 1967 International

formula , e.g. [IAG, 1971] . The "reference gravity" G can be also
regarded as a metric scale factor to convert the geopotential number, in

g.p.u., to metres [Krakiwsky, 1965]. In practice, the dynamic height

is usually referred to as the "dynamic number".
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The reference surface (height datum) for the dynamic system
of heights is the geoid (defined in section 1.1), W=W°, Figure 2-2. It
can be seen that although hi is expressed in length units, it does not
represent the length ZA of the plumbline of A between A and the geoid.
From equation (2-5), it is obvious that hD is constant for all points
located on the same geopotential surface (e.g. W=WA' in Figure 2-2),
whereas the geometrical separations 2 between the two equipotential
surfaces W=WA and W=Wo is generally different (see section 1.4) at each
location (A, i, j, k, ...). Therefore, it can be noticed that the
dynamic height does not depict the actual geometric deviations of the
physical surface of the earth from the geoid.

The dynamic height difference between two points A and B can
be written as:

D _.D D_"B_'A__AB _
AhAB = h hA = . (2-6)

. D . . . .
An alternative way to compute AhAB’ found convenient in practice, is to
express the dynamic height difference as:

D
E + ’ -
Ah Ah DC (2-7)

that is by adding the quantity DCAB known as "dynamic correction" to the

levelled height difference AhAB. Here AhAB is given by:

AhAB = .Z Ahij, j=1i+1 (2-8)
i=A

The dynamic correction DCAB (based on actual gravity) is given by the

following formula [e.g. Vanfgék, 19721 :

B-1 g,..-G
pc._ = § 2l dh.o (2-9)

i=a ]

where j, 5.. and Ah,. have been defined earlier (equations 2-4). The
N | 1]
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above equation is not necessarily carried over every set-up taken in

levelling between points A and B, to obtain adequate accuracy. This

will depend, again, on the admissible spacing of gravity measurements
along the levelling route according to the type of the terrain [e.q.

Ramsayer, 1965b].

In subsequent developments, only one levelling section will
be considered. A levelling section, in this context, can be defined as
the segment of a levelling line between two consecutive permanent bench
marks, whose height difference was established using precise levelling.
In the current Canadian specifications, the length of levelling sections
is on the average of the order of 1-km [e.g. Peterson, 1970]. Hence,
when dealing with only one levelling section between points i and j,

equation (2-9) becomes:

g
a

I

| a
Qe

.

Ah,. - Ah,. . (2-10)

ij ij ij

2.3 Orthometric Heights

The orthometric height hz of a point A on the terrain (see
Figure 2-3) is the distance between the point A and the geoid surface
W=Wo, measured along the true plumbline of A. This implies that the
geoid is again the reference surface (height datum) for this system of
heights, and hence the orthometric heights can be viewed as the actual
deviations of the terrain (physical surface of the earth) from the

geoid. h; is defined by:

Q

(2-11)

=3
il
t-QI|
L o

where CA is the actual geopotential number ofA in g.p.u. and 5& is the

mean actual gravity along the true plumbline of A from the geoid to the
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terrain in kgals, for hz in metres.

The mean gravity aé cannot be determined rigorously, from the
theoretical point of view, because the actual mass density distribution
within the earth (i.e. along the true plumbline of A) is not known [Rune,
1950a; Hirvonen, 1960]. Therefore, one has to adopt a hypothesis regarding
the variation of actual gravity along the true plumbline [Baeschlin,
1960al. Once an attempt has been made to obtain §A as close as possible
to the reality (resulting in an orthometric height that comes as close
as possible to its true value), it is usual to refer to the height obtained
from such an attempt as a "rigorous" orthometric height [Krakiwsky, 1965].
It should be clear that even the rigorous orthometric heights are not
exact, due to the involved hypothesis, especially concerning the density
[Molodenskii et. al., 1962].

Associated with the computation of rigorous orthometric height
systems, one usually hears the names: Niethammer; Mader; Helmert;
Mueller; ... etc. [Krakiwsky, 1965]. All differ in their assumptions and
methodology of estimating the value of QA (in equation 2-11). Of all the
aforementioned approaches to the computation of rigorous orthometric
heights, the method of "Helmert" is the only one which is known to be the
most widely used in practice [Krakiwsky, 1965; Vanieék, 1972]. Hence, the
remainder of this section deals only with Helmert orthometric heights.

The Helmert orthometric height hi of a point A on the physical

surface of the earth is expressed as:

(2-12)

=, H . . . .
where gA is the Helmert approximation to the mean value of actual gravity

along the true plumbline of A between the geoid and the terrain. The Helmert



41

[1890] formula for §AH is based on the application of the mean value
theorem and the use of Poincarg - Pray's hypothesis concerning the
gravity gradient along the plumbline [see, e.qg. Vanféek, 1972]1. This
formula reads:

H
g! = I + 0.0424 hA ' (2-13)

in which 9p is the observed surface gravity on the terrain at A, and
hA is the observed height of A above sea level usually deduced from the
spirit levelling results before adjustment. It should be noted that the
units of the second term in equation (2-13) are mgals for hA in metres.
Realizing that a'H generally varies from point to point, it follows that
Helmert heights of points located on the same geopotential surface will
be different (see Figure 2-3).

In practice, since the levelling process gives the levelled

height difference AhAB (equation 2-8), it is again convenient to express

the Helmert orthometric height difference AhiB between points A and B as:

H H
= - = + -
hB h Ah HC ' (2-14)

where HCAB is known as the rigorous orthometric correction (based on
actual gravity). It will be referred to here as "Helmert correction".
The Helmert correction can be evaluated from the following formula [e.g.

Vanidek, 1972]:

B-1 g g'H g1

9..-6G
A B
= 7 ) An + 2 - h -
HCAB i= G A ij G A G B ' (2-15)

in which: j, Ahij and aij are defined in equations (2-4); G is the

reference gravity for the dynamic heights mentioned before (or any other);

EAH and géH are the values of Helmert's approximate mean gravity along the

true plumblines
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at A and B as given by equation (2-13); and hA ' hB are approximate

heights of A and B (e.g. derived from observed levelled differences) .
The first term in equation (2-15) is nothing else but the

dynamic correction DCAB' based on actual gravity, as given by equation

(2-9). Hence, equation (2-15) can be rewritten as:

§AH -G EéH -G
= + - . 2-16
HC AB DcAB S hA 3 hB ( )

This indicates that the Helmert orthometric correction can be interpreted
as the sum of dynamic corrections for the open loop AOABBO, where A and
B are the terrain points and Ao and Bo are their projections on the
geoid surface [Heiskanen and Moritz, 1967].
Similar to the previous section, when dealing with only one

levelling section between points i and j, equation (2-16) becomes:

- H -, H
gi - G . — G

HC,, = DC,, + =——— h, = —4—n, . (2-17)

ij ij G 1 g J
Substitution for DCij from equation (2-10) into (2-17) gives:
1 -H - H -
. = = """ h, - g' h, +g.. An..l. 2-1
HCij S CH 5 93 5 7 935 hlj] (2-18)

Recalling that: h., = h_+ Ahij, equation (2-18) can be reformulated

2

(for subsequent developments) as:

1 -, H -, H - - H
= = - + A . . - ' . -
HC, G [hi (gi gj ) hiJ (gij gj )] (2-19)

2.4 Normal Heights

The theory of normal heights, their practical advantages,
precise computations and freedom from any hypothesis concerning the

actual density distribution within the earth crust have excited great
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scientific and practical interests among geodesists in different countries
[e.qg. ‘Miller, 1960; Schneider, 1960; Weidauer, 1963; Yeremeyev, 1965;
Krakiwsky and Mueller, 1966; Pick, 1970; Van{gek et.al., 1972; Wolf,
1974]. The normal heights are not meant to describe the heights above
the geoid, like the previously discussed systems do. Instead, they
relate the terrain points to another reference surface (height datum)
and are closely tied to the modern geodetic theories -~ Molodenskii's
and Hirvonen's in particular [Vanfgék, 1972]. Hence, one usually hears
the names "Molodenskii's normal heights" and "Hirvonen's normal heights".
The normal height hi of a terrain point A (based on actual
gravity) is defined [e.g. Krakiwsky, 1965; Heiskanen and Moritz, 1967;

Vanfgek, 1972] as:

c
nyos =, (2-20)

Yl

A

where ;A is the mean value of normal gravity along the normal plumbline
of A (Figure 2-4) between the mean earth ellipsoid (point Aé), where

U=UA‘=W6" and the point A' (inside the earth under A), where the normal
o

potential UA‘ has the same value as the actual geopotential WA at the
corresponding point A on the terrain. Here, one may notice that the
actnal geopotential number CA’ defined by equation (2-1), can alao be

written as:

Cy = - .(_WA - wo) == (U, - UA,O) . (2-21)
For hN in metres, C has to be in g.p.u. and ;‘ has to be in kgal. Again,
since both C and ;' are unique for each point, it follows that the
normal height system (based on actual gravity) defines the heights

of terrain points uniquely. Moreover, realizing that ;' varies

only with latitude and height, one can see that the points which lie

in the same geopotential surface (W = const.) and on the same
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parallel of latitude (¢ = const.) will have equal normal heights [Pick,
1970]. This is not generally the case in the orthometric height system.
Concerning the zero-height reference surface for the system
of normal heights hN, there are two alternatives. The first is the
approach used in practice whereby we measure hN from the physical
surface of the earth along the corresponding normal plumbline (to point
Ag, e.g., in Figure 2-4). Consequently, the locus of hN defines the
height datum which is a mathematical surface (not generally an equi--
potential surface) known as "quasigeoid", whose properties are discussed
in section 1.1. The quasigeoid was introduced by Molodenskii in the
late 1940's [Krakiwsky, 19651, and hence the normal heights referred
to it are known as "Molodenskii's normal heights" hN'M (Figure 2-4).
The second is a theoretical approach based on reckonning hN from the
surface of the mean earth ellipsoid, as the height datum, along the
normal plumbline (to point A', e.g., in Figure 2-4). Thus the locus
of hN above the ellipsoid defines another mathematical surface (not
generally an equipotential surface) known as "telluroid", whose
characteristics are outlined in section 1.l1. This theoretical approach
has been followed extensively by Hirvonen [1960], and hence the normal
heights referring to the ellipsoid and generating the telluroid are

usually known as "Hirvonen's normal heights" hN'H

(Figure 2-4). The
remaining length (see Figure 2-4) of the normal plumbline of A between
Ag and Aé in case of Molodenskii's height, or between A' and A in case
of Hirvonen's height, is called "height anomaly" z. The height
anomaly r, in the modern geodetic theories, plays the same role as the
geoidal height N*, in the classical theories. Note, in Figure 2-4,

that on the oceans N* = . Further elaboration on ¢ is considered

beyond the scope of this study.
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Besides the different geometrical interpretation, Molodenskii's
and Hirvonen's normal heights differ also according to the approach
followed to computa;g (in equation 2-20). Molodenskii's formula for ;A

[Molodenskii et al., 1962; vVanicek, 1972] reads:

Y
-, M o,A
v - — p—
Ya o,A - [1+m+ £ cos 2 ¢A] hA ' (2-21)

and Hirvonen's formula [Hirvonen, 1960] for ?A reads:

”
H _ _ o,A 1 2 3 .2 -4
= Yo,A 7——————— [L+m+ = e 5 e sin ¢A + 10 7] hA p

a2b)l/3 2

2

(2-22)
where: a, b, £, e and m are respectively the semi-major axis, semi-minor
axis, flattenning, first eccentricity, and a constant = 0.0033 of the

mean earth ellipsoid. Here, Yo is again the normal gravity on the

A
ellipsoid for latitude ¢A and hA is the observed height of A.

On the other hand, the numerical values of both Molodenskii's
and Hirvonen's normal heights are so close, that they are practically
identical [e.g. Krakiwsky, 1965].

In spite of the fact that Molodenskii's heights are used, at
present, in the USSR and some other countries of Eastern Europe, they
are still not very popular in other parts of the World. For instance,
they have not been introduced yet in North Bmerica. This could be
due to psychological reasons because the quasigeoid, as a mathematical
surface without any physical meaning compared to the geoid being a
natural surface does not appeal to the users of heights. 1In case of
Hirvonen's heights the theory [Hirvonen, 1960] implies the replacement
of the physical surface of the earth by his telluroid, whic¢h makes it

even more difficult for the users of heights to accept the concept.

Nevertheless, Hirvonen's theory is useful and could be used for



47

theoretical investigations related to modern gravimetric geodesy.

In addition, there is another well-known system of heights
introduced by Vignal in the early 1950's [Yeremeyev, 1965]. This system
has already proved, from both theoretical and practical analysis view-
points, to be adequate as a system of gravimetrically corrected
precise levelling heights [Krakiwsky, 1965]. At present, it is being
used in France and other Western European countries, and has been adopted
for the unification of the UELN [Vanfgek et al., 1972]. Recently, Vignal
system was proposed by Krakiwsky and Mueller [1966] to be adopted for
the U.S. first-order heights. Also, it was recommended by vanf¥ek et al.
[1972] to be utilized as a more modern system of heights for Canada.

In view of classical and modern geodetic theories, the physical
interpretation of the definition of Vignal height is not unique. This
results, in practice, in different names for it. 1In the classical way,
it is usually treated as "approximate orthometric height", e.g. [Baeschlin,
1960a; Krakiwsky, 1965; Mueller and Rockie, 1966]. In the modern
theories, it is regarded as a "normal height", e.g.: [Vykutil, 1964;
Yeremeyev, 1965; Simonsen, 1966; Vanfgék, 1972]1. The second view,
shared by the author, is based on the fundamental definition of normal
heights as presented earlier.

Therefore, Vignal height system is classified, in the present
study, as belonging to the systems of normal heights. It was felt
that an effort should be made to clarify some of the controversial

concepts that led to this ambiguity.
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The above mentioned ambiguities are due to Vignal

himself. There are contradictions between his original objective
and the finally used definition of his height [Yeremeyev, 1965]. The
original aim of Vignal, when he first introduced his height system in
1952, was to refer it to the geoid, and he names it "Orthodynamic
height" [Vignal, 1954; Ledersteger, 1954; Baeschlin, 1960a]. The

. . \% o,V . . . . . .
Vignal height hA (h in Figure 2-5a) of a terrain point A is given

A

by (see section 2.3):

c
hZ =2 , (2-23)
—'V
9

where QAV is the Vignal approximation to the mean value of actual
gravity along the true plumbline of A between the geoid -and the.
‘terrain (see Figure 2-5a).

The original intention of Vignal was to make his "ortho-
dynamic" height to differ as little as possible from the corresponding
levelled height, to serve as practical height. Consequently, he
suggested that aAv be computed by practical methods, which are not
necessarily rigorous but should give results adequately close to the
true value ai. Thus, Vignal proposed the following expression to
compute éév at the midpoint of the plumbline between A and its

projection Ao on the geoid, i.e.:

-IV

9a (2-24)

+
A YA) '

(e}

1
= 5‘(Y

where YA and YA are the normal gravity values at points Ao and A,

respectively. For computing YA' he used the formula:
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Yy = Y, p - 0-3086 hZ , (2-25)
’

in which Yo A is the normal gravity on the mean earth ellipsoid, computed
14
for latitude ¢A. Vignal ended up with the following formula for computing

the sought §AV [e.g. Laflamme, 1971]:

hV

=y _ - 0.3086 (%) . (2-26)

_’V
A 0,A

9

. -V,
By examining equation (2-26), one discovers that gA is
nothing else but the normal gravity propagated upward through "free-air"
v

h
along the normal plumbline of A, to the point A above the ellipsoid,

2
as shown in Figure 2-5b. It should be thus denoted by ?AV. Hence,
equation (2-26) can be rewritten, by replacing hX by the levelled

height hA of A without any detrimental effect on the result [e.g.

Vanicek, 19721, as:

WV _ oWV - - -
gA YA YO A 0.1543 hA . (2-27)

14

Therefore, equation (2-23) should be written as:

C
v A
h = — . 2-28
. =T (2-28)
YA

Based on this discovery, and the definition of normal heights
as stated at the beginning of this section, it can be argued that the
resulting hX from equation (2-28) should be classified as a "normal

3 " N’V . . . N’v N
height", and denoted by hA as in Figure 2-5b. This h can be again
interpreted either theoretically as measured from the mean earth
ellipsoid, or practically as measured from the physical surface of the

earth to the corresponding height datum. 1In the latter case, strictly



51

speaking the datum is neither the geoid nor the quasigeoid but much
closer to the quasigeoid. On the other hand however, from the practical
point of view, the Vignal (or any other) normal height can be consid-
ered as an approximation to the orthometric height [e.g. Vanfgek, 19721.
Hence, Vignal height may be also regarded from the practical point of
view as "approximate orthometric height" referred to the geoid. The
main point here is that all the height isystems discussed so far are
all based on actual gravity, and thus possess the same characteristic
quality of defining the heights of terrain points uniquely.

It has been found that the numerical value of Vignal height
is very close to the corresponding value of Molodenskii's height
[Vignal and Simonsen, 1962; Krakiwsky, 1965; vVanidek et al., 1972].
Both are practically identical. This can be verified as follows: The
Molodenskii's ;QM (equation 2-21) can be expressed in the first

approximation as:

h . (2-29)

v
Further, it can be shown [e.g. Vanfzek, 1972] that ( o

;A) is approximately
equal to one half the free-air gradient (i.e. = (0.3086) mgal/m).

Hence equation (2-29) can be written as:

P = - -
YA Yo,A 0.1543 hA . (2-30)

Comparison of equations (2-30) and (2-27) indicates that Vignal's
=V . . . . .. - .

vY' is the first approximation of Molodenskii's Y'M . Numerically,
the maximum difference between ;'V (equation 2-27) and ;'M (equation

2-21) is at the pole, and is of the order of 0.1 mgal per each 1 km



52

height. This means that Vignal height is the first approximation of
Molodenskii height, and in most cases they are numerically very close.
Yet, Vignal system is more popular due to the simplicity of its compu-
tations.

The Vignal normal height difference AhXB (based on actual
gravity) between two points A and B on the levelling route, can be

expressed as:

\Y
A = A + ’ -31
hAB hAB VCAB (2-31)

where AhAB is given by equation (2-8) and VCAB is known as the "Vignal
Correction". This correction is given by the following formula (e.q.

van{dek, 1972]:

B-1 g, .-G vi'-c viV-6
chB=iil g My tTe PaT g By

(2-32)

in which ;;V and ;gv are computed from equation (2=27) for points A
and B , and the other symbols are as defined before. Equation (2-32)

can be also written as (see equation 2-9):
A -
vc._ =DC_ +——— h - —h - (2-33)

Dealing with only one levelling section between points i and

j, equation (2-33) becomes:
=V_ =V
Y; -G Y

. - G
=  ——— - . -
VCij DCij G hi G hj (2-34)

After substituting for DCij from equation (2-10) and rearranging the

terms, one gets:
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1
vC,. = G [h

- V. =V - -V
V= oy + Ah,. (g,. - v )], 2-35)
i3 (Yl Yj ) ij g YJ )1 (

i 1]

To compute the normal gravity values needed in the present
investigation, the most up-to-date system of reference for the earth's
gravity field (adopted by the IAG, 15th General Assembly in Moscow in
1971) is used. This system is known as the "Geodetic Reference
System 1967" (GRS67) [IAG, 1971; Levallois, 1972]. 1In this system,
the formula for computing the normal gravity value Yo on the mean

earth ellipsoid (referred to as the "1967 International formula" for

normal gravity) reads [e.qg. Vanfgek, 1971; Levallois, 1972]:

Yo = 978031.8 [1 + 0.005 3024 sin2 ¢ - 0.0000059 sin2 2¢] mgal.
(2-36)

In most practical applications, the latitude ¢ is referred

to a local reference ellipsoid for horizontal geodetic networks.
The errors introduced in equation (2-36), by using ¢ reckoned = on the
local reference ellipsoid instead of the mean earth ellipsoid, is at
the most a few tenths of a milligal [Van{gek, 1972]. This error does
not have significant influence.

A closing remark to this section is now in order. The reader
should keep in mind that all the normal height systems presented in
this section are rigorous heights based on actual (observed) gravity.
These should not be confused with other approximate systems of heights
based on (computed) normal gravity, that will be discussed in the next

chapter.



CHAPTER 3

HEIGHT SYSTEMS BASED ON NORMAL GRAVITY

(AS USED IN CANADA)

In this Chapter the dynamic and orthometric height systems
used in Canada are discussed. Both systems are defined on the basis
of normal gravity, i.e. the gravity values computed from a simplified
mathematical model of the earth. When normal instead of actual gravity
is used, the Helmert's and Vignal's definitions introduced in the
previous chapter are exactly equivalent and lead to the same expression
for the orthometric height, which will be referred to here as the
"orthometric height based on normal gravity", io (the "telda" above h
is introduced here to distinguish it from its counterpart based on
actual gravity). Similarly, the dynamic height computed on the basis of
normal gravity will be referred to as "dynamic height based on normal
gravity", and denoted by ﬁD.

As explained, in section 1.5, these heights based on normal
gravity have been used in North America since the start of precise
levelling work, e.g. [Bowie and Avers, 1914; Cannon, 1929; Cannon, 1935;
Rappleye, 1948]. This approach was originally adopted because of the lack
of knowledge of the actual gravity field, i.e. the insufficiency of
observed gravity values along the levelling loops. It may be worth-
while mentioning here that these heights have been also introduced in
almost all countries, and meant to serve as the so-called practical
heights [Vykutil, 1964]. Many countries have already started to define

their height systems on the basis of actual gravity, in accordance

54
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with the IAG recommendations since 1950. Canada and the United States
of America are among the countries where heights based on normal gravity
are still used exclusively [Krakiwsky, 1965; Vanfgék, 1972]. 1In the
sequel the orthometric height is discussed before the dynamic height,
since the latter has to be computed from the former.

Most of the notations and definitions contained herein are
taken from the following references: Bowie and Avers [1914]; Cannon
[1929]; Rappleye [1948]; Heiskanen and Vening-Meinesz [1958]; Geodetic
Survey of Canada [1960]; Coordinating Committee on the IGLD-55 [1961];
Krakiwsky [1965]; Mueller and Rockie [1966]; Kowalczyk [1968]; van{éek

[1972]; and Jones [1973].

3.1 Geopotential Numbers Based on Normal Gravity

The geopotential number (based on normal gravity) CA of any
terrain point A (see Figure 3-1) is the negative potential difference
between the two normal equipotential surfaces: U = UA' passing
through A, and U = UO, passing through a zero-elevation adopted reference
point (defining MSL) [Mueller and Rockie, 1966]. éA can be also
defined as the amount of work needed to trans-
port a unit mass in the normal gravity field from a point at sea

level to the terrain point A, which is given by Krakiwsky [1965] as:

A A

cA = - (UA - UO) = ~of ydh = f\f Y'dh', (3-1)

o

where dh is an infinitesimal height increment along the normal plumbline
and y is the normal gravity value on the terrain; and dh' and y' are the
corresponding quantities inside :the earth. The normal gravity 7y used

here is usually obtained so that the gravity value Yo computed on
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the surface of the ellipsoid, using for instance equation (2-36), is
propagated upward to the terrain by a negative free-air correction,
e.g. [Heiskanen and Vening-Meinesz, 1958].

In Canada, the formula for Yo differs slightly from the
1967 International formula [Cannon, 1929; GSC, 1960; Jones, 1973].
This formula was developed by the United States Coast and Geodetic
Survey (USC&GS) as early as 1907 [Bowie and Avers, 1914; Rappleye,
19481, and subsequently adopted by the Geodetic Survey of Canada (GSC)
[Cannon, 1929]. The USC&GS formula for normal gravity has the same
form as the Cassini's formula (see e.g. [Heiskanen and Mofitz, 19671)

but slightly different coefficients. It reads:

Y*

. 2
= * — + -
oA Yo,45° [1 o cos 2¢A B cos 2¢A], (3-2)

where Yé is the normal gravity at the ellipsoid surface computed for
r

A

the latitude ¢A and Y; 450 is the adopted value for the normal gravity
r’

on the ellipsoid at latitude of 45° - used also as the reference

gravity for height computations (corresponding to G in the previous

chapter) - and is given by:

YE 450 = 980 624 mgal. (3-3)

The coefficients a and B are given by:

o 0.002 644 unitless, (3-4a)

]

8 0.000 007 unitless. (3-4b)
The use of the asterisk (*) as a superscript for vy is necessary, in
this context, to distinguish between the normal gravity Yy computed

from the 1967 formula (equation 2-36) and the USC&GS  formula

(equation 3-2).
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It might be of interest to mention here that the value of a,
as given above, was also used to compute the orthometric correction
based on normal gravity for the Polish levelling [Kowalczyk, 1968].

Reformulating equation (3-2) to get it in the same form as
equation (2-36), the followiﬁg result is obtained (see Appendix I for

details)

.

Y;,A = 978038.095 [1 + 0.005 302 sin2 ¢A - 0.000 007 sin2 2 ¢A)mgal.
(3-5)
The evaluation of the difference in the normal gravity computed from
the two formulae (2-36) and (3-5) for different latitudes is then easy
and the results are shown in Appendix I. For Canadian latitudes, the
differences are between -5.005 mgal (at latitude 47°N) and -5.843 mgal
(at latitude 82°N), always negative. The effect of these differences
on the computed height differences will be discussed in the next chapter.
The USC&GS has also developed a formula for the normal gravity

Yx propagated from the surface of the ellipsoid to the terrain point A.

It is given by Bowie and Avers [1914] and reads:

* = * - * -
Ya = Y5,a " Y0,a50 K Py v (3-6)

where the second term on the RHS is termed as the "normal gravity
correction" (analogous to the free-air correction). It accounts for
the decrease of gravity with height. hA is the levelled height of A

in metres and K is given by:
K =K' [1+ d cos 2¢A -c hA], (3-7)

where: K' = 3.147 . 10 unitless, (3-8a)

d=7.1.107% unitless, (3-8b)
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and: c = 2.3 . 10 ' unitless, (3-8c)
in which hA has to be, again, in metres.

Substituting then Y;' from equation (3-6), for y' in equation
(3-1) and performing the integration along the normal plumbline of A, the

~

following expression for CA is obtained:

- hZ 2 ~o
= * L * - -
Cy Of Yx dh Y 450 [(1 - o cos 2¢A + B cos 2¢A) hA
i a— (1 + d cos 2¢A - S'ChA)], (3-9)

where ﬂ; is the orthometric height of point A based on normal gravity
(see Figure 3-1). The geopotential number difference &bAB (based on
normal gravity) between the two terrain points A and B can be computed
from the following formula:

B-1
A, = I Y* Ah_., j =1+ 3-1
CAB o1 Ylj hij r ] 1 1, ( 0)

where: vy* = l-(y? + v*) and Ah,. is the levelled height difference
ij 2 i ] ij

between i and j. Here, y; and Y; are computed using equation (3-6).

3.2 USC&GS Orthometric Heights

The orthometric height (based on normal gravity) hz of a
terrain point A is defined [Krakiwsky, 1965] as the distance measured
along the normal plumbline of A between the two normal equipotential

surfaces: U = UA and U = Uo’ as illustrated in Figures 3-1. Hence

hz can be computed from:

|7

hZ == . (3-11a)

=

~

where CA is given by equation (3-1) and ;‘ is the mean value of normal

gravity along the normal plumbline of A between A and Ao (see Figure 3-1).



60

~

On the other hand, the USC&GS definition for CA is given by equation

(3-9). This implies [Krakiwsky, 1965] that ;; can be sufficiently
%
approximated by the mean value of normal gravity YA along the plumb-

line of A between the geocentric ellipsoid (point Ao) and a point, A,
h; above the ellipsoid. Hence the expression for‘vg will be:

* }1A
= * - o -
YE 0.3086 (=) , (3-11b)

] v
Ya=™ Ya

Ile

where Y;,A is given by equation (3-5). The resulting ﬂz in this case
is referred to here as the "USC&GS orthometric height".

According to Krakiwsky [1965, page 109], the orthometric
height based on normal gravity as defined above, was formulated by

~

Helmert. Thus, h °©

A may be also denoted by hAH. In addition, it can

be seen that ;3*, as defined by equation (3-11b), is practically
equivalent to Vignal definition of §3V, as given by equation (2-27).

As a result, the following concluding statement can be made. The

USC&GS (Helmert) definition of orthometric height io (ﬁH based on normal
gravity) is equivalent to Vignal definition of normal height ﬁV (based
on normal gravity). Both definitions will be denoted here by io

(Figure 3-1) . Consequently, one can see that Vignal normal heights based
on normal gravity have been already used in North America.

The orthometric height difference Ah:B between points A and

B is in practice computed from the following formula:

A = An .+ CC_, (3-12)

where OCAB is called the "orthometric correction based on normal gravity"

and AhAB is the levelled height difference.
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The expression for db , used by the GSC [Cannon, 1929;

AB
GSC, 1960; Konecny, 1965; Laflamme, 1971; Jones, 1973], is the one

developed by Bowie and Avers [1914]. It can be derived in the following
manner. Firstly, it is known that EA is constant for all points located
on the same normal equipotential surface U = UA' Thus, an equation
of the normal equipotential surface going through A can be written

using equation (3-9) as: ~
- (h

o, 2
- (o cos 2¢A - B 0052 2¢A) hz - K' A

) -
. 2 o
+ - — =
(1 d cos 2¢A 3 chA)

"o
h
A

= const. (3-13)
The next step is to differentiate equation (3-13) and to neglect terms
smaller than the errors in levelling. According to Bowie and Avers
[1914, page 52], the resulting expression for the differential change of
the orthometric height at point A reads:

FO | oo o o _ 28 i
dhA = 2hA o sin 2¢A [1+ (o o ) cos 2¢A] d¢A . (3-14)

In the differential environment of the point A, the variation dﬁz can be
considered equivalent to the difference between the observed height and
the orthometric height, because the observed height difference is
"sufficiently close" to the geopotential number difference (up to a scale

factor). Hence, one can write:

~5 ~
dhA =d OCA' (3-15)

where OC is the orthometric correction (based on normal gravity).

Assuming the validity of equations (3-14) and (3-15), even for finite

~0
differences Ah~, A¢ and AOC, the final expression for the orthometric

correction is obtained as:

— . = 28 Iy
. = - . . + - - AN -
OCiJ 2hij o sin 2q>iJ [1 (o a) cos 2¢l]] A¢lj (3-16)
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It is valid only for individual levelling sections (as defined in section
2.2) between each pair of consecutive bench marks i and j. Here the
quantities ﬁij (the average levelled height); ¢ij (the average latitude)

and A¢ij (the difference in latitude) between points i and j are

computed from:

=1 . -

hij = 2 (hi + hj)' (3-17a)
roRE PP (3-17b)
Ab.. = . - ¢.. (3-17¢)

ij 3 i
The coefficients o and B are defined by equations (3-4a) and (3-4b).
When dealing with an entire levelling line between points A and B,

for instance the one given by equation (3-12), the total orthometric

correction for the line is given by:
oc = I 0C,., . (3-18)

It is now worthwhile to examine equation (3-16). It can be
easily seen that the orthometric correction, dbij' is mainly dependent
on the latitudes of the two points i and j and goes to zero for any
two points on the same latitude. On the other hand, it is known that
the observed height difference, Ahij, is path (route) dependent, as
explained in section 1.4, which of course holds true even for the two
points of the same latitude. Therefore, it can be concluded that the
orthometric heights computed from the orthometric correction based on
normal gravity are generally not unique, and also route dependent.

In their publication, Bowie and Avers [1914] provide tables to

simplify the computation of OCij. For this purpose, they rewrote equation

(3-16) in the following form:
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Whe]:e

. - 28 —
=+ 2 ¢.. [1 + - — 2¢, . 3-20
C o sin 2wij [ (o a) cos ¢13] ( )

is obtained from the aforementioned tables, arranged with E;j as the
argument to the nearest tenth of a degree of arc. Using C from the
tables,A¢ij has to be expressed in minutes of arc and the units of

OCij are the same as the units of E;j [e.g. Konecny, 1965; LaFlamme,

1971].

3.3 Reformulation of the USC&GS Orthometric

Correction

The purpose of this section is to reformulate equation (3-16),
for the USC&GS orthometric correction, dbij (based on normal gravity),
so as to make it suitable for the subsequent developments.

Differentiating the USC&GS formula for normal gravity on the
ellipsoid, i.e. equation (3-2), with respect to ¢, gives:

dy *
YO

a = Y;'45° (20 sin 2¢ - 4B cos 2¢ sin 2¢) . (3-21)

By considering a levelling section between two points i and j, and

replacing differentials by finite differences, equation (3-21) can be

rewritten as:

Ay* _
0,1ij . . - —

=2 o sin 2¢.,, - 48 sin 2¢,. cos 2¢,., (3-22)

* A

S, 450 ¢ij ij iJ ij
where:

Ay * = vk | = vk -2
Yo,ij Yo,j Y0,1 ! (3-23)
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and the remaining symbols are as defined earlier. From equation (3-16)

the following expression can be obtained:

oC, .
1]

Ad, .

= - 2 o sin 251. - 2a2 sin 25:. cos ZEi_ +
h 1] 1] 1]
ij ij

+ in 2¢,. $. .- 3-24
4B sin 2¢ij cos 2(1)1J ( )

Combining equations (3-22) and (3-24), one gets:

ocC. . Ay* .. _ _
- =J = - or1J - 2a2 sin 2 ¢ij cos 2¢ij. (3-25)
R .
hiy A0y 3,450 8044

For reasons mentioned at the beginning of section 3.1, Y; 450 will be
’

referred to from now on as the reference gravity, and the symbol "G"

will be used for it as in the previous Chapter. Further, realizing

that 2 sin® cos® = sin 26, equation (3-25) becomes

* - 2 —
.~ h,. L i e e 3-26
AYo,ij hlj A¢lj a” sin 4¢lj ( )

Qo
Q
1
1
LJSI
Q|-

A closer look at the second term on the RHS of equation (3-26)
should now be - taken. = To compute its magnitude, an extreme case of
5ij = 6725, A¢ij = 1 arcmin (corresponding to = 2 km),; and E;j = 2 Kkm,
is considered. Then, sin 4 $ij will equal to -1 and the sought numerical
value of the second term will be approximately -0.0036 mm. Comparing
this result to the expected (specified) accuracy of precise levelling
which is estimated to be between 0.5 to1l.5 mm per 1 km [Peterson, 1970;
Boal, 1971a,b; Holdahl, 1974; U.S. Dept. of Commerce, 1974}, it can be
easily seen that the contribution of the second term on the RHS of

equation (3-26) is generally negligible. Accordingly, equation (3-26)

=~

becomes: ~ L. "

i
L. = = L. . 3-27
Oclj G AYo,1j ( )
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- 1
Re i = + = A da Ay* ., = vy* | - y* |
calling that hij hi 5 hij an YO,ij YO,] YO,l '

and then substituting these relations into equation (3-27), the sought

reformulated expression for 6bij can be finally written as:

- 1 .

oc,. == 1Th, (y* , - y* ) + Ah,, (Y* .. - v* . 3-28

i9°C [ i (Yo'1 Yo,j) i3 (Yo,lj Yo,j)] P ( )
where 1

T* .= = (y* 4+ y* ) . 3-29

Yo,l] 2 ( Yo,l YOIJ) ( )

By comparison, one can see that equation (3-29), for the
USC&GS orthometric correction dbij (based on normal gravity) has the
same form as equation (2-19) for the Helmert orthometric correction
HCij (based on actual gravity), and as equation (2-35) for the Vignal

normal correction VCij (based on actual gravity).

3.4 USC&GS Dynamic Heights

The dynamic height hAD (based on normal gravity) of a terrain

point A is defined [Vykutil, 1964; Krakiwsky, 1965; Mueller and Rockie,

H

1966] as:

L S (3-30)

where CA is the geopotential number of A, based on normal gravity
(defined by equation (3-9) for the USC&GS), and G is the "reference
gravity" taken as the normal gravity on the geocentric ellipsoid, i.e.

Yo R’ for the adopted reference latitude ¢R. Recall that the USC&GS
r

definition, used also in Canada, uses ¢R = 45° and consequently,

~

G = Ya 45 = G (as stated before) whose numerical value is given by
’

equation (3-3). Combining equations (3-9) and (3-30), the USC&GS
dynamic height (the term "dynamic number" is frequently used for it)

D . .
hA is given as :
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“D ~o 2 o
hA = hA - (o cos 2¢A B cos 2¢A) hA -
(hz)z 2 "o
-K' 5 (1 + 4 cos 2¢A - E'ChA)’ (3-31)

in which the last two terms represent a "dynamic correction" to the
orthometric height ﬂz. This situation explains the reason for discussing
the USC&GS orthometric heights (section 3.2) before their corresponding
dynamic heights.

Bowie and Avers [1914] provide again tables to simplify the
computation of dynamic heights from equation (3-31). For such purpose,

they rewrote equation (3-31) in the following form:

D o 2

hA = hA - DlhA - D2 (hA) ' (3-32)
where:
— - 2 -
Dl = (0 cos 2¢A B cos 2¢A) ’ (3-33a)
and D = LS (1 + d cos 2¢, - 2-ch ) (3-33b)
2 2 A 3 A cC

Dl and D2 are obtained from the tables for argume'nts“ttA and (¢A, hA)'
respectively. It can be noticed that the orthometric height ﬂ: is
replaced, in the above formulae, by the corresponding levelled height
hA. This approximation is justified because it is used into corrective
terms only.

Considering a levelling section between two points i and j,

the dynamic height difference Ah?j between them is given by (using

equation 3-32):

I
5 e
I
52
I
=
|
=
o

AP,
1

ij .2 2
) - . - h,) - h% - n°
j 3 i 3 i 1 (hJ i) Dz ( j 1)

(3-34)
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where DiB and D;J are the average values of D1 and D2 computed from

equations (3-33a) and (3-33b) by putting ¢A = %— (¢i + ¢j) and

1
hA = 5—(hi + hj).

~

. D
In order to compute the dynamic height difference, Ahij'
from the levelled height difference, Ahij, the "dynamic correction"

ﬁbij ( based on normal gravity), has to be added to Ahij' that is:

~

AP, = Ah.. + DC.. . (3-35)
i] 1] 1]

The USC&GS formula for DCij is stated by Bowie and Avers [1914] as:

DC,. = - (D2 + K h,.) Ah,. (3-36)
ij 1 ij iJ
where K = 3.147 . 10_7 and the other symbols are defined above . p>J

1

can be again obtained from Bowie and Avers tables for argument 5ij'
The units of ﬁéij will be the same as those of Eij and Ahij e.qg.
metres [Konecny, 1965].
Substituting equation (3-36) into equation (3-35) and comparing
the result to equation (3-34), it can be seen that Bowie and Avers

[1914] have made the following approximations:

h? -1 2h. -h, =Ah, ., , (3-37a)

D,=K /2 - (3-37b)

These approximations imply an error in computing DCij from equation (3-36)
of the order of the orthometric correction (based on normal gravity).
This fact may explain why this approach is not used in practice. In
Canada, the dynamic heights (based on normal gravity) are computed by

adding the dynamic correction to the corresponding orthometric heights
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using equation (3-32) and Bowie and Avers tables [Cannon, 1929;

GSC, 1960; Dohler, 1970]. However, as already explained in the
previous section, it can be again seen that dynamic heights based on
normal gravity are not generally unique, but route dependent. The
system of USC&GS dynamic heights has been used exclusively in the
establishment of the International Great Lakes Datum of 1955 (IGLD-55)
[Coordinating Committee on the IGLD-55, 1961; Ramsayer, 1965b; Ropes,

1965].

3.5 Reformulation of the USC&GS Dynamic Correction

The main idea in this section is to obtain an alternative
form for the USC&GS dynamic correction applied in Canada, ready to
be used in the subsequent developments.

First, equation (3-32) for dynamic height is rewritten for

the point A as:

D ~

(o]
A A (Dl + D2hA) hA . (3-38)

Then, from equations (3-2) and (3-33a), the quantity D, can be expressed

1

as:

D, = — - (3-39)

At this point, one of Bowie and Avers approximations given by equation
(3-37b) can be introduced. It can be seen that such approximation is
equivalent to taking %- chA = chA in equation (3-33b). The effect of
this on the computed ﬂi will be of the order of 0.0l mm per 1 km of
height which appears to be admissible. From equation (3-6), the

following expression for K can be obtained:
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Y* - Y*

_ _9,A A -

K ch ¢ (3-40)
A
and consequently:
YE AT YR

. K_ oA A -

Dy =2 26 n, (3-41)

Substituting equations (3-39) and (3-41) into equation (3-38) gives:

- - h
D o A
= - + — * + *
by =hy -y v (Y5 At Y

(3-42)
Considering a levelling section between two points i and j,
a similar expression to (3-42) can be written for h? and h?. The

dynamic height difference Ah?j between them can be hence obtained as:

a2, = n - 1P = an°, + y*)]
j i ij i

1
- - + — * - * - *
i3 Ahij 3G [hj (Yo,j’ +yj) hi (v

o,i
(3-43)
Realizing that Ah?. is given by equation (3-12) as: Ah?.=Ah,.+db,.,
1] 1] 1] i3
where Ocij is expressed by equation (3-27), equation (3-43) can be
rewritten as:

~ h
D : ig * 1

Ah-. = N JE  RY = Ah. . + — ) * 4 oyk) _

hij Ahij ¢ G Yo,ij hi] 2G [hj (YO,] Yj)

- hi (Y; ; F Y;)l }e. (3-44)

r

Comparing equations (3-44) and (3-35) reveals that the entire second

term on the RHS of (3-44) can be regarded as the dynamic correction

DCij (based on normal gravity) to the observed elevation difference
Ahij. It involves only minor approximations and is consistent with
the approach adopted by Canada.

Accordingly, DCij will be given by:
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*) — * * _
+Y:j) hi (Yo,i+Yi)]}

- Ah, .. (3-45)
1]
Recalling that the difference between the normal gravity
on the ellipsoid and its corresponding value on the terrain can be
approximated (consistent with the USC&GS approach for computing the
geopotential numbers based on normal gravity) by the free-air correction

[see, e.g. Heiskanen and Vening-Meinesz, 1958]. Hence, one can write

the following relation at point i:

Yi = Y; ;T 0. 3086 hi . (3-46)

4

A similar expression to (3-46) can be written for point j, and sub-
sequent substitution in equation (3-45) leads finally to the sought

reformulated expression for DCij that reads:

N %
pDC,. = =% Ah,. - An (3-47)
iJ G ij ij !
where:
YE =% - 0. h 3-48
ij Yo,lj 0.3086 hij ’ ( )

and the remaining symbols are as defined earlier.
The comparison of equation (3-47) for the USC&GS dynamic
correction DCij (based on normal gravity), and equation (2-10) for the

dynamic correction DCij (based on actual gravity), reveals that both

are in the same form.



CHAPTER 4

CORRECTIONS TO HEIGHTS BASED ON NORMAL GRAVITY

(DUE TO THE IRREGULARITIES OF ACTUAL GRAVITY. FIELD)

To begin with, we recall that we have seen two approaches lead-
ing to the heights based on observed gravity. The first is by computing
the actual geopotential numbers and transforming them to heights by
dividing by the appropriate gravity value. This approach was proposed
for the USA by Krakiwsky and Meuller [1966] and by Mueller et al. [1968],
and in Canada by van{¥ek et al. [1972]. The second approach is based
on correcting the levelled height differences by adding corrections
based on actual gravity. These corrections differ according to the
particular height system adopted, i.e. Dynamic, Helmert or Vignal,
as we have seen in chapter 2.

The problem on hand is somevhat different. Here, old established,
already existing, levelling lines and loops which have been computed on
the basis of normal gravity only are considered. This, in fact, means
that only the local actual gravity irregularities are not taken into
account. In particular, we shall focus on the heights currently used
in Canada, i.e. dynamic, ﬂD, and orthometric, ﬁo.

In this chapter, the first main objective of this study is
attained. Corrections, to the used dynamic¢ and orthometric heights,
reflecting the effect of the neglected gravity irreqgularities ("Gravity

corrections", to be defined in section 4.1) are formulated. The
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development of these corrections will be given (in section 4.2) for
each of the three rigorous height systems in question, Dynamic hD,
Helmert hH and Vignal hv, according to the following scheme. With
the appropriate gravity correction, for each case, one can obtain
AhD from AhD and both AhH and Ahv from Aho.

The computations involving the rigorous expressions are prac-
tically possible only with the aid of computers. Therefore, section
4.3 of this chapter will contain an attempt to simplify the rigorous
expressions for the gravity corrections to suit the desk or pocket
calculator computations. Finally, section 4.4 gives the expressions
for the estimated standard deviations (precisions) of the formulated
gravity corrections, again for each of the three height systems under

investigation.

4.1 Definition and Motivation

The "Gravity Correction" GC, as formulated here (for only one
levelling section, as described in section 2.2, and a particular height
system), is explicitly defined as the correction or influence due to
the neglected actual gravity irregularities, as applied to the corres-
ponding height difference Aﬁ presently used in Canada. The algebraic
addition of the computed GC and the existing &h will produce the
corresponding rigorous height difference Ah, appropriately based on
actual gravity. This definition holds true for each of the three
height systems under consideration.

We recall that the concept of defining the heights on the

basis of normal gravity, as
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adopted in Canada, implies that instead of using the observed gravity
value g on the surface of the earth, an approximate value y is adopted.
This y is the normal gravity value Yo computed on the geocentric ellip-
soid and then propagated (using Bowie and Avers gradient of normal
gravity) to the height h above the ellipsoid. Accordingly, it can be
realized that the neglected difference g- vy, at each bench

mark, which has been referred to, here so far, as the actual gravity
irregularity, is nothing else but basically the corresponding free-

air gravity anomaly AgF (based on the free-air gradient of gravity)
plus other minor terms (coming from the differences between the involved
gravity gradients, and negligible compared to AgF); This follows from
the definition of the free-air anomaly [e.g. Heiskanen and Vening-
Meinesz, 1958; Mueller and Rockie, 1966] as the difference between the
actual gravity on a geopotential surface and the normal gravity on

the corresponding normal equipotential surface.

Thus, the free-air gravity anomaly is naturally one of the
independent variables in the formula for the gravity correction.
Expressing the influence of gravity irregularities on heights in
terms of free-air anomalies was also found convenient in practice,
and used by several authors [e.g. Bursa, 1958; Schneider, 1960;
Weidauer, 1963; Vykutil, 1964] who investigated Molodenskii's normal
heights based on actual gravity.

In addition to the above logical motivation, the following
reasons are considered, in the author's opinion (based on the geo-
physical, geodgtic and practical computation viewpoints), as just-
ifications for the choice of the freezair anomalies, AgF, instead of,
for instance, the corresponding absolute values of the observed gravity,

g:
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From the geophysical point of view,AgF is linked with the mass
irregularities. It is simply a measure of gravitational difference
between the irregular mass distribution within the real earth and
the regular mass distribution within the normal earth (mean earth
ellipsoid) [Wilcox, 1974]. Hence, AgF should reflect the local
circumstances under which the levelling instrument (level) was
performing, e.g. the effect of some local anomalous mass;

AgF is usually available within any area covered by point gravity
data. This is because the free-air gravity anomaly is; by far, the
most widely used anomaly for geodetic purposes, due to its simpli-
city and advantages over other types of anomalies [Heiskanen and
Moritz, 1967; Vanidek, 19721;

One of thleauthor's goals in the present investigation is to provide
tables to facilitate the practical computations of the formulated
gravity corrections, such that they can be used anywhere even in
the field. Such stipulation requires the availability of a gravity
map to perform a graphical interpolation of gravity data at the
bench mark of interest. The production of gravity maps is consid-
ered one of the main features of any well-designed gravity data
processing system (see, e.g. section 5.2.3). 1In practice, however,
the graphical representation of the earth's gravity field within

an area is customarily depicted by the gravity anomaly maps

(either Bouguer or free-air), and not by the observed point gravity
values as such. Anomaly contour maps with 5 mgal contour interval
have been already used by several researchers dealing with heights

and gravity, e.g. [Schneider, 1960; Rapp, 1961; Krakiwsky, 1966].
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Nowadays, the high speed computers and automatic plotting machines
make it possible to compile local gravity anomaly maps with any
desired contour interval (e.g. 1 mgal) [Derenyi, 1965; Konecny,
1970; Wilcox et al., 1974; Estes; 1975; Nagy, 1976]. Even in
certain circumstances where the available anomaly contour maps are
of Bouguer type, the transformation from Bouguer to free-air

anomaly value is straight forward and simple [Vykutil, 1964].

4.2 Rigorous Expressions for the Gravity Corrections

The gravity correction as described in the previous section is
the difference between the height difference based on actual gravity
and the corresponding height difference based on normal gravity. This
is exactly equivalent to the difference between the correction to the
levelled height difference based on actual gravity and the correspond-
ing correction based on normal gravity. The latter approach will be

used in the subsequent developments.

4.2.1 Dynamic Gravity Correction

The dynamic gravity correction GC?j to the height difference

Ah?j (based on normal gravity) of a levelling section between i and j

is defined as:

ac®. = an?. - anP, . (4-1)
ij ij ij

Alternatively, substitution from equation (2-7) and (3-35) into the

above equation gives:

ac?. =pc,. - pC,. . (4-2)
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Here the actual dynamic correction DC ig given by equation (2-10),
i]

i.e.: _
9 .
pc.. = —=1 Ah.. - An.. . (4-3)
1] G i] 1]

The dynamic correction DCij (based on normal gravity) is given by

equation (3-47), i.e.:
DC,. = =% Ah_, - AR, - (4-4)

Substituting into equation (4-2), the dynamic gravity correction

becomes:

, = g.. - Y*. . 4-5
Gcij G [giJ Yij] ( )

To express the RHS of equation (4-5) in terms of the free-air
gravity anomalies, we first define the free-air anomaly AgF. Agi at
the terrain point i is defined [e.g.: Heiskanen and Vening-Meinesz,

1958; Vani&ek, 1972] as:

F
= + . - -
Ag, = g, + 0.3086 h -y (4-6)

o,i 7

in mgal, where 9, is the observed gravity on the terrain in mgal, and

hi is the levelled height in metres. Here, Yo i is the normal gravity
r

on the mean earth ellipsoid based, for instance, on the 1967 Inter-
national formula (equation 2-36), in mgal. A similar expression to
(4-6) can be written for point j. Consequently éij in equation
(4-5) can be expressed as:

g,

__..F‘ —
ij B Agi

. +y .. -0.308 h,, , (4=7)
j 0,ij ij
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where:

—.F _ !_‘ F F _ .
Agij =3 (Agi + Agj) ' (4-8)
Y =t D (4-9)
Yo,ij 2 Yo,:L Yo,j !

h L h h (4-10

= -— =+ . - -

hij 5 ( 5 J) )

Next, by substituting from equations (4-7) and (3-48) into equation
(4-5), one gets:
Ah, .
D ij —F — —
. = — [Ag.. + o= YE oL 4-11
GCi:l 3 [ 955 (Yo,l] YO,lj)] ' ( )
in which‘;g i is the average value of the normal gravity on the geo-
14
centric ellipsoid as computed from the USC&GS formula given in equation
(3-2).
The difference between the normal gravity based on the 1967

International formula and the corresponding value based on the USC&GS

formula for the same point i can be denoted (Appendix I) as:
8y 3 S Vg4 T YE L (4-12)

Similar expression for Gyo 3 can be written at point j. Then, the
’

substitution into equation (4-11) leads finally to the sought rigorous

formula for the dynamic gravity correction that reads:

Ah
D ij - —
= + . -
Gcij ) [Agij GYo,iJ] ’ (4-13)
where:
.=y .-y =i sy L+ 8y L) (4-14)
o,1] 0,1] 0,1] 2 o,1 o,J *

Referring to Appendix I, it can be seen that GYO i3 depends on the
4
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1atitudes¢i and ¢j.

It should be kept in mind that the dynamic gravity correction
GC?j, computed from equation' (4-13), is to be added to the-used dynamic
height difference Ah?j to get the corresponding rigorous dynamic
height difference Ah?j' The physical units of GCli)j will be metres for

—d-F .
i 1.
Ahij in metres and G, Agi 5Yo,ij in mga

jl
Evidently, the dynamic gravity correction given by equation
(4-13) is a function of levelled heights, geographical latitudes, and

free-air gravity anomalies at both ends of the levelling section.

Generally, GCEj can be written as:

D D F F
., = f h . ) - -
Gcij (hil jl ¢il ¢J ' Agl, Agj) (4-15)

where f, in this context, denotes the functional relationship.

4.2.2 Helmert Gravity Correction

. H . .
The Helmert gravity correction GCij to the height difference

Ahgj (based on normal gravity) can be written as:

o, = anl, - an°,, (4-16)
ij ij ij

where Ah?j is the Helmert rigorous height difference. Substitution

from equations (2-13) and (3-12) into the above equation gives:

el =mc,. - oc... (4-17)
ij ij i

We recall that the Helmert or actual orthometric correction HCij is

given by equation (2-19), i.e.:

1 - H -H -
L= = o gt + - N
HC, [hi (9'i 93 ) Ahl (g gj 11,

i g 3 i3 (4-18)



79

and the orthometric correction OCij based on normal gravity is given
by equation (3-28), i.e.:

~

oc.. =
1]

¥ . = y* ) + Ah,. * .= v* )], 4-19
[hi(Yo,l Yo,j) hlj ( Yo,lj Y O,j)] ( )

Q-

Substituting into equation (4-17), the Helmert gravity correction

becomes:

H _ 1 - B - (g'? - yx +
GCij 5 {h [(qi Yo,l) (gJ YOIJ)]
+ M., (3. - y* . - (@F - yx )1} . (4-20)
1] ij 0,1] J o,]

To express the RHS of equation (4-20) in terms of the free-
. . . . - H
air anomalies, the following steps can be followed. First, gi can

be expressed from equations (2-12) and (4-6), as:

— H F
o= .+ . — 0. . . 4-2
gl Agl YO,l 0.2662 hl ( 1)

Further, using equation (4-12), one can write:

—H_ F
| A = + - . -
9 Yo,i Agi Syo,i 0.2662 hi ’ (4-22)

which holds true also for point j, with the appropriate subscripts.

Next, the use of equations (4-7) and (4-14) provides:

-— — -—F — -
- yX L= . .. — O. L. e 4-
gi] Yo,lj Aglj 6Yo,13 0.3086 hlj (4-23)

Then, by substituting the relationship (4-22) and (4-23) into equation

(4-20) for the Helmert Gravity correction, one obtains:
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jasd
Q-

ol =L {h [angt. - ASy .. + 0.2662 AR,.] +
i ij o,ij ij

—F —— —
Ah, . Ag,., + 6 . — 0.3086 h,.) -
+ hij [( 9i5 Yo,13 lJ)

, i
- (Mgt + 8y . - o0.2662 h,)1 1}, (4-24)
J O,] J
where:
Fo_ (4-25)
AAgij = Ag Ag,
AS .. =6 .= 6 . 4-26
Y0,13 Yo,j Y0,1 ! ( )

and the remaining symbols are defined earlier.

The simple algebraic manipulation of equation (4-24) leads
finally to the sought rigorous formula for the Helmert gravity corr-
ection which reads:

h,.

H 1] F
= - =1 + . - 0. 1. 4-27
G [AAgij AGyo'iJ 0.2238 AhiJ] (4-27)

ij

Here again, it should be noted that the Helmert gravity
correction GC?j' computed from equation (4-27), is to be added to the
used orthometric height difference Ahzj to obtain the corresponding
rigorous Helmert orthometric height difference Ahﬁj. The units here
are metres and milligals.

Similar to the dynamic gravity correction, it is also
obvious here that the Helmert gravity correction is a function of

levelled heights, geographical latitudes and free-air gravity

anomalies of the two bench marks, i.e.;

H H F F
Gcij = £ (hir hjr ¢i' ¢Jl Agi' Agj), (4-28)
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where £, again, denotes the functional relationship.

4.2.3 Vignal Gravity Correction

The Vignal gravity correction GCZj to the height difference

Ahzj (based on normal gravity) can be expressed as:

ac’. = anY. - an°, , (4-29)
ij ij i3

whereAAth is the Vignal rigorous normal height difference. Substi-

tution from equations (2-24) and (3-12) into the above equation yields:

GCY. =VC,. - 0C,., . (4-30)
1] 1] 1]

Here Vignal or actual normal correction VCij is given by equation

(2-35), i.e.:

1 =V _ =V - _ oV _
i3 =G hy Cvy Yy ) + Ahij (gij Y5 )1, (4-31)

and the orthometric correction OCij based on normal gravity is given

by equation (3-28), i.e.:

~ 1
.=—h * ..*_+ .*..—*‘. -
Ocij G [ i (Yo,i Yo,j) Ahi](YO,lj YO,J)] (4-32)

Substituting into equation (4-30), the Vignal gravity correction

becomes:

8
ol

—IV — - _lv —_ *
{hi[(Yi Y;’i) (Yj Yo'j)] +

p -k - _ -
+Ahij [(gij Yo,ij) (Yj Y;,j)]} . (4-33)

To express the RHS of equation (4-33) in terms of free-air
gravity anomalies, we use equations (2-22) and (4-12) to get the

following expression:
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'Y - y* . =8y . - 0.1543n_, (4-34)
i o,1 o,1 i

which can be also written for point j, with the proper subscripts.
Then, by substituting equations (4-23) and (4-34) into equation

(4-33) for the Vignal gravity correction, one finds that:

\% 1
. == {h, [ - A .. + 0. An, .1 +
GciJ G { i [ 5Yo,13 0.1543 hlJ]
+ Ah, . [(Aah. + By - 0.3086 h.. ) -
ij ij o,ij : iJj
- - 0.1543 h, 4-35
(Gyo'i J)]} 9 ( )

in which all the terms are as defined before.
Further algebraic manipulations of equation (4-35) result

in the following rigorous formula for the Vignal gravity correction:

1 -—F =
== [A - AS . . -
GC S [Ah, Agij A Yo,ij hiJ] ' (4-36)

in which the units are metres and milligals. The GCZj is to be added
to the used orthometric height difference Ahij to get the corresponding

rigorous Vignal normal height difference Ath'

Generally, equation (4-36) can be written as:

v _ .V F F _
Gcij = f (hi, hj, ¢i, ¢j, Agi, Agj), (4-37)

where f denotes the functional relationship.

At this point, it is worth noting that there is an
alternative approach, given in Appendix V, to deriving the above
rigorous formulae for the gravity corrections. The approach in Appendix

V can be regarded as an independent check on the correctness of the



83

formulae derived herein. In addition, the correctness of the formulae
for the gravity corrections has been checked numerically by the author
[Nassar, 1976] in the follqwing manner. Firstly, the height differ-
ences have been computed on the basis of observed gravity using the
formulae given in chapter 2. Secondly, the same height differences
have been computed on the basis of normal gravity by applying the
USC&GS corrections as presented in chapter 3. Finally, the difference
between these two sets of results have been compared with the corres-
wnonding gravity corrections, as computed from the formulae developed
here, and have been found identical.

As a closing remark to this section, one may notice from
the rigorous expressions that the gravity correction most seriously
influenced by the difference SYO (between the 1967 International and
the USC&GS formulae for normal gravity) is the first, i.e. the dy-
namic. We can also see that the difference between the values of
GCD (equation 4-13) and GCV (equation 4-36) is solely due to the
effect of 6Yo. This means that the expressions for both the dynamic
and Vignal gravity corrections will be identical if the adopted
formula for normal gravity is the 1967 formula (i.e. GYo = 0). The
same result can be obtained by examining equation (2-34) for Vignal
correction VCij (based on actual gravity). If we rewrite this
equation again for ééij (based on normal gravity), we will discover

that:

GCY. =VC,, -VC,.=DC.. -DC,. = GCP. '
1] 1] 1] 1] 1] 1]

i.e. Dboth dynamic and Vignal gravity corrections are equivalent.

Such an interesting result may explain why Vignal called his height

system "orthodynamic", as mentioned in section 2.4.
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4.3 Approximate Expressions for the Gravity Corrections

The rigorous expressions for the gravity corrections (for-
mulae 4-13, 4-27 and 4-36) have been derived in the previous section.
The purpose of this section is to attempt to simplify these expressions,
by making some reasonable approximations. The sought approximate
expressions for the gravity corrections are meant to suit desk or
pocket calculating machines.

To compute the magnitude of each term in the rigorous expre-
ssions and examine its significance, extreme values of h, Ah, Ag that
may conceivably occur in Canada will be considered. 1In the subsequent
discussion we will be dealing with a levelling section of 1 km length
having the following characteristics: Eij = 4 km, Ahij = 200 m,
55§j = 200 mgal, AAgij = 10 mgal and 5;o,ij = 6 mgal (see Appendix I).
Referring to Appendix I, it can be seen that A5YO between two points,
say 0.25 degrees of arc apart in latitude ( 25 km), is of the order
of 0.005 mgal. This means that for the above stipulated levelling
section in the direction of meridian we get: ASYo,ij = 0.0002 mgal.

In addition, we know that the reference gravity G is in the oxder of"'lO6
mgal. The individual terms in the formula for gravity correction.
whose contribution is less than 0.0l mm iR absolute value will be
considered insignificant and thus neglected (see section 7.1 for just-

ification) .

4.3.1 Dynamic Gravity Correction

First, we recall that the rigorous formula for the dynamic
gravity correction GC?j is given by equation (4-13). The examination
of the RHS of (4-13), for the extreme values stated above, indicates
that the first term is about 33 times larger than the second term, in

absolute value. The latter, denoted here by ED, i.e.:
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L =-1% .. on., , (4-38)

o,1ij ij

Ql+

will be approximately equal to 1.2 mm. Hence, the effect of aD on
the computed GC];j is obviously not negligible. The effect of the
first term is thus not neglible either.

However, the difference g;o,ij of normal gravity given by

the 1967 International formula (equation 2-36) and the USC&GS formula

(equation 3-2) can be expressed approximately as follows:

- . 2 = .2
= + i .+ L 4-39
SYo,ij ao al sin ¢ij a, sin 2¢lj’ ( )
where: a = - 6.295 mgal , (4-40a)
a; = 0.358 mgal , (4-40Db)
a, = 1.076 mgal , (4-40c)

and Eij is the average latitude of the levelling section. Consequently,
an approximate expression for GC?j can be obtained by substituting

equation (4-39) into equation (4-13) to get:

D Ahij —F 2 = 2 T
= + + i P i . -
GCij G [Agij ag a, sin ¢ij a, sin 2¢ij] (4-41)

Assuming that $£j = 45°, the last two terms in equation (4-41)
will contribute 0.04 mm and 0.2 mm, respectively, to the computed GD?j.
These effects must again be considered significant.

4.3.2 Helmert Gravity Correction

The rigorous formula for the Helmert gravity correction
GC?j is given by equation (4-27). Examination of the RHS of (4-27)
for the assumed extreme values of the involved quantities reveals
that the magnitude of the first and last terms are 40 mm and 179.04

mm respectively. Obviously neither effect can be neglected. The
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H .
influence of the second (middle) term, denoted here by € , i.e.:

H 1
e =3 A8y

.. h,. (4-42)
o,ij ij

H
is of the order of 0.0008 mm. This suggests that € can be safely

neglected. Hence, equation (4-27) becomes approximately:

h,.
acl, = - 23 ang®. - 0.2238 an, .1 . (4-43)
1] G ij 1]

4.3.3 Vignal Gravity Correction

The rigorous formula for the Vignal gravity correction is
given by equation (4-36). The effect of the first term on the RHS
is the same as the effect of the first term of (4-13). This effect
was found significant (40 mm, section 4.3.1) and cannot be neglected.
On the other hand, the effect of the second term of (4-36) on GCZj is
the same as eH (equation 4-42) which was found negligible. Consequently,

equation (4-36) becomes approximately:

GC,, = . (4-44)

It may be worth mentioning here that the formula (4-44) is
found to be identical to the actual gravity correction term for
Molodenskii's normal height difference AhM [Bursa, 1958; Schneider,
1960; Weidauer, 1963; Vvykutil, 1964]. The term denoted by Kg was
originally derived by Bursa and represents the contribution of the
local irregularities in the actual gravity field to the corresponding
computed height difference. This in fact can be regarded as an
independent check on the correctness of the formula for Vignal gravity

correction, as developed herein.
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4.4 Estimated Precisions of the Gravity Corrections

This section represents an attempt to get estimates of pre-
cision (standard deviations) for the computed gravity corrections.
The basic motivation behind this attempt is to determine the degree
of reliability of these corrections, which has been questioned in
the context of justifying their evaluation and practical applications
[Boal, 1972]. It is understood that it would be questionable to look
for corrections whose own standard deviations (uncertainties) are
larger in magnitude than the corrections themselves. Therefore, the
main objective here is not to obtain the most accurate estimates, but
only the order of magnitude of precision. Thus, it was decided not
to venture into the complications regarding correlations between the
involved original observables, such as the levelled heights and/or
the observed gravity values.

The gravity correction for each system of heights will be
dealt with separately. This means that the correlation between the
gravity corrections for the different systems is not going to be
studied either. Furthermore, the errors associated with geographical
positions (latitude is of concern) will be considered negligible.

The process of propagating the variances of the observed
heights and gravity values and obtaining the resulting variance
associated with the gravity corrections involves several intermed-
iate steps. To begin with let us summarize the rigorous formulae
for the three kinds of gravity corrections (see section 4.2):

o _ Ny

GC,. =

—F
i3 G [ Agij + KD] ' (4-45)
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h
H i j F
= =AA - + 0.2238 Ah, |, 4-46
Gcij 5 [ AAgij Ky 3 13]’ ( )
\Y 1 —F =
== [A Ag,. - XK_h,, 4-47
i3 G [ hij gij H ljJ 7 ( )
where: KD = aYo,ij and KH = AﬁYo,ij are treated here as errorless,

since both are functions of only latitude which is considered errorless
(having zero wvariances).

By looking at the above three expressions, we can see that
the gravity corrections are functions of both errorless constants
and variables containing errors. It is evident that any error
committed in the variable quantities would incur an error in the
computed graﬁity correction. Therefore, for investigating the error
we take into account the variable quantities only. These variables
in equations (4-45), (4-46) and (4-47), are: fn,., ZT;Ei"j, Hij and AAgij.
These four quantities are generally correlated, i.e. their covariance
matrix, say ZL, is fully populated, since they are all derived from
the same primary observables: hi' hf' gi and qj.

There are two approaches to obtain the variances of the
three gravity corrections that both lead to the same answer. The
first is by applying the covariance law [e.g. Wells and Krakiwsky,
1971; Vanfgek, 1973] on equations (4-45), (4-46) and (4-47), respectively,
and taking into account the full covariance matrix ZL mentioned above.
The second is by rewriting the formulae for the gravity corrections
in terms of the levelled heights and observed gravities at points
i and j (i.e. the primary variables) and then applying the law of

propagation of errors on each formula separately. The second
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approach will be used here, because it gives the final formulae in
a more simple way.

Equations (4-45), (4-46) and (4-47) can be rewritten as:

D 1 1 1
ooy = 5 (byohy) [3ley =y, jtoyhy) + Flagmy, sehs) + K1, (4-48)
el = == (n+h.) [(g,~v_ ,+c,h,) = (g.=y_ .+c,h.) -
i3 T 26 Y 9 Yo,i" 1M 957Y0,57%
Ky *+ cylhy = h)T (4-49)
o’ =L [h.-h,) {(g.,-y_ .+c.h,) + (g.-y_ .+c.h.)} -
iy T 26 PV YY93TYG,iT 937,571
Ky thy + 01, (4-50)

where: c, = 0.3086 and c, = 0.2238 , both in mgal/m. We notice, that

each of the above three expressions can be written as:

Ge= f (hil hjl gi’ gjl d)il ¢J)’ (4-51)

where f denotes the functional relationship (see equations4-15, 4-28,
and 4-37), and ¢i, ¢ . are considered errorless.
J
The law of propagation of errors is used to compute the

variance oi of a function x = £ (21, 2

2 . . .
02 of Zi which are uncorrelated (zero covariances). This law can
i

be: stated as follows [e.g. Vanfgek, 1973]:

5 . Qn) from the variances

(4-52)

When applying (4-52) on (4-51), we get:
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3 2 2 9F 2 2
G 9n * G %, *
i i j j

2

_ 9f (2 2 3f |2 2
O'GC—

— . (4-53
agi) 9. + (Bg ) g ( )

i 3 3

By applying equation (4-53) to each of the equations (4-48)
(4-49) and (4-50), respectively, the following expressions for the
variances OD2' GH2 and 0V2, of the corresponding gravity corrections,

are obtained:

2_1 2

—F 2
oy = {( Agij + KD 0.1543 Ahij) Y +
G i
+ (Bgt. + K_ + 0.1543 Ah, )2 02 +
9i5 * ¥p * O- 15 n,
2
+ (0.5 Ah..)2 (02 + 0 )1, (4-54)
ij 9; 9.
3
o2 =1 (0.5 AAgT. - 0.0848 K, - 0.1119 Ah, )2 o> +
H 2 ij ij ij h,
G i
F - _ ? 2
+ (0.5 AAGT, + 0.0848 h.. - 0.1119Ah .§ o~ +
1] 1] ij h.
j
+ 02 62 +a D1, (4-55)
T
2 1 —F 2 2
oy = 3 [(Agij - 0.1543 Ahij) Gh. +
G i
—F 2 2
+ (Agij + 0.1543 Ahij) Ohj +
+ (0.5 An, )2 (6% + 021, (4-56)
ij Yo, gy

in which the physical units are metres and milligals. The quantity
KD' in equation (4-54), is adequately approximated by equation (4-39).
On the other hand, we notice that KH has disappeared from the
expressions (4-55) and (4-56). This is because its magnitude is so

small (see section 4.3) that it has also a neglible influence on the
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above expressions for the variances.

At this point, if we go back again to the developed formulae
(rigorous or approximate) for the gravity corrections, we find out
that these corrections are evaluated from the levelled heights and
free—-air gravity anomalies. This suggests that the derived expressions
for their variances can be also written in terms of the variances
GA?F and qig? of the free-air anomalies at points i and j. First,

1 J
from the definition of AgF (sections 4.1 and 4.2) and the law of

propagation of errors, we can write:

2

g, F = 02 + (0.3086)2 02 - (4-51)
Ag, g. h,

1 1 1

Similar expression holds for point j. Hence, by substitution in

equations (4-54), (4-55) and (4-56), we get:

2_ 1 i=F 2 _ —F 2
oy = 2 {[(Agij + KD) 0.3086 Ahij (Agij + KD)] ohi +
—F 2 —F 2
+ [(Agij + KD) + 0.3086 Ahij (Agij + KD)] ohj +
+ 0.25 Ah?. (02 F o+ o2 F)} > (4-58)
i3 Ag’, Ag,
i j
62 =2 {[0.5 AMGF. - 0.1119 Ah..)- - 0.1696 K (0.50g" . =
B2 2 BA94 : ij : iy ‘©-288934
=2 2
- 0.1119 Ah,.,) - 0.0880 h7.,1 o +
ij ij hi
F 2 — F
+ [(0.5 AAg,,, - 0.1119 Ah,.)“ + 0.1696 h,. (0.5 AAg., -
ij ij ij ij
—2 2
- 0.1119 Ah,.) - 0.0880 h..]1 o. +
ij ij h,
j
—2 2 2 .
+ hij (OAgF +0AgF )} (4-59)

i 3
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2 1 —F (2 —F 2

= —= - 0. .. . +
oy 5 {[(Agij) 0.3086 AhlJ AgiJ] o

G i
—F .2 —F 2
+ [(Agij) + 0.3086 Ahij Agij] Ghj +
+ 0.25 Ah?. (02 Pt o2 F)}. (4-60)
ij Agi Agj

The expressions (4-58), (4-59) and (4-60) can be simplified

if we assume for a particular levelling section: oh = Gh = ch
i
and OA F = GAgF = OAgF . In this case, that can, however, be seldom
i 3 )

used in practice, the variances of the gravity corrections become:

2 _ 2 —F 2 2 2 2
oy = G2 [(Agij + KD) o, + 0.25 Ahij oAgF], (4-61)
2 2 ’ F 2 =2 2
OH = G2 {[(0.5 AAgij - 0.1119 Ahij) 0.0880 hij 1 Gh +
=2 2 2
+hyy O F }, (4-62)
2 2 —F 2 2 2 2
OV = ;3 [(Agij) o, + 0.25 Ahij o AgF]‘ (4-63)

The square-root of the computed variance of the gravity

correction is its estimated standard deviation in metres.



CHAPTER 5

GENERAL DISCUSSION OF DATA COVERAGE IN CANADA

This chapter is included here for the sake of completeness.
It is meant to serve as a link connecting both theoretical and prac-
tical aspects of heights and gravity. The former has been discussed
in detail in the previous three chapters. On the other hand, the
practical aspects, associated with the application and feasibility
of the gravity influence on the height systems adopted in Canada, will
be dealt with in the next two chapters. Both the precise levelling
data coverage and the gravity data coverage are considered. In both
cases, the discussion will be in general terms, such that it includes
a historical background, present status and future plans, and the
format of available data for the users.

It should be mentioned that the information presented herein
has been compiled from all possible source materials (publications,
internal reports and private communications) that have reached the
author from: The Geodetic Survey of Canada, GSC, Surveys and Mapping
Branch, S&M; and the Gravity and Geodynamics Division, GGD, Earth
Physics Branch, EPB, (previously called the Dominion Observatovy, DO).
Both the S&M and EPB are agencies of the Dept. of Energy, Mines and
Resources, EMR. Nevertheless, there may be some other information

that has inevitably escaped the author's search.
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5.1 Precise Levelling Data

The establishment and maintenance of the Canadian Precise
Level Net, CPLN, is the responsibility of the Vertical Control Section
within the GSC. Their main aim is to provide and maintain a national
precise vertical control network on a single acceptable datum for the
whole country. This network is meant to serve all public needs as
well as geodetic investigations and other scientific research connected

with vertical control [GSC, 1960; Young, 1975].

5.1.1 Historical Background

The first precise levelling work was initiated in 1883, to
connect St. Lawrence River area at Montreal with MSL datum on the
Atlantic. However, this work was hindered due to lack of funds until
1906, and was completed in 1907. In 1906, the Precise Levelling
Section of the GSC was formed, and the first bench mark BM-GSC-No. 1
was established on September 21, 1906 at Sherbrooke, Québec. In the
same year, the GSC started the precise levelling operations in Québec
and the Maritimes.

In 1908-1910, the DO established a precise levelling line
at the Alaska - Yukon boundary. The results are published in Nelles
[1913]. Following this, the Topographical Survey of Calgary
established many precise levelling lines in the west. In addition
to the steadily increasing work of the GSC on precise levelling,
several precise levelling exteénsions have been established by other
different organizations and private industries whenever needed.

For details about the used instrumentation and field work procedures,
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see e.g. GSC [1960].

In 1919, the first work was done on the adjustment of the
CPLN [Cannon, 1929]. The rod correction was applied to the work done
prior to 1923, since the wooden rods were replaced by the invar rods.
Meanwhile, an effort has been made to connect the inland lake :levels
with the precise levelling system. All lines of the CPLN had the
orthometric correction (based on normal gravity, see section 3.2)
applied to them before being used in the adjustment. The weights of
the observed elevation differences, needed in the adjustment, were
taken as the reciprocal of the lengths of the lines. Finally, the
adjustment of the CPLN was completed in 1928 [Cannon, 1929]. Sea
level values at Halifax, Yarmouth and Father's Point on the Atlantic;
at Vancouver and Prince Rupert on the Pacific; and on Rouses Point on
the Canadian - United States international boundary (for which a
standard elevation was temporarily agreed on by both countries) were
held fixed. In this adjustment different techniques were used like:
observation equations, condition equations, and differential adjustment
to show the effects of the new additions to the network.

After 1929, the United States performed one of their adjust-
ments, referred to as the "1929 Special Adjustment". This adjustment
was based on all sea level tidal stations of both countries on Atlantic
and Pacific coasts and including all the CPLN. However, the results
of this adjustment were not adopted by the Canadians at that time
[Cannon, 1935]. The GSC preferred to work with their published
results of 1928 [Christodoulidis et al., 1973].

The recent adjustments of the CPLN started in 1929 were

finished in 1934-35 by one adjustment labelled "D" [Cannon, 1935].
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The final adjustment "D" consisted of a simultaneous adjustment (by the
method of least-squares) of all the orthometrically corrected loops

in the net. 1In this adjustment the values for bench marks controlling
the primary gauging stations were held fixed [Cannon, 1935; GSC, 1960].
The results of adjustment "D" were found basically the same as those
of the already published 1928 adjustment. Consequently, the GSC has
decided to retain the published elevations, without any changes.
However, these published elevations are referred to by the GSC as
resulting from the "1929 General Adjustment" [Young, 1976]. It was
not until 1935 that the MSL, based on the tide-gauges at Halifax,
Yarmouth and Father's Point on the Atlantic, and Prince Rupert and
Caulfield Cove on the Pacific (although used before), was officially
adopted to be the datum for vertical control operations in Canada

[GSC, 1960].

Everytime new work is added to the CPLN, theoretically the
best method is to readjust the entire net. However, this is not
practically done, since users like to keep their elevations fixed as
long as possible. Hence, when new levelling produces a situation
where two or more loops are formed, a least-squares adjustment is
made holding the differences between junction points whose elevations
have already been published, as fixed and fitting the new levelling
sections to them.

In 1950, the GSC started a new adjustment of the entire CPLN.
The preparatory work for this new adjustment was arranged so that it
could be the basis of future solutions [Jones, 1956]. This adjust-
ment was done with and then without the sea level values being fixed,

and was completed in 1952. However.



97

it was decided, again, that there was no reason to consider changing
the published elevations to the 1952 values. Accordingly, the "1929
General Adjustment" (originally the 1928) remains, until now, the

basis of vertical control in the entire country [McLellan, 1974].

5.1.2 Present Status and Future Plans

The present extent of the first order vertical control
(CPLN) is shown in Figure 5-1 [McLellan, 1974]. In the southern part
of the country, the levelling lines follow transportation routes
and are concentrated in areas of high population density. The net-
work presently consists of over 98,000 km of levelling with over
40,000 bench marks. Currently, about 1600 new bench marks are being
established each year [Canadian National Committee for IUGG, 1975].
Several lines extend also into the hinterlands to reach major
developing areas. In most cases the levellings to these northerly
points consist of spur or branch lines, whose pattern is very
sparse. The lack of roads or railways makes it practically impossible
to form closed loops in these areas. Nevertheless, about 20% of the
current levellings are extended to the unsettled areas [Young, 1975].

Over 140 permanent gﬁaging stations distributed along the
Canadian coasts and on inland waters of the Great Lakes - St. Lawrence
River System are presently operated by the Tides and Water Levels
Section of the Hydrographic Branch, Dept. of the Environment. The
water level data are processed regularly and published annually by
the Marine Environmental Data Service, Ocean and Aquatic Affairs,

Dept. of the Environment. The stability of bench marks controlling
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the gauging stations is checked annually by precise levelling [Canadian

National Committee for IUGG, 1975]. A catalogue is available showing

the description and elevations of bench marks at all permanent and

temporary gauging sites.

A general evaluation of the quality of the CPLN has been
attempted by the following researchers: vVanf¥ek [1970]; Boal [197lal;
vanitek et al. [1972] and Christodoulidis et al. [1973]. The main
problems connected with the network were found to include:

1. The use of MSL at five tidal gauging stations as a datum with
fixed values equal to zero [Cannon, 1929; Cannon, 1935]. This
situation does not represent the reality, as mentioned in section
1.3, and thus adversely influences the network adjustment;

2. The use of unrealistic weighting scheme, as stated in the previous
section, which does not reflect, in most cases, the real sit-
uation based on the statistical analysis of actually obtained
discrepancies. For details about this, see e.g. [Vanfgek, 1970;
vani&ek et al., 19721;

3. A disregard of the systematic influences (see section 1.3)due to
unsymmetrical atmospheric refraction, tidal effect and predicted
crustal movements. More details can be found in [Holdahl, 1974];

4. The errors associated with using two different kinds of levelling
instruments as well as two different kinds of rods pre and poest
1923. More elaboration on this can be found, e.g. in [Boal, 197la;
Murakami and Boal, 1971];

5. Neglecting the actual gravity anomalies and defining the heights

on the basis of adopted normal gravity only. This problem
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constitutes the backbone of the investigation contained herein.

In spite of the above problems associated with the published
heights of the CPIN (based on the 1929 general adjustment), such
heights can still serve well the local surveying and %Limited technical
projects. On the other hand, these published heights may prove inad-
equate for scientific investigations of problems related to earth
sciences and modern technology [Vanfgek et al., 1972; Holdahl, 1974].
A more thorough  evaluation of the CPLN and extensive study of the
influences of the above problems on the network should be continued
to prepare for the proposed more rigorous and up-to-date new adjust-
ment of the CPLN (see section 1.5).

The intention of the GSC over the next decade [McLellan,
19741 is to strengthen the existing network and to establish new
lines of precise levelling. The new specifications for precise level-
ling operations are given, e.g. in [S&M, 1973]. The future plan is
that the lines in the south be spaced not more than 60 km apart, 15 km
in densely populated areas and about 5 km in urban centres. An
average of 8,000 km of levellings a year for 10 years will be
required to strengthen andcomplete the proposed network of 140,000 km.
The program for future work includes also the extension and densifi-
cation of precise levelling net into the hinterlands [S&M, 1972].

The suggested spacing between first-order lines north of latitude
60°N is not to exceed 300 km. This is a major task and it is at a
stage of only long range planning.

Furthermore, a preliminary evaluation of the CPLN has

indicated that many of the main lines need to be re-established
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[McLellan, 1974]. Consequently, a program of extensive relevellings
of o0ld lines has been undertaken. This is to increase bench marks
density or to improve accuracy or both. At present, about 10,000 km
of the existing net has been relevelled [Young, 1975]. 1In addition,
the systematic relevellings every 40 years are: planned for the purpose

of studying the secular crustal movements and related problems.

5.1.3 Availability of Data

All the levelling data for the vertical control network,
containing the 1929 General Adjustment and the subsequent work fitted
into it, are now contained in quadrangle booklets. The information is
available in 505 booklets each covering an area of 1° x 1° (including
maps of 1:500,000), in 63 booklets each covering an area of 095 x 095
(including maps of 1:250,000), and in 13 special booklets covering
mainly city areas where bench mark density is high (including large
scale maps showing all the bench marks) [Canadian National Committee
for TUGG, 1975]. These published booklets can be updated every year,
depending on the new data and required changes.

A program, prepared by the GSC, is now underway to produce
the levelling booklets by a computer assisted typewriter. This implies
that all required data are stored on magnetic tape. Once the contents
of the quadrangle booklet are entered on tape, additions, deletions
and corrections can easily be made without retyping the whole document
manually.

Meanwhile, a decision was made by the GSC [McLellan, 1974] to

develop a computer based data file for all geodetic stations. This
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file is intended to contain all the necessary information at the
station, including the originally observed data which may be called
out from the file for further computations and analysis. This is
quite an involved task, since it regquires that data contained orig-
inally only in the field books have to be screened and entered into
the data file. To the author's knowledge, this file was already
initiated and contains now information for about 20,000 stations of
the horizontal control network, out of the final number of 400,000
stations. It has not been started yet for the vertical control net-

work [Young, 1976].

5.2 Gravity Data

The establishment and maintenance of the Canadian National
Gravity Net, CNGN, is the responsibility of the Gravity and Geodynamics
Division, GGD of the EPB, Dept. of EMR. Their main objectives
[Valliant, 1975] include mapping the gravity field in Canada and its
coastal waters, and maintaining the Canadian national gravity library

for data distribution on both the national and international levels.

5.2.1 Historical Background

It was internationally agreed [Miller, 1931] that Potsdam,
Germany, be adopted as the base station to which gravity stations in
all countries throughout the World be referred, and thus forming the
so-called "Potsdam System". The value of gravity g = 981.274 gals,
determined from pendulum absolute gravity observations, at the chosen
site in Potsdam [Uotila, 1960; Hamilton, 1963b] was adopted at the

16th General Conference of the IAG in 1909.
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The establishment of the CNGN has undergone three stages
[Garland, 1953]. First, the adoption of a gravity value at Some
selected fundamental national base for the entire country, which must
be related to Potsdam System. Secondly, the densification of the net,
which is normally composed of two types of gravity stations: Control
and detailed [Tanner and Buck, 1964]1. The control stations should
be pendulum stations, or surveyed with gravimeters using the base
looping method [e.g. EPB, 1975], interconnected to each other and tied
to pendulum stations and to the national reference point. The detailed
station can be any single gravimeter observation tied to a control
station. The intervals between control stations vary from 40 km in
populated areas to 150 km in uninhabited northern areas [Tanner and
Buck, 1964]. The spacing between detailed stations is about 5-15 km
[Tanner, 1967; Nagy, 1974]. Details concerning the instructions,
instrument adjustment and field procedures for the establishment of
different categories of gravity stations in Canada can be found in
EPB [1975]. Then, after the gravity observations are made, an adjust-
ment is performed, basically for the primary control stations, to
define the national gravity net on a single datum, e.g. Potsdam System.

Ottawa (a pier situated in the southwest corner of the base-
ment of the D O building) was chosen to be the Canadian national
reference base for all the Canadian gravity work [McDiarmid, 1915].

A direct gravity connection, using pendulum observations, between
Ottawa and Potsdam was made during the summer of 1928 by the DO
[Miller, 1931]. A value of g = 980.622 gal was finally adopted for

Ottawa [Miller and Hughson, 1936] relative to the Potsdam system.
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The gravity measurements in Canada date from the pendulum
observations made by Putnam of the USC&GS at Sydney, Nova Scotia, in
1896 [Garland, 1953]. The DO began its activities as early as 1902,
but the first useful gravity work was undertaken only in 1914 [Miller
and Hughson, 1936]. Thompson [1959] felt that the first really relia-
ble gravity measurements performed by the DO in Canada were made around
1921 with a Mendenhall pendulum apparatus, which has a precision of
about 2 mgals.

The DO undertook the task of absolute or relative gravity mea-
surements using pendulum observations at selected sited through the
country for the following purposes [Thompson, 1959]:

1. To provide a regional network of fundamental gravity values for
the control and adjustment of future gravimetric surveys;

2. For the precise calibration of gravimeters;

3. For determining gravity at places wide apart, where long travel
times are necessary;

4. To provide accurate measurements of gravity differences between
international sites, and ensure that the gravity standards in
Canada are consistent with the World network.

The gravimeter observations started in Canada in 1944 [Garland,
1953]. During the years 1944-1951, the DO carried out extensive
regional gravity surveys with gravimeters. Various types of gravimeters
(e.g. Worden and LaCoste & Romberg instruments) have been used for
checking their performance and capabilities. In 1952, a system of
primary gravimeter base stations, that were connected and tied to all
pendulum stations including the national gravity base station, was

established [Innes and Thompson, 1953].
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In 1952-1953, the Cambridge pendulum apparatus was used to
establish a series of pendulum values in North America [Innes, 1954].
In the late 1950's the GGD (EPB) pendulum apparatus was designed,
which is capable of relative gravity determinations consistent to
the order of + 0.2 mgal [Winter and Valliant, 1960; Tanner, 1967].

The design and operation of the instrument are documented in Valliant
[1971a]l. From 1968-1970, the GGD pendulum apparatus was used to est-
ablish control gravity stations, for the Canadian gravimeter net, with
an estimated precision of about 0.08 mgal [Valliant, 1969; Valliant,
1971b].

The work of the GGD of the EPB has been expanding steadily.

The number of gravity observations in Canada has increased almost
exponentially [Innes, 1957; Hamilton, 1960]. Gravimeters need to be
calibrated against a known standard before and after each field

season [Hamilton, 1963b]. The North American and Ottawa - Washington

are two established long standardization lines to serve unified

calibration for all instruments [Innes, 1958; Innes et al., 1960;

Uotila, 1960]. 1In addition to the GGD work, many detailed surveys are carried
out each year by public institutions, research foundations and mining

and oil exploration industries mostly for gravimetric exploration

[Hamilton, 1963a].

In all the gravity work discussed above, the positions (latitude
¢ and longitude )A) of the gravity stations have been scaled from the
National Topographic Map Series of the largest scale available in each

case. In most cases ¢ and A have been scaled to the nearest tenth
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minute of arc [Garland and Tanner, 1957], and in some cases to 0.0l
minute of arc [Tanner and Buck, 1964; Hamilton and Buchan, 1965]. On
the other hand, obtaining reliable elevations for the gravity stations
essential for gravity anomaly computations, was and is a considerable>
problem. Wherever possible, gravimeter readings are taken at bench
marks or other well defined points of known elevations. But as much
of Canada is not covered yet with benchmarks, such requirement cannot
be always met and consequently elevations must be determined in many
cases by barometric altimetry [Tanner and Buck, 1964]. 1In reality
the elevations of the gravity stations have been obtained from various
available sources, including spirit levelling, trigonometric levelling,
barometric altimetry and others. This situation resulted in assigning
various error estimates to these elevations dependingion the way they
were acquired.

The assigned precision to the obtained elevation varies from
3 cm (spirit levelling) to 5 m (altimetry). Even worse, there are
many cases where the given elevation has either unknown or undefined
source. In this case, the error estimate can go beyond 30 m (see

Appendix II for more details).

5.2.2 Present Status and Future Plans

Prior to May 15, 1974, all the gravity anomaly values computed
and released by the GGD of the EPB have been based on the observed
gravity values as referred to Potsdam system, and the 1930 Interna-='
tional formula for normal gravity on the geocentric ellipsoid. The

1930 formula was adopted at the IUGG Meeting in Stockholm in 1930,
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and reads [e.g. Hamilton, 1963b; Heiskanen and Moritz, 1967]:

Y, = 978.049 [1 + 0.005 2884 sin2 ¢ - 0.000 0059 sin2 2¢] gals,
(5-1)
in which ¢ is the latitude of the terrain point in question.

The free-air gravity anomaly map, based on the 1930 International
system, is given by Nagy [1973] and reproduced in Figure 5-2. The
distribution of gravity stations used for this map, up to and including
the 1970 data, is shown in Figure 5-3. It can be seen that significant
gaps in the coverage in certain aréas still existed. 1In addition, some
areas have unevenly distributed point gravity data [Nagy, 1973].
Nevertheless, the area covered by precise levelling (Figure 5-1) is
very well covered by gravity data at a density of about 11 km. There-
fore, it is possible to interpolate the gravity anomalies at bench
marks of interest, as first shown by Vanfgek et al. [1972], and further
stated in [Nagy, 1973; Vvalliant, 1975].

Recent advances in the instrumentation and techniques of modern
gravity determination have shown that the Potsdam reference gravity
value (adopted in 1909) was significantly different (14 mgals higher)
from its correct value as known now. Also, with the increased number
of observations and investigations, the coefficients of the 1930
formula for normal gravity have been recomputed more precisely. This
situation raised the question of adopting a new value for gravity at
Potsdam, as well as introducing a revised formula for normal gravity,
at the IUGG meeting in 1967. The 1967 International formula for

normal gravity (defined by equation 2-36) and a value of 981.260 gals
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for Potsdam reference gravity constitute a new system (adopted at the
IUGG meeting in Moscow in 1971) referred to as the "Geodetic Reference
System 1967", GRS67, [IAG, 1971]. It has been recommended [e.g.
Morelli and Honkasalo, 1975] that all gravity anomalies throughout

the world should be referred to the new GRS67. For convenience,
Levallois [1972] has published a table for approximate conversion of
gravity anomalies from the 1930 to the new 1967 International system.

In the meantime, another major event on the international
level concerning gravity data base has occured. A worldwide inter-
national gravity network has been established of some 2,000 funda-
mental stations throughout the World. Twenty-four of these stations
are in Canada, see Figure 5-4. The final adjustment of the network
based on the new GRS67 was completed in 1974, and the results have
been adopted and referred to as "The International Gravity Standard-
ization Net 1971", IGSN71, [Morelli et al., 1974; Vvalliant, 1975].
The IGSN71 is claimed to be accurate to + 0.1 mgal [Nagy, 1974].

In 1974, the GGD switched completely to the new GRS67. Further
an adjustment of the CNGN, which consists of some 3,500 control
stations including the 24 IGSN71 stations mentioned earlier, was
performed to relate the Canadian net to the International net. It
was labelled "The 1974 adjustment of the CNGN" [Valliant, 1975]1. The
difference between gravity values in Canada adjusted on the old 1930
and the new 1967 systems is 14-16 mgals, depending on the latitude
[Buck, 1975]. From May 15, 1974, all gravity anomalies released by
the GGD are based on the 1967 International formula for normal

gravity and the observed gravity values are referred to the 1974
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adjustment of the CNGN [Buck 1975].

The present status of the point gravity data coverage in Canada
is given in Figure 5-5 [Nagy, 1974], which consists of about 350,000
gravity observations. Such amount of data, based on the new system
explained before, has been utilized by Nagy [1974] to construct the
most recent Bouguer anomaly map of Canada which possesses an accuracy
of + 2 mgals. Comparison of Figures 5-3 and 5-5 reveals that sign-
ificant gaps were covered with gravity observations in the period
1970 - 1974.

The GGD is currently planning [Nagy, 1976] to undertake in the
near future the task of data preparation and screening for the com-
pilation and production of free-air gravity anomaly contour maps
(based on the most up-to-date new system) for the entire country.
This project is scheduled to start in the Fall of 1976, with the
initial emphasis on small scale maps with 5 mgal contour intervals.
There is no immediate intention of producing large scale maps with
contour intervals smaller than 5 mgal. Nevertheless, such a program
of producing free-air anomaly contour maps, is a major step towards
the practical applications of gravity anomalies to precise levelling
work.

For convenience of the users who received gravity data prior
to May 15, 1974, the GGD devised an empirical formula for conversion
of gravity anomalies, Ag, from the old 1930 to the new 1967 system

[Nagy, 1974; Buck, 1975; valliant, 1975] that reads:

- o _ . 2 _
Agl967 A91930 = [-0.95 13.6 sin"¢ + 0.05¢] mgal, (5-2)
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where ¢ is the station latitude in degrees. It may be worthwhile here
to have a closer look at this conversion formula. Equation (5-2) is
derived basically from the standard correction formula given in the

GRS67 [IAG, 1971, p. 741, i.e.:

. 2
Ag1967 Ag1930 = [3.2 - 13.6 sin" ¢] mgal, (5-3)

supplemented by a corrective term (denoted here by, dgs Pe) for the

1o
slope difference between the old and the 1974 adjustments of the CNGN.
Equation (5-3) consists of two terms: the first is the difference
between the normal gravity value on the ellipsoid as computed from

the 1967 formula (equation 2-36) and the 1930 formula (equation 5-1)

expressed as [IAG, 1971, p. 74]:

Y = [-17.2 + 13.6 sin®$] mgal , (5-4)

Y1967 ~ Y1030

which is ;laimed to be accurate to 0.1 mgal. The second term is a
change of -14 mgal in the absolute observed gravity value at the
International reference pier in Potsdam.

An expression for dgslope mentioned above can be then obtained
by subtracting equation (5-3) from equation (5-2):

dgSlope = [-4.15 + 0.05¢] mgal, (5-5)

in which ¢ has to be in degrees of arc. In Canada, for ¢ = 40° - 80° N,

dgslope varies between -2.15 and -0.15 mgal, over a range of 2 mgal.
This range is consistent with the aforementioned corresponding range
of the differences of adjusted gravity values between the old and the
new systems. The expression (5-2) is claimed to be accurate to a

few tenths of a milligal over small areas ( a few hundred square
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kilometres). However, over larger areas it has a limiting accuracy
of about 0.75 mgal [Nagy, 1974; Buck, 1975]. This is because the
corrective term dgslope takes into account the change of slope between
the 0ld and new CNGN in the latitude direction only and disregards

the change in the longitude direction.

At present, the determination and evaluation of the gravity
field in Canada constitutes a tremendous problem with its own rights.
No evaluation of the gravity data has been attempted so far [Merry,
1975]. For instance, it is well known that the precision of the
gravity anomaly is influenced by the standard errors inherent in the
observed gravity and in the elevation of the station. The analysis
of the adjustment of the primary control network showed that gravity
values in the net are of high quality and accurate to + 0.05 mgal
relative to the datum defined by absolute measurements [Tanner and
Gibb, 1971]1. On the other hand, the fre€-zir reduction introduces
significant errors in the computed gravity anomalies due to the lack
of adequate height information, as explained in the previous section.
Also, the process of collecting, editing and storing gravity data

sets is not entirely free from blunders.

5.2.3 Availability of Data

The two major sources of gravity data are the EPB and the
Atlantic Geoscience Centre; both of them are agencies of the Dept.
of EMR. Other provincial agencies, Universities and Petroleum and
Mineral explorations agencies make important contributions to the

present gravity data coverage in Canada [Nagy, 1974]. The GGD of
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the EPB acts however as the collecting and coordinating centre for
gravity measurements made by the EPB itself as well as by other
Canadian institutions.

In order to better carry out the above responsibility, including
the distribution of gravity data both nationally and internationally,
a complete computer-oriented system for processing, handling, and
reduction of gravity measurements has been developed at the GGD
around 1960. The main features of this system are described by
Tanner and Buck [1964]. The main outcome of the system is a file of
basic gravity data for use in geophysics and geodesy.

The existing gravity data in Canada (about 350,000 gravity
observations, based on the new system) are now available in digitized
form (computer data files). These files (punched cards or magnetic
tapes) are supplied to the user, on request, by the GGD's Data
Centre, Ottawa. Details concerning the storage and retrieval system
of the gravity data files are given in Buck and Tanner ([1972].

In 1973, a point gravity file, containing = 90,000 gravity
observations and based on the 1930 and Potsdam reference systems, was
obtained from the GGD. This file was used at the Dept. of Surveying
Engineering, UNB in previous investigations [Merry and Vanfgek, 1974;
Merry, 1975; Nassar and Vanigek, 1975; Nassar, 1975b]. The new file
(based on the new 1967 system) used extensively in the current study
was obtained from the GGD in January, 1975. This new file, which
contains only about 270,000 gravity observations (the rest of the
350,000 observations are probably classified, belonging to some

private agencies), is referred to in the present report as the
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"EPB File". Description, format and use of the EPB File are given

in details in Appendix II. As mentioned before, all gravity data
released by the GGD after May 15, 1974, are based on the GRS67 and the
IGSN71 standard systems for theoretical (normal) and observed gravity
values, respectively.

Since the conventional way of depicting the gravity field,
before adopting the digital form, has been in the form of maps, the
GGD has also undertaken the program of publishing regional gravity
maps. Maps at the scale of 1:500,000 are being published in a new
series known as the "Gravity Map Series of the GGD". Bouguer gravity
anomaly contour maps until 1973 are at a contour interval of 5 mgals
and are based on the old 1930 system [Nagy, 1976]. The latest
Bouguer anomaly map for Canada published in 1974 [Nagy, 1974] (based
on the new 1967 system) is also available from the Canada Map Office,
Ottawa.

So far, only one free-air anomaly contour map, at the scale of
1:1,000,000, was published in 1974 for the Hamilton Inlet [Nagy, 1976].
It was reported in Valliant [1975] that the GGD expects custom con-
touring of gravity data to be available as a "standard feature" of
the GGD storage and retrieval system of the national gravity data and
control station data files within 1976. This new feature, which is
scheduled to start in the Fall of 1976, gives future promise as far

as the free-air anomaly contouring is concerned.



CHAPTER 6

APPLICATION OF GRAVITY CORRECTIONS

TO ACTUAL LEVELLING LINES AND LOOPS

The mathematical models for the gravity corrections have
been derived in chapter 4. The present status of gravity data cover-
age in Canada has been presented in section 5.2 with the near future
prospects of producing free-air anomaly contour maps for the entire
country. On the basis of both chapters 4 and 5, one can start
seriously considering the application of these corrections to the
levelling lines and loops established by precise levelling operations.

This chapter is devoted to the discussion of the practical
computations and application of the gravity corrections. Results of
an investigation of the behaviour of gravity corrections along real
levelling lines and loops using the best available data is given.
Finally, conclusions based on the obtained results and other findings
are presented. Thus this chapter should help clarifying some of the
questions raised and discussed in section 1.6 regarding the feasib-

ility of using the gravity corrections in practice.

6.1 Computational Aspects

The computations of gravity corrections for a levelling
section between points i and j, using the rigorous expressions (4-13),
(4-27) and (4-36), can be easily programmed for a computer evalua-

tion. The basic input data to the program are: levelled heights
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hi and hj;scaledlatitudes ¢i and ¢j; and free-air anomalies»AgFi and
AgFg. The levelled heights are readily available from levelling
field books. The latitudes are usually scaled off the available maps
{e.g. National Topographic Map series; see section 5.2.1). The
possible means of obtaining the free-air gravity anomalies are out-
lined in section 6.1.1.

For computing the accuracy estimates of the gravity correc-
tions (to examine their reliability) the accuracy estimates of the
heights and of the anomalies are also needed. For convenience, section

6.1.3 provides tables to facilitate the approximate evaluation of

the gravity corrections.

6.1.1 Sources of Gravity Anomaly Data

The free—air gravity anomaly at any bench mark i along the
levelling line can be obtained from one of the following sources:
1. By direct observation of actual gravity value giat the bench mark

i. The anomaly Agi is obtained then as follows:

Ag, = 9; - Yo,i + 0.3086 hi' (6-1)

where Yo,i is the normal gravity (computed e.g. from equation
2-36) and hi is the levelled elevation. The units here are
mgals and metres.
2. By using the observed gravity value 9y at another point "k" not
far apart from i and reducing it to i by the appropriate free-
air correction [Heiskanen and Vening-Meinesz, 1958; Krakiwsky,

19651, i.e.:

g; = g, + 0.3086 (b - h) , (6-2)
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where h.k is the elevation of k in metres. Agi can be then evaluated
from equation (6-1) after substitution from equation (6-2);

By using the least-squares interpolation (prediction) techniques
to obtain the best fitting surface to the free-air anomaly field
surrounding the bench mark i (see, e.g. IVanfgék et al., 1972])
from the available point gravity data in the area of interest.
This approach is particularly suitable for flat areas [Moritz,
1963]. 1In mountainous areas, it is recommended [e.g. Rapp, 1964]
to predict Bouguer anomaly instead, and then transform it to
free-air anomaly (see No. 5, below);

By using graphical interpolation from a free-air anomaly map,
with contour interval less than five milligals, e.g. [Schneider,
1960; Rapp, 196l1; Konecny, 1970]. This technique again is better
suited for flat areas. It was reported by Derenyi [1965] that
with the available point gravity data, it is possible to produce
free-air anomaly maps covering the area with existing levelling
loops at a scale of 1:100,000 with 1 milligal contour interval;
By using graphical interpolation from the available Bouguer .
anomaly maps. This approach is feasible even in mountainous
regions [e.g. Vykutil, 1964]. The Bouguer gravity anomalies are
known to be less correlated with heights than the free-air
anomalies [Uotila, 1960; Moritz, 1963; Vykutil, 1964; Krakiwsky,
1966]. Transformation from the interpolated Bouguer anomaly
Ag?, to the corresponding free-air anomaly, Agi, is achieved by

the following simple relationship [Rapp, 1964; Vykutil, 1964]:

Agi - Ag]z +0.1119 b, (6-3)
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in milligals for the height hi in metres. It may be worth
mentioning here that this approach has proved feasible and com-
parable with the corresponding least-squares surface fitting
technique using two-dimensional approximating polynomial [e.g.
John, 1976].

The evaluation, analysis and comparison of the above
techniques is a major subject on its own and mueh research has been
done into it. A comprehensive treatment is hence considered outside
the scope of the present investigation. For further details, the
reader is referred to [Moritz, 1963; Rapp, 1964; Heiskanen and

Moritz, 1967; Moritz, 1969; Wilcox, 1974].

6.1.2 Reliability of the Gravity Corrections

The reliability (precision) of the gravity corrections has
to be examined first to justify the effort involved in their applic-
ation in practice. This is usually done by computing the standard
deviation of the gravity correction and comparing it to the magnitude
of the correction itself. As mentioned before, it would be question-
able to look for a correction whose standard deviation is larger in
magnitude than the correction itself.

We recall, from section 4.4, that the variances (standard
deviations) of the three different kinds of gravity corrections
(dynamic, Helmert, Vignal) are computed from equations (4-58), (4«59)
and (4-60). From these equations, it can be seen that the standard

deviations o, and ¢ F of the levelled heights and free-air anomalies

h
Ag
at both ends of the levelling section are needed, among other

quantities.
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The standard deviation o, can be reasonably estimated from
previous experience and analysis of levelling networks. The GGD
of the EPB has adopted certain criteria for assigning accuracy estimates
oy to the individual heights of gravity stations. They reflect the
different acquisition procedures for heights (see Appendix 11 for more
details). In case of heights based on spirit levelling, the GGD
considers o = 0.03 m [Hamilton and Buchan, 1965; Buck, 1975]. This
value seems to be unrealistic as far as the absolute heights, of bench
marks, above the adopted datum are concerned. This is due to all
kinds of problems connected with the CPLN, as outlined in section 5.1.2.
These problems may result in uncertainties in the heights that may over-
shadow the gravity corrections, in which case, the computation of
gravity correction would be questionable. Dealing with these problems,
which involve systematic errors discussed in section.1.3,constitute
a complete thesis on its own. For our purpose here, in order to
investigate the influence of the gravity corrections on heights, we
have to assume that all other influences d6 not exist. Thus,

the value of g, = 0.03 m will be accepted here as a reasonable measure

h
of the internal consistency of the relative heights of bench marks
within the network, and will be used as accuracy estimate for the
levelled heights involved in the subsequent computations.

As far as OAgF is concerned, there are two possibilities.
Either OAgF is available as a by-product of the least-squares prediction
technique, when predicting the free-air anomaly AgF, or there is no
estimate available for oAgF. The latter is usually the case when

computing the anomaly from observed gravity value or when interpo-
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lating the anomaly value from maps. In case of unavailable
estimate for the variance of the gravity anomaly in question it can

be computed from the following formula:

o> .= 0.05)7% + (0,3086)° o7

i h’ (6-4)
which is obtained by applying the iaw of propagation of errors on
equation (6-1), and treating Y, as errorless. Here the standard
deviation of the observed gravity is taken as Og = 0.05 mgal, in
accordance with [Hamilton and Buckan, 1965; Tanner and Gibb, 1971;
Van{¥ek et al., 1972].

The dynémic, Helmert and Vignal gravity corrections, along
with their standard deviations, have been computed for several real
levelling sections. Table 6-1 shows the results, for a selected
sample of four sections, as compiled from a computer output. For the
first two sections, gravity values at the bench marks were observed
[Hamilton and Buchan, 1965]. Foxr the last two sections, predicted
free-air anomaly values at the bench marks were used. The technique
for predicting the anomalies is described in Vanidek et al. [1972],
and the data used is from the EPB file.

The obtained results for the first two sections (using
gravity observed at bench marks) reveal the high reliability of all
three kinds of gravity corrections; their standard deviations are
small compared to the magnitude of the corrections. On the other
hand, when using predicted gravity anomalies at bench marks, we have
obtained two distinctly different results. The first shows adequate
reliability of all three kinds of gravity corrections. The second
shows adequate reliability of only the dynamic and Vignal gravity

corrections. The reliability of Helmert gravity correction seems
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TABLE 6-1

Reliability of Gravity Corrections

(Sample Results)

LEVELLING SECTIONS
FROM TO FROM TO
(N) 44° 18' 28"™ [44° 19' 12" | 45° 54' 37" [45° 54' 49"
(W) 78° 18' 02" |78° 18' 15" 77° 04' 33" |77° 04' 37"
h (m) 193.43 215.68 140.54 111.53
9y (m) 0.03 0.03 0.03 0.03
AgF (mgal) -20.55 -19.73 -33.38 -36.53
UAgF (mgal) 0.05 0.05 0.05 0.05
S (Km) 1.40 0.36
348° 47°
a (deg) 3 347
D
o GC -0.5709 1.1825
o
O —~
28 oy 0.0014 0.0021
0\_/
o H
g Jg GC 0.8681 -0.4297
O 5 Oy 0.0148 0.0091
>N g
P ©
IS
\Y
© 8 GC -0.4570 1.0344
(@)
oy 0.0012 0.0019
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TABLE 6-1 (Cont'd)

LEVELLING SECTIONS

FROM TO FROM TO
(N) 51° 02' 18"| 51° 02' 18" | 49° 33' 18"| 49° 33' 42"
(W) 114° 06' 30"| 114° 05' 36" |114° 19' 36"|114° 21' 30"
h (m) 1098.93 1051.07 1215.60 1237.27
o, (m 0.03 0.03 0.03 0.03
Agt  (mgal) -17.55 -17.37 -17.22 -17.42
oAgF (mgal) 0.74 0.72 4.67 4.49
s (km) 1.05 2.41
(deg) 90° 288°
D
® GC 1.0971 -0.4935
=i
ﬁ - o 0.0253 0.0717
5 B
= H
g 08 GC -11.9377 6.3160
° 5 oy 1.1320 8.1022
>~ o
P c
.,-I V
58 | 6c 0.8520 -0:3827
i ~)
o o 0.0251 0.0717
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+5 be questionable.

The reason for this is the relatively high standard
deviation GAgF of the predicted anomaly value, which is about two
orders of magnitude larger than the standard deviation of the observed
gravity values (0.05 mgal). This illustrates the fact that the
accuracy of gravity anomalies is much impaired by the poor determin-
ation of heights, even though the gravity observations are of a very
high quality.

The reason for the variance GH? alone being seriously
affected (compared with the dynamic and Vignal systems) can be

verified by examining equations (4-58), (4-59) and (4-60). 1In case

2

of S or oy the variance 0? P is multiplied by 0.25 Ah2. In case
Ag
of GH2' the 02 is multiplied by h2 which is. in this case much larger
2 Ag
than Ah”.

The application of dynamic gravity correction based on
predicted anomalies has been argued by Boal [1972]. Boal stated that
the uncertainty introduced into the dynamic heights by using inter-
polated values of gravity is of the same magnitude as the corresponding
gravity corrections. Thus he recommended that the present computation
of dynamic heights based on normal gravity only should ke continued
until observed gravity values are available at bench marks.

To clarify the above arguement, let us now seek the con-
dition for the uncertainty of the gravity correction (due to the
uncertainty of the free-air anomalies) to be smaller in magnitude
than the contribution of the anomalies to the computed gravity

correction. This condition can be obtained by examining equations
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(4-45), (4-46), (4-47), (4-61), (4-62) and (4-63). 1In case of the

—.F .
dynamic and Vignal systems, the condition is: 0.7 OAgF < Ag , which

is met, for instance, for all the four levelling seétions given in
Table 6-1. For the Helmert system, the condition is: 1.4 GAgF < AAgF,
which is not met in the case of the last two levelling sections.
Accordingly, we can see that all three kinds of the gravity
corrections can be computed with adequate precision, whether we use
observed gravity or predicted anomaly values, providing that the above
condition concerning the precision of the used anomaly is satisfied.
If the available free-air anomaly is adequately reliable (oAgF < AgF),
then it can be guaranteed that the computed dynamic and Vignal gravity
corrections are also adequately reliable. Otherwise, if the precision

. . . F . .
of the anomaly is questionable (i.e. o, F > Ag ), the gravity corrections

Ag
should not be computed. However, even with reliable anomalies, the
reliability of Helmert gravity correction is not easily predictable.
This is so because GCH is a function of the difference of gravity
anomalies (rather than their average value) which increases the require-
ments on the accuracy of the involved free-air anomalies.

At this point, one can see that the argument given by Boal
does not seem to be valid providing that the predicted gravity
anomalies (using for instance the EPB File) have precisions adequate
in the sense discussed above. It is generally known that predicted
values are not as accurate as the observed values of gravity. . However,
if the corrections using predicted gravity are adequately reliable,

they should be applied.: The gain in accuracy of resulting dynamic

heights is evident.
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6.1.3 Gravity Correction Tables

Before the era of computers and pocket calculators, it has
traditionally been found convenient in practice to use tables, especially
when dealing with corrective terms. An example of such tables, mentioned
in chapter 3, is Bowie and Avers tables for computing the orthometric
and dynamic corrections based on normal gravity. Even now with the
calculating machines being widely used everywhere, the tables may still
be useful (especially for imadequately trained parties) in eliminating
the need of punching lengthy numbers and using calculating machines.

Therefore, it was decided to provide here a set of tables to
facilitate the practical (approximate) computations of the gravity
corrections. The gravity correction tables can, in the author's opinion,
serve several purposes. Firstly, the gravity correction tables will
complement the Bowie and Avers tables mentioned above. In other words,
the two sets of tables will form a complete package for correcting the
levelled height differences for the influences of normal gravity and
actual gravity irregularities. Such a package leads to rigorous heights
defined on the basis of actual gravity, and can be used on occasions
where machine computations are either not available or not desired.

Also, the gravity correction tables can be used for quick checking on

the magnitude and/or the general trend of any gravity correction for
different combinations of arguments. Finally, providing a gravity anomaly
contour map is available for the area surrounding the observed levelling
route, these tables give one the opportunity to evaluate and apply the
gravity corrections even in the field, by the precise levelling field
parties, during the course of observations.

The gravity correction tables are contained in Appendix III,

and are accompanied with detailed instructions illustrating their
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usage. For reasons given in Appendix III, the sequence of presenting
the tables is: Vignal, Dynamic and then Helmert. The tables were
computed on the basis of the approximate expressions for the GC's
fequations 4-41, 4-43, and 4-44). The value of YZ,45° = 980 624.0
mgal was taken for the reference gravity G, which is ~ the
value presently used in Canada. The GC's are tabulated for different
values of observed height-difference Ah, average height E, free-air
anomaly ZEF over the levelling section under consideration. In
addition, it was found convenient to break down the formula for the
Helmert gravity correction GCH into two terms that can be found from
separate tables. An effort has been made to arrange the tables in
such a way as to allow the user to perform only a simple linear inter-
polation for any combination of arguments.

To obtain any gravity correction from the tables, one needs
only two arguments. One is either the levelled height difference Ah
or the average height ﬁ, which is usually available from the field book.
The other is either the average free-air anomaly EBF or the anomaly
difference AAgF, which can be obtained by anyone of the means outlined
in section 6.1.1. Once the gravity correction is obtained (with the
appropriate sign), it is added algebraically to the height difference
based on normal gravity to yield the gravimetrically corrected height
difference. .

To close this section up, let us, as an example, evaluate the
gravity corrections for one levelling section, using the tables in Appendix
ITI. To be able to compare the results, let us consider the second
levelling section in Table 6-1 for which the corrections have been
evaluated by the computer. For this section we have the following

information:
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A= I (140.54 + 111.53) = 126.035 m,
Ah = 111.53 — 140.54 = - 29.01 m,
—F 1
" = 2 (-33.38 - 36.53) = -34.955 ngal,
AgE = -36.53- (-33.38) = ~-3.15 mgal .

The Vignal gravity correction GCV is obtained from Table III-1 for
arguments EEF and Ah as:

GCv = + 1,035 mm.
The dynamic gravity correction GCD is obtained from Table III-1 as
explained in section III-2. First, a value of -5.007 mgal for 5;;,
obtained from Table I-1 (for latitude ¢ = 46°), is added to K&F. Then,
the resultant (-39.962 mgal) is used along with Ah as arguments to enter
Table III-1 and get:

ac® = 1.183 mm.
The first term in the Helmert gravity correction, GCH, equation is
obtained from Table III-1 as + 0.402 mm, for arguments AAgF and h.
The second term is obtained from Table III-2 as -0.833 mm, for arguments
h and Ah. Thus, GCH is given as:

ac = + 0.402 - 0.833 = - 0.431 mn
Comparison of these results with the corresponding values in

Table 6-1 reveals a very good agreement for all the three kinds of gravity
corrections. Therefore, it can bé concluded that the gravity correction

tables given in Appendix IITI give, with appropriate linear interpolation,

the gravity corrections with adequate precision.
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6.2 Test Results Using Actual Data

We recall from section 1.6 that one of the questions, which
needsto be clarified, is whether the gravity corrections will accumu-
late or cancel as one goes along an entire levelling line or loop.

The answer of course depends on many factors: the relative geographical
location of the levelling sections constituting the line; the nature

of the elevation profile along the line; the characteristics of the
actual gravity field along the line; and on the overall length of the
line.

This section presents an attempt to give some quantitative
answers to the above question, based on actual data. The idea here is
to compute the accumulated gravity corrections for some selected lines
and loops, and compare them (numerically or graphically) with the
corresponding accumulated standard error in precise levelling, based
on the Canadian standards of accuracy. At the same time, we want to
determine the confidence intervals for the gravity corrections.

The Canadian specifications for vertical control [GSC, 1960;
S&M Branch, 1961; S&M Branch, 1973] state that the allowable discrepancy
A between corresponding forward and backward runnings in precise
levelling is not to exceed 4 mm Vrgii;S) in absolute value. The GSC
has conducted some studies on the accidental observational errors in
the CPLN [Peterson, 1970; Boal, 197l1la; Boal, 1971b] in an attempt to
interpret the specifications in terms of actually achieved confidence
intervals of the height differences Ah. The obtained results indicate

that the specified allowable limit of 4 mm is met in 85% of cases, i.e.



132

that it is equivalent to 1.5 GA,[Boal, l97lb?f where OA is the
standard deviation of the discrepancy A, standar@lized for 1 km by
dividing by square-root of the line length.
It is known that:
A= F - B, (6-5)

Ah

]

o+ B, (6-6)
where F denotes the forward and B the backward runnings. Assuming
that F and B are independent and both having the same standard
deviation o, the law of propagation of errors [Braaten et al., 1950;

Vani¥ek, 1973] applied on (6-5) and (6-6) yields:

2 2 2
o, = (OF + og ) = 207 , (6-7)
2 1.2 2 2 1 2
O = 7 (07 + 07 =507, (6-8)
from which one gets:
1
Tpn = 3 %) (6-9)
From the above discussion, it can be seen that:
o, = (229 mm (6-10)
A 1.5 !
and consequently by substituting in equation (6-9), we get:
AR 1.33 mm , (6-11)

standardized for 1 km. This value of %An is used in our investigation
herein as a representative value for the contribution of accidental
errors in the CPLN.

It may be of interest to mention here that in the United
States the specifications for precise vertical control [Holdahl,

1974; U.S. Dept. of Commerce, 1974] stipulate that the standard

error o, is not to exceed 0.7 mm v S(km). This value corresponds
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approximately to the International specifications for random error
contribution (0.6 mm per 1 km) in precise level nets [Baeschlin, 1960a;
Krakiwsky, 1965]. The total error (including random and systematic
parts), according to the International specifications, should not
exceed 1.08 mm per 1 km [Baeschlin, 1960a].
Using equation (6-11), the standard error of a height difference

Ahoi'derived from Precise levelling work in Canada can be written as:

Orn =1.33mm ¥ Soi (km) , (6-12)
oi

where Soi is the sum of the lengths of the segments of the levelling

line up to the bench mark "i", starting from the initial point "o&"

of the line. Thus, we have:

J.«_--l
Ahoi = I Ah.k P (6-13)
j=0 7
Jem]
S .= 1 S. ' (6-14)
oi 5=0 ik
where: k = 3j + 1, Ahjk and Sjk are the levelled height difference

and the length of the section betweer consecutive bench marks j and k.

Similarly, the accumulated gravity correction is given by:
i=l
GC .= L GC .

oi 5=0 jk (6-15)

The standard deviation of the GCOi can be obtained by propagating the
standard deviations of individual section corrections using equation

(6-15) which gives:
o] = [ Z 02 ]1/2 -

oi 5=0 3% (6-16)

By doing this, we neglect the correlation between the GCjk's.
A computer program called LOOPGC has been developed by the

author to compute the accumulated quantities stated above. The

program uses the rigorous formulae given in section 4.2 to compute



134

GCjk in equation (6-15). The computation of the variances oéc‘k
in equation (6-16) are based on the expressions developed in siction
4.4. Additional details about the LOOPGC program can be obtained

from the Surveying Engineering Computer Library, UNB.

Let us now outline the sources of data for the selected
lines and loops. The discussion of data coverage in Canada (chapter 5)
indicated marked lack of observed gravity values at the bench marks.
The only significant source of gravity data observed at bench marks
is the project undertaken by the GGD of the EPB in 1964 in the area
of Eastern Ontario [Hamilton and Buchan, 1965]. Realizing the fact
that this area is of a relatively low ‘elevation (less than 300 m on
the average), it was felt that relying solely on these test data may
show inconclusive results. In order to be able to draw more realistic
conclusions one must have test data from various locations having
different characteristics. Therefore, it was decided to consider only
one line and one loop from Eastern Ontario, and search for other
sources of relevant data, even outside Canada, that would serve our
purpose.

From the author's search in the literature, two sources of
reliable data have been found relevant. The first is Rapp's M.Sc.
Thesis [1961] containing observed gravity values at bench marks along
a first-order line in West Germany. The second is Krakiwsky's
publication [1966] that gives observed gravity values at bench marks

along a first-order loop in West Germany. Both the line and the

loop are of medium elevation.
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To incorporate also some levelling routes of high elevations,
two lines from a first-order levelling loop in Alberta have been used.
Since observed gravity values at the bench marks are not available
for the Alberta loop, the predicted free-air anomalies are used
instead. The reason behind our choice of Alberta loop is that this
loop has been previously investigated by vanidek [1970], Christodulidis
and Vanifek [1972] and van{lek et al. [1972]. This gives us the
opportunity of checking our results.

The descriptions, computations and results associated with
the selected lines and loops will be discussed in the following two
sections. It should be noted here that even the German line and loop
will be analysed to the Canadian standards of accuracy, since similar

characteristics may be encountered in Canada as well.

6.2.1 Behaviour of Gravity Corrections Along Test Lines

The results obtained from four real test lines are discussed
in this section. The first two are based on observed gravity at bench
marks and the last two are based on predicted free-air anomalies. The
computer output from LOOPGC program containing the pertinent information
as well as detailed computations of accumulated gravity corrections and
their standard deviations for the four lines is given in Appendix IV.

The first line, labelled here as "Line No. 4", was selected
in Eastern Ontario [Hamilton and Buchan, 1965]. The location of the
line (about 240 km long) is shown in Figure 6-1. The elevation along
the line varies from 76 m to 402 m, and the free-air anomaly (based

on the 1967 system) ranges between +9 mgal and -27 mgal. It should
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be noted here that the free-air anomalies, AgFﬁ given in Hamilton
and Buchan [1965] were computed on the basis of the 1930 system.
Thus, before using these anomalies in our computations, they have
been converted to the 1967 new system using the GGD empirical

formula (equation 5-2) [Valliant, 1975], i.e.:

F F . 2
A9 gg7 = B91g3p * (7095 - 13.6 sin“p + 0.05¢ ),  (6-17)

mgal for ¢ in degrees of arc. The standard deviations og and Gh

were estimated as Og = 0.05 mgal and oy = 0.03 m by Hamilton and
Buchan.
The graphical display of the accumulated gravity corrections

GCoi (dynamic, Helmert and Vignal) against the corresponding accumulated

standard error %A of precise levelled height difference, at each
oi

bench mark along the line, is depicted in Figure 6-2.

The second test line, labelled here as "Line No. 8", was used
by Rapp [1961], in his investigation of the different orthometric
heights. The line (about 101 km long) is located in West Germany and
extends from Munich southwards to the border of Austria. It constitutes
a part of the UELN, and its geographical location is shown in Figure
6-3. The free-air anomalies taken from Rapp [1961l] are again based
on the 1930 system. The corresponding 1967 values have been obtained

from the IAG devised formula (equation 5-3) [IAG, 1971], i.e.:

E F .2
A9 gg7 = 897930 * (3-2 - 13.6 sin“¢) mgal. (6-18)

There are no accuracy estimates for g and h available in Rapp [1961].

However, it was stated that both heights and gravity observations were
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of high quality. Hence, the values og = 0.05 mgal and Gh = 0.03 m
have been used also in the computations of this line. The elevation
along the line ranges between 546 m and 950 m, and the anomalies
vary from -13 mgal to -36 mgal. The plot of accumulated gravity
corrections and standard error of precise levelling for this line is
given in Figure 6-4.

It is worth mentioning here that the accumulated Helmert
gravity correction of 80 mm (Figure 6-4) agrees with results given
by Rapp. This can be considered as an independent check on the
correctness of the formula for the Helmert gravity correction derived
here.

The third and fourth test lines are parts (about 40 km and
15 km, respectively) of the Alberta loop. These two lines are labelled
here as "Line No. 9" and "Line No. 10", respectively, as shown in
Figure 6-5. The free-air anomaly and its resulting standard deviation
at each bench mark of these two lines, were predicted using the technique
described by Vanfé%k et al. [1972] and gravity data from the EPB
file (Appendix II). Here again, the value of Oh = 0.03 m was adopted
as before. The elevation along Line No. 9 varies from 1135 m to 1314 m
and the free-air anomaly from -3 mgal to -18 mgal. For Line No. 10,
the elevation ranges between 1047 m and 1156 m, and the anomaly is
-17 mgal on the average. The corresponding plots of accumulated gravity
corrections and precise levelling standard errors are shown in Figures 6-6
and 6-7.

Comparison of the accumulated dynamic and Vignal gravity

corrections (Figures 6-6 and 6-7) with the corresponding results
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given in Vanfgék et al. [1972] (who were investigating only dynamic

and Vignal heights) shows the following. There is a slight difference

in Vignal gravity correction, which can be attributed to the different
gravity fields used in both cases. Here we are using the new EPB
gravity file, while Vanidek et al. used the old gravity file (see
section 5.2.3). On the other hand, the disagreement in the dynamic
gravity correction is found significant (one order of magnitude).

According to Appendix V and the discussion given at the end of section

4.2, we have made sure that our formulae for the gravity corrections

are correct. This suggests that the values of either kind of dynamic

heights of Alberta loop reported in vanf¥ek et al. [1972] are in
error.
From the graphical display of the obtained results (Figures

6-2, 6-4, 6-6 and 6-7), we can notice the following about the behaviour

of the gravity corrections along the tested levelling lines:

1. The accumulation of the gravity corrections along levelling lines
do not generally cancel out;

2. The behaviour of both the accumulated dynamic and Vignal gravity
corrections, Gcgi and GCZi, along levelling lines is almost the
same, with the former being larger in magnitude than the latter.
Both corrections are, however, within the allowable limits of

accumulated standard error Spn in precise levelling;
oi

3. The behaviour of the accumulated Helmert gravity correction, GCZIl
is the most abrupt and most pronounced, compared to the dynamic
and Vignal systems;

4. At several locations along levelling lines, the Gcgi is much larger

in magnitude than the corresponding OAh ;
oi
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In spite of the fact that accumulated gravity correction over the
entire levelling line may be less than OAh over the line, it is
obvious that the heights of several intermediate bench marks are sig-
nificantly influenced by the gravity correction. Such influence

is more pronounced again in case of Helmert system. This can

be easily noticed from the differences in slope of the two curves

representing GCOi and o In other words, for some levelling

Ah |’
ol

sections along the line, the gravity correction is larger than

the expected o Thus relying only on the heights of the two

Ah®
ends of a levelling line (which may not be significantly affected
by the irregularities of the gravity field) and neglecting what is
happening along the entire line is not a valid argument. A
levelling line could be several hundred kilometres long, and new
levelling extensions could be initiated fwom one of the inter-
mediate bench marks of the line whose height could be significantly

affected by the lack of application of gravity correction.

From the numerical results tabulated in Appendix IV, the

following remarks apply to the standard deviation of the accumulated

gravity corrections:

1.

For test lines No. 4 and No. 8 (computed on the basis of observed
gravity), the reliability of the accumulated gravity corrections
is high (having very small standard deviations). Even at the 95%
probability level, the accumulated gravity correction is signi-
ficantly different from zero, and thus must be taken into account.

This holds true for all three kinds of gravity corrections.
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2. The test lines No. 9 and No. 10 (computed on the basis of predicted

anomalies) show adequate reliability of the accumulated dynamic

and Vignal gravity corrections even at the 95% probability level.

For most sections of the two lines, the accumulated Helmert

gravity corection is different from zero at the 68% probability

level. Few sections indicate, however, a questionable reliability

of the corresponding GCH. Nevertheless, on the basis of the
discussion given in section 6.1.2, these results may be still
considered satisfactory since the predicted anomalies are
obtained with adequate precision (GAgF < AgF).

At this stage, we can see that the EPB File (Appendix II)
proved to be adequate for prediction of free-air anomalies at the
bench marks, of the two investigated lines in Alberta loop, for the
evaluation of gravity corrections with sufficient precision. This
may be or may not be the case in other parts of the country. The
investigation of the quality and adequacy of the EPB File for such
an application is a major task that needs to be carried out in the
future. As mentioned earlier, the use of predicted gravity is not
as accurate as using observed gravity wvalues, but still renders the
accuracy of heights better than neglecting the gravity corrections
altogether. This implies that for the levelling lines running into
areas covered by sufficiently dense and reliable point gravity and
height information, the observed gravity values at bench marks are
not necessarily required. The predicted anomalies with adequate

reliability can be used instead.
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6.2.2 Behaviour of Gravity Corrections Along Test Loops

The results obtained from two real levelling loops are
presented in this section. Both loops have been computed on the basis
of gravity values observed at bench marks. Details about the pertinent
data as well as the accumulated gravity correction computations are
tabulated in Appendix IV, for both loops.

The first test loop (about 254 km), labelled here as' "Loop
No. 5" is located in Eastern Ontario [Hamilton and Buchan, 1965], as
illustrated in Figure 6-8. The anomaly varies from -2 mgal to -30 mgal,
and the elevation from 42 m to 424 m along the loop. The plot of
accumulated gravity corrections and standard error in levelling is
shown in Figure 6-9.

The second test loop (about 389 km) is labelled here as "Loop
No. 6". It is a part of the UELN in West Germany and was used by
Krakiwsky [1966] in his analysis and comparison of various systems
of orthometric heights. The loop (see Figure 6-10) is located at the
S-W border of East Germany and the N-W border of Czechoslovakia, and
extends southward towards Austria. Along the loop, the anomaly
varies from -12 mgal to +70 mgal, and the elevation ranges between
237 m and 560 m. Figure 6-11 depicts the accumulated gravity
corrections and standard error in precise levelling along the loop.

All the comments and remarks stated in the previous section
about the behaviour of the gravity corrections along levelling lines
hold true as well for the levelling loops. In addition, the following
can be noticed. The gravity corrections do not cancel out round a
closed loop, and they generally produce a loop closure. The obtained

loop closures (see Figures 6-9 and 6-11) for the dynamicrHelmert
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and Vignal systems are all exactly the same. Such a result is not
surprising. It illustrates the fact that all.systems of height.
which take into account the actual gravity have the same character-
istic quality of defining the heights of terrain points uniquely.
This implies that such rigorous height systems theoretically

produce zero closure round a closed loop. Hence, the loop closures
of approximately 2 mm (Figure 6-9) and 4 mm (Figure 6-11) are solely
due to the influence of actual gravity irregularities round the

tested loops.



CHAPTER 7

PREDICTION OF GRAVITY CORRECTIONS

The questions concerning the practical computation and influ-
ence of the gravity corrections, as applied to actual levelling lines
and loops, have received attention in the previous chapter. The last
question now is: where in Canada are these corrections significant and
hence should be taken into account? To answer this question is the
second main objective of the present study, and is dealt with in
this chapter. A significance criterion is set-up first. Then a
computational technique is presented which allows one to identify the
areas of significant gravity corrections. Finally, sample results and

conclusions based on actual data are given.

7.1 Significance of Gravity Corrections

The decision as to what is and what is not significant is of
course always open to discussion. As an illustration of an arbitrarily
selected criterion for the significance of the gravity corrections, we
can cite, for instance, Weidauer [1963] who has chosen a limiting
value of the GC of 1 mm per 1 km (i.e. %§-= 1 mm/km). As a result of
this choice, most of his computations and comparisons showed that the
gravity corrections are insignificant. This finding Kad justified, in
his view, the neglect of actual gravity in his simplified expressions

for the normal heights.

154
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It seems more logical to us :to compare the accumulated gravity
corrections along a levelling line with the corresponding accumulated
standard error expected in precise levelling, as we have done in
section 6.2. Thus we shall follow this line of reasoning in our study.

It is well known that the standard error, in precise levelling

%an’
propagates with the square root of the distance along the line. On
the other hand, the gravity correction, as a systematic quantity,
propagates differently. From our limited experience with actual
levelling lines and loops, computed in the previous chapter, it seems
rather difficult to predict how the gravity corrections are going to
accumulate. In a very long run, the gravity effect accumulates
randomly, but in short runs it does so linearly. In order to be on the
safe side for all cases, we must assume a linear accumulation. Thus,
considering only a part of the levelling line, the accumulated GC may

be smaller than the corresponding o However, dealing with the entire

Ah”

line, the accumulated GC along the line could be significantly greater

than GAh' Therefore, the significance criterion for the gravity correc-

tion should be taken as a fraction of dAh' above which the gravity
correction is considered significant.

In our present study, the significance criterion for the
gravity corrections will be taken as equal to 10% of the standard error
SINY which is consistent with the widely spread custom. This criterion
was originally set-up by Baeschlin [1960a], where he stated that the
error in the actual geopotential number due to the gravity error should
not exceed i%— of the standard error in precise levelling. The same

criterion was further used by Levallois [1964] and Ramsayer [1965a] in

investigating the frequency of gravity measurements along the levelling
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lines for the European levelling networks.

We recall from section 6.2 that the standard error dAh = 1.33
mm per 1 km (see equation 6-11) is typical for the CPLN. Using the
above criterion, 10% of oAh is 0.133 mm/km, or approximately 0.14 mm/km.
Consequently, the absolute value of the gravity correction greater than
0.14 mm per 1 km will be considered significant in Canada, and should
be thus added to the existing height differences (based on normal
gravity) .

It should be noted here that the statement "Gravity correction
greater than 0.14 mm/km must be considered significant" is not to be
confused with the statement "It may be questionable to look for a
gravity correction whose resulting standard deviation is larger in
magnitude than the correction itself" (see sections 4.4 and 6.1.2).

In the former, we are comparing the magnitude of the gravity correction
against the corresponding standard error in precise levelling, and we
are talking about "significance" of the gravity correction which

depends on the magnitude of gravity. In the latter statement the
gravity correction is compared with its own standard deviation resulting
from propagating the standard deviations of the quantities involved in
the evaluation of the correction. Here, we are talking about the
"reliability" of the gravity correction, which depends basically on the

gravity coverage available.

7.2 Computational Technique

It was decided to develop the computational technique for

predicting the gravity corrections using the rigorous rather than the
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approximate expressions derived in Chapter 4. The reason for this
decision is to be able to use this technique also in other parts of
the world without much modification. If the technique was to be used
outside North America, the values of some constants, coming from the
difference Syo between the actually used and the 1967 International
formulae for normal gravity, in the developed software have to be
changed. Outside North America, the actual Gyo may seriously affect
the Helmert and Vignal gravity corrections.

The computational technique presented herein was first
proposed by Nassar and Vanfgék [1975], and tested further by Nassar
[1975b] using gravity data based on the 1930 International system.
Before outlining the technique in detail.., we introduce some con-
venient approximations in the rigorous formulae for the gravity
corrections by using approximate expressions for the quantities Syo
and A6yo.

We have seen that the quantity SYO can be approximated by

equation (4-39), i.e.:

. . 2
= +
GYO a, a.sin" ¢ + a

. 2
1 sin 2¢ . (7-1)

2
The coefficients agr a; and a, are given for Canada (and the United
States) by equations (4-40) in mgal. For other countries, where the
actually used normal gravity formula can be reformulated in the same
form as the 1967 International formula, an expression for GYO similar
to equation (7-1) can be obtained. The resulting values of the

coefficients ao, a. and ay in this case, may of course differ from

1

those given by equations (4-40). The change of GYO with latitude can

be obtained by differentiating equation (7-1) with respect to ¢. We get:
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a9 = 2alSln ¢ cos ¢ + 4a251n 2¢ cos 2¢ ,

which can be rewritten as:

asy_ = (alsin 2¢ + 2a_sin 4¢) d¢ . (7-2)

2
For a levelling section between two sufficiently close points i and j,

equation (7-2) can be approximated by:

Aﬁyo,ij = (a151n2¢ij + 2a251n 4¢ij)A¢ij ’ (7-3)

where AGYo,ij is defined by equation (4-26) and A¢ij = ¢j - ¢i. Equa-
tion (7-3) can be viewed as transforming the difference of normal
gravities to the corresponding difference in latitudes of i and j.

The convenient . expression for the dynamic gravity correction
GCli)j has already been given by equation (4-41). However, for the
reader's convenience we copy it here again, i.e.:

D Ah, ., .
GC,. = —=J [Ag.. + (a_+a
G ij fe)

2-
sin ¢.. + a
ij 1]

.2 =
1 ,Sin 2¢ij)] . (7-4)
The corresponding expressions for the Helmert and Vignal gravity
corrections can be obtained by substituting equation (7-3) into

equations (4-27) and (4-36) respectively. We get:

h
H _ i F - =
GCij =g [ AAgij (a151n 2¢ij + 2a251n 4¢ij)A¢ij + 0.2238 Ahij] '
(7-5)
ac’. =L [an, A", - (a.sin 25.. + 2a.sin 4. .)Aé. .h. .1 (7-6)
i3 -6 M7 1 i3 2 i3' %5715 -

7.2.1 Outline of the proposed technique

We have seen that the gravity corrections are dependent not

only on the characteristics of the height and gravity fields within
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the area of concern, but also on the direction of the levelling line.
Hence, the main idea here is to compute the accumulated gravity correc-
tion along simulated levelling lines in different directions within the
area of interest. 1In each direction, the results are then to be
compared to the predetermined significance criterion of 0.14 mm/km.

To start with, let us consider a 1° x 1° block as the (unit)
area of interest. The choice of the appropriate size of the block will
be discussed in the next section. This block is frequently referred to
here as 1° x 1° cell or, for brevity, a "cell". Moreover, we shall
deal only with straight simulated levelling lines AB of length s and
azimuth o radiating from the centre of the cell. This implies that A
will coincide with the centre of the block, whose latitude and longi-
tude is denoted by ¢o and Ao’ respectively, and B will be the end of
the line running across the cell (see Figure 7-1).

The position of any point, e.g. "i", within the cell may be
expressed in geodetic coordinates (¢, A). However, as it has been
customarily found convenient, the local orthogonal Cartesian
coordinates (x, y), shown in Figure 7-1, are used instead of (¢, A )
in the subsequent developments. It is worth pointing out here that
the final results do not depend on the adopted coordinate system.

The mathematical relationship between the two systems , mentioned above,

will be defined as:

kg
It

i Pom (¢i_¢o) ! (7=7)

y.

i pom cos ¢O(Ao-xi) , (7-8)

where A is taken positive west and Pom is the mean radius of curvature

of the reference ellipsoid (Clark 1866 for the North America) computed



+0¢
$,+025

¢ -0295

160

East
—__>Y

n ~< n

Oe oe

o o

+ |

o o

< <

FIGURE 7-1

Unit Area: 1° x 1° Cell.



16l

at the centre of the cell. Pom is usually computed from the following

formulae [e.g. Krakiwsky and Wells, 1971]:

p_=7VYM N ’ (7-9a)

om o o
2
_ a(l-e”) _
Mo = 2,2 .3/72 7 (7-9b)
(1-e"sin ¢o)
a

2 .2 .1
(1-e sin ¢O)
e = — , (7-924)

where, for Clark 1866 ellipsoid, a = 6378.2064 km and b = 6356.5838 km.
It should be noted here that equations (7-7) and (7-8) are the simplest
mapping (¢, A) - (x, y). These two relationships can be further
simplified by using a mean value for the radius of the earth instead
of pom.
At this point, one more convenient approximation can be used.
This is to replace $ij by ¢o in equations (7-4), (7-5) and (7-6),
for all the points i and j within the cell. This approximation will
result in negligible error whose extreme value is less than 5% of
the corrective terms eD (equation 4-38) or eH (equation 4-42). Hence,
the gravity corrections for a levelling section between i and j can be

rewritten as:

Ah
D _ij F
= + -
GCij S [Agij kl] p (7-10)

:Fl
H ij F
= - + . -
GC, [ AAgij + k2A¢ij 0.2238 Ahij] P (7-11)
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cc. | = é—[Ah.. Ao, + k. A 1. (7-12)

h, .
ij ij 2 ij ij

Here kl and k., are constant for each cell given by:

2

k, = + si 2¢ + sin2 24 (7-13)
1 - aO al n fe) a2 o ’

k, = -(a151n 29+ 2a2 sin 4¢O) " (7-14)

It is important for the subsequent developments to keep in mind that
the physical units of the gravity corrections computed from equations
(7-10), (7-11) and (7-12) are metres for h and Ah in metres, AgF, G, kl,
k2 in mgal and A¢ in radians.

The gravity corrections accumulated along an entire hypothet-
ical levelling line, between points A and B, composed of several
sections ij are expressed by equation (6-9). These accumulated
gravity corrections can be more exactly evaluated by replacing the sum

in equation (6-9) by an integral so that we obtain (see equations 4-15,

4~-28 and 4-37):

D S D F F
GC = fO £ (Agi, Agj: hil hjl ¢ir q)]) ds , (7-15)
o =17 gt agt, by ., 6., 6.) ds (7-16)
AB - o 9'1, gjl il jl i’ ] ’
\Y% s Vv F F
GCAB = fO £ (Agi, Agj, hi' hj, ¢il ¢j) ds . (7-17)

Along the simulated levelling profiles, we further formulate
. . D H v o, .
the analytical expressions £ , £ and £ in terms of polar coordinates
s and o. Once this is done, the evaluation of the integrals for a
particular azimuth and distance is straightforward. To express the
subintegral functions in terms of o and s, we take the following

steps:
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Using the free-air anomalies and heights within the cell extracted
from the EPB File, we seek the best least-squares fitting surface
(2-D polynomial) AéF to the free-air anomaly field and another
surface h for the height. This step produces a vector of coeffi-
cients, B or C, for each surface;

Then, the variations of the free-air anomaly and height along a
straight levelling line of azimuth o are approximated by 1-D
polynomial, whose coefficients are functions of the corresponding
coefficients B or C determined in (1);

Inserting the 1-D polynomials for AgF and h into the analytical
formulae for the gravity corrections (equations 7-10, 7-11 and
7-12) and transforming the geographic latitudes into distance and
azimuth, we end up with differential formulae for the f's, in
equations (7-15), (7-16) and (7-17), ready to be integrated.

A separate section will be devoted to the discussion of

each of the above steps in detail.

7.2.2 Approximation of gravity anomaly and height fields

The least-squares approximation is known to be the best

method of prediction [Cheney, 1966] in the sense that it yields the

smallest mean-square error. Throughout this section we will be

talking only about the prediction of the free-air anomaly field and

only state the corresponding formulae for the prediction of the height

field.

If there is a sufficient number of observed data within the

cell, the free-air anomaly (or height) field can be approximated by a

surface. This surface can be described by, for instance, a 2-D mixed
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algebraic polynomial whose coefficients are determined in such a way
as to best fit the observed data in the least-squares sense. This
technique was proposed by Nagy [1963] and further used in [Nagy, 1973;
Merry and Vanfgek, 1974; Merry, 1975] to predict anomalies within
cells of different sizes and using different orders of the approxi-
mating polynomials. A variation of the same technique was used in
[Vanfdek et al., 1972] to represent a reduced gravity field, from
which the reduced gravity at any point in the interpolation area can
be predicted and the corresponding surface gravity obtained. The 2-D
algebraic polynomials are used for smooth surface approximation
because they combine the advantages of simple computations with high
flexibility [Kubik, 1971].

Using the above technique, the free-air anomaly at any point
i within the cell can be predicted by the following polynomial:
m

~F
Ag (xi, yi) = bjwj (xi' yi) ’ (7-18)

j=1

where Y's can be arbitrarily chosen linearly independent functions
(base functions) of the position of i, and b's are the sought best
fitting coefficients [Cheney, 1966; vani¥ek and Wells, 1972]. Since
the mixed algebraic functions xkyz, k, £ =0, 1, ..., r are particu-
larly simple to deal with, they are used here, where r is usually
referred to as the order of the approximating polynomial.

The smaller the order "r" is, the smoother the approximating
surface; it then indicates only the general trend of the approximated
field. On the other hand, a higher order surface depicts the local

irregularities of the field, and as such is more precise in estimating
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the gravity correction in the desired direction. Unfortunately, the
higher order polynomial is seldom usable due to the amount of data
needed to solve for the polynomial coefficients. The data coverage
in the EPB file is usually not sufficiently dense. However, as our
purpose here is to predict areas with significant gravity corrections,
and not to produce accurate values of gravity corrections for pract-
ical use, a higher order approximation of the gravity (or height)
field is not necessary. For simplicity, the subsequent developments
of the prediction technique will be shown for a third order poly-
nomial, i.e. r = 3, that has m = 16 coefficients. Also, as mentioned
before, a 1° x 1° cell is taken as the interpolation area. The choice
of the appropriate order "r" and the size of the basic cell will be
discussed later on the basis of actually obtained results.

Taking the above restrictions into account, equation (7-18)
becomes:

A;F (X., v:) = g b
i’ fi

k=0
2=0

k 2
klxiyi ’ (7-19)

where the b's are, again, the 16 coefficients to be determined. A
similar expression can be then written for the approximating polynomial

to the height field, i.e.:

k 2
Ckl xi yi ’ (7-20)

N ™M w

h (xi' yi) N

0
2=0

I

where c's are another 16 coefficients, generally different from the
b's.
It will be found handy to rewrite equations (7-19) and (7-20)

using matrix notation:
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~F T
Ag (xi, yi) = Wi B, (7-21)

~ T
h (xi, yi) = Wi c ., (7-22)

where Wi is the vector of the mixed algebraic base functions evaluated
for (xi, yi), and B and C are the vectors of coefficients. The super-
script T indicates the transposition operation in matrix algebra. We
thus have:

v
i

[1 2 3 % % 2 3 x2 2
P i Yy Yy R Xy Yy Xy Yy ¥y Yy By Xy Yy

2 2 2 3 3 3 3 2 3 .3
X, Yo X0 Yoo Xop X0 Voo X Yoy X, ¥ 1, (7-23)

B = [bggr byyr Poyr Bggr Bygr Pyyr Prgr Byge boge boyy
byar Pygr Pygr Pgyr bans bl (7-24)
CT = [ c c c c c C c c c
= %0’ “o1’ 02’ 03" 10" 11" “12' ©13’ 20" 21’
Coor 023, c30, c3l, c32, c33] . (7-25)

To determine the unknown coefficients B and C, observation
equations of the following form can be written for each point i within

the cell for which the anomaly Agi and the height hi are known:

~F
Ag (Xir Yl) + Vg = Ag ’ (7'26)

ho(xyr y;) + Yn, T h; - (7-27)

Here vg and v, are the residuals. Substituting equations (7-21) and
i i
(7-22) into (7-26) and (7-27), for all the "n" data points within the

cell, we get:
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V =L - BB, (7-28)
g g

Vh Lh - AC , (7-29)

where: Vg is the vector of anomaly residuals, V, is the vector of height

h

residuals, Lg is the vector of known anomalies and Lh is the vector of
known heights - all having n elements. The matrix A, known as Vander-
monde's or design matrix, is composed of 16 column vectors of functional
values for each of the 16 base functions evaluated at the known n data
points. In other words, the n rows of A are the ?z given by equation
(7-23) for i =1, 2, ..., n.

The systems (7-28) and (7-29) can be solved for the unknown
coefficients B and C using the least-squares technique [Vanfgék and
Wells, 1972], providing that the number "n" of available data points
is equal to or greater than 16. However, before doing that we have to
decide what weights are to be assigned to the observed quantities Lg
and Lh.

In the least-squares approximation, the weights are character-
ized by an arbitrarily selected weight function, w(x, y), which has to
be non-negative over the interpolation area. This w is usually chosen,
as a function of position of data points, to serve as a measure of the
degree of precision or relative importance of the observed values in
determining the coefficients of the approximating polynomial. This
means that w can be selected in such a way as to provide different
degrees of goodness of fit in the desired regions within the interpola-
tion area.

For our purpose, however, we seek a uniform (homogeneous)

least-squares fitting to the approximated field (gravity anomaly or
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height). Thus, from the point of view of relative importance of data
points, the individual weights w(xi, yi) could be assigned equally to all
observed point values. On the other hand, we already have information
about the degree of precision of the observed quantities (Lg and Lh),
characterized by the individual standard deviations oA - and oh. In
effect, the weights w(xi, yi) can be defined in the foilowing manner.
Taking the individual anomalies Agi uncorrelated (see section 4.3), we
can write the weight matrix Wg of the anomalies Lg in the following form:

Wg = diag [wg(xl, Yi)' wg(xz, y2), .. wg(xn, ynﬂ . (7-30)

The individual weights wg(xi, yi) are computed as:

wg(xi, Yi) = P (7-31)

2 . . . .. .
where o g 1s given by equation (4-57), and the a priori variance factor
Ag’;
2 1 . .
00 [e.g.: Wells and Krakiwsky, 1971; Vanfgék, 1973] is assumed to be one.

Similarly, the weight matrix W_ for the observed heights L, will be:

h h
W, = diag [w (x), ¥)), W (%0 ¥,), <o w (x oy )l (7-32)
where:
w. (x ) = = (7-33)
h ¥ Yy 2 :
h.
1

In the above context, the model error (lack of fit) can be
computed point-wise as the discrepancy (residuals Vg or Vh) between the
best-fitting polynomial and the approximated surface. The significance
of these residuals is magnified and will be inherent in the estimated a
posteriori variance factor 82 (to be defined later). Consequently, the
resulting value of 82 can serve as a measure of the lack of fit (i.e. the

degree of roughness of the approximated field).
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It may be worth noting that, when taking the standard
deviation of the observed gravity values as 0.05 mgal, the following
equation is valid:

WL = (0.05)% T + (0.3086) %Wt

g h ’ (7-34)

where I is the identity matrix and W;l is in mgal-squared for W;l in

metre-squared. More sophisticated models for correlated anomalies and
heights could be also treated [Moritz, 1963; Rapp, 1964; Heiskanen and
Moritz, 1967; Moritz, 1969; Wilcox, 19741, but such a treatment would
not be warranted within the present context.

The application of the least-squares condition on equation
(7-28) yields the following normal equations for the least-squares

. A
estimate B:

N B=1U 7-35
g g’ ( )
where:
T
N =A W A, (7-36)
g g
U = AT W L . (7-37)
g g g

Analogously, we obtain the normal equations for C as:

Nh C = Uh ' (7-38)
where:
N, =aT W a (7-39)
h h !
U = AT W L (7-40)
h h h °

Both matrices Ng and Nh (known as Gram's matrices) are positive definite



169

and regular if the mixed algebraic base functions are linearly indepen-
o)
dent on the data set within the cell. We then get B from:

B=nNtuUu . (7-41)
g g

A
Similarly, the least-squares estimate C is given by:

C = Nh Uh . (7-42)

In accordance with adjustment convention [e.g. Wells and
Krakiwsky, 1971; Vanfgek, 19731, computing the weights from equations
(7-31) and (7-33) implies that the a priori variance factor ci is equal
to 1. The corresponding a posteriori variance factor 82 can be evalu-
ated in case of the anomalies from:
VTW v

(Esi)g -4g-9 (7-43)

where df is the number of degrees of freedom given as:
df = n - 16 . (7-44)
In case of the heights we get:

(Si)h - h b h (7-45)

Finally, we can compute estimates for the covariance matrices Zg and Za

of the estimated vectors B and C. The following expressions apply:

A A2, -1
By = Gg NS . (7-46)
LY N |
Iy = (@), M. (7-47)

We may remark that the first element in the vector B is nothing
else but the estimated (predicted) value of the free-air anomaly at the

centre of the cell. Its estimated standard deviation is given by the
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~

square~root of the first element on the diagonal of Zﬁ’ A similar state-
ment holds true for the predicted height.

A subroutine called APPROX, based on the formulations presented
in this section, was written to solve the least-squares approximation
problem using the 2-D mixed algebraic approximating polymomial of an
arbitrary order "r". More information about this subroutine will be
given in section 7.3.1. For complete documentation, see Nassar [1975a].
Tables 7-1 and 7-2 respectively show the predicted free-air anomaly,

AQF, and predicted height, ﬂ, at ten bench marks where gravity and height
had been observed. These results were obtained using r = 3 and a 1° x 1°
cell. The used data were extracted from the EPB File.

The examination of Tables 7-1 and 7-2 would indicate that
the predicted values of the anomaly and height have adequate reliability
characterized by small estimated standard deviations. However, the
differences between the observed and the predicted values differ consid-
erably from one location to another.

Also, the values of the a posteriori variance factor 32, shown
in the last column of Tables 7-1 and 7-2, seems to be quite large. Ideally,
the ai being an a posteriori variance of a unit weight should come close
to one. We have seen (equations 7-43 and 7-45) that the value of 82
depends not only on the estimated residuals, V, but also on the a priori
weights, W of the observed quantities. 1In our case, however, the effect
of a priori weights on 82 is minor compared to the effect of the result-
ing residuals. 1In other words, there is an "overflow" into the predicted
residuals which produces very large values of 82.

The large values of the residuals could be attributed, in



Comparison of Observed and Predicted Anomalies.

TABLE 7-1

Location of Bench Mark

Free~air Anomaly (mgal)

No. of

observed | predicted difference OAéF Déta (aj)g
F ~F F (mgal) Points

¢ (™) A (W) Ag Ag SAg (unitless)
44° 00:32 77° 30!51 -27.01 -21.71 -5.30 1.20 280 608
44 08.96 77 34.84 -24.58 -21.44 -3.14 1.07 377 435
44 09.96 77 22.60 -23.39 -21.88 -1.51 1.24 374 471
44 31.57 77 20.14 -13.57 -13.18 -0.39 0.35 410 64
45 02.69 77 46.40 - 2.70 - 2.49 -0.21 0.39 660 34
45 16.16 77 59.07 - 3.22 - 3.46 0.24 0.41 725 21
49 36.40 114 25.80 -15.78 -11.20 -4.58 3.07 84 1098
51 02.30 114 05.60 -20.28 -17.37 -2.91 0.72 166 214
51 02.30 114 04.30 -24.45 -17.39 -7.06 0.72 165 210
51 02.50 114 04.10 -24.77 -17.41 -7.36 0.72 167 210

* GAgF

~

- agF - o

LT



Comparison of Observed and Predicted Heights.

TABLE 7-2

Location of Bench Mark

Height (metres)

Observed Predicted |Difference cﬂ No. of (8§)h
- Data

¢ (N) A (W) h h Gh* (metres) | Points (unitless)
44° 00!32 77° 30!51 76.75 74.91 1.84 1.23 280 65
44 08.96 77 34.84 95.40 94.73 0.67 1.45 377 79
44 09.96 77 22.60 93.27 93.54 -0.27 1.66 374 84
44 31.57 77 20.14 156.09 174.76 -18.67 1.23 410 77
45 02.69 77 46.40 328.91 341.77 -12.86 2.63 660 155
45 16.16 77 59.07 401.54 406.75 -5.21 2.83 725 99
49 36.40 114 25.80 1287.41 1351.24 -63.83 26.50 84 8009
51 02.30 114 05.60 1051.07 1121.70 =70.63 5.94 166 1415
51 02.30 114 04.30 1050.83 1113.15 -62.32 5.90 165 1390
51 02.50 114 04.10 1048.82 1111.99 -63.17 5.88 167 1386

LT
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this context, either to systematic errors (blunders of some kind) in the
used point anomaly and height data, or to "model errors" due to too
high a degree of smoothness of the selected surface for approximating
the anomaly (or height) field. The former reason may be ruled out
since it is reported [Buck, 1975; John, 1976] that all the possible
detectable blunders have been eliminated from the observed data on the
EPB File. Even if there are some undetected blunders in the file, they
are not going to contribute significantly to the obtained values of 85.
This leaves us with the latter explanation, i.e. the model errors,
which must be considered the main cause of the resulting large values
of 85. The value of 82 can in effect be regarded as a measure of the
roughness of the approximated field (anomaly or height).

The above discussion indicates that the chosen third order
2-D polynomial is too smooth a surface to approximate either the
anomaly or the height fields. This suggests that the order "r" of the
approximating polynomial should be increased. Table 7-3 shows the
values of 82 for both the anomaly and height fields, as obtained from
six typical 1° x 1° cells, using r = 3, 4 and 5, respectively. From
these results, we notice that in most cases there is an average decrease
of about 30% in the value of 82 when the order "r" is increased by one.

Unfortunately, we practically cannot increase r for
two main reasons: the lack of data and the computer cost to solve for
the polynomial coefficients. The best way to overcome the first
problem would be to use a different value of "r" for each individual

cell, depending on the number and distribution of available data points.

This was not done in the present study because the increased computer



TABLE 7-3

Variation of the A Posteriori Variance Factor

With the Order of the Approximating Polynomial.

Location of the 1°x1° ~ ~2
Cell (oo) (Go)h

No. of g

Data
¢O(N) AO(W) Points r = r = r = r = 3 r =4 r =5
5095 70295 49 4,65 3.38 1.76 22.74 14.92 8.52
51.5 72.5 52 5.78 5.16 4.47 23.09 12.12 4,21
52.5 71.5 50 14.23 12.00 10.54 30.29 22.38 24.62
47.5 81.5 50 8.67 5.03 5.48 2.44 2.19 1.41
52.5 104.5 29 62.81 50.14 41.12 163.70 155.17 97.50
53.5 103.5 58 107.20 69.87 56.54 194.80 110.40 70.61

VLT
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cost was not deemed warranted. It was decided to seek only the smooth
features of the anomaly and height fields (by using r = 3) and hope
that the predicted gravity corrections willstill be. meaningful,
because of the averaging power of the polynomial.

Moreover, in order to obtain a reliable solution [Vanfgek et
al., 1972; Merry, 1975] it is necessary to have at least one data point
in each quadrant around the centre of the cell under consideration. If
this condition is not met, no matter how many data points are available
within the cell, no solution is performed. Such a situation may occur,
even for cells larger than 095 x 0°5 in size, since the present dis-
tribution of point gravity data is, in some cases, very irregular
[Nagy, 1973; Merry, 1975]. The adverse distribution of data points
within the cell could be one of the reasons influencing ai [John, 1976].

In order to decide upon the appropriate size of the basic
cell, the third order polynomial was fitted to the anomaly and height
fields within selected 2° x 2°, 1° x 1° and 0°%5 x 095 cells. The
resulting values of 82 are given in Table 7-4. From these results, we
notice that, in most cases, the value of 82 is decreased by almost one
order of magnitude when the size of the basic cell is halved. This
is consistent with the results given in Table 7-3, since the effect of
halving the size of the cell is approximately equivalent to doubling
the order "r" of the polynomial. Thus, from Table 7-4, it can be seen
that the third order approximating polynomial seems to be well suited
for cells of 095 x 095 or smaller. However, in several areas the
number of available data points within 095 x 095 cells is not sufficient

to get a solution. Because of the insufficient data coverage and



TABLE 7-4

Variation of the A Posteriori Variance Factor

With the Size of the Cell Using r = 3.

Size of the Cell

Location of

the Cell 2° x 2° 1° x 1° 0%5 x 0¢5

b, | A0 | af, G| @y | ear, | @D | Gy | ke, | @D | Gy
4795 8025 2260 400 8100 28 30 15 2 2.5 39.0
48.5 82.5 746 326 407 193 30 21 43 4.3 7.3
49.5 82.5 731 136 276 359 34 17 151 12.6 8.5
50.5 100.5 420 1064 4542 66 151 522 4 4.3 75.3
52.5 104.5 395 289 648 83 63 164 5 10.3 10.3
53.5 103.5 270 199 467 65 95 81 4 19.0 13.0

* #df = No. of degrees of freedom

No. of data points - 16 (polynomial coefficients).

9LT
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irregular data distribution in some cases, we have decided to stay with
the 1° x 1° cells in this study.

In summary, the third order 2-D polynomial and 1° x 1° cells
are used in the subsequent developments. We should keep in mind,
however, that because of this choice, the resulting surface fittings to
the free-air anomaly and height fields must be regarded as indicative
of the general features only. This seems to be adequate for the purpose
of predicting the areas with significant gravity corrections, using

the present EPB File.

7.2.3 Profiles of gravity and height fields

In the previous section the equations (7-21 and 7-22) for
predicting the values of free-air anomaly and height at any point i,
given by Cartesian coordinates (xi, yi), within the 1° x 1° cell have
been given. Now these equations will be reformulated to give the
predicted values of AgF and h along a profile, i.e. the simulated
levelling line (see Figure 7-1), as a function of the distance S5
from the centre of the cell in a selected azimuth a.

Such reformulation is aided by using the polar coordinates
obtained through the following transformation from Cartesian coordinates:

xi = si cos o , (7-48)

Yy

S5 sin o . (7-49)
Substituting for X0 Y5 in equations (7-21) and (7-22), we find terms
containing up to 6th power of s, - Since we are only looking for the

general features of the profiles of anomaly and height fields, it was

felt that polynomials of the 4th order in si would be adequate.
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Consequently, equations (7-21) and (7-22) are then expressed as follows:

~F ~F . 4 3
Ag (x,, v.) =Ag (s,, a) = I p.(a) s; (7-50)
i’ i i s i
3=0
. ~ 4 3
h (%, yi) =h (Si’ a) = jio qj(u) sy (7-51)

where p's and q's are some new coefficients, functions of only o in the

cell. 1In matrix notation, we can rewrite equations (7-50) and (7-51)

as:
AT (s., @) = ST (s,) P(a) , (7-52)
1 1
ho(s., ®) =5sT (s.) o(a) (7-53)
il j: 14
where:
T _ 2 3 a4
S (si) = [1, Sir Sir S.4 si] ' (7-54)
pl(a) = I ] (7-55)
= po' Plr P2l P3r p4 '
oT(a) = I ] (7-56)
Q = qo’ ql' q2' q3l q4 .

The vectors P and Q can be expressed in terms of vectors B
and C (see equations 7-41 and 7-42) and the chosen azimuth a. Substit-
uting equations (7-48) and (7-49) into equations (7-21) and (7-22),

rearranging the terms and neglecting higher powers of s,, we obtain:

P(a) = M(a) B , (7-57)
0(a) = M(a) C . (7-58)

The matrix M is given by;

9 (o} 0 0 0o 9 0 0
Q [} o Q- Q¢ o] 4] ¢
Ma) = sina 0 0 cos’a 0 0 o ¢ 0
cosa sinzo. 0 0  cos”e sina ] 5 30530. 0
o] cosa sin3a 0 0 cos a sinza o Q cos a sina

(7-59)
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We note that B and C are functions of the anomaly and height
data within the cell, and as such they differ from one cell to the
other. On the other hand, M is a function of azimuth o only, and

thus remains the same for all the cells.

7.2.4 Differential formulae for the gravity corrections

Let us now take the following differential relations to hold

at point i on the levelling line (Figure 7-2):

ds =s, - s, , (7-60a)
j 1

d¢ = ¢] - d)l ’ (7-60b)

ad = Aél'; - Aéi , (7-60c)

gh =h. - h, , (7-604)
J 1

for j = i+l. Differentiating equations (7-7), (7-48), (7-52) and

(7-53) , we can write:

dx cos o

d¢ = = ( ) ds , (7-61)
3x(¢) /3¢ om
and for a fixed azimuth a:
“F G (s) 2 3
dAg- = ————— ds = (p;+2p,s+3p s +4p,s”) ds, (7-62)
~ dh (s) _ 2 3
dh e ds = (ql+2q25+3q3s +4q4s ) ds . (7-63)

Referring to equations (7-10), (7-11) and (7-12) and using

equations (7-61), (7-62) and (7-63), we can write:

~

s 2 3 _
Ah,. = dh = [ql+2qzsi+3q3si+4q4si] ds , (7-64)

F . ~F 2 3
AAgij = dAg = [Pl+2p2si+3p3si+4p4si] ds , (7-65)
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h (predicted)

NF .
Ag (Predicted) -
:}dAg ~

e — — —
- — -—
— —
—~— — — - —————— —

o)
jo 3

ds

FIGURE 7-2
Differential Environment of Point i on

The Levelling Line.
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é = —6
A¢ij d¢ =k, ds , (7-66)
ho.=h +%an, (7-67)

ij i 2
—F . ~F 1 ~F
Agij = Ag; +5d A9 . (7-68)

In these expressions, we have:

k3 = cos oc/pom ’ (7-69)
~ 2 3 4
hi = [qo+qlsi + qZSi + a58; + q4si] , (7-70)
~F 2 3 4
Agi = [po + plsi + P,S; + p,s; + p4si] ’ (7-71)

and dﬁ, dAéF are given by equations (7-63) and (7-62), respectively.
Substituting now the above differential expressions (equations

7-64 to 7-71) into equations (7-10), (7-11) and (7-12), and neglecting

terms with second order differentials ds2, we get the following linear

differential equations for the three kinds of gravity corrections under

investigation:
acc® = 0’ das = £2(s) ds, (7-72)
dGCH = HTJ ds = fH(s) ds, (7-73)
acc’ = V'3 ds = £ (s) ds. (7-74)

Here D, H and V are vectors of eight components each, and J is given
as:

J =[s;2=0,1, ..., 71 . (7-75)

The vectors D, H and V are obtained from the following

expressions:

D = (Z1 + ZZ)Q ' (7-76)
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H = z3 (Z4P + ZSQ + E) , (7-77)

\Y

(Zl + Z6) Q ., (7-78)

where P and Q are given by eqautions (7-57) and (7-58), respectively.
Note here that V is a vector of coefficients, and thus is not to be
confused with the vectors of residuals Vg and Vy (equations 7-28 and
7-29) .

E in equation (7-77) is expressed as:

E' (@, ) = = [k, k

2 3’ OI OI 0] J] (7-79)

Q-

a function of the azimuth o and the central latitude ¢o of the cell
(see equations 7-14 and 7-69). G, in the above equation, is the
reference normal gravity value used throughout the thesis. The

matrices Z., and Z, in equation (7-76) are given as:

1 2
o B 0 o o |
o » 22, 0 0
o », 22, 3 0
z, (o, rg) = o e, 22, 3 4p_ , (7-80)
o e, 2p, 3B, 4B,
0 o 2p, 3B, 4p,
o o 0 w, 4p,
Lo o 0 o ap, |
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— —
0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
kl
= — 4 . -
z2(¢0) R 0 0 0 0 (7-81)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0
L€ 0 |

We can see that the matrix Z. is a function of the free-air anomaly

1
field within the cell and the azimuth of the profile, whereas the

matrix 22 is a function of the latitude ¢° only. The matrices Z3, Z4

and Z5, in equation (7-77) are expressed as follows:

9 0 0 o)
aQ 2qo 0 0
aQ 29 3q, 0
Z, (¢, h) = a, 2q2 3ql 4qo ’ (7-82)

q, 29, 3q, 49,

0 2q4 3q3 4q2

0 0] 3q4 4q3
L? 0] 0] 4q4
0] -1 0] 0] 0]
z, = 1 0] 0] -1 0] 0] (7-83)
4 G !
0] 0 0] -1 0
(0] 0 0] 0 -1
L _|
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Zz = -0.2238 Z4 . (7-84)

We note that matrix Z3 is a function of the height field within the
cell and the azimuth of the profile, while matrices Z4 and Z5 are

constant for all cells. Finally, the matrix Z6, in equation (7-78)

is given as:

Zgla, ¢ ) = == 0 0 0 1 0 , (7-85)

0 0 0 0 0]
L —

which is, again, a function of o and ¢O.

7.2.5 Integration of the gravity corrections

The purpose of this section is to develop expressions for the
accumulated gravity corrections over the length s of the profile
(simulated levelling line) in the desired azimuth a. This can be done
by integrating the differential equations for the gravity corrections
over the distance s. We start with rewriting equations (7-15), (7-16)

and (7-17) as follows:

S
ac® = s 2155 (s), fits), o(s)) as , (7-86)
AB [e]
H S H ~F ~
GChrp = J £ (Ag (s), h(s), ¢(s)) ds , (7-87)

o
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S
GCXB =7 £ G (s), B(s), 6(s)) as . (7-88)
o

These equations can be further simplified as:

S
ac® =71 2 (s) as , (7-89a)
AB
o]
H s H
_ -89
GCAB fo f (s) ds , (7 b)
S
\" Vv
GCAB = g £ (s) ds , (7-89c¢)

where, of course, the subintegral functions depend on the cell and on
the azimuth of the profile.

Substituting from equations (7-72), (7-73) and (7-74) into
equations (7-89), and integrating with respect to s, we get the
following final expressions for the accumulated gravity corrections

as functions of s:

GCEB = o' F Js , (7-90)
H T

o = @ F s, (7-91)

GCXB - W F s . (7-92)

Here, F is a constant diagonal matrix resulting from the integration,
given by:

1
4 '8_] . (7-93)

o+

. 1 1 1 1 1
F = diag [1, 233 5 e T
We should keep in mind that the heights must be expressed in

metres, the anomalies in milligals and the integration distance in

kilometres. The units of the gravity corrections computed from
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equations (7-90) to (7-92) are metres. The examination of these three
equations reveals that the product (F J)s, a column vector of eight
elements and a function of the distance s only, is common to all of

them. Let us denote this product by R and write:

R = (FJ)s = s(FJ) . (7-94)

By substituting in equations (7-90) to (7-92), we obtain:

oy, =D'R=RD, (7-95)
H T T

o, = HR=RH, (7-96)

eV = v'R = RV . (7-97)

From the above development, we notice that the three vectors
D, H and V, of eight coefficients each, are functions of the following:
1. The mean latitude "¢," of the 1° x 1° cell;
2. The estimated coefficients "g“ of the best-fitting surface to the
free-air gravity anomaly field within the cell;
3. The estimated coefficients "C" of the best-fitting surface to the
height field within the cell;
4. The direction in which the simulated levelling line runs, i.e. the
azimuth "a".
We note also that these three vectors are all independent of the length
"s" of the levelling line.
Putting together now all the pertinent equations and denoting

the variables in subscripts, we get the final set of equations for the

accumulated gravity corrections as follows:



187

A

D __T . _
GcAB = R{s} (zl R P + 22 ) M{a} C{h} , (7-98)
"9 {¢ }
o (o]
GCH = R? } Z (z4 M{ } ﬁ F + ZSM{ }g{h} + E ¢ ), (7-99)
AB s 3 h o {Ag} o %o}
{1 a
[0
v _ T ~ _
GCAB = Rigy (z1 F + z6 ) M{a} C{h} . (7-100)
29y %oy
o o

For better orientation, we give below the equation-number for each of

the above involved quantities:

R oveeeeencnann (7-94)
Zl .......... (7-80)
Dy wovmnnnnns (7-81)
Dy weeeencnns (7-82)
Zy eeeenennnn (7-83)
Zg weennnnnnn (7-84)
Zg wvnenennnn (7-85)
1 S (7-59)
g ........... (7-41)
C o, (7-42)
E teeeennnnnn (7-79)

7.2.6 Remarks on the gravity corrections

Let us now examine the final expressions for the accumulated
gravity corrections, as derived in the previous section, (equations
7-98 to 7-100). Two remarks seem worth mentioning here:

1. The difference between the dynamic and the Vignal gravity corrections
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is due to the difference of matrices 22 and Z6. This difference
arises only from the difference 6yo between the USC&GS formula

and the 1967 International formula for normal gravity, and is
relatively small. From equations (7-13), (7-14), (7-81) and
(7-85), we can see that both Z2 and Z6 will be null matrices if

Gyo = 0. This would result in the equivalence of the dynamic and
Vignal gravity corrections, which again confirms what we have stated
in section 4.2;

2. The Helmert gravity correction seems to be more sensitive to the
variation of height along the levelling line than the dynamic and
Vignal gravity corrections. This can be verified by referring to
the expressions for the gravity corrections developed in Chapter 4
where Helmert gravity correction is a function of average height as
well as height difference, while the Vignal and dynamic gravity
corrections are functions of height difference only. This also
confirms our findings in section 6.2 concerning the behaviour of
Helmert gravity correction along actual lines and loops.

A subroutine called GCAFAZ (see [Nassar, 1975al] for documen-
tation) was written to evaluate the accumulated gravity corrections
from equations (7-98) to (7-100). In designing this subroutine, the
intention was to evaluate the variations of gravity corrections with
azimuth for each cell under consideration. Realizing that matrices

~ ~

Zl and Z3 are functions of vectors B and C, we can see (equations 7-98
to 7-100) that the basic input to GCAFAZ are the vectors B and C of

coefficients of best-fitting surfaces to the free-air anomaly and the

height fields. All the other terms can then be computed within the
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subroutine for a given ¢o and azimuth a. é and c are evaluated by the
subroutine APPROX.

As a final remark here, the gravity correction for a line B'B
across the entire 1° x 1° cell through its centre A (see Figure 7-3)

is given by the following expression:

GCqup = GC, (@) = GO, (a+180°)

B'B

where both terms on the RHS are furnished by GCAFAZ subroutine.
7.3 Results

In this section, the programming considerations associated
with the proposed technique for predicting the gravity corrections are
discussed. Graphical display of sample results showing the variation
of gravity corrections with azimuth are presented. These results are
based on actual data from the new EPB File.

We have seen in section 5.2.3 that the old EPB File (used
in previous investigations, e.g. [Nassar and Vanfgék, 1975]1) contains
about 90,000 point anomaly values. On the other hand, the new File,
used in the present study, has about 270,000 values. Thus, we were
hoping that the new file would better serve our investigation and
would provide refined results. However, it was discovered that about
two-thirds of the point anomaly values on the new file are associated
with gravity observations made at sea. Realizing that there are not
and will not be any levelling lines at sea, the use of the aforementioned
sea data is irrelevant for our purpose. Consequently, we decided to
extract and file only the data on land from the EPB new file (see

section II-2) to generate a master file (containing about 110,000
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FIGURE 7-3
Gravity Correction Across The Entire

Cell.
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point anomaly values) for our use here.

The above arrangement implies that the computations within
cells which are located around Canadian coasts or inland waters could
be affected in either one of two ways: First, the cell may be
dismissed altogether because of insufficient number of land data
points remaining. Secondly, the land data points within the cell
may have adverse distribution which may influence the results.
However, realizing that the aforementioned master file contains only
about one-third of the entire data points on the EPB new file, the
computer time needed for reading and handling the associated data

sets is reduced significantly.

7.3.1 Programming considerations

A computer program package AREAGC has been developed by
the author for the purpose of studying the variation of gravity
corrections (dynamic, Helmert, Vignal) with azimuth at any desired
location in Canada. This program is a modified version of the earlier
program LEVAGRAV [Nassar, 1975b]. The program has been written in
standard FORTRAN [Cress et al., 1968; I.B.M., 1970]. The algorithms
used in the program are based on the technique presented earlier in
this chapter. AREAGC program expects to find available, on tape
or on disc, the seven overlapping data sets discussed in Appendix II.
These data sets contain the free-air anomaly and height data as well
as other information relevant to the present study. Details and
documentation of the program are available at the Surveying Engineering

Computer Library, U.N.B.
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AREAGC program package is composed of the main program and
several subroutines. Of these subroutines, there are two main ones:
the first, APPROX, is for approximating the anomaly and height fields
within the cell; and the second, GCAFAZ, is for approximating the
anomaly and height profiles and computing the gravity corrections in
different directions within the cell.

The main program reads the g<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>