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ABSTRACT 

The incorporation of spatial and spectral information within multispectral satellite 

images is the key for accurate land cover mapping, specifically for discrimination of 

heterogeneous land covers. Traditional methods only use basic features, either spatial 

features (e.g. edges or gradients) or spectral features (e.g. mean value of Digital Numbers 

or Normalized Difference Vegetation Index (NDVI)) for land cover classification. These 

features are called low level features and are generated manually (through so-called 

feature engineering). Since feature engineering is manual, the design of proper features is 

time-consuming, only low-level features in the information hierarchy can usually be 

extracted, and the feature extraction is application-based (i.e., different applications need 

to extract different features).  

In contrast to traditional land-cover classification methods, Deep Learning (DL), 

adapting the artificial neural network (ANN) into a deep structure, can automatically 

generate the necessary high-level features for improving classification without being 

limited to low-level features. The higher-level features (e.g. complex shapes and textures) 

can be generated by combining low-level features through different level of processing.  

However, despite recent advances of DL for various computer vision tasks, 

especially for convolutional neural networks (CNNs) models, the potential of using DL 

for land-cover classification of multispectral remote sensing (RS) images have not yet 

been thoroughly explored. The main reason is that a DL network needs to be trained 

using a huge number of images from a large scale of datasets. Such training datasets are 

not usually available in RS. The only few available training datasets are either for object 
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detection in an urban area, or for scene labeling. In addition, the available datasets are 

mostly used for land-cover classification based on spatial features. Therefore, the 

incorporation of the spectral and spatial features has not been studied comprehensively 

yet.  

This PhD research aims to mitigate challenges in using DL for RS land cover 

mapping/object detection by (1) decreasing the dependency of DL to the large training 

datasets, (2) adapting and improving the efficiency and accuracy of deep CNNs for 

heterogeneous classification, (3) incorporating all of the spectral bands in satellite 

multispectral images into the processing, and (4) designing a specific CNN network that 

can be used for a faster and more accurate detection of heterogeneous land covers with 

fewer amount of training datasets.  

The new developments are evaluated in two case studies, i.e. wetland detection and 

tree species detection, where high resolution multispectral satellite images are used. Such 

land-cover classifications are considered as challenging tasks in the literature. The results 

show that our new solution works reliably under a wide variety of conditions. 

Furthermore, we are releasing the two large-scale wetland and tree species detection 

datasets to the public in order to facilitate future research, and to compare with other 

methods. 
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1 Chapter 1: Introduction 

This PhD dissertation reviews, examines, and improves state-of-the-art deep learning 

(DL) techniques for remote sensing (RS) data analysis. This article-based dissertation 

presents the following papers: 

1. Rezaee, M., Mahdianpari, M., Zhang, Y., & Salehi, B. (2018). Deep 

Convolutional Neural Network for Complex Wetland Classification Using Optical 

Remote Sensing Imagery. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, (99). 

2. Rezaee, M., Mahdianpari, M., Zhang, Y., & Salehi, B. (2018). Very Deep 

Convolutional Neural Networks for Complex Land Cover Mapping Using 

Multispectral Remote Sensing Imagery. Remote Sensing of Environment. Under 

review 

3. Rezaee, M., Tong, F., Mishra, R., Zhang, Y. (2018). Detection of Individual Tree 

Species Using an Optimized Deep CNN in an Object-Based Approach. Remote 

Sensing of Environment. Under review 

1.1 Dissertation Structure 

This article-based dissertation consists of five chapters: chapter 1 provides an 

introduction to the research, chapters 2 through 4 present three peer-reviewed journal 

papers, published or under review; and chapter 5 presents the summary of the work and 

conclusions. 



 

  

 

2 

1.2 Background 

Satellite images are being increasingly used to provide high levels of information and 

detail in various applications, such as urban monitoring and geographical information 

system updating. The improvement of spatial and spectral resolution in satellite images 

has undeniably increased usage of these images in different applications. However, 

having high spatial and spectral resolution has also generated complexities to the 

processing of satellite images for object detection (OD) or land cover mapping. These 

complexities in the processing can be described as high intra-class spectral variations due 

to the images fine detail, shadow and occlusion, and the increase in data volume that is 

supposed to be processed because of the high spatial, spectral, and radiometric 

resolutions of the data (Shu, 2014). These challenges have accelerated the need to 

develop new methods for processing satellite images (Cai & Liu, 2013; Li, 2014). As a 

result of these attempts, different trends for improving the satellite image processing can 

be observed. 

The most important trend for improving the satellite image processing is the increase of 

classifiers’ power to discriminate the objects. The increase in classification power started 

in the 1990s with the use of machine learning (ML) method with nonlinear boundaries for 

discrimination of objects, including the introduction of artificial neural networks (ANN; 

Benediktsson, Swain, & Ersoy, 1990), support vector machines (SVM; Song, Fan, & 

Rao, 2005), random forest (RF; Ball, Anderson, & Chan, 2017 ), and gradient boosting 

(GB; Zhang, Du, & Zhang, 2016). While the accuracy of detection and classification 

using these new methods has increased, different studies mention that the original images 

are not sufficient to conquer the data’s complexity (Mnih & Hinton, 2010). This could be 
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related to the spectral similarity of the objects/land-covers in the satellite images, which 

makes the raw spectral information insufficient for the classification and detection of 

heterogeneous objects/land covers. 

The spectral data insufficiency is responsible for the second trend in dealing with the 

challenges of high-spatial-resolution satellite images: incorporating both spectral and 

spatial information for land cover mapping. The studies in the second trend were based 

on the Markov random field (MRF) model (Q Jackson & Landgrebe, 2002), the 

conditional random field (CRF) model (Zhong & Wang, 2010), and composite kernel 

methods (CK; Camps-Valls, Gomez-Chova, Muñoz-Marí, Vila-Francés, & Calpe-

Maravilla, 2006). These studies tried to augment spectral information with spatial 

features. These attempts, however, needed an extraction of a large number of 

spectral/spatial features, the so-called feature engineering, which is time-consuming and 

expert-knowledge dependant (about the relationship between the data and the desired 

objects) since it is manually designed (Chollet, 2017; LeCun, Bengio, & Hinton, 2015). 

Most generated features are dependent on location, image type, and desired objects for 

detection (Zhao & Du, 2016). In addition, the extracted features rely mostly on either 

spatial (e.g. edges) or spectral features (e.g. mean value of Digital Numbers or 

Normalized Difference Vegetation Index (NDVI)) that are called low-level features 

(Jiang, Hauptmann, & Xiang, 2012), which for complex objects and land covers are 

insufficient (Zhao & Du, 2016). 

Recently, DL algorithms have become state-of-the-art for image classification and object 

detection in the machine learning field due to their ability to learn discriminative and 

representative hierarchical features (L. Zhang, Zhang, & Kumar, 2016). DL is 
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characterized by an ANN with (usually) more than two hidden layers (Zhu et al., 2017). 

The term deep is assigned to these ANNs due to the number of hidden layers they have. 

Like other shallow ANNs, which have existed since the 1980s, deep ANNs try to extract 

feature representations that are learned directly from data in a supervised manner (using 

training data). They can exploit hierarchical feature representations of different levels, 

while shallow ANNs are limited. 

DL is inspired by the human brain’s high efficiency for object recognition in its 

hierarchical learning of multi-level features in the primate visual system (Serre et al., 

2007). The human brain, in this way, motivated researchers to alter shallow ANNs by 

finding a solution for the vanishing gradient problem (Pascanu, Mikolov, & Bengio, 

2012)—specifically, the modification of the ANN’s depth (increasing its number of 

hidden layers). Recent advances in the application of DL to various applications have 

proven this method’s capability in different fields, including machine learning (Musterie, 

Chuang, & Chan, 2016; Zheng et al., 2016), medical imagary (Dou et al., 2017), and 

remote-sensing fields (Mnih, 2013; Wang, Zhang, Liu, Choo, & Huang, 2017). 

Different DL models have been used for visual-data processing since 2006 (Zhu et al., 

2017). Deep belief net (DBN; Hinton, Osindero, & Teh, 2006), stacked auto-encoders 

(SAE; Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010), and deep convolutional 

neural network (CNN; Krizhevsky, Sutskever, & Hinton, 2012; Szegedy et al., 2015) are 

deep-learning models currently in use. All these models follow a general workflow 

(Figure 1.1) that includes three main parts: input data, the core DL model, and the output 

map. The input-output pair can be different based on their application. After 
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determination of the input-output pair and the DL network, the relationship between the 

input-output pair will be established through the DL network. 

 

Figure 1-1 A general workflow of DL for image analysis 

Convolutional neural network (CNN), the most well-known network amongst DL 

networks, is a multilayer architecture composed of multiple trainable stages that act as 

feature extractors. Each stage may be composed of three types of layers: a convolutional 

layer, a nonlinearity layer, and a pooling layer. The network then connects to a typical 

fully connected ANN that receives the features and behaves as a classifier. Because of the 

convolution layer’s designation, CNN can take advantage of the image dimensions it 

receives as input. Each layer type can be described as follows: 

• Convolutional layer: This layer consists of a rectangular grid. Each of its neurons 

inside the grid picks data from the preceding layer. The selected data are then 

multiplied by corresponding weights to generate new values. The new values are 

fed to the next layer as input. In fact, the rectangular weights act as a kernel, and 

the whole process is like convolution. 
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• Nonlinearity layer: In this layer, a nonlinear function applies to the result of the 

convolutional layer in a pointwise manner and generates the final feature maps. 

The rectified linear unit (ReLU) function is commonly used in this layer. 

• Pooling layer: This layer selects a small rectangular part of the previous layer and 

subsamples it to one output unit. Different methods are used for subsampling, 

such as averaging (Avg. pooling), selecting maximum value (max pooling), or 

using a learned linear combination. In CNN, the max pooling is usually used. 

With the availability of training data and computation resources for RS, use of DL in the 

RS field has increased. However, the inherent statistical differences between machine-

learning images and remote-sensing images raises new concerns that lead to new 

challenges in applying DL to RS on a large scale. These new challenges are as follows: 

• The amount of available data with known RS-data labels is limited. This 

limitation relates to the high price of RS images, the time-consuming and 

expensive process of preparing labels for data, and the application-specific nature 

of RS-data labeling. During the last decades, a few datasets have been prepared 

and released publicly. However, most focus on urban areas. Since DL needs a 

large dataset for training, the unavailability of training data becomes the 

bottleneck for applying DL to RS images. 

• RS data is geolocated—every pixel in satellite images is assigned to a specific 

location on Earth. Some DL processing, such as pooling or subsampling, can 

distort the pixel’s position. This distortion can lead to a situation where a pixel is 

assigned to an incorrect position within a specific confidence ellipse, which can 

then distort the detected object’s shape. 
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• Continuous image acquisition in the RS field raises the possibility of considering 

time factor in the processing of satellite images. In this case, the processing unit 

moves from individual images to multiple images that are taken from a location in 

different times. To accommodate this ability, the network should be extendable, 

and the generated features should be general, so the filters can be applied to the 

time-series images all at once, while obtaining promising results. The dynamic 

changes of some objects in the RS scenes render the extendibility and generality a 

new challenge for RS data. 

• DL, specifically CNN, works based on the spatial distribution of data. Different 

studies have reported the importance of spatial information in the data for object 

detection. Some studies even tried to remove the colour variation in images to 

decrease the sensitivity of objects to spectral information. However, in most RS 

applications, such as wetland detection, the spectral information is the main 

information for the discrimination of objects. 

• High spatial and spectral RS data represents a big data challenge. With recent 

satellites like Worldview-3, the size of the images is very large. If time-series 

analysis is necessary, the size of images can grow even more. With this type of 

data, the speed of application is a challenge in real-world applications. 

• Machine-learning images are usually composed of three bands related to the area 

of wavelength spectrum that we know as red, green, and blue. However, in most 

RS images, the number of bands can range from 3 to more than 200. Each band is 

related to a specific range in wavelength spectrum, so the digital number of the 
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image has a physical meaning (the reflectance of the object on that wavelength). 

All DL libraries currently work with 3 bands. 

1.3 Research Questions 

These aforementioned challenges raise questions regarding the application of DL to RS 

images: 

1. Can CNN be used with limited RS training data? 

2. Can CNN detect different objects mostly based on their spectral information? 

In other words, is CNN sensitive to spectral information as much as spatial 

information for detection? Can CNN incorporate spectral and spatial features 

at a higher level of information hierarchy? 

3. Is there any specific network architecture more reliable for processing RS 

images? 

4. Considering the heavy computational process of DL and the large image sizes 

in RS, can DL reach a processing speed that can be used in real-world 

application? If not, is there any way to reach a processing speed comparable to 

other in-use methods of land cover mapping? 

5. Since training a DL network is expensive in terms of the amount of data and 

time it needs, can a CNN be reused on other images for the same purpose? In 

other words, are CNN features general enough to be applied to other images 

they are not trained with? 



 

  

 

9 

1.4 Research Objectives 

The general objectives of this thesis can be defined based on the above questions. These 

objectives are as follows: 

• Determine the suitability of CNNs for classification and object detection of RS 

images 

• Examine the power of deep CNNs for the classification of spectrally similar 

classes 

• Compare the efficiency of the most well-known deep CNNs 

• Generate an appropriate model for classifying spectrally similar classes based on 

comparison by optimization of the network and its parameters to better fit the data 

• Explore the use of transfer learning and fine-tuning for working with limited 

training data. Explore whether full training or fine-tuning for exploiting the pre-

existing CNN model is the optimal strategy for classification and object detection 

of RS images 

• Take advantage of the object-based approach for speeding up CNN deployment 

• Eliminate the limitation of the number of input bands by developing a pipeline in 

Python with the capacity to operate with multi-layer remote sensing imagery 

• Investigate the generalization capacity of existing CNNs for the classification of 

multispectral satellite imagery (i.e., a different dataset than those they were 

trained for) 

• Compare results of existing CNNs and the designed CNN model with state-of-

the-art classifiers RF and GB 
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1.5 Structure of the Thesis 

Chapter 1 is an introduction to this dissertation, presenting background, problem 

statements, research questions and objectives, and an overview of each chapter. 

Chapter 2 to 4 comprise this dissertation’s 3 journal papers and its main contribution of 

research: 

• Chapter 2 evaluates the capability of the state-of-the-art classification tool deep 

CNN for classifying spectrally similar land objects (Wetland classes) using 

limited training data. This chapter tries to answer the first and second research 

questions. 

• Chapter 3 compares the most state-of-the-art CNN networks and their accuracy in 

the consideration of different scenarios related to the availability of the training 

data. It also addresses the limitation of the CNN input image layer by taking all 

the multispectral bands into account for processing. This chapter studies the first, 

second, and fifth research questions. 

• Chapter 4 presents a solution to individual tree species detection (ITSD), using 

CNN and an object-based approach. This chapter addresses the third, fourth, and 

fifth research questions. We introduce a new architecture for ITSD that is fast, 

reliable, and independent of large-scale training data. 

Chapter 5 presents the summary of the work accomplished in this research, concluding 

remarks, contribution of research, and recommendation for future work.
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2 Chapter 2: Deep Convolutional Neural Network for Complex 

Wetland Classification Using Optical Satellite Imagery 

Abstract 

The synergistic use of spatial features with spectral properties of satellite images 

enhances thematic land cover information, which is of great significance for complex 

land cover mapping. Incorporating spatial features within the classification scheme, 

which has previously been mainly carried out by applying only low-level features, has 

shown improvement in the classification results. However, the application of high-level 

spatial features for classification of satellite imagery has been underrepresented. This 

study aims to address the neglect of high-level features by proposing a classification 

framework based on convolutional neural network (CNN) to learn deep spatial features 

for wetland mapping using optical remote sensing data. Designing a fully trained new 

convolutional network is infeasible due to the limited amount of training data in most 

remote sensing studies. Thus, we applied fine-tuning of a pre-existing CNN. Specifically, 

AlexNet was used for this purpose. The classification results obtained by the deep CNN 

were compared with those based on well-known ensemble classifiers, namely Random 

Forest (RF), to evaluate the efficiency of CNN. Experimental results demonstrated that 

CNN was superior to RF for complex wetland mapping even by incorporating the small 

number of input features (i.e., 3 features) for CNN compared to RF (i.e., 8 features). The 

proposed classification scheme is the first attempt to investigate the potential of fine-

tuning pre-existing CNN for land cover mapping. It also serves as a baseline framework 
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to facilitate further scientific research using the latest state-of-art machine learning tools 

for processing remote sensing data. 

2.1 Introduction 

Wetlands are transitional zones between a water body and dry land, which may 

experience wet conditions permanently or at least periodically during high water seasons 

(Tiner, Lang, & Klemas, 2015). Wetlands support several environmental services, 

including flood storage, carbon sequestration, shoreline stabilization, and water-quality 

renovation, and provide a favorable habitat for several unique aquatic vegetation and 

animal species.  Despite their high contributions to the ecosystem, they have been 

threatened by the anthropogenic and natural processes during past decades.  In particular, 

human activities progressively converted wetlands to non-wetland areas due to 

agriculture irrigation, road construction, and pollution. Global warming, flooding, 

shoreline erosion, and sea level rise further expedite wetland loss through natural 

processes (Tiner et al., 2015). 

Given the numerous benefits of wetlands for the ecosystems, their restoration and 

preservation of wetlands are critical. Thanks to the advancement of remote sensing 

techniques, their extend and condition can be monitored globally. In particular, remote 

sensing tools have significantly contributed to the wetland mapping and monitoring in a 

variety of aspects, including classification (Mahdianpari et al., 2018; Mahdianpari, 

Salehi, Mohammadimanesh, & Motagh, 2017; Mohammadimanesh, Salehi, Mahdianpari, 

Brisco, & Motagh, 2018), change detection (Brisco et al., 2017), and water level 

monitoring (Wdowinski et al., 2008). 
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Despite significant improvements in remote sensing tools in both satellite image and 

applied techniques, classification of complex heterogeneous land cover such as wetland is 

challenging. This is because, in a highly fragmented landscape such as wetland, there are 

several small classes without clear-cut borders between them, which in turn increases the 

within-class variability and decreases between class separability. Furthermore, some of 

these classes may have very similar spectral characteristics, which further complicates the 

matter. Thus, combining spatial feature with spectral information may contribute to 

differentiating complex land cover (Zhao & Du, 2016). Several approaches have been 

proposed in order to evaluate the efficiency of integrating spectral-spatial features for 

classification, including kernel methods (Scholkopf & Smola, 2001), Bayesian models 

(Landgrebe, 2005), Markov Random Field (MRF) (Qiong Jackson & Landgrebe, 2002), 

and Conditional Random Field (CRF) (Zhong & Wang, 2010). However, these methods 

apply to low-level features such as spectral information within neighboring pixels or 

morphological properties. Thus, the main disadvantage associated with these techniques 

is setting the proper parameters in order to produce suitable features for the different 

image objects (Zhao & Du, 2016). Furthermore, most of these algorithms are only fitted 

to the particular problem (e.g., specific case study and datasets), while they are 

inappropriate in other cases (Längkvist, Kiselev, Alirezaie, & Loutfi, 2016). 

Inspired by high efficiency of the human brain in object recognition, high-level spatial 

features produced by hierarchical learning have attracted substantial interest in several 

applications, such as object recognition, scene labeling, and document analysis (DiCarlo, 

Zoccolan, & Rust, 2012). In particular, Deep Learning is one of the most well-known 

approaches to obtaining high-level spatial features (Jiang, et.al., 2012), using a 
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hierarchical learning framework. It works based on a multi-layer interconnected neural 

network framework that learns features and classifiers simultaneously (Nogueira, Penatti, 

& dos Santos, 2017). Specifically, a single network with multiple layers may be utilized 

to learn features and classifiers and exploit the parameters depending on the problem and 

accuracy demanded. This is also known as an end-to-end feature learning framework, 

wherein the image pixels and semantic labels are input and output of the algorithm, 

respectively (LeCun et al., 2015). 

Convolutional Neural Network (CNN) is one of the most efficient approaches among all 

deep learning based frameworks that does not require prior feature extraction and thereby 

has a greater generalization capability (LeCun et al., 2015). This is because a multi-layer-

based classifier has a high capacity to exploit abstract and invariable features. In 

particular, a deep CNN extracts varying levels of abstraction for the data in different 

layers, for example, low-level (e.g., edges), intermediate level (e.g., object fragment), and 

high-level information (e.g., full object) obtained in the initial, intermediate, and last 

layers, respectively (Nogueira et al., 2017). 

There are three main strategies to use CNN, including full training, fine-tuning, and pre-

training CNN (Nogueira et al., 2017). In a fully trained CNN, a network is built from 

scratch in order to extract particular visual features based on the applied dataset. Despite 

the great efficiency and robustness of this method, which provides a full control over the 

parameters and architecture, this is inappropriate for remote sensing applications. This is 

because building a network from scratch requires a large amount of training data (Bengio, 

2009). The other two approaches are represented as more promising for remote sensing 

applications since they utilize the pre-trained model, which has been previously trained 
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using different data. This is possible because the initial layers of CNN are typically 

general filters (i.e., low-level features such as edges); so, they need little or no updating 

during the fine-tuning process. 

The efficiency of deep CNN has been demonstrated in object detection (Krizhevsky, 

Sutskever, & Hinton, 2012b), recognition of handwritten characters and traffic signs (X. 

Chen, Xiang, Liu, & Pan, 2014), and classification (X. Chen et al., 2014). Although the 

application of CNN was employed in a number of remote sensing studies for 

classification of different land cover types using hyperspectral imagery (Y. Chen, Lin, 

Zhao, Wang, & Gu, 2014; Makantasis, Karantzalos, Doulamis, & Doulamis, 2015), its 

efficiency was not examined for complex land cover classification (e.g., wetland and sea 

ice). Currently, the classification of the complex land cover is performed by incorporating 

a large number of input features to address the difficulty of discriminating land cover 

classes with very similar spectral signatures. However, extracting a large number of input 

features is not time efficient, while their manipulation could be challenging. Furthermore, 

some of these input features are highly correlated, which means no improvement in the 

information content of input data. Accordingly, a large number of feature selection 

algorithms have been proposed to determine optimum features for different applications 

(Loosvelt, Peters, Skriver, De Baets, & Verhoest, 2012). Given the main drawbacks of 

current approaches for classification of complex land cover types, this study aims (i) to 

evaluate the generalization capacity of pre-trained CNN in the classification of multi-

spectral satellite imagery; (ii) to determine the suitability of CNN for complex wetland 

classification, and (iii) to generate an appropriate model for further wetland mapping 

studies. In particular, a pre-trained CNN framework was utilized to classify a wetland 
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ecosystem using a RapidEye multi-spectral imagery in a case study located in 

Newfoundland and Labrador, Canada. The results of this study are the first attempt to 

show the potential of CNN for complex land cover mapping with very similar spectral 

signatures, which facilitates the application of CNN for wetland classification. Given the 

similarity of wetland species across Canada and the generality of this approach, the 

results of this study progress towards utilization of CNN for complex wetland 

classification. 

2.2 Method 

2.2.1 Study area and dataset 

The study site is located in Newfoundland and Labrador, Canada, covering an area of 

approximately 700 km2. This province comprises a number of ecoregions with different 

characteristics depending on hydrology, ecology, and geomorphology. Particularly, this 

study is carried out in the northeast of this province in the Maritime Barren ecoregion, 

which is identified by an oceanic climate, foggy/cool summers, and relatively mild 

winters (Marshall & Schut, 1999). Different wetland classes specified by Canadian 

Wetland Classification System (CWCS), including bog, fen, marsh, swamp, and shallow-

water, are found within the study region (Tiner et al., 2015). However, bog and fen are 

the dominant wetland types due to the province’s climate aiding extensive peatland 

formation. Other land cover types are upland, urban, and deep-water in this ecoregion. 

Field data were acquired for 191 sample sites in summers and falls of 2015 and 2016. 

Spatial distribution of different wetland types, as well as other land cover classes, as 
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Table 2-1 Testing and training pixel counts for the Avalon reference data 

Class Class Description 
#Training 

Pixels 
#Testing 

Pixels 
Total 

Bog Peatland dominated by Sphagnum species 20650 19565 40215 
Fen Peatland dominated by graminoid species 11183 8794 19977 

Swamp Mineral wetlands dominated by woody vegetation 3197 9491 12688 

Marsh Mineral wetlands dominated by emergent graminoid species 10869 5238 16107 
Shallow Water Mineral wetlands dominated by submerged and floating 

vegetation 
6205 5679 11884 

Urban Human-made structures 66339 67125 133464 

Deep Water Deep water areas 62927 89194 152121 
Upland Dry forested upland 73458 89878 163336 

Total 
 

254828 294964 549792 

 

determined and recorded along with photographs and field notes to facilitate the wetland 

boundary delineation. Furthermore, Global Positioning System (GPS) locations were 

recorded for each visited land cover types in order to both train the classifier and assess 

the classification accuracy (see Table 2.1). 

For classification, two RapidEye optical images in Level 3A (radiometrically and 

geometrically corrected) that were acquired on June 18 and October 22, 2015, were used. 

This satellite was launched on August 29th, 2008. Its sensors have 5 m spatial resolution 

with 5 different spectral bands: Blue, Green, Red, Red-edge, and near-infrared (see 

Figure 2.1. 
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Figure 2-1 A true colour composite of RapidEye optical imagery (bands 3, 2, and 1) 

acquired on June 18, 2015, illustrating the geographic location of the study area. The 

red rectangular was selected to display the classified maps obtained from different 

approaches. 
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2.2.2 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is one of the most well-known deep learning 

algorithms, and has gained interest for image processing in recent years (Zhu et al., 

2017). CNN is superior to other deep network algorithms due to its ability to preserve the 

geometry of the image (i.e., the 2D format). Particularly, it maintains the interconnection 

between pixels and accordingly, preserves the spatial information. A typical CNN 

network consists of three types of layers, namely the convolution layer, pooling layer, 

and fully connected layer (Zhu et al., 2017). The convolution layer extracts information 

from previous layers and acts as a filter in the image domain. The filter’s values also 

determine the type of information to be extracted. This filter is sensitive to the spatial 

information and is defined as a rectangular grid inside the layer. This layer is formulated 

as a simple convolution: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 = 𝑖𝑛𝑝𝑢𝑡*𝑘𝑒𝑟𝑛𝑒𝑙 

= . /. 𝑖𝑛𝑝𝑢𝑡(𝑥 − 𝑎, 𝑦 − 𝑏)𝑘𝑒𝑟𝑛𝑒𝑙(𝑥, 𝑦)
789:

;<=

> .
@8ABCD:

E<=

 
(2-1) 

Where x and y are concerned with the image matrices while those of a and b deal with 

that of the kernel. The second layer, the so-called pooling layer, reduces the size of data, 

and it preserves the most important information and the geometry of the input data. In 

each pooling layer, a particular number is determined by sub-sampling of a small selected 

rectangle. There are different methods for subsampling, such as using maximum value or 

a linear combination (Lee, Gallagher, & Tu, 2016). 



 

  

 

27 

The last layer, namely the fully connected layer, is the reasoning part of the network, 

which determines the final label of the input data. Particularly, each neuron receives the 

information from all neurons in the previous layers to make the final decision. However, 

it does not have a role to preserve the geometry as well as turning the input layer into a 

vector. 

2.2.3 Patch-Based Image Labeling (PBIL) 

The main goal of a typical convolutional network is to find a unique label for an input 

image. Although this is a perfect approach to categorize the images, it is far from our goal 

in remote sensing data processing. Particularly, in the most remote sensing applications 

(e.g., segmentation and classification), a specific label should be determined for each 

imaging pixel. Thus, patch-based image labeling methods were introduced to convert 

categorization problem to classification in order to make CNN compatible with remote 

sensing applications (Mnih, Heess, & Graves, 2014).  In these approaches, an input image 

is divided into several patches and a label is assigned to the center of each patch. Given 

the image patches, S, and the corresponding target, M, the whole problem is defined as a 

probability approach, wherein the distribution of the image patch over the label is 

represented as follows (Mnih, 2013): 

𝑃G𝑛(𝑀, 𝑖, 𝑤C)J𝑛(𝑆, 𝑖, 𝑤:)L. (2-2) 

where 𝑛(𝐼, 𝑖, 𝑤	) indicates a patch with the size of 𝑤 × 𝑤 from the image I, which is 

centered on pixel i. The problem is also rewritten in a function form. Given a path from 

pixel i in the input image to the output unit l in a multi-class classification, the problem is 

formulated as: 
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𝑓PA(𝑠) =
𝑒𝑥𝑝G𝑎PA(𝑠)L

𝑍 = 𝑃(𝑚P = 𝑙|𝑠). (2-3) 

where 𝑎PA is the total input for the lth output and 𝑓PA shows the predicted probability 

mapping pixel i to label l. The network should be trained to find the function, which is 

typically employed by minimizing the residuals of a predefined function. 

 

Figure 2.2 The Architecture of AlexNet employed in this study (Conv: Convolution 

layer, Pool: Pooling layer, F.C.: Fully Connected layer, RFS: Receptive Field Size, N: 

number of neurons in fully connected layer, AF: Activation Function, Soft: Softmax). 

The negative log-likelihood is used for the training procedure in this study, which is 

formulated as follows: 

L(s,m) = 	 . .G𝑚P lnG𝑓P(𝑠)L + (1 − 𝑚P) lnG1 − 𝑓P(𝑠)LL.
9[\

P<]^AA	_^`@ab:

 (2-4) 

The optimization is performed using stochastic gradient descent with mini-batches (Le, 

Coates, Prochnow, & Ng, 2011). The speed of the optimization is also enhanced through 
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tuning some hyper-parameters, such as momentum, learning rate, and weight decay. 

AlexNet, which is the winner of 2012 ImageNet Large Scale Visual Recognition 

Challenge, is utilized for object detection (ILSVRC) (Krizhevsky et al., 2012). The 

architecture of this network is shown in Figure 2.2. 

As seen in Figure 2.2, this network has eight hidden layers, including five convolution 

layers and three fully connected layers (Krizhevsky et al., 2012). The adjustment of this 

network needs less effort due to the relatively small number of layers and accordingly, a 

smaller number of input parameters relative to other deep networks. Thus, a smaller 

amount of training data is required to train the network compared to other commonly 

used networks. This is advantageous for remote sensing data processing given the small 

number of training samples available in most studies. 

2.2.4 Preprocessing step 

A comparison of spectral characteristics of four wetland classes was carried out by 

plotting their signature using 1000 samples (see Figure 2.3). 

Error! Bookmark not defined.A band selection technique was employed to reduce the 

dimensionality of the input data. It is necessary since the AlexNet is designed to receive 

just 3 bands as input. It also speeds up the training and prediction processes and 

overcomes the GPU memory limitation. For this purpose, the correlation of different 

bands of input data was obtained. The highest correlation was associated with the blue 

and red bands (0.95) and also red-edge and near-infrared bands (0.81). Therefore, the 

blue and red-edge bands were removed, and other processing steps were implemented on 

green, red, and near-infrared bands. 
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Other pre-processing steps employed in this study were the preparation of both the 

network and imagery. In the PBIL approach, the image should be patched into small tiles, 

and then a label is assigned to the center pixel of each patch.  

  
(a) (b) 

  
(c) (d) 

Figure 2-3 The spectral signature of four wetland classes, namely (a) bog, (b) fen, 

(c) marsh, and (d) swamp obtained using 1000 samples from each class in five 

bands. 

There was a high degree of overlap between patches since the step parameter was 

adjusted to 1 pixel. It is worth noting that the AlexNet is designed to receive normalized 

images. Thus, the mean of each patch was set to zero by subtracting the mean value of 

each patch from the image. Finally, the last pre-processing step was cloud masking in one 
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of our datasets. This is because the CNN was not trained to classify the cloud and, 

importantly, it could not have an unclassified label. This means that the network would 

assign a wrong label to the cloud class if it was not masked out in this step. 

2.2.5 Training step 

The main challenges associated with the network training were the limited number of 

training samples and determining an optimum patch size to be utilized in PBIL. Instead 

of full training a network from scratch, a pre-trained network can be utilized, which 

addresses the former problem. In this approach, the parameters of the last layers are 

i 

    
     

ii 

    
 (a) (b) (c) (d) 
 Figure 2-4 Sample patches (i) and field surveying images (ii) of four wetland 

classes, namely (a) bog, (b) fen, (c) marsh, and (d) swamp. 

mostly updated, not those of all layers. Furthermore, the update’s values are small since 

the updating is carried out on a pre-trained network. Due to the limited number of in-situ 

data in this study, the last four layers of the network were updated to ensure a sufficient 

amount of sampling data for both training and testing the network. However, primitive 

information from the image, such as the size of objects of interest, and the network 

architecture, is required in order to address the latter problem. In particular, each patch 

should have enough information to generate a distinct distribution for the specific object 
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within the image. Different patch-sizes were tested according to spatial resolution of the 

data and object size of interest (i.e., different wetland classes) from 10 to 40. A patch size 

of 30 pixels (i.e., 150 m on the ground) was found to be an optimum value in this study 

because a small patch size resulted in overfitting of the model and on the other hand, 

under segmentation was observed in the case of a large patch size. The CNN network was 

trained using the Caffe library (Jia et al., 2014). Specifically, the training was carried out 

on a computer with an Intel® Xenon 2.80GHz CPU (16GB memory) and a Nvidia 

Quadro k2200 GPU (4GB memory). 

2.2.6 Testing step 

In order to evaluate the robustness of the CNN result and to prevent information leak 

from the testing dataset to the model, two strategies were considered during test data 

preparation. First, to make sure that the testing dataset is independent of the training 

dataset and both groups had roughly comparable pixel counts, reference polygons in each 

class were sorted based on their size and alternatingly assigned to testing and training 

groups. This procedure ensured that both the testing and training groups are selected 

independently from different parts of the image. Second, to make sure that the network is 

not over-fitted, the model was trained over first satellite imagery (June 18th) and accuracy 

indices were determined based on classified map, which was obtained by applying the 

trained model over the second satellite imagery (October 22). Since the second image 

was acquired on a different date and was spectrally different from the first image, this 

procedure illustrates the reliability of results on the testing dataset. We also compared the 

result of CNN with a state-of-the-art classifier, Random Forest (RF). More specifically, 

the two main parameters of RF, which should be adjusted are the number of trees (Ntree) 
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and the number of variables (Mtry) (Belgiu & Drăguţ, 2016). In this study, a total of 500 

trees were selected in the classification model. Moreover, the square root of the number 

of input variables was considered as the number of variables. This is because it decreased 

both the computational complexity of the model and the correlation between trees 

(Gislason, Benediktsson, & Sveinsson, 2006). 

However, a feature extraction step was an additional step, which is required in such a 

classifier before the classification step. Therefore, results of applying the CNN model 

over three original bands of the second image are compared to results of the RF classifier 

over extracted features in the next section. 

2.3 Results and Discussion 

The training step was completed using 30,000 iterations in 

 

Figure 2-5 The value of validation accuracy and loss as a 

function of epochs. 

approximately 12 hours. Figure 2.5 illustrates the loss and accuracy curve for the 

validation set. As seen in Figure 2.5, the speed of convergence is high in the initial 

epochs since the training is actually a fine-tuning of a pre-trained network. To have a 
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better understanding of the features that were generated and used during the training 

phase, features of some random patches were extracted. Figure 2.6 depicts the first 

convolution layer, its corresponding kernels and features in AlexNet. 

 
Figure 2-6 The first convolution layer, its designed kernels, and generated features. 

Every patch is normalized and resized to feed the network. The designed convolution 

kernels are then applied to the input patch to generate some normalized features. Each 

feature highlights a group of similar objects. The kernels are designed to highlight the 

group of pixels that decrease the loss function. The first layers tend to extract primitive 

features like edges, and the last layers extract high-level features, such as the pattern. 

These high-level features mostly rely on the spatial information in the patches. 

Incorporating the spatial information into the classification scheme is crucial due to the 

spectral similarity of wetland classes, which causes a great degree of mixture between 

them. Figure 2.7 shows some kernels and extracted features for sample patches. These 

features highlight the area that is related to the corresponding class. 
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Order Original patch Kernels of the 1st conv. 
layer 

The result of the 1st 
conv. layer 

The result of the 
2nd conv. layer Label 

1 

 

 

  

7 

2 

   

4 

3 

   

5 

4 

   

1 

Figure 2-7 Visualization of features related to the first and second convolution layer for 

four sample patches 

To evaluate the efficiency of CNN for wetland mapping, the classification results of CNN 

were compared with the Random Forest (RF) classifier. RF is an ensembles classifier and 

has shown good results for several lands cover mappings, such as wetland (Mahdianpari, 

Salehi, Mohammadimanesh, & Brisco, 2017). For classification based on the RF 

classifier, a total number of eight features, namely normalized difference vegetation 

index (NDVI), normalized difference water index (NDWI), Red Edge Normalized 

Difference Vegetation Index (ReNDVI), as well as all original spectral bands of the 

RapidEye image were used. However, for CNN only three original spectral bands of the 
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RapidEye image, including red, green, and near-infrared were applied.  The classification 

maps obtained by RF and CNN are depicted in Figure 2.8 

As seen, there is a significant degree of disagreement between two classified maps for all 

wetland classes. For example, the dominant wetland classes obtained by RF are swamp 

and marsh wetlands. Whereas, the dominant wetland classes for CNN are bog and fen. As 

reported by field biologists participating during field data collection, bog and fen 

wetlands are dominant classes. This is attributed to the oceanic climate of the Avalon 

area facilitating extensive peatland formation (i.e., bog and fen) (Ecological Stratification 

Working Group (ESWG), 1995). The dominant non- wetland class is upland, which is 

defined as forested dry land. Notably, the classified map produced by CNN is realistic 

and demonstrates the detailed spatial distribution of all land cover classes presented in the 

study area. For example, the classified map shows the predominance of bog and upland 

classes, while marsh and swamp are less prevalent. These observations agree well with 

field notes recorded during field data collection. Confusion matrices for these classified 

maps are presented in Tables 2.2 and 2.3. 
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(a) (b) 

  
(c) (d) 

Figure 2-8 (a) The training and (b) testing polygons followed by the classification 

maps obtained by (c) CNN using three input features and (d) RF using eight input 

features. 
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As seen, the classification overall accuracy of about 95% is achieved using CNN by 

incorporating three input features. This is of great significance taking into account the 

complexity of similar wetland classes and the large number of pixels, which were 

correctly classified. In particular, all land cover classes have high producer’s accuracies 

of greater than 77%, excluding the fen class. More precisely, bog is correctly classified in 

89% of cases, fen in 62% of cases, swamp in 78% of cases, marsh in 77% of cases, and 

shallow-water in 95% of cases. As seen, there is a small degree of confusion between 

different land cover classes indicating small omission and commission errors in most 

cases. However, the fen class had the lowest producer’s accuracy meaning the largest 

omission error for this class. Particularly, the fen wetland was erroneously classified as 

bog and upland classes in some cases.  This could be due to the relatively small amount 

of training samples for the fen class and similar characteristics of bog and fen, both of 

which caused a great degree of confusion. In particular, bog and fen classes are both 

peatlands dominated by Sphagnum and graminoid species, respectively, with very similar 

ecological characteristics. Furthermore, these classes were found to be difficult to 

distinguish by ecological experts familiar with wetlands in the study area. 

Although the classification overall accuracy of about 79% was obtained using RF, all 

wetland classes had relatively low producer’s accuracies. In particular, bog is only 

correctly classified in 50% of cases, fen in 44% of cases, swamp in 60% of cases, marsh 

in 64% of cases, and shallow-water in only 31% of cases. Thus, the overall accuracy of 

79% is because of the high classification accuracy for non-wetland classes, such as deep-

water and urban classes. The confusion matrix illustrates a high degree of confusion 

between wetland and non-wetland classes. In particular, there is a high degree of 
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confusion between upland and all wetland classes using the RF classifier. Confusion also 

occurs between herbaceous wetland classes (i.e., bog, fen, and marsh) indicating a high 

degree of omission for these classes. Other wetland studies reported the great capacity of 

RF for wetland mapping using a large number of input features such as multi-temporal 

polarimetric and optical features (Mahdianpari et al., 2017). Thus, it was concluded that 

the efficiency of the RF classifier for complex land cover mapping greatly depends on the 

number of input features. A comparison between two confusion matrices demonstrated a 

significant improvement by applying CNN relative to RF. Specifically, CNN was about 

39%, 18%, 18%, 13%, and 63% more accurate than RF to classify bog, fen, swamp, 

marsh, and shallow-water classes, respectively. CNN also outperformed RF in 

discriminating non-wetland classes, wherein all classes were correctly classified in more 

than 95% of cases. 

Table 2-2 Confusion matrix of CNN: overall accuracy: 94.82%, kappa coefficient: 

0.93 

  Reference Data 

 Class Bog Fen Swamp Marsh Upland Urban Shallow-
water 

Deep-
water Tot. User 

Acc. 

Cl
as

sif
ie

d 
D

at
a  

Bog 15237 1810 4 11 1320 1183 0 0 19565 77.88 
Fen 256 7094 26 920 436 8 54 0 8794 80.67 

Swamp 203 128 7623 156 978 403 0 0 9491 80.32 
Marsh 125 71 773 4015 168 86 0 0 5238 76.65 
Upland 1259 2187 1259 59 85114 0 0 0 89878 94.70 
Urban 0 21 0 0 931 66173 0 0 67125 98.58 

Shallow-
Water 

0 0 0 0 0 0 5461 218 5679 96.16 

Deep-
water 

0 0 0 0 0 0 228 88966 89194 99.74 

 Total 17080 11311 9685 5161 88947 67853 5743 89184 294964  

 Prod. 
Acc. 

89.21 62.72 78.71 77.80 95.69 97.52 95.09 99.76   
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Table 2-3 Confusion matrix of RF: overall accuracy: 79.11%, kappa coefficient: 0.73 

  Reference Data 

 Class Bog Fen Swamp Marsh Upland Urban Shallow-
water 

Deep-
water Tot. User 

Acc. 
Cl

as
sif

ie
d 

D
at

a  

Bog 11620 2457 249 691 4337 17 194 0 19565 59.39 
Fen 1950 5907 108 649 180 0 0 0 8794 67.17 

Swamp 749 57 6234 376 1996 79 0 0 9491 65.68 
Marsh 188 192 51 4392 291 17 107 0 5238 83.85 
Upland 7913 3768 3106 39 59981 15071 0 0 89878 66.74 
Urban 775 818 591 97 4916 59928 0 0 67125 89.28 

Shallow-
Water 

11 8 0 516 0 0 3661 1483 5679 64.47 

Deep-
water 

0 0 0 24 0 0 7559 81611 89194 91.50 

 Total 23206 13207 10339 6784 71701 75112 11521 83094 294964  
 Prod. 

Acc. 
50.07 44.73 60.30 64.74 83.65 79.78 31.78 98.22   

 

2.4 Conclusions 

In this study, the capability of a state-of-the-art classification tool, deep convolutional 

neural network (CNN), was investigated for wetland classification. In particular, we 

examined the potential of a pre-existing convolutional neural network, namely AlexNet, 

for mapping wetland complexes using RapidEye optical imagery in a study area located 

in the Avalon Peninsula, Newfoundland and Labrador, Canada. The overall classification 

accuracy obtained by CNN was compared with Random Forest (RF), suggesting the 

superiority of CNN relative to RF even by incorporating a smaller number of input 

features. In particular, an overall classification accuracy of 94.82% was achieved using 

CNN, demonstrating an improvement of about 16% compared to the RF classifier for all 

land cover types. Moreover, an average improvement of about 30% was attained for 

wetland classes when CNN was employed. The latter observation suggests the 

significance of incorporating high-level spatial features into the classification scheme to 

reduce confusion between spectrally similar wetland classes. 
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The novel classification framework employed in this study, along with the fine spatial 

resolution map, obtained by CNN, can be used as baseline information and tool for 

wetland mapping while significantly facilitating the application of CNN for classification 

of satellite remote sensing data. Furthermore, the use of other very deep CNNs, such as 

DenseNet, VGG, Xception, and InceptionResNet for classifying wetland complexes 

offers a potential avenue for further research. This will be particularly feasible by 

employing advanced cloud processing tools to accelerate the feature learning process.
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3 Chapter 3: Deep Convolutional Neural Networks for Complex Land 

Cover Mapping Using Multispectral Remote Sensing Imagery 

Abstract 

Despite recent advances in deep Convolutional Neural Networks in various computer 

vision tasks, their potential for classification of multispectral remote sensing images has 

not been thoroughly explored. In particular, the applications of deep CNNs using optical 

remote sensing data have focused on the classification of very high-resolution aerial and 

satellite data, owing to the similarity of these data to the large datasets in computer 

vision. Accordingly, this study presents a detailed investigation of state-of-the-art 

machine learning tools for classification of complex wetland classes using RapidEye 

multispectral imagery. Specifically, we examine the capacity of seven well-known deep 

convnets, namely DenseNet121, InceptionV3, VGG16, VGG19, Xception, ResNet50, 

and InceptionResNetV2 for wetland mapping in Canada. In addition, the classification 

results obtained from deep CNNs are compared with those based on conventional 

machine learning tools, including Random Forest and Support Vector Machine, to further 

evaluate the efficiency of the former to classify wetlands. The results illustrate that the 

full-training of convnets using five spectral bands outperforms the other strategies for all 

convnets. InceptionResNetV2, ResNet50, and Xception are distinguished as the top three 

convnets providing state-of-the-art classification accuracies of 96.17%, 94.81%, and 

93.57%, respectively. The classification accuracies obtained using SVM and RF are 

74.89% and 76.08%, respectively, considerably inferior relative to CNNs. Importantly, 

InceptionResNetV2 is consistently found to be superior compared to all other convnets, 
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suggesting the integration of Inception and ResNet modules is an efficient architecture 

for classifying complex remote sensing scenes such as wetlands. 

3.1 Introduction 

Wetlands are transitional zones between terrestrial and aquatic systems that support a 

natural ecosystem of a variety of plant and animal species, adapted to wet conditions 

(Tiner, Lang, & Klemas, 2015). Flood- and storm-damage protection, water quality 

improvement and renovation, greenhouse gas reduction, shoreline stabilization, and 

aquatic productivity are only a handful of the advantages associated with wetlands. 

Unfortunately, wetlands have undergone changes due to natural processes, such as 

changes in temperature and precipitation caused by climate change, coastal plain 

subsidence and erosion, as well as human-induced disturbances such as industrial and 

residential development, agricultural activities, and runoff from lawns and farms (Tiner et 

al., 2015). 

Knowledge of the spatial distribution of these valuable ecosystems is crucial in order to 

characterize ecosystem processes and to monitor the subsequent changes over time ( 

Mahdianpari, Salehi, Mohammadimanesh, & Motagh, 2017). However, the remoteness, 

vastness, seasonally dynamic nature, and inaccessibility of most wetland ecosystems 

make conventional methods of data acquisition (e.g., surveying) labor-intensive and 

costly (Evans & Costa, 2013). Fortunately, remote sensing, as a cost- and time-efficient 

tool, addresses the limitations of conventional techniques by providing valuable 

ecological data to characterize wetland ecosystems and to monitor land cover changes ( 

Mahdianpari et al., 2018). Optical remote sensing data have shown to be promising tools 
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for wetland mapping and monitoring. This is because biomass concentration, leaf water 

content, and vegetation chlorophyll —all important characteristics of wetland 

vegetation— can be determined using optical satellite images (Adam, Mutanga, & 

Rugege, 2010). In particular, optical remote sensing sensors collect spectral information 

of ground targets at various points of the electromagnetic spectrum, such as visible and 

infrared, which is of great benefit for wetland vegetation mapping (Adam et al., 2010). 

Therefore, several studies reported the success of wetland mapping using optical satellite 

imagery (Friedl & Brodley, 1997; Frohn, Autrey, Lane, & Reif, 2011; Hestir et al., 2008; 

Mahdianpari, Salehi, Mohammadimanesh, & Brisco, 2017). 

Despite the latest advances in remote sensing tools, such as the availability of high spatial 

and temporal resolution satellite data and object-based image analysis tools (Blaschke, 

2010), the classification accuracy of complex land cover, such as wetland ecosystems, is 

insufficient (Mahdianpari et al., 2018). This could be attributed to the spectral similarity 

of wetland vegetation types, making the exclusive use of spectral information insufficient 

for the classification of heterogeneous land cover. In addition, several studies reported the 

significance of incorporating both spectral and spatial information for land cover 

mapping (Tiner et al., 2015; Zhao & Du, 2016). Thus, spatial features may augment 

spectral information and thereby contribute to the success of complex land cover 

mapping. Accordingly, several experiments were carried out to incorporate both spectral 

and spatial features into a classification scheme. These studies were based on the Markov 

Random Field (MRF) model (Jackson & Landgrebe, 2002), the Conditional Random 

Field (CRF) model (Zhong & Wang, 2010), and Composite Kernel (CK) methods (Zhong 

& Wang, 2010). However, in most cases, the process of extracting a large number of 
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features, called the feature engineering process (Chollet, 2017), for the purpose of 

supervised classification is time intensive, and requires broad and profound knowledge to 

extract amenable features (LeCun, Bengio, & Hinton, 2015). Furthermore, classification 

based on hand-crafted spatial features primarily relies on low-level features, resulting in 

inadequate classification results in most cases and a poor capacity for generalization 

(Zhao & Du, 2016). 

Most recently, Deep Learning (DL), a state-of-the-art machine learning tool, has been 

placed in the spotlight in the field of computer vision and, subsequently, in remote 

sensing (LeCun et al., 2015). This is because these advanced machine learning algorithms 

address the primary limitations of the conventional shallow-structured machine learning 

tools, such as Support Vector Machine (SVM) and Random Forest (RF; Ball, Anderson, 

& Chan, 2017). Deep Belief Net (DBN; Hinton, Osindero, & Teh, 2006), Stacked Auto-

Encoder (SAE; Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010), and deep 

Convolutional Neural Network (CNN; Evans & Costa, 2013; Krizhevsky, Sutskever, & 

Hinton, 2012; Mahdianpari et al., 2017; Szegedy et al., 2014) are current deep learning 

models, of which the latter is most well-known (Patterson & Gibson, 2017). Importantly, 

CNN has led to a series of breakthroughs in several remote sensing applications, such as 

classification (Zhong & Wang, 2010), segmentation (Zhong & Wang, 2010), and object 

detection (X. Chen, Xiang, Liu, & Pan, 2014), due to its superior performance in a 

variety of applications relative to shallow-structured machine learning tools. CNNs are 

characterized by multi-layered interconnected channels, with a high capacity for learning 

the features and classifiers from data spontaneously given their deep architecture, their 

capacity to adjust parameters jointly, and this ability to classify simultaneously 
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(Nogueira, Penatti, & dos Santos, 2017). One of the ubiquitous characteristics of such a 

configuration is its potential to encode both spectral and spatial information into the 

classification scheme in a completely automated workflow (Nogueira et al., 2017). 

Accordingly, the complicated, brittle, and multistage feature engineering procedure is 

replaced with a simple end-to-end deep learning workflow (Chollet, 2017). 

Notably, there is a different degree of abstraction for the data within multiple 

convolutional layers, wherein low-, mid-, and high-level information is extracted in a 

hierarchical learning framework at the initial, intermediate, and final layers, respectively 

(Nogueira et al., 2017). This configuration omits the training process from scratch in 

several applications since the features in the initial layers are generic filters (e.g., edge) 

and, accordingly, are less dependent on the application. However, the latest layers are 

related to the final application and should be trained according to the given data and 

classification problem. This also addresses the poor generalization capacity of shallow-

structured machine learning tools, which are site- and data-dependent, suggesting the 

versatility of CNNs (Chollet, 2017). 

Although the advent of CNN dates back to as early as the 1980s, when LeCun designed a 

primary convolutional neural network known as LeNet to classify handwritten digits, it 

gained recognition and was increasingly applied around 2010 (LeCun, Bottou, Bengio, & 

Haffner, 1998). This is attributable to the advent of more powerful hardware, larger 

datasets (e.g., ImageNet; Deng et al., 2009), and new ideas, which consequently 

improved network architecture (Szegedy et al., 2014). The original idea of deep CNNs 

(LeCun et al., 1998) has been further developed by Krizhevsky and his colleagues, who 

designed a breakthrough CNN, known as AlexNet, a pioneer of modern deep CNNs with 
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multiple convolutional and max-pooling layers, which provides deeper feature-learning at 

different spatial scales (Krizhevsky et al., 2012a). Subsequent successes have been 

achieved since 2014, when VGG (Simonyan & Zisserman, 2014), GoogLeNet (i.e., 

Inception network; Szegedy et al., 2014), ResNet (He, Zhang, Ren, & Sun, 2016), and 

Xception (François Chollet, 2016) were introduced in the ImageNet Large-Scale Visual 

Recognition Challenge (ILSVRC). 

The intricate tuning process, heavy computational burden, high tendency of overfitting, 

and the empirical nature of model establishment are the main limitations associated with 

deep CNNs (Nogueira et al., 2017). Although some research has argued that all deep 

learning methods have a black-box nature, it is not completely true for CNN (Chollet, 

2017). This is because the features learned by CNNs can be visualized, thereby providing 

illustrations of concepts. There are three different strategies for employing current CNNs: 

a full-training network, a pre-trained network as a feature extractor, and fine-tuning of a 

pre-trained network. In the first case, a network is trained from scratch with random 

weights and biases to extract particular features for the dataset of interest. However, the 

limited amount of training samples constrains the efficiency of this technique due to the 

overfitting problem. The other two strategies are more useful when a limited amount of 

training samples is available (Hu, Xia, Hu, & Zhang, 2015; Nogueira et al., 2017). 

In the case of limited amount of training data, a stacked autoencoder (SAE) is also useful 

to learn the features from a given dataset using an unsupervised learning network (G. 

Hinton & Salakhutdinov, 2006). In such a network, the deconstruction error between the 

input data at the encoding layer and its reconstruction at the decoding layer is minimized 

(Zhang, Zhang, & Kumar, 2016). SAE networks are characterized by a relatively simple 
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structure relative to deep CNNs and they have a great capacity for fast image 

interpretation. In particular, they convert raw data into more abstract representation using 

a simple non-linear model and integrate features using optimization algorithm. This 

results in a substantial decrease of the redundant information between the features while 

achieving a strong generalization capacity (Kang, Ji, Leng, Xing, & Zou, 2017). 

Despite recent advances in deep CNNs, their applications in remote sensing have been 

substantially limited to the classification of very high spatial resolution aerial and satellite 

imagery from a limited number of well-known datasets, owing to the similar 

characteristics of these data to those used in object recognition in computer vision. 

However, acquiring high spatial resolution imagery may be difficult, especially on a large 

scale. Accordingly, less research has been carried out on the classification of medium and 

high spatial resolution satellite imagery in different study areas. Furthermore, the 

capacity of CNNs has been primarily investigated for the classification of urban areas, 

whereas there is limited research examining the potential of state-of-the-art classification 

tools for complex land cover mapping. Complex land cover units, such as wetland 

vegetation, are characterized by high intra- and low inter-class variance, resulting in 

difficulties in their discrimination relative to typical land cover classes. Thus, an 

environment with such highly heterogeneous land cover is beneficial for evaluating the 

capacity of CNNs for the classification of remote sensing data. Finally, the minimal 

application of well-known deep CNNs in remote sensing may be due to the limitation of 

input bands. Specifically, these convnets are designed to work with three input bands 

(e.g., Red, Green, and Blue), making them inappropriate for most remote sensing data. 
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This indicates the significance of developing a pipeline compatible with multi-channel 

satellite imagery. 

The main goals of this study were, therefore, to: (1) eliminate the limitation of the 

number of input bands by developing a pipeline in Python with the capacity to operate 

with multi-layer remote sensing imagery; (2) examine the power of deep CNNs for the 

classification of spectrally similar wetland classes; (3) investigate the generalization 

capacity of existing CNNs for the classification of multispectral satellite imagery (i.e., a 

different dataset than those they were trained for); (4) explore whether full-training or 

fine-tuning is the optimal strategy for exploiting the pre-existing convnets for wetland 

mapping; and (5) compare the efficiency of the most well-known deep CNNs, including 

DenseNet121, InceptionV3, VGG16, VGG19, Xception, ResNet50, and 

InceptionResNetV2 for wetland mapping in a comprehensive and elaborate analysis. 

Thus, this study contributes to the use of the state-of-the-art classification tools for 

complex land cover mapping using multispectral remote sensing data. 

3.2 Materials and Methods 

3.2.1 Deep Convolutional Neural Network 

CNNs are constructed by multi-layer interconnected neural networks, wherein powerful 

low-, intermediate-, and high-level features are hierarchically extracted. A typical CNN 

framework has two main layers –the convolutional and pooling layers– that, together, are 

called the convolutional base of the network (Chollet, 2017). Some networks, such as 

AlexNet and VGG, also have fully connected layers. The convolutional layer has a 

filtering function and extracts spatial features from the images. Generally, the first 
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convolutional layers extract low-level features or small local patterns, such as edges and 

corners, while the last convolutional layers extract high-level features, such as image 

structures. This suggests the high efficiency of CNNs for learning spatial hierarchical 

patterns. Convolutional layers are usually defined using two components: the convolution 

patch size (e.g., 3x3 or 5x5) and the depth of the output feature map, which is the number 

of filters (e.g., 32 filters). In particular, a rectangular sliding window with a fixed-size 

and a pre-defined stride is employed to produce convoluted feature maps using a dot 

product between the weights of the kernel and a small region of the input volume (i.e., 

the receptive field). A stride is defined as a distance between two consecutive 

convolutional windows. A stride of one is usually applied in convolutional layers since 

larger stride values result in down-sampling in feature maps (Chollet, 2017). A feature 

map is a new image generated by this simple convolution operation and is a visual 

representation of the extracted features. Given the weight-sharing property of CNNs, the 

number of parameters is significantly reduced compared to those of a fully connected 

layer, since all the neurons across a particular feature map share the same parameters 

(i.e., weights and biases). 

A non-linearity function, such as the Rectified Linear Unit (ReLU; Krizhevsky, 

Sutskever, & Hinton, 2012b), is usually applied as an elementwise nonlinear activation 

function to each component in the feature map. The ReLU function is advantageous 

relative to conventional activation functions used in traditional neural networks, such as 

the tanh or sigmoid functions, for adding non-linearity to the network (Krizhevsky, 

Sutskever, & Hinton, 2012b). The ReLU significantly accelerates the training phase 

relative to the conventional functions with gradient descent. This is because of the so-
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called vanishing gradient problem, wherein the derivatives of earlier functions (e.g., 

sigmoid) are extremely low in the saturating region and, accordingly, the updates for the 

weights nearly vanish. 

Due to the presence of common pixels in each window, several feature maps may be 

produced that are very similar, suggesting redundant information. Therefore, pooling 

layers are used after each convolutional layer to decrease the variance of the extracted 

features using simple operations such as the maximizing or averaging operations. The 

max- and average-pooling layer determine the maximum or mean values, respectively, 

using a fixed-size sliding window and a pre-defined stride over the feature maps and, 

therefore, are conceptually similar to the convolutional layer. In contrast to convolutional 

layers, a stride of two or larger is applied in the pooling layers to down-sample the 

feature maps. Notably, the pooling layer, or the sub-sampling layer, generalizes the 

output of the convolutional layer into a higher level and selects the more robust and 

abstract features for the next layers. Thus, the pooling layer decreases computational 

complexity during the training stage by shrinking the feature maps. 

As mentioned, some networks may have fully connected layers before the classifier layer 

that connects the output of several stacked convolutional and pooling layers to the 

classifier layer. Overfitting may arise in the fully connected layer because it occupies a 

large number of parameters. Thus, the dropout technique, an efficient regularization 

technique, is useful to mitigate or decrease problems associated with overfitting. During 

training, this technique randomly drops some neurons and their connections across the 

network, which prevents neurons from excess co-adaptation and contributes to 

developing more meaningful independent features (Krizhevsky et al., 2012a). The last 
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layer is a classification layer, which determines the posterior probabilities for each 

category. A Softmax classifier, also known as a normalized exponential, is the most 

commonly used classifier layer among the deep learning community in the image field. 

Stochastic Gradient Descent (SGD) optimization in a backpropagation workflow is 

usually used to train CNNs and to compute adjusting weights. This is an end-to-end 

learning process, from the raw data (i.e., original pixels) to the final label, using a deep 

CNN. 

3.2.1.1 VGG 

VGG network (Simonyan & Zisserman, 2014), the runner-up of the localization and 

classification tracks of the ILSVRC-2014 competition, is characterized by a deep network 

structure with a small convolutional filter of 3x3 compared to its predecessor, AlexNet 

(Krizhevsky et al., 2012a). VGG-VD group introduced six deep CNNs in the 

competition, among which two were more successful than the others, namely VGG16 and 

VGG19. The VGG16 consists of 13 convolutional layers and three fully connected 

layers, while the VGG19 has 16 convolutional layers and three fully connected layers. 

Both networks use a stack of small convolutional filters of 3x3 with stride 1, which are 

followed by multiple non-linearity layers (see Figure 3.1). This increases the depth of the 

network and contributes to learning more complex features. The impressive results of 

VGG revealed that the network depth is an important factor in obtaining high 

classification accuracy (Hu et al., 2015). 
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(a) 

 

(b) 

Figure 3-1 Schematic diagram of (a) VGG16 and (b) VGG19 models. 

3.2.1.2 Inception 

GoogLeNet, the winner of the classification and detection tracks of the ILSVRC-2014 

competition, is among the first generation of non-sequential CNNs. In this network, both 

depth (i.e., the number of levels) and width (i.e., the number of units at each level), were 

increased without causing computational strain (Szegedy et al., 2014). GoogLeNet is 

developed based on the idea that several connections between layers are ineffective and 

have redundant information due to the correlation between them. Accordingly, it uses an 

“Inception module”, a sparse CNN, with 22 layers in a parallel processing workflow and 

benefits from several auxiliary classifiers within the intermediate layers to improve the 

discrimination capacity in the lower layers. In contrast to conventional CNNs such as 

AlexNet and VGG, wherein either a convolutional or a pooling operation can be used at 

each level, the Inception module could benefit from both at each layer. Furthermore, 
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filters (convolutions) with varying sizes are used at the same layer, providing more 

detailed information and extracting patterns with different sizes. Importantly, a 1x1 

convolutional layer, the so-called bottleneck layer, was employed to decrease both the 

computational complexity and the number of parameters. To be more precise, 1x1 

convolutional layers were used just before a larger kernel convolutional filter (e.g., 3x3 

and 5x5 convolutional layers) to decrease the number of parameters to be determined at 

each level (i.e., the pooling feature process). In addition, 1x1 convolutional layers make 

the network deeper and add more non-linearity by using ReLU after each 1x1 

convolutional layer. In this network, the fully connected layers are replaced with an 

average pooling layer. This significantly decreases the number of parameters since the 

fully connected layers include a large number of parameters. Thus, this network is able to 

learn deeper representations of features with fewer parameters relative to AlexNet while 

it is much faster than VGG (François Chollet, 2016). Figure 3.2 illustrates a compressed 

view of InceptionV3 employed in this study. 

 

Figure 3-2 Schematic diagram of InceptionV3 model (compressed view). 



 

  

 

60 

3.2.1.3 ResNet 

ResNet, the winner of the classification task in the ILSVRC-2015 competition, is 

characterized by a very deep network with 152 layers (He et al., 2016). However, the 

main problems associated with the deep network are difficulty in training, high training 

error, and the vanishing gradient that causes learning to be negligible at the initial layers 

in the backpropagation step. The deep ResNet configuration addresses the vanishing 

gradient problem by employing a deep residual learning module via additive identity 

transformations. Specifically, the residual module uses a direct path between the input 

and output and each stacked layer fits a residual mapping rather than directly fitting a 

desired underlying mapping (He et al., 2016). Notably, the optimization is much easier on 

the residual map relative to the original, unreferenced map. Similar to VGG, 3x3 filters 

were mostly employed in this network; however, ResNet has fewer filters and less 

complexity relative to the VGG network (He et al., 2016; Mahdianpari et al., 2018). 

Figure 3.3 illustrates a compressed view of ResNet, which used in this study. 

 

Figure 3-3 Schematic diagram of ResNet model (compressed view). 
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3.2.1.4 Xception 

Xception network is similar to inception (GoogLeNet), wherein the inception module has 

been substituted with depth-wise separable convolutional layers (François Chollet, 2016). 

Specifically, Xception’s architecture is constructed based on a linear stack of a depth-

wise separable convolution layer (i.e., 36 convolutional layers) with linear residual 

connections (see Figure 3.4). There are two important convolutional layers in this 

configuration: a depth-wise convolutional layer (Sifre & Mallat, 2013), where a spatial 

convolution is carried out independently in each channel of input data, and a pointwise 

convolutional layer, where a 1x1 convolutional layer maps the output channels to a new 

channel space using a depth-wise convolution. 

 

Figure 3-4 Schematic diagram of Xception model (compressed view). 

3.2.1.5 InceptionResNetV2 

This network is constructed by integrating the two most successful deep CNNs, ResNet 

(He et al., 2016) and Inception (Szegedy et al., 2014), wherein batch-normalization is 

used only on top of the traditional layers rather than on top of the summations. In 

particular, the residual modules are employed in order to allow an increase in the number 
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of Inception blocks and, accordingly, an increase of network depth. As mentioned earlier, 

the most pronounced problem associated with very deep networks is the training phase, 

which can be addressed using the residual connections (He et al., 2016). The network 

scales down the residual as an efficient approach to address the training problem when a 

large number of filters (greater than 1000 filters) is used in the network. Specifically, the 

residual variants experience instabilities and the network cannot be trained when the 

number of filters exceeds 1000. Therefore, scaling the residual contributes to stabilizing 

network training (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017). Figure 3.5 illustrates a 

compressed view of InceptionResNetV2 used in this study. 

 

Figure 3-5 Schematic diagram of InceptionResNetV2model (compressed view). 

3.2.1.6 DenseNet 

This network is also designed to address the vanishing gradient problem arising from the 

network depth. Specifically, all layers’ connection architectures are employed to ensure 

maximum flow of information between layers (Huang, Liu, Van Der Maaten, & 

Weinberger, 2017). In this configuration, each layer acquires inputs from all previous 

layers and conveys its own feature-maps to all subsequent layers. The feature maps are 
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concatenated at each layer to pass information from preceding layers to the subsequent 

layers. This network architecture removes the necessity to learn redundant information 

and accordingly, the number of parameters is significantly reduced (i.e., parameter 

efficiency). It is also efficient for preserving information owing to its all layers 

connection property. Huang et al. reported that the network performed very well for 

classifications with a small training data set and the overfitting is not a problem when 

DenseNet121 is employed (Huang et al., 2017). Figure 3.6 illustrates a compressed view 

of DenseNet employed in this study. 

 

Figure 3-6 Schematic diagram of DenseNet model (compressed view). 

3.2.2 Training 

3.2.2.1 Fine-tuning of a pre-trained network 

Fine-tuning of a pre-trained network is an optimal solution when a limited number of 

training samples are available. In this case, a fine adjustment is performed on the 

parameters of the top layers in a pre-trained network, while the first layers, representing 

general features, are frozen. Freezing is defined when weights for a layer or a set of 

layers are not updated during the training stage. Importantly, this approach benefits from 
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the parameters learned from a network that has been previously trained using a specific 

dataset and, subsequently, adjusts the parameters for the dataset of interest. Accordingly, 

fine-tuning adjusts the parameters of the reused model, making it more relevant to the 

dataset of interest. Fine-tuning can be performed for either all layers or the top layers of a 

pre-trained network; however, the latter approach is preferred (Chollet, 2017). This is 

because the first layers in convnets encode generic, reusable features, whereas the last 

layers encode more specific features. Thus, it is more efficient to fine-tune those specific 

features. Furthermore, fine-tuning of all layers causes overfitting due to the large number 

of parameters, which should be determined during such a processing (Chollet, 2017). As 

such, in this study, fine-tuning of pre-existing convnets was carried out only on the top 

three layers. These may be either only fully connected layers (e.g., VGG) or both fully 

connected and convolutional layers (e.g., Xception). Accordingly, the fine-tuning of the 

top three layers allowed us to compare the efficiency of fine-tuning for both fully 

connected and convolutional layers. 

Notably, the number of input bands for these CNNs is limited to three because they have 

been trained using the ImageNet dataset; however, RapidEye imagery has five bands. 

Therefore, a band selection technique was pursued to determine three uncorrelated bands 

of RapidEye imagery most appropriate for use in CNNs. The results of this analysis 

demonstrated that green, red, and near-infrared bands contain the least redundant 

information and thus, they were selected for fine-tuning of CNNs in this study. 
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3.2.2.2 Full-training 

Full-training is feasible when a large number of training samples is available to aid in 

converging the network (Nogueira et al., 2017). In this case, there is a full control on the 

network parameters and, additionally, more relevant features are produced since the 

network is specifically tuned with the dataset of interest. However, the full-training of a 

network from scratch is challenging due to computational and data strains, leading to 

overfitting problems. Some techniques, such as dropout layers and data augmentation and 

normalization, are useful for mitigating the problems that arise from overfitting. In 

particular, data augmentation, introduced by Krizhevsky in 2012, is a process that 

produces more training samples from existing training data using a number of random 

transformations (e.g., image translation and horizontal reflection; Krizhevsky et al., 

2012a). The main goal is that the model will never look at the same image twice. In 

particular, the model explores more aspects of the data, which contributes to a better 

generalization (Chollet, 2017). 

Notably, there are two different categories in the case of full-training of convnets. In the 

first category, a new CNN architecture is fully designed and trained from scratch. In this 

case, the number of convolutional, and pooling layers, neurons, the type of activation 

function, the learning rate, and the number of iterations should be determined. 

Conversely, the second strategy benefits from a pre-existing architecture and full-training 

is only employed using a given dataset. In the latter case, the network architecture and the 

number of parameters remain unchanged. 

In this study, the second strategy was employed. In particular, we examined the potential 

of a number of pre-existing networks (e.g., VGG, Inception, and etc.,) for classification 
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of complex land cover when they are trained from scratch using a new dataset 

substantially different from those (e.g., ImageNet) for which it was originally trained. 

Notably, full-training was employed for both three and five bands of RapidEye imagery. 

The full-training of three bands was performed to make the results comparable with those 

of the fine-tuning strategy. 

3.2.3 Study area and satellite data 

The study area is located in the northeast portion of the Avalon Peninsula, Newfoundland 

and Labrador, Canada. Figure 3.7 shows the geographic location of the study area. Land 

cover in the study area comprises a wide variety of wetland classes categorized by the 

Canadian Wetland Classification System (CWCS), including bog, fen, marsh, swamp, 

and shallow water (Tiner et al., 2015). Wetlands are characterized as complex species 

with high intra-class variance and low inter-class variance. Additionally, these classes are 

extremely different from typical objects found in the ImageNet dataset. Such a diverse 

ecological ecosystem is an ideal setting in which the efficiency and robustness of the 

state-of-the-art classification algorithms in a comprehensive and comparative study may 

be examined. Other land-cover classes found in the study area include urban, upland, and 

deep water classes. 
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Figure 3-7 A true colour composite of RapidEye optical imagery (bands 3, 2, and 1) 

acquired on June 18, 2015, illustrating the geographic location of the study area. The red 

rectangle, the so-called test-zone, was selected to display the classified maps obtained 

from different approaches. Note that the training samples within the rectangle were 

excluded during the training stage for deep CNNs. 

Figure 3.8 illustrates ground photo examples of land cover classes in this study. The 

characteristics of all land cover classes in this test site are presented in Table 3.1. 
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(a) (b) (c) (d) 

  

 

 

(e) (f) (g) (h) 
Figure 3-8 Ground reference photos showing land cover classes in the study area: (a) 

bog, (b) fen, (c) marsh, (d) swamp, (e) shallow water, (f) urban, (g) deep water, and (h) 

upland. 

Two level 3A multispectral RapidEye images with a spatial resolution of five meters, 

acquired on June 18 and October 22, 2015, were used for classification in this study. This 

imagery has five spectral bands, namely blue (440 – 510 nm), green (520 – 590 nm), red 

(630 – 685 nm), red edge (690 – 730 nm), and near-infrared (760 – 850 nm). 

3.2.4 Training, validation, and testing data 

Field data were acquired for 257 ground sites in the summer and fall of 2015, 2016, and 

2017 by collecting Global Positioning System (GPS) points at each site. For reference 

data preparation, reference polygons were sorted by size and alternately assigned to 

testing and training groups. This resulted in both the testing and training containing equal 
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numbers of small and large wetlands polygons to allow for similar pixel counts and to 

account for the high variation of intra-wetland size. 

Importantly, five tiles of RapidEye optical images were mosaicked to cover the whole 

study region (see Figure 3.7). The training polygons within the red rectangle (i.e., one tile 

of the RapidEye optical imagery), the so-called test-zone, were removed for training of 

deep CNNs. In particular, all patches within the test-zone were only used for testing (i.e., 

accuracy assessment) of CNNs. Of the training sample data, 80% and 20% were used for 

training and validation, respectively. Notably, both the training and validation were 

carried out using the first RapidEye image (June 18, 2015); however, the testing was 

applied only to the second RapidEye image (October 22, 2015), within the test-zone (see 

Figure 3.7, the red rectangle), to perform the robust classification accuracy assessment. 

Accordingly, the training and testing samples were obtained from independent polygons 

from distinct geographic regions using satellite imagery acquired at different times. This 

procedure prevents information leak from the testing dataset to the model by employing 

two spatially and geographically independent samples for training and testing. 

3.2.5 Experiment setup 

A multispectral satellite image in three dimensions is represented as m×n×h, a 3D tensor, 

where m and n indicate the height and width of the image, respectively, and h 

corresponds to the number of channels. On the other hand, convnets require a 3D tensor 

as input and, accordingly, a patch-based labeling method was used in this study to be 

aligned with the inherent of CNNs. Using this approach, the multispectral image was 

decomposed into patches, which have both spectral and spatial information for a given 
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pixel, and a class label is assigned to the center of each patch (Makantasis, Karantzalos, 

Doulamis, & Doulamis, 2015). 

An optimal patch size was determined using a trial-and-error procedure by taking into 

account the spatial resolution of 5m for the input image and the contextual relationship of 

the objects (Huang et al., 2017). In particular, different patch sizes of 5, 10, 15, 20, 25, 

30, 35, and 40 were examined and the patch size of 30 was found to be an optimal value 

that extracts spatial local correlation within a given neighborhood and contains sufficient 

information to generate a specific distribution for each object in the image. Thus, we 

obtained 3D tensors with dimensions of either 30x30x5 (in the case of using 5 

multispectral bands) or 30x30x3 (in the case of using 3 multispectral bands), which have 

both spatial and spectral information at a given location. 

In the patch-based CNN, a particular class label is assigned to the given patch when a 

small rectangle in the center of that patch completely covers a single object (Mnih, 2013). 

In this study, the training polygons were not rectangular, causing challenges during 

labeling when a patch contained more than one class. Within a given patch size of 30x30 

in this study, if an 8x8 rectangular covered only a single class (e.g., bog) the label of this 

patch was assigned to that class (bog). Conversely, when this small rectangular window 

(i.e., 8x8) covered more than one class (e.g., both bog and fen), this patch was removed 

and excluded from further processing. Thus, the selected patches for the training of 

convnets cover more than 50% of the object of interest and overcame the problem of 

edges that arise from multiple objects within a single patch. 

The convnets used in this study include VGG16, VGG19, InceptionV3, Xception, 

DenseNet121, ResNet50, and InceptionResNetV2. The parameters of original deep 
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architecture were maintained during both fine-tuning and full-training. However, a 

learning rate of 0.01 and decay rate of 10-4 were selected for full-training and fine-tuning 

experiments. The number of iterations was set to be 30,000 and 100,000 for fine-tuning 

and full-training, respectively.  Cross-entropy and Stochastic Gradient Descent (SGD) 

were selected as the loss function and the optimization algorithm, respectively, during 

processing. As mentioned earlier, the patch size of 30 was selected and the images were 

resized to 224x224 for VGG16, VGG19, DenseNet121, and ResNet50, as well as 

229x299 for InceptionV3, Xception, InceptionResNetV2. All these experiments were 

implemented using Google’s library TensorFlow (Girija, 2016). Table 3.1 presents the 

parameter settings and the characteristics of the deep convnets examined in this study. 

In terms of computational complexity, the full-training strategy was more time intensive 

relative to the fine-tuning. This is because in the former, the network should be trained 

from scratch, wherein weights and biases are randomly initialized and, accordingly, more 

time and resources are required for the model to be convergent. Table 3.1 (last column) 

represents the processing time when full-training of five bands (from scratch) was carried 

out. In order to determine the most accurate processing time, each network was fed by 

800 images (100 images for each class) and the training time was measured. This 

procedure was repeated ten times and the average processing time for each network is 

presented in Table 3.1.  

All experiments were carried out on an Intel CPU i7 4790 k machine with a clock speed 

of 3.6 GHz and 32 GB RAM memory. A Nvidia GeForce GTX 1080 Ti GPU with 11 GB 

of memory under CUDA version 8.0 was also used in this study. 
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Table 3-1 The characteristics of deep convnets examined in this study. 

ConvNet models Parameters 
(millions) Depth Processing time1 

(s) 

VGG16 138 23 18 
VGG19 144 26 21 
InceptionV3 24 159 10 
ResNet50 26 168 12 
Xception 23 126 16 
InceptionResNetV2 56 572 19 
DenseNet121 8 121 14 

1 Note that the processing time is calculated for training of 800 images (100 images for 

each class). 

3.2.6 Evaluation metrices 

Three metrics, namely overall accuracy, Kappa coefficient, and F1-score were used to 

evaluate the quantitative performance of different classifiers. Overall accuracy represents 

the correctly classified areas for the whole image and is calculated by dividing the 

number of correctly classified pixels to the total number of pixels in the confusion matrix. 

The kappa coefficient determines the degree of agreement between reference data and 

classified map. F1-scoreis a quantitative metric useful for the imbalanced training data 

and determines the balance between precision and recall. Precision, also known as 

positive predictive values, illustrates how many detected pixels for each category are true. 

Recall, also known as sensitivity, indicates how many actual pixels in each category are 

detected. Accordingly, F1-score is formulated as follows (Banko, 1998): 
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒	 = 	2	 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

(3-1) 

Where: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (3-2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (3-3) 

3.3 Results and discussion 

In this study, fine-tuning was employed for pre-existing, well-known convnets, which 

were trained based on the ImageNet dataset. Figure 3.9 demonstrates the validation and 

training accuracies and loss in the case of fine-tuning of convnets using the three selected 

bands of the RapidEye images. 

  

Figure 3-9 Comparing well-known convnets in terms of training and validation 

accuracies and loss when fine-tuning strategy of three bands (i.e., Green, Red, and NIR) 

was employed for complex wetland mapping. 
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As shown, DenseNet121 has the lowest validation accuracy, followed by VGG16. 

Conversely, Xception network has the highest validation accuracy, followed by 

InceptioResNetV2. The two convnets, namely InceptionV3 and ResNet50, show 

relatively equal validation accuracies. Figure 3.10 shows the validation and training 

accuracies and loss in the case of training convnets from scratch when three bands of the 

RapidEye images were employed. 

  

Figure 3-10 Comparing well-known convnets in terms of training and validation 

accuracies and loss when networks were trained from scratch using three bands (i.e., 

Green, Red, and NIR) for complex wetland mapping. 

As shown, all convnets, excluding DensNet121, performed very well for wetland 

classification when validation accuracies are compared. In particular, three convnets, 

including InceptionResNetV2, Xception, and VGG19, have higher training and validation 

accuracies relative to the other well-known convnets. Conversely, DenseNet121 has the 

lowest validation accuracy, suggesting this network is less suitable for complex land 

cover mapping relative to the other convnets. Figure 3.11 shows the validation and 
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training accuracies and loss in the case of training convnets from scratch when five bands 

of the RapidEye images were employed. 

  

Figure 3-11 Comparing well-known convnets in terms of training and validation 

accuracies and loss when networks were trained from scratch using five bands for 

complex wetland mapping. 

The influence of increasing the number of bands is readily apparent by comparing 

Figures 3.10 and 3.11. Specifically, an increase of the number of bands improves the 

classification accuracy in all cases. For example, the validation accuracy for 

DenseNet121 was lower than 90% when only three bands were employed. However, by 

increasing the number of bands, the validation accuracy increased to 94% for 

DenseNet121. InceptionResNetV2 again exhibited the highest validation accuracy 

followed by ResNet50, Xception, and VGG19. Thus, the results indicate the significance 

of incorporating more spectral information for the classification of spectrally similar 

wetland classes (see Figures 3.10 and 3.11). 

One of the most interesting aspects of the results obtained in this study is that the full-

training strategy had better classification results relative to the fine-tuning in all cases. 
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Previous studies reported the superiority of fine-tuning relative to full-training for 

classification of very high resolution aerial imagery, although full-training was found to 

be more accurate relative to fine-tuning for classification of multi-spectral satellite data 

(Castelluccio, Poggi, Sansone, & Verdoliva, 2015). In particular, Nogueira et al. (2017) 

evaluated the efficiency of fine- and full-training strategies of some well-known deep 

CNNs (e.g., AlexNet and GoogLeNet) for classification of three well-known datasets, 

including UCMerced land-use (Castelluccio et al., 2015), RS19 dataset (Xia et al., 2010), 

and Brazilian Coffee Scenes (Penatti, Nogueira, & dos Santos, 2015). The ص strategy 

yielded a higher accuracy for the first two datasets, likely due to their similarity with the 

ImageNet dataset, which was originally used for training these deep CNNs. However, the 

full-training strategy had similar (Nogueira et al., 2017) or better results (Castelluccio et 

al., 2015) relative to the fine-tuning for the Brazilian Coffee Scenes. This is because the 

latter dataset is multi-spectral (SPOT), containing finer and more homogeneous textures, 

wherein the patterns are substantially visually overlapping and, importantly, different 

than everyday objects found within the ImageNet dataset (Nogueira et al., 2017). The 

results obtained from the latter dataset were similar to those found in our study. In 

particular, there is a significant difference between the original training datasets of these 

convnets and our dataset. Fine-tuning is an optimal solution when the edges and local 

structures within the dataset of interest are similar to those for which the networks were 

trained. However, the texture, colour, edges, and local structures are very different 

between wetland classes and typical objects found in the ImageNet dataset. Moreover, 

our dataset is intrinsically different than those used in the ImageNet dataset used for the 

pre-training. In particular, our dataset has five spectral bands, including red, green, blue, 
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red-edge, and near-infrared; all of them are essential for classifying spectrally similar 

wetland classes. However, the ImageNet dataset has only red, green, and blue bands 

(Castelluccio et al., 2015). This could explain the difference between validation 

accuracies obtained in the case of full-training and fine-tuning (see Figures 3.9 and 3.10). 

Nevertheless, the results obtained from fine-tuning are still very promising, taking into 

account the complexity of wetland classes and the high classification accuracy obtained 

in most cases. In particular, an average validation accuracy of greater than 86% was 

achieved in all cases (see Figure 3.9), suggesting the generality and versatility of pre-

trained deep convnets for the classification of various land cover types. It is also worth 

noting that the fine-tuning was employed on the top three layers of convnets in this study. 

However, the results could be different upon the inclusion of more layers in the fine-

tuning procedure. 

Having obtained the higher accuracies via full-training of five bands, the classification 

results obtained from this strategy were selected for further analysis. These classification 

results were also compared with results obtained from two conventional machine learning 

tools (i.e., SVM and RF). For this purpose, a total number of eight features, namely 

normalized difference vegetation index (NDVI), normalized difference water index 

(NDWI), Red-edge Normalized Difference Vegetation Index (ReNDVI), and all original 

spectral bands of the RapidEye image, were used as input features for both the SVM and 

RF classifiers. Table 3.2 represents the overall accuracy, Kappa coefficient, and F1-score 

using different CNNs (full-training of five bands), RF, and SVM for wetland 

classification in this study. 
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Table 3-2 Overall accuracies (%), Kappa coefficients, and F1-score (%) for wetland 

classification using different deep convnets (full-training of five bands), RF, and SVM. 

Methods Overall 
Accuracy 

Kappa 
coefficient F1 

SVM 74.89 0.68 53.58 
RF 76.08 0.70 58.87 
DenseNet121 84.78 0.80 72.61 
InceptionV3 86.14 0.82 75.09 
VGG16 87.77 0.84 78.13 
VGG19 90.94 0.88 84.20 
Xception 93.57 0.92 89.55 
ResNet50 94.81 0.93 91.39 
InceptionResNetV2 96.17 0.95 93.66 

 

As seen in Table 3.2, SVM and RF have the lowest classification accuracies and F1-score 

relative to all deep convnets in this study. Among deep convnets, InceptionResNetV2 has 

the highest classification accuracy of 96.17%, as well as F1-score of 93.66%, followed by 

ResNet50 and Xception with overall accuracies of 94.81% and 93.57%, as well as F1-

score of 91.39% and 89.55%, respectively. Conversely, DenseNet121 and InceptionV3 

have the lowest overall accuracies of 84.78% and 86.14%, as well as F1-score of 72.61% 

and 75.09%, respectively. VGG19 was found to be more accurate than VGG16 by about 

3% (OA), presumably due to the deeper structure of the former convnet. These results are 

in general agreement with Han, Feng, Wang, and Cheng (2017), which reported the 

superiority of ResNet relative to GoogLeNet (Inception), VGG16, and VGG19 for the 

classification of four public remote sensing datasets (e.g., UCM, WHU-RS19). 

InceptionResNetV2 benefits from an integration of two well-known deep convnets,  
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SVM (OA: 74.89%) RF (OA:76.08%) DenseNet121 (OA: 
84.78%) 

   
InceptionV3 (OA: 86.14%) VGG16 (OA: 87.77%) VGG19 (OA: 90.94%) 

   
Xception (OA: 93.57%) ResNet50 (OA: 94.81%) InceptionResNetV2 (OA: 

96.17%) 

 
  

Figure 3-12 Normalized confusion matrix of the wetland classification for different 

networks in this study (full-training of five optical bands), RF, and SVM. 

Inception and ResNet, which positively contribute to the most accurate result in this 

study. This also suggests that the extracted features from different convnets are 

supplementary and improve the model’s classification efficiency. The results 
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demonstrated that a greater efficiency of deeper networks (e.g., InceptionResNetV2) in 

extracting varying degrees of abstraction and representation within the hierarchical 

learning scheme (Chen, Lin, Zhao, Wang, & Gu, 2014). In particular, they are more 

efficient for separating the input space into more detailed regions, owing to their deeper 

architecture, that contributes to a better separation of complex wetland classes. 

As shown in Figure 3.12, all deep networks were successful in classifying non-wetland 

classes, including urban, deep water, and upland classes, with an accuracy greater than 

94% in all cases. SVM and RF also correctly classified the non-wetland classes with an 

accuracy exceeding 96% in most cases (excluding upland). Interestingly, all deep 

networks correctly classified the urban class with an accuracy of 100%, suggesting the 

robustness of the deep learning features for classification of complex human-made 

structures (e.g., buildings and roads). This observation fits well with (Zhao & Du, 2016). 

However, the accuracy of the urban class did not exceed 97% when either RF or SVM 

employed. 

The confusion matrices demonstrate that by using the last three networks, a significant 

improvement was achieved in the accuracy of both overall and individual classes. In 

particular, InceptionResNetV2 correctly classified non-wetland classes with an accuracy 

of 99% for deep water and 100% for both urban and upland classes. ResNet50 and 

Xception were also successful in distinguishing non-wetland classes with an accuracy of 

100% for urban and 99% for both deep water and upland. One possible explanation for 

why the highest accuracies were obtained for these classes is the availability of larger 

amounts of training samples for non-wetland classes relative to the wetland classes. 
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Although RF and SVM, as well as all convnets, performed very well in distinguishing 

non-wetland classes, the difference in accuracies between those two groups (i.e., 

conventional classifiers versus deep networks) was significant for wetland classes. This 

was particularly true for the last three convnets compared to SVM and RF. Specifically, 

the three networks of InceptionResNetV2, ResNet50, and Xception were successful in 

classifying all wetland classes with accuracies exceeding 80%, excluding the swamp 

wetland. This contrasts with results obtained from SVM and RF, wherein the accuracies 

were lower than 74% for all wetland classes. Overall, the swamp wetland had the lowest 

accuracy among all classes using the deep convnets. As the effectiveness of these 

networks largely depends on the amount of training samples, the lowest accuracy of the 

swamp wetland could be attributable to the lower quantity of training samples for this 

class. 

A large degree of confusion was observed between herbaceous wetlands (namely marsh, 

bog, and fen, and especially between bog and fen), when DenseNet121, InceptionV3, and 

VGG16 were employed. The largest confusion between bog and fen is possibly due to the 

very similar visual features of these classes (see Figure 3.8). These two classes are both 

peatland dominated with different species of Sphagnum in bogs and Graminoid in fens. 

According to field biologist reports, these two classes were adjacent successional classes 

with a heterogeneous nature and were hardly distinguished from each other during the in-

situ field data collection. 

Overall, this confusion problem was more pronounced among the first four deep 

networks, whereas it was significantly reduced when the last three networks were 

employed (see Figure 3.12).  
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(a) (b) (c) 

  

 

(d) (e)  

Figure 3-13 (a) True colour composite of RapidEye optical image (bands 3, 2, and 1). A 

crop of the classified maps obtained from (b) SVM, (c) RF, (d) DenseNet121, and (e) 

InceptionResNetV2. 

This observation suggests that the last three networks and, especially, InceptioResNetV2, 

are superior for distinguishing confusing wetland classes relative to the other convnets. 

For example, the classes of bog and fen were correctly classified with accuracies of 



 

  

 

83 

greater than 89% when InceptionResNetV2 was used. Both Xception and ResNet50 were 

also found to successfully classify these two classes with accuracies of higher than 80%. 

Overall, the wetland classification accuracies obtained from these three networks were 

strongly positive for several spectrally and spatially similar wetland classes (e.g., bog, 

fen, and marsh), and these accuracies demonstrate the large number of correctly classified 

pixels. 

A crop of the classified maps obtained from SVM, RF, DenseNet121, and 

InceptionResNetV2 are depicted in Figure 3.13. As shown, the classified maps obtained 

from convnets better resemble the real ground features. Both classified maps, obtained 

from convnets (Figures 3.13 (d) and (e)) show a detailed distribution of all land cover 

classes; however, the classified map obtained from InceptionResNetV2 (Figure 3.13 (e)) 

is more accurate when it is compared with optical imagery (Figure 3.13 (a)). For 

example, in some cases in the classified map obtained from DenseNet121, the fen class 

was misclassified as bog and upland classes (Figure 3.13 (d)). This, too, occurred 

between shallow water and deep water; however, it was not the case when 

InceptionResNetV2 was employed. In particular, most land cover classes obtained from 

InceptionResNetV2 are accurate representations of ground features. This conclusion was 

based on the confusion matrix (see Figure 3.12) and further supported by a comparison 

between the classified map and the optical data (Figure 3.13 (a) and (e)). 
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(a) (b)  

Figure 3-14 2-D feature visualization of image global representation of the wetland 

classes using t-SNE algorithm for the last layer of (a) InceptionResNetV2 and (b) 

DenseNet121. Each colour illustrates a different class in the dataset. 

Figure 3.14 shows two-dimensional features extracted from the last layer of the 

InceptionResNetV2 (a) and DenseNet121 (b) and using the two-dimensional t-

Distributed Stochastic Neighbor Embedding (t-SNE) algorithm (Chen et al., 2014). The 

features from InceptionResNetV2 demonstrate a clear semantic clustering. In particular, 

most classes are clearly separated from each other; however, the feature clusters of bog 

and fen show some degree of confusion. Conversely, the features from DenseNet121 only 

generate a few visible clusters (e.g., upland and urban), while other features 

corresponding to wetland classes overlap with each other, suggesting a large degree of 

confusion. 

3.4 Conclusions 

Wetlands are characterized as complex land cover with high within-class variability and 

low between-class disparity, posing several challenges to conventional machine learning 

tools in classification tasks. To date, the discrimination of such complex land cover using 
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conventional classifiers, heavily relies on the large number of hand-crafted features 

incorporated into the classification scheme. In this research, we used state-of-the-art 

machine learning tools, deep Convolutional Neural Networks, for classification of such a 

heterogeneous environment to address the problem of extracting a large number of hand-

crafted features. Two different strategies of employing pre-existing convnets were 

investigated: full-training and fine-tuning. The potential of the most well-known deep 

convnets, while currently are being employed for several computer vision tasks, 

including DenseNet121, InceptionV3, VGG16, VGG19, Xception, ResNet50, and 

InceptionResNetV2, was examined in a comprehensive and elaborate framework using 

multispectral RapidEye optical data for wetland classification. 

The results of this study revealed that the incorporation of high-level features, learned by 

a hierarchical deep framework, is very efficient for the classification of complex wetland 

classes. Specifically, the results illustrate that the full-training of pre-existing convnets 

using five bands is more accurate than both full-training and fine-tuning using three 

bands, suggesting that the extra multispectral bands provide complementary information. 

In this study, InceptionResNetV2 consistently outperformed all other convnets for the 

classification of wetland and non-wetland classes, with a state-of-the-art overall 

classification accuracy of about 96%, followed by ResNet50 and Xception with an 

accuracy of about 94% and 93%, respectively. The impressive performance of 

InceptionResNetV2 suggests that an integration of Inception and ResNet modules is an 

effective architecture for complex land cover mapping using multispectral remote sensing 

images. The individual class accuracy illustrated that confusion occurred between 

wetland classes (herbaceous wetlands), although it was less pronounced when 
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InceptionResNetV2, ResNet50, and Xception were employed. The swamp wetland had 

the lowest accuracy in all cases, potentially because the lowest number of training 

samples were available for this class. It is also worth noting that all deep convnets were 

very successful in classifying non-wetland classes in this study. 

The results of this study demonstrate the potential for the full exploitation of pre-existing 

deep convnets for classification of multispectral remote sensing data, which are 

significantly different than the large datasets (e.g., ImageNet) currently employed in 

computer vision. Given the similarity of wetland classes across Canada, the deep trained 

networks in this study provide valuable baseline information and tools. They will 

substantially contribute to the success of wetland mapping in this country, using state-of-

the-art remote sensing tools and data.
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4 Chapter 4: Detection of Individual Tree Species 

Using an Optimized Deep CNN in an Object-Based 

Approach 

Abstract 

Acquiring information about individual tree species such as types and sizes is a crucial 

element of forests monitoring. Because of the inefficiency of the single-sensor data, such 

information is practically assessed using multi-sensor data with heavy manual 

intervention (or with manual interpretation), which is subjective, time and cost 

consuming, and prone to error. The current availability of higher spatial- or spectral-

resolution satellite/aerial/unmanned aerial vehicle (UAV) data has opened new 

possibilities for single-sensor-based individual tree species detection (ITSD); however, 

extracting information from such sources is still challenging. In this paper, we introduced 

a deep convolutional neural network for ITSD using a single-sensor WorldView-3 image. 

The reason for using deep learning (DL) is its capability to automatically generating 

sufficient features to extract information for object detection in machine learning field. 

We call our network deep individual tree detection network (DITDN), which is 

developed by optimizing Oxford's renowned Visual Geometry Group (VGG-16) network 

using a tree-structure parzen estimator. The network receives image objects (segments) 

with any number of spectral bands and detects the type of the trees. Results demonstrate 

that using the test data, our method reaches an overall accuracy of about 92%, which 

outperformed two state-of-the-art ensemble classifiers, random forest (RF) and gradient 
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boosting (GB; 80% and 83% respectively). In addition, to show the generality of the 

method and to evaluate our method’s accuracy with uncorrelated test data, we apply 

DITDN to another WorldView-3 image, reaching an overall accuracy of 89%. This study 

demonstrates the potential of using deep learning in an object-based approach for ITSD 

using Worldview-3 images and the alike. 

4.1 Introduction 

Information about forests, such as individual tree species present in the forest, are 

important for the environment and the forestry industry. Forests cover almost one-third of 

the earth’s surface and are considered one of the most important elements of the natural 

environment. The importance of forests to the natural environment includes the provision 

of animal habitats, medicinal value to humans, and raw materials to sustain human life. 

Forests also support ecosystems, protect watersheds, purify air, stabilize climate, enrich 

the soil, and regulate the water cycle (Amatya, Williams, Bren, & de Jong, 2016). 

Therefore, constant monitoring of tree species and their health helps preserve the 

environment. However, human interpreters currently assess such information using aerial 

imagery or unmanned aerial vehicles (UAVs), a process that is subjective, time and cost 

consuming, and prone to errors (Yu et al., 2017). 

Use of images acquired by remote-sensing for extracting forest information demonstrates 

potential for fast and cost-effective extraction of forest information. Some studies, using 

handheld hyper spectrometers, have proven that tree species can be distinguished from 

each other based on their leaves’ spectral characteristics (Asner, Martin, Ford, Metcalee, 

& Liddell, 2009; Féret & Asner, 2011). Given this, many researchers have attempted to 
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detect tree species using satellite/aerial images. Developed methods for this effort can be 

divided into two groups: the pixel-based approach for making pixel-based detection maps 

and the object-based approach for individual tree species detection (ITSD). 

The first group utilized pixel-based approaches to produce a tree-species cover map using 

low-resolution hyperspectral imagery (Féret & Asner, 2013). A few studies also applied 

both low-resolution hyperspectral imagery and digital-surface models (DSMs) generated 

by light detection and ranging (LiDAR) to improve detection accuracy (Cho et al., 2010; 

Dalponte, Bruzzone, Vescovo, & Gianelle, 2009; Feret & Asner, 2013). However, 

because the used hyperspectral imagery was low-resolution, the pixel-based detection 

map was far from a precise species map. 

The second group applied higher resolution imagery to ITSD. This group used LiDAR-

generated DSMs in its tree delineation to find individual trees and then hyperspectral 

images to detect tree species. For instance, Colgan et al. (2012) used LiDAR and airborne 

hyperspectral images separately for classification and then fused the results in the level of 

class (Colgan, Baldeck, Féret, & Asner, 2012). Dinuls et al. (2012) used the same 

approach to find tree canopies using LiDAR data and then performed the detection of 

each canopy using multispectral images (Dinuls, Erins, Lorencs, Mednieks, & Sinica-

Sinavskis, 2012). Heinzel and Koch (2012) improved this work by under-segmenting the 

LiDAR data and then classifying each segment based on the multispectral data (Heinzel 

& Koch, 2012). However, although different spectral features were used as a 

supplementary data, because the multi-spectral imagery used does not provide necessary 

spectral information to detect tree species, these studies’ accuracy lacked promise. In 

addition, use of multi-sensor images is costly, specifically when airborne hyperspectral 
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imagery and LiDAR data are used. Finally, alignment between hyperspectral images and 

LiDAR DSMs remains a major technical issue. 

Despite new advances in remote sensing tools and methods, the accuracy of ITSD 

methods based on single-sensor data is insufficient (Yu et al., 2017), especially given the 

similar spectral characteristics of most tree species; thus, most studies used multi-sensor 

data for ITSD (Zhen, Quackenbush, & Zhang, 2016). The main reason for using multi-

sensor data even with high spectral and spatial sensor is the insufficiency of the generated 

features to incorporate both spatial and spectral information together. Therefore, the main 

efforts for tree species detection focused on the feature-engineering process (Chollet, 

2017) to generate both spectral features (based on the hyper/multi-spectral image) and 

spatial features (based on the LiDAR point cloud/DSM) which required expert 

knowledge about the data. Furthermore, feature engineering is limited to low-medium 

level features, which, in the case of similar spectral/spatial characteristics, would remain 

insufficient (Zhao & Du, 2016). 

The 2014 launch of the WorldView-3 satellite, as the first high-resolution satellite to 

simultaneously collect 17 spectral bands, including 8 short-wave-infrared (SWIR) 

spectral bands, 8 visible-and-near-infrared (VNIR) spectral bands, and 1 panchromatic 

(Pan) band presented a new opportunity for forest information extraction (DigitalGlobe, 

2014). The commercially available resolution of SWIR, VNIR, and Pan bands are 7.5 m, 

1.2 m, and 0.3m, respectively (Digitalglobe, 2014). This satellite’s high spatial/spectral 

resolution can provide the necessary spatial information for tree-crown delineating; 

however, compared to a hyperspectral image, the spectral information it provides, alone, 

is insufficient for ITSD, meaning feature engineering is still necessary. 
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The machine learning field (LeCun, Bengio, & Hinton, 2015) has, of late, noted deep 

learning (DL) for addressing the limitations of other state-of-the-art methods, including 

support vector machines (SVMs) and random forest (RF; Ball, Anderson, & Chan, 2017). 

Among different DL networks, the convolutional neural network (CNN; LeCun et al., 

2015) has been used widely in remote sensing, such as classification (Zhao & Du, 2016), 

segmentation (Marmanis et al., 2018), object detection (X. Chen, Xiang, Liu, & Pan, 

2014), and change detection (De, Pirrone, Bovolo, Bruzzone, & Bhattacharya, 2017). 

CNN is constructed by connecting multilayers and is characterized by the ability to 

generate features at different levels (Nogueira, Penatti, & dos Santos, 2017). Therefore, it 

can substitute manual feature engineering with an end-to-end workflow (Chollet, 2017). 

CNN generates different features in a hierarchical framework and at different levels (low, 

mid, high), combining spectral and spatial information (Nogueira et al., 2017). Since 

2010, differently designed deep CNNs have been introduced. Some gained attention for 

their high accuracy and efficiency for detection and localization. These include LeNet, 

for hand digit recognition (LeCun, Bottou, Bengio, & Haffner, 1998), and object-

detection networks, such as AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), VGG 

(Simonyan & Zisserman, 2014), GoogLenet (Szegedy et al., 2015), ResNet (He, Zhang, 

Ren, & Sun, 2016), and Xception (François Chollet, 2016). 

Despite advances that DL networks represent in machine learning, their application to 

remote sensing has not been investigated and is mostly limited to classification in chiefly 

urban areas (Tian, Li, Xu, & Ma, 2018) and scene labeling (Cheng, Yang, Yao, Guo, & 

Han, 2018). In addition, because of the statistical inherent differences between machine-

learning images and remote-sensing images, no available studies relate to the process of 
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fitting predesigned networks to remote-sensing data. Therefore, this state-of-the-art 

method should be investigated for detection and discrimination of objects in remote-

sensing images in a more complex situation, where objects have similar spectral and 

spatial information—like ITSD. 

This study chiefly aims to (1) examine the power of deep CNN in identifying individual 

tree species, (2) take advantage of a deep CNN for ITSD by using high spatial- and 

spectral-resolution images, (3) optimize the network and its parameters to better fit the 

data, (4) train and apply the deep CNN in an object-based approach, (5) compare the 

designed network results with the state-of-the-art classifiers RF, gradient boosting (GB), 

and the unoptimized deep CNN, and (6) examine the generality of the designed network 

by applying it to uncorrelated data from different areas. In summary, this study aims to 

benefit from the state-of-the-art segmentation and detection methods for ITSD and 

improve them with the help of deep networks and by using the WorldView-3 satellite 

images. 

4.2 Methodology 

4.2.1 Study area and dataset 

The study area (Heath Steele Mines) is in northern New Brunswick, Canada, and covers 

approximately 27 km2. This area is covered mostly with four different tree species: 

spruce (mostly black), pine (mostly jack), birch (mostly white), and maple (mostly red). 

Because of the areas cold climate, the softwood population (spruce and pine) is greater 

than the hardwood (birch and maple). 
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For classification, the study used two WorldView-3 images, acquired on October 10, 

2015, and July 27, 2016. To acquire the field data, a team from the University of New 

Brunswick departments of Forestry & Environmental Management and Geodesy and 

Geomatics Engineering collected samples from 7 different locations within the study area 

at two different times (August and September 2017). Since the trees’ resistance to 

shaking varies, similar types of trees (mostly birch in our area) grow on the forest edge 

beside the roads. This fact forced us to collect samples from inside the forests as well. To 

access these interior areas, we used a UAV (DJI phantom 3 professional) to fly at a lower 

height and take pictures. 

We identified 120 polygons in the satellite images along with some photographs with a 

Canon camera. We selected 70% of the data for training and testing. To split the collected 

data into training and testing, we sorted the polygons for each class based on their size  

Table 4-1 Testing and training pixel counts for the heath Steele mines reference data 

Class Class Description #Training 
Pixels 

#Testing 
Pixels Total 

Spruce Containing black spruce and few red spruce 10196 4371 14567 

Pine Dominated by jack pine, containing few 
eastern white pine 16323 6996 23319 

Birch Mostly white birch, few yellow birch 
observed 17810 7633 25443 

Maple Only red maple observed 10621 4552 15173 

Other 

Any types of ground containing roads 
(paved and unpaved), bare ground, and 
rocks. Any type of vegetation that is not 
included in the tree type is also covered 
here 

35039 15018 50057 

Total  89989 38570 128559 
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A true-colour composite of WorldView-3 optical imagery (bands 5, 3, and 2) acquired 

on July 27, 2016, illustrating the geographic location of the study area. 

   

UAV image of spruce UAV image of birch Sample image of spruce 

Figure 4-1 Working area, the original WorldView-3 image, some UAV and sample 

images 
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and alternatingly assigned them to testing and training groups. Table 4.1 shows the 

testing and training pixel counts we collected for our area. Figure 4.1 also demonstrates 

the satellite images, as well as some sample and UAV images. 

4.2.2 Convolutional neural network (CNN) 

This type of artificial neural network consists mainly of three different layers (Gibiansky, 

2014): 

• Convolutional layer: This layer consists of a rectangular grid. Each of its neurons 

inside the grid picks data from the preceding layer. The selected data are then 

multiplied by the corresponding weights to generate new values. The new values 

will be fed to the next layer as input. In fact, the rectangular weights act as a 

kernel and the whole process is like convolution. This process can be formulated 

as a simple convolution, as follows: 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝=𝑖𝑛𝑝𝑢𝑡*𝑘𝑒𝑟𝑛𝑒𝑙 

= . /. 𝑖𝑛𝑝𝑢𝑡(𝑥 − 𝑎, 𝑦 − 𝑏)𝑘𝑒𝑟𝑛𝑒𝑙(𝑥, 𝑦)
789:

;<=

> .
@8ABCD:

E<=

 

(4-1) 

• Pooling layer: This layer selects a small rectangular part of the previous layer and 

subsamples it to one output unit. There are different methods for doing 

subsampling, such as average, maximum, or a learned linear combination. In 

CNN, the maximum value is usually used. 

• Fully connected layer: the network’s high-level reasoning takes place in this layer. 

The neurons in this layer are fully connected to the all the neurons in the previous 

layer. This layer changes the 2D structures of the input (if there is any), and 
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change it to 1D; therefore, the spatial relationship between the pixels in the input 

will be lost in this layer. 

4.2.3 Patch-based image labeling (PBIL) 

Based on CNN, Mnih (2013) proposed a patch-based system for processing aerial 

images. The proposed method includes patches of aerial images with their known labels. 

The input images are called 𝑆 = (𝑆(]), … , 𝑆(l)) and the corresponding map images are 

𝑀 = (𝑀(]), … ,𝑀(l)). The goal here is to develop a method to map S to M using training 

data and to predict the label for the rest of the patches without labels. This problem can 

be modeled as a probabilistic approach by learning a model of distribution over labels. It 

can be expressed as 

𝑃(𝑛(𝑀, 𝑖, 𝑤C)|𝑛(𝑆, 𝑖, 𝑤:)). (4-2) 

Where 𝑛(𝐼, 𝑖, 𝑤	) shows a patch, which is focused on pixel i, with the size of 𝑤 × 𝑤 from 

image I. In this method, 𝑤: is selected to be bigger than 𝑤C to extract more contextual 

information from the patch for the pixel. To show its functional form, function f is 

defined. It maps the input patches to a distribution over the label patches. Considering the 

binary form as the easiest way of formulating the problem, function f can be defined as 

follows: 

𝑓P(𝑠) = 	𝜎G𝑎P(𝑠)L = 𝑃(𝑚P = 1|𝑠). (4-3) 

Where 𝑎P is the total input for the ith output and 𝑓P is the value of the ith output unit. 𝜎(𝑥) 

is also a logistic function that is expressed as follows: 
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𝜎(𝑥) =
1

1 + exp	(−𝑥). 
(4-4) 

For multiclass labeling, artificial neural networks (ANN) should be accompanied by a 

softmax output unit. The output of the softmax would be a vector with a size equal to L, 

which shows the distribution over possible labels for pixel i. Thus, if we consider the path 

from pixel i to output unit l, the equation for multiclass labeling can be re-written as 

follows: 

𝑓PA(𝑠) =
𝑒𝑥𝑝G𝑎PA(𝑠)L

𝑍 = 𝑃(𝑚P = 𝑙|𝑠). 
(4-5) 

Where 𝑓PA shows the predicted probability that maps pixel i to label j. The proposed 

method uses ANN to approach its goals due to its advantages. These advantages can be 

summarized as follows: First, ANN can handle a large amount of label data in different 

domains. Secondly, ANN can be easily paralleled on a graphics processing unit (GPU) to 

make it faster. Thus, ANN can be extended to many images. Minimizing negative log-

likelihood for training data performs the learning procedure in the proposed method. For 

a binary problem, the negative log-likelihood can be expressed as 

L(s,m) = 	 . .G𝑚P lnG𝑓P(𝑠)L + (1 − 𝑚P) lnG1 − 𝑓P(𝑠)LL
9[\

P<]^AA	_^`@ab:

. (4-6) 

The first sigma is over all the patches of training data. Because the number of training 

patches is large, the optimization problem is complex. To perform it, we used a stochastic 

gradient descent (SGD) with mini-batches (Le, Coates, Prochnow, & Ng, 2011). Some 

hyper-parameters should be tuned in SGD for a faster convergence. Mnih’s (2013) study 

includes a sensitivity analysis for hyper-parameters to tune them more accurately. 
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4.2.4 Optimizing the network 

Every convolutional neural network consists of different hyperparameters that define its 

architecture—from the number of hidden layers, as the network’s major block, to the 

number of kernels in each convolution layer, size of pooling layers, loss-function, 

optimization, and regularization parameter. Every combination of these hyperparameters 

can generate a unique network like some predefined networks, including VGG-16, 

GoogLenet, etc. These hyperparameters can be adjusted for different datasets and 

applications. Most studies limit their adjustment to optimizing a few parameters (e.g., 

learning rate and loss function) to obtain a lower loss and higher accuracy (Mnih, 2013). 

However, other hyperparameters can also play an important role in generating a model 

that can better fit the data. One method to optimize hyperparameters for a CNN is the 

tree-structure parzen estimator (TPE; Bergstra, Bardenet, Bengio, & Kégl, 2011). 

4.2.4.1 Tree-structure parzen estimator 

This type of optimization follows the Bayes theory. Compared to the Gaussian-process-

based approach, which models the conditional probability directly (𝑝(𝑦|𝑥)), the Bayes 

optimization tries to model the 𝑝(𝑦|𝑥) and 𝑝(𝑦) separately. 

The process starts by applying the network to some selected data, then the TPE divides 

the evaluated results of selected data into two categories of what it calls high and low 

observations. In other words, using different observations {𝑥], … , 𝑥r}, the TPE uses a 

learning algorithm that produces a different distribution of the observation over the 

configuration space 𝜒. The TPE defines two sets of observations with two different 

densities as follows: 



 

  

 

106 

𝑝(𝑥|𝑦) = 	 u 𝑙
(𝑥)					𝑖𝑓	𝑦 < 𝑦∗.
𝑔(𝑥)					𝑖𝑓	𝑦 ≥ 𝑦∗. 

(4-7) 

Where 𝑙(𝑥) is the distribution generated using the series of observation y𝑥(P)z in a way 

that the corresponding loss function 𝑓(𝑥(P)) is less than 𝑦∗, 𝑔(𝑥) is the distribution of the 

remaining observation, and 𝑦∗ is a given threshold. The TPE does not consider the lowest 

loss as 𝑦∗ but does consider 𝑦∗ in such a way that it contains some observations to form 

the distribution. The TPE considers 𝑦∗ to be a portion of the whole observations (𝛾). 

Intuitively, the process creates a probability-distribution estimator that highlights both the 

set of hyperparameters that perform well (𝑙(𝑥)) and another set that act poorly (𝑔(𝑥)). 

The optimization function in the TPE is considered as 

𝑓E∗
8_`(𝑥) = 	 | (𝑦∗ − 𝑦)𝑝(𝑦|𝑥)𝑑𝑦

E∗

~�

. 

= |(𝑦∗ − 𝑦)
𝑝(𝑥|𝑦)𝑝(𝑦)

𝑝(𝑥) 𝑑𝑦

E∗

~�

, 

(4-8) 

which can be simplified as 

∝
1

(𝛾 + 𝑔(𝑥)𝑙(𝑥) (1 − 𝛾)
. 

(4-9) 

Equation 9 shows that, to maximize the 𝑓E∗
8_`, it is necessary to maximize 𝑙(𝑥), which is 

the high observations, and minimize 𝑔(𝑥) as the low observations. The TPE will generate 

a tree based on l and g distribution for all the candidates to find the best observation. 

𝑔(𝑥) and 𝑙(𝑥) have a hierarchy structure covering all the continuous, discrete, and 
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conditional variables. The method generates different nodes in a hierarchy; for each node 

a 1D TPE will be implemented and the hyperparameters updated, based on the loss of l(x) 

and g(x). At the end, the TPE will start to track the hyperparameters from the roots of the 

tree to the leaves and follow the path that uses the active hyperparameters. It combines all 

the 1D results in the hierarchy to find the best set of hyperparameters. 

4.2.4.2 The designated and optimized network 

For this study, we optimized a VGG-16 network for ITSD and called it a deep individual 

tree detection network (DITDN). Optimized parameters contain the kernel size, number 

of kernels, size of max-pooling, number of hidden layers (a limited range), the dropout 

factors for regularization, batch size, loss function, and the learning rate. We performed 

the optimization using a Hyperas wrapper package 

(https://github.com/maxpumperla/hyperas). We designed 80 evaluations with separate 

training and validation data to find the best optimization parameters. Figure 4.2 

demonstrates different considered options and the selected parameters. 

4.2.5 Experiment setup 

We fused the panchromatic and multispectral images using Fuze Go software (Scene 

Sharp Technologies Inc., 2012). We did the segmentation by using eCognition 9.1 

(Trimble, 2017). Considering the circular shape of the hardwood crown and the 

softwoods’ cone shape, the shape parameter in the multiresolution segmentation method 

received a higher weight than the colour. For the scale, we tested 10, 15, 20, and 25 to 
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The VGG-16 network with all the possible options for the hyperparameters. The 

yellow rectangles show the convolution layers that can be added to the network while 

the red ones are the fixed convolution layers. Other hyperparameters are shown in the 

brackets. 

 
The DITDN network, based on the TPE optimizer. 

Figure 4-2 The designated VGG network (a) and the optimized network (DITDN) (b). 
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The best learning rate, loss function, and batch size, with respect to our computer, is 

defined as 10~�, stochastic gradient descent optimizer (SGD), and 250 respectively. 

find the best parameter for our purpose. We considered the scale in a way to avoid under-

segmentation. We selected the final value for the scale, shape, and compactness as 15, 

0.7, and 0.5. We then detected and excluded the segments related to shadow and road 

from the processing in this step using their spectral information and the normalize 

difference vegetation index (NDVI). 

Training the network with the PBIL approach requires the cropping of the original data 

into patches. Originally, PBIL used a universal patch size for all objects in the training 

areas. However, because the sizes of the objects (tree crowns) are dissimilar, finding a 

universal patch size would be difficult. Since the performed segmentation contains the 

information related to the objects’ sizes, these sizes can be used as the patches’ sizes. 

Therefore, each patch would be defined as a bounding box containing the segment. We 

also applied a buffer around the patch with the size of 5 pixels (1.5 meters) around the 

bounding box to ensure enough contextual information inside the patch. To prevent 

making a small patch in this way, we defined a threshold size of 20 pixels. We substituted 

any smaller segments with a bounding box that covered 20 pixels by 20 pixels on the 

image ( 6×6 meters). 

To train and test the CNN, we used the Keras library (François Chollet, 2015). However, 

this library is not designed to work with geo-tiff images. In other words, it does not 

recognize the TIFF format and, consequently, cannot read images with more than three 

spectral bands. To access the GeoTIFF images in this library, we designed a pipeline to 

read our specific data and handle the CPU memory to feed the patches to the library in 
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the Python 3.6. We carried out the implementation through support provided by Compute 

Canada on Cedar cluster using one node with 128 GB RAM memory and one GPU 

(NVIDIA P100-PCIE-12 GB). 

4.3 Results 

In this study, we developed a two-step process ITSD using single-sensor data. We first 

segmented the image to delineate the tree crowns, and then we applied our designed 

DITDN to detect tree types. We based DITDN’s design on a VGG-16 network. To 

evaluate the DITDN’s generality and its corresponding features, we used two datasets to 

evaluate two different images captured from two different areas at two different times. 

Figure 4.3 shows the result of segmentation for the first test image. 

  
(a) True-colour composite of the first test 

image. 
(b) Segmentation image. 

Figure 4-3 Result of the segmentation on the first test image, (a) showing the original 

image and (b) showing the corresponding segmentation image. 
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Figure 4-4 Accuracy (left) and loss (right) of the training and validation phase for the 

DITDN and VGG-16 

To show DITDN fits the data better than VGG-16, we compared the accuracy of training 

and value of loss for both networks, as well as the test’s accuracy. Figure 4.4 shows the 

accuracy and loss of training and validation for DITDN and VGG-16. Clearly, both 

networks are well trained for our dataset; however, DITDN had a higher accuracy than 

VGG-16 and less loss of validation data, indicating that the optimized network better fits 

our dataset, which relates to the network architecture and the optimization parameters 

such as network depth, optimization space, and the kernel sizes. Firstly, network depth 

can determine the nonlinearity of boundaries between different classes; a lower or higher 

number of layers can create boundaries unsuitable for the data. Secondly, defining 

optimization space can lead to a lower loss value and better training, while nonoptimized 

parameters can lead to under/over optimization. Finally, the kernels’ sizes and numbers 

directly affect the generated features and, thereby, the network’s accuracy. 

To better understand the CNN’s classifier’s power, we applied two state-of-the-art 

classifiers, RF and GB, to both test areas (Ball, Anderson, & Chan, 2017). The two main 

parameters of RF, which should be adjusted are the number of trees (Ntree) and the 
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number of variables (Mtry) (Belgiu & Drăguţ, 2016). In this study, a total number of 500 

trees were selected in classification model. Moreover, the square root of the number of 

input variables was considered as Mtry. This is because it decreased both the 

computational complexity of the model and the correlation between trees (Gislason, 

Benediktsson, & Sveinsson, 2006). For GB, the performance is influenced by four 

parameters: the number of iterations, learning rate, the depth of the tree, and the sampling 

rate (Yang et al., 2018). In this study, these parameters are selected as 300, 0.8, 4, and 2 

respectively. For applying RF and GB, spectral features should be manually designed and 

fed to the algorithm since no feature generation is ensembled to these two classifiers. 

Therefore, we used a total number of 10 features—normalized difference vegetation 

index (NDVI), normalized difference soil index (NDSI), and all the WorldView3 image’s 

original spectral bands (8 bands). Figure 4.5 shows the four classification maps related to 

DITDN, VGG-16, RF, and GB. 

Although all classification maps show a detailed distribution of all tree species, DITDN 

obtained the most accurate map when compared to the field data. For example, the 

collected data shows few red maple trees in the field, while VGG-16 and GB detected 
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(a) Generated map based on DITDN (b) Generated map based on VGG-16 

  
(c) Generated map based on RF (d) Generated map based on GB 

Figure 4-5 The obtained maps from DITDN, VGG-16, RF, and GB 

many and RF detected none. This false alarm in VGG-16 and GB relates to the spectral 

similarity between red maple and the ground area covered with red leaf bushes. Birches 
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also charted differently on the maps. Birches are shake resistant and therefore grow 

around the roads, as each map shows. However, birch’s interior appearance frequency is 

low. DITDN, RF, and GB all seem to have the same pattern for this type, while VGG-16 

falsely detected more trees as birch. This false alarm relates to the fact that birch tree 

leaves contain different shades of green, which in some areas is like spruce or pine, such 

as where it is under shadow. 

Table 4.2 represents the overall accuracy of ITSD using two different deep networks and 

two ensembled classifiers that are evaluated using the test data for the aforementioned 

area. 

Table 4-2 Classification overall accuracies and Kappa coefficients for ITSD using two 

different deep networks and two ensembled classifiers. 

detection method Overall Accuracy Kappa coefficient 
DITDN 92.13% 0.90 
VGG-16 87.58% 0.84 

Gradient Boosting (GB) 83.57% 0.80 
Random Forest (RF) 80.12% 0.77 

 

As seen in Table 4.2, DITDN has the highest classification accuracy (92.13%), followed 

by VGG-16, GB, and RF with overall accuracies of 87.58%, 83.57%, and 80.12%, 

respectively. The obtained accuracies for the deep networks suggest that the generated 

features are supplementary and that they improved the detection model’s efficiency. 

Compared, the two deep networks follow the general rule for correlation between 

network depth and accuracy of the model (Y. Chen, Lin, Zhao, Wang, & Gu, 2014), 

which states that the level of abstraction in the features is related to the network’s depth. 

However, the rule does not mean that deeper networks will consequently generate more 
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accurate results but relates to the nature of the data, which is why an optimization from 

dataset to dataset is necessary. Table 4.3 and 4.4 show the confusion matrix for DITDN 

and VGG-16. 

 

 

Table 4.3 and 44 show the confusion matrix for two deep networks. The spruce and pine 

class have the biggest misclassification, resultant from their similarity of spectral and 

spatial characteristics (87% and 89% user accuracy for DITDN). In addition, while the 

birch has different spectral information than spruce and pine, these trees can also be 

misclassified since, in some areas, birch grow amidst spruce or pine and because of 

shadow. 

Table 4-3 Confusion matrix of DITDN, overall accuracy is 92.13%, kappa 

coefficient is 0.90 

Cl
as

sif
ie

d 
D

at
a  

 Reference Data 
Class Red Maple Birch Spruce Pine Other Tot. User Acc. 

Red Maple 4323 19 4 11 12 4369 98.94 
Birch 34 4098 26 123 78 4359 94.01 

Spruce 22 128 7623 956 43 8772 86.90 
Pine 12 71 773 7094 23 7973 88.97 
Other 234 22 51 59 8511 8877 95.87 
Total 4625 4338 8477 8243 8667 34350  

Prod. Acc. 93.47 94.46 89.92 86.06 98.20   

Table 4-4 Confusion matrix of VGG-16; overall accuracy is 87.58%, kappa 

coefficient is 0.84 

Cl
as

sif
ie

d 
D

at
a  

 Reference Data 
Class Red Maple Birch Spruce Pine Other Tot. User Acc. 

Red Maple 3645 13 121 234 356 4369 83.42 
Birch 34 3659 234 342 90 4359 83.94 

Spruce 26 128 7678 884 56 8772 87.52 
Pine 19 150 987 6693 124 7973 83.94 
Other 343 12 67 45 8410 8877 94.73 
Total 4067 3962 9087 8198 9036 34350  

Prod. Acc. 89.62 92.35 84.49 81.64 93.07   
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(a) True-colour composite of second test 
image (b) The segmentation image 

 
(c) The corresponding detection map 

 
Figure 4-6 The original second test image (a), its segmentation (b), and corresponding 

detection map (c) 

To evaluate if DITDN is reusable on other images (the generality of the network), we 

applied DITDN to a different image. Since the network was not trained with this data, the 
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result’s accuracy demonstrates whether the generated features are general enough to 

detect tree species in this image as well. Figure 4.6 shows the second original image and 

the corresponding map generated with DITDN. 

The right part of the forest in Figure 4.6 demonstrates where clearcutting was done. Our 

data collection included the observation that only pine was planted here. The generated 

map clearly shows that the same, except near the road where several tree species exist. 

Table 4.5 shows the confusion matrix for this map. 

 

Considering Table 4.5, the obtained map’s overall accuracy is 89.06% (4% drop 

compared to the first image), which shows both a promising result and the network’s 

potential for application to other datasets. The confusion matrix, again, significantly 

misclassified pine and spruce, due to their similar spectral and spatial characteristics. 

Birch was also misclassified with all other classes due to its different shades of 

greenness. All this information further confirms previous results for the first dataset. 

Table 4-5 Confusion matrix of DITDN for the second image; overall accuracy is 

89.06%, kappa coefficient is 0.85 

C
la

ss
ifi

ed
 D

at
a  

 Reference Data 

Class Red 
Maple Birch Spruce Pine Other Tot. User Acc. 

Red Maple 634 13 31 10 22 710 89.30 
Birch 5 2456 156 234 78 2949 83.28 

Spruce 0 134 5432 544 33 6177 87.94 
Pine 0 164 456 4532 223 5398 83.96 

Other 12 23 98 63 5673 6081 93.29 
Total 651 2790 6173 5383 6029 21315  

Prod. Acc. 97.39 88.03 88.00 84.19 94.10   
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4.4 Conclusions 

This study proposes a method to use the single-source WorldView-3 satellite images to 

detect and identify individual tree species. We developed a two-step processing approach. 

The first step applies a segmentation to delineate tree crowns followed by the second 

step, in which a deep CNN detects tree species. For the deep CNN, we designed a 

DITDN with the ability to receive all 8 visible and near-infrared spectral bands and 

trained it to detect four tree species (pine, spruce, red maple, and birch). DITDN 

incorporates the high-level features learned by a hierarchical deep framework with low-

level features and can generate abstract features that can highlight each tree species and 

discriminate between them. 

In this study, our DITDN outperformed the results of other investigated machine learning 

detection methods (RF and GB) reaching an overall accuracy of about 92.13%, whereas 

GB, and RF reached 83.57% and 80.12%, respectively. We also apply VGG16 network 

directly to see the effect of optimization. VGG16 reached 87.58%, showing that the 

optimization improved the accuracy by around 5%. Our DITDN’s accuracy suggests that 

network optimization in terms of depth, parameters, and optimization space can generate 

a network that better fits the data and, thus, produces a more accurate detection map. In 

addition, the 89% detection accuracy obtained from the second test image’s detection 

map demonstrates that the DITDN network’s generated features are not dependent on the 

image the network trained with, demonstrating further that the network can be applied to 

other images and that its features to distinguish the same classes in new images taken in 

the same season. 
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This study’s results demonstrate the potential of using deep learning networks in an 

object-based approach for ITSD applying to single-source high spatial/spectral satellite 

images. Considering central and eastern Canada have similar climates, DITDN can be 

applied to other forests in these areas. This work can be further improved via data 

collection of other tree species in other parts of New Brunswick and Canada and by 

training the network to identify them. We hope this study provides valuable baseline 

information and tools and will substantially contribute to the success of tree species 

mapping and forest monitoring using state-of-the-art remote sensing tools and data.
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5 Chapter 5: Summary and Conclusions 

This chapter summarizes the research conducted for this dissertation. It also outlines the 

research conducted in Chapters 2 through 4, as well as the contributions of this research. 

Finally, it provides some suggestions for future work. 

5.1 Summary of the research 

This dissertation reviewed, examined, and improved state-of-the-art DL techniques for 

RS data analysis. DL is rooted in the ML field for object detection and classification and 

has just recently been applied to geoscience and the RS field. During this time, DL, 

specifically CNN, has had significant success in the RS field. Nevertheless, due to 

differences between ML and RS image datasets, DL’s applications have mostly focused 

on urban areas and aerial-scene labeling. These differences are the limited available 

training data, large sizes of satellite images, the importance of spectral information in RS 

data, the higher number of spectral bands in RS images, and the importance of reusing 

trained networks on uncorrelated images in this field. 

Considering these differences, new questions arise regarding the use of DL in RS image 

analysis. This dissertation focused on three aspects of these questions: 

• It adopted a convolutional neural network for mapping wetland complexes that 

have spectrally similar classes. This application also faced a lack of training data. 

Therefore, the dissertation proposed that a pretrained network be used for 

initializing the weights of CNN to reduce the necessary training data. It also 

investigated the generality of the generated features for reuse on other datasets. 
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• It proposed a solution for feeding all spectral bands to CNN. It also proposed a 

robust solution for comparing different CNN networks with different scenarios, 

including fully training versus fine-tuning and using 3 bands versus all spectral 

bands. It also investigated the generality of the features. 

• It proposed a method for organizing CNN to fit the network to the data. Based on 

that, it introduced a new network, based on VGG-16, for individual tree-species 

detection using Worldview-3 images. It has proposed the use of segments instead 

of pixels to speed up processing. 

This research used, investigated, and improved deep CNNs for classification of the 

heterogeneous environment. Chapter 2 investigated CNN’s capability for wetland 

classification, in particular examining the potential of a pre-existing CNN for mapping 

wetland complexes using RapidEye optical imagery in a study area located in the Avalon 

Peninsula, Newfoundland and Labrador. This chapter addresses the problems of 

extracting many hand-crafted features, the sensitivity of CNN to spectrally similar 

classes, lack of training data, and generality of the generated features. The CNN achieved 

an overall classification accuracy of 94.82%, demonstrating an improvement of about 

16% compared to the RF classifier for all land-cover types. Moreover, an average 

improvement of about 30% was attained for wetland classes when CNN was employed. 

The latter observation suggests the significance of incorporating high-level spatial 

features into the classification scheme to reduce confusion between spectrally similar 

wetland classes. 

Chapter 3 used CNN again for classification of complex wetlands. It investigated two 

different strategies of employing pre-existing CNN: full-training (in case of having 
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enough training data), and fine-tuning (in case of limited training data). The chapter also 

examined potential of the most well-known deep convnets currently employed for several 

computer vision tasks, including DenseNet121, InceptionV3, VGG16, VGG19, Xception, 

ResNet50, and InceptionResNetV2 in a comprehensive and elaborate framework using 

multispectral-RapidEye optical data for wetland classification. It also introduced a 

solution for using all spectral bands to feed CNN and compared the classification results 

with 3 and 5 spectral bands. The results illustrate that the full-training of pre-existing 

convnets using five bands is more accurate than both full training and finetuning using 

three bands, suggesting that the extra multispectral bands provide complementary 

information. In this study, InceptionResNetV2 consistently outperformed all other 

convnets for the classification of wetland and nonwetland classes with the state-of-the-art 

overall classification accuracy of about 96%, followed by ResNet50 and Xception, with 

respective accuracies of about 94% and 93. The impressive performance of 

InceptionResNetV2 suggests that an integration of Inception and ResNet modules is an 

effective architecture for complex land-cover mapping using multispectral remote-

sensing images. The individual class accuracy illustrated that confusion occurred between 

wetland classes (herbaceous wetlands), although it was less pronounced when 

InceptionResNetV2, ResNet50, and Xception were employed. The swamp wetland had 

the lowest accuracy in all cases, potentially because the fewest training samples were 

available for this class. 

Chapter 4 proposed a method to use single-source WorldView-3 satellite images to detect 

and identify individual tree species. It developed a two-step processing approach. The 

first step applies a segmentation to delineate tree crowns, which is followed by the 
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second step, wherein a deep CNN detects tree species. For the deep CNN, we designed a 

DITDN, based on VGG16, with the ability to receive all 8 visible and near-infrared 

spectral bands and trained it to detect four tree species (pine, spruce, red maple, and 

birch). This chapter addressed problems of network optimization, processing speed, and 

the generality of the designated network for ITSD. In this study, our DITDN 

outperformed the results of other investigated ML detection methods (RF and GB), 

reaching an accuracy of about 92.13%, whereas GB and RF reached 83.57% and 80.12%, 

respectively. We also applied the VGG16 network directly to measure the effect of 

optimization, which reached 87.58% accuracy. Our DITDN’s accuracy suggests that 

network optimization in terms of depth, parameters, and optimization space, can generate 

a network that better fits the data and, thus, produces a more accurate detection map. In 

addition, the 89% detection accuracy obtained from the second test image’s detection 

map demonstrates that the DITDN network’s generated features are not dependent on the 

image the network trained with, demonstrating further that the network can be applied to 

other images and that its features are general enough to distinguish the same classes in 

new images taken in the same season. 

5.2 Achievements of the research 

1Based on Chapters 2 to 4 of this dissertation, the summary of overall contributions 

follows: 
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5.2.1 Adopting a CNN network for classifying heterogeneous wetland 

environments in high resolution satellite multispectral imagery 

CNN is mostly sensitive to spatial information. Therefore, it has been used in the RS field 

mostly for classifying land covers or scenes with high discriminant spatial information. 

We adopt a CNN network that can incorporate the spectral and spatial information and 

discriminate spectrally similar classes. 

5.2.2 Incorporating fine-tuning of different layers of a pre-trained CNN network 

to deal with limited training data 

Since the training data available for training a classifier is limited, we examined different 

scenarios to use the weights of a pretrained network. Based on the training data, the type 

of images that the pretrained network was trained for, and the fact that the primitive 

layers generate more general features, the weights of specific primary layers can be used 

as the initializer for training the new network (fine-tuning). In this way, the needed 

training data will be reduced. 

5.2.3 Comparing seven selected CNN networks in terms of the accuracy, training, 

and the number of used bands 

Considering a heterogeneous environment with spectrally similar classes, we examined 

well-known CNN networks with different architectures. We compared the seven selected 

networks’ accuracy, training, and number of used spectral bands to determine the best 

suitable structure for the task. This comparison can be a baseline for selecting a CNN 

network for classification and detection. It also can serve as a reference to design new 

CNN architecture for similar tasks. 
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5.2.4 Moving from the pixel-based approach to object-based to speed up the DL 

processing 

The Patch-based CNN works as a pixel-based process. Since each pixel should be 

processed separately, and each process needs more processing time than the other pixel-

based classification and detection methods, this method is considered slow. Grouping 

similar pixels into one can decrease processing time since it runs the method only once 

per segment. The segmentation can also reduce the effect of a noisy classification map 

and can preserve the shape of the object if under-segmentation is avoided in the 

segmentation. 

5.2.5 Incorporating the multispectral resolution of the satellite images into CNN 

for classification 

Recent DL libraries are designed to process RGB images, which limits the number of 

spectral bands a CNN network can receive and process. This limitation is crucial in the 

RS field since almost all multispectral images have more than three bands. We developed 

a pipeline that can read the GeoTiff format and connect it to the Tensorflow library. We 

also demonstrate the importance of using more bands by generating the classification 

maps for three-band and five-band situations and comparing their accuracies. 

5.2.6 Optimizing a CNN network in order to design a new architecture to better fit 

the network to data 

Most of the CNN networks are designed for image dataset that is used in ML. The 

network architecture, kernels, and optimization are designed for those data. Therefore, 

given new types of images, the network might not perfectly fit the data, which leads to 
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incomplete optimization. In other words, there would be room left to increase the 

accuracy of the trained network by optimizing its architecture. The optimization also can 

serve as a method for designing a new network for a specific task with particular types of 

image. 

5.3 Suggestions for future works 

Based on this research, this dissertation proposes the following suggestions: This research 

focused on applying CNN for classification of heterogeneous environments. We 

examined the sensitivity of CNN to spectral information. We found CNN is more 

sensitive to spatial information than spectral information, which is clearly shown by the 

difference in accuracy of the wetland and nonwetland classes. This fact can be related to 

the nature of convolutional layers. Thus, as the first suggestion, there is potentiality to 

design a specific layer for DL that can generate features that are more spectral-based than 

spatial-based, and then, incorporate them on higher levels. This idea is of more interest 

when hyperspectral images are being used. 

Another limitation we worked on is the limited available training data. Although fine-

tuning of a pretrained network is a solution, decreasing reliance on training data is 

preferable. Therefore, as the second suggestion, use of combined unsupervised-

supervised DL methods might be desirable. 

This dissertation focused just on multispectral satellite images. Theoretically, CNN can 

classify different types of images and fuse them at the class level. This is the third 

suggestion we are currently working on. Lastly, working on the visualization of the DL 

features is an open topic that can help us understand the mechanism of the DL algorithm. 
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Besides, since CNN networks are computationally time-consuming when run on a large 

area, it would be helpful to identify the most important features and remove the kernels 

associated with the least important features. In this way, the network can be compressed, 

so the implementation would be faster, and the network would have fewer parameters, so 

it would need less training data for fine-tuning. 
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