
T  REPORTECHNICAL
NO. 316

November 2018

ISMAEL FOROUGHI

ACCURACY OF THE CLASSICAL 
HEIGHT SYSTEM



 
 
 

ACCURACY OF THE CLASSICAL  
HEIGHT SYSTEM  

 
 
 
 
 
 

Ismael Foroughi 
 
 
 
 
 
 
 
 
 
 
 

Department of Geodesy and Geomatics Engineering 
University of New Brunswick 

P.O. Box 4400 
Fredericton, N.B. 

Canada 
E3B 5A3 

 
 
 

November 2018 
 
 

© Ismael Foroughi, 2018 



 
 
 

PREFACE 
 
 
 

 This technical report is a reproduction of a dissertation submitted in partial fulfillment 

of the requirements for the degree of Doctor of Philosophy in the Department of Geodesy 

and Geomatics Engineering, November 2018.  The research was co-supervised by Dr. 

Marcelo Santos and Dr. Petr Vaníček, and partial support was provided by the Natural 

Sciences and Engineering Research Council of Canada. 

 As with any copyrighted material, permission to reprint or quote extensively from this 

report must be received from the author. The citation to this work should appear as 

follows: 

 
Foroughi, Ismael (2018). Accuracy of the Classical Height System. Ph.D. dissertation, 

Department of Geodesy and Geomatics Engineering Technical Report No. 316, 
University of New Brunswick, Fredericton, New Brunswick, Canada, 213 pp. 

 



 

ii 

 

Abstract 

Measuring the quality of the classical height system through its self-consistency 

(congruency) is investigated in this dissertation. Measuring the congruency is done by 

comparing the geoidal heights determined from a gravimetric geoid model with test 

geoidal heights derived at GNSS/Leveling points. The components of this measurement 

are computed as accurately as possible, e.g., the Stokes-Helmert approach is used to 

determine the geoid model, gravimetric and topographic corrections are applied to the 

spirit leveling observations to derive rigorous orthometric heights at test points, and 

finally, the geodetic heights are taken from GNSS observations.  

Four articles are included in this dissertation, one is discussing a modification to the 

Stokes-Helmert approach for using the optimal contribution of the Earth gravitational 

models and the local data. The second paper applies the methodology presented in the first 

paper and presents the detail results for a test area. The third paper is a discussion on the 

accuracy of the classical height system against Molodensky’s system and presents a 

numerical study to show that the classical system can be computed as accurately as 

Molodensky’s. The last paper presents a methodology to find the most probable solution 

of the downward continuation of surface gravity to the geoid level using the least-squares 

technique. The uncertainties of the geoidal heights are estimated using least-square 

downward continuation and a priori variance matrix of the input gravity data. The total 

estimation of the uncertainties of the geoidal heights confirms that geoid can be 

determined with sub-centimetre accuracy in the flat areas when, mainly, the effect of 

topographic mass density is taken into account properly, the most probable solution of 
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downward continuation is used, and the improved satellite-only global gravitational 

models are merged with local data optimally. 
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1 Chapter 1: Introduction  

1.1 Height systems 

Latitude, longitude, and height of a point are commonly used to represent the 

location of a point on or near the Earth surface. The first two, called horizontal 

coordinates, refer to reference ellipsoid and are known as geodetic latitude (𝜑) and 

longitude (𝜆) [Moritz, 2000]. The third coordinate, i.e. height of a point is usually 

represented in a height system which consists of a reference surface and definition of 

height above it. The height of a point is defined as the distance (along a specific path) 

between the point and a reference surface; e.g., height of the point can be measured as the 

distance between the point and the ellipsoid of revolution along the line perpendicular to 

ellipsoid which is called the geodetic height (h), cf., Figure 1.2. For many practical 

purposes, the height of a point must refer to mean sea level (MSL) rather the ellipsoid of 

revolution [Vaníček, 1998] which will be discussed in detail later.  

Height systems consist of two components, reference (vertical) surface and 

definition of the height above this surface. Depending on different reference surfaces and 

definition of heights, there could be different height systems used in practice which 

generally are divided into two types: ones that are tied to the Earth gravity field (called 

physical height systems) and measure heights along the plumbline; and ones which ignore 

the Earth gravity field (called geometric height systems) and measure the heights along a 

straight line. The first type is more common in practice [Vaníček, 1998]. 
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   The goal of this dissertation is to evaluate the quality of a gravity-based height 

system. The quality of a height system can be measured through the accuracy, precision, 

resolution, coverage, usability, etc. of the system components. In this section, different 

types of height systems are summarized first and then a method of measuring the quality 

of a height system is proposed.  

Spirit (differential) leveling is commonly used in practice to measure the height 

differences between adjacent points. For each setup, the leveling instrument and vertical 

rods are aligned with respect to the local gravity vector so the local horizontal surface (i.e., 

tangent to the local equipotential surface) is the reference surface in this technique. The 

direction of the gravity vector varies from place to place, so a slightly different vertical 

alignment is used in each set up [Featherstone and Kuhn, 2006]. If a circuit is measured, 

i.e., a closed spirit leveling “loop” is performed, the algebraic sum of all height differences 

(called misclosure) is not theoretically zero unless the Earth gravity field is properly taken 

into account. Thus: 

 ∮𝑑𝑛 = 𝑚𝑖𝑠𝑐𝑙𝑜𝑢𝑠𝑢𝑟𝑒 ≠ 0, (1.1) 

 

where 𝑑𝑛 is the leveling increment (i.e. the height difference between two executive 

points) and the symbol ∮  denotes a line integral over circuit. The topographic mass 

inside the Earth is not regularly distributed so the expected misclosure is not the same 

along different leveling routes chosen. Apart from mass density irregularities, as the height 

differences are measured along the gravity, the misclosure would not be zero unless the 

leveling routs were exactly identical. To avoid this problem, an appropriate modification 

must be applied to the leveling measurements to, at least theoretically, obtain a zero 
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misclosure and to reflect a physically meaningful height system. The component of 

gravity perpendicular to the equipotential surface contains the full magnitude of the 

gravity vector, equals to [Heiskanen and Moritz, 1967, Ch.4]: 

 |𝑔|⃗⃗⃗⃗  ⃗ = 𝑔 = −
𝑑𝑊

𝑑𝑛
, (1.2) 

 

where 𝑑𝑊 is the gravitational potential difference between a leveling increment and 𝑔 is 

the gravity vector at the leveling station. Replacing Eq. (1.1) to compute the gravity 

potential differences rather than leveling height differences yields: 

 ∮𝑔𝑑𝑛 = ∮𝑑𝑊 = 0. (1.3) 

 

Potential differences can therefore be calculated combining leveling and gravimetric 

observations and are indeed the basis of the theory of height systems [Heiskanen and 

Moritz, 1967, Ch. 4]. Leveling without gravimetric corrections results in a physically 

meaningless height system and is not considered in this dissertation. There are different 

types of gravity correction to derive the height of points in different height systems which 

will be discussed later. There are a few gravity-based height systems used in practice for 

different purposes, for instance, classical (orthometric), normal, and/or dynamic height 

systems which will be discussed here. 
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1.1.1 Dynamic height system:  

The geopotential number of a point (𝐶) is defined as the difference between the 

gravitational potential of the point of interest (𝑊𝐴) and a reference geopotential 𝑊0, that 

is usually on the potential at the geoid, and can be computed as: 

 𝐶𝐴 = 𝑊0 − 𝑊𝐴 = ∫ 𝑔𝑑𝑛
𝐴

0

 . (1.4) 

The geopotential number of a point can be computed by integrating the product of gravity 

measurements by leveling increment along the leveling path from geoid to the point of 

interest (right hand side of Eq. (1.4)).  

The dynamic height of a point is then defined as: 

 𝐻𝐴
𝑑𝑦𝑛(Ω) =

𝐶𝐴

𝛾0
′  , (1.5) 

 

where Ω represents the geocentric spherical coordinates (Ω: (λ, φ)) of 𝐴 and 𝛾0
′  is the 

normal gravity computed (usually) at the mid-latitude 𝜑 = 45°. The dynamic height 

system [Helmert, 1884] is a scaling of the geopotential numbers, so the flow of fluids from 

higher to lower height is guaranteed in this system. The geoid is chosen as the reference 

surface, but the heights in this system are purely physical and have no geometrical 

meaning, so they are rarely used.  

1.1.2 Classical (orthometric) height system: 

In the classical height system, the reference surface is the geoid and the heights are 

defined as the distances along the plumbline between the geoid and a surface points. These 

are called orthometric heights and defined as: 
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 𝐻𝐴
𝑂(Ω) =

𝐶𝐴

�̅�𝐴
 , (1.6) 

 

where, �̅�𝐴 is the average value of the gravity along the plumbline: 

 �̅�𝐴 =
1

𝐻𝐴
𝑂(Ω)

∫ 𝑔𝑑𝐻𝐴(Ω)
𝐻𝐴

𝑂

0

 . (1.7) 

 

The path of integration, i.e., the plumbline in Eq. (1.7), is a line that is always 

perpendicular to the equipotential surfaces between the geoid and the point on the Earth 

surface. Due to all variations in the Earth gravity field, the equipotential surfaces are not 

parallel, so the plumbline can be a curved and twisted line (cf., Figure 1.1). Unlike the 

dynamic heights, orthometric heights have a geometrical meaning too. The geoid is a level 

surface at mean sea level with the potential 𝑊0. The separation between the geoid and 

geodetic reference ellipsoid is called geoidal height (or called geoid-ellipsoid separation) 

(𝑁) and is a commonly used term in geoid determination (cf., Figure 1.2).   

The definition of orthometric heights and the geoid are both tied to Earth’s potential 

gravity field and therefore have physical meaning. To determine the geoidal heights, the 

observable quantities of the Earth’s potential field (usually gravity anomalies) must refer 

to the geoid and therefore, at least theoretically, the density of masses at every point 

between the geoid and topographical surface must be known. Computing the orthometric 

heights is also a complicated task, as computing the mean value of gravity along the 

plumbline from geoid to the Earth surface also needs the knowledge of the mass density 

distribution inside topography or measurement of gravity along the plumbline, the latter 
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of which is not practical. Topographic density within the Earth can be approximated by 

some density hypothesis with sufficient accuracy [Helmert, 1884; Sunkel, 1986; Wirth, 

1990; Allister and Featherstone, 2001; Tenzer et al., 2005]. A commonly used density 

hypothesis [Heiskanen and Moritz, 1967, Ch. 4] which approximates the Earth’s 

topography by a constant density and height is called the Bouguer plate or shell and the 

resulting height using this hypothesis is called Helmert orthometric height. Based on the 

Poincaré-Pray reduction, the vertical gravity gradient is approximated by the linear free-

air gradient and simplifies the topography by a shell or plate with a constant density equal 

to mean density of the crust (2670 𝑘𝑔/𝑚3). The mean gravity along the plumbline 

(integral mean) in the definition of the Helmert orthometric heights (Eq.(1.6)) is 

approximated by reduced surface gravity to the mid-point. Further discussion on the 

realization of the orthometric heights will be given in Sec.1.3 and Ch. 4. 
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Figure 1.1: Geometric definition of orthometric height, dashed-lines show the 

equipotential surfaces between geoid and the Earth surface 

 

1.1.3 Molodensky’s (normal) height system 

To overcome the problem of the lack of density knowledge inside the topography, 

Molodensky et al. [1960] were able to show that the physical surface of the Earth can be 

determined without using the Earth’s inner density. This was accomplished by introducing 

an approximate gravity field that can be calculated exactly at any point; i.e., the normal 

gravity field [Heiskanen and Moritz, 1967, Ch. 4]. The normal gravity field is an 

ellipsoidal approximation of the gravity field that contains the total mass of the Earth and 

rotates with Earth around its minor axis [Moritz, 2000]. The gravitational potential 

generated by normal gravity field is denoted by 𝑈. In the formulation proposed by 

Molodensky et al. [1960], instead of the geoid, gravity anomalies refer to the ground (more 
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precisely, the Telluroid).  The telluroid is an auxiliary surface where the normal gravity 

potential at each point of this surface equals to the actual gravity potential of the 

corresponding points (the points along the ellipsoidal normal) on the Earth’s surface (cf., 

Figure 1.2).  

 Assuming the Earth gravity field to be the normal field, that is, 𝑊 = 𝑈, and 𝑔 = 𝛾 

and under the aforementioned assumptions, the Eq. (1.6), i.e., the normal height in the 

Molodensky height system is defined as follows:  

 𝐻𝐴
𝑁 =

𝐶𝐴

�̅�𝐴
 , (1.8) 

 

where �̅� is the integral mean normal gravity along the normal plumbline computed as: 

 �̅�𝐴 =
1

𝐻𝐴
𝑁(Ω)

∫ 𝑔𝑑𝐻𝑁(Ω)
𝐻𝐴

𝑁

0
. (1.9) 

 

In this system, the quasigeoid is used as the datum and heights above this datum are 

defined as the distances between the reference ellipsoid and the points on the telluroid 

along the normal plumbline, and are called normal heights [Heiskanen and Moritz, 1967, 

Ch. 4]. The separation between the Earth surface and the Telluroid is called the height 

anomaly and denoted by 𝜁. The height anomaly, in fact, is the same as the separation 

between the reference ellipsoid and the quasigeoid (cf., Figure 1.2); i.e., quasigeoidal 

heights.  
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1.1.4 Geodetic height system 

The Earth’s surface and its geometric heights can also be depicted by geodetic 

heights (ℎ).  Geodetic heights (ℎ) are the heights above the reference ellipsoid measured 

along the ellipsoidal normal. Geodetic heights are usually provided by Global Navigation 

Satellite System (GNSS) observations. The geodetic height system is purely geometrical 

and suggested by a few authors for some network control, marine, and air navigation 

projects, e.g., [Zilkoski, 1993; Steinberg and Papo, 1998; Kumar, 2005] however, this 

height system is not suggested for projects which involve geophysical applications, 

terrestrial observations, and fluid flow [Vaníček, 1998]. 

 

Figure 1.2:  Different heights with respect to reference ellipsoid: 𝐻𝑂: orthometric height, 

𝐻𝑁: normal heights, ℎ: geodetic height, 𝑁: geoidal height, 𝜁: height anomaly.  
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The classical and Molodenkij height systems are the two most commonly used 

height systems for a practical realization of local and national vertical geodetic datums. 

Due to the problems mentioned above for determining the heights in the classical height 

system, some countries (most European) decided to define their height system according 

to Molodensky’s definition, [e.g., among others, Lysaker et al., 2006; Krikstaponis et al., 

2007; Klees et al., 2008; Yilmiz, 2008; Ågren and Sjöberg, 2014; Li et al., 2015]. 

However, some other countries, like USA and Canada, define their height system based 

on the classical definition, [e.g., among others, Vaníček and Martinec, 1994; Kühtreiber, 

1998; Bayoud and Sideris, 2003; Tenzer et al., 2003; Saadat et al., 2017].  

The computation of the datum in the classical height system (geoid) suffers due to 

uncertainties in the topographical density distribution but provides the most physically 

meaningful vertical reference surface. On the contrary, determination of the quasigeoid in 

the Molodensky height system requires integration over the Earth’s surface (Telluroid) 

which is not a smooth manifold. Furthermore, heights in this system do not have physical 

meaning. The actual mean gravity along the plumbline between the geoid and the 

topographic surface is used for the theoretical definition of the orthometric heights in the 

classical system, whereas the mean normal gravity along the normal plumbline between 

reference ellipsoid and the Telluroid is calculated explicitly in the definition of the normal 

heights in the Molodensky system. The problems associated with the classical system, i.e., 

the density variation of the topography, are being resolved with increasing accuracy as the 

time passes; however, while the problems that exist in the computation of the quasigeoid 

will not be resolved by increasing knowledge of the Earth’s composition [Vaníček et al., 

2012].   
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There are also some studies intending to compute the differences between geoid and 

quasigeoid, i.e. differences between normal and orthometric heights. The simplest formula 

is the classical formulation to compute the separation between geoid and quasigeoidand 

is not accurate in mountainous areas [Heiskanen and Moritz 1967, Ch. 4]. To derive a 

more rigorous formula than classical formulation, the terrain correction, topographic 

density variation, and the effect of geoid generated gravity disturbances were taken into 

account by Tenzer et al. [2005] and Santos et al. [2006]. Flury and Rummel [2009] also 

investigated the effect of terrain geometry on the separation of geoid and quasigeoid. 

Following the derivation of Flury and Rummel [2009], Sjöberg [2010] gave a more exact 

definition of the geoid to quasigeoid separation which was consistent with the formulation 

of the fundamental gravimetric equation of physical geodesy. Tenzer et al. [2015] 

summarized all the expressions for computing the separation between geoid and 

quasigeoid in spatial and spectral domains and suggested to compute the quasigeoid and 

then convert to the geoid. The data needed for computing the exact separation between 

geoid and quasigeoid are the ones needed to compute the geoid, so it does not make sense 

to compute a non-physical reference surface, i.e., quasigeoid, and then convert it to the 

geoid.  

In this dissertation, measuring the quality of a height system is intended. Geoid 

and orthometric heights are the components of the classical height system which are 

discussed in the following sections. 
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1.2 Geoid  

After some idealization, the mean surface of the oceans is, so to speak, part of a 

certain level surface and horizontal everywhere; therefore, it is convenient for heights for 

practical purposes to be associated with mean sea level (MSL) [Vaníček, 1998]. The MSL 

everywhere more or less follows a gravity equipotential surface of a constant potential 

𝑊0. The equipotential surfaces of the Earth which approximates the MSL most closely 

was proposed by C. F. Gauss as the “mathematical figure of the Earth” and called later 

the geoid. Determination of the geoid is a purely physical problem. If the mass density 

distribution within the Earth were known, gravity potential could be computed at every 

point and the geoid would simply be the contour connecting all the points with the gravity 

potential equal to 𝑊0. The distribution of mass density inside the Earth however is not 

fully known, but knowing the relation between gravity and gravity potential, and using 

some gravimetric, geodetic, and topographic information, the geoidal heights can be 

computed with adequate accuracy. Gravimetric data include local measurements of the 

Earth gravity field and the global gravity field represented by the spherical harmonics 

provided by satellite gravity missions. Measurements of the geometry of the Earth, such 

as, topographical heights or geoidal heights at benchmarks (differences between geodetic 

and orthometric heights) fits in the geometric source of data sets.  Statistical methods may 

be used to combine these sources of data to determine geoidal heights (e.g., least squares 

collocation method in Tscherning et al. [1992] and Featherstone and Sproule [2006]; 

Stokes-Helmert method in Vaníček and Martinec [1994]; least square modification of 

Stokes method in Sjöberg [2003]). The theory of the Stokes-Helmert’s method developed 
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at the University of New Brunswick is focused on in this dissertation and is introduced 

below.  

Stokes [1849] introduced the Stokes’s integral as an analytical solution for a 

spherical boundary for the determination of the geoid using gravity measurements. The 

main requirements of the solution were that gravity values must be available on a sphere 

and there should not be any masses above this surface. Neither of these assumptions is 

valid in real space. Gravity anomalies are measured at or above the surface of the Earth 

and there are topographic masses between the geoid and the Earth surface and atmospheric 

masses above the Earth surface. To use the Stokes formulation, gravity measurements at 

or above the Earth surface are used to estimate values on the geoid. This transformation 

must be done in a space in which the gravity field behaves harmonically, i.e., satisfying 

the Laplace equation, and the gravity anomalies must be of a solid type [Vaníček et al., 

1996]. Helmert [1884] suggested transferring all the gravity measurement to a space 

where all topographic masses are condensed into a dense layer on or below the geoid to, 

at least mathematically, avoid the problem of existing masses. Gravity measurements 

could then be transferred to the Helmert space by removing the effect of this topographic 

mass condensation to be continued down to the geoid. Poisson [MacMillan, 1930] 

formulated the Dirichlet boundary value problem and his method was used to get a 

physically rigorous approach for downward continuation (DWC) of gravity anomalies to 

geoid level which can be done if gravity anomalies are transferred to a space in which 

gravity field behaves harmonically. The three formulations of Stokes, Helmert, and 

Poisson form the theory of the Stokes-Helmert geoid determination approach.  
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The theory of the Stokes-Helmert approach has been documented in many 

publications and applied to different regions of the world, [Vaníček and Sjöberg, 1991; 

Vaníček and Martinec, 1994; Tenzer et al., 2003; Bajracharya, 2003; Huang and 

Véronneau, 2005; Ellmann and Vaníček, 2007; Janák et al., 2017]. Excluding some minor 

differences, the conventional scheme of the Stokes-Helmert approach in all 

abovementioned publications is shown in Figure 1.3. 

Figure 1.3: Conventional Stokes-Helmert scheme for geoid determination 

 

 

1.2.1 Data Preparation (Transformation to Helmert space “Helmertization”) 

In this step the observation data are prepared to be evaluated by the Stokes integral: 
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- Prediction of Free-air gravity anomalies on grid points:  

Free-air gravity anomalies are computed as follows [Vaníček and Krakiwsky, 1986, 

Ch.6]: 

 Δ𝑔(𝑟𝑡, Ω) = 𝑔(𝑟𝑡, Ω) − 𝛾(𝐻𝑜 − 𝜁, Ω), (1.10) 

 

where 𝐻𝑜 is the height of the observation point, 𝑔(𝑟𝑡, Ω) is the observed gravity at the 

point at the surface with a radius 𝑟𝑡 and geocentric coordinates of Ω(𝜑, 𝜆), 𝛾 is the normal 

gravity computed at the Telluroid which is approximated by [cf., Vaníček and Krakiwsky 

1986, Ch.21]: 

 𝛾(𝐻𝑜 − 𝜁, Ω) = 𝛾0 −
2𝑔

𝑅
× 𝐻𝑜(Ω), (1.11) 

 

and the free-air correction. Conventionally, the input gravity data in the Stokes-Helmert 

method is mean gravity anomalies at grid points (the cell centres), i.e., the gravity values 

inside one cell are averaged to get the cell centre value.  To predict the gravity anomalies 

at these points, they should be transferred to a smoother field, e.g., complete spherical 

Bouguer gravity anomalies (also known as No-Topography or NT anomalies), and then 

averaged at the grid points with specific resolution. For further details on prediction and 

averaging the gravity anomalies please see [Kassim, 1980; Vaníček et al., 2004; Janák and 

Vaníček, 2005; Janák et al., 2017]. The output of this step are mean free-air gravity 

anomalies (Δ𝑔𝐹𝐴(𝑟𝑡, Ω)) on grid points at surface.  

  

- Transferring to the Helmert space:  

Helmert’s gravity anomalies are computed as follows [Novák, 2000]: 
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∆𝑔𝐻(𝑟𝑡, Ω) =  ∆𝑔𝐹𝐴(𝑟𝑡, Ω) + 𝛿𝐴𝑡(𝑟𝑡, Ω) + 𝛿𝐴𝑎(𝑟𝑡, Ω) +

𝛿𝛾𝑡(𝑟𝑡, Ω) + 𝛿𝛾𝑎(𝑟𝑡, Ω) + 𝜀𝑔𝑞𝑔(𝑟𝑡, Ω) +𝜀𝑔(𝑟𝑡, Ω). 
(1.12) 

 

In Eq.(1.12), 𝛿𝐴𝑡(Ω, 𝑟𝑡) is the direct topographical effect (DTE), 𝛿𝐴𝑎(Ω, 𝑟𝑡) is the 

direct atmospheric effect (DAE) which are computed as follows: 

 

 
𝛿𝐴𝑡(𝑟𝑡, Ω) =

𝜕𝛿𝑉𝑡(𝑟𝑡, Ω)

𝜕𝑟
=

𝜕𝑉𝑡(𝑟𝑡, Ω)

𝜕𝑟
−

𝜕𝑉𝑐𝑡(𝑟𝑡, Ω)

𝜕𝑟
, 

𝛿𝐴𝑎(𝑟𝑡, Ω) =
𝜕𝛿𝑉𝑎(𝑟𝑡, Ω)

𝜕𝑟
=

𝜕𝑉𝑎(𝑟𝑡, Ω)

𝜕𝑟
−

𝜕𝑉𝑐𝑎(𝑟𝑡, Ω)

𝜕𝑟
, 

(1.13) 

 

where 𝛿𝑉𝑡(𝑟𝑡, Ω) is the residual topographical potential defined as a difference between 

the gravitational potentials of topographical masses (𝑉𝑡(𝑟𝑡, Ω)) and of condensed 

topographical masses (𝑉𝑐𝑡(𝑟𝑡, Ω)). Correspondingly, 𝛿𝑉𝑎(𝑟𝑡, Ω) is the residual 

atmospheric potential, obtained by subtracting the gravitational potential of the condensed 

atmospheric masses (𝑉𝑐𝑎(𝑟𝑡, Ω)) from the potential of the atmospheric masses (𝑉𝑎(𝑟𝑡, Ω)).  

The 𝛿𝛾𝑡(𝑟𝑡, Ω) is the secondary indirect topographical effect (SITE), and 𝛿𝛾𝑎(𝑟𝑡, Ω) 

is the secondary indirect atmospheric effect (SIAE) which are computed as follows: 

 
𝛿𝛾𝑡(𝑟𝑡, Ω) =

2

𝑟𝑔
(𝑉𝑡(𝑟𝑡, Ω) − 𝑉𝑐𝑡(𝑟𝑡, Ω)) 

𝛿𝛾𝑎(𝑟𝑡, Ω) =
2

𝑟𝑔
(𝑉𝑎(𝑟𝑡, Ω) − 𝑉𝑐𝑎(𝑟𝑡, Ω)). 

(1.14) 

 

The secondary indirect atmospheric effect (SIAE) is very small and is not usually 

computed in the practical determination of the geoidal heights.  In the Stokes-Helmert 

method, topographical effects are calculated by adding together the three parts: Bouguer 

shell, terrain, and anomalous density [Wichiencharoen, 1982; Martinec, 1993; Martinec 

et al., 1996]. Gravitational potential of the spherical Bouguer shell is computed by 
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considering mean topographical density 𝜌 for the shell thickness equal to the orthometric 

height of each point (𝐻𝑜(Ω)) while calculating the gravitational potential of the spherical 

roughness term (terrain correction) needs digital terrain model (DTM) of the area. To 

compute the effect of anomalous density on the gravitational potential, the digital density 

model (DDM) and DTM are required (cf., [Martinec, 1993; Huang, 2002; Foroughi et al., 

2015b]). 

 The term 𝜀𝑔𝑞𝑔(𝑟𝑡, Ω) is the geoid-to-quasigeoid correction applied to gravity 

anomalies for the compensation of using orthometric height rather the normal heights (Eq. 

(1.10)) in the boundary condition formulated in the Helmert space [Vaníček and Martinec, 

1994]. This correction can be computed using the approximate formula of the geoid-to-

quasigeoid separation [Heiskanen and Moritz, 1967, Ch. 4].  

Finally, the term 𝜀𝑔(𝑟𝑡, Ω) stands for the ellipsoidal corrections needed in the 

formulation of the boundary value problem in the spherical coordinate system (cf., [Wong, 

2002; Vaníček and Martinec, 1994]). 

 

- Downward continuation (DWC): 

The Helmert gravity anomaly multiplied by the geocentric radius (𝑟𝑡) is harmonic 

outside the geoid and therefore can be transferred down from the Earth surface [Vaníček 

and Martinec, 1994]. The results of this step are the Helmert gravity anomalies on the co-

geoid (Δ𝑔̅̅̅̅ 𝐻(𝑟𝑔, Ω)). The co-geoid is the equipotential surface in the Helmert space which 

corresponds to the geoid in the real space [Vaníček et al., 1996; Huang et al., 2003; 

Kingdon and Vaníček, 2010; Goli et al., 2011]. Helmert’s gravity anomalies on the co-
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geoid are evaluated using a Fredholm integral of the 1st kind called Poisson’s integral 

[Heiskanen and Moritz, 1967, Ch. 6]. The Poisson integral reads [Kellogg, 1929]: 

 ∆𝑔𝐻(𝑟𝑡, Ω) =
𝑅

4𝜋𝑟𝑡(Ω)
∬ 𝐾(𝑟𝑡(Ω),𝜓(Ω, Ω′), R)∆𝑔𝐻(𝑅, Ω)𝑑Ω′

Ω′𝜖 Ω0

, (1.15) 

 

where 𝜓(Ω, Ω′) is the spherical angular distance between positions Ω and Ω′, 𝑅 is the 

radius of the mean sphere locally approximating the unknown geoid, Ω0 represents an 

integration domain usually chosen as a spherical cap of radius 𝜓0 to which the full spatial 

angle is limited reflecting the limited geographic availability of ground gravity data and 

𝐾(𝑟𝑡(Ω),𝜓(Ω, Ω′), R) is the spherical Poisson integration kernel given analytically as 

[Heiskanen and Moritz, 1967, Ch. 6]: 

 𝐾(𝑟𝑡(Ω),𝜓(Ω, Ω′), R) = 𝑅
𝑟𝑡

2(Ω) − 𝑅2

𝑙3(𝑟𝑡(Ω),𝜓, 𝑅)
, (1.16) 

 

where 𝑙(𝑟𝑡, 𝜓, 𝑅) is the Euclidian distance between positions (𝑟𝑡, Ω) and (𝑅, Ω′). 

Ground gravity anomalies are available at discrete points, so the Poisson integral 

equation must be discretized. The discrete form is: 

 ∆𝒈𝒕
𝑯 = 𝑩∆𝒈𝒈

𝑯. (1.17) 

 

Where ∆𝒈𝒕
𝑯 is a vector of Helmert gravity anomalies at the surface, ∆𝒈𝒕

𝑯 is a vector of 

Helmert gravity anomalies on the geoid at their appropriate locations, and 𝑩 is the 

coefficient matrix containing values of the discretized Poisson integral [Vaníček et al., 

1996]: 
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 𝐵𝑖𝑗 =
𝑅2(𝑟𝑖

2 − 𝑅2)

4𝜋𝑟𝑖

1

𝑙3(𝑟𝑖, 𝜑𝑖, 𝜆𝑖; 𝑅, 𝜑𝑗 , 𝜆𝑗)
𝑐𝑜𝑠𝜑𝑗∆𝜑∆𝜆 . (1.18) 

 

The inverse operator of Eq. (1.17) provides the values of gravity on the geoid given 

those on the surface, i.e.: 

 ∆𝒈𝒈
𝑯 = 𝑩−𝟏∆𝒈𝒕

𝑯 . (1.19) 

 

Following the definition of Hadamard [1923], DWC is a physically well-posed 

problem as there exist a unique and finite solution. According to Tikhonov [1963,1964], 

the fact that the “inverse being bounded” is equivalent to “the inverse being continuous”. 

Therefore, the inverse mapping from ∆𝒈𝒕
𝑯 to ∆𝒈𝒈

𝑯 through the linear Fredholm integral 

equation of the 1st kind is continuous [Wong, 2001]. However, depending on the 

discretization step size and height of the observed gravity anomaly, the inverse Poisson 

integral equation, as any Fredholm equation of 1st kind, can have a numerically unstable 

solution. Martinec [1996] investigated the ill-conditioning of the DWC process using 

different grid resolution and showed that DWC of anomalies on a grid smaller than 1′ is 

an unstable process. Vaníček et al. [1996] also showed that DWC of Helmert anomalies 

on a regular 5′ × 5′ grid is a stable problem and can be solved without any kind of 

regularization. Investigation of numerical instability of DWC process has been studied by 

many authors before (e.g., Vaníček et al. [1996]; Huang [2002]; Fedi and Florio [2002]; 

Huang et al. [2003]; Tenzer and Novák [2008]; Kingdon and Vaníček [2010]; Goli et al. 

[2011]; Zhang et al. [2013]; Foroughi et al. [2016]; Vaníček et al. [2017]; Goli et al. 

[2018]). With the accessibility of the high-resolution gravity data, a geoid model with 

finer resolution, e.g., 1′ × 1′, was desired after the investigation by Vaníček et al. [1996]. 
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To overcome the problem of instability, Kingdon and Vaníček [2010] suggested using the 

Jacobi iterative technique to solve the system of linear equations. According to their 

formulation, the gravity anomalies on the geoid reads [Kingdon and Vaníček, 2010]: 

 ∆𝒈𝑔
𝐾 = ∆𝒈𝑡 + (𝐼 − 𝐵)∆𝒈𝑔

𝐾−1, (1.20) 

 

where ∆𝒈𝑔
𝐾 is the 𝐾-th estimation of ∆𝒈𝑔. Surface gravity values are usually chosen as 

the first estimate (initial value) of the gravity values on the geoid. For the purpose of DWC 

only, Kingdon and Vaníček [2010] suggested to stop the iteration based on a relaxed 

threshold. A relaxed threshold is defined according to (a rough estimation of) the condition 

number of the 𝐵 matrix as well as the uncertainty of the input data. In their formulation, 

the threshold was compared with the largest absolute residual value of the surface gravity 

anomalies between two iterations. Stopping the iterations before their actual convergence 

(i.e., the stage when a predefined threshold is related to the noise of the observed data and 

is not relaxed) is called semi-convergence and used to prevent the high-frequency 

observation noise from creeping into the DWC solution. Goli et al. [2018] investigated 

different iterative approaches for DWC of surface gravity anomalies and also tried 

different stopping criteria. They used a simulated data set, synthesized from the Earth 

gravitational models (EGMs) at the level of the Earth surface and geoid, and evaluated the 

DWC methods to estimate the geoid gravity anomalies. Their findings confirm the results 

of Kingdon and Vaníček [2010] and they also suggested using other iterative approaches 

to better estimate of geoid gravity anomalies in the mountainous areas.  
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1.2.2 Evaluation of the Stokes integral 

The disturbing potential in the Helmert space (𝑇𝐻(𝑟, Ω)) is defined as the difference 

between actual (𝑊𝐻) and normal (𝑈(𝑅, Ω)) gravity potential on the geoid in that space: 

 ∀𝑟:        𝑇𝐻(𝑟, Ω) = 𝑊𝐻(𝑟, Ω) − 𝑈(𝑟, Ω) (1.21) 

 

The geoidal heights in the Helmert space (co-geoidal heights) can be computed 

using the Bruns formula when 𝑟 = 𝑅 [Heiskanen and Moritz, 1967, Ch.2]: 

 𝑁𝐻(Ω) =
𝑇𝐻(𝑅, Ω)

𝛾0(Ω)
 (1.22) 

 

Since the disturbing potential cannot be measured directly, the boundary value 

problem (BVP) of the third kind (also called geodetic BVP) [Heiskanen and Moritz, 1967, 

Ch.1] has to be formulated and solved: 

 ∆𝑔𝐻(𝑅, 𝛺) = −
𝜕 𝑇𝐻(𝑟, 𝛺)

𝜕𝑛
|
𝑟=𝑅

+
1

𝛾0(𝛺)

𝜕𝛾

𝜕𝑛
𝑇𝐻(𝑅, 𝛺), (1.23) 

 

where 𝑛 is the normal to the ellipsoidal surface. In this formulation, gravity anomalies at 

the geoid level serve as boundary values. A highly accurate solution is found by applying 

the appropriate Green’s function for a sphere, resulting in Stokes’s integral [Stokes, 1849]. 

Stokes’s integral for determining the geoidal heights in Helmert space from the gravity 

anomalies on a spherical boundary [Heiskanen and Moritz, 1967, Ch.2]: 

 N𝐻(Ω) =
𝑅

4𝜋𝛾0(𝜙)
∬ 𝑆(ψ(Ω,Ω′))∆𝑔𝐻(Ω′)𝑑Ω′

Ω′∈Ω0
 , (1.24) 
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where the Stokes kernel is [ibid, 1967]: 

 
𝑆(ψ(Ω,Ω′)) =

1

sin (ψ/2)
− 6𝑠𝑖𝑛

ψ

2
+ 1 − 5 𝑐𝑜𝑠ψ − 3 cosψln (sin

ψ

2
+

sin2 ψ

2
) . 

(1.25) 

  

Evaluating the Stokes integral requires integration over the whole globe. Terrestrial 

gravity measurements are not available globally with sufficient accuracy (or at all) and 

satellite gravity data only cover the low to medium frequency components of the gravity 

field spectrum. To reduce the contribution of the distant gravity anomalies in the practical 

evaluation of Eq. (1.24), the Stokes kernel is replaced with its modified kernel (𝑆∗) [Wong 

and Gore, 1969; Vaníček and Kleusberg, 1987]. The integration domain of the Stokes 

integral formula can be divided into the near-zone and far-zone integration sub-domains. 

The integration over the near-zone is done by the modified Stokes’s function. 

Modification is done to minimize the effect of far-zone in the least-squares sense [Vaníček 

and Kleusberg, 1987].  Modified Stokes kernel integrates over a small cap around the 

computation point (ψ0) which is called the “near-zone” contribution (NZ). The effect of 

the rest of the globe on the co-geoidal heights can be computed spectrally using EGMs 

and is called the “far-zone” contribution (FZ) or truncation error [Vaníček and Sjöberg, 

1991; Vaníček and Martinec, 1994]. 

With the growing accuracy and degree of EGMs, Vaníček and Kleusberg [1987] 

introduced the idea of splitting the disturbing gravity field of the Earth into reference (low-

frequency) and residual (high-frequency) parts [Featherstone and Sproule, 2006]. Using 

this formulation, the low-frequency component of the Helmert gravity anomalies, called 

the reference field, is computed using only the satellite determined part of the EGMs and 
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subtracted from the Helmert gravity values. The reference field in Helmert space is 

computed as follows: 

 

∆𝑔𝐿
𝐻(Ω) = −

𝐺𝑀

𝑟2
∑(

𝑅

𝑟
)
𝑙

(𝑙 − 1) ∑ 𝑇𝑙,𝑚
ℎ 𝑌𝑙,𝑚(Ω)

𝑙

𝑚=−𝑙

𝐿

𝑙=2

, 

𝑇𝑙,𝑚
ℎ = {

𝐶𝑙𝑚
ℎ                𝑚 ≥ 0

𝑆𝑙𝑚
ℎ                 𝑚 < 0

 

𝑌𝑙,𝑚 = {
𝑃𝑙𝑚(cos𝜙) cos𝑚𝜆                 𝑚 ≥ 0

𝑃𝑙𝑚(cos𝜙) sin|𝑚|𝜆                𝑚 < 0
, 

 

(1.26) 

 

where 𝑇𝑙,𝑚
ℎ  are the spherical harmonic coefficients of EGMs converted to the Helmert 

space [Vaníček et al., 1995; Najafi-Alamdari, 1996; Huang et al., 2000] and evaluated at 

the radius  𝑟;  𝐺𝑀 is the standard gravitational parameter of Earth. 𝑃𝑙𝑚 is the fully 

normalized associated Legendre polynomial function of the degree 𝑙 and order 𝑚. The 

residual Helmert gravity anomalies are: 

 𝛿∆𝑔𝐻(𝑅, 𝛺) = ∆𝑔𝐻(𝑅, 𝛺) − ∆𝑔𝐿
𝐻(𝑅, 𝛺). (1.27) 

 

  The Stokes kernel can be further modified to omits spherical harmonic bands (up 

to degree/order 𝐿) is called “spheroidal” kernel. The spheroidal modified Stokes (𝑆𝑛>𝐿
∗ ) 

kernel is used to evaluate the residual co-geoidal heights using residual Helmert gravity 

anomalies, i.e., NZ contribution reads: 

 

𝑁
𝑙>𝐿,Ω𝜓0

′
𝐻 (Ω)

=
𝑅

4𝜋𝛾0(𝜙)
∬ 𝛿∆𝑔𝐻(R, Ω′)𝑆𝑛>𝐿

∗ (𝜓0, 𝜓(Ω,Ω′)) dΩ′

Ω′∈Ω𝜓0

 
(1.28) 
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In Eq. (1.28) the subscript 𝑙 > 𝐿, Ω𝜓0

′   indicates that the integration is performed 

over residual Helmert’s gravity anomalies with frequencies higher than δ∆g𝐻 and limited 

to a cap size of Ω𝜓0

′ , 𝑆𝑛>𝐿
∗   is the modified spheroidal Stokes kernel with modification 

degree 𝐿.  The FZ contribution (𝑁
𝑙>𝐿,Ω0

′ −Ω𝜓0
′

ℎ ) to residual co-geoidal heights is: 

 

𝑁
𝑙>𝐿,Ω0

′ −Ω𝜓0
′

𝐻 (Ω)

=
𝑅

4𝜋𝛾0(𝜙)
∬ 𝛿∆𝑔𝐻(𝑅, Ω′) 𝑆𝑛>𝐿(𝜓0, 𝜓(Ω, Ω′)) dΩ′ .

Ω′∈Ω0
′ −Ω𝜓0

′

 
(1.29) 

 

The residual co-geoidal heights (𝛿𝑁𝑙>𝐿
𝐻 (Ω)) are then computed by adding the FZ to 

NZ contribution: 

 𝛿𝑁𝑙>𝐿
𝐻 (Ω) = 𝑁

𝑙>𝐿,Ω𝜓0
′

𝐻 (Ω) + 𝑁
𝑙>𝐿,Ω0

′ −Ω𝜓0
′

𝐻 (Ω). (1.30) 

 

The reference spheroid of the same degree and order as the reference field (𝐿) is 

then added to residual co-geoidal heights to obtain geoidal heights in the Helmert space: 

 𝑁𝐻(Ω) = 𝛿𝛿𝑁𝑙>𝐿
𝐻 𝐻

(Ω) + 𝑁𝐿
𝐻(Ω). (1.31) 

 

𝑁𝐿
𝐻(Ω) is the low frequency part of co-geoidal heights which is evaluated using 

spherical harmonic synthesis based on EGMs [Heiskanen and Moritz, 1967, Ch.2]: 

 𝑁𝐿
𝐻(Ω) =

𝐺𝑀

𝑟𝛾0
∑(

𝑅

𝑟
)
𝑙

∑ 𝑇𝑙,𝑚
ℎ 𝑌𝑙,𝑚(𝜆, 𝜙)

𝑙

𝑚=−𝑙

𝐿

𝑙=2

. (1.32) 

 

Finally, the co-geoidal heights read: 
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 𝑁𝐻(Ω) = 𝛿𝑁𝐻(Ω) + 𝑁𝐿
𝐻(Ω). (1.33) 

 

Based on this formulation, the contribution of the local terrestrial data is defined by 

the size of the integration cap (𝜓0) and the contribution of the global data or EGMs is 

defined by the degree of the reference field/spheroid. For easier computation, the degree 

of the modification is usually chosen to be the same as the degree of reference field 

[Vaníček and Sjöberg, 1991]. To prevent the correlation between local terrestrial gravity 

data and gravity from EGMs, it is recommended to use satellite only EGMs to compute 

the reference field and FZ contribution [Foroughi et al., 2017a].  

If the EGMs were able to represent the Earth’s gravity field accurately enough (𝐿 

going to infinity), there would not be any need for evaluating the NZ contribution, i.e. no 

terrestrial gravity measurements would be needed and therefore 𝜓0 would go to 0°. On 

the other hand, if there were not any EGMs available or they were not being reliable 

enough to be used in geoid determination, we would have to use the full integration cap 

(𝜓0 = 180°) using only terrestrial gravity data in evaluating the Stokes integral.  

The reliability of EGMs (in comparison with terrestrial data) have been investigated 

by many studies for example Ellmann and Jürgenson [2008] evaluated the EIGEN-GL04c 

satellite-combined EGM [Förste et al., 2006] over the Baltic countries and reported that 

there are decimeter level discrepancies between the EGM derived geoidal heights and 

local models. Hirt et al. [2011] used terrestrial gravity data over Switzerland and Australia 

and astrogeodetic vertical deflections over Europe and Australia as ground-truth data sets 

and the full spectrum of EGM2008 [Pavlis et al., 2012] for GOCE model evaluation. Their 

comparison showed a few tens of mGal differences in terms of gravity data and a few 
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seconds difference in terms of the deflection of the vertical in some areas of their 

investigation.  Huang and Véronneau [2009] evaluated the GRACE-based EGMs and Ince 

et al. [2012] investigated the accuracy of the GOCE-based EGMs over Canada. They both 

reported that the geoidal heights derived from EGMs have decimetre level differences 

from the Canadian gravimetric geoid model [Huang and Véronneau, 2013]. Bomfim et al. 

[2013] evaluated the GOCE gravity models with the terrestrial gravity data of Brazil and 

reported that EGMs should only be used where terrestrial gravity data are scarce. Karpik 

et al. [2016] compared the EGMs with the terrestrial gravity data in West Siberia and 

Kazakhstan and reported 70% of the EGM derived anomalies do not match the terrestrial 

data within a predefined limit. Foroughi et al. [2017c] compared terrestrial and marine 

gravity data with the gravity anomalies derived from the most recent EGMs over the 

territory of Iran. They showed that differences might go up to hundreds of mGal. Odera 

and Fukuda [2017] evaluated the GOCE-based EGMs with the free-air anomalies and 

geoidal heights of Japan and reported tens of mGal differences between the terrestrial data 

and EGM derived gravity anomalies. All these studies confirm that if terrestrial gravity 

data are available, they should not be replaced with EGMs for local geoid modelling.  

The application of EGMs in geoid determination is only for filling the gaps in 

gravity data and to predict the gravity anomalies on grid points [Foroughi et al., 2015a] 

for removing the low frequency components of the Earth’s gravity field [Vaníček et al., 

1995], and for computing the FZ contribution to the modified Stokes integral [Vaníček 

and Kleusberg, 1987]. Speaking of the combination of terrestrial gravity data and EGMs, 

the optimal solution of the geoid is achieved if EGMs are used only up to the degree which 

is compatible with terrestrial data, i.e. the optimum degree of the EGMs should be found 
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when combining with terrestrial data. One way of assessing the compatibility is by 

checking the continuity between EGM derived gravity anomalies and terrestrial data when 

they are used to predict the grid anomalies. The other way is by comparing the gravimetric 

geoidal heights derived using different combinations of terrestrial and EGM data, with the 

geoidal heights derived from GNSS/Leveling points.   The methodology of the latter is 

explained in Ch. 2.  

 

1.2.3 Transferring back to real space 

Condensing the topographical and atmospheric masses from the Earth’s gravity field 

in transferring the data from the real space to the Helmert space, affects the shape and size 

of the geoid [Vaníček and Martinec, 1994; Vaníček et al., 1999]. The differences between 

gravity anomalies in real and Helmert space are computed by of DTE, DAE, SITE, (and 

DDE) where the corresponding differences in terms of geoidal heights can be computed 

by calculating the primary indirect topographical (𝛿𝑁𝑡) and atmospheric (𝛿𝑁𝑎) effects 

(PITE and PIAE) [Martinec 1993]: 

 

𝛿𝑁𝑡(Ω) =
𝑉𝑐𝑡(𝑅, Ω) − 𝑉𝑡(𝑅, Ω)

𝛾0(Ω)
 

𝛿𝑁𝑎(Ω) =
𝑉𝑐𝑎(𝑅, Ω) − 𝑉𝑎(𝑅, Ω)

𝛾0(Ω)
. 

(1.34) 

 

Computation of the PITE and PIAE, like the DTE and SITE, requires the DTM of 

the computation area. If the anomalous density information is available, the primary 

indirect density effect (PIDE) should also be computed and applied for a more accurate 

transformation of the co-geoidal to geoidal heights [Novák, 2000; Tenzer et al., 2003]. 
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The resulting geoidal height in real space is computed as: 

 𝑁(Ω) = 𝑁𝐻(Ω) + 𝛿𝑁𝑡(Ω) + 𝛿𝑁𝑎(Ω) . (1.35) 

 

 

1.3 Rigorous Orthometric heights 

As mentioned above, heights in the classical height system are called orthometric 

heights. Th orthometric height of a point at the surface is defined as the distance between 

the geoid and the point measured along the plumb line (see Eq. (1.6) and (1.7)). Computing 

mean gravity through the integral in Eq. (1.7) requires measuring the actual gravity along 

the plumbline which is not economical. Helmert [1890] suggested approximating the 

mean gravity along the plumbline based on the Poincaré-Pray gradient which results in 

Helmert’s orthometric height. According to the Poincaré-Pray theory, the mean value is 

derived by approximating the topography by the Bouguer plate and free-air gravity 

gradient at the point of interest, assuming the mass density of the plate to be constant and 

equal to mean topographic density [cf., Heiskanen and Moritz, 1967; Strang van Hees, 

1992]. It was shown by Strang [1982] that mean gravity based on Helmert’s 

approximation is very close to the actual mean gravity (from borehole gravimetry) and in 

most areas is accurate to better than 3𝑐𝑚. The Helmert orthometric height (𝐻𝐻𝑂(Ω)) is 

defined as [Heiskanen and Moritz, 1967, Ch. 4]: 

 𝐻𝐻𝑂(Ω) =
𝐶(𝑟𝑡, Ω)

𝑔(𝑟𝑡, Ω)  + (0.0424)𝐻𝑜(Ω)
. (1.36) 
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The terrain geometry and density heterogeneity within the topography as well as the 

effect of masses below the geoid was disregarded in Helmert’s definition of orthometric 

heights. Hayford and Bowie [1912], Niethammer [1932, 1939], and Mader [1954] were 

the first ones who took the terrain geometry into consideration by incorporating the mean 

planar terrain gravity correction. Niethammer calculated the terrain effects on gravity by 

averaging the gravity values at discrete points along the plumbline. Mader used only the 

average of the effects at the two end points of the plumbline, i.e. geoid and the Earth 

surface. The two methods give similar results but Niethammer was superior [Dennis and 

Featherstone, 2003]. Wirth [1990] modified the Niethammer method by means of 

computing the terrain potential difference (between the Earth surface and geoid) instead 

of the mean terrain gravity correction. Santos et al. [2006] developed Wirth’s method by 

using an Earth gravity field decomposition to compute the effect of terrain on the 

conversion from the Helmert’s to the rigorous orthometric heights. They reported that the 

terrain effect can go reach to a few decimeters in rough topography areas.  

As mentioned above, Helmert’s definition of orthometric heights disregards also the 

topographic density variations Strang [1982] showed that the errors of orthometric heights 

due to incorrectly modelling the topographic density might be as large as a decimetre for 

elevations higher than 3000𝑚 and recommended applying a density correction to 

orthometric heights. There are studies discussing the effect of density variation on 

orthometric heights [Martinec, 1993; Vaníček et al., 1995; Allister and Featherstone, 

2001; Huang et al., 2001; Tenzer and Vaníček, 2003; Dennis and Featherstone, 2003; 

Kingdon et al., 2005; Tenzer et al., 2005; Santos et al., 2006]. Some studies suggest using 

three-dimensional DDMs for computing the effect of density variations on the orthometric 
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heights, e.g., [Hwang and Hsiao,2003, Tenzer et al., 2005], but Kingdon et al. [2011] 

showed that the whole three-dimensional variation of topographical density is expected to 

have only a few centimetres effect on the orthometric heights which mainly is sensitive to 

laterally varying density rather vertical variations.   

Apart from topographical effects on the orthometric heights, the effect of the 

remaining unmodelled, or non-topographical effects, can also be modeled using the NT 

geoid generated gravity disturbances [Vaníček et al., 2004]. The effect of non-

topographical masses can improve the orthometric heights on the order of a few 

decimeters [Tenzer et al, 2005; Santos et al., 2006].  

Tenzer et al. [2005] and Santos et al. [2006] have put all the above-mentioned effects 

together and formed a more complete definition of the orthometric heights called the 

rigorous orthometric heights. In their definition, the Earth gravity field is decomposed as 

follows: 

 𝑔(𝑟, Ω) = 𝛾(𝑟, Ω) + 𝛿𝑔𝑁𝑇(𝑟, Ω) + 𝑔𝑡(𝑟, Ω) + 𝑔𝑎(𝑟, Ω), (1.37) 

 

where 𝛿𝑔𝑁𝑇(𝑟, Ω) is the gravity disturbances generated by the masses below the geoid 

(No-Topography gravity disturbances); and 𝑔𝑡(𝑟, Ω) and 𝑔𝑎(𝑟, Ω) are the gravitational 

attraction of the topographical and atmospheric masses respectively. They further 

decomposed the topographical gravitational attraction into Bouguer and terrain 

(roughness) effects: 

 𝑔𝑡(𝑟, Ω) = 𝑔𝐵(𝑟, Ω) + 𝑔𝑅(𝑟, Ω), (1.38) 
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where 𝑔𝐵(𝑟, Ω) is the gravitational attraction of the Bouguer shell and 𝑔𝑅(𝑟, Ω) is the 

gravitational attraction of the terrain which is divided into the effect of mean density 

(𝑔𝜌
𝑅(𝑟, Ω)) and of anomalous density (𝑔𝛿𝜌

𝑅 (𝑟, Ω)): 

 𝑔𝑅(𝑟, Ω) = 𝑔𝜌
𝑅(𝑟, Ω) + 𝑔𝛿𝜌

𝑅 (𝑟, Ω). (1.39) 

 

Other than the aforementioned effects, the more rigorous definition of the 

orthometric heights may account for the second order compensation of the normal gravity 

and Bouguer shell. These improve the orthometric heights only on the order of a few 

centimetres for the highest mountains [Santos et al., 2006].  

1.4 Congruency of the height system  

The regional geoid, which is normally calculated using the gravimetric and 

topographic data is often called a gravimetric geoid. In this dissertation, the Stokes-

Helmert method is used to determine the regional geoid. On the other hand, geoidal 

heights can be derived by subtracting the orthometric heights from geodetic heights at 

GNSS/Leveling points. At GNSS/Leveling points orthometric heights are available from 

spirit leveling observations and applying gravimetric corrections (see Sec.1.3) and 

geodetic heights that are available from GNSS observations. The GNSS/Leveling derived 

geoidal heights are used mostly to test the quality of the gravimetric geoidal heights 

against GNSS/Leveling points and are called “test points” in geoid determination 

approaches. Measuring the quality of a classical height system is intended in this 

dissertation. One way of measuring the quality of a classical height system (i.e. quality of 

the local geoid model and the orthometric heights) is assessing the self-consistency of the 
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system which can be done by measuring the congruency.  Measuring the congruency 

means comparing the gravimetric geoidal heights to the GNSS/Leveling derived geoidal 

heights considered to be independent. If the congruency of the Molodensky height system 

is being assessed, i.e., assessing the accuracy of a quasigeoid model and normal heights, 

a similar procedure is used, except that normal heights of the GNSS/Leveling points are 

used instead of orthometric height. 

The discrepancies (𝑉) of gravimetric geoidal heights and test geoidal heights read: 

 ∀𝑖 ∶    𝑉𝑖 = 𝑁𝑖
𝑡𝑒𝑠𝑡 − 𝑁𝑖 , (1.40) 

 

where 𝑁 are the gravimetric geoidal heights and 𝑁𝑖
𝑡𝑒𝑠𝑡 are the GNSS/Leveling derived 

geoidal heights: 

 ∀𝑖 ∶   𝑁𝑖
𝑡𝑒𝑠𝑡 = ℎ𝑖 − 𝐻𝑖

𝑂 . (1.41) 

 

The congruency of the height system can be measured by 𝐿2 of the discrepancies 𝑉 

in Eq. (1.40) which reads: 

 �̂�𝑉
2 =

𝑽𝑻𝑷𝑽

𝑛
 , (1.42) 

 

where 𝑛 is the number of test points, and  𝑃 is the weight matrix defined as: 

 𝑃 = 𝜎𝑉
2(𝐶𝑁 + 𝐶𝑁𝑡𝑒𝑠𝑡)−1, (1.43) 
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where 𝐶𝑁 and 𝐶𝑁𝑡𝑒𝑠𝑡 are the covariance matrices of the gravimetric (predicted at the test 

points) and GNSS/Leveling derived geoidal heights, and 𝜎𝑉
2 is the a priori variance factor 

computed as follows:  

 𝜎𝑉
2 = 𝜎𝑁

2 + 𝜎𝑁𝑡𝑒𝑠𝑡
2  , (1.44) 

 

where 𝜎𝑁 and 𝜎𝑁𝑡𝑒𝑠𝑡  are the estimated mean standard deviations (uncertainties) of the 

gravimetric geoid and GNSS/Leveling derived geoidal heights at test points. Using Eq. 

(1.41), the a priori mean STD of the test geoidal heights,  𝜎𝑁𝑡𝑒𝑠𝑡 , reads: 

 𝜎𝑁𝑡𝑒𝑠𝑡
2 = 𝜎ℎ

2 + 𝜎
𝐻𝑂
2 , (1.45) 

 

where 𝜎ℎ and 𝜎𝐻𝑂 are the estimated STD of the geodetic and orthometric heights, 

estimated from spirit leveling on the GNSS/Leveling points. These values (or at least a 

rough estimation of them) are usually given by the providers with the test data-set 

[Duquenne, 2007].  

Estimation of the a priori mean STD of the gravimetric geoidal heights at test points, 

i.e., 𝜎𝑁 in Eq. (1.44), is a more complicated task. Determination of the geoidal heights 

using the Stokes-Helmert method needs a combination of both the gravimetric and 

topographic data. This means the uncertainties of each data set must be propagated into 

the steps of the Stokes-Helmert approach (cf., Ch. 5) to get an estimate of the uncertainties 

of the final geoidal heights.  

Estimation of the accuracy of the quasigeoidal heights, i.e., height anomalies, using 

gravimetric and topographic data has been extensively investigated by many articles 
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[Filmer et al., 2014; Godah et al., 2014; Trojanowicz, 2015; Flury and Rummel, 2009; Ha 

Minh Hoa, 2017; Farahani et al., 2017; Featherstone et al., 2018]. Estimation of the 

accuracy of the geoidal heights has been less thoroughly studied, e.g., the uncertainties of 

the geoidal heights, derived by the Stokes-Helmert, were first estimated by Najafi-

Alamdari et al. [1999]. At the time of their investigation, the DWC step was not utilized 

in their computation. The accuracy of the gravimetric geoidal heights in Canada was 

estimated by Huang and Véronneau [2013] by considering the noises in the ground gravity 

data and EGMs as the sources of error in evaluation of the Stokes integral. The 

propagation of uncertainties in the DWC step, i.e., estimation of the uncertainties of the 

gravity anomalies on the geoid, was neglected in their study too. 

If the uncertainties of the components of Eq. (1.40), i.e. gravimetric and test geoidal 

heights, are not available, the weight matrix (𝑃 in Eq. (1.42)) can be equal to the identity 

matrix. In this case Eq. (1.42) may be written in a more simplified and well-known form: 

 𝜎𝑉
2 = ‖𝑽‖2 = ‖𝑵𝒕𝒆𝒔𝒕 − 𝑵‖2 , (1.46) 

 

Equation (1.46) is a well-known formula for measuring the congruency of the height 

system and is usually considered as the Root Mean Square Error (RMSE) of the fit of the 

geoid model and is used to demonstrate the accuracy of the determined gravimetric geoid. 

To best measure the congruency of the classical height system, all the corrections 

for computing the gravimetric geoidal height and GNSS/Leveling derived geoidal heights 

must be applied correctly. Although, some of these corrections might only make small 

change to the value of congruency, they must be applied as they provide the most accurate 
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solution possible [Foroughi et al., 2017b]. Sjöberg [2018] used the so call term 

“topographic bias” to show that topographic density variation have the same effect, but 

with opposite sign, on the gravimetric geoidal heights and orthometric heights computed 

at the GNSS/Leveling points, therefore a better congruency cannot be achieved by 

applying these types of corrections. However, the topographic density variation is 

differently taken into in the Stokes-Helmert method than what is investigated in Sjöberg 

[2018]. First DDM is computed when transferring the gravity anomalies to the Helmert’s 

space and they are downward continued to the geoid level. After performing the Stokes 

integral, the PIDE effect is added when transferring back to the real space. The effect of 

Poisson downward continuation was disregarded in the study done by Sjöberg [2018] and 

therefore their conclusion is not applicable in this dissertation.  

1.5 Test data set 

The test data set used throughout this dissertation refers to a location in the centre 

of France. This data-set was introduced by the Institut Géographique National (IGN) and 

was meant to be used to evaluate various geoid and quasigeoid determination techniques 

(see, Figure 1.4) [Duquenne, 2007]. Topographically and geologically, this area is 

complex; it contains about 60 remarkably fresh volcanoes of so-called “Chaîne des Puys” 

which covers a significant portion of the large upland area in the southern half of central 

France [Nowell, 2008]. There are also high mountains (Alps) on the eastern part, which 

reach up to above 4000𝑚 and almost flat areas in the middle and western parts (see Figure 

1.5 ).   
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Figure 1.4: Distribution of the terrestrial gravity data in Auvergne 

Gravity data coverage is limited to an area between −1° < 𝜆 < 7° , 43° < 𝜑 < 49° 

and contains 240000 terrestrial gravity observations extracted from the database of the 

Bureau Gravimétrique International, supplied by the Bureau de Recherches Géologiques 

et Minières for the French territory. Distribution of the terrestrial gravity data is shown in 

Figure 1.4. The stated standard deviation of the gravity values is between 0.25 −

0.75𝑚𝐺𝑎𝑙 [Duquenne, 2007]. There are 75 GNSS/Leveling points regularly distributed 

in the central area (1.5° < 𝜆 < 4.5° , 45° < 𝜑 < 47°) given in the RGF93 reference frame. 

The STD of the geodetic heights at GNSS/Leveling points is between 2 − 3 𝑐𝑚. Another 

set of 558 GNSS/Leveling points were provided again by IGN within the area of 1.5° <
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𝜆 < 4.5° , 44.5° < 𝜑 < 47.5°which were not included in the original data-set. Most of 

these points are located in the middle and west parts which are flat areas (cf., Ch. 4). 

 

Figure 1.5: Topography of Auvergne, dashed-lines show the geoid computation area 

 

 

The primary quasigeoid result for Auvergne was computed by Duquenne [2007] 

using the GRAVSOFT package [Tscherning et al., 1992] and was compared against the 

height anomalies derived at 75 GNSS/Leveling points. Later Ågren et al. [2009] computed 

different quasigeoid models using: least-squares modification of Stokes (LSMS) method 

[Sjöberg, 2003], least-square collocation (LSC) method [Tscherning et al., 1992], fast 

collocation approach [Bottoni and Barzaghi, 1993], and spherical fast Fourier transform 

(FFT) method [Forsberg and Sideris, 1993]. The first geoid model of the area was 



 

38 

 

computed by Janák et al. [2017] using the Stokes-Helmert approach. Statistics of the 

comparison between gravimetric quasigeoid and geoid model with height anomalies and 

geoidal heights at GNSS/Leveling points are summarized in  Table 1.1.  

Table 1.1: Statistics of comparison of the primary geoid and quasigeoid results with 

GNSS/Leveling points 

METHOD MODEL MAX [M] MIN [M] MEAN [M] STD [M] 

LSMS Quasigeoid 0.09 -0.08 0.00 0.03 
LSC Quasigeoid 0.19 -0.25 0.00 0.08 
1D FFT Quasigeoid 0.01 -0.06 0.00 0.04 
DUQUENNE [2007] Quasigeoid 0.07 -0.11 0.00 0.04 
STOKES-

HELMERT 
Geoid 0.22 0.02 0.13 0.03 

 

The mean value of the residuals of all quasigeoid models in Table 1.1 is zero as the 

one-parameter fitting surface is usually applied to all gravimetric quasigeoid models and 

therefore the mean value is removed. However, this value is available from the computed 

geoid model by Janak et al. [2017] and it may be considered as the effect of sea surface 

topography (SST) on the GNSS/Leveling points [Rülke, et al. 2012].  

 

1.6 Importance of articles included 

Assessing the quality of the classical height system through its accuracy is the focus 

of this dissertation. This assessment may be done by measuring the congruency or self-

consistency of the height system. The classical height system consists of an equipotential 

surface, i.e. geoid, and defines the height above this surface as the distance from geoid to 

points on the Earth surface along the plumbline, i.e. orthometric heights. Measuring the 

congruency means measuring the self-consistency between geoid and orthometric heights 
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above it. The components involved in this comparison are: gravimetric geoidal heights 

predicted at the location of test points, geodetic heights derived from GNSS observations, 

and orthometric heights provided by spirit leveling along with gravimetric corrections. 

GNSS/Leveling points are mostly considered as the benchmarks of national vertical 

networks and therefore the heights on these points need to be provided to a high accuracy 

(e.g., 𝑚𝑚 level) because the accuracy of other points is related to the accuracy of these 

benchmarks. To best measure the congruency, its components must be computed as 

accurately as possible, along with the covariance matrices indicating their uncertainties. 

There are four articles included in this dissertation, two of which are related to the 

determination of the geoid model in a conventional way, one which discusses the 

computation of orthometric heights, and one which estimates the uncertainties of the 

gravimetric geoidal heights.  

1.6.1 Articles related to geoid model 

With the advent of satellite gravity missions and accessibility of more terrestrial 

gravity data across the world, higher orders of EGMs are available and may be used in 

determining the local geoid. The local geoid model is computed using both global (EGM) 

and local (gravity observations) data. Maximum degree and order of the EGMs specify 

the contribution of satellite gravity data and the Stokes integration cap size is used to 

specify the contribution of the local data. Generally, there are two types of EGMs 

available: satellite-only and satellite-combined. The satellite-only EGMs are computed 

using only the satellite data whereas the data used in computing harmonic coefficients of 

satellite-combined models are both satellite and terrestrial gravity data. To prevent the use 

of the same data twice, satellite only models are suggested for the computation of regional 
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geoids. Theoretically, if EGMs were able to represent the Earth gravity field up to infinite 

degree and order, there would not be any need for evaluating the Stokes integral (i.e. using 

local terrestrial data) and the geoid model could be computed using harmonic coefficients 

of the EGMs. If, on the other hand, EGMs were of poor quality, we would have to 

disregard them and use terrestrial gravity data from the whole world. Both EGMs and 

local gravity data are burdened with position-dependent noise, the way of optimally 

combining EGMs and local data may vary from place to place. The article “Optimal 

combination of satellite and terrestrial gravity data for regional geoid determination using 

Stokes-Helmert’s method, the Auvergne test case” [Foroughi et al., 2017a], comprising 

chapter 2 of this dissertation, proposes a numerical method for finding the optimal 

combination of EGMs with local gravity data. The optimal solution is found by comparing 

the geoid models, computed using different combinations, with test geoidal heights. The 

proposed methodology was tested for Auvergne data. This article was presented at the 

International Association of Geodesy (IAG) meeting: “1st joint commission 2 and IGFS 

meeting on Gravity, Geoid, and height systems” in Thessaloniki, Greece. The full text of 

this article is published in the Proceedings of the conference. 

Chapter 3, “Computation of precise geoid model of Auvergne using current UNB 

Stokes-Helmert’s approach” [Janak et al., 2017], an article published in “Contributions to 

Geophysics and Geodesy” investigates more thoroughly the method proposed in 

[Foroughi et al., 2017a] and presents all the numerical values obtained. The geoid model 

of Auvergne, for the first time, was computed in this article and all the computation steps 

were described in detail. The effect of laterally varying anomalous density on gravity 

anomalies, derived from a superficial geological model of Auvergne [Bodelle et al., 1980], 
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was also computed on gravity anomalies when transferring to the Helmert space and also 

for geoidal heights when transferring back from the Helmert space to the real space.  

1.6.2 The article dealing with orthometric height 

Chapter 3, “In defense of the classical height system” [Foroughi et al., 2017b] is an 

article published in the “Geophysical Journal International”, it discusses the computation 

of the rigorous orthometric heights on the GNSS/Leveling control points of Auvergne. 

Besides the 75 GNSS/leveling points introduced by Duquenne [2007], another set of 558 

points were provided by IGN which do not coincide with the previous 75 points. Rigorous 

orthometric heights were computed at these points using the methodology proposed by 

Santos et al. [2006]. A comparison between the Molodensky and classical height system 

was also performed for this article. The congruency of each system was measured using 

the quasigeoid/geoidal heights, normal/rigorous orthometric heights, and geodetic heights 

available at the test points. The Molodensky claim [Molodensky et al., 1960] that the 

classical height system cannot be used due to the lack of topographical density knowledge, 

it was shown that even using low-resolution density varying data (derived from superficial 

geological maps), the classical height system is as congruent as Molodensky system. The 

advantages of the use of rigorous orthometric heights instead of Helmert orthometric 

heights were also discussed in this article. 

1.6.3 The article related to the quality of the classical height system 

Downward continuation of anomalies in a harmonic space in the Stokes-Helmert 

method is done using a physically rigorous approach; i.e., using Poisson’s integral 

equation, which is a Fredholm integral equation of the 1st kind [Vaníček et al., 1996]. The 
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Poisson DWC is a physically well-posed problem but depending on the discretization step 

size and roughness of topography in the area, it can have a numerically unstable solution. 

Iterative approaches were suggested for DWC of gravity anomalies with grid resolution 

finer than 2′ [Kingdon and Vaníček, 2010]. It was shown by Vaníček et al. [2017] that, if 

DWC is being sought iteratively, seeking the exact solution requires many iterations, and 

it makes no sense to seek such a solution which is marred with high-frequency noise which 

reflects observation noise as well as irregular distribution of surface gravity data rather 

than the behavior of the gravity field. In fact, DWC magnifies the existing noise of the 

surface gravity data into estimated gravity anomalies on the geoid [Vaníček et al., 2017]. 

They suggested seeking the most probable solution rather the exact solution which can be 

achieved by using a least squares (LS) technique. This method is called LS DWC and 

introduced in the article “Sub-Centimetre geoid” [Foroughi et al., 2018] published in the 

Journal of Geodesy and represented here in Chapter 4 of this dissertation. As a result of 

LS DWC, the covariance matrix of the gravity anomalies on the geoid can be computed 

and used for estimating the uncertainties of the gravimetric geoidal heights. The sources 

of uncertainty in geoidal height are uncertainties in EGMs, in gravity observations, in 

topographic heights, and in topographic mass density. The estimated covariance matrix of 

the Helmert gravity anomalies on the geoid, resulting from the LS DWC process, reflects 

the existing random errors in the input gravity data, e.g., the effect of the reference field 

(removed from gravity at the surface), topographic heights and mass density variations 

(needed for conversion to Helmert’s space; and back to the real space, i.e., for evaluation 

of DTE, SITE and PITE), and observation errors. The findings of Foroughi et al. [2018] 

show that the estimated final accuracy of the gravity anomalies on the geoid depends 
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mostly on the spatial distribution and elevation of gravity observations rather than on the 

a priori observation errors; using different a priori values for observation errors would not 

change the estimated covariance matrix of geoid gravity anomalies too much. It was 

mentioned in Sec.1.4 that to measure the congruency of the classical height system the 

best, the uncertainties of each component must be known, i.e., the uncertainties of the 

gravimetric geoidal, orthometric, and geodetic heights. Using the LS DWC, the estimated 

uncertainties of the gravity anomalies on the geoid can be used to propagate the 

observation errors through the Stokes integral. Having the uncertainties of the geoidal 

heights can help to evaluate the congruency of the classical height system in Eq. (1.42) 

however, uncertainties of geodetic and orthometric heights are also required and can 

usually be estimated using the observation errors available from the data providers. The 

estimation of uncertainness of the geoidal heights using the LS DWC method is discussed 

in detail in chapter 5. 
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2 Chapter 2: Optimal combination of satellite and terrestrial 

gravity data for regional geoid determination using Stokes-

Helmert’s method, the Auvergne test case 

This article was presented at the 1st joint meeting of commission 2 of the 

international association of Geodesy (IAG) and international gravity field services (IGFS) 

entitled “Gravity, Geoid, and Height Systems (GGHS)” and held on September 19-23, 

2016 in Thessaloniki, Greece. The full-text of this presentation was later published in the 

proceedings of the meeting in IAG symposia series. The methodology, numerical 

evaluation, and writing of the article were done by me and my co-authors provided some 

suggestions when developing the methodology and also revised the manuscript before its 

submission. The full citation for this article is: 

Foroughi I., Vaníček P., Novák P., Kingdon R.W., Sheng M., Santos M.C. (2017) 

Optimal Combination of Satellite and Terrestrial Gravity Data for Regional Geoid 

Determination Using Stokes-Helmert’s Method, the Auvergne Test Case. International 

Association of Geodesy Symposia. Springer, Berlin, Heidelberg. DOI: 

doi.org/10.1007/1345_2017_22. 

 

The methodology presented in this article may be used for any region as the 

numerical results of this paper are only valid for the Auvergne dataset and might be 

different in other regions. The article presented below is almost the same shape as the 

published article rather some changes in the figure/table/equation numbers and format. 
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2.1 Abstract 

The precise regional geoid modeling requires combination of terrestrial gravity data 

with satellite-only Earth Gravitational Models (EGMs). In determining the geoid using 

the Stokes-Helmert approach, the relative contribution of terrestrial and satellite data to 

the computed geoid can be specified by the Stokes integration cap size defined by the 

spherical distance 𝜓0 and the maximum degree 𝑙0 of the EGM-based reference spheroid. 

Larger values of 𝑙0 decrease the role of terrestrial gravity data and increase the 

contribution of satellite data and vice versa for larger values of 𝜓0. The determination of 

the optimal combination of the parameters 𝑙0 and 𝜓0 is numerically investigated in this 

paper. A numerical procedure is proposed to find the best geoid solution by comparing 

derived gravimetric geoidal heights with those at GNSS/Leveling points. The proposed 

method is tested over the Auvergne geoid computation area. The results show that despite 

the availability of recent satellite-only EGMs with the maximum degree/order 300, the 

combination of 𝑙0 = 160 and 𝜓0 =  45 arc-min yields the best fitting geoid in terms of 

the standard deviation and the range of the differences between the estimated gravimetric 

and GNSS/Leveling geoidal heights. Depending on the accuracy of available ground 

gravity data and reference geoidal heights at GNSS/Leveling points, the optimal 

combination of these two parameters may be different in other regions. 

2.2 Introduction 

Stokes’s boundary-value problem requires gravity values to be known on the geoid. 

Moreover, gravity anomalies used as input data must be solid [Vaníček et al., 2004] in 

order to be continuable from ground down to the geoid. Helmert’s gravity anomalies are 

solid above the geoid; thus, they can be downward continued. To derive Helmert’s gravity 
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anomalies on the Earth surface, the direct topographical effect (DTE) as well as the direct 

atmospheric effect on gravity must be applied to free-air (FA) gravity anomalies. The 

latter effect is small and well known and will not be discussed. This gravity reduction, we 

call it “Helmertization” (see Figure 2.1), is the first step in the geoid determination using 

Stokes-Helmert’s method.  

The geoidal heights in Helmert’s space (𝑁ℎ) can be evaluated by applying the 

Stokes integral to Helmert’s gravity anomalies (∆𝑔ℎ) on the geoid which should be 

available globally [Stokes, 1849]. Vaníček and Kleusberg [1987] introduced the idea of 

splitting the geoidal heights as well as Helmert’s gravity anomalies to reference and 

residual parts: 

 
𝑁ℎ(Ω) = 𝑁𝑟𝑒𝑓

ℎ (Ω) + 𝑁𝑟𝑒𝑠
ℎ (Ω)   ,      Δ𝑔ℎ(Ω)

= ∆𝑔𝑟𝑒𝑓
ℎ (Ω) + ∆𝑔𝑟𝑒𝑠

ℎ (Ω), 
(2.1) 

 

where ∆𝑔𝑟𝑒𝑠
ℎ  is the residual Helmert gravity anomaly and 𝑁𝑟𝑒𝑠

ℎ  is the residual geoidal 

height in Helmert’s space. Δ𝑔𝑟𝑒𝑓
ℎ  and 𝑁𝑟𝑒𝑓

ℎ  represent the reference Helmert anomaly and 

the reference spheroid, respectively; they both can be synthesized from Helmertized EGM 

as [Najafi-Alamdari, 1996]: 

 

𝑇𝑟𝑒𝑓
ℎ (𝑅,Ω) =

𝐺𝑀

𝑟
∑(

𝑅

𝑟
)

𝑙

∑ 𝑇𝑙,𝑚
ℎ 𝑌𝑙,𝑚(𝜆,𝜙)

𝑙

𝑚=−𝑙

𝑙0

𝑙=2

 

𝑇𝑙,𝑚
ℎ = {

𝐶𝑙𝑚
ℎ                𝑚 ≥ 0

𝑆𝑙𝑚
ℎ                 𝑚 < 0

 

𝑌𝑙,𝑚 = {
𝑃𝑙𝑚(cos𝜙) cos𝑚𝜆                 𝑚 ≥ 0

𝑃𝑙𝑚(cos𝜙) sin|𝑚|𝜆                𝑚 < 0
, 

(2.2) 
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where 𝑅 is the mean Earth’s radius, 𝑟 is the radius for which helmertized spherical 

harmonic coefficients (𝐶𝑙𝑚
ℎ , 𝑆𝑙𝑚

ℎ ) are evaluated;  𝐺𝑀 is the product of the Newtonian 

gravitational constant 𝐺 and the Earth’s mass 𝑀. The symbol 𝛺 = (𝜙, 𝜆) represents the 

geocentric direction of the computation point and 𝜆 and 𝜙 are the geocentric spherical 

coordinates. The  𝑃𝑙𝑚 is the fully normalized associated Legendre function of the degree 

𝑙 and order 𝑚. The parameter 𝑙0 is the maximum degree of the spherical harmonic 

expansion that defines the maximum contribution of satellite-only EGMs in a spectral way 

to the Helmert disturbing potential 𝑇𝑟𝑒𝑓
ℎ . This potential is defined as follows: 

 
𝑇𝑟𝑒𝑓

ℎ (𝑅,Ω) = 𝑊𝑟𝑒𝑓
ℎ (𝑅,Ω) − 𝑈0(𝜙) , 

𝑊𝑟𝑒𝑓
ℎ (𝑟, Ω) = 𝑊𝑟𝑒𝑓(𝑟, Ω) − 𝛿𝑉𝑟𝑒𝑓

𝑡 (𝑟, Ω)  , 
(2.3) 

 

where 𝑈0 is the latitude-dependent normal gravity potential and 𝑊𝑟𝑒𝑓 is the actual gravity 

potential.  𝛿𝑉𝑟𝑒𝑓
𝑡 (𝑟, Ω) is the reference residual gravitational potential of the topographic 

masses [Novák, 2000]. By using Eq. (2.2) the Helmert reference gravity anomaly Δ𝑔𝑟𝑒𝑓
ℎ  

and the reference spheroid 𝑁𝑟𝑒𝑓
ℎ (Ω) can be computed using the fundamental equation of 

physical geodesy and spherical Bruns’s formula, respectively [Heiskanen and Moritz, 

1967, Eqs. 2-148 and 2-144]. 

To evaluate the residual geoidal heights in Helmert’s space, i.e., 𝑁𝑟𝑒𝑠
ℎ  in Eq. (2.1), 

the Stokes integration is employed. Its integration domain Ω0 can be split into the near 

zone Ω𝜓0
and the far zone Ω0 − Ω𝜓0

 [Vaníček & Kleusberg, 1987]. The size of the near 

zone dictates the contribution of terrestrial gravity data which reads: 
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𝑁
𝑙>𝑙0,Ω𝜓0

′
ℎ (Ω) =

𝑅

4𝜋𝛾0(𝜙)
∬ Δ𝑔𝑟𝑒𝑠

ℎ (𝑅, Ω′) 𝑆𝑛>𝑙0(𝜓0, 𝜓(Ω,Ω′)) dΩ′
Ω′∈Ω𝜓0

 , 
(2.4) 

 

where 𝑁
𝑙>𝑙0,Ω𝜓0

′
ℎ  is the residual geoid height in Helmert’s space computed from the near-

zone gravity data. The subscript 𝑙 > 𝑙0, Ω𝜓0

′   indicates that the integration is performed 

over residual Helmert’s gravity anomalies with frequencies higher than 𝑙0 and limited to 

the cap size Ω𝜓0

′ . The far-zone contribution (𝑁
𝑙>𝑙0,Ω0

′ −Ω𝜓0
′

ℎ ) reads: 

 

𝑁
𝑙>𝑙0,Ω0

′ −Ω𝜓0
′

ℎ (Ω)

=
𝑅

4𝜋𝛾0(𝜙)
∬ Δ𝑔𝑟𝑒𝑠

ℎ (𝑅, Ω′) 𝑆𝑛>𝑙0(𝜓0, 𝜓(Ω, Ω′)) dΩ′ ,

Ω′∈Ω0
′ −Ω𝜓0

′

 
(2.5) 

 

where Ω0 stands for the geocentric solid angle [𝜙 ∈< −
𝜋

2
,
𝜋

2
>  ,   𝜆 ∈< 0,2𝜋 >], Ω′ 

represents the pair of the integration point coordinates and 𝜓 is the spherical distance 

between the integration and computation points. The modified version of the spheroidal 

Stokes function (𝑆𝑛>𝑙0) is used here; the modification minimizes the far-zone contribution 

in the least square sense. For more details, please refer to [Vaníček & Kleusberg, 1987]. 

The contribution of satellite-only EGMs (in the spectral sense) is given by the 

maximum degree of the spherical harmonic expansion 𝑙0 in Eq.(2.2) while terrestrial 

gravity data increasingly contributes to the geoidal height with the increasing size of the 

spherical integration cap 𝜓0 in Eqs. (2.4) and (2.5). 
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The primary indirect topographical effect (PITE) is then added to the co-geoidal 

heights computed by Eq. (2.5) to convert them back to the real space; we call this step as 

“de-Helmertization”, see Figure 2.1. 

 

Figure 2.1: Three main computational steps of Stokes-Helmert’s technique 

 

Featherstone and Olliver [1994] analyzed the coefficients of the geopotential model 

along with the terrestrial gravity data to find the optimal Stokes’s integration cap size and 

the degree of reference field to compute the geoid in the British Isles. In the end they 

estimated as the maximum degree 257 and the radius of 1 arc-deg 57 arc-min. They did 

not use any higher degrees than 257 for computing the reference field because according 

to their analysis the standard errors of the gravity anomalies computed by then-available 

geopotential models started to exceed the coefficients themselves. 

Vella & Featherstone [1999] set the degree of reference field to 360 and changed 

the Stokes integration cap size to find the optimal contribution of terrestrial gravity data 

to compute the geoid model of Tasmania. They compared the resulting geoid models with 

the geoid height from GPS/Leveling points in their study area and found out that the cap 

radius of 18 arc-min gives the smallest STD. 
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These papers date back to the time when global fields did not have any gravity-

dedicated satellite mission data included; thus, they were not as accurate in the low- and 

mid-wavelengths as they are now because of GRACE and GOCE satellite gravity data 

[Reigber et al., 2005; Pail et al., 2011]. 

The methodology proposed in the present study investigates all possible options to 

find the optimal degree of the reference field and the radius of the integration cap. The 

optimality is defined according to two criteria: minimum values of STD and range of the 

differences between the computed geoid model and geoidal heights at GNSS/Leveling 

points described in Sec. 2.3. Numerical results of the proposed method summarized in 

Secs. 2.4 and 2.5 conclude the paper. 

2.3 Proposed method  

Theoretically if EGMs represent the Earth’s gravity field accurately (for 𝑙0 going to 

infinity), the near-zone Stokes integration is not needed, i.e., the radius 𝜓0 can be put 

equal to 0. If, on the other hand, EGMs were not good, we would have to disregard them 

and use terrestrial gravity data from the whole world, i.e., 𝜓0 = 180o. As both EGMs and 

terrestrial gravity data are burdened with position-dependent noise, the optimal 

combination of 𝑙0 and 𝜓0 varies from place to place. The pair 𝑙0 = 90 and 𝜓0 = 2° has 

commonly been used in our previous geoid determinations [Ellmann and Vaníček, 2007]. 

To find the optimal pair for currently available EGMs in every region, the following 

algorithm is suggested: 

1. Vary the degree of the reference field and spheroid and correspondingly the 

modification degree of Stokes’s kernel function: 𝑙0  = 90: 300. Here we shall go 
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only up to 𝑙0 = 300 as this degree represents the maximum degree of current 

satellite-only EGMs. 

2. Remove the Helmertized reference field of the degree 𝑙0 from Helmert’s gravity 

anomaly on the geoid. 

3. Vary the near-zone contribution by changing the integration radius 𝜓0 = 30′: 2°.  

4. Compute the residual co-geoid by Stokes’s integration as the sum of contributions 

from both near and far zones. 

5. Add the reference spheroid of the degree 𝑙0 to the residual co-geoid. 

6. Compute the geoid in the real space by adding PITE to the co-geoid. 

7. Evaluate geoidal heights at available GNSS/Leveling points in the computation 

area. 

8. Find the optimal geoid for the chosen 𝑙0 in Step 1, the optimal choice can be based 

on the minimum norm of differences between the computed geoid and 

GNSS/Leveling geoidal heights. The two most reasonable choices among all 

norms are ‖ ‖2 (𝐿2 norm), called also the standard deviation (STD) of the 

differences, and ‖ ‖∞(𝐿 infinity norm) equal to the maximum absolute value of 

the differences. The latter is loosely connected to the range of the discrepancies. 

9. Repeat Steps 1 to 8 for all degrees up to 𝑙0 < 300. 

10. Find the “global” optimal pair among the “local” ones which is then the optimal 

pair (𝑙0 , 𝜓0) for the computation area. 

Depending on the step between degree/order of reference field and integration cap 

size, the computation of the proposed algorithm can be time demanding. The diagram in 

Figure 2.2: describes how this algorithm works graphically: 
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Figure 2.2: Proposed method to estimate the optimal contributions of near-zone (NZ) and 

far-zone (FZ) in Stokes’s integration. 

 

2.4 Numerical results  

The proposed method was tested in Auvergne, the central area of France, which is 

limited by (−1° < λ < 7° , 43° < ϕ < 49°) [Duquenne, 2006]. The topography of this 

area is shown in Figure 2.3(a). This area contains about 240 000 scattered free-air gravity 

points that have been extracted from the database of the Bureau Gravimetrique 

International (Figure 2.3 (b)). 75 GNSS/Leveling points are also available within the 

central square of the area of interest for the geoid computation (1.5° < λ < 4.5° , 45° <

ϕ < 47°). The data coverage area is larger than the geoid computation area to be able to 

test the different integration cap radii. Mean gravity anomalies of 1' resolution were 

computed from scattered observed gravity using complete spherical Bouguer anomalies, 

also known as NT anomalies, (they are known to be the smoothest) by means of inverse 

cubic distance interpolation. It was shown by Kassim [1980] that inverse cubic distance 
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interpolation is superior for predicting gravity anomalies to other interpolation techniques 

tested in their study, however, there might be other prediction methods with the same 

accuracy which were not just used in their investigation. Mean Helmert’s gravity 

anomalies on the Earth’s surface were obtained by adding the DTE. The secondary 

indirect topographical effect (SITE), see Vaníček et al. [1999], was added to the predicted 

anomaly values to prepare them for the downward continuation. 

  
(a)  (b)  

Figure 2.3: Topography of the study area (a); distribution of terrestrial gravity data (b). 

For computing the DTE at each gravity point, topographical heights over the entire 

Earth are needed. The integration is done separately in the inner, near and far zones. SITE 

was also computed for inner, near and far zones separately, but this effect for Helmert’s 

space is much smaller than DTE. Values of DTE and SITE over the Auvergne area are 

shown in Figure 2.4. 
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(a) (b) 

Figure 2.4: Direct topographical effect (a); secondary indirect topographical effect on 

gravity anomalies (b). 

 

Applying DTE and SITE converts the free-air gravity anomalies to Helmert’s 

gravity anomalies. Figure 2.5 shows the free-air and mean Helmert’s gravity anomalies in 

the Auvergne area. 

  

(a)  (b)  

Figure 2.5: Free-air gravity anomaly with red-cross signs showing GNSS/Leveling 

points (a) and Helmert’s gravity anomalies (b). 
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Mean Helmert’s anomalies on the Earth’s surface were then downward continued 

to mean Helmert’s anomalies on the geoid. This was done using the Poisson integral 

equation solved by the iterative Jacobi process [Kingdon and Vaníček, 2010]. The 

downward continuation was done over 1 arc-deg squared cells augmented by a border 

strip 30 arc-min wide on all sides. Results from the individual cells were then fused 

together. On average, seven iterations were needed for the downward continuation in the 

individual squares. For the purpose of the fusion, an assessment of continuity of Helmert’s 

gravity anomalies along the borders of two adjacent arc-degree cells on the geoid was 

done by the technique described by Foroughi et al. [2015b]. This assessment showed that 

discontinuities between the downward continued Helmert anomalies are random within 

the limits of ±3σ (σ is the standard deviation of observed anomalies) which was assumed 

acceptable. 

The next step is the evaluation of Stokes’s integral which starts with removing long 

wavelengths from gravity anomalies using the reference field. In our case, the satellite-

only DIR_R5 EGM (GOCE, GRACE and Lageos) was used for computation of the 

reference gravity field and the spheroid [Bruinsma et al., 2013]. PITE was then computed 

for the locations of the 1 arc-min grid on the geoid, again separately for the inner, near 

and far zones (Figure 2.6). This resulted in the geoid (in real space) for the pre-selected 

(l0, ψ0). This geoid was then compared against the results from GNSS/Leveling. 
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Figure 2.6: Primary indirect topographical effect on geoidal heights in the Auvergne 

geoid test area. 

 

To find the optimal combination of the degree of the reference field 𝑙0 and the radius 

of Stokes’s integration 𝜓0 the above proposed algorithm was repeatedly used. The first 

computation started with 𝑙0 = 90 and 0° < 𝜓0 < 2°; the maximum integration cap size 

was chosen 2 arc-deg as commonly used by us with Stokes-Helmert’s technique. This 

choice meant that we actually needed an extra 2 arc-deg data coverage in latitude direction 

and around 3 arc-deg in longitude direction outside the geoid computation area which was 

not covered by the original data. Foroughi et al. [2015a] solved this problem by padding 

the original data coverage by 3 arc-deg from each side, by using free-air gravity anomalies 

synthesized from EGM2008 up to the degree/order 2160.  They showed this method was 

accurate enough for the purpose of covering a smaller gap in data coverage. This approach 

was used here wherever there were coverage gaps. 
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The proposed method tests all the possible choices of the parameter pair (𝑙0, 𝜓0). 

The optimal geoid is chosen based on the agreement between the resulting gravimetric 

geoid and geoidal heights derived from GNSS/Leveling. STD and ranges of the 

differences are chosen as tools for finding the optimal combination. Figure 2.7 shows 2D 

plots of the range and STD of the differences as functions of 𝜓0 and 𝑙0. 

 

 
 

(a) Variation of the range, minimum: 

(𝑙0 = 140, 𝜓0 = 0.75°), 
(b) Variation of STD, minimum: 

(𝑙0 = 160, 𝜓0 = 0.75°) 
 

Figure 2.7: Variation of STD and range of differences between resulting geoid and 

GNSS/Leveling. 

Figure 2.7 shows that for all considered degrees 𝑙0 =140 is the highest one should 

go to keep the range as small as possible. In combination with 𝜓0=0.75° it gives the 

smallest range of the differences, 16.3 cm in fact.  We note that taking the larger 

integration cap does not improve the range, but larger 𝜓0 will not make the range 

significantly larger either. Looking at STD values, it appears that a similar cut-off value 

should be used for 𝑙0, i.e., about 160, while the choice of 𝜓0 seems to be even less critical 
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than for the range minimization criterion. The smallest STD = 3.3 cm is obtained for 

combination 𝑙0 = 160 and 𝜓0= 0.75°. Generally, it appears that taking 𝑙0 larger than 160 

and 𝜓0 smaller than 0.75° should be avoided. The plots seem to indicate, however, that 

the deterioration of accuracy is much faster with the increasing degree of EGM than with 

the increasing radius of the integration cap. 

2.5 Concluding remakes 

A numerical method was proposed to optimally combine terrestrial and satellite 

gravity data for computing the regional geoid using Stokes-Helmert’s approach. The 

optimality of the results was measured by the differences between the derived gravimetric 

and GNSS/Leveling geoidal heights in terms of their range and STD. This method was 

tested over the area of Auvergne and the optimal geoid was derived when the maximum 

contribution of the DIR-R5 EGM was set to 𝑙0 = 160 and the near-zone Stokes integration 

cap size was set to 𝜓0 = 0.750. The resulting optimal geoid of this study showed the 

0.3 cm improvement in terms of STD and 2.4 cm  improvement in the range with respect 

to the geoid computed by the standard choice of 𝑙0 = 90 and 𝜓0 = 20. Comparing the 

optimal geoid with the geoid computed using the maximum contribution from EGM, i.e., 

𝑙0 = 300 and 𝜓0 = 0.250, showed the improvement of 4 cm in terms of STD and 19 cm 

in the range. The methodology proposed in this study would have to be tested in other 

regions as the present results were obtained in the Auvergne study area and might be 

different for other regions. The choice of the optimal integration cap size depends on the 

quality and spatial distribution of terrestrial gravity data. However, the estimated optimal 

degree of reference field (𝑙0=160) could also be valid for other regions as Abdalla et al. 

(2012) found more or less the same number over the Khartoum state. They investigated 
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the validation of all GOCE/GRACE geopotential models and concluded that the models 

do not show better results beyond degree 150. Due to inherent errors of satellite-only EGM 

higher-degree coefficients, they are not recommended to be used when reasonably good 

terrestrial gravity data are available.  
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3 Chapter 3: Computation of precise geoid model of Auvergne 

using current UNB Stokes-Helmert’s approach 

 

This article is published in the journal of Contributions to Geophysics and Geodesy. 

The first author of this article, Dr. Juraj Janák, was invited to the department of geodesy 

and geomatics (GGE) of the University of New Brunswick (UNB) for three summers 

between 2014-2016.The main purpose of his visits was doing research in the field of geoid 

computation, specifically in the Auvergne area. During his visits, he prepared the 

Auvergne input gravity data sets to be used in the determination of the geoid using the 

Stokes-Helmert method, for instance, by detecting the outliers, reference conversion, 

interpolation and etc. In appreciation of his research visits, it was suggested by the GGE 

gravity group to offer him the first authorship of this article, however, all the Stokes-

Helmert computation steps and analysis of the results were done by me. The writing of 

the sections 3-5 of this article was also done by me and I was the corresponding author for 

the submission of the article to the journal.  

The full citation of this article is: 

Janák, J., Vańiček, P., Foroughi, I., Kingdon, R., Sheng, M. B., & Santos, M. C. (2017). 

Computation of precise geoid model of Auvergne using current UNB Stokes-Helmert’s 

approach, Contributions to Geophysics and Geodesy, 47(3), 201-229. 

 

In this article, first, geoid model of Auvergne was computed using the conventional 

Stokes-Helmert approach and was later improved using the proposed methodology in 
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Ch.2, i.e., the optimal combination of EGMs with the local data and the results were 

presented in this article.   

The lateral density model used in this article to compute the effect of DDE and PIDE 

was extracted from a low-resolution publicly available geological map provided by 

Bodelle et al. [1980]. A higher resolution density map, however, was used later (see, Ch. 

5) to compute the DDE and PIDE more precisely. Therefore, the PIDE plots in the 

Auvergne area are different in this chapter and chapter 5.  

 

3.1 Abstract  

The aim of this paper is to show a present state-of-the-art precise gravimetric geoid 

determination using the UNB Stokes-Helmert’s technique in a simple schematic way. A 

detailed description of a practical application of this technique in the Auvergne test area 

is also provided. In this paper, we discuss the most problematic parts of the solution: 

correct application of topographic and atmospheric effects including the lateral 

topographical density variations, downward continuation of gravity anomalies from the 

Earth surface to the geoid, and the optimal incorporation of the global gravity field into 

the final geoid model. The final model is tested on 75 GNSS/Leveling points supplied 

with normal Molodensky heights, which for this investigation are transformed to rigorous 

orthometric heights. The standard deviation of the computed geoid model is 3.3 cm 

without applying any artificial improvement which is the same as that of the most accurate 

quasigeoid. 
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3.2 Introduction  

In 1849 G.G. Stokes [1849] introduced his method of geoid determination from 

gravity measurements, and his analytical solution for a spherical boundary has become 

known as Stokes’s integral. Stokes made the assumptions that we’d have measured gravity 

on the geoid and that there are no masses above the geoid. Neither assumption is satisfied 

in practice and we have to deal with them in one way or another. One reasonable idea to 

overcome the problem stemming from the later assumption came from F.R. Helmert 

[Helmert, 1884] who suggested to condense all topographic masses into a 2D layer located 

on or below the geoid, to mathematically avoid the topographic mass issue. Helmert’s 

approach applied to the geoid (known as the second Helmert’s condensation technique) 

combined with the original Stokes’s idea has become known in literature as the Stokes-

Helmert (SH) method. During recent decades, the SH method has been developed and 

coded by the University of New Brunswick (UNB) Geodesy Group and is documented in 

many publications [Vaníček and Martinec, 1994; Ellmann and Vaníček, 2006].  

Similarly, the transformation of gravity observed on and above the Earth surface 

down to the geoid, known as downward continuation, has been studied by the UNB group.  

They have opted for using the physically rigorous approach formulated by Poisson 

[MacMillan, 1930] and the results of their studies of Poisson’s method for the downward 

continuation of harmonic functions are documented in several publications [Vaníček et 

al., 1996; Sun and Vaníček, 1998; Kingdon and Vaníček, 2010].  As a by-product of their 

investigation they discovered that in order to downward continue a gravity anomaly, the 

anomaly must be of a “solid“ type [Vaníček et al., 2004], which rules out the use of free-

air as well as planar Bouguer gravity anomalies. 
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To reach a one-centimeter accuracy geoid model at a regional scale is a very 

challenging task, especially in a mountainous region. Ever since Duquenne [2007] 

produced a good standard database to test the methods of geoid or quasigeoid 

computation, several authors, see, (e.g., Ågren et al. [2009] and Yildiz et al. [2012]) have 

computed regional quasigeoid models in the Auvergne region. The quasigeoid models, 

presented in Ågren et al. [2009], were tested at 75 GNSS/Leveling points and the standard 

deviation of residuals (after one-parameter fitting) were all in the vicinity of 3.7cm. It was 

reported in the same study that the Least Square Modification of Stokes method (LSMS 

or KTH approach [Sjöberg, 2003]) provides the best quasigeoid model among other 

methods (STD of 3.3cm). In fact, this method produces geoid model, which is converted 

to a quasigeoid. Herein, we present a regional geoid model computed using the UNB SH 

method, providing a detailed description, graphical presentation of intermediate 

computations, testing of the final model (without any fitting), comparison with other 

selected models and discussion of theoretical and practical problems and advantages of 

the SH method. 

The first section is dedicated to the theory behind the SH method, mentioning the 

basic ideas in a schematic way with relevant references for readers who wish to learn the 

detailed theoretical arguments. Section 3.4 introduces the Auvergne region for which our 

geoid model has been computed and tested; it also gives some statistical information about 

the input data. Section 3.5 is focused on the compilation of spherical Bouguer gravity 

anomalies, also known as NT (No-Topography) anomalies, and on Helmert’s gravity 

anomalies on the topography. In the next section, the downward continuation of Helmert’s 

anomalies is presented together with the rest of the intermediate results of the geoid 
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solution. Section 3.7 describes the assessment of our geoid model vis-à-vis the 75 

GNSS/Leveling points supplied by IGN. The last section is devoted to a brief discussion 

and conclusions. 

3.3 Stokes-Helmert method, present state and references 

The theory behind the UNB SH method has been described in many publications. 

Therefore, instead of repeating the mathematical formulae, which can be found in [e.g., 

Vaníček and Sjöberg, 1991; Vaníček and Martinec, 1994; Tenzer et al., 2003; Ellmann 

and Vaníček, 2006; Vaníček et al., 2013], we have chosen to show the flow of the 

computation in elementary steps supplemented by brief descriptions. 

 ∆𝑔[𝑟𝑡(Ω). Ω] → Δ𝑔𝐻[𝑟𝑡(Ω). Ω]. (3.1) 

 

In the first step, the observed free-air gravity anomalies are converted to Helmert 

gravity anomalies, one of the couple of anomalies known to be “solid” and thus capable 

of being continued downwards to the geoid [Vaníček et al., 2004]. This conversion 

consists of adding the direct topographical and atmospheric effects (DTE) and (DAE), the 

secondary indirect topographical and atmospheric effects (SITE) and (SIAE) and, if the 

topographical density model is available, also the direct topographical density effect 

(DDE). All these effects, except DDE, are evaluated as sums of the near zone and far zone 

contributions and are computed at the locations of the observed points on the surface of 

the Earth. Beside these standard corrections if the available topographical heights are of 

the orthometric kind, a small correction to normal gravity, called the geoid-quasigeoid 

correction, is also applied. In Eq.(3.1) and throughout this paper, Ω stands for geocentric 

direction, i.e., (φ, λ), the geocentric latitude and longitude; the subscripts t and g denote a 
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radius-vector ending either at the topography or at the geoid; subscripts beside residual 

quantities show the degree and order of the reference field and the angular radius of the 

integration cap; and the meaning of the superscript H is that the superscripted quantity 

belongs to Helmert’s space.  

We refer to this step also as the transformation from the “Real space” to “Helmert’s 

space”.  More details about this step can be found, e.g., in [Martinec and Vaníček, 1994a; 

Martinec, 1998; Vaníček et al., 1999; Novák, 2000]. Concerning lateral topographical 

density effect studies, see [Martinec, 1993; Martinec et al., 1995; Huang et al., 2001]. 

 ∆𝑔𝐻[𝑟𝑡(Ω). Ω] → ∆𝑔𝐻[𝑟𝑔(Ω). Ω]. (3.2) 

 

The second step consists only of the downward continuation of Helmert’s gravity 

anomaly from the Earth’s surface to the geoid. The UNB Geodesy Group had decided to 

use the most rigorous approach to downward continuation, i.e., that due to Poisson.  This 

approach requires the gravity anomaly on the Earth surface to be “solid“ and harmonic 

within the topography, which is indeed the case with Helmert’s anomaly. This step is often 

considered to be somewhat problematic due to the numerical instability of the inverse 

Poisson integral. After a thorough theoretical and numerical investigation [e.g., Vaníček 

et al., 1996; Sun and Vaníček, 1998; Huang, 2002; Kingdon and Vaníček, 2010], it was 

decided to use the Jacobi iterative algorithm for the solution of the inverse Poisson 

integral. 

 ∆𝑔𝐻[𝑟𝑔(Ω). Ω] → 𝛿∆𝑔𝐻[𝑟𝑔(Ω). Ω]. (3.3) 
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This step consists of subtraction of the reference gravity field, (in terms of reference 

Helmert’s gravity anomalies) of selected degree and order L resulting in residual 

Helmert’s gravity anomalies on the geoid. Residual gravity anomalies refer to the 

reference spheroid of degree and order L. Before this operation is performed, the earth 

gravity model (satellite only EGM) used for the generation of reference gravity anomalies 

has to be “Helmertized”, i.e., transformed to the Helmert space. For the reference, see, 

[e.g., Vaníček and Sjöberg, 1991; Vaníček et al., 1995; Martinec and Vaníček, 1996]. This 

transformation requires the knowledge of a global digital elevation model (DEM) in terms 

of spherical harmonic coefficients. Technically, a part of this step is also the application 

of ellipsoidal corrections correcting the effect of spherical approximation of the boundary 

condition. It consists of two terms corresponding to the terms of the boundary condition, 

which are called the ellipsoidal correction to the gravity disturbance, and the ellipsoidal 

correction for the spherical approximation [Vaníček et al., 1999]. 

 𝛿∆𝑔𝐻[𝑟𝑔(Ω). Ω] → 𝛿𝑁𝐿.𝜓0(Ω)
𝐻 . (3.4) 

 

In this step, we compute the residual Helmert cogeoid on a selected regular grid 

using Stokes’s integration over the spherical cap of radius𝜓0, and integration kernel 

modified to degree L according to the idea by Molodensky [Molodensky et al., 1960]. We 

note that the spatial Stokes convolution of 𝛿∆𝑔𝐻[𝑟𝑔(Ω). Ω]with the modified Stokes kernel 

is done using a UNB technique that is faster than Fast Fourier Transform methods [Huang 

et al., 2000]. The modification is selected so as to minimize the contribution from the far-

zone, and by doing this to minimize the contribution from the EGM which is known to 

approximate the reality only in an asymptotic way. The result of this step can be called 
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the near-zone (NZ) residual Helmert cogeoid. For details, see Vaníček and Featherstone 

[1998] and Novák et al. [2001]. 

 𝛿𝑁𝐿.𝜓0

𝐻 (Ω) → 𝛿𝑁𝐻(Ω) . (3.5) 

 

Here, the far-zone (FZ) contribution 𝛿𝑁𝐿
𝐻(Ω) to the residual Helmert cogeoid, also 

called the “truncation error” by Molodensky, is evaluated in a spectral way using the EGM 

in the Helmert space, to the appropriate degree higher than that of the reference field (𝐿), 

for the chosen radius 𝜓0,
 
and added to the NZ (spherical cap of radius 𝜓0) contribution 

𝛿𝑁𝐿.𝜓0

𝐻 (Ω). Due to the modification of the Stokes kernel, see the previous step, the 

truncation error term is relatively small. The result of this step is the total residual Helmert 

cogeoid. More details are found in [Molodensky et al., 1960; Vaníček and Featherstone, 

1998]. 

 𝛿𝑁𝐻(Ω) → 𝑁𝐻(Ω). (3.6) 

 

The last step conducted in the Helmert space is the transformation of the total 

residual cogeoid to the complete Helmert cogeoid.  This is done simply by adding to the 

residual cogeoid the “Helmertized” reference spheroid of degree L. 

 𝑁𝐻(Ω) → 𝑁(Ω). (3.7) 

 

The final step of the computation is the transformation of the Helmert cogeoid from 

Helmert space back to the real space. This is done by adding to the Helmert cogeoid 

𝑁𝐻(Ω) the primary indirect topographical and atmospheric effects (PITE) and (PIAE) 
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and, if the variations of topographical density are known, the primary indirect 

topographical density effect (PIDE). For details see Martinec and Vaníček [1994b] and 

Martinec et al. [1996]. As a part of this step, to preserve the physical correctness of the 

solution, a small correction due to the shift of the centre of mass of the Earth during the 

Helmert condensation needs to be applied. This correction is referred to as the Hörmander 

correction and it reaches up to a few centimetres. For details see Hörmander [1976], 

Martinec [1998], and Vaníček et al. [2013]. 

3.4 Input data sets 

The overall quality of the geoid model depends directly on the quality of the input 

data. The geoid model is also affected by other errors coming from various 

approximations, inconsistencies when merging several data sources, numerical errors due 

to discretization, interpolation and integration or errors caused by unsatisfied assumptions. 

The aim of this section is to list the input data used in our geoid computation and provide 

the original reference and the accuracy, if available. 

The main input to our geoid model is the free-air gravity anomaly data set based on 

the Burreau Gravimétrique International (BGI) gravity database originally supplied by the 

Bureau de Recherches Géologiques et Minières and provided to us by the Institut 

Géographique National (IGN) [Duquenne, 2007]. 
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Figure 3.1: Distribution of the free-air gravity anomalies 

 

It contains 244,009 values of the free-air gravity anomalies in the IGSN71 gravity 

reference system, with horizontal positions (ellipsoidal latitude and longitude) compatible 

with the ETRS89 terrestrial reference system and the heights of the normal variety 

[Duquenne, 2007]. It covers the area 43° ≤  ≤ 49°, -1° ≤  ≤ 7°, see Figure 3.1, and the 

standard deviation of these data, according to Duquenne [2007] ranges from 0.25 to 0.75 

mGal. This error can increase to 1 to 2 mGal after computation of gravity anomalies, 

mainly due to inaccuracy in a horizontal position of the gravity points. Most of the gravity 

values were measured before 1971 and transformed to IGSN71 from older gravity 

systems. The density of the gravity data coverage varies significantly in the south-eastern 

part of the area, see Figure 3.1. In some areas, even in the central part, the coverage is not 

sufficient for interpolation to a dense grid. The map of the free-air gravity anomalies is 

shown in Figure 3.2, and the corresponding basic statistical values are listed in Table 3.1. 
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Figure 3.2: Free-air gravity anomalies directly gridded from the original scattered data 

based on [Duquenne, 2007] database. 

 

We decided to check this gravity database for outliers and duplicate points. 118 

couples of duplicate points and 2 outliers were detected and eliminated. 

Table 3.1: Statistical values of the observed (scattered) free-air gravity anomalies and 

normal heights at the 244009 measured points of the data set [Duquenne, 2007]. 

Quantity Min Max Mean STD 

g (mGal) -127.47 177.82 3.06 20.70 

Hn (m) 0 2677.27 288.24 234.14 

 

Another type of data set are DEMs. For our computation, we used three DEMs: the 

SRTM3 version 4 [Werner, 2001; Rodriguez et al., 2005; Reuter et al., 2007], the ACE2 

which is based on a combination of the SRTM and Satellite Radar Altimetry data [Berry 
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et al., 2010] and a global DEM in the form of spherical harmonic coefficients of the JGP95 

model [Lemoine et al., 1998]. The SRTM3 model was used for representing a detailed 

topography on a grid of 33 spacing. It was used mainly for interpolation of the free-air 

gravity anomalies to get free-air anomalies on a regular grid with 1'1' resolution and for 

the computation of the direct topographical effect, as explained in section 3.5. This is a 

nearly global high-resolution DEM with an absolute vertical error (a linear error with 

respect to true elevation at 90% probability) of less than 16 m [Hensley et al., 2000; Farr 

et al., 2007]. Several studies show that this error is actually smaller—about 9 meters [ 

Denker, 2004; Rodriguez et al., 2005]. Some known problems such as the data void due 

to shadowing and smooth surfaces, or weak penetration of the vegetation canopies were 

addressed to some extent in version 4 [Reuter et al., 2007]. 

The ACE2 model is applied in those computations where the mean elevations on a 

grid of 3030, 55 or 1°1° resolution are needed, see sections 3.5 and 3.6. For 

accuracy assessment of ACE2 model, see [Berry et al., 2010]. Finally, the JGP95 model 

is needed in the “Helmerization” of the reference field, see section 3.6. A comparison with 

the GLOBE global DEM and accuracy assessment of this model can be found in, e.g., 

Berry [1999]. The topography on a grid of 3030 based on the ACE2 DEM over the 

area covered by terrestrial gravity data is depicted in Figure 3.3. 
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Figure 3.3: Topography of the area covered by terrestrial gravity data with the resolution 

of 3030 based on the ACE2 digital elevation model. 

The next input needed in our computational scheme is an Earth gravity model 

(EGM). The satellite-only EGM GO_CONS_GCF_2_DIR_R5 is used for our reference 

field computation, see section 3.6. Figures of the reference gravity anomalies and the 

associated reference spheroid are presented in section 3.6. 

The last input used in the UNB SH-scheme is a digital topographical density model 

(DDM). The largest contribution comes from lateral inhomogeneity and this was the one 

we concentrated on here. We prepared our own lateral DDM based on an analogous 

geological map of France by Bodelle et al. [1980], as was also investigated by Foroughi 

et al. [2015b], that despite the low resolution of the map improves the accuracy of the 

gravimetric geoid in Auvergne. The DDM affects the direct topographic effect, and the 

primary and secondary indirect topographic effects. However, the influence on the 
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secondary indirect topographic effect is usually negligible and was therefore not 

evaluated. The two remaining effects, called the direct density effect (DDE) and primary 

indirect density effect (PIDE) are shown in subsection 3.6.2. Details about the preparation 

and testing of the DDE for the Auvergne and surrounding area can be found in Foroughi 

et al. [2015b]. 

3.5 Interpolation of free-air gravity anomalies on topography 

The observed free-air gravity anomalies are scattered irregularly on the Earth 

surface. Most geoid computation algorithms, including ours, require an input of free-air 

gravity anomalies on a regular grid. Therefore, an interpolation of free-air gravity 

anomalies, which is not a trivial task, has to be performed. A procedure published by Janák 

and Vaníček [2005] was adopted. The scattered free-air gravity anomalies were 

transformed first into refined spherical Bouguer gravity anomalies, which are locally 

smooth enough to make interpolation easier. Interpolation of these anomalies into a 

regular geographical 11 grid, see Figure 3.4, was performed by the Kriging method 

with a linear variogram assuming an anisotropy factor due to the convergence of 

meridians. The basic statistical values of both scattered and interpolated refined spherical 

Bouguer gravity anomalies are shown in Table 3.2. 
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Figure 3.4: Refined spherical Bouguer gravity anomalies on the Earth surface interpolated 

to 11 geographical grid. 

 

Table 3.2: Statistics of the 243889 scattered and 11 interpolated refined spherical 

Bouguer gravity anomalies and free-air gravity anomalies. 

Quantity Min Max Mean STD 

gscatt (mGal) -127.47 177.82 3.06 20.70 

gRB_scatt 

(mGal) 

-193.66 28.44 -56.74 19.95 

gRB_grid 

(mGal) 

-192.87 28.50 -59.98 28.50 

ggrid (mGal) -111.36 292.33 8.82 29.03 
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Free-air gravity anomalies on the same geographical grid of 11 (see Figure 3.5), 

were obtained by adding back the topographical mass effect with the elevation of the grid 

nodes and the shape of the surrounding terrain were taken from the SRTM3 DEM. Basic 

statistics are shown in the last row of Table 3.2. 

 

Figure 3.5: Free-air gravity anomalies on a regular 11 geographical grid obtained from 

interpolated refined spherical Bouguer gravity anomalies. 

 

3.6 Computation of geoid model 

In this section, we present the intermediate and final results of the SH geoid 

computation process following the computational steps outlined in Section 3.3. Foroughi 
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et al. [2017a] suggested a numerical technique to arrive at the optimal degree/order of 

reference field (this equals also the modification of Stokes’s integral) and Stokes’s 

integration radius to compute cogeoid heights. They suggested to vary the degree of 

reference filed and Stokes’s integration cap size and evaluate the final geoid with 

GNSS/Leveling points. In case gravity data in surrounding areas are needed when using 

larger integration cap sizes, they can be filled with EGM-generated grid points [Foroughi 

et al., 2015a]. According to their investigation, the degree/order of 160 for the reference 

field and integration radius of 45’ gives the best results in the sense of fitting the geoidal 

heights with GNSS/Leveling points in the area of Auvergne. We adopted these parameters 

for our study, but it should be stated that these parameters can differ for different areas. 

3.6.1 Geoid model under the assumption of standard topographic density 

In order to transfer the free-air gravity anomalies to Helmert space, and thus to 

obtain the Helmert gravity anomalies, the effects DTE and SITE and DAE (see step 1 in 

Section 3.3) have to be applied to free-air gravity anomalies. The secondary indirect 

atmospheric effect, the SIAE, can safely be neglected, as its magnitude is exceedingly 

small. The other effects are shown in Figure 3.6 and Figure 3.7 and their statistical values 

are presented in Table 3.3. 

 



 

95 

 

  

a b 

Figure 3.6: Direct topographical effect (a) and direct atmospheric effect (b) used for 

transformation of the free-air gravity anomalies to the Helmert space. 

 Table 3.3: Statistics of Helmertization terms (mGal). 

 

 

Quantity Min Max Mean STD 

DTE -103.61 110.41 -1.01 7.57 

SITE -2.23 0.00 -0.03 0.10 

DAE -0.84 -0.71 -0.82 0.02 
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Figure 3.7: Secondary indirect topographic effect used for the transformation of the free-

air gravity anomalies to the Helmert space. 

Helmert’s gravity anomalies multiplied by geocentric radius r can be continued 

down from the Earth surface to the geoid as they are a harmonic function. For this 

downward continuation, we used the Jacobi iterative procedure complemented by the 

determination of the maximum necessary number of iterations, as discussed by Kingdon 

and Vaníček [2010] and described in step #2 of section 3.3 above. Figure 3.8a displays 

the Helmert gravity anomalies on the Earth surface and Figure 3.8b shows the Helmert 

gravity anomalies on the geoid after applying the downward continuation. 
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a b 

Figure 3.8: Helmert’s gravity anomalies on the Earth surface (a) and on the geoid (b). 

Table 3.4: Statistics of Helmert’s gravity anomalies on the earth surface and on the geoid 

(mGal). 

Quantity Min Max Mean STD 

Helmert gravity anomalies on surface -86.82 155.08 9.84 27.36 

Helmert gravity anomalies on geoid -97.92 208.50 10.52 30.17 

 

The reference gravity anomalies in Helmert’s space were computed by means of the 

DIR_R5 up to degree/order 160 and the global digital terrain model JGP95 using the linear 

and quadratic coefficients, see Figure 3.9a. Subtracting the reference Helmert gravity 

anomalies from the Helmert gravity anomalies on the geoid, as obtained from terrestrial 

gravity measurements, we get the residual Helmert gravity anomalies, as demanded by 
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step #3 in section 3.3 above, see Figure 3.9b. These anomalies are further corrected by 

adding two ellipsoidal corrections due to spherical approximation of the boundary  

condition, see Figure 3.10a and Figure 3.10b. 

Figure 3.9: Reference Helmert’s gravity anomalies computed using DIR-R5 up to 

degree/order 160 (a) and residual Helmert’s gravity anomalies (b). 

 

Table 3.5: Statistics of reference Helmert’s gravity anomalies and residual Helmert’s 

gravity anomalies (mGal). 

Quantity Min Max Mean STD 

Reference Helmert gravity anomaly -28.04 90.63 11.31 22.35 

Residual Helmert gravity anomaly -161.69 138.47 -0.75 23.71 

 

  

a b 
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a b 

Figure 3.10: Ellipsoidal corrections: correction to gravity disturbance (a) and correction 

for spherical approximation (b). 

 

Table 3.6: Statistics of ellipsoidal corrections (mGal). 

Quantity Min Max Mean STD 

Ellipsoidal correction to gravity 

disturbance 
-0.239 0.235 0.019 0.059 

Ellipsoidal correction to spherical 

approximation 
0.014 0.034 0.023 0.005 

 

Applying the Stokes integration to the residual Helmert gravity anomalies, the 

residual NZ co-geoid was computed at the nodal points of 1'1' grid using modified 

Stokes’s convolution integral (integration cap ψ=45’, modification degree of 160) in 
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2°×3° central area, 45°<φ<47°, 1.5°<λ<4.5°, in which all the GNSS/Leveling points are 

located. For this integration, the UNB “Faster than the FFT” technique was employed as 

already mentioned in step #4 in section 3.3 above. 

 The FZ contribution, a.k.a., the truncation correction (or truncation error with the 

opposite sign), was then evaluated from DIR_R5 using spherical harmonic coefficients 

(transformed into the Helmert space) of degree/order 161 up to full degree/order (300). 

This contribution is shown in Figure 3.12a. 

Figure 3.11: Reference Spheroid computed using DIR-R5 model and up to degree/order 

160 in Helmert’s space (a) and residual co-geoid (b). 

The low frequency part of the co-geoid, the reference spheroid, as well as the 

truncation correction must be added to residual co-geoid values to get the co-geoid (cf., 

step #6 in section 3.3 above), i.e., the geoid in Helmert’s space, which contains all 

harmonic frequencies. The reference spheroid was computed using the DIR-R5 and JGP95 

  

a b 
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models up to the same degree/order 160 as for the reference Helmert gravity anomaly. 

Figure 3.11a shows the undulation of the reference spheroid and Figure 3.11b the residual 

co-geoid in the central area of the Auvergne region. The statistics are presented in Table 

3.7. 

  

a b 

Figure 3.12: Far-zone contribution to residual NZ co-geoid, a.k.a., truncation correction 

(a) and Hörmander correction (b). 
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a b 

Figure 3.13: Primary indirect topographical effect (a) and primary indirect atmospheric 

effect (b). 

Transformation of the co-geoid in a Helmert space to the geoid in a real space needs 

to be done by applying the primary indirect topographical and atmospheric effects, the 

PITE and PIAE (step #7 in section 3.3 above), see Figure 3.13. These effects were 

computed using the ACE2 digital terrain model. At the end of the computation process a 

Hörmander correction which corrects for the small shift of the centre of the Earth mass 

during the Helmert condensation needs to be computed (step #7 in section 3.3 above), see 

Figure 3.12b and Table 3.7. The residual co-geoid, reference spheroid, truncation 

correction and all other correction terms were computed at the nodal points of 1'1' regular 

geographical grid. 

Final geoid model was obtained by the summation of the co-geoid, the two primary 

indirect effects PITE and PIAE and the Hörmander correction. The geoid height in this 
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area varies between 46.62 m and 52.53 m, see Table 3.7. Figure 3.14 shows the geoid 

height variation in the computation area. 

Table 3.7: Statistics of final geoid computation components (m). 

Quantity Min Max Mean STD 

Reference Spheroid 46.371 52.587 49.560 1.570 

Residual Co-geoid -1.063 1.366 0.00 0.479 

Truncation correction -0.075 0.058 -0.004 0.032 

PITE -0.159 -0.025 -0.044 0.020 

PIAE -0.007 -0.006 -0.006 0.000 

Hörmander correction 0.003 0.004 0.003 0.000 

Geoid 46.595 52.480 49.512 1.487 

 

 

Figure 3.14: Geoid model in the Auvergne area assuming the standard density of 

topographic masses 2670 kg.m-3. 
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3.6.2 The effect of lateral topographical density variations on the geoid 

Lateral topographical density variations in this area were estimated from surface 

geology on a 5'5' grid from publicly available geological map introduced in section 3.4. 

The effect of these approximate density variations on the geoid were computed in two 

terms of direct density effect DDE (cf., step #1 in section 3.3 above) and primary indirect 

density effect PIDE (cf., step #7 in section 3.3 above). The total effect of lateral 

topographical density varies between -5.8 and 2.4 cm. These corrections were applied to 

the final geoid model in Auvergne area; for more details see Foroughi et al. [2015b]. 

Figure 3.15 shows the effects of lateral density variation on the geoid in the Auvergne 

area. Due to the lack of accurate density information the lateral topographical density 

model was created on a relatively coarse grid and thus the contribution to the geoid has 

been evaluated only approximately. The statistics of both components and the geoid model 

assuming the density variation is shown in Table 3.8. 
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a b 

Figure 3.15: Effects of lateral topographical density variations in Auvergne area: direct 

topographical density effect (a) and primary indirect topographical density effect (b). 

 

Table 3.8: Statistics of the direct and primary indirect density effects on the geoid and 

statistics of the geoid model assuming the lateral topographical density variation (m). 

Quantity Min Max Mean STD 

DDE -0.059 0.030 0.000 0.016 

PIDE -0.020 0.006 -0.007 0.007 

Geoid 46.620 52.492 49.528 1.491 

 

3.7 Testing and comparison 

The 75 points on which both the GNSS-determined geodetic heights and levelled 

heights, expressed as “normal heights“, are located in the area of Auvergne [Duquenne, 

2007]. These points have been used for the assessment of our geoid model. First, the 
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rigorous orthometric heights were calculated from the normal Molodensky heights based 

on the theory published by Santos et al. [2006]. The implementation of this transformation 

is described by Foroughi et al. [2017b]. The locations of these control points over the test 

area are shown in Figure 3.16. The statistics of the differences between the two heights, 

rigorous orthometric minus normal, is shown in Table 3.9. 

 

Figure 3.16: Topography over the Auvergne area and locations of control 

GNSS/Leveling points. 

Table 3.9: Statistics of differences between the rigorous orthometric and normal heights 

(mm). 

Quantity Min Max Mean STD Range 

Ho-Hn 1.6 70.4 22.3 14.7 68.8 
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After obtaining the set of the rigorous orthometric heights, the geoid heights were 

evaluated at the location of the 75 control points, and the differences between the 

gravimetric geoid heights and the differences of geodetic and rigorous orthometric heights 

at these points were computed. These differences are characterized by the standard 

deviation of 3.4 cm and the mean difference of 12.4 cm, see Table 3.10. After the effects 

of lateral topographical density variation were added to the final geoid model, the 

comparison showed 1.4 mm improvement in the standard deviation and 7.3 mm change 

in the mean difference, see Table 3.10. Figure 3.17 shows the differences between the 

final geoid model and the GNSS/Leveling control points. 

The same evaluation was done in Ågren et al. [2009] for their quasigeoid solution 

using five different methods and normal heights of the same 75 control points [cf., Ågren, 

et al. 2009]. According to their results the KTH method Sjöberg [2003] gives the smallest 

standard deviation (3.3 cm) when one-parameter corrector plane is applied. This confirms 

our results presented here as the KTH method is basically a simplified geoid determination 

(using Stokes’s technique) which is then converted to quasigeoid for comparison with 

normal heights. However, the comparison of mean of differences is not possible since the 

quasigeoid results are always presented after applying a corrector surface. 

Table 3.10: Statistics of differences between the gravimetric geoid heights and 

GNSS/Leveling geoidal heights computed at 75 control points (m). 

Quantity Min Max Mean STD Range 

Geoid 0.028 0.207 0.124 0.034 0.178 

Geoid (density effect included) 0.024 0.222 0.133 0.033 0.197 
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Figure 3.17: Map of differences between the gravimetric geoid model that includes the 

lateral topographical density effect and GNSS/Leveling geoid heights at control points. 

More detailed statistical information about the differences can be seen from the 

histograms plotted in Figure 3.18. 

 

Figure 3.18: Histograms of differences between the gravimetric geoid heights (standard 

density – left; lateral topographical density variation included – right) and 

GNSS/Leveling geoid heights at 75 control points. 
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From the histograms shown in Figure 3.18 it can be seen that there has been an 

improvement in the distribution of the differences in spite of very poor resolution of the 

digital density model that was used for the computation. The histogram on the right 

appears to be more normally distributed around the mean value. 

 

3.8 Discussion and conclusions 

As stated in the abstract, the intention of this paper is to show how the current 

version of the Stokes-Helmert geoid determination technique works with real data at least 

as well as the quasigeoid determination techniques do. The S-H’s technique, as a result of 

several decades of investigation and refinements performed mainly at the University of 

New Brunswick was already tested on an Australian synthetic gravity field constructed at 

the Curtin University [Baran et al., 2006]. The test was not very successful because the 

synthetic field lacked the required accuracy and self-consistency.  However, it confirmed 

the hypothesis that the S-H theory is accurate to about 2.5 cm (standard deviation) and to 

a range of 20 cm when used with errorless data [Vaníček et al., 2013]  Assuming that the 

errors in the SH theory (and in the code) are independent of the errors in input data, we 

would deduce that the effect of the data errors (observed gravity, topographical heights, 

topographical density, levelled heights and GNSS determined geodetic heights) combined 

is about 2.6 cm which is less than one should expect. 

Our study in the Auvergne test region revealed, without employing any 

beautification technique such as corrector surfaces, and with a very inaccurate evaluation 

of the topographical density contribution, that the gravimetric geoid can certainly be 
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determined to the same accuracy as, if not a better accuracy than, quasigeoid models in 

the same area, (see, e.g., Yildiz et al. [2012]).  This also demonstrates the successful 

application of Helmert’s second condensation technique (see, e.g., Martinec [1998]), 

which generates very small indirect topographical effects. Moreover, it substantially 

reduces the requirement of knowing the topographic mass-density distribution, as the error 

in density committed in the topographical effect is to a large extent compensated by the 

error produced in the condensed topographical effect. Therefore, reasonable results can 

be obtained even when a standard density assumption or a coarse density model is used. 

However, we believe, that the presented geoid model can be further improved with finer 

digital density model, if it becomes available. 

The mean value of our geoid solution is 13.3 cm above the average of 

GNSS/Leveling values. This corresponds very well with the estimated constant height 

system offset for France which is -13.2 cm according to Rülke et al. [2012, Table 3]. This 

result is also an important topic for further discussion as we believe that the mean value 

of computed gravimetric geoid model compared to the GNSS/Leveling geoidal heights 

can be a useful information on the used height system. 

Last but not least, we would like to emphasize the importance of the physical rigor 

in the choice of the computation techniques. This is especially true of the most problematic 

step of the geoid computation procedure, the downward continuation. This task is in the 

background of the motivation for using the Helmert space, where we construct gravity 

functionals which are harmonic above the geoid (to the extent to which the assumed 

topographical density is known) and can therefore be continued downward rigorously 
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using the Poisson technique. The numerical evaluation of this step is widely discussed, 

mainly due to its numerical instability, but the results obtained in our experiment show 

that it is possible to evaluate this step with a reasonable accuracy even for data on 11 

mesh. 

3.9 Acknowledgement  

The research and the numerical experiment presented in this paper was made 

possible by the Canadian NSERC “Individual Discovery” grant to P. Vaníček and by the 

Slovak national project VEGA 1/0954/15 to J. Janák. The gravity and GNSS/Leveling 

data were given to us by Institut Géographique National. 

3.10 References 

Ågren J, Barzagi R, Carrion D, Denker H, Grigoriados VN, KIamehr R, Sona G, 

Tscherning CC, Tziavos IN (2009) Different geoid computation methods applied on 

a test data set: results and considerations. Poster presented at Hotine-Marrussi 

Symp., Rome, 6-12 July, 2009.  

Baran I, Kuhn M, Claessens SJ, Featherstone WF, Holmes SA, Vaníček P (2006) A 

synthetic Earth gravity model designed specifically for testing regional gravimetric 

geoid determination algorithms. J Geodesy 80: 1-16. doi: 10.1007/s00190-005-

0002-z. 

Bodelle et al. (1980) Carte géologique de la France et de la marge continentale, 1:1500 

000, 1978-1979. 



 

112 

 

Berry PAM (1999) Global digital elevation models - fact or fiction? Astron Geophys 40: 

3.10 – 3.13. doi: 10.1093/astrog/40.3.3.10. 

Berry PAM, Smith RG, Benveniste J (2010) ACE2: The new global digital elevation 

model. In: Gravity, Geoid and Earth Observation. IAG Symposia 135, Mertikas SP 

(ed), Springer, Berlin: 231-237. doi: 10.1007/978-3-642-10634-7_30. 

Denker S (2004) Evaluation of SRTM3 and GTOPO30 terrain data in Germany. In: 

Gravity, Geoid and Space Misisions. IAG Symposia 129, Jekeli C et al. (eds), 

Springer, Berlin: 218-223. 

Duquenne H (2007) A data set to test geoid computation methods. Proceedings of the 1st 

Internatiaonal Symposium of the International Gravity Field Service (IGFS), 

Istambul, Turkey. Harita Dergisi, Special Issue 18: 61-65. 

Ellmann A, Vaníček P (2006) UNB application of Stokes-Helmert’s approach to geoid 

computation. J Geodyn 43: 200-213. 

Farr TG et al (2007) The Shuttle Radar Topography Mission. Rev Geophys 45, RG2004. 

doi: 10.1029/2005RG000183. 

Foroughi I, Janák J, Kingdon RW, Sheng MB, Santos MC, Vaníček P (2015a) Illustration 

of how satellite global field should be treated in regional precise geoid modelling. 

(Padding of terrestrial gravity data to improve Stokes-Helmert geoid computation). 

Geophysical Research Abstracts 17, EGU2015-6655-1, European Geoscience 

Union General Assembly, Vienna, Austria. 



 

113 

 

Foroughi I, Sheng MB, Kingdon RW, Huang J, Martinec Z, Vaníček P, Santos MC 

(2015b) The effect of lateral topographical density variations on the geoid in 

Auvergne. 26th IUGG General Assembly, Prague, Czech Republic. 

Foroughi I, Vaníček P, Novák P, Kingdon RW , Sheng MB, Santos MC (2017a) Optimal 

combination of satellite and terrestrial gravity data for regional geoid determination 

using Stokes-Helmert’s method. Submitted to IAG proceeding of Gravity, Geoid, 

and Height Sysytem 2016 meeting in Thessolinki, Greece.  

Foroughi I, Vaníček P, Sheng MB, Kingdon RW, Santos MC (2017b) In defence of the 

classical heihgt system.(Geophysical Journal International, 

https://doi.org/10.1093/gji/ggx366). 

Helmert FR (1884) Die matematischen und physikalischen Theorien der höheren 

Geodäsie. Vol. 2, B.G. Treubner, Leipzig. 

Hensley S, Rosen P, Gurrola E (2000) The SRTM topographic mapping processor. In: 

Geoscience and Remote Sensing Symposium IGRASS 2000. IEEE 2000 Int., 3: 

1168-1170. 

Hörmander L (1976) The boundary problems of physical geodesy. Arch Ration Mech 

Anal 62: 1-52. doi: 10.1007/BF00251855. 

Huang J (2002) Computational Methods for the Discrete Downward Continuation of the 

Earth Gravity and Effedts of Lateral Topographical Mass Density Variation on 

gravity and The Geoid. University of New Brunswick, Fredericton, Canada. 



 

114 

 

Huang J., Sideris M.G., Vaníček P. and Tziavos I.N., 2003. Numerical investigation of 

downward continuation techniques for gravity anomalies. Bollettino di Geodesia e 

Scienze Affini, LXII, 33–48. 

Huang J, Vaníček P, Novák P (2000) An alternative algorithm to FFT for the numerical 

evaluation of Stokes’s integral. Stud Geophys Geod 44: 374-380. 

Huang J, Vaníček P, Pagiatakis S, Brink W (2001)  Effect of topographical mass density 

variation on gravity and the geoid in the Canadian Rocky mountains. J Geodesy  74: 

805-815. 

Janák J, Vaníček P (2005) Mean free-air gravity anomalies in the mountains. Stud 

Geophys Geod 49: 31-42. 

Kingdon R, Vaníček P (2010) Poisson downward continuation solution by the Jacobi 

method. Journal of Geodetic Science 1: 74-81. doi: 10.2478/v10156-010-0009-0. 

Lemoine FG et al (1998) The Development of the Joint NASA GSFC and the National 

Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA/TP-

1998-206861. 

MacMillan W (1930) The Theory of Potential. Dover Publications, New York. 

Martinec Z (1993) Effect of lateral density variations of topographical masses in view of 

improving geoid model accuracy over Canada. Final report of contract DSS No. 

23244-2-4356, Geodetic Survey of Canada, Ottawa. 

Martinec Z, Vaníček P (1994a) Direct topographical effect of Helmert’s condensation for 

a spherical approximation of the geoid. Manuscr Geodaet 19: 257-268. 



 

115 

 

Martinec Z, Vaníček P (1994b) The indirect effect of topography in the Stokes-Helmert 

technique for a spherical approximation of the geoid. Manuscr Geodaet 19: 213-

219. 

Martinec Z, Vaníček P, Mainville A, Véronneau M (1995) The effect of lake water on 

geoidal heights. Manuscr Geodaet 20: 193-203. 

Martinec Z, Vaníček P (1996) Formulation of the boundary-value problem for geoid 

determination with a higher degree reference field. Geophys J Int 126: 219-228. 

Martinec Z, Vaníček P, Mainville A, Véronneau M (1996) Evaluation of topographical 

effects in precise geoid computation from densely sampled heights. J Geodesy 70: 

746-754. 

Martinec Z (1998) Boundary-value problems for gravimetric determination of a precise 

geoid. Lecture Notes in Earth Sciences 73, Springer, Berlin. 

Molodensky MS, Eremeev VF, Yurkina MI (1960) Methods for study of the external 

gravitational field and figure of the Earth. Transl. from Russian by the Israel 

Program for Scientific Translations. Office of technical Services, Department of 

Commerce, Washington, D.C., 1962. 

Novák P (2000) Evaluation of gravity data for the Stokes-Helmert solution to the geodetic 

boundary-value problem. Technical Report No. 207, University of New Brunswick, 

Fredericton. 



 

116 

 

Novák P, Vaníček P, Véronneau M, Featherstone WE, Holmes SA (2001) On the accuracy 

of modified Stokes’s integration in high-frequency gravimetric geoid determination. 

J Geodesy 74: 644-654. 

Reuter HI, Nelson A, Jarvis A (2007) An evaluation of void filling interpolation methods 

for SRTM data. Int J Geogr Inf Sci 21: 983-1008. 

Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W, Hansley S (2005) 

An assessment of the SRTM topographic products. Technical Report JPL D-31639, 

Jet Propulsion Laboratory, Pasadena, California. 

Rülke A, Liebsch G, Sacher M, Schäfer U, Schirmer U, Ihde J (2012) Unification of 

European height system realizations. Journal of Geodetic Science 2: 343-354. 

Santos MC, Vaníček P, Featherstone WE, Kingdon R, Ellmann A, Martin BA, Kuhn M, 

Tenzer R (2006) The relation between rigorous and Helemert’s definitions of 

orthometric heights. J Geodesy 80: 691-704. doi: 10.1007/s00190-006-0086-0. 

Sjöberg LE (2003) A computational scheme to model the geoid by the modified Stokes' 

formula without gravity reductions. J Geod 77: 423-432. 

Stokes GG (1849) On the variation of gravity at the surface of the earth. Trans. Cambridge 

Philos. Soc., Vol. VIII: 672-695. 

Sun W, Vaníček P (1998) On some problems of the downward continuation of 5' x 5' 

mean Helmert's gravity disturbance. J Geodesy 72: 411- 420. 

Tenzer R, Novák P, Janák J, Huang J, Najafi M, Vajda P, Santos M (2003) A review of 

the UNB approach for precise geoid determination based on the Stokes-Helmert 



 

117 

 

method. Honoring the academic life of Petr Vaníček. Technical Report No. 218, 

University of New Brunswick, Fredericton, pp.132-176. 

Vaníček P, Sjöberg LE (1991) Reformulation of Stokes’s theory for higher than second-

degree reference field and modification of integration kernels. J Geophys Res 96, 

B4: 6529-6539. 

Vaníček P, Martinec Z (1994) The Stokes-Helmert scheme for the evaluation of a precise 

geoid. Manuscr Geodaet 19: 119-128. 

Vaníček P, Najafi M, Martinec Z, Harrie L, Sjöberg LE (1995) Higher-degree reference 

field in the generalized Stokes-Helmert scheme for geoid computation. J. Geodesy 

70: 176-182. 

Vaníček P, Sun W, Ong P, Martinec Z, Najafi M, Vajda P, Horst B (1996) Downward 

continuation of Helmert’s gravity. J. Geodesy 71: 21-34. 

Vaníček P, Featherstone WE (1998) Performance of three types of Stokes’s kernel in the 

combined solution for the geoid. J. Geodesy 72: 684-697. 

Vaníček P, Huang J, Novák P, Pagiatakis S, Véronneau M, Martinec Z, Featherstone WE 

(1999) Determination of the boundary values for the Stokes-Helmert problem. J. 

Geodesy 73: 180-192 

Vaníček P, Tenzer R, Sjöberg LE, Martinec Z, Featherstone WE (2004) New views of 

spherical Bouguer gravity anomaly. Geophys J Int 159: 460-472. doi: 

10.1007/s00190-006-0086-0. 



 

118 

 

Vaníček P, Kingdon R, Kuhn M, Ellmann A, Featherstone WE, Santos MC, Martinec Z, 

Hirt Ch, Avalos-Naranjo D (2013) Testing Stokes-Helmert geoid model 

computation on a synthetic gravity field: experiences and shortcomings. Stud 

Geophys Geod 57: 369-400. 

Werner M (2001) Shuttle Radar Topography Mission (SRTM), Mission overview. J 

Telecom (Frequenz) 55: 75-79. 

Yildiz H, Forsberg R, Ågren J, Tscherning CC, Sjöberg LE (2012) Comparison of 

remove-compute-restore and least squares modification of Stokes' formula 

techniques to quasi-geoid determination over the Auvergne test area. Journal of 

Geodetic Science 2: 53-64. doi: 10.2478/v10156-011-0024-9.  

 

 

 

 

 

 

 

 

 

 

 



 

119 

 

4 Chapter 4: In defense of the classical height system 

This article has been published in Geophysical Journal International. The idea of 

this article started when a new data set of 558 GNSS/Leveling points in the Auvergne area 

were given to the gravity research group at UNB by IGN and it was thought that it could 

help to better evaluate the gravimetric geoid model of this area. Besides, the lateral density 

variation model of the Auvergne area was extracted from a better resolution lithological 

model and it was shown that it could improve the gravimetric geoid model. The UNB 

rigorous orthometric height software was modified by me and the corrections to convert 

the normal heights to rigorous orthometric height were computed at these GNSS/Leveling 

points and used to compute the test geoidal heights.  

The full citation for this article is: 

Foroughi, I., Vaníček, P., Sheng, M., Kingdon, R. W., Santos, M.C; In defense of the 

classical height system, Geophysical Journal International, Volume 211, Issue 2, Pages 

1154–1161. 

 

The Molodensky’s claim that classical height system cannot be computed as 

accurate as normal height system was argued in this article by measuring the congruency 

of both systems for Auvergne data set. According to Ågren et al. [2009], the LSMS 

method is the best performing method for computing the quasigeoid of the area. This 

model was evaluated against the height anomalies available at GNSS/Leveling points. The 

same comparison was done using geoid model computed by Janák et al. [2017] (cf., Ch. 

3) and was compared against geoidal heights derived at the same points. The results show 

the same STD for both classical and normal height system besides the mean value of the 

discrepancies in classical height system was in a good agreement with the reported shift 
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in the French height system due to sea surface topography. It is mentioned in this article 

that the LSMS method provides the geoid model first and then is converted to quasigeoid 

using the classical formula. This was taken from our email corresponding with Dr. Ågren, 

which later he did let us know that this was not the case for Auvergne and actually the 

LSMS method was modified to compute the quasigeoid directly in the Auvergne area.  

It is also mentioned in this article that the original 75 GNSS/Leveling points 

introduced by Duquenne [2007] are included in the 588 set of points however this is not 

the case and the new 588 points do not coincide with the 75 points.  

It  

4.1 Abstract 

In many European countries, normal heights referred to the quasi-geoid as 

introduced by Molodensky in the mid-twentieth century are preferred to the classical 

height system that consists of orthometric heights and the geoid as a reference surface for 

these heights.  The rationale for this choice is supposed to be that in the classical height 

system, neither the geoid, nor the orthometric height can be ever known with centimeter 

level accuracy because one would need to know the topographical mass density to a level 

that, can never be achieved. The aim of this paper is to question the validity of this 

rationale. 

The common way of assessing the congruency of a local geoid model and the 

orthometric heights is to compare the geoid heights with the difference between 

orthometric heights provided by levelling and geodetic heights provided by GNSS. On the 

other hand, testing the congruency of a quasi-geoidal model with normal height a similar 



 

121 

 

procedure is used, except that instead of orthometric heights, normal heights are 

employed. For the area of Auvergne, France, which is now a more or less standard choice 

for precise geoid or quasi-geoid testing, only the normal heights are supplied by the 

Institute Geographic National (IGN), the provider of the data. This is clearly the 

consequence of the European preference for the Molodensky system. The quality of the 

height system is to be judged by the congruency of the difference of the geoid/quasi-geoid 

heights subtracted from the geodetic heights and orthometric/normal heights. 

To assess the congruency of the classical height system, the Helmert approximation 

of orthometric heights is typically used as the transformation between normal and 

Helmert’s heights is easily done. However, the evaluation of the differences between 

Helmert’s and the rigorous orthometric heights is somewhat more involved as will be seen 

from the review in this paper. For the area of interest, the differences between normal and 

Helmert’s heights at the control leveling-points range between −9.5 𝑐𝑚 and 0 𝑐𝑚, 

differences between Helmert’s and the rigorous orthometric heights vary between 

−3.6 𝑐𝑚  and 1.1 𝑐𝑚. The local gravimetric geoid model of Auvergne, computed by the 

Stokes-Helmert (S-H) technique, is used here to illustrate the accuracy of the classical 

height system. Results show a very reasonable standard deviation (STD) of 3.2 𝑐𝑚 of the 

differences between geoid values, derived from control levelling-points, and gravimetric 

geoid heights when Helmert’s heights are employed and even a smaller STD of 2.9 𝑐𝑚 

when rigorous orthometric heights are used. A corresponding comparison of a quasi-geoid 

model, computed by Least-Square Modification of Stokes (LSMS) method, with normal 

heights show a STD of 3.4 𝑐𝑚. 
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4.2 Introduction  

The computed gravimetric geoidal height (N), or quasi-geoidal height, a.k.a. the 

height anomalies (𝜉), can be compared against differences between heights (H) “above 

the geoid” and geodetic heights (h) above the reference ellipsoid obtained from GPS or 

GNSS observations. The fit of the geoid/quasi-geoid heights and GNSS minus 

orthometric/normal height is the best measure of the congruency of the height system in 

question. The geoidal/quasi-geoidal heights are computed using gravimetric information 

and orthometric/normal heights are computed independently from spirit leveling. If the 

congruency of the classical height system is tested the geoidal heights are required and the 

heights above the geoid should be of the orthometric kind (𝐻𝑜). If the congruency of 

Molodensky’s system [Molodensky et al., 1960] is investigated, the quasi-geoidal heights 

and normal heights (𝐻𝑁) are used.  i.e.: 

 
𝑁 = ℎ − 𝐻𝑜 

𝜉 = ℎ − 𝐻𝑁 . 
(4.1) 

 

Normal heights are defined by the mean (between the quasi-geoid and the Earth 

surface) normal gravity along the normal plumbline and are simple to compute; for 

Auvergne, they are provided for all the 558 control leveling-points by the Institute 

Geographic National (IGN). Computing orthometric heights requires information about 

mass-density distribution along the plumbline inside topography and to avoid this 

necessity was the reason why Molodensky formulated his theory. To assess the quality of 

the gravimetric geoid by means of independent test data as accurately as possible, rigorous 

orthometric heights of the control points must be used. 
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There are various errors associated with the test data such as the effect of sea surface 

topography, systematic errors in levelling, adjustment errors, etc. Geodetic heights have 

their own errors in point height determination, network adjustment, etc.  These types of 

errors are outside our interest in this paper as we focus only on converting normal heights 

to rigorous orthometric heights in a theoretically correct manner. 

The difference between normal and orthometric height can be written as: 

 𝐻𝑜 − 𝐻𝑁 = 𝜉 − 𝑁, (4.2) 

 

which is clearly identical to the geoid-to-quasi-geoid separation. It is important to point 

out here that Eq. (4.1) and Eq. (4.2) are only approximately valid as they neglect the 

differences between the normal plumbline for measuring the normal height and the 

plumbline for orthometric heights. But this is only a second, or rather third order effect 

and can be certainly neglected when we are dealing with accuracies of the order of one 

centimeter.  According to the definitions of the geoid and quasi-geoid the formula for their 

difference, Eq. (4.2), can be obtained from the conversion of normal to orthometric heights 

as [Santos et al., 2006]: 

 𝐻𝑂 − 𝐻𝑁 = 𝐻𝑁 𝜇(𝑔′)−𝜇(𝛾′)

𝜇 (𝑔′)
 , (4.3) 

 

where 𝛾′ is the normal gravity along the normal plumbline, g’ is the real gravity 

along the real plumbline, and 𝜇 is the integral mean operator applied between the geoid 

and the Earth surface [Heiskanen and Moritz, 1967, Sec. 4.6].  If Helmert’s orthometric 
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heights (𝐻𝐻) are to be computed then g’ in Eq.(4.3) is replaced by the Helmert’s gravity 

model along the plumbline, 𝑔𝐻. 

The differences between normal heights and Helmert’s orthometric heights have 

been computed in many countries and we shall not discuss them here. Clearly, normal 

height computation does not require information about topographical mass density. 

However, as Molodensky reminded us, to compute the rigorous orthometric heights the 

distribution of topographical mass density between the surface and the geoid ought to be 

known. Due to the lack of precise knowledge of density inside topography, a simplified 

topographic model of the Earth can be considered by assuming constant density within a 

Bouguer shell at each point. Approximating the mean value of gravity in this simplified 

topographic model by the average of the values at the Earth surface and at the geoid, is 

the basis of Helmert’s orthometric height [Heiskanen and Moritz, 1967, Ch 4]. 

The real topography does not resemble a shell; topographical roughness with respect 

to the shell, a.k.a., the terrain, gives a better approximation of mean gravity. The 

gravitational attraction of the terrain can be approximated by various functions of depth 

as suggested by Mader [1954] or Niethammer [1982].  Sünkel [1986], Vaníček et al. 

[1995], Allister and Featherstone [2001], Tenzer and Vaníček [2003], Dennis and 

Featherstone [2003], Kingdon et al. [2005], and Tenzer et al. [2005] considered the 

gravitational attraction correction due to density variations inside topography in different 

ways. Here we shall follow the modelling suggested by Martinec [1993] and illustrated 

by Huang et al. [2001], as their modelling is based on lateral variations of topographical 

density as indicated by superficial geological maps of as large a scale as available. 
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Foroughi et al. [2015b] suggested to use the publicly available geological maps of the 

study area and digitise them using the information on density values. This procedure for 

the area of Auvergne was tried and it was reported in the same study that even using a low 

resolution density map, the effect on geoidal heights improves the fit of the gravimetric 

geoidal height to the control leveling-points to a certain degree. It stands to reason to 

expect that the dependence observed in the case of geoidal heights would apply to the 

orthometric height as well. If high resolution density maps are available, the effect of 

topographical density variations on both geoidal and orthometric heights will be probably 

larger.  The “rigorous” orthometric heights have been formulated by Tenzer, et al. [2005] 

and the corrections to Helmert’s orthometric heights (to obtain the “rigorous” orthometric 

heights) derived by Santos, et al. [2006]; they will be recapitulated here in the next section 

for completness. 

4.3 Review of the height system theory 

From the geometrical point of view, orthometric heights are defined as the distance 

between a point of interest and the point on the geoid located at the bottom of the 

plumbline that goes through the point of interest. If the mean gravity along the plumbline, 

𝜇(𝑔), is known, orthometric heights can be computed as follows [Heiskanen and Moritz, 

1967, Eq 4-21]: 

 ∀Ω ∈ Ω0 ∶  𝐻𝑜(Ω) =
𝐶(𝑟𝑡,Ω)

𝜇[𝑔′(Ω)]
 , (4.4) 

 

where Ω represents the geocentric spherical coordinates (𝜆: 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝜑: 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) of 

the point of interest, Ω0 is the full solid angle,  𝑟𝑡 ≈ 𝑅 + 𝐻𝑂 is the radius of the point at 
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the Earth surface, 𝑅 is the mean radius of the Earth and 𝐶 is the geopotential number at 

(𝑟𝑡, Ω) defined as the difference between the gravity potential at the geoid and that at the 

topographical surface; 𝜇(𝑔′) is the integral-mean gravity along the plumbline and 𝐻𝑜(Ω) 

is the orthometric height of the point(𝑟𝑡, Ω). 

As the actual gravity along the plumbline cannot be measured at each point, it is not 

possible to compute the exact mean gravity between the geoid and the Earth’s surface. 

Yet, the differences between height systems are governed by this quantity. The mean 

gravity can be approximated by mean normal gravity which results in normal height; when 

the Poincaré-Pray model is used Helmert’s orthometric height are obtained. According to 

the Poincaré-Pray theory, the mean value is caused by the Bouguer plate and free-air 

gravity gradient at the point of interest, assuming the mass density of the plate to be 

constant and equal to 𝜌0 = 2670
𝑘𝑔

𝑚3, [Heiskanen and Moritz, 1967, Eq. 4-24]: 

 ∀Ω ∈ Ω0 ∶ 𝜇[𝑔𝐻(Ω)] = 𝑔(𝑟𝑡, Ω) − (
1

2

𝜕𝛾

𝜕ℎ
+ 2𝜋𝐺𝜌0)𝐻𝑜(Ω), (4.5) 

 

where 𝜕𝛾 𝜕ℎ⁄  is the vertical gradient of normal gravity at the surface of the Earth, and G 

is the Newtonian gravitational constant. The vertical gradient in the first term within the 

brackets can be approximated by its linear value above the geoid (−0.3086 𝑚𝐺𝑎𝑙/𝑚) and 

the second term under the assumption of constant density equals to −0.1119 𝑚𝐺𝑎𝑙/𝑚 

and the general form can be written as: 

 ∀Ω ∈ Ω0 ∶ 𝜇[𝑔𝐻(Ω)] = 𝑔(𝑟𝑡, Ω) + (0.0424) 𝐻𝑜(Ω) , (4.6) 
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where 𝑔 and 𝐻 are in 𝑚𝐺𝑎𝑙 and metres respectively and the term in brackets is in 

𝑚𝐺𝑎𝑙/𝑚. Eq. (4.6) approximates the gravity gradient by a constant value and the 

plumbline by a straight line. This approximation only reduces the surface gravity value 

half way down the plumbline using the Poincaré-Pray gradient while completely 

neglecting the effect of the terrain and the variations of density inside topography. 

The correction to normal height to get Helmert’s orthometric height (εH
H) is given by Eq. 

(4.3). To get the rigorous orthometric height from Helmert’s orthometric height, 

corrections mentioned in the Introduction, i.e., the terrain correction, varying 

topographical density correction, and non-topographic correction must be applied [Santos 

et al., 2006]. In addition, the consideration of a more rigorous definition of the normal 

gravity along the normal plumbline (𝜀𝐻
𝛾

) and that of the Bouguer shell effect (𝜀𝐻
𝐵) leads to 

two additional corrections. These corrections are: 

 𝜀𝐻
𝛾(Ω) = −

𝛾𝐻𝑜3
(Ω)

𝑔𝐻(Ω)𝑎2 , (4.7) 

 

where 𝑎 is the major semi-axis of the reference ellipsoid, and 𝜀𝐻
𝛾

 is the correction to 

compute the mean normal gravity along the plumbline. The correction to compute mean 

Bouguer shell effect reads: 

 𝜀𝐻
𝐵(Ω) = −

4

3
𝜋𝐺𝜌0

𝐻𝑜(Ω)3

𝑔𝐻(Ω)(𝑅+𝐻𝑜(Ω))
(2 −

𝐻𝑜(Ω)

𝑅+𝐻𝑜(Ω)
) . (4.8) 

 

These corrections can be considered generally to be of second order and they are 

directly correlated with the heights of the points. For the highest point on Earth, Mount 
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Everest, the 𝜀𝐻
𝛾

 will be about 1.5 𝑐𝑚 and 𝜀𝐻
𝐵  will be −1.6 𝑐𝑚 respectively and can thus 

be omitted in practice for other parts of the world [Santos et al., 2006]. 

The correction to Helmert orthometric height due to neglected terrain effect in the 

Poincaré-Pray model reads [ibid, 2006, Eq. (50) & Eq. (52)]: 

 

𝜀𝐻
𝑅(Ω) =

𝐺𝜌0

𝑔𝐻(Ω)
(𝐻𝑜(Ω)∬ ∫

𝜕𝑙−1(𝑟,Ω;𝑟′,Ω′)

𝜕𝑟
|
𝑟=𝑅+𝐻𝑜(Ω)

𝑟′2𝑑𝑟′𝑑Ω′𝑟′=𝑅+𝐻𝑜(Ω′)

𝑟′=𝑅+𝐻𝑜(Ω)Ω′𝜖Ω0
−

∬ ∫ (𝑙−1[𝑅, Ω, 𝑟′, Ω′] − 𝑙−1[𝑅 +
𝑟′=𝑅+𝐻𝑜(Ω′)

𝑟′=𝑅+𝐻𝑜(Ω)Ω′𝜖Ω0

𝐻𝑜(Ω), Ω, 𝑟′, Ω′])𝑟′2𝑑𝑟′𝑑Ω′) , 

(4.9) 

 

where all the symbols have been already defined. The correction to Helmert’s orthometric 

height by employing the laterally varying density information (𝛿𝜌(Ω)) of the 

topographical masses, i.e., masses above the geoid, is evaluated as [ibid, 2006, Eq. (54) & 

Eq. (56)]: 

 

𝜀𝐻
𝛿𝜌

(Ω) =
𝐺

𝑔𝐻(Ω)
(𝐻𝑜(Ω)∬ ∫ 𝛿𝜌(𝑟′, Ω′)

𝜕𝑙−1(𝑟,Ω;𝑟′,Ω′)

𝜕𝑟
|
𝑟=𝑅+𝐻𝑜(Ω)

𝑟′2𝑑𝑟′𝑑Ω′𝑟′=𝑅+𝐻𝑜(Ω′)

𝑟′=𝑅+𝐻𝑜(Ω)Ω′𝜖Ω0
 −

∬ ∫ 𝛿𝜌(𝑟′, Ω′)(𝑙−1[𝑅, Ω, 𝑟′, Ω′] − 𝑙−1[𝑅 +
𝑟′=𝑅+𝐻𝑜(Ω′)

𝑟′=𝑅+𝐻𝑜(Ω)Ω′𝜖Ω0

𝐻𝑜(Ω), Ω, 𝑟′, Ω′])𝑟′2𝑑𝑟′𝑑Ω′) , 

(4.10) 
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where, 𝛿𝜌(Ω) is the anomalous topographical density with respect to mean density 𝜌0. 

The correction to Helmert’s orthometric heights due to the masses contained inside the 

geoid, (the non-topographic correction) is calculated as [ibid, 2006, Eq. (37)]: 

 
𝜀𝐻

𝑁𝑇(Ω) =
1

𝑔𝐻(Ω)
(𝐻𝑜(Ω)𝛿𝑔𝑁𝑇(𝑟𝑡, Ω) −

𝑅

4𝜋
∬ ∫

1

𝑟
𝐾[𝑟, 𝜓(Ω,Ω′), 𝑅]𝑑𝑟

𝑅+𝐻𝑜

𝑟=𝑅
𝛿𝑔𝑁𝑇(𝑅, Ω′)𝑑Ω′

Ω′𝜖Ω0
), 

(4.11) 

 

where K is the Poisson kernel of upward continuation [Kellogg, 1929] and 𝜓(Ω, Ω′) 

represents the spherical distance between computation and integration points, and 

𝛿𝑔𝑁𝑇(𝑟𝑡, Ω) is the No-Topography (NT) gravity disturbance at the surface of the Earth 

also known as spherical complete Bouguer anomaly, cf., [Vaníček et al., 2004].  Thus, the 

correction to Helmert’s orthometric height reads: 

 ∀Ω𝜖Ω0:  𝜀𝐻(Ω) = 𝜀𝐻
𝑅(Ω) + 𝜀𝐻

𝛿𝜌
(Ω) + 𝜀𝐻

𝑁𝑇(Ω) . (4.12) 

 

Kingdon et al. [2005] computed the differences between Helmert’s and rigorous 

orthometric heights on a regular mesh of points in Canada and reported that differences 

reach up to the decimeter level. Santos et al. [2006] computed the corrections over a profile 

at 50°𝑁 across Canadian Rocky Mountains with maximum heights reaching 2500 𝑚. 

Their results show that the total correction reaches a maximum of 13 𝑐𝑚 and a minimum 

of −5 𝑐𝑚. In their study, the effect of laterally varying topo-density was not very 

pronounced as the topographical density in their area of study is quite smooth. Odera and 

Fukuda [2015] computed the correction to Helmert’s orthometric height over Japan’s 

levelling-points. Although the effect of laterally varying density was ignored in their 
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computation, they claim that the total rigorous orthometric correction to Helmert’s heights 

is between  −30 𝑐𝑚 and 0. 

Although, the 3D density model of topography is needed in order to compute the 

effect of density variation most accurately, Kingdon et al. [2011] investigated the effect 

of 3D varying density on geoidal heights and concluded that the vertically varying density 

effect is significantly smaller than that due to the latteral variations. So the latteraly 

varying density effect is only considred in this paper. 

4.4 Numerical results 

The data set of the Auvergne geoid computation test area was prepared by Duquenne 

[2007]. The area is delimited by −1∘ < 𝜆 < 7∘ and 43∘ < 𝜑 < 49∘ and contains 244000 

terrestrial gravity observations, with STD ranging from 0.25 to 0.75𝑚𝐺𝑎𝑙, and 558 

levelling-points, with STD of 2 − 3𝑐𝑚, in the middle of the area (1.5° < 𝜆 < 4.5° ) and 

(43.5° < 𝜑 < 47.5°) which is where the geoid is computed. The orthometric heights of 

the points were interpolated from the 3″ by 3″ DEM information from the Shuttle Radar 

Topography Mission (SRTM) version 4.1 [Jarvis et al., 2008]. The topographical heights 

in the study area vary between 0m and 1300m but go up to 4000m in the near-zone area. 

Most of the control points are located in the western part where the topography is smooth. 

Figure 4.1 shows the topography and the locations of control points are denoted with red 

crosses. 
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Figure 4.1: Variation of topography in Auvergne with red crosses showing the positions 

of levelling-points. 

 

The control point data set contains, apart from the horizontal location information, 

the geodetic height derived from GNSS observations, normal height derived from spirit 

levelling, and the differences between geodetic and normal heights, which are the quasi-

geoidal heights, a.k.a., height anomalies. 

The topographical density model (DDM) of the Auvergne region is needed to 

compute the effect of lateral density variation on Helmert’s orthometric heights as 

explained above. The digital lateral density model of this area is derived by the digitization 

of an analog geological map of France [Bodelle et al., 1980]. The digitization was done 

according to density values associated with the color bar of the map and the digital density 
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model was computed for a 5’ by 5’ grid in the data coverage area. The evaluation of this 

density model was done by Foroughi, et al. [2015b] and according to their investigation, 

the lateral density model improved the accuracy of the gravimetric geoid (computed by S-

H method) by 2 𝑚𝑚 in the STD of residuals of comparison of the geoid model with 

orthometric heights of levelling-points. The 2𝑚𝑚 improvement is relatively small 

because the DDM used was obtained from publicly available geological map that does not 

have high enough accuracy and because the control points in the study area are located in 

rather low elevation regions. 

 

Figure 4.2: Digitized map of lateral topographical density variation in Auvergne 

(𝑘𝑔/𝑚3). 
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By inserting Eq. (4.6) into Eq. (4.3), Helmert’s approximation of orthometric 

heights is obtained. The differences between normal and Helmert’s orthometric heights 

are shown in Figure 4.3.  These differences are at the decimeter level, clearly large enough 

to be taken seriously. Looking at the central part of Figure 4.1 (where the levelling-points 

are located) and Figure 4.3, one can see that the differences are, to some degree, correlated 

with the topography of the area. 

 

Figure 4.3: Differences between normal and Helmert’s orthometric heights. 

We shall evaluate the corrections to be applied to Helmert’s orthometric heights at 

control points in the reversed order, i.e., in the order of increasing importance. To begin 

with, the second order corrections, i.e., the normal gravity correction (𝜀𝐻
𝛾

) from Eq. (4.7) 

and spherical Bouguer gravity correction (𝜀𝐻
𝐵) from Eq. (4.8), attain the maximum values 

of 0.04𝑚𝐺𝑎𝑙 and 0.25𝑚𝐺𝑎𝑙 in our area, where the highest elevation is 1300𝑚. These 
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values translate to less than a 1 𝑚𝑚 contribution to heights and are thus negligible for the 

desired accuracy in in Auvergne. 

Computing the non-topographic correction to Helmert’s orthometric heights from 

Eq. (4.11), we need to know NT gravity disturbances, as opposed to anomalies, at the 

geoid level (𝛿𝑔𝑁𝑇(𝑅, Ω)). These can be evaluated from the following expression 

[Heiskanen and Moritz, 1967, Eq. 2-151]: 

 ∀Ω ∈ Ω0 ∶ 𝛿𝑔𝑁𝑇(𝑅, Ω) = ∆𝑔𝑁𝑇(𝑅, Ω) +
2

𝑅
𝑇𝑁𝑇(𝑅, Ω) , (4.13) 

 

where ∆𝑔𝑁𝑇(𝑅, Ω) is the NT-gravity anomaly and 𝑇𝑁𝑇(𝑅, Ω) is the disturbing potential in 

the NT space [Vaníček et al., 2004] both on the geoid, approximated to the order of 

flattening by the mean sphere of radius R. In order to compute  𝑇𝑁𝑇, all the topographic 

(and atmospheric) masses above geoid must be removed and we get: 

 ∀Ω ∈ Ω0 ∶ 𝑇𝑁𝑇(𝑅, Ω) = 𝑇(𝑅, Ω) − 𝑉𝑇(𝑅, Ω) − 𝑉𝐴(𝑅, Ω) , (4.14) 

 

where, 𝑇(𝑅, Ω) is the disturbing potential in the real space and can be obtained from a 

regional geoid model using Bruns’s formula. The 𝑉𝑇(𝑅, Ω) and 𝑉𝐴(𝑅, Ω) are the 

gravitational potentials of topographical and atmospheric masses respectively [cf., Novák, 

2000]. 

To evaluate the first term on the right-hand side of Eq. (4.13), the NT-gravity 

anomalies on the geoid are needed; these are obtained by downward continuing the surface 

NT anomalies. The scattered (observed) free-air anomalies of Auvergne are thus first 

transferred to NT-space, and then the mean NT anomalies on a grid are computed by 
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means of inverse-cubic distance interpolation on 1’ by 1’ grid points. The NT anomalies 

are harmonic above the geoid, so Poisson’s downward continuation is applied to reduce 

the surface values down to geoid. The Poisson integral equation is solved by the iterative 

Jacobi process used for this application the first time by Kingdon & Vaníček [2010]. The 

integration is then done over one arc-degree squared cells augmented by a border strip of 

30 arc-minutes on all 4 sides.  The results from the individual cells (after discarding the 

30 arc-minutes border strip, of course) are fused together. On average, eight iterations 

were needed for the downward continuation in the individual squares. 

For the purpose of the cell fusion on the geoid, an assessment of continuity along 

the borders (of the one arc-degree squared cells) was done by Foroughi, et al. [2015a]. 

This study showed that discontinuities between anomalies on the geoid are randomly 

distributed and are within the limit of < −3𝜎,+3𝜎 >  where σ is the STD of observed 

anomalies which is, according to Duquenne [2007], 0.5 mGal. This was considered to be 

a very acceptable threshold for the fusion of individual cells. Figure 4.4 (a) shows the NT-

gravity anomalies on the topographical surface and Figure 4.4 (b) shows the differences 

between surface and geoid NT-gravity anomalies.  A cursory inspection would convince 

us that there is no sign of the cell border artifacts in Figure 4.4b, i.e., that the fusion results 

in a smooth field. 
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(a) (b) 

Figure 4.4: NT-gravity anomalies (a) at the Earth surface, (b) differences between NT-

gravity anomalies on the Earth surface and the geoid. 

To compute the second term on the right-hand side of Eq. (4.13), the regional geoid 

model obtained by Janák et al. [2017] was chosen. To derive the 𝑇(𝑅, Ω) and finally to 

calculate the 𝑉𝑇 of each point on the geoid, topographical information of the Earth was 

broken down to three zones: inner-zone, near-zone and, far-zone. The inner-zone area 

covers a spherical cap of 25 arc-minutes around each point and includes orthometric 

heights of topography on a 30” by 30” grid. The near-zone comprises a 5 arc-degree 

spherical cap and contains 5’ by 5’ heights and finally the far-zone which covers the rest 

of the world with a 30’ by 30’ global DEM. The DEM information for the integration 

zones was obtained from the SRTM-V4 data sets [Jarvis et al., 2008]. The effect of 𝑉𝐴 is 

negligible and is not shown here. The non-topographic correction to Helmert’s 

orthometric heights is shown in Figure 4.5 (a) and its statistics are given in Table 4.1. 
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To evaluate the terrain generated correction (Eq. (4.9)), integration was done for 

each control point in the geoid computation area in four zones: innermost, inner, near, and 

far zones. The innermost-zone comprises a 9 arc-minute spherical cap which contains 3” 

by 3” height information. The inner-zone covers a 25 arc-minute spherical cap with a 30” 

by 30” DEM. The near-zone covers a 3 arc-degree spherical cap consisting of 5’ by 5’ 

elevation data and, finally, the rest of the world is covered by 30’ by 30’ height 

information as a far-zone integration area. The terrain generated correction to Helmert’s 

orthometric heights in Auvergne is shown in Figure 4.5 (b) and its statistics are given in 

Table 4.1. 

When computing the effect of laterally varying topographical density (Eq. (4.10), 

the integration was done over a 1 arc-degree spherical cap containing 30” by 30” density 

anomalies (interpolated from the 5’ by 5’ DDM) around each point. The correction to 

Helmert’s orthometric heights at control points due to laterally varying density of 

topographic masses is shown in Figure 4.5 (c) and the statistics are given in Table 4.1. 

   
(a) (b) (c) 
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Figure 4.5: The correction terms to Helmert’s orthometric height to get rigorous 

orthometric height: (a) non-topographic 𝜀𝐻
𝑁𝑇, (b) terrain generated 𝜀𝐻

𝑅, (c) lateral 

topographical density anomaly generated 𝜀𝐻
𝛿𝜌

, (c). 

 

Table 4.1: The statistics of corrections to Helmert’s orthometric height (in mm) 
Correction Min  Max  Mean  STD  

𝜀𝐻
𝑁𝑇 0.0 3.6 0.3 0.5 

εH
R  -3.1 26.8 1.3 3.2 

𝜀𝐻
𝛿𝜌

 -15.8 21.2 0.6 3.2 

 

The cumulative corrections to Helmert’s orthometric height are shown in Figure 4.6, 

and their statistics are provided in Table 4.2. 

   

(a) (b) (c) 

Figure 4.6: The cumulative corrections to Helmert’s orthometric height: (a) non-

topographic  εH
NT, (b) non-topographic and terrain generated εH

NT + εH
R , (c) non-

topographic, terrain generated, and lateral topographical density anomaly generated  

εH
NT + εH

R + εH
δρ

. 

Table 4.2: Statistics of cumulative corrections to Helmert’s orthometric height (in mm). 

Accumulated corrections terms Min  Max  Mean  STD  

𝜀𝐻
𝑁𝑇 0 3.6 0.3 0.5 

𝜀𝐻
𝑁𝑇 + εH

R  -2.4 27.5 1.6 3.5 

𝜀𝐻
𝑁𝑇 + εH

R + 𝜀𝐻
𝛿𝜌

 -11.3 36.4 2.2 5.5 
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As expected, the higher the elevation, the larger the total correction values. 

According to Figure 4.5 and Table 4.1, the largest correction to Helmert orthometric 

heights are from lateral density variation (range of 3.6𝑐𝑚) and the second largest 

corrections is that due to the terrain (range of 3.0𝑐𝑚). The non-topographic corrections to 

Helmert orthometric heights have direct correlation with heights and are all positive and 

less than half a centimeter. The relation of terrain generated and lateral density variation 

corrections with heights of the points are somewhat more complicated. 

Rigorous orthometric heights were computed by applying the total corrections (the 

third line of Table 4.2) to Helmert orthometric heights. The statistics of the rigorous 

orthometric heights are summarized in Table 4.3. Just to be completely clear, let us repeat: 

since the range of differences between Helmert orthometric heights and the rigorous 

orthometric heights is 4.7 𝑐𝑚 (cf., Table 4.2) we have to conclude that the use of rigorous 

orthometric heights instead of Helmert’s heights is mandatory if high accuracy heights are 

required.  This is true especially for higher elevation area. 

4.5 Discussion and conclusions 

The self-consistency of the classical height system in Auvergne was assessed by 

using the regional geoid and the rigorous orthometric heights computed for a set of control 

levelling-points. The regional geoid model of this area was computed using the S-H 

technique with modifications suggested by Foroughi et al. [2016] and implemented by 

Janák et al. [2017]. Foroughi et al. [2016] suggested modifying the regional geoid using 

the optimum reference field and integration cap size for evaluating the Stokes integral and 

Janák et al. [2017] later computed the Auvergne geoid model using S-H technique 
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enriched by these modifications. This latest geoid model is showed for completeness in 

Figure 4.7. 

 

Figure 4.7: Geoid model of Auvergne computed by Stokes-Helmert’s method [Foroughi 

et al., 2016]. 

 

Table 4.3: Statistics of Rigorous orthometric height of levelling-points. 

 Min [m] Max [m] Mean [m] STD [m] 

Rigorous Orthometric height 84.906 1324.408 373.310 263.844 

 

For the assessment of the congruency of the height system, the geoidal heights are 

subtracted from the geodetic heights obtained for the 558 control points by GNSS (and 

supplied to us by IGN).  These alternatively obtained orthometric heights have to match 

the rigorous orthometric heights (computed the way described in this paper). The 

differences, that may be perhaps called residuals, between rigorous orthometric heights 
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and those obtained from the geoid model and geodetic heights give us the means to 

measure the congruency we want to assess.  In an ideal world, these residuals would be 

all equal to 0; in the real world, they are different from 0, but their magnitudes can be 

measured in statistical sense.  The smaller the statistical measure of the residuals (STD or 

range) the better the congruency. 

These differences give us also a tool for measuring just how much the congruency 

improves when different corrective steps are taken.  Table 4.4 shows the trend of 

improvement in congruency when the individual corrections are applied; the 𝜀𝐻
𝛾

 and 𝜀𝐻
𝐵 

corrections are not considered because their effect is negligible for Auvergne. 

Table 4.4: Statistics of the fit of various (partially corrected) orthometric heights with 

the S-H regional geoid model and GNSS- generated orthometric heights. 

 Min [cm] Max [cm] Mean [cm] STD [cm] 

Helmert’s Orthometric heights 7.5 26.4 18.5 3.01 

Applying 𝜀𝐻
𝑁𝑇 7.6 26.4 18.5 2.99 

Applying εH
R  7.4 26.5 18.6 2.97 

Applying 𝜀𝐻
𝛿𝜌

 7.3 26.2 18.6 2.94 

 

Looking at the STDs of the residuals in Table 4.4, we can conclude that even though 

the individual corrections are rather small and have therefore a limited impact on the 

corrected height, they all go in the right direction: i.e., the STD gets smaller, with respect 

to the application of each correction. This points out to the fact that the corrections are 

formulated in a physically correct manner. 

The same assessment can be done for the Molodensky height system: the differences 

to work with are between quasi-geoid heights (height anomalies) subtracted from geodetic 

heights and normal heights of corresponding points. The quasi-geoid model used in the 
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assessment treated in this paper was computed using the LSMS method, a.k.a., the KTH 

method [Ågren et al., 2009a,b].  The normal heights used in this assessment are those 

determined by IGN. 

The statistics of the comparison between the classical and Molodensky’s systems 

are given in Table 4.5. 

Table 4.5: Statistics of the residuals between computed rigorous orthometric heights 

and those estimated from local geoid S-H model and the GNSS-determined heights; also, 

residuals between computed normal heights and those estimated from local quasi-geoid 

KTH model. 

Model Min [cm] Max [cm] Mean [cm] STD [cm] 

Rigorous orthometric height and geoid 7.3 26.6 18.7 2.9 

Normal height and quasi-geoid 2.1 21.3 12.5 3.4 

 

It should be pointed out that the LSMS quasi-geoid computation technique, the 

results of which are used here, is really a simplified geoid computation technique 

augmented by a transformation from geoid to quasi-geoid.  Results obtained by Ågren 

[2009b] without adding any “corrector surface” show that the congruency of 

Molodensky’s system looks worse when other techniques for quasi-geoid determination 

are used.  Another thing must be mentioned here: Ågren’s results (in Ågren [2009b]) were 

generated only for the 75 original GNSS control points, while our results referred to the 

classical system refer to the full set of 558 points mentioned above.  Thus, to be able to 

make a direct comparison of the congruency of the classical and Molodensky systems we 

had to re-compute our results for the original 75 control points.  For those original points, 

the STD equals 3.3𝑐𝑚 and the mean equals to 13.3𝑐𝑚 for the classical system. 
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The mean value of the residuals for the classical system in Table 4.5 is 18.7 𝑐𝑚 

above the average of levelling-point values using all the 558 control points.  The same 

value drops to 13.3𝑐𝑚 when only the original 75 control points are used. The estimated 

constant height system offset (presumably the effect of Sea Surface Topography, cf., 

[Vaníček and Krakiwsky, 1986] for France is 13.2 𝑐𝑚 according to Rülke et al. [2012]. A 

similar observation of the Molodensky height system can be made when a quasi-geoid 

model without any “correction surface” is used, and the constant term is equal to 12.5𝑐𝑚 

[Ågren; 2009b]. 

Hence, according to Table 4.5, it has to be concluded that the classical height system 

has better congruency/self-consistency than the Molodensky height system.  Taking a look 

at the levelling heights and the GNSS-determined geodetic heights, can we really believe 

that their combined STD, as a measure of the congruency can be much better than 3cm?  

A STD of 2.9 cm corresponds to a combination of two statistically independent STDs of 

2 cm; hence if one believes in a 2 cm STD of leveled heights combined with a 2 cm STD 

of GNSS geodetic heights, it does not leave much room for an error caused by the 

uncertainty in topographical density, does it? 

So where has the problem that Molodensky perceived in the 1940’s: “The classical 

height system, neither the geoid, nor the orthometric height can be ever known with 

sufficient accuracy because one would need to know the topographical mass density to a 

level that, can never be achieved” disappeared?  We have to conclude, at least in the 

Auvergne area, that the effect of topographical mass density variations is not as damaging 

as Molodensky had thought it would be.  This discovery cannot be extended to be globally 
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valid, of course, but with Auvergne being a fairly representative area – this was the reason 

why it became popular for geoid or quasi-geoid testing ground - the conclusion should be 

valid for large parts of the world.  This is the crux of our argument presented above. 

There are two more additional arguments that speak in favor of the classical height 

system. First and utmost, its reference surface, i.e., the geoid, is a smooth, physically 

meaningful surface, convex everywhere and describable by a simple mathematical 

expression while the Molodensky reference surface, the quasi-geoid, has no physical 

meaning and contains folds, making it quite difficult to describe mathematically. As the 

quasi-geoid is not definable by a function in the normal mathematical sense, it does not 

make sense to even ask about its behavior in an asymptotic sense.  Second, the statistics 

of the classical system are physically meaningful. For instance, the constant difference 

between the computed geoid and the geoid obtained from differences between the geodetic 

and orthometric heights can be clearly associated with the offset of the levelled height 

datum and the geoid, i.e., by the constant part of the Sea Surface Topography (SST). 
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5 Chapter 5: Sub-Centimetre geoid 

This article has been published in the Journal of Geodesy. The idea of this article 

was to compute the most probable solution of the gravity anomalies on the geoid using LS 

DWC process. In the previous studies, mean gravity anomalies on grid points at the Earth 

surface were used to estimate the mean anomalies on the same points at the geoid where 

as in this study, all available (scattered and gridded) gravity anomalies at the Earth surface 

are used in solving the Poisson probabilistic downward continuation. The program for LS 

DWC was written by me to compute the mean gravity anomalies on grid points at the 

geoid using the LS technique. The program was later modified to compute the covariance 

matrix of gravity anomalies on the geoid using a priori variance matrix of surface gravity 

data. Having the covariance matrix of the gravity anomalies on the geoid allowed us to 

estimate the uncertainties of the geoidal heights contributed from NZ. Beside NZ 

contribution, the effect of other contributions to the geoidal heights, e.g., FZ, reference 

spheroid, PITE, and PIDE effect were also computed and for the first time, the total 

uncertainty of the geoidal heights determined by Stokes-Helmert method was estimated 

in this article. All the computation parts of this article and preparing the first draft of the 

article was done by me and revised by co-authors.  

The full citation for this article: 

Foroughi, I., Vaníček, P., Kingdon, R. W., Goli, M., Sheng, M., Afrasteh, Y., Novák, P., 

Santos, M.C, Journal of Geodesy (DOI: https://doi.org/10.1007/s00190-018-1208-1). 
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5.1 Abstract 

This paper represents a milestone in the UNB effort to formulate an accurate and 

self-consistent theory for regional geoid determination. To get the geoid to a sub-

centimetre accuracy we had to formulate the theory in a spherical rather than linear 

approximation, advance the modelling of the effect of topographic mass density, 

formulate the solid spherical Bouguer anomaly, develop the probabilistic downward 

continuation approach, incorporate improved satellite determined global gravitational 

models and introduce a whole host of smaller improvements. Having adopted Auvergne, 

an area in France as our testing ground, where the mean standard deviation of observed 

gravity values is 0.5 mGal, according to the Institute Geographique Nationale [Duquenne, 

2007], we obtained the standard deviation of the gravity anomalies continued downward 

to the geoid, as estimated by minimizing the L2 norm of their residuals, to be in average 

3-times larger than those on the surface with large spikes underneath the highest 

topographic points. The standard deviations of resulting geoidal heights range from a few 

millimetres to just over 6 cm for the highest topographic points in the Alpine region (just 

short of 2000 m). The mean standard deviations of the geoidal heights for the whole region 

is only 0.6 𝑐𝑚, which should be considered quite reasonable even if one acknowledges 

that the area of Auvergne is mostly flat. As one should expect, the main contributing 

factors to these uncertainties are the Poisson probabilistic downward continuation process, 

with the maximum standard deviation just short of 6 cm (the average value of 2.5 mm) 

and the topographical density uncertainties, with the maximum value of 5.6 cm (the 

average value of 3.0 mm). 
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The comparison of our geoidal heights with the testing geoidal heights, obtained for a set 

of 75 control points (regularly spaced throughout the region) show the mean shift of 13 

cm which is believed to reflect the displacement of the French vertical datum from the 

geoid due to sea surface topography. The mean root square error of the misfit is 3.3 cm. 

This misfit, when we consider the estimated accuracy of our geoid, indicate that the mean 

standard deviation of the “test geoid” is about 3 cm, which makes it about 5 times less 

accurate than the Stokes-Helmert computed geoid. 

 

Table 5.1: Abbreviations used throughout this article 

UNB University of New Brunswick 

DWC downward continuation 

UPC upward continuation  

LS least-squares  

EGM Earth gravitational model 

PITE primary indirect topographic effect 

PIAE primary indirect atmospheric effect 

PIDE primary indirect density effect 

LS DWC least-squares downward continuation  

GNSS Global Navigation Satellite System 

DTE direct topographic effect  

DDE direct density effect  

DAE direct atmospheric effect 

SITE secondary indirect topographic effect 

NT no-topography anomaly (spherical complete Bouguer gravity anomaly)  

STD standard deviation  

NZ near-zone (contribution of close gravity data to geoidal heights) 

FZ far-zone (contribution of distant gravity data to geoidal heights)  

RMS root mean square error 

DTM digital terrain model 
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5.2 Introduction 

When a generation ago Martinec and Vaníček revived and improved the classical 

Stokes-Helmert technique for computing the geoid and stated that it would be possible to 

compute the geoid with an “error of the order of one centimetre”, the statement was not 

universally accepted basically for two reasons: the effect of the topographic mass density 

on observed gravity could not be evaluated to a high enough accuracy and “the downward 

continuation of gravity anomalies” was considered to be a very questionable procedure.  

Now, 25 years later, we can show on the example of the Auvergne area, France, where 

there is an excellent gravity coverage, both accurate and dense, as well as all supporting 

data, that the geoid can be indeed evaluated to a sub-centimetre accuracy. Clearly, that 

does not mean that the geoid can be provided to this accuracy everywhere in the world 

though. The accuracy of the geoid deteriorates in areas of higher topographical heights 

and if gravity data coverage and accuracy are worse than those of Auvergne. 

Stokes-Helmert’s method for determining geoidal heights from terrestrial gravity, 

developed at the University of New Brunswick (UNB) during the past three decades, has 

been applied in different studies [Bajracharya, 2003; Huang and Véronneau, 2005; 

Ellmann and Vaníček, 2007; Afrasteh et al., 2017; Foroughi et al., 2017a; Janák et al., 

2017]. To evaluate the Stokes integral, gravity anomalies must be known on the geoid. 

Moreover, there should not be any masses above the geoid. Whereas gravity observations 

are usually available at or above the topography, they must be continued down to the 

geoid. To continue the gravity anomalies down to the geoid, the anomalies must be of the 

solid kind [Vaníček et al. 2004]. Helmert’s gravity anomalies are one type of the solid 

gravity anomalies that can be continued down and up [ibid]. To get the Helmert anomalies, 
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the free-air gravity anomalies must be transformed from the real space to the Helmert 

space which is done by applying topographic and atmospheric effects on gravity to the 

free-air gravity anomalies (cf. Novák [2000]). 

The process of continuing the Helmert gravity anomalies down to the geoid is called 

the downward continuation (DWC) of the Helmert anomalies which is perhaps the most 

challenging task in the geoid determination process. DWC is done in the Helmert space 

using a physically rigorous approach, i.e., through solving the Poisson integral equation 

[Kellogg, 1929]. The Poisson integral can be used for the upward continuation (UPC) of 

the gravity anomalies from the geoid to any point external to the geoid in the Helmert 

space where the Helmert gravity anomaly multiplied by its distance from the geocentre is 

a harmonic function. While UPC attenuates the values of gravity anomalies with growing 

degree and order of their spherical harmonic expansion, DWC amplifies the values for 

higher spatial frequencies. 

Gravity values are observed at randomly distributed discrete points, but the Poisson 

integral equation is conveniently solved numerically using gravity data given on a regular 

coordinate grid. Thus, the integration domain of the Poisson integral is usually discretized 

to the regular grid for convenient numerical evaluation. According to Hadamard [1923], 

DWC is a physically well-posed problem but depending on the discretization step size and 

roughness of topography in the computation area, the Poisson integral equation, as any 

Fredholm equation of the 1st kind, can have a numerically unstable solution. Martinec 

[1996] showed that DWC of the ground gravity anomaly given on the grid with the angular 

resolution smaller than 1′ is a numerically unstable problem. Sun and Vaníček [1998] 
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concluded that DWC of the 5′ gravity anomalies has a numerically stable solution for the 

entire range of topographic heights on Earth. To deal with the instability of DWC in case 

of higher-resolution gravity anomalies, an iterative solution of the discretized Poisson 

integral equation was applied by Kingdon and Vaníček [2010]. Finding the solution of 

DWC by iterations, attaining convergence (i.e., the stage when the norm of differences 

between solutions of two successive iteration steps is smaller than a predefined threshold 

related to the noise of the observed data) results in a solution which is unique but may be 

marred by a high-frequency noise [Vaníček et al., 2017]. 

A condition number of the matrix of coefficients representing values of the Poisson 

integral kernel can be used to measure the level of the numerical instability of the Poisson 

DWC. Kingdon and Vaníček [2010] suggested to stop the iterative process when a preset 

value, which depends on the condition number as well as on the largest topographic height 

in the area, is reached. Stopping the iterative DWC based on physical characteristics of 

the desired solution, and not on actual convergence, is called semi-convergence which is 

often used when the system of linear equations is numerically unstable [Favati et al., 

2014]. Stopping the iterative DWC at the semi-convergence point may be considered as 

regularization as it prevents the high-frequency observation noise from creeping into the 

DWC solution. For details on the stopping criteria and on the iterative DWC, please refer 

to Kingdon and Vaníček [2010] and Goli et al. [2018]. 

Kingdon and Vaníček [2010] and later again Vaníček et al. [2017] showed 

numerically that DWC of ground gravity anomalies is a physically well-posed problem 

with a finite and unique solution as required by Hadamard [1923]. According to their 
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results, if DWC is being sought iteratively, seeking the exact solution may require 

thousands of iterations (for high resolution data and for high topography), so it makes no 

sense to seek the exact solution. Indeed, after semi-convergence is reached, further 

iterations are marred with the high-frequency noise which reflects high topography, 

observation errors and an irregular spatial distribution of gravity data. They suggested that 

the DWC solution should be sought in the statistical sense, i.e., as the most probable rather 

than exact values of Helmert’s gravity anomalies on the geoid. If one assumes that the 

observation noise is random with the normal distribution, which is indeed quite a standard 

assumption, then the most probable solution is obtained using the least-squares (LS) 

technique. Moreover, the LS technique can provide a fully populated covariance matrix 

for the estimated Helmert gravity anomalies on the geoid. The estimated uncertainties of 

the gravity anomalies on the geoid result from the physical model used for DWC as well 

as from random errors in the gravity observations and topographic heights used in the 

transformation of observed gravity from real to Helmert’s space. 

Once the gravity anomalies and their covariance matrix are estimated on the geoid, 

the residual co-geoidal heights (residual geoidal heights in Helmert’s space) are evaluated 

using Stokes’s integral. By propagating the random errors through the Stokes integration, 

the uncertainties coming from local gravity data can be estimated. The contribution of 

gravity data from the rest of the world to the residual co-geoidal heights is evaluated using 

an Earth’s gravitational model (EGM). Estimating the uncertainties to geoidal heights 

from EGM is done by summing up the errors of the spherical harmonic coefficients 

(commission errors). The co-geoidal heights can be then transferred from Helmert’s space 

back to the real space by adding the primary indirect topographic effect (PITE), primary 
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indirect atmospheric effect (PIAE) and the primary indirect density effect (PIDE). Their 

uncertainties can be added to the estimated uncertainty of the geoidal heights. 

An accuracy of the geoidal heights determined by the Stokes-Helmert method was 

already investigated by Najafi-Alamdari et al. [1999]. At the time of their investigations, 

the DWC step was not utilized in error propagation computations, covariances amongst 

gravity anomalies on the geoid were considered negligible and ignored in estimating the 

uncertainties of the geoidal heights. Later Huang and Véronneau [2013] estimated the 

uncertainties of the geoidal heights in Canada using the Stokes-Helmert method. They 

considered the error in the geoidal height as a combination of the commission error in 

EGM and of ground gravity errors in evaluating the Stokes integral. The errors originating 

in DWC of gravity anomalies were also neglected in their computation. 

The LS technique used in this study for DWC makes it possible to propagate the 

uncertainties of the gravity anomalies into the geoidal height errors. The uncertainties 

result from the irregular spatial distribution of gravity observations, their random errors 

and from the physical model of DWC. In all previous studies, the initial gravity data in 

the Stokes-Helmert approach were predicted on a regular coordinate grid on the Earth’s 

surface before performing their DWC. In contrary, in this study the LS technique allows 

us to use all available gravity data, gridded as well as scattered, at or above the surface of 

the Earth. 

The proposed methodology in the present study was applied to the Auvergne gravity 

data set [Duquenne, 2007]. The quasigeoid models of the Auvergne area have been 

computed using different methods, e.g., Agren, et al. [2009]. Some of them were 



 

158 

 

subsequently converted to the geoid models by adding the geoid-to-quasigeoid 

approximate correction. The first geoid model of the Auvergne area was computed by 

Janák et al. [2017] using the Stokes-Helmert approach. The optimal combination of 

terrestrial and satellite gravity data in this study was determined based on the methodology 

suggested by Foroughi et al. [2017a]. In all previous studies, the mean gravity anomalies 

on the regular grid points were predicted from those at scattered points and used as the 

input data. In the present study, both scattered and grid gravity anomalies at the Earth 

surface were continued down to mean gravity anomalies at the geoid level using the LS 

DWC approach; they were then used to evaluate the Stokes integral. 

The theory of the Stokes-Helmert approach has been documented in many 

publications, e.g., [Vaníček and Kleusberg 1987; Vaníček and Martinec, 1994; Ellmann 

and Vaníček, 2007; Janák et al., 2017]. Thus, we do not herein repeat all the equations 

and formulas used in the Stokes-Helmert method. Only the mathematical expressions used 

for the LS DWC and for the error propagation into the geoidal heights will be 

recapitulated. The theory of the LS DWC and its numerical evaluation are presented in 

Sec. 5.3. The Stokes theory in the UNB rendition and the estimation of the uncertainties 

of the geoidal heights are summarized in Sec. 5.4 and numerical results in Sec. 5.5. The 

assessment of the estimated geoidal heights using available GNSS/Leveling points, called 

“control points” in the sequel, is done in Sec. 5.6, and the discussion of the results and 

concluding remarks can be found in Sec. 5.7. 
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5.3 Least Squares Downward Continuation (LS DWC) 

5.3.1 The theory 

The first step of the geoid determination from gravity data by the Stokes-Helmert 

method consists of transformation of observed gravity from the real space to Helmert’s 

space. Free-air gravity anomalies are converted to Helmert’s gravity anomalies by 

applying the direct topographic effect (DTE), direct density effect (DDE), direct 

atmospheric effect (DAE) and secondary indirect topographic effect (SITE) [e.g., 

Martinec and Vaníček, 1994; Martinec, 1998; Vaníček et al., 1999; Novák, 2000]. 

In order to remove long-wavelength variations from observed gravity data, residual 

Helmert’s gravity anomalies are computed by subtracting the Helmert reference gravity 

anomalies of the degree/order 𝐿 at the surface of the Earth (∆𝑔𝐿
𝑡). To compute the Helmert 

reference gravity field, spherical harmonic coefficients of the gravitational potential 

available from satellite-only EGMs are transferred to Helmert’s coefficients by applying 

topographic effects on gravity expressed in the spectral form [Vaníček et al., 1995]. The 

reference gravity field is then upward continued to the surface of the Earth using the 

Poisson integral. The optimal degree/order of the reference field (𝐿) can be estimated by 

the method explained in Foroughi et al. [2017a]. Residual Helmert’s anomalies (𝛿∆𝑔𝑡) at 

the surface of the Earth are solid anomalies, c.f., Vaníček et al. [2004]; thus, they can be 

continued down to the geoid. The residual anomalies are computed as: 

 𝛿∆𝑔𝑡(Ω) = ∆𝑔𝑡(Ω) − ∆𝑔𝐿
𝑡(Ω) . (5.1) 
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The spherical form of the Poisson integral reads [Heiskanen and Moritz, 1967; Sec 

1-6]: 

 𝛿∆𝑔𝑡(Ω) =
𝑅

4𝜋𝑟𝑡
∫ 𝛿∆𝑔𝑔(Ω′) 𝐾(𝑟𝑡, 𝜓(Ω,Ω′), 𝑅) dΩ′

Ω0

 , (5.2) 

 

where Ω represents the geocentric angular position (defined by spherical latitude −𝜋/2 ≤

𝜑 ≤ +𝜋/2 and longitude 0 ≤ 𝜆 ≤ 2𝜋) of the residual gravity anomaly 𝛿𝛥𝑔𝑡 

(computation point) and Ω′ stands for the geocentric direction of the residual gravity 

anomaly on the geoid 𝛿𝛥𝑔𝑔 (integration point). Ω0 represents an integration domain 

usually chosen as a spherical cap of radius 𝜓0 to which the full spatial angle is shrank 

reflecting the limited geographic availability of ground gravity data.  𝑅 is the radius of the 

mean sphere approximating locally the unknown geoid, 𝑟𝑡 is the geocentric radius of the 

computation point at the topography and 𝐾(𝑟𝑡, 𝜓, 𝑅) is the spherical Poisson integral 

kernel given analytically as follows [ibid, 1967]: 

 𝐾(𝑟𝑡, 𝜓, 𝑅) = 𝑅
𝑟𝑡

2 − 𝑅2

𝑙3(𝑟𝑡, 𝜓, 𝑅)
 (5.3) 

 

where 𝑙(𝑟𝑡, 𝜓, 𝑅) is the Euclidian distance between the computation and integration points 

and 𝜓 is their spherical distance. As ground gravity anomalies are observed only in 

discrete points, the Poisson integral must be discretized for the numerical evaluation, 

which leads to the system of linear equations: 

 δ∆𝒈𝑡 = 𝑩𝛿∆𝒈𝑔, (5.4) 
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where 𝑩 is the coefficient matrix containing values of the discretized Poisson integral 

[Vaníček, et al., 1996]: 

 𝐵𝑖𝑗 =
𝑅2(𝑟𝑖

2 − 𝑅2)

4𝜋𝑟𝑖

1

𝑙3(𝑟𝑖, 𝜑𝑖, 𝜆𝑖; 𝑅, 𝜑𝑗 , 𝜆𝑗)
𝑐𝑜𝑠𝜑𝑗∆𝜑∆𝜆  . (5.5) 

 

where  𝑗 counts for the number of points used for discrete representation of the residual 

gravity anomalies o the geoid and 𝑖 counts for the number of the gravity observation at or 

above the surface of the Earth. In our methodology, 𝑖 ≥ 𝑗, i.e., LS DWC provides an 

overdetermined solution. In general, in the DWC process the number of observations at 

the surface must be as large as the number of grid points on the geoid, i.e., the design 

matrix 𝐵 is a square matrix [Kingdon and Vaníček, 2010]. We note that DWC is described 

by the system of Eqs. (5.4), i.e., by the discretized form of the integral Fredholm equation 

of the first kind. This equation system is nothing else but the system of observation 

equations known in adjustment calculus [Vaníček and Krakiwsky, 1986, Ch. 10.2]. If the 

LS technique is employed to estimate the residual Helmert gravity anomalies on the geoid, 

the observation equations are solved in the standard LS fashion whereby the residual 

gravity anomalies from the capture area on the surface are used to “estimate” residual 

anomalies in the target area on the geoid. The LS solution of the observation equations, 

i.e., LS DWC, reads: 

 δ∆𝒈𝐿𝑆
𝑔

= (𝑩𝑇𝑷𝑩)−1𝑩𝑇𝑷 δ∆𝒈𝑡 , (5.6) 

 

where 𝑷 is the weight matrix equal to 



 

162 

 

 𝑷 = diag(
𝜎0

2

𝜎𝑖
2
)   and   𝜎0

2 = 1 , (5.7) 

and 𝜎0
2 is the a priori variance factor, which is usually chosen to equal to 1, and 𝜎𝑖 is the 

standard deviation of the individual observations. 

The a posteriori variance factor can be computed as 

 �̂�0
2 =

𝒗𝑇𝑷𝒗

dim(𝛿∆𝒈𝒕) − dim (𝛿∆𝒈𝒈)
 (5.8) 

 

where 𝒗 is the vector of residuals, i.e., differences between the estimated (𝛿∆�̂�𝑡) and 

observed surface gravity anomalies (𝜹∆𝒈𝑡), which are linked through the observation 

equations: 

 
𝛿∆�̂�𝑡 = 𝑩𝛿∆𝒈𝐿𝑆

𝑔
 , 

𝑣 = δ∆�̂�𝒕 − δ∆𝒈𝑡 . 
(5.9) 

 

The covariance matrix of residual Helmert’s anomalies on the geoid (𝐶𝛿∆𝑔𝑔) is given by 

the following well known expression: 

 𝑪𝛿∆𝑔𝑔 = �̂�0
2 (𝑩𝑇𝑷𝑩)−1. (5.10) 

 

5.3.2 Numerical evaluation of LS DWC 

 Prediction of gravity at grid points 

The purpose of this step is to predict the gravity anomalies on the grid points from 

scattered gravity data at the Earth surface. Any prediction technique works better with a 

smooth rather than rough function. For that reason, we transform observed rather rough 

free-air gravity anomalies at the scattered points to smooth spherical complete Bouguer 
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gravity anomalies also known as no-topography (NT) gravity anomalies. The NT gravity 

anomalies at the scattered points are computed by removing the complete Bouguer gravity 

correction, i.e., topographic corrections due to the spherical Bouguer shell and respective 

terrain. The NT gravity anomalies, known to be the smoothest of all gravity anomalies 

[Vaníček et al., 2004], are used for prediction of gravity anomalies on an equiangular grid 

with the resolution of 1′ by employing the inverse-distance squared prediction method. 

This method predicts the gravity anomalies on the grid points by taking a weighted, by 

the inverse distance squared, mean of the nearest gravity observations surrounding the 

grid point. This technique was chosen as it had been shown in several cases that it yielded 

reasonable results while being easily implemented [Kassim, 1980]. After predicting the 

gravity anomalies on the grid, the values of the NT anomalies are transformed back to the 

real space and converted into Helmert’s anomalies. The observed anomalies are 

transformed into Helmert’s anomalies one by one by applying DTE, DAE, SITE and DDE. 

The mean value of topographic density (2670 𝑘𝑔/𝑚3) is used to compute DTE and SITE 

[Hinze, 2003], whereas a lateral mass density model of the area is needed to compute DDE 

[Martinec, 1993]. In Auvergne, the lateral density model was obtained by digitizing a 

superficial geological map [Bodelle et al., 1980] which is shown in Figure 5.1(a). The 

lateral topographic density values of this area range from ~800 to 3500 𝑘𝑔 𝑚−3 which 

confirms that the Auvergthe area is geologicaly challenging. Values of DDE on the 

geoidal heights also range from −6 to 3 𝑐𝑚, see Janák et al. [2017]. 

The Auvergne area limited by −1° < 𝜆 < 7° , 43° < 𝜑 < 49°[Duquenne, 2007] was 

chosen as the study area because it was geologically, see Figure 5.1(a), and 

topographically, see Figure 5.1(b), quite challenging. It also has been well surveyed and 
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studied by different groups which are in the geoid determination field; there are 248000 

scattered terrestrial and marine gravity observations of a fairly good overall accuracy. 

Marine gravity anomalies were extracted from the global sea surface topography model 

provided by Sandwell et al. [2014] using radar altimeter measurements from the CryoSat-

2 and Jason-1 satellites. The spatial distribution of the scattered observations is not exactly 

uniform as the observations had been conducted for various reasons in different parts of 

the region, see Figure 5.1(c). 

 

  

(a) (b) 
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(c) 

Figure 5.1: Topographic mass density variations (a), topographic heights (b), distribution 

of ground (red) and marine (blue) gravity observations (c). Dashed lines show the geoid 

computation area. 

 

 Construction of the weight matrix 

Once predicted as well as scattered Helmert’s gravity anomalies at the Earth’s 

surface become available, they are reduced for the reference Helmert gravity field of the 

chosen degree and order to remove the long-wavelength content. The optimal degree and 

order of the reference field are chosen based on the methodology suggested by Foroughi 

et al. [2017a]. For details on computation of Helmert’s effects for the Auvergne data set, 

please refer to Janák et al. [2017]. 

According to Duquenne [2007], values of the standard deviation (STD) of scattered 

gravity values are between 0.25 and 0.75 mGal. Thus, we choose 0.5 mGal as the uniform 

error for all scattered points. STD values of marine gravity anomalies were extracted from 
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the global marine gravity model provided by Sandwell et al. [2014]. The mean value of 

these STDs, i.e., 1.2 mGal, was used as a uniform STD for marine gravity points in the 

southern part of Auvergne (blue points in Figure 5.1c). Based on these estimates we 

compute the errors of gridded gravity anomalies. For the prediction of the gridded 

anomalies, weights inversely proportional to the squares of the distances between the 

observation and the prediction points (𝑫𝑖
𝟐) are assigned to gravity observations at the 

scattered points. The mathematical model is given by [Kearsley, 1977]: 

 ∆𝒈𝑃 =
∑ ∆𝒈𝒊

𝒔𝒄𝒕𝑫𝑖
−2𝒏

𝒊=1

∑ 𝑫𝑖
−2𝒏

𝒊=1

 (5.11) 

 

where 𝑛 is the number of observations (∆𝒈𝒊
𝒔𝒄𝒕) in the radius of 1° around each prediction 

point. 

Kearsley [1977] estimated STDs of the gridded gravity values as contribution of two 

uncorrelated error sources including (i) 𝜎𝑒
2, which represents the effect of roughness of 

the scattered points, and (ii) 𝜎𝑔
2, which accounts for STD of the scattered observations. 

These two sources of STDs contribute as follows: 

 𝜎𝑒
2 =

∑ 𝑫𝑖
−2(∆𝒈𝑃 − ∆𝒈𝒊

𝒔𝒄𝒕)2𝑛
𝑖=1

(𝑛 − 1)∑ 𝑫𝑖
−2𝒏

𝒊=1

 (5.12) 

 

 𝜎𝑔
2 =

∑ 𝑫𝑖
−4𝑛

𝑖=1 𝜎
∆𝒈𝒊

𝒔𝒄𝒕
2

∑ 𝑫𝑖
−4𝑛

𝑖=1

 (5.13) 
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Finally, assuming there are no correlations between the two error sources, STD of 

the predicted value is estimated as: 

 𝜎∆𝒈𝑃
= √𝜎𝑒

2   +  𝜎𝑔
2 (5.14) 

 

Figure 5.2 shows the estimated values of STD of the gridded gravity anomalies at 

the Earth surface and Table 5.2 summarizes their statistics. 

 

Figure 5.2: STD values of the gridded gravity anomalies on the Earth’s surface. Dashed 

line shows the geoid computation area. 

Table 5.2: Estimated STD values of the gridded gravity anomalies on the Earth surface 

 Min [mGal] Max [mGal] Mean [mGal] 

STD of grid points 0.51 13.61 0.61 
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The estimated accuracy of the gridded gravity anomalies is almost as good as the 

accuracy of observed gravity (mean STD of 0.61 mGal compared to 0.50 mGal). Figure 

5.2 shows also a good homogeneity of the estimated STDs over the area except for a few 

places where gravity observations are scarce. 

 Performing the LS DWC 

After subtracting the reference gravity field and using the uniform STD of scattered 

gravity and the estimated STD of gridded gravity, the diagonal P matrix in Eq. (5.6) can 

be constructed and LS DWC performed. Due to the limited computational power, in 

practice DWC is carried out individually over target cells of a certain size, normally 

1° × 1°, on the geoid. The results of individual cells are then fused together which can 

reliably be done if there are no significant discontinuities between the downward 

continued values in the adjacent cells. Discontinuities between the downward continued 

gravity anomalies were investigated by Foroughi et al. [2015]. They showed that both the 

capture area and target area must be extended by a border strip of at least 30′ width. In 

the LS technique gridded (predicted) and scattered (observed) gravity values from the 

capture area can be used together. The a posteriori variance factor �̂�0
2, computed using Eq. 

(5.8), corresponds to the extended capture area on topography and also to the target area 

on the geoid. 

Figure 5.3 shows 2-D plots of the LS DWC solution of the residual Helmert gravity 

anomalies on the geoid and their estimated STDs, these being the square roots of the 

diagonal values of the covariance matrix of the downward continued gravity anomalies 

multiplied by the estimated a posteriori variance factor, see Eq. (5.8). Statistics of the 
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residual Helmert gravity anomalies on the geoid and their STDs are summarized in Table 

5.4. 

  

(a) (b) 

 

 
(c) 
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Figure 5.3: LS DWC solution of the gravity anomalies on the geoid: 2-D plot (a) and 3-

D plot (c), estimated STDs: 2-D plot (b) and 3-D plot (d). Dashed lines show the geoid 

computation area. 

 

The a posteriori variance factors (�̂�0
2) for each 1° × 1° cell, see Eq. (5.8), are 

provided in Table 5.3. The results point out to the fact that the a priori STDs for the low 

laying areas are too pessimistic while those for the higher areas are too optimistic. 

 

 

 

 
(d) 
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Table 5.3: The a posteriori variance factor values of each extended cell 

 

 

 

 

 

Table 5.4: Statistics of the LS DWC solution 

 Min [mGal] Max [mGal] Mean [mGal] 

Residual Helmert’s anomalies on the geoid -1852.1 1821.4 0.6 

Estimated STD 0.1 388.1 1.5 

 

The STD of the gravity anomalies on the geoid (last line of Table 5.4) was estimated 

by evaluating square roots of the diagonal terms of the covariance matrix in the LS DWC 

process, see Eq. (5.10). The maximum values of the estimated gravity anomalies as well 

as their STDs on the geoid are quite large. To better illustrate the behavior of the variations 

of the estimated gravity anomalies, we plot them in 3-D view, see Figure 5.3(c) and Figure 

5.3(d). Looking at STDs of the gravity anomalies on the geoid, we see that the largest 

values are confined to a few peaks over a limited horizontal dimension, indeed the largest 

estimated STD (388.09 mGal) corresponds to the highest point in the east part of 

Auvergne. The accuracy of DWC is controlled almost solely by the elevation of observed 

gravity: high elevations translate directly into large errors. The effect of the assumed a 

priori observation error is only marginal. The mean STD of the gravity anomalies on the 

0.40 0.24 0.20 0.33 0.39 0.36 

0.54 0.55 0.55 0.58 0.47 0.78 

0.56 1.40 1.26 0.9 1.07 1.75 

0.39 0.71 1.57 1.94 2.52 1.81 

𝜑 = 44°, 𝜆 = 6° 

𝜑 = 48°, 𝜆 = 6° 

𝜑 = 44°, 𝜆 = 0° 

𝜑 = 48°, 𝜆 = 0° 
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geoid is magnified almost 3-times from the mean STD value of the gravity anomalies on 

the surface of the Earth by the process of DWC. 

 Saving the covariance matrix 

As mentioned above, to perform DWC, the area of interest was broken down to 

1° × 1° cells and additional 30′ border strips were used. This means each 1arc-deg cell 

has a covariance matrix with the dimension of 3600 × 3600 which is quite demanding 

on computer memory and makes it difficult to save as a whole for further usage. 

Fortunately, the covariances practically diminish after 1 to 2 steps away from the main 

diagonal, i.e., 2′ away from the computational point. So, it seems to be sufficient to save 

only the variances and the covariances within the distance of only 2′ from the point of 

interest (in both longitudinal and latitudinal sense) to be used for the propagation of STDs 

through the Stokes integral. This means that only 24 covariance values for each point on 

the geoid grid are saved in this step for later use. Moreover, the sub-matrices of the whole 

covariance matrix are symmetric which means that only half of the covariance matrix has 

to be saved. 

5.4 Estimating the uncertainty in the geoidal heights 

5.4.1 Sources of uncertainties 

There are four sources of uncertainties affecting the accuracy of the geoidal heights 

determined by the Stokes-Helmert approach: uncertainties in EGMs, gravity observations, 

topographic heights and in topographic mass density. Some of these sources affect the 

accuracy of gravity observations (input data) and some affect directly the final geoidal 

heights in the real space. The uncertainties in EGM affect the gravity observations when 
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the reference field is subtracted from them in Helmert’s space. The EGM errors also affect 

the geoidal heights in terms of the reference spheroid and evaluation of far-zone 

contributions to the modified Stokes integral. The uncertainties in topographic heights and 

topographic mass density will affect the uncertainty of gravity observations via DTE, 

DDE and SITE, and will affect the geoidal heights in terms of PITE and PIDE. 

These errors would also have some effect on transformation of the reference field 

and reference spheroid from the real to Helmert’s space and the inverse transformation. 

As the reference field is subtracted from gravity anomalies and then added in the form of 

the reference spheroid to the residual geoidal heights on the geoid, we assume that their 

errors, small to begin with, would most likely cancel each other to the large extent. 

Therefore, we neglect these errors completely. 

The estimated covariance matrix of the residual Helmert gravity anomalies on the 

geoid, that resulted from the LS DWC process, reflects the existing random errors in the 

input gravity data, e.g., the effect of the reference field (removed from gravity at the 

surface), topographic heights and mass density variations (needed for conversion to 

Helmert’s space and back to the real space, i.e., for evaluation of DTE, SITE and PITE), 

and observation errors. Values in the covariance matrix depend on elevation and 

distribution of gravity data, and on the a priori weight matrix of the gravity data, see Eq. 

(5.7). The results of our experiments using different a priori values for observation errors 

showed that the estimated final accuracy of the gravity anomalies on the geoid depends 

mostly on the spatial distribution and elevation of gravity observations rather than on a 

priori observation errors. Thus, we did not account for the uncertainty in Helmert’s gravity 
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anomalies on the Earth surface due to topographic height and mass density errors hoping 

that these uncertainties are at least partially accounted for by Duquenne’s [2007] 

estimates. As DTE and PITE uncertainties due to topographic height and mass density 

errors are likely to have very similar effects on the geoid, except that the effect would 

probably be of opposite signs, by including PITE and excluding DTE, we are probably 

erring on the pessimistic side. 

The covariance matrix of the gravity anomalies on the geoid is used to estimate the 

uncertainties in the near-zone (NZ) contribution of the geoidal heights. The other sources 

of uncertainties in the geoidal heights is reference spheroid, far-zone (FZ) contribution, 

PITE, and PIDE. We summarize below the formulas to estimate the uncertainties in the 

final geoidal heights as contributed by these effects. 

5.4.2 Uncertainty in the NZ contribution 

The Stokes integral used to determine the geoidal heights N(Ω) at any geocentric 

direction Ω may be written as: 

 𝑁(Ω) = 𝑁𝐿(Ω) + 𝛿𝑁𝐿(Ω) , (5.15) 

 

where 𝑁𝐿 is the reference spheroid of degree 𝐿 computed using the selected EGM and  

𝛿𝑁𝐿 is the contribution of local ground gravity data (near-zone contribution): 

 𝛿𝑁𝐿(Ω) =
𝑅

4𝜋𝛾
∫ 𝑆∗(𝜓(Ω,Ω′)) δ∆𝑔(Ω′) dΩ′

Ω′∈Ω0

 , (5.16) 
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where 𝑆∗ is the modified Stokes function [Vaníček and Kleusberg, 1987],  Ω0 is the 

integration domain on the spherical manifold (approximating the geoid), usually defined 

as a spherical cap with the radius defined by the spherical angle ψ0. In theory, the cap 

should cover the full spatial angle, i.e., ψ0 = π, but in practical computations a limited area 

called NZ for  𝜓 ∈< 0,𝜓0 > is used, while the contribution of the rest of the world is 

called FZ for 𝜓 ∈< 𝜓0, 𝜋 >. The NZ and FZ contribution can be written as: 

 

𝛿𝑁𝐿(Ω) = 𝛿𝑁𝑁𝑍(Ω) + 𝛿𝑁𝐹𝑍(Ω)

=
𝑅

4𝜋𝛾(𝛺)
∫ 𝑆∗(𝜓0, 𝜓(Ω, Ω′))

Ω′∈Ω𝜓0

δΔ𝑔(Ω′) dΩ′

+
𝑅

4𝜋𝛾(𝛺)
∫ 𝑆∗(𝜓0, 𝜓(Ω, Ω′))δΔ𝑔(Ω′)dΩ′.

Ω′∈Ω0−Ω𝜓0

 

(5.17) 

 

According to Molodensky et al. [1960], and Vaníček and Kleusberg [1987], the 

Stokes integral is modified in a way that the FZ contribution is minimized in the least-

squares sense. The FZ contribution is computed in the spectral way using EGM while the 

NZ contribution is evaluated by numerical integration using the modified Stokes function. 

In the NZ contribution, the modified Stokes integral is weakly singular for the 

spherical distance 𝜓 = 0. So, for computing the solution in the spatial form, the Cauchy 

technique is used which consists of splitting the integral into the differential neighborhood 

of the singularity point and the rest of the integration area – resulting in the sum of two 

integrals taken over the whole integration area, one over the Stokes function multiplied 

by the value of the gravity anomaly at the singularity point, the other of the Stokes function 
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multiplied by the differences of the anomalies minus the value of the gravity anomaly at 

the singularity point which reads [Martinec, 1993]: 

 

𝛿𝑁(Ω)𝑁𝑍 =
𝑅

4𝜋𝛾(𝛺)
𝛿∆𝑔(Ω) ∫ 𝑆∗(𝜓0, 𝜓(Ω,Ω′)) dΩ′

Ω′∈Ω𝜓0

+
𝑅

4𝜋𝛾(𝛺)
 ∫  𝑆∗(𝜓0, 𝜓(Ω, Ω′))[𝛿Δ𝑔(Ω′)

Ω′∈Ω𝜓0

− 𝛿∆𝑔(Ω)] dΩ′. 

(5.18) 

 

The first part of the right-hand side of Eq. (5.18) is the contribution of gravity at the 

computation point called here the “epicenter contribution” (in mathematics it is called the 

contribution of the differential neighborhood of the point of singularity) and denoted by 

epc (𝛿𝑁(Ω)𝑒𝑝𝑐) and the second part is the effect of rest of the cap (𝛿𝑁(Ω)𝑑𝑁𝑍). 

The epc contribution can be computed as follows [Novák et al., 2001]: 

 𝛿𝑁(Ω)epc =
𝑅𝛿∆𝑔(Ω)

2𝛾(𝛺)
∫ 𝑆∗(𝜓0, 𝜓(Ω, Ω′)) sin(𝜓)

𝜓0

𝜓=0

d𝜓 (5.19) 

 

and the contribution of the rest of the cap: 

 
𝛿𝑁(Ω)NZ−epc =

𝑅

4𝜋𝛾(𝛺)
∬ 𝑆∗(𝜓0, 𝜓(Ω,Ω′)) [𝛿∆𝑔(Ω′)

Ω′∈Ω𝜓0

− 𝛿∆𝑔(Ω)] dΩ′. 

(5.20) 

Thus, the singularity is automatically removed from Eq. (5.20) because for 𝜓 = 0 

the value of the integrand 𝛿Δg(Ω’) – 𝛿Δg(Ω) equals to zero. The integral of the modified 

Stokes function 𝑆∗(ψ0, ψ(Ω,Ω′)) can be computed analytically [Novák et al., 2001]: 
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𝛿𝑁(Ω)epc =
𝑅𝛿∆𝑔(Ω)

2𝛾(𝛺)
∫ 𝑆∗(𝜓0, 𝜓(Ω, Ω′)) sin (𝜓)

𝜓0

𝜓=0

d𝜓

=
𝑅𝛿∆𝑔(Ω)

2𝛾(𝛺)
�̃�0

∗(𝜓0)  ≈ 𝑐 𝛿𝛥𝑔(Ω) 

(5.21) 

 

where �̃�0
∗(𝜓0) is the integral of the modified Stokes’s function computed analytically and 

𝑐 is a constant equal to 
𝑅�̃�0

∗(𝜓0)

2𝛾(𝛺)
 for each computation point. 

Equation (5.20)  has to be evaluated numerically. If the values of gravity anomalies 

on the geoid represent mean values over the grid cells, the integral may be written in the 

discretized form as follows: 

 

∀𝑖 = 1,2, … , 𝑛: 𝛿𝑁(Ω𝑖)
NZ−epc

=
𝑅

4𝜋𝛾(Ωi)
∑𝑆∗(𝜓0, 𝜓(Ωi, Ω𝑗)) [𝛿∆𝑔(Ω𝑗)

𝑚

𝑗=1

− 𝛿∆𝑔(Ωi)] ΔΩ𝑗 , 

(5.22) 

 

for n geoidal heights computed using m gravity anomalies. Equation (5.18) can be written 

as: 

 

∀𝑖 = 1,2, … , 𝑛: δ𝑁(Ω𝑖)
NZ = (𝑁(Ω𝑖)

epc + 𝑁(Ω𝑖)
NZ−epc) = 

=
𝑅𝛿

2𝛾(Ω𝑖)
{�̃�0

∗(𝜓0) ∆𝑔(Ω𝑖) +

 
1

2𝜋
∑  𝑆∗𝑚

𝑗=1 (𝜓0, 𝜓(Ωi, Ω𝑗) [𝛿∆𝑔(Ω𝑗) − ∆𝑔(Ω𝑖)] ∆Ω𝑗}  

(5.23) 

 

The covariance matrix of the LS DWC solution can be used to propagate STDs of 

the observed data to STDs of the NZ contribution to the residual co-geoidal heights. 

Propagation of STDs through the Stokes integral, i.e., the NZ contribution, can be written 
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in the matrix form. Assuming 𝑚 gravity anomalies are used to compute the NZ 

contribution, Eq. (5.21) can be written in the matrix form as: 

 𝛿𝑁(Ω)epc = 𝑐[0,0, … . , 1, … . ,0]1,𝑚

[
 
 
 
 
 
𝛿∆𝑔(Ω1).

.
𝛿∆𝑔(Ωn).

.
𝛿∆𝑔(Ωm)]

 
 
 
 
 

𝑚,1

= 𝑐 𝒅 𝛿𝚫𝒈 . (5.24) 

 

According to Eq. (5.22), we can also write 𝛿𝑁(Ω)NZ−epc in the matrix form as: 

 𝛿𝑁(Ω)NZ−epc = 𝑘[𝑆1
∗ 𝑆2

∗ ….   𝑆𝑚
∗ ]1,𝑚

[
 
 
 
 
 
𝛿∆𝑔(Ω1) − 𝛿∆𝑔(Ω𝑛)

.

.
0.
.

𝛿∆𝑔(Ω𝑚) − 𝛿∆𝑔(Ω𝑛)]
 
 
 
 
 

𝑚,1

, (5.25) 

 

where 𝑘 =
𝑅

4𝜋𝛾(Ωi)
 and Eq. (5.25) can be written as: 

 

𝛿𝑁(Ω)NZ−epc

= 𝑘 [𝑆1
∗ 𝑆2

∗ ….   𝑆𝑚
∗ ]1,𝑚 [

1 … −1⋯ 0
⋮ ⋱ ⋮

0 … −1⋯ 1
]

𝑚,𝑚

[
 
 
 
 
 
𝛿∆𝑔(Ω1).

.
𝛿∆𝑔(Ωn).

.
𝛿∆𝑔(Ωm)]

 
 
 
 
 

𝑚,1

= 𝑘 𝑺𝒎
∗  𝒃 𝛿𝚫𝒈 , 

(5.26) 

 

where 𝑺𝒎
∗ = [𝑆1

∗  𝑆2
∗ ….   𝑆𝑚

∗ ]. In this vector the value of 𝑆∗ for 𝜓 = 0 is set to zero. The 

NZ contribution, see Eq. (5.23) in the matrix form can be written as: 

 𝛿𝑁(Ω)NZ = [𝐶𝒅 + 𝐾𝑺𝒎
∗ 𝒃] δ𝚫𝒈 = 𝒒 𝛿𝚫𝒈 . (5.27) 
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By applying the covariance law to Eq. (5.27), the uncertainties of the residual 

geoidal heights can be estimated using the following formula: 

 𝜎
𝛿𝑁(Ω)NZ
2 = 𝒒𝒕 𝑪δ𝚫𝒈 𝒒 (5.28) 

 

where 𝑪δ𝚫𝒈 is the covariance matrix of the residual gravity anomalies on the geoid 

computed using Eq. (5.10). 

Once the residual co-geoidal heights are computed, the reference spheroid of the 

same degree and order as the reference field is added to the residual co-geoidal heights 

[Vaníček et al., 1995]. PITE, PIDE, and PIAE are then applied to the co-geoidal heights 

to transfer them to the real space. For details on transferring the co-geoidal heights to the 

real space, see Martinec and Vaníček [1994b], and Martinec et al. [1996]. 

5.4.3 Uncertainty in the reference spheroid 

The reference spheroid of the degree 𝐿, i.e., 𝑁𝐿(Ω) in the Helmert space, is 

expressed as a finite series of spherical harmonics. Using the spherical approximation 

[Vaníček and Krakiwsky, 1986], we get: 

 𝑁𝐿(Ω) =
𝐺𝑀

𝑅𝛾
∑ 𝑇𝑛(Ω) ,

𝐿

𝑛=2

 (5.29) 

 

where 𝑅 is the mean radius of the Earth, 𝛾 is normal gravity on the reference ellipsoid and 

𝑇𝑛(Ω) are the surface harmonics of the disturbing gravity potential given by: 

 𝑇𝑛(Ω) = ∑[�̅�𝑛𝑚
𝐶 �̅�𝑛𝑚

𝐶 (Ω) + �̅�𝑛𝑚
𝑆 �̅�𝑛𝑚

𝑆 (Ω)]

𝑛

𝑚=0

 (5.30) 
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where 

 [
�̅�𝑛𝑚

𝐶

�̅�𝑛𝑚
𝑆 ] = (

cos𝑚𝜆
sin𝑚𝜆

) �̅�𝑛𝑚(sin𝜑), (5.31) 

 

are the fully normalized spherical harmonics [Heiskanen and Moritz, 1967], and �̅�𝑛𝑚
𝐶  

and �̅�𝑛𝑚
𝑆  are the fully normalized disturbing potential coefficients transferred to the 

Helmert space (cf., Vaníček et al. [1995]). 

Uncertainties in the disturbing potential coefficients are due to the errors in EGM 

coefficients. If we denote the error variances of �̅�𝑛𝑚
𝐶  and �̅�𝑛𝑚

𝑆  by (𝜎𝑛𝑚
𝐶 )2 and (𝜎𝑛𝑚

𝑆 )2, the 

variance of the reference spheroid 𝜎𝑁𝐿

2  can be estimated as follows: 

 𝜎𝑁𝐿

2 (Ω) = (
𝐺𝑀

𝑅𝛾
)2 ∑ ∑[(𝜎𝑛𝑚

𝐶 )2(�̅�𝑛𝑚
𝐶 )2 + (𝜎𝑛𝑚

𝑆 )2(�̅�𝑛𝑚
𝑆 )2

𝑛

𝑚=0

𝐿

𝑛=2

] (5.32) 

 

5.4.4 Uncertainty in the FZ contribution 

The FZ contribution of Helmert’s anomalies to the residual co-geoidal heights is 

computed from [Novák, 2000]: 

 
𝛿𝑁(Ω)FZ =

𝑅

2
∑ 𝑄𝑛(𝜓0, 𝜓(Ω, Ω′))

𝑛𝑚𝑎𝑥

𝑛=𝐿+1

∑ �̅�𝑛𝑚
𝐶 �̅�𝑛𝑚

𝐶 (Ω)

𝑛

𝑚=0

+ �̅�𝑛𝑚
𝑆 �̅�𝑛𝑚

𝑆 (Ω) 

(5.33) 

where, 𝑄𝑛 are the truncation coefficients of the modified Stokes function of the degree 𝐿 

and integration cap size of 𝜓0 (cf., Novák [2000]). Following the same strategy as we 

applied in Sec.5.4.3, we get: 
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𝜎
𝛿𝑁FZ
2 (Ω) = (

𝑅

2
)2 ∑ (𝑄𝑛(𝜓0, 𝜓(Ω, Ω′))2

𝑛𝑚𝑎𝑥

𝑛=𝐿+1

∑(𝜎𝑛𝑚
𝐶 )2(�̅�𝑛𝑚

𝐶 )2

𝑛

𝑚=0

+ (𝜎𝑛𝑚
𝑆 )2(�̅�𝑛𝑚

𝑆 )2. 

(5.34) 

 

5.4.5 Uncertainty in the transformation of the co-geoid back to the real space 

According to Vaníček and Martinec [1994] the Bouguer shell constituent of PITE 

(𝛿𝑉𝐵), which is the dominant component of this effect, reads: 

  𝛿𝑉𝐵(𝑅, Ω) = −2𝜋𝐺�̅�(Ω)𝐻2(Ω)(1 +
2

3

𝐻(Ω)

𝑅
) (5.35) 

 

where �̅� is the mean topographic density. When a laterally-varying density model is used, 

taking the first order approximation as a basis for an approximate error propagation, we 

find the derivatives with respect to height and density to be: 

 
𝜕𝛿𝑉𝐵(𝑅, Ω)

𝜕𝐻
= −4𝜋𝐺�̅�(Ω)𝐻(Ω)(1 +

𝐻(Ω)

𝑅
) ≈ −4𝜋𝐺�̅�(Ω)𝐻(Ω), (5.36) 

 

 
𝜕𝛿𝑉𝐵(𝑅, Ω)

𝜕�̅�(Ω)
= −2𝜋𝐺𝐻2(Ω)(1 +

2

3

𝐻(Ω)

𝑅
) ≈ −2𝜋𝐺𝐻2(Ω). (5.37) 

 

The uncertainty in PITE and PIDE, coming from random errors in topographic 

heights (σH resulting from random errors in DTM heights) and from random errors in 

estimated anomalous topographic mass density (σρ), can be determined by the formulae: 

 
𝜎𝑃𝐼𝑇𝐸

2 = 𝛾−2(4𝜋𝐺�̅�(Ω)𝐻(Ω))
2
𝜎𝐻

2, 

𝜎𝑃𝐼𝐷𝐸
2 = 𝛾−2(2𝜋𝐺𝐻2(Ω))2𝜎𝜌

2. 
(5.38) 
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In Eq. (5.38), 𝜎𝜌 is the uncertainty of horizontal density model over the computation 

area which may be given by the data provider or estimated from the range of density values 

assigned to a certain rock type (cf., Huang [2002]). 

Using Eqs. (5.28), (5.32),  (5.34) and (5.38), the total STD of the geoidal height can be 

computed as follows: 

 𝜎𝑁
2 = 𝜎𝑁𝐿

2 + 𝜎
𝛿𝑁NZ
2 + 𝜎

𝛿𝑁FZ
2 + 𝜎𝑃𝐼𝑇𝐸

2 + 𝜎𝑃𝐼𝐷𝐸
2 . (5.39) 

 

5.5 Numerical evaluation of the geoidal heights and their uncertainties 

The geoid computation area is limited by 1.5° < 𝜆 < 4.5°  and by  44.5° < 𝜑 <

47.5°. The optimal integration cap size of the Stokes integral was estimated using the 

method described by Foroughi et al. [2017a]. Based on their suggested method, the 

optimal integration cap size and the degree of the reference field are chosen based on the 

best primarily agreement between gravimetric geoidal heights and geoidal heights derived 

from GNSS/Leveling which yields  1° for the integration cap size and 140 for the degree 

of the reference field.  

The solution of LS DWC described above was used in evaluating the modified 

Stokes integral (𝜓0 = 1° , 𝐿 = 140). The DIR_R5 model [Bruinsma et al., 2014] was used 

to compute the FZ contribution up to the degree 300, i.e., 𝑛𝑚𝑎𝑥 = 300 in Eq. (5.33). The 

same EGM was employed up to the degree 140 to define the reference spheroid. 

Transformation of the co-geoid in the Helmert space to the geoid in the real space needs 

to be done by applying PITE, PIDE and PIAE. The ACE2 digital elevation model [Berry 

et al., 2010] was used here to compute PITE. The values of PIAE were too small so they 
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were neglected in this study. Figure 5.5 shows the NZ and FZ contributions, reference 

spheroid, PITE and PIDE to the geoidal heights. Their statistics are summarized in Table 

5.5. The average topographic density of 2670 𝑘𝑔/𝑚3 was chosen to compute PITE (cf., 

Hinze, 2003) and the laterally varying topographic density of the Auvergne, shown in 

Figure 5.1 (a), was used for computation of PIDE. The PIDE contribution to the geoidal 

heights is at the level of ±2cm which confirms that this effect must be taken into account 

when a geoid model with accuracy better than one-centimetre is required.  

The STDs of the residual geoidal heights originating from the NZ contribution, see 

Eq. (5.28), were estimated using the parameters discussed in Sec 5.3.2 (𝜓0 = 1°, 𝐿 =

140). The STDs due to the FZ contribution was also computed using Eq. (5.34). The 

estimated STD of the reference spheroid was computed using Eq. (5.32). Estimated 

random errors in the ACE2 model reach values of +/- 16 m [Berry et al., 2010]. They were 

used for computing the uncertainty of PITE. The range of topographic density values 

assigned to respective rock types of the superficial geological map of Auvergne was used 

to compute random errors of the topographic density model (cf., Huang [2002]). These 

random errors, shown in Figure 5.4, were used for computing the STD value 

corresponding to PIDE. The NZ and FZ contributions, reference spheroid, PITE and PIDE 

to estimation of the uncertainties of the geoidal heights are shown in Figure 5.6, their 

statistics are summarized in Table 5.6. 
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Figure 5.4: STDs of the topographic mass density 

 

 

(a) (b) 



 

185 

 

 

 

(c) (d) 

 

 
(e) 

Figure 5.5: NZ (a), FZ (b), reference spheroid (c), PITE (d) and PIDE (e) contributions to 

the geoidal heights 
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Table 5.5: Statistics of contributions to the computed geoidal heights 

contributions to 

geoidal heights 

Min [m] Max [m] Mean [m] RMS [m] 

NZ -1.05 1.34 0.02 0.50 

FZ -0.05 0.04 0.00 0.02 

reference spheroid 45.72 52.09 49.37 1.79 

PITE -0.16 -0.03 -0.05 0.02 

PIDE -0.02 0.02 0.00 0.00 

 

 

 

(a) (b) 



 

187 

 

 

 

(c) (d) 

 

(e) 

Figure 5.6: STDs of NZ (a), FZ (b), reference spheroid (c), PITE (d), and PIDE (e) [cm] 

Table 5.6: Statistics of the estimated uncertainties 

Uncertainty  Min[cm] Max[cm] Mean[cm] 

NZ 0.02 5.96 0.25 

FZ  0.11 0.12 0.11 

reference spheroid 0.17 0.18 0.17 
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PITE 0.02 0.65 0.19 

PIDE 0.00 5.55 0.26 

 

The estimated uncertainties of the FZ contribution to the geoidal heights, see Figure 

5.6(b), look much like the uncertainties in the reference spheroid as they are both functions 

of STDs of the spherical harmonic coefficients of the DIR_R5 model scaled only by the 

truncation coefficients. Depending on the size of the integration cap and on the 

modification degree of the Stokes kernel, truncation coefficients will change and 

uncertainties of the FZ contribution must be estimated for each case separately. 

According to Table 5.6, even though PITE and PIDE on the geoidal heights are 

small, the STD of PIDE is the second largest after NZ. This is because uncertainties of the 

topographic mass density values are large, see Figure 5.4, and scaled by the square of 

heights, see Eq. (5.38). This confirms that a better geological model of the study area 

would further reduce the total estimated STD of the geoidal heights. 

The FZ contribution, the reference spheroid of the degree 140, PITE and PIDE were 

added to the residual co-geoid heights computed to obtain the geoidal heights in the real 

space, see Figure 5.7(a). The estimated STD of the geoidal heights computed from Eq. 

(5.39) are shown in Figure 5.7(b). Statistics are summarized in Table 5.7. 
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(a) (b) 

Figure 5.7: Geoidal heights (a), STDs of the geoidal heights (b) 

Table 5.7: Statistics of the geoidal heights and their uncertainties 

 Min [m] Max [m] Mean [m] 

geoidal heights 45.75 52.71 49.35 

uncertainties of the geoidal heights 0.002 0.063 0.006 

 

The mean value of the geoidal heights in this study area is about 49 m whereas the 

mean STD of the estimated heights is less than centimeter. This actually shows how good 

the geoid obtained via the Stokes-Helmert is. This is also because the maximum elevation 

in the area of the geoid is less than 2000 m and of course larger STDs are expected for the 

areas with higher topography. 

5.6 Comparison with the GNSS/Leveling control points 

There are 75 GNSS/Leveling control points available in the geoid computation area 

which are distributed regularly between 1.5° < 𝜆 < 4.5° , 45° < 𝜑 < 47° [Duquenne, 
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2007]. These points were used to validate our final geoid. The residuals of the comparison 

between the geoidal heights (from model computed here) and the geoidal heights derived 

from GNSS/Leveling points (geodetic minus rigorous orthometric heights) are defined as: 

 ∀𝑖 ∶    𝑉𝑖 = 𝑁𝑖
𝐺𝑁𝑆𝑆/𝑙𝑒𝑣

− 𝑁𝑖 . (5.40) 

 

Figure 5.8 shows the discrepancies at the locations of the control points (note that 

there are some unsubstantiated patterns in this plot created by the used interpolation 

procedure); the statistics of the discrepancies are summarized in Table 5.8. 

 

Figure 5.8: Differences between the geoidal heights and GNSS/Leveling at the control 

points. 

As the two sources of the geoidal heights at the control points are not known to be 

correlated, the mean STD of the discrepancies from Eq. (5.40) must obey the following 

probabilistic law: 

 𝜎𝑉
2 = 𝜎𝑁

2 + 𝜎
𝑁𝐺𝑁𝑆𝑆/𝑙𝑒𝑣 
2 , (5.41) 
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where the 𝜎𝑁 and 𝜎𝑁𝐺𝑁𝑆𝑆/𝑙𝑒𝑣  stand for the mean STDs of our solution and of the control 

geoid.  The STDs of the geoidal heights (𝜎𝑁) are now available from the computations 

described above on the same grid as the geoidal heights are. They can easily be predicted 

for the locations of the control points (GNSS/Leveling points) using the same inverse 

distance squared algorithm. The mean STDs for the 75 control points is 0.6 𝑐𝑚 but the 

maximum value reaches up to 3 𝑐𝑚. The value of 0.36  cm2 for the mean 𝜎𝑁
2 can be then 

considered to be the a priori variance factor of our geoidal heights at control points. 

Duquenne [2007] estimated that the STDs of the geodetic heights at the control points in 

Auvergne are about 2 to 3 cm and STD of the leveling observations is 2 cm or, perhaps, 

better. As these two kinds of heights are not correlated, the STDs of the test geoidal height 

at the control points should be somewhere between 2.8 and 3.6 cm. Thus, the mean STD 

of the GNSS/Leveling implied geoidal heights, i.e., 𝜎𝑁𝐺𝑁𝑆𝑆/𝑙𝑒𝑣 , should equal to 3.2 cm and 

we have taken the square of this value as an a priori variance factor of the test geoidal 

heights at control points. Thus, the square root of the a priori variance factor of the 

discrepancies in Eq. (5.41) can be considered to be 𝜎𝑉 =  3.25 cm. 

We also know that if the random variable we deal with has normally distributed 

values of STD, then from the adjustment calculus [Vaníček and Kakiwsky, 1986, Par. 

13.3] we get: 

 E(
�̂�𝑉

2

σ𝑉
2  ) = 1 , (5.42) 

where the hat denotes the a posteriori estimate. The a posteriori variance factor of the 

discrepancies V, see Eq. (5.40), can be estimated as: 
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 �̂�𝑉
2 =

𝒗𝑻𝑷𝒗

n
  , (5.43) 

 

where 𝑷 is their weight matrix defined as: 

 𝑷 = 𝜎𝑣
2(𝑪𝑵 + 𝑪𝑵𝐺𝑁𝑆𝑆/𝑙𝑒𝑣)−1. (5.44) 

 

Here, we take 𝑪𝑁 as being the diagonal covariance matrix of the geoidal heights at 

the control points computed in this study, 𝑪𝑁𝐺𝑁𝑆𝑆/𝑙𝑒𝑣  is the uniform diagonal covariance 

matrix of the GNSS/Leveling implied geoidal heights, and 𝜎𝑉
2 is the a priori variance 

factor computed from Eq. (5.41). The a posteriori variance factor for the 75 control points 

is 10.89 cm2 which implies a STD of 3.3 cm. We can now write an equivalent of Eq. 

(5.41) for the a posteriori counterparts of the a priori mean variances: 

 �̂�𝑉
2 = �̂�𝑁

2 + �̂�
𝑁𝐺𝑁𝑆𝑆/𝑙𝑒𝑣
2 , (5.45) 

 

and using the available values for �̂�𝑉
2 and assuming �̂�𝑁

2 = 𝜎𝑁
2, the a posteriori STD of the 

geoidal heights at the control points is 3.2 𝑐𝑚 which confirms the estimate by Duquenne 

[2007].  

Finally, we can construct the histogram of the discrepancies using standardized 

discrepancies which are computed as: 

 𝑣∗
𝑖 = 𝑣𝑖𝜎𝑉𝑖

−1 = 𝑣𝑖( �̂�𝑁𝑖

2 + �̂�
𝑁𝐺𝑁𝑆𝑆/𝑙𝑒𝑣
2 )−

1
2 . (5.46) 

 

Figure 5.9 shows the histogram of these standardized discrepancies that seems to be 

somewhat similar to the normal distribution. We note that all 75 discrepancies are 
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confined between -2.5 STDs and +2.5 STDs of their zero mean. But there is an 

accumulation of discrepancies around – 2 STDs and around + 2 STDs. We do not have 

any explanation for this occurrence, but we should not find it too strange just from looking 

at the plot of the discrepancies in Figure 5.8 that suggests some systematic effects in the 

south-east part of the Auvergne area. 

 

Figure 5.9: Histogram of the standardized residuals between the geoidal heights 

(computed from the model) and the GNSS/Leveling derived geoidal heights. 

Table 5.7 summarizes the statistics of the discrepancies defined by Eq. (5.40). The 

weighted mean of the discrepancies computed using Eq. (5.40) is −13 cm. This value is 

close to what is reported as bias of the French height system in [Rülke et al., 2012]. The 

mean RMS of the fit between our and GNSS/Leveling implied geoidal heights using Eq. 
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(5.43) is 3.3 cm. This is no worse than the fit of the best quasigeoid model computed for 

this area, see [Agren et al., 2009].  

There is another set of 558 GNSS/Leveling points available in Auvergne reported 

already by Foroughi et al. [2017b], provided to us by the Institute Geographique 

Nationale. The mean STD of the fit between our geoidal heights and those at the 558 

control points is 3.1 cm. As these 558 points are predominantly located in lowlands, they 

are not giving an objective picture of the geoid accuracy and we do not used them in our 

discussions. 

Table 5.8: Statistics of comparison of the computed geoidal heights with the geoidal 

heights at GNSS/Leveling points. 

 

5.7 Discussion and conclusions 

The most probable values of the DWC’d Helmert’s gravity anomalies were found 

by solving the discretized overdetermined Poisson integral equation using the LS 

technique. The uniform STDs of scattered gravity and implied STDs of gridded gravity 

were used to construct the fully populated (a priori) covariance matrix whose counterpart 

on the geoid, the a posteriori variance matrix, was then used to extract STDs of the 

computed geoidal heights.   

The downward continued 1′ Helmert’s anomalies continued down from larger 

elevations showed as large spikes in gravity on the geoid. On the other hand, these spikes 

seem to be filtered out, or at least are attenuated, by the Stokes integration so that the 

 Min [m] Max [m] Weighted Mean [m] RMS [m] 

75 GNSS points -0.19 -0.03 -0.13 0.033 
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geoidal heights at these higher elevations do not exhibit too disturbing a behavior of the 

geoid. This means that the spikes in the gravity anomalies do not do affect the geoid too 

much but their effect is certainly seen in the STDs of the geoidal heights. 

Figure 5.10 shows STDs of the residual Helmert anomalies on the geoid. 

Comparison with Figure 5.6 (a) shows that there is practically a total correlation between 

STDs of the gravity anomalies on the geoid and STDs of the NZ contribution to the 

residual co-geoidal heights. This is because of the character of the modified Stokes 

function for the used high degree and order L of the reference field. Figure 5.11 shows the 

shape of the modified Stokes function S* of the degree 140 (and integration cap radius of 

1 arc-deg) which makes quite clear that S* approximates the Dirac distribution quite 

closely. As the Dirac distribution is the quintessential reproducing kernel, the similarity 

of STDs of the geoid anomalies and that of the NZ contribution to the residual co-geoid 

height must be expected. 
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 Figure 5.10: STDs of the residual Helmert anomalies over the geoid computation 

area 

 



 

197 

 

 

 

Figure 5.11: Modified Stokes’s function of the degree 140 and 𝜓0 = 1° 

 

Janák et al. [2017], Foroughi et al. [2017a], and Foroughi et al. [2017b] computed 

also the geoid model in the Auvergne test area using Stokes-Helmert method and reported 

3.3 cm as the smallest STD of the fit at the 75 control points. These studies used Jacobi’s 

iterative method to downward continue the Helmert gravity anomalies and as such the 

downward continued anomalies should be considered as results of a regularized solution. 

However, the geoid computed in this study uses the most probable values of the Helmert 

gravity anomalies on the geoid, clearly not regularized.  
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Gravity observations at the Earth surface, both scattered and gridded values, were 

used together to estimate the mean anomalies on the geoid using LS DWC in this study 

for the first time in our computations. In all previous studies, only grid points were used.  

Figure 5.12 shows the differences between the geoid computed in this study and that 

computed by Janák et al. [2017].  The differences range between −9 and + 13 cm with 

the RMS of 2 cm. Comparing these differences with topography and with the distribution 

of gravity observations, see Figure 5.1( b, c) in this area, one can conclude that the largest 

differences occur in locations with sparse gravity observations and high topography. The 

geoid model computed in this study is the most probable solution and is obtained without 

any regularization (only discretization of the Poisson integral equation is used as the only 

process originating in personal selection) where the previously computed solutions were 

regularized to overcome the numerical instability of the DWC process. Interestingly, the 

differences between the previous and the present solutions seem to be somewhat 

correlated with the STDs of the present solution, see Figure 5.7(b), but a complete 

explanation of these differences will have to wait till later. 
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Figure 5.12: Differences between previously computed geoid and the geoid computed in 

this study 

The estimate of the total errors, see Figure 5.7(b), shows STDs of the Stokes-

Helmert computed geoidal heights to be well below 1 cm in the flat areas and up 6 cm in 

the highest areas where the elevations reach 1600 m. We note that just outside the 

computation area the heights grow to over 4000 m, cf., Figure 5.1 (a), which confirms the 

expected accuracy of the Stokes-Helmert method as predicted by Vaníček and Martinec 

[1994]. Our results also are compatible with the results of previous studies, e.g., for the 

maximum elevation in Canada (6000 m) the geoid error is reported as being 

approximately 30 cm by Huang and Véronneau [2013], or the reported STD of about 

10 cm by Featherstone et al. [2018] for the maximum elevation of (2200 m) in Australia, 

suggesting an accuracy deterioration by about 5 cm for each increment of one kilometre 

in height.  
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Even though it is not quite clear where the errors of the test geoidal heights at the 

control points are coming from – as they seem to be of a systematic nature, probably 

affecting the levelled heights from south-west to north-east, see Figure 5.8 and Figure 5.9 

– it is still quite clear  that the mean error of the directly computed geoidal heights (the 

ground truth) is larger than that of the geoidal heights derived by the Stokes-Helmert 

method, by a factor of 5, if input gravity data of the decent accuracy and spatial 

distribution are used in the computation.   

Thus, this study confirms that the geoidal heights can be determined with better than 

a centimetre accuracy – at least in the  in the low-lying areas – whereas the “ground truth” 

(GNSS/Leveling implied geoidal heights at the control points), used typically to evaluate 

the accuracy of computed geoidal heights, are not precise enough to be used for the 

assessment of the accuracy of the gravimetric geoid model, see also [e.g., Šprlák, 2008; 

Novák et al., 2009; Godah et al., 2015; Godah et al., 2017]. Thus, one should not pay too 

much attention to the quality of the fit of the computed geoidal heights to the test geoidal 

heights as a better fit might be just a fluke. Perhaps, we should rather start thinking about 

the Stokes-Helmert geoid to be used as a standard for testing and investigating the 

accuracy of leveling and/or GNSS determined geodetic heights.  Needless to repeat here 

that, of course, not all the world has such a good coverage with gravity observations as 

Auvergne has but, perhaps, with aerial gravity this problem can be remedied.   
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6 Chapter 6: Conclusions  

The accuracy of the classical height system was investigated in this dissertation. 

Measuring the accuracy was done by measuring the self-consistency, i.e., comparing the 

gravimetric geoidal heights against the geoidal heights derived at GNSS/Leveling points; 

this comparison is also called congruency. The components for measuring the congruency 

of the classical height system are geoidal heights derived from a gravimetric geoid model, 

geodetic heights derived from GNSS observations, and orthometric heights computed by 

applying gravimetric corrections to spirit leveling observation. The geodetic and 

orthometric heights in this system are usually available at national leveling benchmarks 

which are also called control points in geoid determination. Four articles were included in 

this dissertation to address measuring the accuracy of the classical height system precisely. 

The Auvergne data was used through the whole dissertation [Duquenne, 2007]. This area 

has fairly good terrestrial gravity data coverage with an average STD of 0.5 𝑚𝐺𝑎𝑙. On the 

east side of Auvergne, there are mountains with heights just above 4000 𝑚 and there are 

flat areas in the middle and western part. Auvergne is also a geologically challenging area 

due to existing volcanos and large variations in topographic density values. The first 

article “Optimal combination of satellite and terrestrial gravity data for regional geoid 

determination using Stokes-Helmert’s method, the Auvergne test case” is published in a 

book series of International Association of Geodesy (IAG) symposia. This article provides 
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a discussion on a numerical method to find the optimal combination of terrestrial and 

satellite gravity data to determine the geoid using the Stokes-Helmert method. The degree 

and order of 140 was suggested as the maximum beneficial contribution of EGMs to 

geoidal heights through computing the reference field and the rest of the contribution is 

suggested to be computed from terrestrial data, i.e., NZ. The optimal level of NZ 

contribution was found to be 45′ around each point when evaluating the Stokes integral. 

Although the methodology of this article needs to be applied separately in each region to 

find the best level of combination, there is similar studies which suggest almost the same 

degree and order of EGMs giving the most reliable contribution of global data [Abdalla 

et al., 2012].  

The second article “Computation of precise geoid model of Auvergne using current 

UNB Stokes-Helmert’s approach” is published in the journal of Contributions to 

Geophysics and Geodesy. This article presents the details of the numerical steps of geoid 

determination using the Stokes-Helmert approach when the methodology outlined in the 

previous paper is applied. The terrestrial gravity data in Auvergne were predicted on a 

1′ × 1′ grid points and used throughout the whole process of geoid determination. All the 

data requirements for transferring the free-air gravity to Helmert gravity anomalies when 

computing DTE, DAE, DDE, and SITE were presented in this study. The Helmert gravity 

anomalies on the Earth surface were transferred down to the geoid level using the Poisson 

integral equation which was solved by the Jacobi iterative technique suggested by 

Kingdon and Vaníček [2010]. The maximum degree and order of reference field was set 

to 140 and 45′ integration capsize was chosen when evaluating the Stokes integration. 

The determined co-geoidal heights were transferred back to the real space by computing 
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the indirect topographical effects on geoid, i.e., PITE and PIDE. The discrepancies 

between gravimetric geoidal heights and the geoidal heights derived at 75 GNSS/Leveling 

points showed a STD of 3.3 𝑐𝑚. This value was compatible with the smallest STD of the 

fit between the quasigeoid models of the area to the height anomalies at the same 

GNSS/Leveling points. The effect of anomalous topographical density was investigated 

separately in this article. It was shown that the maximum contribution of DDE and PIDE 

together to geoidal heights can reach up to 7 𝑐𝑚 in Auvergne region but can only improve 

the STD of the fit of the gravimetric geoid to the GNSS/Leveling points by 1 𝑚𝑚.  

The third article “In defense of the classical height system” has been published in 

Geophysical Journal International. The claim of Molodensky et al. [1960] of 

insufficiency of accurate determination of the geoid and orthometric heights due to 

insufficient topographical density information is discussed in this article. It is shown that 

even using a low resolution lateral density model, the effects of density variation on the 

geoidal heights can be computed with sufficient accuracy. The normal heights of the 75 

GNSS/Leveling points (provided by IGN) were converted to rigorous orthometric heights 

by considering the effect of terrain, density variation, and remaining unmodelled masses. 

It was shown that terrain and density variation have the largest effects on converting the 

normal heights to rigorous orthometric heights. The geoidal heights at the GNSS/Leveling 

points were computed by subtracting the geodetic heights from rigorous orthometric 

heights. Another set of 558 GNSS/Leveling points, also provided by IGN, was introduced 

in this article, and both sets of control points were used to evaluate the gravimetric geoid 

model. It was shown that the STD of the fit between gravimetric geoidal heights and 

geoidal heights derived at GNSS/Leveling points is the best when rigorous orthometric 



 

211 

 

heights rather than from Helmert orthometric heights. The concept of measuring the 

congruency as a measure of the accuracy of a height system was introduced in this paper. 

It was shown, for the Auvergne area, the congruency of the classical height system is at 

least as good as Molodensky’s height system even when a low-resolution model of density 

variation is used.  

The forth article “Sub-centimetre geoid” has been published in Journal of Geodesy. 

In this article the most probable solution of a gravimetric geoid model was computed using 

least-squares downward continuation. Unlike all the previously computed geoid models, 

the scattered and grid gravity data were both used in the determination of the geoid. The 

least-squares technique was used to get the most probable solution of downward 

continuation on the geoid. The uniform STDs of the input terrestrial gravity data were 

used to construct the a priori covariance matrix and the a posteriori covariance matrix of 

gravity anomalies on the geoid was computed; this was then used to extract the STDs of 

the residual geoidal heights estimated from NZ. The STDs of geoidal heights from other 

sources, e.g., FZ, reference spheroid, PITE, and PIDE contributions were also evaluated 

by error propagation. The largest uncertainties of the geoidal heights come from the NZ 

and PIDE contributions. The estimated STD of geoidal heights varies from a few 

millimeters to 6 𝑐𝑚 with the mean of 0.6 𝑐𝑚. This confirms that geoidal heights can be 

determined with sub-centimetre accuracy even if one acknowledges the range of STDs is 

larger. The GNSS/Leveling derived geoidal heights were compared again with the most 

probable gravimetric geoidal heights and show the mean difference of 13 cm which agrees 

well with the displacement of the vertical datum due to sea surface topography [Rülke, et 

al., 2012]. The RMS of the misfit of the geoid versus GNSS/Leveling derived geoidal 
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heights was 3.3 𝑐𝑚 which is as good as that of the previously published geoid models. 

The covariance matrix of the gravimetric geoidal heights along with rough estimation of 

the covariance matrix of the GNSS/Leveling derived geoidal heights was used to construct 

a weight matrix of discrepancies to measure the weighted congruency. The results were 

almost the same as those when using the identity weight matrix.  

In summary, in this dissertation, it was shown that downward continuation of gravity 

anomalies from the Earth surface and above it to the geoid level can be done without any 

regularization and in fact the LS technique provides the most probable result. Two geoid 

models of Auvergne were determined, one using the conventional Stokes-Helmert 

approach with some small modifications (specifically in the area of the combination of 

the global and local data and also density variation effects), and the other using the most 

probable solution of gravity anomalies on the geoid. The two solutions were different only 

for a few centimetres.  It was also shown that rigorous orthometric heights can nowadays 

be easily computed using freely available data sets, they should be used if one chooses the 

geoid as the vertical datum in the height system.  

6.1 Recommendation for future studies 

The differences between the two geoid models computed in this dissertation need 

further investigation. Both models are in good agreement with maximum differences of 

~10 𝑐𝑚 but the differences are not correlated with topography. The STDs of the 

GNSS/Leveling derived geoidal heights were only estimated using approximate values 

provided by data distributor. A more precise investigation in this area is required to 

compute a more accurate picture of the congruency of the classical height system. In 
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constructing the a priori covariance matrix of gravity anomalies to be used in the LS DWC 

process, a uniform STD of the gravity anomalies was used; a better estimation of each 

point can be computed by considering the removed topographical effects and cross-

validation techniques.  
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