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ABSTRACT 

The presence of various pollutants in water bodies can lead to the deterioration of 

both surface water quality and aquatic life. Surface water quality researchers are 

confronted with significant challenges to properly assess surface water quality in order to 

provide an appropriate treatment to water bodies in a cost-effective manner. Conventional 

surface water quality assessment methods are widely performed using laboratory 

analysis, which are labour intensive, costly, and time consuming. Moreover, these 

methods can only provide individual concentrations of surface water quality parameters 

(SWQPs), measured at monitoring stations and shown in a discrete point format, which 

are difficult for decision-makers to understand without providing the overall patterns of 

surface water quality.   

In contrast, remote sensing has shown significant benefits over conventional 

methods because of its low cost, spatial continuity, and temporal consistency. Thus, 

exploring the potential of using remotely sensed data for surface water quality assessment 

is important for improving the efficiency of surface water quality evaluation and water 

body treatment. 

In order to properly assess surface water quality from satellite imagery, the 

relationship between satellite multi-spectral data and concentrations of SWQPs should be 

modelled. Moreover, to make the process accessible to decision-makers, it is important to 

extract the accurate surface water quality levels from surface water quality raw data. 

Additionally, to improve the cost effectiveness of surface water body treatment, 

identifying the major pollution sources (i.e., SWQPs) that negatively influence water 

bodies is essential.   
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Therefore, this PhD dissertation focuses on the development of new techniques 

for (1) estimating the concentrations of both optical and non-optical SWQPs from a 

recently launched earth observation satellite (i.e., Landsat 8), which is freely available 

and has the potential to support coastal studies, (2) mapping the complex relationship 

between satellite multi-spectral signatures and concentrations of SWQPs, (3) simplifying 

the expression of surface water quality and delineating the accurate levels of surface 

water quality in water bodies, and (4) classifying the most significant SWQPs that 

contribute to both spatial and temporal variations of surface water quality. 

The outcome of this PhD dissertation proved the feasibility of developing models 

to retrieve the concentrations of both optical and non-optical SWQPs from satellite 

imagery with highly accurate estimations. It exhibited the potential of using remote 

sensing to achieve routine water quality monitoring. Moreover, this research 

demonstrated the possibility of improving the accuracy of surface water quality level 

extraction with inexpensive implementation cost. Finally, this research showed the 

capability of using satellite data to provide continuously updated information about 

surface water quality, which can support the process of water body treatment and lead to 

effective savings and proper utilization of surface water resources. 
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Chapter 1: INTRODUCTION 

This PhD dissertation focuses on the development of new methods that use 

Landsat 8 satellite data for assessing surface water quality of water bodies. It is an article-

based PhD dissertation presented through the following journal papers. 

Journal Paper 1 (Peer reviewed):  

Sharaf El Din, E., & Zhang, Y. (2017). Estimation of both optical and non-optical surface 

water quality parameters using Landsat 8 OLI imagery and statistical techniques. Journal 

of Applied Remote Sensing, 11 (4), 046008 (2017), doi: 10.1117/1.JRS.11.046008.  

Journal Paper 2 (Peer reviewed):  

Sharaf El Din, E., Zhang, Y., & Suliman, A. (2017). Mapping concentrations of surface 

water quality parameters using a novel remote sensing and artificial intelligence 

framework. International Journal of Remote Sensing, 38 (4), pp. 1023-1042. 

http://dx.doi.org/10.1080/01431161.2016.1275056.  

Journal Paper 3 (Peer reviewed):  

Sharaf El Din, E., & Zhang, Y. (2018). Delineating the accurate patterns of surface water 

quality by integrating Landsat 8 OLI imagery, artificial intelligence, and the water quality 

index. Remote Sensing of Environment, under review. 

 

A part of this work has been published in the “International Archives of the 

Photogrammetry, Remote Sensing, and Spatial Information Sciences”, XLII-4/W4, pp. 

245-249, https://doi.org/10.5194/isprs-archives-XLII-4-W4-245-2017”.    

Journal Paper 4 (Peer reviewed):  

Sharaf El Din, E., & Zhang, Y. (2018). Assessment of spatio-temporal surface water 

quality variations using multivariate statistical techniques: a case study of the Saint John 

River, Canada. Journal of the American Water Resources Association, under review. 

 

1.1 Dissertation Structure 

This article-based dissertation includes six chapters. Chapter 1 provides the 

introduction of the research. The next four chapters (Chapter 2 to Chapter 5) present the 

four peer reviewed journal papers listed above, which are either published or submitted 

and under review. In each of the four papers, the first author conducted the primary 

http://dx.doi.org/10.1080/01431161.2016.1275056
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research, while the second author provided advice on the structure and the remaining 

authors provided minor input and assistance. Chapter 6 provides the summary and 

conclusion of this research. Figure 1.1 illustrates the organization of this dissertation. 

 

Figure 1.1 Structure of the dissertation 

1.2 Background 

Surface water quality is the measure of the state of water resources with respect to 

specific requirements and necessities, such as human needs. It refers to the physical, 

chemical, and biochemical characteristics of water (CCME, 2001). Surface water quality 

is very important in maintaining the ecological processes that conserve and support 
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biodiversity. However, deteriorating surface water quality due to natural (i.e., snow melt, 

precipitation rate, and sediment transport) and anthropogenic (i.e., urban, industrial, 

mining, and agricultural activities) processes threatens the stability of the biotic integrity 

and consequently the aquatic life (Carpenter, Caraco, Correll, Howarth, Sharpley, & 

Smith, 1998; Qadir, Malik, & Husain, 2007). 

In the past few decades, the increase of anthropogenic activities, especially in 

industrial areas, has negatively affected water bodies. The result can be a reduction in 

water storage capacity or in rivers’ ability to support aquatic life. This shortage of water 

which has increased over the past years is expected to continue in the future (Gaballah, 

Khalaf, Beckand, & Lopez, 2005). In Canada, like in many countries around the world, 

the rising demand for safe drinking water directly corresponds to the rapid increase in 

population and in the economy (CCME, 2001). Thus, providing continuously updated 

information about surface water quality is indeed essential to help the managers, local 

administrators, and decision-makers in taking the right action at the right time to protect 

water bodies (Arseneault, 2008). 

Conventional methods of assessing surface water quality of water bodies are 

limited to a set of in-situ water sampling points and laboratory analysis. These methods 

are time consuming and cost intensive, and only provide limited information in terms of 

spatial and temporal surface water quality aspects (Liu, Chin, Gong, & Fu, 2010). In 

order to properly analyze surface water quality within a water body, spatio-temporal 

aspects should be considered. Therefore, this dissertation presents research on the 

exploitation of remotely sensed data for assessing surface water quality and providing 

both spatial and temporal water quality variations. 
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Surface water quality assessment using remote sensing imagery is relatively 

inexpensive and can potentially offer consistent spatial and temporal measurements of 

surface water quality on a regular basis, which may help identify water bodies with 

significant surface water quality pollution problems. Remote sensing estimation of 

surface water quality is based on mapping the relationship between (1) remote sensing 

multi-spectral signatures and (2) measurements of ground truth data (i.e., concentrations 

of surface water quality parameters (SWQPs)); however, it is often critical to draw a 

theoretical expression for this relationship (Zhang, Pulliainen, Koponen, & Hallikainen, 

2002).  

First, remote sensing sensors are subjected to spatial, spectral, radiometric, and 

temporal resolution limitations. Spatial and spectral resolutions are often a trade-off with 

each other because of the sensor design and optical limitations. The data sensitivity (i.e., 

signal to noise ratio [SNR]) associated with the radiometric resolution can affect the 

accuracy of retrieving SWQPs (Gower & Borstad, 2004). Moreover, temporal resolution 

is often a concern for surface water quality assessment particularly for water bodies 

which are subjected to high dynamic variations. Many satellite sensors with proper 

spatial resolution, such as Landsat-5 and Landsat-7, were designed mainly for land 

observation; however, Moderate Resolution Imaging Spectroradiometer (MODIS), 

Medium Resolution Imaging Spectrometer (MERIS), and Sea-viewing Wide Field-of-

view Sensor (SeaWiFS) were designed for ocean color studies, but with a very low 

spatial resolution (i.e., inappropriate for water bodies with small widths). Hence, 

selecting the satellite sensor that provides suitable spatial, spectral, radiometric, and 

temporal resolutions is indeed a critical task in surface water quality studies. 
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Additionally, a remote sensing study of surface water quality requires multi-

spectral data for the surface features, as they would be measured at ground level 

(Vermote, et al., 1997a). The conversion of the digital numbers (DNs) to the top of 

atmospheric (TOA) signal then from TOA to the ground level signal is the process of 

atmospheric correction. Hence, an accurate atmospheric correction is essential for remote 

sensing applications for surface water quality assessment, since the multi-spectral light 

signal from water surfaces is much less than the signal from land (Hu, Frank, Serge, & 

Kendall, 2001).   

Second, SWQPs can be broadly classified into two main classes: optical and non-

optical SWQPs. Optical SWQPs, such as turbidity and total suspended solids (TSS), are 

most likely to affect the water colour, the reflected signals, and consequently can be 

detected by satellite sensors. On the other hand, non-optical SWQPs, such as chemical 

oxygen demand (COD), biochemical oxygen demand (BOD), dissolved oxygen (DO), 

total solids (TS), total dissolved solids (TDS), power of hydrogen (pH), electrical 

conductivity (EC), and surface water temperature are less likely to affect the reflected 

radiation.  Concentrations of both optical and non-optical SWQPs can be measured 

according to the American Public Health Association (APHA) water and wastewater 

standards (APHA, 2005). 

1.3 Selected Research Topic 

Based on the above-mentioned background information, the research topic 

selected for this dissertation focuses on the assessment of surface water quality by using 
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satellite imagery. In order to properly assess surface water quality within a water body, it 

is very important to:  

(1) Estimate the concentrations of both optical and non-optical SWQPs from satellite 

imagery. 

(2) Map the relationship between satellite multi-spectral data and the measured 

concentrations of SWQPs. 

(3) Improve the accuracy of surface water quality level extraction from surface water 

quality raw data (i.e., individual concentrations of SWQPs).  

(4) Classify the most significant SWQPs that negatively affect water bodies and 

consequently detect both spatial and temporal surface water quality variations.  

This will lead to effective savings and proper utilization of water resources 

(Debels, Figueroa, Urrutia, Barra, & Niell, 2005; Elhatip, Hinis, & Gulgahar, 2007; 

Akbar, Hassan, & Achari, 2011; Natural Resources, 2016). The problems addressed in 

this dissertation are identified and discussed in the following section. 

1.4 Problem Statement 

1.4.1 Estimation of the Concentrations of SWQPs from Satellite Imagery 

The first challenge is related to quantifying the concentrations of SWQPs from 

satellite imagery. In literature, remote sensing has been commonly used for retrieving the 

concentrations of optical SWQPs; however, remote sensing estimation of non-optical 

SWQPs, such as COD, BOD, DO, pH, and EC, has not yet been performed because they 

are less likely to affect light signals measured by satellite detectors. However, 
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concentrations of non-optical SWQPs may be correlated with optical SWQPs, such as 

turbidity and TSS, which do affect the reflected radiation. In this context, an indirect 

relationship between satellite spectral information and concentrations of non-optical 

SWQPs can be assumed (Sharaf El Din, Zhang, & Suliman, 2017a; Sharaf El Din & 

Zhang, 2017b). Additionally, some of the available research has used remote sensing data 

provided from the Landsat TM/ETM+ and MODIS; however, these sensors were 

designed mainly for earth observation and they are not from the recently launched earth 

observation satellite sensors. 

Therefore, the first concern of this dissertation is to address the problem of 

retrieving the concentrations of both optical and non-optical SWQPs from satellite 

imagery. The proposed solution aims at exploring an appropriate regression-based 

technique to estimate both optical and non-optical SWQPs from a recently launched earth 

observation satellite sensor, which is freely available and has the potential to support 

coastal studies. 

1.4.2 Mapping the Relationship between Satellite Data and Concentrations of 

SWQPs 

The second challenge is related to mapping the relationship between satellite 

multi-spectral information and concentrations of SWQPs. In literature, mapping this 

relationship is achievable via regression techniques. Theoretically, the relationship 

between satellite multi-spectral signatures and the concentrations of SWQPs is too 

complex, especially in the presence of various pollutants at the same time (Xiang, 

Huapeng, Xiangyang, Yebao, Xin, & Hua, 2016). Moreover, it is very challenging for 
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regression techniques to model such a complex relationship (Sharaf El Din, Zhang, & 

Suliman, 2017a; Sharaf El Din & Zhang, 2017c). 

Therefore, the second concern of this dissertation is to address the problem of 

modelling the concentrations of SWQPs from satellite imagery. The proposed solution 

aims at developing a novel artificial intelligence (i.e., learning-based) modelling method 

for mapping concentrations of both optical and non-optical SWQPs by using remotely 

sensed multi-spectral data.    

1.4.3 Extracting the Accurate Levels of Surface Water Quality within a Water 

Body 

The third challenge is related to improving the accuracy of delineating the 

accurate levels (patterns) of surface water quality. Existing methods of assessing surface 

water quality are technically detailed and present monitoring data on individual 

substances (i.e., individual concentrations of SWQPs). The results of these methods are 

poorly understood by local administrators and decision-makers (Akoteyon, Omotayo, 

Soladoye, & Olaoye, 2011). Hence, a method, such as the water quality index (WQI), is 

needed to provide an integrated picture of surface water quality in water bodies. The 

WQI can support the accurate interpretation of surface water quality; however, it requires 

a huge number of water samples obtained by physical monitoring of water quality 

(CCME, 2001). It is very challenging to provide this type of physical monitoring because 

this process is costly and time consuming. Moreover, the selected WQI may be biased 

towards reflecting inaccurate surface water quality levels in the absence of a 

representative database (i.e. water samples). 
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Therefore, the third concern of this dissertation is to address the problem of 

delineating the accurate levels of surface water quality within a water body. The proposed 

solution aims at developing a novel approach which combines remote sensing multi-

spectral data, artificial intelligence, and the WQI to extract accurate surface water quality 

levels to be accessible to decision-makers. 

1.4.4 Identifying the Major SWQPs Contributing to Spatio-temporal Surface 

Water Quality Variations 

The fourth challenge is related to categorizing the most significant SWQPs that 

negatively affect water bodies and contribute to surface water quality variations. Existing 

methods are based on understanding the relationships between different SWQPs and their 

relevance to the actual problem being studied. However, due to the redundancy and 

complexity of relationships between parameters of surface water quality, it is not easy to 

draw a clear conclusion directly from surface water quality data (Simeonov, Stratis, 

Samara, Zachariadis, Voutsa, & Anthemidis, 2003; Shrestha & Kazama, 2007). 

Therefore, the fourth concern of this dissertation is to address the problem of 

classifying the major SWQPs and evaluating variations of surface water quality in a cost-

effective manner. The proposed solution aims at using multivariate statistical techniques, 

such as principal component analysis/factor analysis (PCA/FA), cluster analysis (CA), 

and discriminant analysis (DA), to help in the interpretation of complex surface water 

quality data to better understand the surface water quality and ecological status of water 

bodies. Moreover, these techniques can identify the major pollution sources (i.e., 

SWQPs) contributing to spatio-temporal variations of surface water quality and provide a 
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valuable tool for reliable management of water resources as well as offering rapid 

solutions to control pollution problems. 

1.5 Research Objectives 

The objectives of this research are fourfold in order to solve the four identified 

limitations and problems in a progressively improving manner mainly in terms of cost, 

effort, and computational steps. The four main objectives of this dissertation are 

described in the following subsections. 

1.5.1 Estimation of the Concentrations of SWQPs from Satellite Imagery 

Retrieving the concentrations of SWQPs by using satellite imagery is critical. 

Based on a review of the relevant literature, statistical techniques have the potential to 

quantify the concentrations of SWQPs from space. However, none of the previous studies 

have attempted to estimate the concentrations of non-optical SWQPs, such as COD, 

BOD, DO, pH, and EC. Hence, the first objective of this dissertation, which is addressed 

in Chapter 2, is to develop a remote sensing technique for estimating the concentrations 

of both optical and non-optical SWQPs using stepwise regression. The ultimate goal of 

this objective is to demonstrate the performance of the proposed technique in estimating 

the concentrations of different SWQPs using satellite multi-spectral data. 

1.5.2 Mapping the Relationship between Satellite Data and Concentrations of 

SWQPs 

Mapping the relationship between multi-spectral information and concentrations 

of SWQPs is a very important step to support the assessment of surface water quality in 
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water bodies. Based on a review of the relevant literature, regression techniques have 

been used to support the modelling process of SWQPs; however, these techniques may 

fail in modelling such a complex relationship, especially in highly polluted water bodies. 

The use of artificial intelligence instead of regression techniques improves the efficiency 

and the accuracy of modelling complex relationships. Hence, the second objective of this 

dissertation, which is addressed in Chapter 3, is to develop a novel framework for 

mapping the concentrations of SWQPs from satellite imagery by using artificial 

intelligence. The ultimate goal of this objective is to show the effectiveness of the 

proposed technique in mapping the complex relationship between satellite multi-spectral 

signatures and the concentrations of SWQPs. 

1.5.3 Extracting the Accurate Levels of Surface Water Quality within a Water 

Body 

Delineating the accurate levels of surface water quality has always presented 

researchers with a great challenge. Based on a review of the relevant literature, the WQI 

has been used to provide an integrated picture of surface water quality; however, a huge 

number of water samples obtained by physical monitoring of surface water quality is 

needed. Hence, the third objective of this dissertation, which is addressed in Chapter 4, is 

to develop a novel technique that integrates remote sensing, artificial intelligence, and the 

WQI, for improving the accuracy of surface water quality level (SWQL) extraction with 

inexpensive implementation cost. The ultimate goal of this objective is to simplify the 

expression of surface water quality and illustrate the applicability of the proposed 

technique in extracting accurate surface water quality levels from water quality raw data. 
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1.5.4 Identifying the Major SWQPs Contributing to Spatio-temporal Surface 

Water Quality Variations 

The existence of various pollutants in water bodies can lead to deterioration of 

surface water quality and thus raise the cost of water body treatment. To decrease the cost 

of the treatment process, evaluating surface water quality based on classifying the most 

significant SWQPs contributing to spatio-temporal variations of surface water quality is 

very important. Based on a review of the relevant literature, almost all of the available 

studies have attempted to categorize the parameters that affect water bodies; however, 

fewer research attempts focused on extracting spatio-temporal patterns of surface water 

quality. Hence, the fourth objective of this dissertation, which is addressed in Chapter 5, 

is to develop a cost-effective technique for classifying the major SWQPs in water bodies 

and detecting both spatial and temporal variations of surface water quality by using 

multivariate statistical analysis. The ultimate goal of this objective is to explore the 

usefulness of the proposed technique in assessing surface water quality by finding out the 

association between samples and parameters and revealing the most significant 

information which cannot be observed from the raw data. 

1.6 Overview of Each Chapter 

In relation to the dissertation structure, the four research objectives, identified 

above, are carried out in four chapters (Chapter 2-5). While the first three objectives are 

discussed separately in Chapters 2, 3, and 4, respectively, the fourth objective is 

addressed in Chapter 5. 



 

13 

 

Chapter 1 is the introduction. It comprises the structure of the dissertation, 

research background, topic selection, problem statement, objectives of the research, and 

an overview of each remaining chapter. Chapters 2 to 5 contain the four peer reviewed 

journal papers representing the main contributions of this PhD dissertation. 

• Chapter 2 introduces the research work related to the developed remote sensing 

technique for quantifying the concentrations of SWQPs using stepwise regression. 

To the best of our knowledge, this technique is developed for the first time to 

estimate the concentrations of non-optical SWQPs, such as COD, BOD, DO, pH, 

and EC, which have not been estimated before by researchers using Landsat data 

or any other optical instrument. 

• Chapter 3 represents the research work regarding a novel technique that can use 

artificial intelligence (i.e., learning-based modelling method) for mapping the 

concentrations of SWQPs from satellite imagery. To the best of our knowledge, 

this technique is the first to map the complex relationship between satellite multi-

spectral data and concentrations of SWQPs with highly accurate results, 

compared to traditional techniques. 

• Chapter 4 provides the research work regarding a novel technique that integrates 

remotely sensed data, artificial intelligence, and the WQI for simplifying the 

expression of surface water quality and delineating the accurate surface water 

quality levels (SWQLs) to be accessible to decision-makers. To the best of our 

knowledge, this technique is developed for the first time to extract the SWQLs 

with highly accurate results and inexpensive implementation cost.  
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• Chapter 5 demonstrates the research work related to the developed cost-effective 

technique for categorizing the most significant SWQPs and evaluating spatio-

temporal surface water quality variations by using multivariate statistical 

techniques, such as PCA/FA, CA, and DA. This technique illustrates the 

significance use of multivariate statistical techniques for surface water quality 

assessment and management leading to effective savings and proper utilization of 

surface water quality resources.  

Chapter 6 presents the conclusions. It summarizes the achievements of this 

research and outlines its drawbacks and limitations. It also presents some 

recommendations for future research. 
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Chapter 2: ESTIMATION OF BOTH OPTICAL AND NON-

OPTICAL SURFACE WATER QUALITY PARAMETERS USING 

LANDSAT 8 OLI IMAGERY AND STATISTICAL 

TECHNIQUES1 

Abstract 

Surface water quality assessment is widely performed using laboratory analysis, 

which is costly, labour intensive, and time consuming. In contrast, remote sensing has the 

potential to assess surface water quality because of its spatial and temporal consistency. It 

is essential to estimate concentrations of both optical and non-optical surface water 

quality parameters (SWQPs) on a regular basis from satellite imagery to provide the 

desired treatment for water bodies. Remote sensing estimation of non-optical SWQPs, 

such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), and 

dissolved oxygen (DO), has not yet been performed because they are less likely to affect 

signals measured by satellite sensors. However, concentrations of non-optical variables 

can be correlated with optical variables, such as turbidity and total suspended sediments 

(TSS), which do affect the reflected radiation. In this context, an indirect relationship 

                                                 

1 This paper has been published in the “Journal of Applied Remote Sensing (JARS)”: 

Sharaf El Din, E., & Zhang, Y. (2017). Estimation of both optical and non-optical surface water 

quality parameters using Landsat 8 OLI imagery and statistical techniques. Journal of Applied Remote 

Sensing (JARS), 11 (4), 046008 (2017), doi: 10.1117/1.JRS.11.046008. 

 

For consistency throughout the dissertation, the format and style of figure captions, table titles, 

citation of references in the text, and section numbering have been slightly changed (from the original 

format of the journal in which the paper has been published or is under review) for Chapters 2-5.   
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between satellite spectral data and concentrations of COD, BOD, and DO can be 

assumed. Therefore, this research attempts to develop an integrated Landsat 8 band ratios 

and stepwise regression approach to estimate concentrations of both optical and non-

optical SWQPs. Compared to previous studies, significant correlation between the 

Landsat 8 surface reflectance and concentrations of SWQPs was achieved and the 

obtained coefficient of determination (R2) > 0.85 for turbidity, TSS, COD, BOD, and DO. 

These findings demonstrated the possibility of using our technique to develop models to 

estimate concentrations of SWQPs, and to generate spatio-temporal maps of SWQPs 

from Landsat 8 imagery. 

2.1 Introduction 

The degradation of surface water quality occurs due to the presence of many 

pollutants generated from agricultural, residential, commercial, and industrial activities. 

Moreover, climate changes during global warming can cause floods, drought, or even a 

noticeable increase in infectious diseases, which may degrade water quality (Murdoch, 

Baron, & Miller, 2000). Furthermore, continuous changes in the weather temperature due 

to seasonal impacts can negatively affect surface water quality. Due to these variations, 

monitoring and estimating concentrations of optically and non-optically active surface 

water quality parameters (SWQPs) on a large scale by exploiting remotely sensed data is 

essential for providing the targeted treatment to watersheds. 

Remote sensing provides significant benefits over conventional water quality 

monitoring methods, mainly due to the synoptic coverage and temporal consistency of 

the data. Remote sensing has the potential to estimate the concentrations of SWQPs on 
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inland waters and estuaries in regions where traditional monitoring methods are either 

missing or insufficient (Navalgund, Jayaraman, & Roy, 2007). However, most of remote 

sensing data investigated in the reviewed research were not from the recently launched 

earth observation satellite sensors, such as the Landsat 8 Operational Land Imager (OLI). 

Moreover, remote sensing has been widely used for monitoring a few SWQPs, such as 

turbidity, total suspended sediments (TSS), secchi disk depth, and chlorophyll-a, which 

have been typically categorized as optical water quality variables (Alparslan, Aydöner, 

Tufekci, & Tüfekci, 2007; He, Chen, Liu, & Chen, 2008; Mancino, Nolè, Urbano, 

Amato, & Ferrara, 2009; Liu, Chin, Gong, & Fu, 2010; Bresciani, D., D., G., & C., 2011; 

Yacobi, et al., 2011; Mao, J., D., B., & Q., 2012; Güttler, N., & G., 2013; Krista, et al., 

2015; Sharaf El Din & Zhang, 2017b). 

Few studies have attempted to estimate the concentrations of non-optical variables 

such as total phosphorus (Gonca , Aysegul, Ugur, & Kerem, 2008; Bistani, 2009), 

dissolved inorganic nitrogen (Xiang, et al., 2016), total nitrogen (He, Chen, Liu, & Chen, 

2008; Gonca , Aysegul, Ugur, & Kerem, 2008). Moreover, remote sensing estimation of 

non-optical SWQPs, such as chemical oxygen demand (COD), biochemical oxygen 

demand (BOD), and dissolved oxygen (DO), has not yet been performed. Thus, it is a 

challenge to estimate the concentrations of COD, BOD, and DO from space because they 

are less likely to affect light signals measured by satellite detectors. However, 

concentrations of non-optical SWQPs may be correlated with optical variables, such as 

TSS, which have the potential to affect water color, the reflected radiation, and 

consequently can be detected by satellite sensors (Chen, et al., 2015; Xiang, et al., 2016). 

Based on these findings, concentrations of turbidity or TSS which are expected to be 
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highly correlated with spectral data may serve in the estimation of non-optical variables; 

thus, a correlation between satellite spectral data and COD, BOD, and DO can be 

assumed. Accordingly, our focus in this research is to estimate concentrations of both 

optical and non-optical SWQPs from the Landsat 8 data which have been acquired by a 

recent satellite sensor. 

In the literature, estimating concentrations of SWQPs from space is achievable via 

regression-based techniques. Correlations between ground measured data and spectral 

bands can be used to develop remote sensing models for the estimation of SWQPs. A 

summary of previous methods used to estimate concentrations of SWQPs that are being 

used in this study is provided in the following four paragraphs. 

A Landsat-5 TM image over New York Harbour was used to develop regression 

models to estimate the levels of turbidity (Hellweger, Schlossera, Lalla, & Weissel, 

2004). The red band correlated positively with turbidity for areas affected by river runoff 

with coefficient of determination (R2) = 0.78. Basically, using the TM red band is 

appropriate due to the influence of inorganic suspended particles, such as clay, to 

scattering in this region. Water quality in Reelfoot Lake, Tennessee, USA was evaluated 

for turbidity and TSS (Wang, Han, Kung, & Van Arsdale, 2006). There was a positive 

correlation between the Landsat-5 TM green band and turbidity and TSS. The R2 values 

were 0.53 and 0.52 for turbidity and TSS, respectively. The reason of correlation with the 

Landsat-5 TM green band is that the organic macromolecules such as algae and 

phytoplankton that form TSS particles are higher than inorganic compounds. 

The Landsat-7 ETM blue, green, red, and near-infrared bands have been used to 

estimate concentrations of TSS of the reservoir behind Omerli Dam (Alparslan, Aydöner, 



 

21 

 

Tufekci, & Tüfekci, 2007). Regression analysis was used to develop empirical models 

using the Landsat-7 ETM data and ground measured SWQPs. The R2 value for TSS was 

0.99. Although this study provides high R2 value, it lacks causal explanations and cross-

temporal applicability. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to 

estimate concentrations of TSS across Lake Erie. Remote sensing concentration maps 

were produced for monthly mean distribution of TSS by using MODIS radiance at 748 

nm for the period of five years (Binding, Jerome, Bukata, & Booty, 2010). Turbidity in 

Tampa Bay, Florida was estimated using MODIS band 1 (620-670) nm. It was observed 

that there was a significant relationship between MODIS band 1 reflectance values and 

field measurements of turbidity after rainfall events and the obtained R2 value was 0.76 

(Moreno-Madrinan, Al-Hamdan, Rickman, & Muller-Karger, 2010). The main basis of 

correlation with MODIS red band can be explained by the contribution of TSS particles 

to scattering in this particular wavelength. To the authors’ best knowledge, the estimation 

of concentrations of COD, BOD, and DO from space has not been performed by 

researchers. 

Based on our literature review findings, simple linear regression of single bands 

can provide high correlation between satellite data and measured concentrations of 

turbidity and TSS. The advantages of using single bands in green, red, and near-infrared 

wavelengths have been confirmed by researchers (Poets, Costa, Da Silva, Silva, & 

Morais, 2010). However, there is no obvious agreement between the reviewed studies on 

which bands are the best to predict the concentrations of turbidity and TSS. Moreover, 

when a water body is seriously polluted, it is difficult to model the complex relationship 
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between SWQPs and satellite data using statistical techniques based on single bands; 

thus, artificial neural network can be used to model such complex relationships (Zhang, 

Pulliainen, Koponen, & Hallikainen, 2002; Sharaf El Din & Zhang, 2017c). Furthermore, 

while several studies were carried out on significantly polluted areas, these techniques 

have not in the past been applied to other only slightly polluted water bodies, such as the 

Saint John River (SJR) in New Brunswick, Canada. 

 A question was identified regarding the capability of regression-based techniques 

in the retrieval of the concentrations of both optical and non-optical SWQPs from the 

Landsat 8 satellite imagery. The Landsat 8 OLI sensor is selected because its multi-

spectral bands have been designed to be narrower than the older sensors and new bands, 

such as the coastal blue (CB), have been added to support coastal studies. Moreover, the 

proposed regression-based technique is the stepwise regression (SWR) due to its 

capability of maximizing prediction power using a minimum number of predictor 

variables, and efficiency in the applications of models’ prediction and averaging 

(Derksen & Keselman, 1992).  

The identified objectives of this research are to (1) verify the potential of using 

Landsat 8 spectral data in water quality studies and (2) develop a Landsat 8-based-SWR 

technique to estimate concentrations of both optical and non-optical SWQPs with highly 

accurate results. To the best of our knowledge, the Landsat 8-based-SWR technique is 

developed for the first time to estimate three non-optical SWQPs, namely COD, BOD, 

and DO, which have not been estimated before with Landsat data or any other optical 

instrument. 
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2.2 Materials and Methods 

The flowchart of the proposed methodology used to retrieve concentrations of 

both optical and non-optical SWQPs from satellite imagery is shown in Figure 2.1. 

 

Figure 2.1 The flowchart of the proposed methodology 

This section describes in detail the selected study area of the SJR, the Landsat 8 

processing stage, water sampling, ground measurements and laboratory analysis, and 

estimation of the concentrations of optical and non-optical SWQPs using the proposed 

Landsat 8-based-SWR technique. 
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2.2.1 Selected Study Site 

The SJR is approximately 673 km long with a maximum depth above the 

Mactaquac Dam of 50 m. Its headwaters are in the State of Maine, but is located 

principally in the Canadian province of New Brunswick. The selected study site is about 

70 km long as shown in Figure 2.2.  

 

Figure 2.2 The selected study area of the Saint John River (SJR), New Brunswick, 

Canada (Earth Explorer, 2016) 

The SJR is one of the oldest streams in the Atlantic Ocean Basin (Arseneault, 

2008). Peak flows on the SJR occur during the spring season and last several weeks. 

However, periods of low flow occur during the summer and winter months when the 

majority of the river is frozen (Arseneault, 2008). Basically, this is the first study to 

monitor and estimate the concentrations of different SWQPs in the SJR using remotely 

sensed data. 

http://en.wikipedia.org/wiki/Canadian_province
http://en.wikipedia.org/wiki/New_Brunswick
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2.2.2 Satellite Processing Stage 

2.2.2.1 Geometric Correction 

The three Landsat 8 satellite sub-scenes used in our study were acquired on June 

27th, 2015, April 10th, 2016, and May 12th, 2016. Further water samples which were 

collected in July and August 2016 were used in Chapter 4 and 5. The used images, along 

with their sampling events, were selected at different seasons to best represent the 

maximum variation in the concentrations of SWQPs (Arseneault, 2008). The Landsat 8 

satellite images are available free of charge at Level 1T (terrain corrected) (Earth 

Explorer, 2016). The Level 1T data product provides systematic geometric accuracy by 

incorporating ground control points (GCPs), while also employing a Digital Elevation 

Model (DEM) for topographic accuracy. GCPs were used to geometrically correct the 

full landsat 8 scenes to the Universal Transverse Mercator (UTM) projection, World 

Geodetic System 1984 (WGS 84) datum with a 30 m grid (Earth Explorer, 2016). 

2.2.2.2 Radiometric Correction 

Normally, the Landsat 8 digital numbers (DNs) are stored in 16 bits unsigned 

integer format. Equation (2.1) is generally used to rescale DNs to obtain the top of 

atmospheric (TOA) reflectance using the radiometric rescaling coefficients of the Landsat 

8 data (United States Geological Survey (USGS), 2016). A full computation of the TOA 

reflectance was performed using PCI Geomatica image processing software. 

 𝜌∗ =  𝑀𝜌 × 𝑄cal +  𝐴𝜌 (2.1) 
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where 𝜌∗ is the TOA reflectance without correction for the solar zenith angle; 𝑀𝜌 is the 

reflectance band-specific multiplicative rescaling factor; 𝑄cal is the quantized and 

calibrated standard product pixel values (DN); and 𝐴𝜌 is the reflectance band-specific 

additive rescaling factor. 

Basically, the reflectance obtained from the Landsat 8 data is not corrected for 

solar zenith angle. This means that the provided reflectance is generally too low and this 

error increases at high latitudes and in the cold season. The TOA reflectance with a 

correction for solar zenith angle was performed using Equation (2.2) (United States 

Geological Survey (USGS), 2016). As shown in the Equation below, Landasat-8 TOA is 

also calculated using Landsat 8 metadata file parameters, such as the spectral radiance at 

the sensor’s aperture, Earth-Sun distance, and mean solar irradiance (United States 

Geological Survey (USGS), 2016).    

 𝜌 =  𝜌∗  𝑐𝑜𝑠 (𝜃)sz =  [π × 𝐿λ × 𝑑2]  [(𝐸Sunλ ×  cos (𝜃)sz)]⁄⁄  (2.2) 

where 𝜌 is the corrected TOA planetary reflectance and (𝜃)sz is the solar zenith angle; 

𝐿𝜆 is the spectral radiance at the sensor’s aperture; 𝑑 is the Earth-Sun distance in 

astronomical units; and 𝐸Sunλ is the mean solar irradiance. 

2.2.2.3 Atmospheric Correction 

The effects of the atmosphere were considered in order to measure the reflectance 

at the ground. The surface reflectance (𝜌surface) is calculated using the Dark Object 

Subtraction (DOS) method (Chavez, 1988) using Equations (2.3-2.7). As shown in 
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Figure 2.3, this method can provide accurate results in discriminating and mapping 

wetland areas (Song, Woodcock, Seto, Lenney, & Macomber, 2001). 

 

Figure 2.3 (a) The original Landsat 8 satellite sub-scenes and (b) the atmospherically 

corrected Landsat 8 satellite sub-scenes using the Dark Object Subtraction (DOS) method 

Other atmospheric correction methods, such as atmospheric and topographic 

correction (ATCOR) and second simulation of the satellite signal in the solar spectrum 

(6S), have been used in remote sensing and digital image processing. However, the main 

drawback of these methods is that they involve extensive field measurements during each 

satellite pass. This is unacceptable for a variety of applications and is often impossible, as 
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when using historical data or when working in very remote or difficult access locations 

(Pat & Chavez, 1996; Song, Woodcock, Seto, Lenney, & Macomber, 2001). 

Additionally, Landsat 8 surface reflectance data (i.e., Level 2 product) are available free 

of charge from USGS; however, the provided data almost always have surface 

reflectance values > 1 for cloud and snow pixels and < 0 for water and shadow pixels 

(USGS Landsat 8 Surface Reflectance Product Guide, 2018).  

 ρsurface = [π × (𝐿𝜆 − 𝐿𝑃) ×  𝑑2]  [𝑇𝑉  × ((𝐸Sunλ ×  cos (𝜃)sz) ×  𝑇𝑍) +  𝐸down)]⁄  (2.3) 

 𝐿𝑃 = 𝐿𝜆𝑚𝑖𝑛 −  𝐿𝐷𝑂1% (2.4) 

 𝐿𝜆𝑚𝑖𝑛 =  𝑀𝐿 ×  𝐷𝑁𝑚𝑖𝑛 +  𝐴𝐿 (2.5) 

 𝐿𝐷𝑂1% = [0.01 × 𝑇𝑉  × ((𝐸Sunλ ×  cos (𝜃)sz) × 𝑇𝑍) + 𝐸down] [π × 𝑑2]⁄  (2.6) 

 𝐸Sunλ =  [π × 𝑑2 × RADIANCEmax] [REFLECTANCEmax]⁄  (2.7) 

where 𝐿𝜆 is the spectral radiance at the sensor’s aperture; 𝐿𝑃 is the path radiance due to 

atmospheric effects; 𝑑 is the Earth-Sun distance in astronomical units; 𝑇𝑉 is the 

atmospheric transmittance in the viewing direction; 𝐸Sunλ is the mean solar radiation 

entering to the atmosphere (Landsat 7 Science Data Users Handbook, 2011); 𝑇𝑍 is the 

atmospheric transmittance in the illumination direction; 𝐸down is the downwelling 

diffuse irradiance; 𝐿𝜆𝑚𝑖𝑛 is the radiance values correspond to the minimum pixel values; 

𝐿𝐷𝑂1% is the radiance of dark object; 𝑀𝐿 is the radiance band-specific multiplicative 

rescaling factor; 𝐷𝑁𝑚𝑖𝑛 is the minimum pixel values; and 𝐴𝐿 is the radiance band-
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specific additive rescaling factor. 

2.2.2.4 The Water Interface 

To estimate the concentrations of different SWQPs over a specific water body, the 

water surface should be delineated accurately as shown in Figure 2.4. Therefore, instead 

of using the whole image pixels in the process of mapping the concentrations of SWQPs, 

only water pixels can be included in this process to accelerate the 

processing/computational speed of the developed models.  

 

Figure 2.4 The water interface 

The water interface was masked using the adjusted Normalized Difference Water 

Index (NDWI) to separate water and non-water features (Mcfeeters, 1996). The adjusted 

NDWI is derived by using principles similar to those used to derive the normalized 

difference vegetation index (NDVI). Equation (2.8) was used to calculate the adjusted 

NDWI and the results of the index ranged from [-1.00 to +1.00]. Water features showed 
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negative values due to their typically higher reflectance of green band than near-infrared 

band and accordingly water pixels were directly separated from non-water pixels, which 

showed positive and zero values. 

 (NDWI) =  [(NIR) −  (G)]  [(NIR) +  (G)]⁄  (2.8) 

where NIR is the near-infrared band; and G is the green band. 

2.2.3 Sampling Sites and Laboratory Analysis of Optical and Non-optical SWQPs 

Water sampling was performed during three field trips in June 27th, 2015, April 

10th, 2016, and May 12th, 2016. Samples were randomly selected and distributed across 

the entire study area as shown in Figure 2.5. 

 

Figure 2.5 The water sampling locations across the SJR, New Brunswick, Canada 
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Thirty-nine water samples were collected along the selected study area of the SJR 

and one sample was excluded due to cloud coverage. Coordinates of each sample point 

were recorded in the field using a handset GPS, GARMIN 76CSx. To determine if a 

sample size is big enough, a commonly used rule-of-thumb is to use 30 data points or 

more, especially for parametric statistical methods (Gregory & Dale, 2009; Sitanshu & 

Archana, 2013). In our study, the number of collected water samples is sufficient 

compared to other studies. The number of samples (n) was 19 (D’SA & Miller, 2003), n 

= 29 (Floricioiu, Rott, Rott, Dokulil, & Defrancesco, 2004), n = 33 (Simis, Peters, & 

Gonos, 2005), n = 8 (Odermatt, Heege, Nieke, Kneubuhler, & Itten, 2008), n = 23 

(Kratzer, Brockmann, & Moore, 2008), and n = 36 (Moses, Gitelson, Berdnikov, & 

Povazhnyy, 2009a). 

Another way to determine the appropriate sample size is to use one of the 

formulas shown in Equations (2.9-2.10) (Lisa, 2016). Equation (2.9) can be used if the 

standard deviation of the outcome of interest (i.e. the selected SWQPs) is known; 

otherwise, Equation (2.10) can be used. At a power (confidence level) of 95%, a desired 

marginal error of ± 2 units, and an average standard deviation of 5.96 for the measured 

SWQPs, the obtained z-score is 1.96 and accordingly the calculated number of samples is 

(34.12 ≈ 35 ± 2), which means the number of samples collected in our study is adequate. 

 𝑛 =  [(𝑧∗ × 𝜎𝑥) ME⁄ ]2 (2.9) 

 𝑛 =  [(𝑧∗ ME⁄ )2 × 𝑝∗ × (1 − 𝑝∗)] (2.10) 

where 𝑛 is the minimum sample size; 𝑧 is z-score (value of standard normal distribution 
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for the desired confidence level); 𝜎𝑥 is the standard deviation of the outcome variable; 

ME is the desired margin of error (confidence interval (i.e. the maximum allowable 

deviation or error of the estimate)); and 𝑝∗ is the proportion of successes in the 

population (can be obtained from previous similar studies). 

In order to carry out this study efficiently, water samples were collected just 

beneath water surface (i.e., 30 to 50 cm) and around the same time as the satellite sensor 

overpass (4 hours time difference). Concentrations of turbidity, TSS, COD, BOD, and 

DO, were measured according to the standard methods for lab examination of water and 

wastewater of the American Public Health Association (APHA) (APHA, 2005). Turbidity 

is an optical determination of water clarity and is based on the amount of light scattered 

by particles in the water column. TSS concentrations are determined by filtering the 

water sample and weighing the residue left on the filter paper. COD levels are measured 

as the amount of a specific oxidizing agent that reacts with a sample under controlled 

conditions and it is expressed as oxygen equivalence. BOD is used to determine the 

amount of dissolved oxygen needed by aerobic organisms in a water body to break down 

the organic materials present in the given water sample over 5 days at 20°C temperature. 

Finally, concentrations of DO are estimated as the level of free (non-compound) oxygen 

present in a water sample. 

2.2.4 Estimation of Concentrations of SWQPs using the Stepwise Regression 

Technique 

Regression analysis is a form of predictive modelling technique which attempts to 

model the relationship between a dependent and a set of independent variables (i.e., 
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predictors). Regression analysis is commonly used for forecasting and time series 

modelling applications (Derksen & Keselman, 1992). Basically, there are several types of 

regression techniques, such as linear regression, logistic regression, polynomial 

regression, ridge regression, and stepwise regression (SWR). The SWR technique is 

selected as the proposed regression-based technique. The main advantages of using the 

SWR technique are (1) the ability of managing large amounts of independent variables 

and tuning the model to choose the best independent variables from the available data, 

and (2) the computational speed is usually faster than other regression techniques.  

Our problem is a good candidate for SWR because (1) the variables are 

quantitative (i.e. SWQPs are measurable), (2) the independent variables (i.e. surface 

reflectance values of bands/band ratios) are not highly correlated with each other (i.e. 

little or no multicollinearity), (3) the errors (difference between observed values and a 

true value, which is very often the mean value) are normally distributed, and (4) the 

residuals (difference between observed and predicted values) are independent, as Durbin-

Watson was used as a measure of independence and the obtained scores are close to 2.00.  

The SWR method selects a sub-set from a list of explanatory (independent) 

variables and removes and adds variables to the regression model for the purpose of 

identifying a useful subset of the predictors (Derksen & Keselman, 1992). In this context, 

the SWR first finds the explanatory variable with the smallest significant value (P-value) 

to start over. The SWR then tries each of the remaining explanatory variables until it 

finds the two variables with the smallest P-value. After that, the SWR tries all of them 

again until it finds the three variables with the smallest P-value, and so on. Generally, the 

process of adding more variables stops when all of the available variables have been 
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included or when it is not possible to make a statistically significant improvement in P-

value by using any of the variables which have not been yet included. 

In our study, the SWR technique was used to model the relationship between the 

Landsat 8 surface reflectance data and concentrations of optical and non-optical SWQPs. 

Sampling points were subdivided into two datasets; calibration (75% of all samples) and 

validation (25% of all samples) to establish and validate the developed models. The 

performance of the developed models was evaluated by using regression lines’ equations, 

R2, root mean square error (RMSE), significant value (P-value), and residual prediction 

deviation (RPD). The RPD can be used along with R2, RMSE, and P-value as an 

indication of model stability (Nduwamungu, et al., 2009). However, a previous study 

conducted by Chang, et al., (2001) evaluated the performance of the developed models 

based only on R2 and RPD values and three model categories were identified as follows: 

• 1st category (0.80 ≤ R2 ≤ 1.00 and RPD ≥ 2.00) means accurate prediction. 

• 2nd category (0.50 ≤ R2 < 0.80 and 1.40 ≤ RPD < 2.00) means satisfactory 

prediction. 

• 3rd category (R2 < 0.50 and RPD < 1.40) means unacceptable prediction. 

2.3 Results and Discussion 

The present study attempts to retrieve concentrations of both optical and non-

optical SWQPs from satellite imagery. The main results of this study were divided into 

(1) concentrations of SWQPs, (2) the relationship between Landsat 8 satellite data and 

concentrations of SWQPs, (3) estimation and validation of the developed Landsat 8-

based-SWR models, and (4) producing Landsat 8-based-SWR spatial distribution maps. 
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2.3.1 Optical and Non-optical Concentrations of SWQPs of Water Samples 

Thirty-nine water samples were collected across the selected study area and 

analyzed for different SWQPs.  

 

Figure 2.6 Optical and non-optical concentrations of SWQPs at June 27th 2015 (a), April 

10th 2016 (b), and May 12th 2016 (c), respectively 
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The descriptive statistics were measured for turbidity, TSS, COD, BOD, and DO. 

For the used 38 water samples, as shown in Figure 2.6, the concentrations ranged from 

1.19 to 13.10 NTU (Nephlometric Turbidity Units) with an average 6.30 NTU, 1.20 to 

11.40 mg/l with an average 4.78 mg/l, 4.80 to 86.64 mg/l with an average 29.55 mg/l, 

1.21 to 3.25 mg/l with an average 1.70 mg/l, and 6.99 to 14.14 mg/l with an average 

11.06 for turbidity, TSS, COD, BOD, and DO, respectively. 

As shown in Figure 2.6, turbidity and TSS in spring were higher than their 

concentrations in summer. The main reason is that rainfall and snowmelt are considered 

as the main contributors to the annual flows of the SJR and consequently wash sediments 

from agriculture and forestry into the river. On the other hand, the upper part of the 

selected study area of the SJR has high concentrations of COD and BOD because this 

region has many industries such as food and paper production located at the SJR 

shoreline. 

The correlation between concentrations of optical and non-optical SWQPs was 

calculated as shown in Table 2.1. The relationship between turbidity and all SWQPs 

except DO was positively correlated; while, correlation values between DO levels and 

turbidity, TSS, COD, and BOD were -0.816, -0.824, -0.838, and -0.776, respectively. The 

non-optical SWQPs are less likely to affect the light signals measured by satellite 

detectors, and thus they cannot be measured directly by satellite sensors. The only way 

they can be measured is indirectly by the fact that their concentrations are correlated in 

some way with optical SWQPs like TSS or turbidity that do affect the signals measured 

by satellite sensors (Xiang, et al., 2016). Such indirect effects may be site-specific; 



 

37 

 

however, once the correlation between optical and non-optical SWQPs is found, 

developing remote sensing estimation models for non-optical SWQPs is guaranteed. 

Table 2.1 The correlation matrix of both optical and non-optical SWQPs. 

SWQPs Turbidity TSS COD BOD DO 

Turbidity 1.000 0.976 0.857 0.799 -0.816 

TSS 0.976 1.000 0.861 0.850 -0.824 

COD 0.857 0.861 1.000 0.895 -0.838 

BOD 0.799 0.850 0.895 1.000 -0.776 

DO -0.816 -0.824 -0.838 -0.776 1.000 

 

2.3.2 Relationship between Landsat 8 Satellite Spectral Data and Concentrations 

of SWQPs 

Figure 2.7 indicates that the Landsat 8 surface reflectance data and concentration 

of the selected SWQPs are significantly correlated with R2 values exceeded 0.800 and P-

value < 0.001 throughout the SJR. Almost all of the Landsat 8 OLI multi-spectral bands, 

such as blue (B), green (G), red (R), shortwave infrared 1 (SWIR1), and shortwave 

infrared 2 (SWIR2), significantly contributed to the process of developing accurate 

models to estimate the concentrations of both optical and non-optical SWQPs in the SJR. 

Moreover, the new coastal blue (CB) band which was added to the Landsat 8 multi-

spectral bands, compared to older sensors, performed very well in developing turbidity, 

TSS, COD, BOD, and DO estimation models. Furthermore, band ratios were very helpful 

in estimating concentrations of SWQPs due to the ability to enhance spectral contrast 
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between different targets, and to remove much of the effect of illumination in the analysis 

of spectral differences. The criteria of selecting the most statistically significant 

independent variables (i.e. Landsat 8 spectral bands/band ratios) were performed using 

the SWR technique, which includes or removes one independent variable at each step, 

based on the probability of F-to-enter and F-to-remove (Derksen & Keselman, 1992). 

Turbidity and TSS concentrations were found to be very sensitive to the Landsat 8 

CB, B, and R bands and their band ratios. This result is similar to those of previous 

studies (Hellweger, Schlossera, Lalla, & Weissel, 2004; Moreno-Madrinan, Al-Hamdan, 

Rickman, & Muller-Karger, 2010), which showed that turbidity and TSS concentrations 

were highly correlated to the B and R bands owing to the contribution of inorganic 

suspended compounds to reflectance in these wavelengths. On the other hand, the CB and 

SWIR2 bands were very efficient in estimating concentrations of COD and BOD; 

however, (SWIR1/G) and (CB/B) band ratios were found to be highly correlated with 

levels of DO. 

The main reason of obtaining high correlation between Landsat 8 satellite data 

and concentrations of different SWQPs is that the Landsat 8 multi-spectral bands were 

designed to be narrower than older sensors, which can be very helpful in discriminating 

between fine targets, such as SWQPs in water bodies (United States Geological Survey 

(USGS), 2016). Moreover, in order to support surface water quality studies, new bands, 

such as CB, were added to the spectral bands of Landsat 8 data because at this specific 

wavelength, water pixels tend to reflect all radiation without any scattering. These 

findings confirm the potential of using Landsat 8 imagery in coastal studies (United 

States Geological Survey (USGS), 2016). 
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Figure 2.7 The Landsat 8 estimation models for turbidity (a), TSS (b), COD (c), BOD 

(d), and DO (e) using the SWR technique based on calibration dataset 
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2.3.3 Estimation and Validation of the Landsat 8-based-SWR Models 

The surface reflectance data of the Landsat 8 multi-spectral bands and band ratios 

were correlated to the measurements of different SWQPs and the relationship between 

them were calculated using the SWR technique. The Landsat 8-based-SWR estimation 

models were established based on the calibration dataset and the bands and band ratios 

that showed the highest correlations were considered in the mathematical model of each 

water quality variable as shown in Figure 2.7. In this context, the best regression models 

for predicting concentrations of turbidity, TSS, COD, BOD, and DO in the SJR were 

obtained based on R2, RMSE, P-value, and RPD. Moreover, to test the reliability and 

applicability of the developed Landsat 8-based-SWR models in estimating concentrations 

of optical and non-optical SWQPs, an independent validation dataset of the remaining 

water samples was used to validate their performance. 

As shown in Figure 2.8, concentrations of turbidity and TSS were significantly 

estimated using the Landsat 8-based-SWR models and the accuracy measures were (R2 = 

0.965, RMSE = 0.727 NTU, P-value < 0.001, and RPD = 5.345) and (R2 = 0.883, RMSE 

= 0.980 mg/l, P-value < 0.001, and RPD = 2.923), respectively. Moreover, the validation 

models for turbidity and TSS, shown in Figure 2.9, remained very stable with (R2 = 

0.939, RMSE = 0.784 NTU, P-value < 0.001, and RPD = 4.048) and (R2 = 0.891, RMSE 

= 0.801 mg/l, P-value < 0.001, and RPD = 3.028), respectively. Similarly, estimation 

models for COD, BOD, and DO were (R2 = 0.886, RMSE = 7.304 mg/l, P-value < 0.001, 

and RPD = 2.961), (R2 = 0.801, RMSE = 0.217 mg/l, P-value < 0.001, and RPD = 2.241), 

and (R2 = 0.915, RMSE = 0.597 mg/l, P-value < 0.001, and RPD = 3.429), respectively. 
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Figure 2.8 Statistics and accuracy measures between the measured and predicted 

concentrations of turbidity (a), TSS (b), COD (c), BOD (d), and DO (e) using the SWR 

technique based on calibration dataset 
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Additionally, the validation models for them were stable with (R2 = 0.901, RMSE 

= 6.475 mg/l, P-value < 0.001, and RPD = 3.178), (R2 = 0.857, RMSE = 0.180 mg/l, P-

value < 0.001, and RPD = 2.644), and (R2 = 0.905, RMSE = 0.730 mg/l, P-value < 0.001, 

and RPD = 3.244), respectively. 

It can be noted that the concentrations of both optical and non-optical SWQPs in 

the selected study area of the SJR were well established and evaluated using the Landsat 

8-based-SWR models. Accordingly, highly accurate results were achieved to retrieve 

concentrations of optical and non-optical SWQPs from the Landsat 8 satellite data. The 

main reasons are: 

• Water sampling was performed at the same time of Landsat 8 over pass. 

• The Landsat 8 satellite data were supposed to be efficient, because their multi-

spectral data were designed to be narrower than older sensors, and new bands, 

such as CB, were added to support water quality monitoring applications. 

• The Landsat 8 surface reflectance data were used to represent only the water-

leaving reflectance without introducing radiometric or atmospheric distortions. 

• Band rationing was found to be a good tool for estimating the concentrations of 

optical and non-optical SWQPs due to its ability to enhance spectral contrast 

between different targets, and to remove much of the effect of illumination in the 

analysis of spectral differences. 

• The SWR technique was introduced and implemented because it is capable of 

maximizing prediction power using a minimum number of independent variables. 
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Figure 2.9 Statistics and accuracy measures between the measured and predicted 

concentrations of turbidity (a), TSS (b), COD (c), BOD (d), and DO (e) using the SWR 

technique based on validation dataset 
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2.3.4 Landsat 8-based-SWR Spatial Distribution Maps 

As shown in Figure 2.10, the developed Landsat 8-based-SWR models were 

applied to each pixel of the selected study area of the SJR to generate highly accurate 

spatial concentration maps for turbidity, TSS, COD, BOD, and DO.  

 

Figure 2.10 Spatial concentration maps for turbidity (a), TSS (b), COD (c), BOD (d), 

and DO (e) generated from the developed Landsat 8-based-SWR approach 
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For the entire study area of the SJR, the estimation values of turbidity, TSS, COD, 

BOD, and DO ranged from 0.900 to 18.000 NTU, 1.100 to 14.000 mg/l, 4.500 to 95.000 

mg/l, 2.100 to 6.000 mg/l, and 6.500 to 15.000 mg/l, respectively. From the spatial 

distribution maps shown in Figure 2.10, it can be observed that concentrations of COD 

and BOD in the upper part of the selected study area of the SJR (i.e. above Mactaquac 

Dam) were clearly higher than those in the lower part of the river (i.e. below Mactaquac 

Dam) due to categorizing the upper part as an industrial region. On the other hand, the 

distribution pattern in concentrations of turbidity, TSS, and DO in the SJR depends 

mainly on sampling time. Accordingly, concentrations of turbidity, TSS, and DO in 

spring season were found to be higher than those sampled in summer owing to rainfall, 

snow melt, and low temperatures. 

2.4 Conclusion 

The overload of surface water pollutants can negatively affect both water quality 

and aquatic life. Because of these variations, the estimation of concentrations of optically 

and non-optically active SWQPs from space is essential to provide both spatial and 

temporal variability of water quality. Therefore, a remote sensing-based-SWR approach 

was developed to estimate concentrations of turbidity, TSS, COD, BOD, and DO using 

the spectral information of the Landsat 8 satellite data. 

It was known that regression-based techniques have poor ability to model the 

complex or unknown relationships (i.e. the relationship between remotely sensed data 

and non-optical SWQPs which do not have direct optical properties and spectral 

characteristics). However, in our study, this problem was solved by correlating non-
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optical SWQPs with optical variables, such as turbidity or TSS concentrations, which 

have direct optical properties that can be directly estimated by remote sensing means. 

After that, indirect relationships between satellite spectral data and concentrations of non-

optical SWQPs were generated. As a result, the Landsat 8-based-SWR approach was 

found to be very efficient in developing highly accurate models to estimate both optical 

and non-optical SWQPs from space with R2 > 85%, which is very trustworthy. 

Our study is very useful for local administrators, who have to make strict 

measures to protect surface water quality in their water bodies. In order to extra validate 

the stability/applicability of the developed Landsat 8-based-SWR approach, further 

studies, at different seasons, are needed to estimate concentrations of optical and non-

optical SWQPs in either the remaining parts of the SJR or other water bodies. Finally, to 

further improve the accuracy of remote sensing estimation of SWQPs, another mapping 

tool (i.e. artificial intelligence), which is capable of modelling complex relationship 

between satellite spectral signatures and concentrations of SWQPs, is needed. 
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Chapter 3: MAPPING CONCENTRATIONS OF SURFACE WATER 

QUALITY PARAMETERS USING A NOVEL REMOTE 

SENSING AND ARTIFICIAL INTELLIGENCE FRAMEWORK2 

Abstract 

The deterioration of surface water quality occurs due to the presence of various 

types of pollutants generated from human, agricultural, and industrial activities. Thus, 

mapping concentrations of different surface water quality parameters (SWQPs), such as 

turbidity, total suspended solids (TSS), chemical oxygen demand (COD), biological 

oxygen demand (BOD), and dissolved oxygen (DO), is indeed critical for providing the 

appropriate treatment to the affected water bodies. Traditionally, concentrations of 

SWQPs have been measured through intensive field work. Additionally, quite a lot of 

studies have attempted to retrieve concentrations of SWQPs from satellite images using 

regression-based methods. However, the relationship between concentrations of SWQPs 

and satellite spectral data is too complex to be modelled accurately by using regression-

based methods. Therefore, our study attempts to develop an artificial intelligence 

modelling method for mapping concentrations of both optical and non-optical SWQPs. In 

this context, a remote sensing framework based on the back-propagation neural network 

(BPNN) is developed for the first time to quantify concentrations of SWQPs from the 

                                                 

2 This paper has been published in the “International Journal of Remote Sensing (IJRS)”: 

Sharaf El Din, E., Zhang, Y., & Suliman, A. (2017). Mapping concentrations of surface water 

quality parameters using a novel remote sensing and artificial intelligence framework. International 

Journal of Remote Sensing, 38 (4), pp. 1023-1042. http://dx.doi.org/10.1080/01431161.2016.1275056.  

http://dx.doi.org/10.1080/01431161.2016.1275056
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Landsat 8 satellite imagery. Compared to other methods, such as support vector machine, 

significant coefficients of determination (R2) between the Landsat 8 surface reflectance 

and concentrations of SWQPs were obtained using the developed Landsat 8-based-BPNN 

models. The resulting R2 values ≥ 0.93 for turbidity, TSS, COD, BOD, and DO. Indeed, 

these findings indicate that the developed Landsat 8-based-BPNN framework is capable 

of developing highly accurate models for retrieving concentrations of different SWQPs 

from the Landsat 8 imagery. 

3.1 Introduction 

In the past few decades, the increase of anthropogenic activities, especially in 

industrial areas, has negatively affected water bodies. Accordingly, the result can be a 

reduction in water storage capacity or in rivers’ ability to support aquatic life. This 

shortage of water which has increased over the past years is expected to continue in the 

future (Gaballah, Khalaf, Beckand, & Lopez, 2005). Thus, to help the decision-makers in 

taking the right action at the right time, the relevant information systems require 

continuously updated information about water quality (WQ). 

WQ changes as water flows through different land-use surfaces (Bolstad & 

Swank, 1997). These surfaces define the type and amount of surface water quality 

parameters (SWQPs) of surface water that flows into water bodies (Moss, 1998). The 

deterioration of surface WQ occurs due to the runoff from the activities on various types 

of land-use surfaces (e.g., agricultural, residential, commercial, and industrial activities) 

into water bodies. In addition to that, the climate variations due to the global warming 

can lead to floods, drought, biodiversity loss, and an increase in the infectious diseases 
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that can degrade WQ (Murdoch, Baron, & Miller, 2000). Because of these continuous 

changes in WQ, regular monitoring and estimation of optical and non-optical SWQPs on 

a large scale is indeed critical for providing the targeted treatment to a specific water 

body. Thus, remote sensing technology is found to be an appropriate tool for estimating 

concentrations of SWQPs and potentially offers wide spatial coverage as well as 

detecting temporal changes. 

Bearing that in mind, the relevant research about estimating concentrations of 

SWQPs from space is reviewed. Accordingly, remote sensing estimation of 

concentrations of SWQPs, especially optical SWQPs, is achievable via regression-based 

and learning-based techniques. While most of the available publications were based on 

exploring regression techniques, relatively fewer research attempts focused on learning-

based algorithms. In this context, for instance (He, Chen, Liu, & Chen, 2008; Yang, Liu, 

Ou, & Yuan, 2011; Nathan, Sarah, Stephen, Narumon, Brian, & Jiaguo, 2013; Matias, 

María, Lucio, & Susana, 2015), (Krista, et al., 2015; Xiang, Huapeng, Xiangyang, Yebao, 

Xin, & Hua, 2016; Yunlin, Kun, Yongqiang, Xiaohan, & Boqiang, 2016), and (Darryl, 

Blake, Ross, Richard, Kenneth, & Donald, 2014; Tiit, Krista, Dolly, & Stephan, 2015) 

have used the Landsat Thematic Mapper (TM), Moderate Resolution Imaging 

Spectroradiometer (MODIS), and Medium Resolution Imaging Spectrometer (MERIS), 

respectively, to develop regression models to estimate concentrations of SWQPs. 

Theoretically, WQ is complex to have a simple relationship with satellite spectral 

signatures (Xiang, Huapeng, Xiangyang, Yebao, Xin, & Hua, 2016). Moreover, it is 

challenging for regression-based techniques to model such a complex relationship 

between satellite reflectance and concentrations of different SWQPs, especially non-
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optical parameters, such as chemical oxygen demand (COD), biological oxygen demand 

(BOD), and dissolved oxygen (DO). Therefore, our focus in this research is to explore an 

appropriate learning-based algorithm in mapping both optical and non-optical SWQPs 

from the Landsat 8 data since these data are freely available and acquired by a recent 

satellite sensor. 

Based on our literature review, we have focused on the competence and 

performance ability of learning-based techniques to retrieve concentrations of different 

SWQPs from the Landsat 8 Operational Land Imager (OLI) images. In this article, the 

selected learning-based technique is the back-propagation neural network (BPNN) since 

it has been proved in the literature to be successful in the applications of remote sensing 

image classification and pattern recognition (Suliman & Zhang, 2014). However, almost 

all of the available research about estimating concentrations of different SWQPs using 

artificial neural networks (ANNs) is mainly based on two learning-based algorithms: 

Levenberg-Marquardt (LM), and Cascade Correlation (CC). Consequently, the published 

work based on these two learning algorithms is reviewed. 

The LM learning algorithm has been used to develop empirical models for 

estimating WQ parameters of chlorophyll, total suspended solids (TSS), turbidity, and 

secchi disk depth in the Gulf of Finland (Zhang, Pulliainen, Koponen, & Hallikainen, 

2002). The inputs of multi-layer perceptron (MLP) network were the digital numbers 

from the Landsat-5 TM and Synthetic Aperture Radar (SAR) bands, while the outputs 

were the selected WQ parameters. The determination coefficients (R2) of the network 

testing data were 0.84, 0.92, 0.94, and 0.96 for chlorophyll, total suspended solids, 

turbidity, and secchi disk depth, respectively. In another study, chlorophyll was 
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investigated using the Landsat-5 TM data across Tucurui reservoir, Brazil (Ribeiro, 

Almeida, Rocha, & Krusche, 2008). A model based on the MLP architecture and the 

radial base function was developed to predict chlorophyll concentrations. The R2 for 

chlorophyll testing dataset was 0.92. Another study used the Landsat-5 TM imagery and 

McCulloch and Pitt’s neuron model to quantify chlorophyll, turbidity, and total 

phosphorus over Kissimmee River in Florida (Yirgalem, 2012). The root mean square 

error (RMSE) for chlorophyll, turbidity, and phosphorus was below 0.170 mg m-3, 0.500 

NTU, and 0.030 mg l-1, respectively, for the validation data. Water samples were 

gathered with MLP neural network to retrieve suspended sediments from MODIS 

imagery (Ali, et al., 2013). A robust relationship between MODIS bands 1 and 2 and 

water samples was established based on a three-layer ANN with six neurons in the hidden 

layer. The R2 for suspended sediments was 0.85 for all of the data used. 

The CC learning algorithm has been utilized to derive empirical models for 

estimating and predicting the monthly values of different surface water parameters, such 

as power of hydrogen (pH) and electrical conductivity (EC), over the Axios River, 

Greece (Diamantopoulou, Antonopoulos, & Papamichail, 2007). In this study, the ANN 

training was achieved by using the CC algorithm along with the MLP architecture. The 

CC algorithm starts the training without any hidden nodes. If the error between the actual 

output and the targeted output is higher than a defined threshold, it adds one hidden node. 

This node is connected to all other nodes except the output nodes. The optimal number of 

the hidden nodes is commonly determined by trial and error. The results showed that the 

best architecture of the proposed network was composed of one input layer with nine 
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input variables, one hidden layer with nineteen nodes, and one output layer with one 

output variable. The R2 values for both pH and EC were > 0.87. 

Based on what has been reviewed, the use of the LM and CC learning-based 

algorithms has been suggested in most cases because they are considered as quicker 

training algorithms. However, the LM learning-based algorithm works well and fast only 

if the error surface is smooth (i.e. with no local minima); otherwise there is no guarantee 

to find the global minima (Holger, Ashu, Graeme, & Sudheer, 2010). Also, the CC 

learning-based algorithm is supposed to be efficient in solving regression problems; 

however, its propensity to overfit on the training data is considered as a critical 

disadvantage (Tetko & Villa, 1997). 

Additionally, compared to other machine learning-based methods, such as support 

vector machine (SVM), highly accurate remote sensing estimation models of both optical 

and non-optical SWQPs can be obtained using the proposed Landsat 8-based-BPNN. As 

for SVM, it has the defect of parameter selection because of the absence of theoretical 

guidance (i.e. there is no rule or even a guideline for SVM parameter selection). 

Moreover, SVM uses quadratic programming to solve the support vector and the process 

is complex, especially in large-scale applications. Furthermore, the most serious 

drawback with SVM is the high algorithmic complexity and extensive memory 

requirements of the required quadratic programming. Additionally, an important practical 

problem that is not entirely solved is the selection of the optimum kernel function and its 

corresponding parameters (Valyon & Horvath, 2004). 

In contrast, the BPNN learning-based algorithm can result in good generalization 

when small, large, or even noisy datasets are used (MacKay, 1992). The BPNN can 
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overcome the defects of slow training speed, poor generalization ability, and low learning 

accuracy reported in other learning-based techniques. This means the BPNN can not only 

satisfy the accuracy requirements, but also improve the learning efficiency. Using the 

BPNN, the validation dataset can be utilized to decide when to stop training in order to 

avoid overfitting (MacKay, 1992). As an important pattern recognition algorithm, the 

BPNN is found to be an appropriate tool for WQ assessment, which is a typical pattern 

recognition problem. Even though the BPNN algorithm has many advantages, the local 

minima is considered as the most critical problem in the error surface. But, this problem 

can be solved by choosing an appropriate learning rate to achieve the global minima in 

the error surface. Therefore, in our study, the BPNN algorithm is proposed to retrieve 

concentrations of optical and non-optical SWQPs from the Landsat 8 satellite data.  

The identified objectives of this research are as follows: (1) to develop a Landsat 

8-based-BPNN framework for mapping concentrations of SWQPs from the Landsat 8 

satellite data, and (2) to produce a spatial distribution map for each optical and non-

optical SWQP over each pixel of the selected study area. To the best of our knowledge, 

our Landsat 8-based-BPNN framework is the first to map concentrations of SWQPs, 

especially non-optical parameters, with highly accurate results, compared to regression-

based or even other learning-based techniques. 

3.2 Artificial Neural Network (ANN) Background 

An ANN is a paradigm adapted to mimic the biological neurons using a 

computing process. The important feature of all ANN types is the adaptive nature, where 

they learn by examples instead of the use of conventional programming procedures to 
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solve complex problems (Hinton, 1992; Jain, Mao, & Mohiuddin, 1996). Among various 

types of ANN architectures, the most widely used type, especially in classification 

processes, is the MLP network.  

 

Figure 3.1 The flowchart of retrieving concentrations of different SWQPs from satellite 

data by using the proposed Landsat 8-based-BPNN 
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The MLP is organized in layers of computing elements, known as neurons, which 

are connected between layers via weights. The MLP networks are closely related to 

statistical models and are the most suited for forecasting applications (Rumelhart, Hinton, 

& Williams, 1986; Hinton, 1992; Alsmadi, Omar, & Noah, 2009). Basically, one of the 

most common ANN algorithms, especially in classification and pattern recognition 

applications, is the BPNN algorithm. More details about the ANN technology and 

terminology, and the BPNN algorithm are provided in (Hinton, 1992; Suliman & Zhang, 

2014). 

3.3 Materials and Methods 

The method of retrieving concentrations of different SWQPs from satellite data 

by using the proposed Landsat 8-based-BPNN is flowcharted in Figure 3.1. This section 

is devoted to describing in detail the study area of the Saint John River (SJR), the 

processing steps of remotely sensed data, the water sampling and laboratory analysis, and 

mapping concentrations of optical and non-optical SWQPs by using the proposed BPNN 

algorithm. 

3.3.1 Remotely Sensed Data 

3.3.1.1 Study Area 

The selected study area is a part of the SJR which is approximately 673km long, 

located principally in the Canadian province of New Brunswick, as shown in Figure 3.2. 

Around 35% and 13% of the SJR watershed is located in the US state of Maine and the 

http://en.wikipedia.org/wiki/Canadian_province
http://en.wikipedia.org/wiki/New_Brunswick
http://en.wikipedia.org/wiki/U.S._state
http://en.wikipedia.org/wiki/Maine
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Canadian Province of Quebec, respectively. The remaining 52% of the watershed lies 

within New Brunswick, covering an area of 4748 km2 (Arseneault, 2008). 

 

Figure 3.2 The selected study area of the SJR, New Brunswick, Canada (Earth Explorer, 

2016) 

3.3.1.2 Satellite Processing Steps 

The full Landsat 8 scenes are available free of charge at Level 1T (terrain 

corrected) at Landsat websites maintained by the US Geological Survey (USGS). The 

three Landsat 8 satellite sub-scenes used in our study were acquired on 27 June 2015, 10 

April 2016, and 12 May 2016. Basically, the Level 1T product is a geometrically 

corrected image and rectified to the Universal Transverse Mercator (UTM) projection, 

World Geodetic System 1984 (WGS 84) datum. Digital numbers (DNs) of the Landsat 8 

satellite images are stored in 16 bits unsigned integer format, and were subsequently 

corrected to obtain the top of atmospheric (TOA) reflectance using radiometric rescaling 

coefficients. 
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In order to remove the effects of the atmosphere, surface reflectance values were 

calculated using the Dark Object Subtraction (DOS) method (Chavez, 1988). This 

method is found to be very efficient in discriminating and mapping wetland areas and 

well accepted by the geospatial community to correct light scattering in remote sensing 

data (Song, Woodcock, Seto, Lenney, & Macomber, 2001). Other atmospheric correction 

methods, such as second simulation of the satellite signal in the solar spectrum (6S) and 

atmospheric and topographic correction (ATCOR), have indeed been used in remote 

sensing research field. However, the main disadvantage of these methods is that they 

require extensive field measurements during each satellite pass. This is unacceptable for 

various applications and is often impossible, as when using historical data or when 

working in very remote or difficult access locations (Pat & Chavez, 1996). 

Finally, to delineate concentrations of different SWQPs over any water body, the 

water surface was masked using the Normalized Difference Water Index method 

(Mcfeeters, 1996). 

3.3.2 In situ Measurements  

In this study, 39 water sample points were randomly selected and distributed over 

the whole study area during three field trips in 27 June 2015, 10 April 2016, and 12 May 

2016, as shown by dots in Figure 3.3. One sample was excluded due to cloud coverage. 

Coordinates of the sample points were recorded in the field through a handset global 

positioning system (GPS), GARMIN 76CSx. The three sampling events were selected at 

different seasons (i.e. summer and spring) to best represent the maximum variation in the 

concentrations of both optical and non-optical SWQPs. 
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In order to carry out this study efficiently, the representative water samples were 

collected just beneath the water surface (i.e., 30 to 50 cm) and at the same acquisition 

time of the full Landsat 8 scenes over the selected study area. At each station, turbidity, 

TSS, COD, BOD, and DO were measured and analyzed according to the standard 

methods for lab examination of water and wastewater suggested by the American Public 

Health Association (APHA) (APHA, 2005). 

 

Figure 3.3 The Landsat 8 satellite sub-scenes of the study area with sampling locations 

3.3.3 Mapping Concentrations of SWQPs using the BPNN Algorithm 

The BPNN is one of the most popular learning-based algorithms utilized in 

remote sensing applications; however, it is not well known in the WQ research field. The 

proposed feed-forward BPNN algorithm was adopted, as shown in Figure 3.4, to model 
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the unknown relationship between concentrations of SWQPs and the Landsat 8 surface 

reflectance information. The main steps of developing the BPNN models are given in the 

following subsections. 

 

Figure 3.4 The flowchart of applying the proposed BPNN algorithm 
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3.3.3.1 ANN Input and Output Selection 

The first step in the development of the Landsat 8-based-BPNN models is the 

choice of potential model input variables from the available data and a set of appropriate 

model outputs. Basically, a number of techniques are available for assessing the 

significance of the relationship between potential model inputs and outputs. These 

techniques are mainly subdivided into two basic approaches: model-based and model-free 

approaches (Maier & Dandy, 2000). The primary disadvantage of the model-based 

approach is that it is time consuming, as a model structure, training, and evaluation have 

to be developed for several times before deciding which one is the best. 

Consequently, in our study, the model-free approach was utilized and the inputs 

were selected based on the Landsat 8 multi-spectral information, while SWQP 

concentrations, one at a time, were selected to form the network outputs. Generally, when 

a model-free approach is used, a statistical measure of significance is calculated to 

measure the strength of the relationship between potential model inputs and outputs. 

3.3.3.2 ANN Data Division 

As part of the Landsat 8-based-BPNN models development process, the available 

data were normally subdivided into calibration (i.e. training and testing) and validation 

datasets. The training set was utilized to determine the connection weights, the testing set 

was used to assess the generalization ability of the trained model, and the validation set 

was used to decide when to stop training to avoid overfitting. Basically, the methods of 

dividing the available data into subsets can be divided into random and statistical data 

division approaches. In WQ studies, the training, testing, and validation datasets should 
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have the same statistical properties in order to develop the best possible input-output 

model. In this context, the statistical data division approach was utilized and the available 

data were subdivided into their respective subsets. 

3.3.3.3 ANN Architecture Selection 

The neural network architecture determines the overall structure and information 

flow in ANN models. Thus, it has a significant impact on the functional form of the 

relationship between model inputs and outputs. Normally, ANN architectures are divided 

into feed-forward and recurrent networks (Graupe, 2007). The MLP neural network is the 

most common form of feed-forward model architecture.  

In our study, the feed-forward MLP with only three layers was utilized along with 

a linear aggregation function and a sigmoid function. Basically, the input layer neurons 

simply passed on the weighted inputs to the hidden and output layer neurons. 

Additionally, using a sigmoid function can provide the capability of modelling complex 

relationships between the model inputs and outputs. 

3.3.3.4 ANN Structure Selection 

The neural network structure, along with the neural network architecture, defines the 

functional form of the input-output relationship. Determination of an appropriate network 

structure involves the selection of an appropriate number of hidden neurons and how they 

process the incoming signals by using a suitable transfer function. The optimal network 

structure generally creates a balance between the network generalization, processing 

speed, and complexity.  
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In our study, the number of hidden neurons was identified by various trials 

because there is no stable guideline to optimize the number of the hidden neurons. Using 

too few neurons may lead to underfitting, while using too many may cause overfitting. In 

order to avoid any overfitting during the training stage, a cross validation procedure was 

performed by keeping track of the competence of the fitted model. Additionally, a 

sigmoid function was utilized with the BPNN algorithm because it is differentiable and 

can provide closer similarity to the biological neuron than do threshold functions 

(Suliman & Zhang, 2014). 

3.3.3.5 ANN Training 

The aim of ANN training is to find a set of connection weights that enables the 

network with a given functional form to best represent the targeted input-output 

relationship. Generally, ANN training is performed using an appropriate optimization 

algorithm. The majority of these algorithms can be subdivided into deterministic and 

stochastic. Deterministic techniques attempt to identify a single parameter vector that 

minimizes the measured error signal between both the actual and desired outputs. 

Basically, these methods belong to either local (e.g. BPNN algorithm) or global 

optimization approaches (e.g. Newton's algorithm).  

In our study, the BPNN algorithm was utilized because this method is 

computationally efficient and can control the learning process by utilizing an appropriate 

learning rate to achieve the global minimum error. Actually, using too small a value for 

learning rate may lead to slow learning, while using too large a value may cause 

instability or poor performance. Additionally, as shown in Equation (3.1), the network 
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training was assessed at the output layer by using both the actual and desired output 

signals (Suliman & Zhang, 2014). 

 𝐸 = 0.50 ×  ∑ (𝑒k)2  = k 0.50 ×  ∑ (𝑇k −  𝑂k)2
k   (3.1) 

where k is the index of the output layer of the network; 𝑒k is the error signal; 𝑇k is the 

desired output; 𝑂k is the network actual output. 

3.3.3.6 ANN Evaluation 

In order to determine which network structure is optimal, the performance of a 

calibrated model is evaluated using statistical criteria. The ANN model performance is 

usually assessed using a quantitative error metric. In our study, the performance of the 

developed BPNN models was evaluated based on the coefficient of determination (R2), 

root mean square error (RMSE), and significant value (p-value). 

3.4 Results and Discussion 

Our study aims at estimating concentrations of both optical and non-optical 

SWQPs from satellite data. To achieve this objective, a methodology based on 

developing Landsat 8-based-BPNN models was developed to retrieve concentrations of 

turbidity, TSS, COD, BOD, and DO from the Landsat 8 satellite data. Consequently, a 

spatial distribution map showing concentrations of each SWQP was generated over the 

entire study area. The results obtained from this study include (1) concentrations of 

optical and non-optical SWQPs, (2) estimation and validation of the developed Landsat 

8-based-BPNN models, (3) producing a spatial concentration map for each SWQP over 
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the entire study area, and (4) comparison of other model results, such as support vector 

machine (SVM). These results are discussed in the following subsections. 

3.4.1 Concentration Results of both Optical and Non-optical SWQPs 

Thirty-nine water samples were collected over 70 km of the SJR and analyzed for 

optically and non-optically active SWQPs. The statistics, shown in Table 3.1, for 

turbidity, TSS, COD, BOD, and DO were measured from the collected water samples. 

The density of samples per km collected in our study is higher than that used in previous 

studies. For instance, only 11 samples were used by Yirgalem (2012) to capture water 

quality variables over 37 km of the Kissimmee River. 

Table 3.1 Statistics of the concentrations of SWQPs along the study site. 

SWQPs 
Minimum 

(Min) 

Maximum 

(Max) 
Mean 

Standard 

deviation (SD) 

Turbidity (NTU) 1.190 13.100 6.303 4.327 

TSS (mg l-1) 1.200 11.400 4.781 3.617 

COD (mg l-1) 4.800 86.640 29.550 22.803 

BOD (mg l-1) 1.110 3.250 1.707 0.504 

DO (mg l-1) 6.990 14.140 11.062 2.517 

 

The correlation coefficient (r) between the measured parameters was calculated 

and populated in a matrix form as shown in Table 3.2. Based on this correlation matrix, 

the relationship between turbidity and all SWQPs except DO was positively correlated. 

On the other hand, the r values between DO levels and turbidity, TSS, COD, and BOD 

were -0.816, -0.824, -0.838, and -0.776, respectively. Moreover, the relationship between 
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turbidity and TSS was highly correlated, and this is because suspended sediment is 

considered as the dominant indicator of turbidity. 

Table 3.2 The correlation coefficient (r) matrix of both optical and non-optical 

SWQPs. 

 Turbidity TSS COD BOD DO 

Turbidity 1.000 0.976 0.857 0.799 -0.816 

TSS 0.976 1.000 0.861 0.850 -0.824 

COD 0.857 0.861 1.000 0.895 -0.838 

BOD 0.799 0.850 0.895 1.000 -0.776 

DO -0.816 -0.824 -0.838 -0.776 1.000 

 

3.4.2 Estimation and Validation of the Landsat 8-based-BPNN Developed Models 

The main steps of developing the Landsat 8-based-BPNN models, as well as the 

way the data flow through and the outcomes achieved, are given in the following 

subsections. 

3.4.2.1 ANN Input and Output Selection 

The model-free approach was utilized and the r values were used to assess the 

strength of the relationship between model inputs and outputs. In this context, coastal 

blue (CB), blue (B), green (G), red (R), near-infrared (NIR), shortwave infrared 1 

(SWIR1), and shortwave infrared 2 (SWIR2) multi-spectral bands were selected to form 

the input layer. As shown in Table 3.3, these multi-spectral bands were significantly 

correlated (i.e. r ≥ 0.50) with all SWQPs concentrations used in our study. However, the 
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rest of the Landsat 8 bands such as Cirrus, thermal infrared 1 (TIR1), and thermal 

infrared 2 (TIR2) were less correlated (i.e. r < 0.50) to the selected SWQPs. The reason 

for achieving less r values between TIR1 and TIR2 bands and SWQPs is that, these bands 

are mainly designed for detecting surface temperatures; while, Cirrus is commonly used 

for detecting clouds. 

Table 3.3 The r values between the Landsat 8 multi-spectral bands and concentrations 

of SWQPs. 

 Turbidity TSS COD BOD DO 

CB 0.792 0.807 0.752 0.742 -0.761 

B 0.605 0.642 0.555 0.549 -0.644 

G 0.631 0.668 0.597 0.615 -0.612 

R 0.654 0.671 0.605 0.608 -0.590 

NIR 0.844 0.887 0.839 0.810 -0.871 

SWIR1 0.827 0.799 0.704 0.711 -0.777 

SWIR2 0.821 0.810 0.695 0.700 -0.746 

Cirrus 0.484 0.432 0.401 0.441 -0.452 

TIR1 0.424 0.475 0.411 0.439 -0.408 

TIR2 0.438 0.452 0.429 0.433 -0.399 

 

3.4.2.2 ANN Data Division 

The statistical data were selected as the proposed data division approach. In 

coastal studies, all datasets should have the same statistical properties, as much as 
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possible, to best represent the input-output relationship. Thus, a trial and error procedure 

was used to divide the available data in such a way that the statistical properties of each 

subset are close to those of other subsets. The mean, maximum, minimum, and standard 

deviation were the statistical metrics used to perform this task. Moreover, the proportion 

of the data to be utilized for training, testing, and validation was selected in advance by 

the modeller. Sixty percent of water samples (i.e. 22 samples) were utilized for training, 

while 20% (i.e. 8 samples) were used for testing and the other 20% (i.e. 8 samples) for 

validation. The data division approach used in our study is quite similar to that of a 

previous study conducted by Yirgalem (2012). 

3.4.2.3 ANN Architecture Selection 

The feed-forward MLP was selected as the proposed ANN architecture since it is 

highly successful in classification and pattern recognition applications. The proposed 

architecture consisted of three layers (i.e. input, hidden, and output) with a sigmoid 

activation function which is proved to be sufficient for nonlinear modelling purposes. 

While the number of the input neurons was selected to be equal to the selected input 

bands of the Landsat 8 image, the number of the output neurons was selected to be one at 

a time since we are building an ANN for prediction purposes.  

As shown in Figure 3.5, seven neurons (i.e. CB, B, G, R, NIR, SWIR1, and 

SWIR2) were used to form the input layer, while one SWQP at a time was used to outline 

the output layer. The main basis of using one SWQP at a time is to accelerate the 

computations of the developed models and to diminish the complexity of the ANN. 
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Figure 3.5 The architectural design of the proposed ANN 

3.4.2.4 ANN Structure Selection 

An appropriate selection of the proper number of hidden neurons besides a 

suitable transfer function is indeed a critical task. In our study, 20 processing elements 

(PEs) were experimentally selected to form the hidden layer. The trial and error 

procedure initially started with two hidden neurons, and then the number of hidden 

neurons was increased incrementally to thirty. Actually, using less than twenty neurons 

led to an underfitting problem (i.e. being unable to learn what you want the network to 

learn), while using more than twenty resulted in slow learning and overfitting problems.  

Additionally, a sigmoid transfer function was utilized with the BPNN algorithm 

because it is differentiable and can provide the powerful capability of modelling the 

complexity inherent in the system. Once the sigmoid function was used, the model input 

and output were scaled appropriately to fall within the function limits [0.00 to 1.00] to 
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avoid the saturation problem in the training stage. The input scaling has been performed 

using surface reflectance values of the Landsat 8 spectral bands. 

3.4.2.5 ANN Training and Evaluation 

The BPNN algorithm was utilized as the proposed learning-based algorithm since 

it is widely used and is found to be very efficient in remote sensing and digital image 

processing applications. Moreover, the BPNN algorithm was found to be computationally 

efficient as 1, 4, 2, 1, and 3 seconds were achieved, at the network training phase, for 

turbidity, TSS, COD, BOD, and DO, respectively. Furthermore, finding the global 

minima was guaranteed by utilizing an appropriate learning rate. In our study, a learning 

rate value of 0.01 was adjusted to achieve the minimum error in the error function. 

Actually, by using a learning rate value beyond 0.005, the ANN computational speed was 

very slow; however, by using a learning rate value above 0.10, the performance and 

generalization ability of the proposed ANN were very poor. 

Table 3.4 Statistical measures between the target and actual concentrations of SWQPs 

using the developed Landsat 8-based-BPNN. 

SWQPs 
R2 

(training) 

RMSE 

(training) 

R2 

(validation) 

RMSE 

(validation) 

R2 

(testing) 

RMSE 

(testing) 

Turbidity (NTU) 1.000 0.305 0.979 0.073 0.991 0.069 

TSS (mg l-1) 0.906 0.092 0.976 0.226 0.933 0.999 

COD (mg l-1) 0.963 0.285 0.918 0.158 0.937 0.877 

BOD (mg l-1) 0.937 0.034 0.941 0.042 0.930 0.076 

DO (mg l-1) 0.985 0.073 0.942 0.188 0.934 0.455 
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Figure 3.6 The Graphical fit results of turbidity ((a)(i), (a)(ii), and (a)(iii)), TSS ((b)(i), 

(b)(ii), and (b)(iii)), COD ((c)(i), (c)(ii), and (c)(iii)), BOD ((d)(i), (d)(ii), and (d)(iii)), 

and DO ((e)(i), (e)(ii), and (e)(iii)) for training, validation, and testing datasets of the 

developed Landsat 8-based-BPNN 
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Using the BPNN algorithm, the RMSEs for turbidity were 0.305, 0.073, and 0.069 

NTU for the network training, validation, and testing datasets, respectively. The RMSEs 

for TSS were 0.092, 0.226, and 0.999 mg l-1 for the network training, validation, and 

testing datasets, respectively. For the rest of the selected parameters, COD, BOD, and 

DO, the training, validation, and testing RMSEs were (0.285, 0.158, 0.877 mg l-1), 

(0.034, 0.042, 0.076 mg l-1), and (0.073, 0.188, 0.455 mg l-1), respectively. 

Actually, it is very obvious that the developed Landsat 8-based-BPNN was 

proved to be very efficient in monitoring and estimating concentrations of different 

SWQPs, even the non-optically active parameters, with highly acceptable results. As 

shown in Table 3.4 and Figure 3.6, coefficients of determination were found to be very 

high (R2 ≥ 93%) at the neural network testing phase along with p-value < 0.005. 

In Figure 3.6, the final relationship between the targeted output (concentrations 

of SWQPs) and the actual output derived from the developed BPNN algorithm was 

developed in the Matlab environment. The experimental platform was the MATLAB 

R2014a and concentrations of turbidity, TSS, COD, BOD, and DO were estimated on this 

platform using an open source code. Accordingly, a Landsat 8-based-BPNN model was 

generated to predict concentrations of each SWQP individually over each pixel of the 

selected study area with highly acceptable results. 

The threshold values of the validation RMSE were selected to be 0.100, 0.230, 

0.160, 0.050, and 0.200 for turbidity, TSS, COD, BOD, and DO, respectively. As shown 

in Figure 3.7, turbidity, TSS, COD, BOD, and DO error curves showed that the training 

phase has been stopped at epoch 10, 34, 14, 10, and 22, respectively by reaching the 

stopping point introduced by the validation data set. Visually, it was observed that there 
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is no further significant improvement in the network performance after realizing the 

stopping points. 

 

Figure 3.7 Training, validation, and testing error curves of turbidity (a), TSS (b), COD 

(c), BOD (d), and DO (e) 
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3.4.3 The Landsat 8-based-BPNN Spatial Concentration Maps 

The developed Landsat 8-based-BPNN model for each SWQP was applied to the 

Landsat 8 satellite data to map concentrations of each optical and non-optical SWQP in 

the selected study area of the SJR. The whole Landsat 8 surface reflectance data, as an 

ASCII output from PCI Geomatica, were used pixel by pixel as an input to the developed 

Landsat 8-based-BPNN models in order to generate spatial concentration maps for 

turbidity, TSS, COD, BOD, and DO, as shown in Figure 3.8. 

Overall, the developed Landsat 8-based-BPNN framework could be used to 

produce highly accurate estimations of optically and non-optically active SWQPs 

compared to other regression techniques which have been used in various studies such as 

(He, Chen, Liu, & Chen, 2008; Yang, Liu, Ou, & Yuan, 2011; Nathan, Sarah, Stephen, 

Narumon, Brian, & Jiaguo, 2013; Xiang, Huapeng, Xiangyang, Yebao, Xin, & Hua, 

2016). The main basis is that the BPNN algorithm has the capability to generate an 

appropriate modelling of the unknown, complex, or even non-linear relationship between 

remotely sensed multi-spectral information and concentrations of different SWQPs 

without prior knowledge of the parameter relationship.  

Compared to other learning-based algorithms utilized in previous studies, such as 

(Zhang, Pulliainen, Koponen, & Hallikainen, 2002; Diamantopoulou, Antonopoulos, & 

Papamichail, 2007; Yirgalem, 2012; Ali, et al., 2013), more accurate estimations of 

concentrations of different SWQPs were obtained by using our novel Landsat 8-based-

BPNN framework. 
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Figure 3.8 Spatial distribution maps of turbidity (a), TSS (b), COD (c), BOD (d), and 

DO (e) generated from the developed Landsat 8-based-BPNN 

3.4.4 Comparison of Other Model Results 

The performance of other machine learning-based methods, such as SVM, has been 

proved to be efficient in remote sensing image classification applications (Liu & Zheng, 

2009). Therefore, the addition of a comparison experiment with SVM method was carried 
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out to justify the performance of the developed Landsat 8-based-BPNN framework.  

Basically, the aim of SVM is to produce an input-output regression function by 

applying a set of high dimensional functions. In our study, the SVM loss function and the 

kernel function were selected as described by Liu & Zheng (2009). The most critical 

parameters were the kernel function parameter (σ2), the penalty coefficient (C), and the 

width of the insensitive loss function (ϵ). The overall performance of the SVM depends 

mainly on the interaction of all parameters; however, the individual optimization of each 

parameter is a very critical task to generate the best input-output regression model. 

Therefore, the values of σ2 = 128, C = 500, and ϵ = 0.25 were experimentally selected. 

Actually, the MATLAB R2014a software package has no LIBSVM toolbox. Therefore, 

the LIBSVM library was compiled into the MATLAB R2014a environment and then the 

training and prediction functions were applied. Finally, concentration of both optical and 

non-optical SWQPs can be retrieved. 

As shown in Table 3.5, comparing the experimental results of the SVM to the 

developed Landsat 8-based-BPNN, it can be indicated that the SVM results were not 

satisfactory because the selection of the model parameters was mainly based on 

experiments and there is no rule or even a stable guideline for parameter selection. In 

contrast, the developed Landsat 8-based-BPNN had excellent performance and at the 

same time, the network complexity was minimized, and the computational speed was 

greatly accelerated, especially by using one SWQP at a time as the network output. 

Finally, the nonlinear retrieve system, which was established by the developed Landsat 8-

based-BPNN, can provide highly accurate estimation of different SWQP concentrations, 

and hence can satisfy the demand of WQ monitoring. 
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Table 3.5 Comparison of the BPNN and SVM statistical results. 

SWQPs 

BPNN SVM 

R2 

(validation) 

RMSE 

(validation) 

R2 

(validation) 

RMSE 

(validation) 

Turbidity (NTU) 0.979 0.073 0.941 0.118 

TSS (mg l-1) 0.976 0.226 0.930 0.755 

COD (mg l-1) 0.918 0.158 0.895 0.342 

BOD (mg l-1) 0.941 0.042 0.902 0.076 

DO (mg l-1) 0.942 0.188 0.887 0.573 

 

3.5 Conclusion 

Water bodies have deteriorated due to the overload of several pollutants such as 

sediments and nutrients coming from human, agricultural, and industrial activities. These 

pollutants lead to deterioration of water storage capacity and negatively affect aquatic life 

and food chain. To overcome these problems, monitoring and estimating optically and 

non-optically active SWQPs from remotely sensed data is very essential to provide the 

appropriate treatment at the proper time.  

In this study, a Landsat 8-based-BPNN framework was developed to estimate 

concentrations of SWQPs. It was shown that the Landsat 8 multi-spectral bands can be 

used to map SWQP concentrations in the study area of the SJR. Moreover, highly 

accurate Landsat 8-based-BPNN models, with R2 ≥ 93% at the network testing phase, 

were obtained to retrieve turbidity, TSS, COD, BOD, and DO concentrations from the 

Landsat 8 satellite data over the selected study site. Accordingly, these models were used 

to produce spatial distribution maps for optical and non-optical SWQPs.  
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In our study, the generated concentration maps can be used to study the evolution 

of local limnologic processes, which consecutively could be related to the development 

of WQ in the selected study area. Therefore, this study is very applicable for local 

administrators who have to make decisions and enact strict measures in order to protect 

water quality in potable water resources particularly when this resource is indispensable 

for the citizens who reside in urban centres close to the river.  

The future work is to carry out further studies on the SJR at different times of the 

year. In view of that, water sampling during different seasons is the best way to represent 

the maximum variation between sampling events. Moreover, it is very helpful to develop 

generalized models for estimating different SWQPs in the SJR without being dependent 

on water sampling. Furthermore, in order to properly assess WQ in the SJR, it is essential 

to delineate the updated water quality status of the SJR and identify the dominant SWQPs 

that influence water quality variation in the river. 
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Chapter 4: DELINEATING THE ACCURATE PATTERNS OF 

SURFACE WATER QUALITY BY INTEGRATING LANDSAT 8 

OLI IMAGERY, ARTIFICIAL INTELLIGENCE, AND THE 

WATER QUALITY INDEX3 

Abstract 

Extracting accurate surface water quality levels has always presented researchers 

with a great challenge. Existing methods of assessing surface water quality are 

technically detailed and present monitoring data on individual substances; however, the 

results of these methods are poorly understood by decision-makers. Hence, a method, 

such as the water quality index (WQI), is needed to provide an integrated picture of 

surface water quality in water bodies. However, in the absence of a representative 

database, WQIs may be biased leading to misleading water quality levels. Therefore, we 

developed a novel approach which combines the Landsat 8 multi-spectral data, the Back-

Propagation Neural Network (BPNN), and the Canadian Council of Ministers of the 

Environment Water Quality Index (CCMEWQI) to extract accurate water quality levels 

to be accessible to decision-makers. The BPNN was used to develop models to estimate 

concentrations of surface water quality parameters (SWQPs) from Landsat 8 imagery. 

                                                 

3 This paper is under review in the journal “Remote Sensing of Environment (RSE)". 

A part of this work has been published in the “International Archives of the Photogrammetry, 

Remote Sensing, and Spatial Information Sciences”, XLII-4/W4, pp. 245-249, 

https://doi.org/10.5194/isprs-archives-XLII-4-W4-245-2017”. 
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Then, these models were validated using an independent validation dataset and the results 

showed that relationship between concentrations of SWQPs and satellite spectral 

information is highly correlated with coefficient of determination (R2) > 0.80, which is 

trustworthy. Moreover, the developed approach was extra validated using ground truth 

data provided by the Province of New Brunswick, Canada, and the developed models 

remained very stable with R2 > 0.75. Finally, the obtained concentrations of SWQPs were 

used as an input to the CCMEWQI to delineate accurate water quality levels for drinking 

purposes. Based on the drinking water quality guidelines, the CCMEWQI was observed 

to be 67 (Fair) and 59 (Marginal) for the lower and middle basins of the Saint John River, 

respectively. These findings show that our study appeared to be promising in the field of 

water quality management. 

4.1 Introduction 

Water is polluted daily due to rapid urbanization, agricultural, and industrial 

discharge of sewage. Three-fourths of the earth’s surface is surrounded by water; but 

only, 0.40% of it can be used for drinking purposes (Czarra, 2003). This little portion of 

drinking water is also under tremendous pressure because of the anthropogenic activities 

that affect surface water quality. Thus, it is of prime importance to extract reliable 

information on the quality of surface water resources (Singh, Malik, Mohan, & Sinha, 

2004). 

Existing surface water quality assessment methods are mainly based on the 

comparison of the experimentally measured surface water quality parameters (SWQPs) 

with the existing standard values (Debels, Figueroa, Urrutia, Barra, & Niell, 2005). While 
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this type of assessment is valuable for water quality experts, it is often poorly understood 

by non-experts, such as decision-makers and the general public. Moreover, in most cases, 

decision-makers need not be aware of the detailed information of water quality data 

(Akoteyon, Omotayo, Soladoye, & Olaoye, 2011). Therefore, it is necessary to simplify 

the expression of water quality and to assess surface water quality in terms of impact on 

public health and the environment. In this context, evaluating surface water quality based 

on specified water quality indices (WQIs), which are the most effective tools to extract 

surface water quality levels of water bodies, is very essential (Bharti & Katyal, 2011). 

A WQI is a method based on a numerical expression to identify the level of water 

quality. It provides a convenient means of summarizing complex water quality data into 

simplified mathematical numbers, which can be interpreted into text classes (Bordalo, 

Teixeira, & Wiebe, 2006). WQIs are subdivided into four main categories: Public, 

Application-specific, Planning, and Statistically-based indices (Jena, Dixit, & Gupta, 

2013). The first three categories of WQIs are called “expert-opinion” or “weight-based” 

approaches. Weights are assigned to SWQPs based on their importance and potential 

impacts on the water quality. Due to different weights assigned to the same SWQPs by 

various experts, weight-based approaches become subjective (Horton, 1965). On the 

other hand, statistically-based WQIs are based on statistical techniques to assess the data, 

reduce subjectivity, and improve the accuracy of the index. By using statistically-based 

WQIs, the significance of the major SWQPs in water quality assessment can be identified 

(Marta, Damià, & Romà, 2010; Akbar, Hassan, & Achari, 2013). 

In the relevant literature, very few studies have attempted to extract the overall 

patterns of water quality via WQIs, such as the National Sanitation Foundation Water 
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Quality Index (NSFWQI), Oregon Water Quality Index (OWQI), Smith’s index, and 

Helsinki Commission (HELCOM) water quality assessment. Most of the available 

research is based on two statistically-based WQIs: Overall Index of Pollution (OIP) and 

the Canadian Council of Ministers of the Environment water quality index (CCMEWQI). 

The OIP was used to delineate the levels of water quality in Yamuna River in 

India by using measurements of turbidity, power of hydrogen (pH), dissolved oxygen 

(DO), biochemical oxygen demand (BOD), total dissolved solids (TDS), and fluoride 

(Sargaonkar & Deshpande, 2003). The result of this index is classified as excellent, 

acceptable, slightly polluted, polluted, and heavily polluted on the basis of the water 

quality guidelines of India. From 1995 to 1997, water samples were collected from six 

stations and the average water quality levels were excellent at stations 1 and 3. Stations 2, 

5, and 6 were classified as slightly polluted; while station 4 was categorized as polluted. 

The CCMEWQI was used to monitor water quality in the Mackenzie River basin 

of Canada (Lumb, Halliwell, & Sharma, 2006). It was observed that the river is affected 

by high turbidity and suspended sediment loads. The water quality is mostly rated as 

marginal (CCMEWQI values range from 43 to 59), when evaluated against the Canadian 

Council of Ministers of the Environment (CCME) standards. Another study utilized the 

CCMEWQI for comparative analysis of regional water quality in Canada and it was 

found to be a good tool for water quality assessment (Rosemond, Duro, & Dubé, 2009). 

The levels of water quality were calculated annually for each sampling site of data 

collected monthly. The mean CCMEWQI values ranged from 42.40 to 56.70, which is 

marginal (i.e. the water quality is frequently threatened or impaired). 
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Based on the findings of the previous studies, WQIs can support the accurate 

interpretation of water quality; however, they require a huge number of water samples 

obtained by physical monitoring of water quality. It is very challenging to provide this 

type of physical monitoring because this process is costly, labour intensive, and time 

consuming. Moreover, WQIs may be biased towards reflecting false water quality levels 

in the absence of a representative database (i.e. water samples). Therefore, the integration 

of the Landsat 8 multi-spectral data, the back-propagation neural network (BPNN) 

algorithm, and the CCMEWQI is proposed to extract accurate water quality levels in the 

selected study area of the Saint John River (SJR), New Brunswick, Canada.  

First, five Landsat 8 satellite scenes, acquired in different months (i.e., June 2015, 

April 2016, May 2016, July 2016, and August 2016), were used along with their water 

sampling stations to represent the maximum variation in the concentrations of the 

selected SWQPs. The chemical and physical SWQPs, which were included in the 

CCMEWQI, are turbidity, total suspended solids (TSS), total solids (TS), total dissolved 

solids (TDS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), 

dissolved oxygen (DO), power of hydrogen (pH), electrical conductivity (EC), and water 

temperature. Turbidity, TSS, TS, and TDS were selected because the major component 

that can negatively impact water quality and fish population in streams in North America 

is sediment (Arseneault, 2008). Moreover, due to the high loads of organic pollutants 

coming from food and paper production industries in the middle basin of the SJR, it is 

important to measure the levels of COD, BOD, and DO (Sharaf El Din & Zhang, 2017d). 

Furthermore, pH, EC, and temperature levels were measured due to their direct influence 

on both drinking water quality and aquatic life.  
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Then, the BPNN algorithm is selected to generate models to estimate the 

concentrations of SWQPs by correlating water quality data and Landsat 8 multi-spectral 

information. The BPNN is proposed because it can lead to good generalization of the 

network, control the learning process, and achieve the global minimum by adjusting an 

appropriate learning rate value (Sharaf El Din, Zhang, & Suliman, 2017a).  

Finally, the obtained concentrations of SWQPs are used as an input to the 

CCMEWQI to extract accurate water quality levels. The CCMEWQI is proposed due to 

its flexibility in the selection of input parameters (i.e. different SWQPs), the capability of 

minimizing the data volume to a great extent, and simplifying the expression of water 

quality (CCME, 2001). 

The identified objectives of this research are to (1) develop an accurate approach 

for quantifying concentrations of SWQPs over each pixel of the selected study area by 

using the BPNN, (2) evaluate the performance and stability of the developed approach 

using ground truth data (i.e. water quality data) provided by the Province of New 

Brunswick, and (3) delineate accurate levels of surface water quality by using the 

CCMEWQI. To the best of our knowledge, the Landsat 8-based-CCMEWQI approach is 

developed for the first time to extract accurate levels of surface water quality with highly 

accurate results and inexpensive implementation cost. 

4.2 Materials and Methods 

The flowchart for delineating accurate water quality levels from satellite imagery 

by using the proposed Landsat 8-based-CCMEWQI is shown in Figure 4.1. 
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Figure 4.1 The flowchart of the proposed methodology 

This section is devoted to describing the selected study area of the SJR, 

processing steps of the Landsat 8 satellite images, analyzing the collected water samples, 

developing estimation models for SWQPs, and extracting the exact water quality levels 

of the SJR. 
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4.2.1 Study Area 

The selected study area covers 130 km of the SJR. As shown in Figure 4.2, the 

study area covers two main parts of the SJR: the lower basin (i.e. below the Mactaquac 

Dam) and the middle basin (i.e. above the Mactaquac Dam). Compared to the lower 

basin, the middle basin is more polluted due to the presence of food and paper processing 

industries (Arseneault, 2008). 

 

Figure 4.2 The selected study area of the Saint John River (SJR), New Brunswick, 

Canada (Google Maps, 2016) 

4.2.2 Landsat 8 Image Acquisition and Processing 

Satellite images with low spatial resolution, such as the Moderate-resolution 

Imaging Spectroradiometer (MODIS) and the Medium Resolution Imaging Spectrometer 
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(MERIS), have a larger scale size than the width of the narrow tributaries of the SJR, 

which causes various mixed pixels, resulting in the low precision estimation of the 

concentrations of different SWQPs. On the other hand, the Landsat 8 Operational Land 

Imager (OLI) images have higher spatial resolution (30 m, in the visible spectrum). 

Compared to the Landsat-5 Thematic Mapper (TM) and the Landsat-7 Enhanced 

Thematic Mapper Plus (ETM+), the Landsat 8 OLI has enhanced features, which include 

the addition of three multi-spectral bands (coastal blue visible band, one shortwave 

infrared band, and one thermal band) (United States Geological Survey (USGS), 2016). 

The Landsat 8 OLI sensor uses a pushbroom scanner that enables data acquisition 

with much better performance in terms of the signal-to-noise ratio (Roy, Wulder, 

Loveland, & Zhu, 2014). Compared to the previous 8-bit Landsat-7 ETM+ sensor, the 

Landsat 8 OLI sensor is a 12-bit instrument with a dynamic range of 4096 gray levels. 

The narrower multi-spectral bands, the higher signal-to-noise ratio, and the higher 

radiometric resolution demonstrate that the Landsat 8 OLI sensor is less impacted by 

atmospheric distortions and more sensitive to surface reflectance variations (Roy, 

Wulder, Loveland, & Zhu, 2014). 

In our study, five high-quality Landsat 8 satellite sub-scenes acquired in different 

months were used to best represent the maximum variation in the concentrations of 

SWQPs. The satellite images used were acquired on June 27th 2015, April 10th 2016, May 

12th 2016, July 22nd 2016, and August 23rd 2016. The Landsat 8 satellite images are 

available free of charge at Level 1T (terrain corrected) and geometrically corrected to the 

Universal Transverse Mercator (UTM) projection, World Geodetic System 1984 (WGS 

84) datum (Earth Explorer, 2016). 
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Atmospheric distortions should be eliminated in order to measure the water-

leaving reflectance (i.e. surface reflectance). The Dark Object Subtraction (DOS) method 

was used to calculate the surface reflectance values (Chavez, 1988). This method is well 

accepted by the geospatial community to correct light scattering in remote sensing data 

and consequently can provide accurate mapping for wetland areas (Song, Woodcock, 

Seto, Lenney, & Macomber, 2001). Atmospheric and topographic correction (ATCOR) 

and second simulation of the satellite signal in the solar spectrum (6S) methods have been 

used in remote sensing and digital image processing applications. However, the main 

disadvantage of these two methods is that they entail extensive field and ground 

measurements during each satellite pass. This is often impossible for several applications 

when working in very remote or difficult access to locations or when using historical data 

(Pat & Chavez, 1996). 

As shown in Figure 4.3, the adjusted normalized difference water index was used 

to mask the water profile by separating water and non-water features (Mcfeeters, 1996). 

4.2.3 Water Sampling and Laboratory Analysis 

Sampling was performed during five field trips in June 27th 2015, April 10th 2016, 

May 12th 2016, July 22nd 2016, and August 23rd 2016. Water samples were randomly 

distributed across the entire study area, as shown in Figure 4.3. Seventy water samples 

were collected along 130 km of the SJR and four samples were excluded due to cloud 

coverage. In the field, coordinates of each sample point were recorded using a handset 

GPS, GARMIN 76CSx. 
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Figure 4.3 The water profile and the sampling stations 

Water samples were collected around the same time of each satellite pass (4 hours 

time span) and just beneath water surface (i.e., 30 to 50 cm). Concentrations of optical 

and non-optical SWQPs, such as turbidity, total suspended solids (TSS), total solids (TS), 

total dissolved solids (TDS), chemical oxygen demand (COD), biochemical oxygen 

demand (BOD), dissolved oxygen (DO), power of hydrogen (pH), electrical conductivity 

(EC), and water temperature, were measured according to the American Public Health 

Association (APHA) water and wastewater standards (APHA, 2005). 

Turbidity is an optical determination of water clarity and is calculated by 

measuring the amount of light scattered by suspended particles in the water column. TSS 

is calculated by filtering the water sample and weighing the residue left on the filter 

paper. Moreover, TS is determined by evaporating the water sample and weighing the dry 

residue left, and the difference between TS and TSS represents the TDS. COD is 
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measured as the amount of a specific oxidizing agent that reacts with a sample under 

controlled conditions; while BOD refers to the amount of dissolved oxygen consumed by 

aerobic organisms to break down the organic compounds in five days at 20° Celsius. DO 

refers to the level of non-compound oxygen present in a water sample. The acidity or 

alkalinity of a water sample is reported as pH. EC is a measure of how well a water 

sample transmits an electrical current and it is considered a good indicator of inorganic 

dissolved solids. Finally, water temperature is a physical property expressing how hot or 

cold water is. Temperature is an important factor to consider when assessing water 

quality because it influences other SWQPs and can alter the physical and chemical 

properties of water. 

4.2.4 Estimation of Concentrations of SWQPs using the BPNN 

Remote sensing estimation of the optically-active SWQPs (i.e. turbidity, TSS, and 

chlorophyll), is commonly achieved using regression techniques (Changchun, et al., 

2014; Bunkei, Wei, Gongliang, Youichi, Kazuya, & Takehiko, 2015; Shuisen, Liusheng, 

Xiuzhi, Dan, Lin, & Yong, 2015). However, the relationship between spectral 

information and concentrations of SWQPs is too complex to be modelled accurately 

using regression techniques (Zhang, Pulliainen, Koponen, & Hallikainen, 2002). Thus, 

developing an artificial intelligence modelling method, such as artificial neural network 

(ANN), for mapping concentrations of SWQPs is essential. 

ANN architecture typically comprises three types of neuron layers: an input layer, 

which contains the independent variables, one or more hidden layers, and an output layer, 

which contains the dependent variables (Hinton, 1992). One of the most common ANN 
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algorithms, in digital image processing applications, is the BPNN. The BPNN algorithm 

can be decomposed into four main steps: 

• The feed-forward computation 

• The error signal calculation 

• Back-propagation of the error to both the output layer and the hidden layer(s) 

• Updating the connection weights 

Commonly, the inputs of the ANN are the pixel values from satellite spectral 

bands and they are feed-forwarded into the network towards the hidden layer nodes. As 

shown in Equations (4.1-4.2), the input values are multiplied by the weights of the 

connecting nodes, and the values of the hidden layer nodes are computed (Hinton, 1992). 

 𝑧 =  𝑤t ∗  𝑥 +  𝑇  (4.1) 

where 𝑧 is the linear combination of neuron weighted inputs; 𝑤 is the input weights 

vector; 𝑥 is the input vector; and 𝑇 is a threshold value. 

Normally, the feed-forward computation is divided into two main steps: the first 

step is to calculate the values of the hidden layer nodes and the second step is to use the 

obtained values from the hidden layer to calculate the values of the output layer. 

 𝑓(𝑧) = 1 (1 + 𝑒−𝑧 𝜃0⁄ )⁄  (4.2) 

where  𝜃0 is the gradient coefficient. 
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The following step is to calculate the error signal of each node according to 

Equation (4.3). The actual output of the network is compared to the desired output to 

determine the error. Once the error is calculated, it will be used for backward propagation 

and weight adjustment. 

 𝐸 =
1

2
∑ (𝑇𝑘 − 𝑂𝑘)2

k  (4.3) 

where 𝐸 is the error signal; k is the index of the output layer of the network; 𝑇𝑘 is the 

desired output; 𝑂𝑘 is the network actual output. 

As shown in Equations (4.4-4.5), the gradient descent technique is used with the 

BPNN algorithm to back-propagate the error and to locate the global minima of the error 

surface. The error is first back propagated from the output layer to the hidden layer. This 

is where learning rate can be added to the gradient descent equation (Sharaf El Din, 

Zhang, & Suliman, 2017a). Then, the error signal has to be propagated from the hidden 

layer back to the input layer. The final step is supposed to find out the updated and 

optimal set of weights, which creates the mapping model that can ideally produce the 

correct output for the relative input. 

 𝑤𝑘𝑗
′ = 𝑤𝑘𝑗 +  𝜂 ∗  𝛿𝑘 ∗  𝑂𝑗  (4.4) 

 𝑤𝑗𝑖
′ = 𝑤𝑗𝑖 +  𝜂 ∗  𝛿𝑗 ∗  𝑂𝑖  (4.5) 

where 𝑤𝑘𝑗
′  is the the updated weight vector for the network connections between the 

layers indexed by k and j; 𝑤𝑘𝑗 is the current weight vector for the network connections 
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between the layers indexed by k and j; 𝜂 is a constant referred to as the learning rate; 𝛿𝑘 

is the local gradient of the error function at the layer k; 𝑂𝑗 is the network actual output at 

the layer j; 𝑤𝑗𝑖
′  is the the updated weight vector for the network connections between the 

layers indexed by j and i; 𝑤𝑗𝑖 is the current weight vector for the network connections 

between the layers indexed by j and i; 𝛿𝑗 is the local gradient of the error function at the 

layer j; 𝑂𝑖 is the network actual output at the layer i. 

 

Figure 4.4 The proposed artificial neural network (ANN) topology 
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In our study, the BPNN algorithm was adopted to model the unknown 

relationship between the Landsat 8 surface reflectance data and concentrations of 

turbidity, TSS, TS, TDS, COD, BOD, DO, pH, EC, and water temperature. As shown in 

Figure 4.4, the Landsat 8 multi-spectral bands which show the highest correlation to the 

selected SWQPs were used to form the input layer. Thermal infrared 1 (TIR1) and 

thermal infrared 2 (TIR2) bands were used to quantify only surface water temperature 

because they are mainly designed to detect surface temperatures. While concentrations of 

SWQPs were selected, one at a time, to compose the output layer, the number of hidden 

layers and the number of neurons in each hidden layer were experimentally selected. 

4.2.5 Applying the CCMEWQI 

The CCMEWQI is a method implemented by the Canadian Council of Ministers 

of the Environment (CCME) for simplifying the extraction of water quality data. It 

provides meaningful indications of water quality that are very useful to local 

administrators and managers as well as the general public. As a summary tool, it provides 

the overall patterns of water quality and is not intended to be a substitute for detailed 

analysis of water quality data (CCME, 2001). The specific inputs (i.e., the selected 

SWQPs), objectives, and time period used in the CCMEWQI are not specified and 

indeed, could vary from region to region, depending on local conditions and issues. A 

monthly or quarterly monitoring data may be used to reflect water quality levels for a 

specific period; however, data from different years can be combined, especially when 

monitoring in certain years are incomplete (CCME, 2001). 
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As shown in Table 4.1, the CCMEWQI can be used to assess water quality 

relative to its desirable state as defined by drinking water quality objectives (guidelines) 

given by the CCME. 

Table 4.1 The CCME and WHO guidelines for drinking water quality. 

Selected surface water quality parameters (SWQPs) Permissible limits 

Turbidity < 5.00 NTU 

Total suspended solids (TSS) < 25.00 mg/l 

Total solids (TS) < 500.00 mg/l 

Total dissolved solids (TDS) < 500.00 mg/l 

Chemical oxygen demand (COD) < 10.00 mg/l 

Biochemical oxygen demand (BOD) < 3.00 mg/l 

Dissolved oxygen (DO) > 6.50 mg/l 

Power of hydrogen (pH) ≥ 6.50 and ≤ 8.50 

Electrical conductivity (EC) < 100 us/cm 

Temperature < 15 Celsius 

 

When the CCME standards are not accessible, the World Health Organization 

(WHO) recommendations are applied. As shown in Equations (4.6-4.12), the 

CCMEWQI works by combining three measures of variance (scope, frequency, and 

amplitude), where these factors are determined on the basis of water quality guidelines 

according to the specified application (CCME, 2001). The CCMEWQI produces a value 

within a range from [0 to 100] where zero represents poor water quality and one hundred 

indicates excellent water quality. The obtained water quality is classified into five 

http://www.who.int/immunization_standards/en/
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categories, which are Excellent (95-100), Good (80-94), Fair (60-79), Marginal (45-59), 

and Poor (0-44). 

 CCMEWQI = 100 − ((√𝐹12 + 𝐹22 + 𝐹32 ) 1.732⁄ ) (4.6) 

 𝐹1 = (Number of failed SWQPs Total number of SWQPs⁄ ) ∗ 100 (4.7) 

 𝐹2 = (Number of failed tests Total number of tests⁄ ) ∗ 100 (4.8) 

 𝐹3 = (nse (0.01 ∗ nse + 0.01)⁄ ) (4.9) 

 nse = ((∑ excursion𝑖
𝑛
𝑖=1 ) Total number of tests⁄ ) (4.10) 

 excursion𝑖 = (Objective𝑗 Failed test value𝑖⁄ ) − 1 (4.11) 

 excursion𝑖 = (Failed test value𝑖 Objective𝑗⁄ ) − 1 (4.12) 

where 𝐹1 (scope) is the percentage of SWQPs where water quality guidelines are not 

met; 𝐹2 (frequency), is the percentage of tests that do not meet the objectives; 𝐹3 

(amplitude) shows the amount by which failed tests do not meet the objectives; nse is 

the normalized sum of excursion; and excursion𝑖 refers to the number of times by which 

an individual concentration is greater than (or less than, when the objective is a 

minimum) the objective. 

The CCMEWQI can be very useful in tracking water quality changes at a given 

site over a specific period of time and can also be used to compare directly among sites 

that employ the same SWQPs and objectives (CCME, 2001). On the other hand, the main 

drawbacks of using the CCMEWQI include loss of information by combining different 

SWQPs to obtain a single value (Rosemond, Duro, & Dubé, 2009), loss of interaction 

between SWQPs, and sensitivity to input parameters (Khan, Paterson, & Khan, 2004). 
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Finally, the CCMEWQI was not developed to replace the detailed analysis of SWQPs, 

but rather as a method to help water quality managers and administrators communicate 

the overall quality of water in a more consistent manner (Sharaf El Din & Zhang, 2017e). 

4.3 Results and Discussion 

The main results of this study were divided into (1) concentrations of the 

collected water samples, (2) calibration and validation of the developed BPNN models, 

(3) spatial distribution of the concentrations of the selected SWQPs in the SJR, and (4) 

accurate delineation of the accurate levels of surface water quality of the SJR. 

4.3.1 Concentrations of Optical and Non-optical SWQPs 

Sixty-six water samples were analyzed using standard methods given in APHA, to 

measure the concentrations of different SWQPs. Twenty-eight samples were collected 

below the Mactaquac Dam (i.e. the lower basin of the SJR); while, thirty-eight samples 

were collected above the Mactaquac Dam (i.e. the middle basin of the SJR) in order to 

represent the maximum variance in sampling concentrations. Water quality is in a better 

state below the Dam, compared to the area above the Dam, because there is less industry 

and agriculture, no major dams, and more water flowing into the river (Arseneault, 2008). 

As shown in Table 4.2, the descriptive statistics were measured for turbidity, 

TSS, TS, TDS, COD, BOD, DO, pH, EC, and water temperature. The concentrations 

ranged from 1.19 to 13.10 NTU with an average 4.84 NTU, 0.60 to 11.40 mg/l with an 

average 3.59 mg/l, 58.00 to 245.00 mg/l with an average 113.92 mg/l, 52.40 to 233.85 

mg/l with an average 110.33 mg/l, 4.80 to 86.64 mg/l with an average 27.55 mg/l, 1.21 to 

3.25 mg/l with an average 1.75 mg/l, 6.71 to 14.14 mg/l with an average 9.54 mg/l, 6.51 
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to 8.42 with an average 7.59, 29.50 to 148.90 us/cm with an average 97.09 us/cm, and 

5.00 to 23.30 Celsius with an average 15.92 Celsius for turbidity, TSS, TS, TDS, COD, 

BOD, DO, pH, EC, and temperature, respectively. 

Table 4.2 Descriptive statistics of the concentrations of SWQPs. 

Optical and non-optical SWQPs Mean Minimum  Maximum  
Standard 

deviation 

Turbidity (NTU) 4.84 1.19 13.10 3.73 

TSS (mg/l) 3.59 0.60 11.40 3.10 

TS (mg/l) 113.92 58.00 245.00 42.32 

TDS (mg/l) 110.33 52.40 233.85 39.91 

COD (mg/l) 27.55 4.80 86.64 19.85 

BOD (mg/l) 1.75 1.21 3.25 0.52 

DO (mg/l) 9.54 6.71 14.14 2.64 

pH 7.59 6.51 8.42 0.33 

EC (us/cm) 97.09 29.50 148.90 30.53 

Temperature (Celsius) 15.92 5.00 23.30 6.97 

 

Turbidity, TSS, TS, and TDS in spring were higher than their concentrations in 

summer because snowmelt and rainfall push sediments from agriculture and forestry 

directly into the river. Alternatively, the middle basin of the SJR has high concentrations 

of COD and BOD because this region has many industries, such as food and paper 

processing, located at the SJR shoreline (Sharaf El Din & Zhang, 2017d). 
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4.3.2 Training and Validation of the Proposed ANN 

For appropriate selection of the input layer neurons of the proposed ANN, the 

Landsat 8 coastal blue (CB), blue (B), green (G), red (R), near infrared (NIR), shortwave 

infrared 1 (SWIR1), and shortwave infrared 2 (SWIR2) bands were selected to form the 

input layer for all SWQPS; however in case of surface water temperature, thermal 

infrared 1 (TIR1), and thermal infrared 2 (TIR2) bands were added to the bands in the 

input layer.  

Table 4.3 Correlation coefficient values between the Landsat 8 spectral data and the 

concentrations of SWQPs. 

 Turbidity TSS TS TDS COD BOD DO pH EC Temperature 

CB 0.81 0.79 0.71 0.67 0.69 0.70 - 0.66 0.74 0.61 0.83 

B 0.59 0.61 0.64 0.68 0.59 0.57 - 0.67 0.67 0.58 0.71 

G 0.60 0.58 0.55 0.60 0.63 0.59 - 0.60 0.59 0.55 0.68 

R 0.67 0.69 0.59 0.55 0.53 0.57 - 0.54 0.69 0.59 0.73 

NIR 0.82 0.85 0.77 0.67 0.71 0.74 - 0.71 0.64 0.57 0.65 

SWIR1 0.84 0.78 0.73 0.66 0.68 0.67 - 0.70 0.57 0.53 0.63 

SWIR2 0.79 0.81 0.70 0.62 0.65 0.69 - 0.71 0.59 0.56 0.61 

Cirrus 0.46 0.40 0.48 0.45 0.41 0.47 - 0.49 0.38 0.40 0.45 

TIR1 0.35 0.39 0.45 0.44 0.32 0.41 - 0.43 0.30 0.42 0.78 

TIR2 0.33 0.36 0.44 0.48 0.29 0.37 - 0.38 0.28 0.44 0.77 
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As shown in Table 4.3, these multi-spectral bands were significantly correlated 

(i.e. correlation coefficient ≥ 0.50) to the concentrations of the selected SWQPs used in 

our study. Additionally, SWQPs were selected one at a time to form the output layer to 

decrease the ANN complexity and improve the computational speed of the network. 

For appropriate data division, a trial and error procedure was used to separate the 

available water samples in such a way that the statistical properties of the training set are 

close to those of the testing set. Seventy-five percent of water samples (i.e. 49 samples) 

were utilized for training the ANN, while twenty-five percent of the collected samples 

(i.e. 17 samples) were used for testing the performance of the developed BPNN models.  

The proposed ANN architecture consisted of three layers with a sigmoid 

activation function which is differentiable and can provide the powerful capability of 

modelling complex and nonlinear problems. Selecting the appropriate number of neurons 

in the hidden layer is a critical task. In our study, 25 neurons were experimentally 

selected to form the hidden layer. Using a small number of neurons in the hidden layer 

may lead to an underfitting problem, while using a huge set of hidden neurons may cause 

overfitting and lead to slow learning. 

The BPNN algorithm was used to map the relationship between the Landsat 8 

spectral bands and concentrations of SWQPs. This algorithm can result in good 

generalization when using either large or small datasets (MacKay, 1992). This algorithm 

is computationally efficient as 4, 5, 8, 12, 22, 21, 10, 4, 18, and 11 seconds were 

achieved, at the ANN training phase, for turbidity, TSS, TS, TDS, COD, BOD, DO, pH, 

EC, and temperature, respectively. 
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Figure 4.5 Scatter plots of observed (measured) vs. modeled (predicted) concentrations 

of turbidity (a), TSS (b), TS (c), TDS (d), COD (e), BOD (f), DO (g), pH (h), EC (i), and 

temperature (j) using the training dataset 
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Additionally, finding the global minima is guaranteed by utilizing an appropriate 

learning rate value. 

 

Figure 4.6 Scatter plots of observed (measured) vs. modeled (predicted) concentrations 

of turbidity (a), TSS (b), TS (c), TDS (d), COD (e), BOD (f), DO (g), pH (h), EC (i), and 

temperature (j) using the testing dataset 
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A learning rate value of 0.01 was adjusted to achieve the global minima in the 

error surface. Using a learning rate beyond the selected value, the system was very slow; 

however, using a learning rate above the selected value, the generalization ability of the 

network was very poor. 

As shown in Figure 4.5, for the whole SWQPs, coefficients of determination 

were very high (R2 ≥ 0.824) at the neural network training phase with p-value < 0.001. 

The final relationship between the desired output (i.e. observed concentrations of 

SWQPs) and the actual output (i.e. derived from the developed network) was developed 

in the Matlab environment. To test the robustness of the developed BPNN models in the 

SJR, the testing dataset (i.e. 17 water samples which were not used in the training 

process) was used to validate their performance. As shown in Figure 4.6, for both optical 

and non-optical SWQPs, R2 ≥ 0.803 at the neural network testing phase with p-value < 

0.001. The validation models for turbidity, TSS, TS, TDS, COD, BOD, DO, pH, EC, and 

temperature remained very stable with R2 = 0.949, 0.947, 0.884, 0.881, 0.823, 0.803, 

0.823, 0.849, 0.897, and 0.981, respectively.  

Figure 4.7 showed that the root mean square errors (RMSEs) were 0.061 NTU, 

0.802 mg/l, 0.753 mg/l, 0.522 mg/l, 0.133 mg/l, 0.150 mg/l, 0.121 mg/l, 0.011, 0.021 

us/cm, and 0.041 Celsius for turbidity, TSS, TS, TDS, COD, BOD, DO, pH, EC, and 

temperature, respectively, at the network training phase. Similarly, the RMSEs were 

0.557 NTU, 0.654 mg/l, 1.353 mg/l, 1.781 mg/l, 0.112 mg/l, 0.171 mg/l, 0.143 mg/l, 

0.451, 0.752 us/cm, and 0.302 Celsius for turbidity, TSS, TS, TDS, COD, BOD, DO, pH, 

EC, and temperature, respectively, at the network testing phase.  
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Figure 4.7 Error surfaces for turbidity (a), TSS (b), TS (c), TDS (d), COD (e), BOD (f), 

DO (g), pH (h), EC (i), and temperature (j) at the network training and testing phases 



 

113 

 

Moreover, as shown in Figure 4.7, turbidity, TSS, TS, TDS, COD, BOD, DO, 

pH, EC, and temperature error surfaces showed that the training process was stopped at 

epoch 51, 73, 117, 311, 703, 697, 237, 54, 517, and 256, respectively. Actually, there is 

no further enhancement in the ANN performance after reaching the stopping points. 

Overall, the developed BPNN algorithm was used to produce highly accurate 

estimations of optical and non-optical SWQPs compared to regression techniques which 

have been used in previous studies. The main basis is that the BPNN has the potential to 

map the non-linear relationship between satellite multi-spectral information and 

concentrations of different SWQPs without prior knowledge of the parameter 

relationship. Moreover, the BPNN can lead to good generalization, minimizing the 

complexity, and accelerating the computational speed of the network. 

4.3.3 Extra Validation of the Developed Approach using Ground Truth Data 

The main purpose of this part is to extra validate the developed approach and the 

developed BPNN water quality models in order to demonstrate the potential of using 

these models as a predictive tool in the study of water quality in other parts of the SJR, 

tributaries of the SJR, and other water bodies in New Brunswick. In this context, two 

additional sets of ground truth data (i.e. water quality data) in New Brunswick were used 

to further test and examine the validity and stability of the developed approach. Figure 

4.8 shows the first dataset and the rivers of interest are Saint John, Oromocto, Nashwaak, 

Keswick, Big Presque, Miramichi, Tobique, Aroostook, and Madawaska; while Figure 

4.9 shows the second set of water samples and the rivers of interest are Croix, 

Digdeguash, Magaguadavic, Lepreau, Hammond, Kennebecasis, Petitcodiac, Canaan, 
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Buctouche, Richibucto, and Salmon. The water samples for the first dataset were 

collected on September 22nd 2015 and September 29th 2015; while the samples of the 

second set were collected on April 28th 2015 and May 05th 2015.  

 

Figure 4.8 The 1st dataset of water samples used for further validation of the developed 

approach 
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The collected samples were measured for turbidity, TDS, DO, pH, EC, and 

temperature. The concentrations of these SWQPs were obtained from the Environment 

and Local Government Surface Water Quality Data Portal in New Brunswick; however, 

surface water quality data for TSS, TS, COD, and BOD were not available. 

 

Figure 4.9 The 2nd dataset of water samples used for further validation of the developed 

approach 
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We attempted to set the time interval between ground truth data and the 

corresponding Landsat 8 OLI data to be very small in order to minimize the effects of the 

temporal difference between them. Therefore, two Landsat 8 OLI images, acquired at 

September 6th 2015 (top left) and September 15th 2015 (bottom right), were used with the 

first dataset, as shown in Figure 4.8. Moreover, another two Landsat 8 OLI images, 

acquired at June 4th 2015 (top right) and June 11th 2015 (bottom left), were used with the 

second dataset, as shown in Figure 4.9. 

The developed approach was used to predict the concentrations of turbidity, TDS, 

DO, pH, EC, and temperature in the SJR and its tributaries and other water bodies in New 

Brunswick by using the two datasets of input data. In order to evaluate the validity of the 

developed models, the predicted results were compared against the existing ground truth 

data. As shown in Figure 4.10, for the first dataset, the developed models for turbidity, 

TDS, DO, pH, EC, and temperature were very stable with R2 = 0.828, 0.777, 0.792, 

0.767, 0.882, and 0.781, respectively. Due to the time interval (i.e. 2 to 3 weeks) which 

may increase the effects of the temporal difference between field measurements and 

Landsat 8 multi-spectral information, the results are not higher enough (R2 ≥ 0.767) 

compared to the results obtained from the water samples which have been acquired at the 

same time of satellite overpass (R2 ≥ 0.803). 

For the second set of data, the time interval between water sampling and multi-

spectral data was around one month, which may lead to a lot of variability of the 

predicted results. However, as shown in Figure 4.11, the developed models for turbidity, 

TDS, DO, pH, EC, and temperature remained stable with R2 = 0.795, 0.759, 0.775, 0.755, 

0.832, and 0.761, respectively. 
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Figure 4.10 Scatter plots of measured vs. predicted concentrations of turbidity (a), TDS 

(b), DO (c), pH (d), EC (e), and temperature (f) using the 1st dataset 

Finally, the results obtained demonstrated the potential of developing generalized 

models to estimate concentrations of both optical and non-optical SWQPs in the SJR and 

its tributaries without being dependent on river sampling. 
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Figure 4.11 Scatter plots of measured vs. predicted concentrations of turbidity (a), TDS 

(b), DO (c), pH (d), EC (e), and temperature (f) using the 2nd dataset 

4.3.4 Spatial Distribution of the Selected SWQPs 

Figure 4.12 indicated that the obtained Landsat 8 surface reflectance of water 

pixels were used as an input to the developed BPNN models in order to generate spatial 
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distribution maps for turbidity, TSS, TS, TDS, COD, BOD, DO, pH, EC, and water 

temperature. 

 

Figure 4.12 Mapping the concentrations of turbidity (a), TSS (b), TS (c), TDS (d), COD 

(e), BOD (f), DO (g), pH (h), EC (i), and temperature (j) in the selected study area 
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It can be noted that the concentrations of turbidity, TSS, TS, TDS, and DO in the 

SJR depend on sampling time. In spring (i.e. April and May), these concentrations were 

found to be higher than those sampled in summer (i.e. June, July, and August) because 

snow melt and rainfall may cause soil erosion and consequently push sediments and 

pollutants from forest and agricultural fields directly into the river. Moreover, 

concentrations of COD and BOD in the middle basin of the SJR were higher than those in 

the lower basin of the river due to classifying the middle basin as an industrial area and 

consequently containing higher levels of organic wastes. Additionally, levels of EC 

increase as temperature increases. This means that warmer water can hold higher levels 

of EC than colder waters. High levels of EC can be used as an indication of inorganic 

dissolved solids and minerals. Accordingly, the presence of free minerals increases the 

alkalinity of water (i.e. pH levels). 

4.3.5 Delineating the Accurate Levels of Surface Water Quality of the SJR 

In order to achieve highly accurate estimations of surface water quality levels of 

the SJR by using the CCMEWQI, the selected study area was subdivided into two main 

sites: (1) below the Mactaquac Dam and (2) above the Mactaquac Dam. As shown in 

Figure 4.13, twenty-eight water samples were collected below the Mactaquac Dam 

during trip 1 and trip 2. Instead of using twenty-eight water samples, 47544 water pixels, 

derived from the developed BPNN with R2 ≥ 0.803, were used as an input to the 

CCMEWQI to extract the accurate water quality level below the dam. Similarly, thirty-

eight samples were collected above the Mactaquac Dam during trip 3, 4, and 5. Rather 
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than using thirty-eight samples, 100606 water pixels were used to delineate the exact 

water quality level above the dam. 

 

Figure 4.13 Mapping the concentrations of turbidity (a), TSS (b), TS (c), TDS (d), COD 

(e), BOD (f), DO (g), pH (h), EC (i), and temperature (j) in the selected study area 

Based on the result findings, the CCMEWQI calculations were carried out and the 

concentrations of TS, TDS, and pH were found within the standard limits; however, 

turbidity, TSS, COD, BOD, DO, EC, and temperature values exceeded the permissible 

limits given by the CCME and WHO standards for drinking purposes. The obtained 

CCMEWQI was observed as 67 (Fair) in the lower basin of the SJR, which means the 

water quality is usually protected but occasionally threatened or impaired. Moreover, the 

water quality in the middle basin of the SJR was classified as 59 (Marginal), which 

means the water quality is frequently threatened or impaired. The main reason for 
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obtaining different levels of water quality at the proposed sites of the SJR is that the 

lower basin of the river has less industrial and agricultural activity, which may keep this 

part of the river in a better state than the middle basin of the SJR. 

4.4 Conclusion 

While traditional methods of assessing water quality are mainly based on 

comparing the measured concentrations of SWQPs with the existing guidelines, they 

could not provide the overall trends of water quality to non-experts, such as decision-

makers. Hence, the Landsat 8-based-CCMEWQI approach is developed to extract 

accurate levels of water quality to be accessible to decision-makers. The CCMEWQI was 

selected because it is capable of minimizing the data volume to a great extent and 

simplifying the expression of water quality. Moreover, the CCMEWQI is very flexible in 

selecting input parameters (i.e. physico-chemical SWQPs).  

Our approach was validated using two sets of ground truth data (i.e. water quality 

data) provided by the Environment and Local Government Surface Water Quality Data 

Portal in New Brunswick. The time interval between the existing ground truth data and 

the corresponding Landsat 8 multi-spectral data is 2 to 5 weeks, which may cause a lot of 

deviation of the predicted results. However, our approach remained very stable and the 

relationship between concentrations of SWQPs and Landsat 8 surface reflectance is 

correlated with R2 > 0.75. 

The results of this study show the potential of generating generalized models to 

retrieve concentrations of SWQPs from satellite imagery in the SJR, its tributaries, and 

other water bodies. Additionally, this study is valuable for decision-makers, local 
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managers, and the general public because the CCMEWQI mechanism gives comparative 

evaluation of the water quality of sampling sites and summarizes complex water quality 

data into simplified mathematical numbers, which can be interpreted into text classes, 

such as excellent, good, fair, marginal, and poor. Finally, further studies are needed to 

assess water quality on the basis of identifying and classifying the major SWQPs that 

contribute to water quality variation in the SJR. 
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Chapter 5: ASSESSMENT OF SPATIO-TEMPORAL SURFACE 

WATER QUALITY VARIATIONS USING MULTIVARIATE 

STATISTICAL TECHNIQUES: A CASE STUDY OF THE SAINT 

JOHN RIVER, CANADA4 

Abstract 

Surface water quality is a worldwide environmental concern due to the presence 

of both point and non-point sources of pollutants. These pollutants lead to deterioration of 

surface water quality and consequently raise the cost of water body treatment. To 

improve the cost effectiveness of the treatment process, assessing surface water quality 

on the basis of classifying the major surface water quality parameters (SWQPs) that 

negatively affect water bodies is essential. Therefore, Multivariate Statistical Techniques, 

such as Principal Component Analysis/Factor Analysis (PCA/FA), Cluster Analysis 

(CA), and Discriminant Analysis (DA), are proposed to identify the dominant SWQPs 

and evaluate spatial/temporal water quality variations of the Saint John River (SJR), as 

the testing water body. The results of PCA/FA showed that turbidity, total suspended 

solids, chemical oxygen demand, biochemical oxygen demand, and electrical 

conductivity are the most significant SWQPs contributing to variations in the water 

quality of the SJR. Moreover, CA and DA indicated a reduction in the dimensionality of 

our surface water quality data and classified sampling stations based on similarities of 

                                                 

4 This paper is under review in the “Journal of the American Water Resources Association 

(JAWRA)”. 
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water quality characteristics. Our study illustrates the significant use of multivariate 

statistical techniques for surface water quality assessment and management leading to 

effective savings and proper utilization of water quality resources. 

5.1 Introduction 

Surface water quality is generally affected by both natural and anthropogenic 

processes. Snow melt, precipitation rate, and sediment transport are considered as natural 

processes, while anthropogenic processes include urban, industrial, and agricultural 

activities (Carpenter, Caraco, Correll, Howarth, Sharpley, & Smith, 1998; Qadir, Malik, 

& Husain, 2007). These processes often lead to the degradation of surface water quality 

by pushing both point and non-point sources of pollutants directly into water bodies. A 

point source (e.g., industrial discharge) forms a constant polluting source; while a non-

point source (e.g., precipitation and snow melting) is a seasonal phenomenon, largely 

affected by climate changes (Singh, Malik, Mohan, & Sinha, 2004). 

Due to these complexities, water quality experts and researchers are confronted 

with significant challenges to assess surface water quality and consequently provide the 

appropriate treatment to water bodies in a cost-effective manner (Elhatip, Hinis, & 

Gulgahar, 2007). In this context, the appropriate treatment of water bodies should be 

targeted towards the dominant surface water quality parameters (SWQPs) that contribute 

to both spatial and temporal variations of water quality. This will lead to effective savings 

and proper utilization of resources in water quality studies (Elhatip, Hinis, & Gulgahar, 

2007; Natural resources, 2016). Therefore, multivariate statistical techniques, such as 

principal component analysis/factor analysis (PCA/FA), cluster analysis (CA), and 
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discriminant analysis (DA), are proposed to help in the interpretation of complex water 

quality data to better understand the ecological status of water bodies. Moreover, these 

techniques can identify the major pollution sources that influence water systems and 

provide a valuable tool for reliable management of water resources as well as offering 

rapid solutions to control pollution problems (Vega, Pardo, Barrado, & Deban, 1998; 

Wunderlin, Diaz, Ame, Pesce, Hued, & Bistoni, 2001; Reghunath, Murthy, & Raghavan, 

2002; Simeonov, Stratis, Samara, Zachariadis, Voutsa, & Anthemidis, 2003; Shrestha & 

Kazama, 2007; Akbar, Hassan, & Achari, 2011; Sharaf El Din & Zhang, 2018). 

In the relevant literature, almost all of the available studies have attempted to 

classify the major parameters that negatively affect water bodies by using multivariate 

statistical techniques; however, fewer research attempts focused on extracting 

spatial/temporal patterns of surface water quality. 

The PCA technique was used to identify the dominant SWQPs of the Neckar 

River, Germany based on analyzing ten SWQPs. Four principal components explained 

72% of total variance. The overload of phosphorus and nitrogen were responsible for the 

deterioration of surface water quality in the river (Haag & Westrich, 2002). 

PCA was used to assess surface water quality variations along the main stem of 

the lower St. Johns River, Florida, USA using sixteen physical and chemical SWQPs 

collected from twenty-two monitoring stations (Ouyang, Nkedi-Kizza, Wu, Shinde, & 

Huang, 2006). PCA was employed to evaluate the correlation between different SWQPs 

and to extract the major parameters in the river. The results showed that electrical 

conductivity and dissolved organic carbon were the most important SWQPs contributing 

to the river water quality variations. 
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PCA and CA were used to interpret a large water quality dataset collected from 

the Songhua River Basin, China (Li, Xu, & Li, 2009). The data set, which contained 

fourteen SWQPs, was collected from fourteen different sampling sites along the river. 

Three significant sampling locations (i.e. less polluted, moderately polluted, and highly 

polluted) were detected by CA and five factors (i.e. organic, inorganic, petrochemical, 

physiochemical, and heavy metals) were identified by PCA. 

PCA and CA were used to monitor variations of surface water quality in Sanya 

Bay, China (Dong, Zhang, Zhang, Wang, Yang, & Wu, 2010). The water quality 

associated with one station was impacted by Sanya River and the water quality associated 

with the rest of sampling stations was influenced by South China Sea. It was concluded 

that rainfall was responsible for the water quality variations of Sanya Bay. 

PCA and CA were employed to detect the major pollutants that affect surface 

water quality variations at Qiantang River, China (Huang, Wang, Lou, Zhou, & Wu, 

2010). Low, moderate, and high pollution zones were identified and classified. Two 

pollution sources in each of low and moderate pollution zones with 67% and 73% of total 

variance, respectively, were identified. Moreover, three pollution sources in high 

pollution zone explained 80% of total variance. Industrial and agricultural activities in 

addition to urban runoff were considered as the main sources of pollution. 

PCA was used for interpretation of a water quality dataset obtained from the 

River Ganga in Varanasi, India (Mishra, 2010). Sixteen physicochemical SWQPs were 

measured and analyzed. The dataset was treated using PCA and four Principal 

components were identified as responsible for explaining 90% of the total surface water 

quality variance of the dataset. 
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CA was used to assess variations in the water quality of Euphrates River, Iraq by 

using sixteen parameters collected from eleven sites (Salah, Turki, & Al-Othman, 2011). 

CA classified the eleven sampling sites into two groups based on similarities of water 

quality characteristics. The results of this study showed that water quality data collected 

in April has higher pollution level related to the other months. This study indicated the 

usefulness of CA in the interpretation of surface water quality in the selected study area. 

PCA was applied to groundwater samples, which were collected from ten sources 

and analyzed for ten SWQPs (Mahapatra & Mitra, 2012). Four components were used to 

classify water samples and this process was found to be very helpful for water quality 

experts and managers to improve data collection and avoid groundwater contamination. 

Based on what has been reviewed, the use of multivariate statistical techniques 

has been suggested in most cases because these techniques can be applied to understand 

the relationships between different SWQPs and their relevance to the actual problem 

being studied. Due to the redundancy and complexity of relationships between 

parameters of water quality, it is not easy to draw a clear conclusion directly from the 

water quality raw data. Therefore, we need a tool (i.e. multivariate statistical techniques, 

such as PCA/FA, CA, and DA) that is capable of detecting both spatial and temporal 

variations of water quality as well as categorizing the dominant SWQPs that influence the 

water quality of the water body under investigation. The advantages of multivariate 

statistical techniques include: 1) usefulness in finding the association between samples 

and parameters and revealing the information which cannot be observed from the raw 

data, 2) reduction in the complexity of large-scale datasets, 3) identification of the major 

parameters by reducing large dataset into groups with similar properties, and 4) 
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efficiency in surface water quality studies (Reghunath, Murthy, & Raghavan, 2002). On 

the other hand, the disadvantages of multivariate statistical techniques include 1) the 

presence of same parameters in different principal components (PCs) which may change 

the interpretation of water quality condition in water bodies and 2) difficulty in finding 

out the suitable number of clusters (Singh, Malik, Mohan, & Sinha, 2004). 

The identified objectives of this research are to: (1) classify the major SWQPs 

that contribute to surface water quality variations in the Saint John River (SJR), New 

Brunswick, Canada by using PCA/FA technique, (2) develop multiple levels of clustering 

to detect the relationship between the collected water samples by using hierarchical 

agglomerative CA technique, and (3) evaluate both spatial and temporal variations of 

surface water quality of the selected study area of the SJR by using DA technique. To the 

best of our knowledge, PCA/FA, CA, and DA were combined for the first time to identify 

the major pollution sources contributing to surface water quality variations in the SJR 

with inexpensive implementation cost. 

5.2 Materials and Methods 

5.2.1 Study Area 

The SJR originates principally in the Canadian province of New Brunswick, 

covering an area of 4748 km2. Many tributaries, such as Oromocto, Nashwaak, Keswick, 

Tobique, Aroostook, and Madawaska, feed the SJR. The river’s average width is 750 m 

and its average depth is 3 m. The SJR is considered to have a cold climate except near the 

Bay of Fundy coast, which has a maritime climate. The river’s mean annual temperature 

and annual precipitation are 5 °C and 140 cm, respectively (Arseneault, 2008). Moreover, 

http://en.wikipedia.org/wiki/Canadian_province
http://en.wikipedia.org/wiki/New_Brunswick
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the river’s peak water flow occurs in late spring, while it experiences a second smaller 

pulse later in fall. As shown in Figure 5.1, the selected study area comprises a 130-km 

stretch of the river covering both the lower (i.e. below the Mactaquac Dam) and middle 

(i.e. above the Mactaquac Dam) basins. 

 

Figure 5.1 The study area of the Saint John River (SJR), New Brunswick, Canada 

(Google Maps, 2016) 

5.2.2 Water Sampling and Physico-chemical Analysis 

Water samples were collected on 27 June 2015, 10 April 2016, 12 May 2016, 22 

July 2016, and 23 August 2016, as shown in Figure 5.2. Sampling stations were 

collected, over a two-year period (2015 and 2016), at different seasons (i.e. summer and 

spring) to best represent the maximum water quality variation in the SJR. In our study, 

sixty-six water samples were randomly selected and distributed over the whole study 
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area. Coordinates of each sample were recorded in the field by using a handset global 

positioning system (GPS), GARMIN 76CSx. The collection, preservation, and analysis of 

the collected water samples were carried out as prescribed by the standards given by the 

American Public Health Association (APHA) (APHA, 2005). 

 

Figure 5.2 The collected water sampling stations 

Concentrations of both optical and non-optical SWQPs, such as turbidity (Turb), 

total suspended solids (TSS), total solids (TS), total dissolved solids (TDS), chemical 

oxygen demand (COD), biochemical oxygen demand (BOD), dissolved oxygen (DO), 

power of hydrogen (pH), electrical conductivity (EC), and temperature (Temp), were 

measured according to the APHA water and wastewater standards. Turb was measured in 

situ with a portable turbidity-meter which can measure the amount of light scattered by 

suspended particles in the water column. TSS was determined by filtering each water 

sample and weighing the residue left on the filter paper. TS was calculated by 
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evaporating each water sample and weighing the remaining dry residue, while the 

difference between TS and TSS was used to calculate TDS. COD was estimated by using 

the closed reflux titrimetric method. BOD was determined by 5-day BOD test at 20 °C. 

DO levels were measured in situ by using a portable DO-meter. pH, EC, and Temp were 

tested in the field using a portable pH-meter. 

5.2.3 Multivariate Statistical Techniques 

Water quality data were subjected to multivariate statistical techniques to extract 

the parameters which were responsible for spatio-temporal water quality variations in the 

selected study area. The main concept of employing multivariate statistical techniques, 

such as PCA/FA, CA, and DA, is provided in the following subsections. 

5.2.3.1 Principal Component Analysis/Factor Analysis (PCA/FA) Technique 

PCA is a mathematical concept designed to linearly transform the original 

variables (e.g., SWQPs) into new uncorrelated variables (axes), called principal 

components (PCs). The new axes lie along the directions of maximum variance. PCA can 

provide information about the most significant variables within the dataset leading to data 

reduction with minimum loss of original information (Shrestha & Kazama, 2007). PCs 

can be expressed as: 

 𝑍𝑖𝑗 =  𝑎𝑖1 ∗ 𝑥1𝑗 + 𝑎𝑖2 ∗ 𝑥2𝑗 + ⋯ + 𝑎𝑖𝑚 ∗ 𝑥𝑚𝑗  (5.1) 

where 𝑍 is the component score; 𝑎 is the component loading; 𝑥 is the measured value of 

a variable (SWQP concentration); 𝑖 is the component number; 𝑗 is the sample number; 𝑚 
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is the total number of variables. 

FA follows PCA to further reduce the contribution of variables (e.g., SWQPs) 

with minor significance and to keep only the major variables to simplify even more of the 

data structure coming from PCA technique. In order to do that, PCs were subjected to 

varimax rotation to generate new variables, called varifactors (Vega, Pardo, Barrado, & 

Deban, 1998; Simeonov, Stratis, Samara, Zachariadis, Voutsa, & Anthemidis, 2003). As 

a result, a small number of variables would usually account for approximately the same 

amount of information as do the much larger set of original variables. FA can be 

expressed as:  

 𝑍𝑗𝑖 =  𝑎𝑓1 ∗ 𝑓1𝑖 + 𝑎𝑓2 ∗ 𝑓2𝑖 + ⋯ + 𝑎𝑓𝑚 ∗ 𝑓𝑚𝑖 + 𝑒𝑓𝑖 (5.2) 

where 𝑍 is the measured variable; 𝑎 is the factor loading; 𝑓 is the factor score; 𝑒 is the 

residual term accounting for errors or other sources of variation; 𝑖 is the sample number; 

𝑚 is the total number of factors. 

In our study, the main reasons of using PCA/FA technique are to 1) obtain the 

major PCs by using a cutoff eigenvalue, 2) determine the loading values for all SWQPs 

under the major PCs, and 3) diminish the number of the selected SWQPs as much as 

possible. 

5.2.3.2 Cluster Analysis (CA) Technique 

CA is a multivariate statistical technique which categorizes entities (e.g., water 

sampling stations) into distinct groups or clusters based on the characteristics they 
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possess. K-means and hierarchical clustering are the most common approaches, which 

can provide intuitive similarity relationships between any sample and the entire dataset. 

The Euclidean distance can be used to provide the similarity between two samples and a 

distance can be represented by the difference between analytical values from the samples 

(McKenna & J.E., 2003). 

In our study, hierarchical agglomerative CA was performed on the dataset by 

means of the Ward’s method and squared Euclidean distance as a measure of similarity. 

The outcome of hierarchical agglomerative CA is visualized by a dendrogram (a tree-like 

plot), which gives a visual summary of the clusters and their similarity with a dramatic 

reduction in dimensionality of the original dataset (Shrestha & Kazama, 2007).  

The main reasons of conducting hierarchical agglomerative CA technique are to 

1) generate multiple levels of clustering to find out the association between sampling 

stations at different levels, unlike other clustering techniques (e.g., K-means), 2) provide 

a visual summary of the obtained clusters leading to better understanding of water quality 

status, and 3) categorize the characteristics of clusters using the dominant parameters. 

5.2.3.3 Discriminant Analysis (DA) Technique 

DA attempts to describe relationships between two or more pre-specified groups 

(clusters) of entities based on a set of two or more discriminating variables. DA is used 

when groups are known a priori, unlike in CA. This technique works by deriving one or 

more linear combinations of discriminator variables, creating a new variable for each 

function (Singh, Malik, Mohan, & Sinha, 2004). These functions are called “discriminant 

functions”. The number of discriminant functions possible is either the (number of groups 

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Latent_variable
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– 1), or the number of variables, whichever is smaller. The first discriminant function 

maximizes the differences between groups on that function. The second discriminant 

function maximizes differences on that function, but must also not be correlated with the 

first function. This process continues with subsequent functions with the requirement that 

the new function is not correlated with any of the previous functions (Singh, Malik, 

Mohan, & Sinha, 2004). Each discriminant function has the general form: 

 𝐷 =  𝑎 + 𝑏1𝑋1+ 𝑏2𝑋2 + ⋯ + 𝑏𝑝𝑋𝑝 (5.3) 

where 𝐷 is the discriminant function score (z score); 𝑎 is the intercept of the regression 

line; 𝑏 is the discriminant function coefficient; 𝑋 is the discriminator variable score; 𝑝 is 

the number of discriminator variable. 

In our study, the main reasons for using DA technique are to 1) determine the 

most significant variables associated with differences among the groups and 2) detect 

both spatial and seasonal variations of surface water quality in the SJR. 

5.3 Results and Discussion 

Our study aims at classifying the dominant SWQPs that negatively affect water 

bodies, as well as extracting spatial/temporal water quality variations in the selected 

study area of the SJR, as the testing water body. The main results obtained from this 

study include (1) analysis of physico-chemical SWQPs, (2) extraction of the major 

SWQPs in the SJR using PCA/FA technique, (3) generating multiple levels of clustering 

using hierarchical agglomerative CA technique, and (4) delineation of both spatial and 
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seasonal variations of water quality using DA technique. These results are discussed in 

the following subsections. 

5.3.1 Physico-chemical Analysis of SWQPs 

The statistical summary of the selected parameters for the water samples was 

presented in Table 5.1.  

Table 5.1 Statistics of physico-chemical surface water quality parameters (SWQPs). 

Surface water quality parameters (SWQPs) Mean Standard deviation 

Turbidity (Turb) (NTU) 4.84 3.73 

Total suspended solids (TSS) (mg l-1) 3.59 3.10 

Total solids (TS) (mg l-1) 113.92 42.32 

Total dissolved solids (TDS) (mg l-1) 110.33 39.91 

Chemical oxygen demand (COD) (mg l-1) 27.55 19.85 

Biochemical oxygen demand (BOD) (mg l-1) 1.75 0.52 

Dissolved oxygen (DO) (mg l-1) 9.54 2.64 

Power of hydrogen (pH) 7.59 0.33 

Electrical conductivity (EC) (us cm-1) 97.09 30.53 

Temperature (Temp) (°C) 15.92 6.97 

 

A total of ten physico-chemical SWQPs (i.e. Turb, TSS, TS, TDS, COD, BOD, 

DO, pH, EC, and Temp) were analyzed from sixty-six water sampling stations in the SJR 

by using standard methods given by APHA. Turb levels varied from 1.19 to 13.10 NTU 

with a mean value of 4.84 NTU. Concentrations of TSS ranged from 0.60 to 11.40 mg l-1 
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with an average 3.59 mg l-1. While TS varied from 58.00 to 245.00 mg l-1, TDS ranged 

from 52.40 to 233.85 mg l-1. COD, BOD, DO, pH, EC, and Temp ranged from 4.80 to 

86.64 mg l-1 with an average 27.55 mg l-1, 1.21 to 3.25 mg l-1 with an average 1.75 mg l-1, 

6.71 to 14.14 mg l-1 with an average 9.54 mg l-1, 6.51 to 8.42 with an average 7.59, 29.50 

to 148.90 us cm-1 with an average 97.09 us cm-1, and 5.00 to 23.30 °C with an average 

15.92 °C, respectively. 

Table 5.2 The correlation matrix for the measured SWQPs. 

 Turb TSS TS TDS COD BOD DO pH EC Temp 

Turb 1.00 0.92 0.79 0.77 0.69 0.65  -0.77 0.48 0.51 0.80 

TSS 0.92 1.00 0.80 0.76 0.65 0.61 -0.62 0.52 0.54 0.67 

TS 0.79 0.80 1.00 0.99 0.44 0.39 -0.50 0.34 0.37 0.50 

TDS 0.77 0.76 0.99 1.00 0.39 0.31 -0.48 0.29 0.33 0.47 

COD 0.69 0.65 0.44 0.39 1.00 0.81 -0.80 0.25 0.22 0.37 

BOD 0.65 0.61 0.39 0.31 0.81 1.00 -0.78 0.19 0.21 0.42 

DO - 0.77 -0.62 -0.50 -0.48 -0.80 -0.78 1.00 -0.38 -0.58 -0.97 

pH 0.48 0.52 0.34 0.29 0.25 0.19 -0.38 1.00 0.66 0.25 

EC 0.51 0.54 0.37 0.33 0.22 0.21 -0.58 0.66 1.00 0.64 

Temp 0.80 0.67 0.50 0.47 0.37 0.42 -0.97 0.25 0.64 1.00 

 

In April and May (i.e. spring), levels of Turb and TSS were found to be higher 

than their concentrations in June, July, and August (i.e. summer). The reason is that snow 

melt and rainfall assigned to spring season can cause soil erosion and consequently wash 

sediments from agriculture and forestry directly into the SJR (Sharaf El Din, Zhang, & 

Suliman, 2017a; Sharaf El Din & Zhang, 2017d; Sharaf El Din & Zhang, 2017e). 
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Additionally, the lower basin of the SJR (i.e. below Mactaquac Dam) has less 

agricultural, forestry, and industrial activity, which may keep this part of the river in a 

better state than the middle basin of the river (i.e. above Mactaquac Dam) (Arseneault, 

2008).  

The correlation coefficient between the measured SWQPs was calculated, as 

shown in Table 5.2. Based on the obtained correlation coefficients, the relationship 

between Turb and TSS was highly correlated because TSS is commonly used as the main 

indicator of Turb. Moreover, the relationship between DO levels and the rest of the 

measured SWQPs (i.e. Turb, TSS, TS, TDS, COD, BOD, pH, EC, and Temp) was 

negatively correlated. That means once one of these SWQPs increase, DO levels 

decrease, which may lead to the deterioration of surface water quality and aquatic life. 

5.3.2 Multivariate Statistical Analysis 

5.3.2.1 Principal Component Analysis/Factor Analysis (PCA/FA) Technique 

In order to evaluate the most significant SWQPs in the selected study area of the 

SJR, the analysis was performed using PCA/FA multivariate statistical technique. The 

analysis was executed on ten SWQPs for the sixty-six water sampling points in different 

months (i.e. April, May, June, July, and August) in order to reduce the dimensions of the 

original water quality dataset and to identify the major factors affecting surface water 

quality. 

PCA extracted a set of PCs along with their corresponding eigenvalues. An 

eigenvalue provides a measure of the importance of the obtained PCs. The PCs with the 
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highest eigenvalues are the most significant. Eigenvalues of ≥ 1 are considered 

significant (Shrestha & Kazama, 2007).  

 

Figure 5.3 Scree plot of the produced PCs and their respective eigenvalues 

As shown in the scree plot in Figure 5.3, the first three PCs (i.e. PC1, PC2, and 

PC3) have eigenvalues > 1 and are considered to be the major PCs. These three PCs 

entirely explained 88.126% of the total variance in the water quality dataset, as shown in 

Table 5.3. PC1, PC2, and PC3 captured approximately 49%, 20%, and 19% of the total 

variance, respectively. 

FA was performed on the extracted PCs by using varimax rotation to improve the 

interpretation of PCA, as it increased the absolute values of larger loadings and reduced 
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the absolute values of smaller loadings within each PC. The loading values are classified 

into three main classes as strong (loading values ≥ 0.75), moderate (0.75 > loading values 

≥ 0.50), and weak (0.50 > loading values ≥ 0.40) (Liu, Lin, & Kuo, 2003). Each SWQP 

with a loading value > 0.75 was considered to be a significant parameter contributing to 

surface water quality variations in the selected water body. Additionally, SWQPs with 

loading values less than 0.40 should not be considered due to their minor significance. 

Table 5.4 reveals the corresponding loading values for each of the major three PCs. 

Table 5.3 The principal components (PCs) along with their respective eigenvalues and 

the percentage of variance. 

Principal 

components 

(PCs) 

Initial  

eigenvalues 

Extraction sums of  

squared loadings 

Total 
% of 

variance 

Cumulative 

% 
Total 

% of 

variance 

Cumulative 

% 

1 4.907 49.071 49.071 4.907 49.071 49.071 

2 2.000 20.005 69.076 2.000 20.005 69.076 

3 1.905 19.050 88.126 1.905 19.050 88.126 

4 0.741 7.407 95.533    

5 0.211 2.116 97.649    

6 0.117 1.170 98.819    

7 0.067 0.673 99.492    

8 0.038 0.375 99.867    

9 0.013 0.132 99.999    

10 0.001 0.001 100.000    
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PC1 revealed that four SWQPs (i.e. Turb, TSS, TS, and TDS) were correlated 

with each other. Turb, TSS, TS, and TDS were found to be loaded as strong (i.e. > 0.75) 

with positive values. In PC1, Turb and TSS are the most significant SWQPs contributing 

to spatial/temporal variations of surface water quality in the SJR. In particular, the 

increment of Turb and TSS levels may be associated with the erosion effect during 

cultivation of soil, natural processes, such as snow melt and rainfall, and the 

anthropogenic activities, such as agricultural, mining, forestry, and industrial. The 

generated results were found to be compatible with the results obtained by the New 

Brunswick Department of Natural Resources (Arseneault, 2008). 

Table 5.4 The loading values of SWQPs for the significant PCs. 

SWQPs 
Significant components (PCs) 

PC1 PC2 PC3 

Turb 0.940 -0.278  

TSS 0.942 -0.288  

TS 0.899 0.229 -0.128 

TDS 0.898 0.265 -0.134 

COD 0.114  0.968 

BOD -0.112 0.127 0.942 

DO -0.281 -0.413 0.717 

pH 0.118 0.734 0.366 

EC 0.728 0.917  

Temp -0.730 0.602 -0.286 
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The second significant component, PC2, demonstrated that EC was loaded as 

strong (i.e. > 0.75) with positive values and was followed by pH with a moderate loading 

value. In PC2, EC is considered as the major SWQP responsible for both spatial and 

seasonal surface water quality variations in the river due to the presence of inorganic 

dissolved solids coming from irrigation purposes as well as fertilizers and pesticides. 

The third dominant component, PC3, explained that two SWQPs (i.e. COD and 

BOD) were correlated with each other. COD and BOD were loaded as strong (i.e. > 0.75) 

with positive values. In PC3, COD and BOD are the dominant SWQPs contributing to 

surface water quality variations in the SJR and it can be explained as the industrial 

effluents from paper and food processing industries along the SJR shoreline, especially in 

the middle basin of the river. 

The results demonstrated that PCA/FA is found to be a cost-effective technique, 

which can be very useful in surface water quality studies due to its capability of 

extracting the major pollutants contributing to water quality variations at any water body. 

5.3.2.2 Cluster Analysis (CA) Technique 

Hierarchical agglomerative CA, which provides multiple levels of clustering, was 

employed to extract groups of similar water monitoring stations. As a result, it generated 

a dendrogram, grouping the sixty-six water sampling points into four distinct clusters, by 

using the Ward’s method and squared Euclidean distance as a measure of similarity, as 

shown in Figure 5.4.  

Cluster 1 included 28 water sampling stations (i.e. stations 39, 40, 41, …, to 66). 

These samples were acquired from the middle basin of the SJR (i.e. above the Mactaquac 
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Dam) during the fourth trip (July 2016) and fifth trip (August 2016). These sampling 

stations have higher COD and BOD levels, compared to other sampling points acquired 

from the lower basin of the SJR, due to the presence of food and paper processing 

industries along the shoreline of this area. 

 

Figure 5.4 Dendrogram showing hierarchical agglomerative CA of sampling stations 
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On the other hand, cluster 2 included 15 sampling stations (i.e. stations 1, 2, 3, …, 

to 15). These samples were acquired from the lower basin of the SJR (i.e. below the 

Mactaquac Dam) during the first trip (June 2015). The lower basin of the river has less 

industrial and agricultural activity, which may keep this area of the river less polluted 

compared to other parts of the SJR. 

Cluster 3 included 10 sampling stations (i.e. stations 29, 30, 31, …, to 38). These 

samples were acquired in May 2016 (i.e. spring season). These stations receive pollution 

mostly due to rain fall and snow melt associated with spring. The variation level of Turb 

and TSS in the SJR is approximately similar during different seasons and the average 

level of both Turb and TSS is higher in spring as compared to other seasons.   

Cluster 4 included 13 sampling points (i.e. stations 16, 17, 18, …, to 28). These 

samples were collected in April 2016. Similar to cluster 3, the natural processes, such as 

rain fall and snow melt, are found to be responsible for increasing the effect of soil 

erosion, which may raise the levels of both Turb and TSS in the SJR and its tributaries. 

These findings were consistent with the results obtained by the New Brunswick 

Department of Natural Resources (Arseneault, 2008). Moreover, the results indicated that 

hierarchical agglomerative CA technique is very helpful in surface water quality research 

studies because of its ability to clearly classify water sampling stations into discrete 

groups based on their surface water quality characteristics, and consequently  to reduce 

the respective cost in the future monitoring plans. 

5.3.2.3 Discriminant Analysis (DA) Technique 

5.3.2.3.1 Spatial DA 
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Spatial variation in surface water quality was further evaluated using DA with 

groups (clusters) identified by hierarchical agglomerative CA. In this context, the four 

groups were used as the dependent variables, while all the measured SWQPs (i.e. Turb, 

TSS, TS, TDS, COD, BOD, DO, pH, EC, and Temp) represented the independent 

variables. In our study, both standard and stepwise modes of DA were applied, and three 

discriminant functions were generated. As a result, the identified groups were clearly 

separated by using the first two discriminant functions (function 1 and function 2), as 

shown in Figure 5.5. 

 

Figure 5.5 Scatter plot for DA of spatial water quality variation across the four groups 

As shown in Table 5.5, for both standard and stepwise modes, the obtained values 

of Wilks’ lambda and the chi-square for each discriminant function varied from 0.001 to 

0.198 and from 97.168 to 618.159, respectively, with p-value < 0.001, indicating that the 

spatial DA was reliable and efficient.  
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Table 5.5 Wilks’ lambda and chi-square test for discriminant analysis (DA) of spatial 

variation in surface water quality across four clusters (groups) of sites. 

Mode Statistical measures 
Discriminant function 

1 2 3 

Standard mode 

Eigenvalue 270.349 23.739 4.784 

% of variance 90.500 7.900 1.600 

Wilks’ Lambda 0.001 0.007 0.173 

Chi-square 618.159 290.360 102.669 

p-value < 0.001 < 0.001 < 0.001 

Stepwise mode 

Eigenvalue 246.974 18.877 4.050 

% of variance 91.500 7.000 1.500 

Wilks’ Lambda 0.001 0.010 0.198 

Chi-square 607.343 276.544 97.168 

p-value < 0.001 < 0.001 < 0.001 

 

Table 5.6 Structure matrix along with variable scores for DA of Table 5.5. 

SWQPs 

Standard mode Stepwise mode 

Function 

1 

Function 

2 

Function 

3 

Function 

1 

Function 

2 

Function 

3 

Turb 0.173 0.412 0.033 -0.179 0.387 0.089 

TSS 0.090 0.467 -0.118 -0.142 0.413 -0.069 

TS 0.086 0.291 0.146 -0.087 0.272 0.212 

TDS 0.081 0.285 0.162 -0.077 0.248 0.226 

COD 0.332 -0.197 0.281 0.435 -0.227 0.272 

BOD 0.374 -0.108 0.185 0.481 -0.044 0.269 

DO 0.257 -0.125 0.129 -0.157 -0.133 0.091 

pH -0.013 0.058 0.288 -0.016 0.049 0.290 

EC -0.075 0.101 0.522 0.081 0.091 0.470 

Temp -0.179 0.241 0.113 -0.213 0.296 0.078 
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Additionally, in standard mode of DA, the obtained three discriminant functions 

explained 90.50%, 7.90%, and 1.60% of the variance between the groups, respectively. 

Similarly, in stepwise mode of DA, the explained variance is 91.50%, 7.00%, and 1.50% 

for the three discriminant functions, respectively. 

In Table 5.6, for both standard and stepwise modes of DA, SWQPs with variable 

scores > 0.30 should be identified as the most significant discriminating variables among 

all the measured SWQPs (Tahir, Quazi, & Gopal, 2011). 

Table 5.7 Discriminant function coefficients for DA of Table 5.5. 

SWQPs 

Standard mode Stepwise mode 

Function 

1 

Function 

2 

Function 

3 

Function 

1 

Function 

2 

Function 

3 

Turb 1.055 1.459 0.508 -0.784 1.034 0.495 

TSS -0.140 -0.556 -0.030    

TS 0.008 0.056 -0.023    

TDS 0.017 0.114 -0.104 0.001 0.034 -0.027 

COD -0.002 -0.084 0.091 0.031 -0.111 0.035 

BOD -1.269 -1.044 -1.800    

DO 0.451 0.019 0.438 1.852 0.412 0.005 

pH 1.919 -0.320 2.565 -2.604 -0.167 3.593 

EC -0.013 0.018 0.053 0.019 0.032 0.050 

Temp 1.657 0.602 0.235    

Constant 5.531 -16.464 -31.620 -8.659 -14.160 -32.548 
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The first discriminant function categorized both COD and BOD as the major 

variables, while Turb and TSS variables were classified as the best predictors among all 

the measured SWQPs in the second discriminant function. Finally, EC was found to be 

the most important variable in the third discriminant function. These results were in 

agreement with those obtained in previous subsections for both PCA/FA and CA. 

Table 5.8 Classification matrix for DA of Table 5.5. 

Mode 
Monitoring 

groups 
% correct 

Regions assigned by DA 

Group 1 Group 2 Group 3 Group 4 

Standard 

mode 

Group 1 100 15 0 0 0 

Group 2 100 0 13 0 0 

Group 3 100 0 0 10 0 

Group 4 100 0 0 0 28 

Total 100 15 13 10 28 

Stepwise 

mode 

Group 1 100 15 0 0 0 

Group 2 100 0 13 0 0 

Group 3 100 0 0 10 0 

Group 4 100 0 0 0 28 

Total 100 15 13 10 28 

 

The discriminant function score (z score) for each discriminant function can be 

calculated using discriminant function coefficients, provided in Table 5.7, for the 

measured SWQPs. Finally, in both the standard and stepwise modes, the produced 

classification matrix reached 100% accuracy in the regions assigned by DA, as shown in 

Table 5.8. 
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5.3.2.3.2 Temporal DA 

Temporal variation in surface water quality was also assessed using DA and our 

surface water quality dataset was subdivided into seasonal groups (i.e. early spring (April 

2016), late spring (May 2016), early summer (June 2015 and July 2016), and late summer 

(August 2016)).  

 

Figure 5.6 Scatter plot for DA of temporal water quality variation across the four seasons 

In our study, the four seasonal groups represented the dependent variables, while 

all the measured SWQPs (i.e. Turb, TSS, TS, TDS, COD, BOD, DO, pH, EC, and Temp) 

were used as the independent variables. Both standard and stepwise modes of DA were 

employed, and three discriminant functions were developed. Accordingly, the four 

seasonal groups were separated by using the first two discriminant functions, as shown in 

Figure 5.6. Furthermore, it is clearly noticeable that both spring and summer seasons 
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were entirely separated; however, both early and late spring periods were partially 

separated. 

In Table 5.9, for both standard and stepwise modes, the values of Wilks’ lambda 

and the chi-square for each discriminant function varied from 0.001 to 0.199 and from 

97.839 to 586.553, respectively, with p-value < 0.001, indicating that the temporal DA 

was valuable. Furthermore, in standard mode of DA, the explained variance is 88.70%, 

8.70%, and 2.60% for the three discriminant functions, respectively. Similarly, in 

stepwise mode of DA, the obtained three discriminant functions explained 86.20%, 

9.90%, and 3.90% of the variance between the four seasonal groups, respectively. These 

results indicated that the first two discriminant functions were sufficient to explain the 

differences in surface water quality among the four seasonal groups. 

Table 5.9 Wilks’ lambda and chi-square test for DA of temporal variation in surface 

water quality across four seasons. 

Mode Statistical measures 
Discriminant function 

1 2 3 

Standard mode 

Eigenvalue 185.205 18.229 5.317 

% of variance 88.700 8.700 2.600 

Wilks’ Lambda 0.001 0.008 0.158 

Chi-square 586.553 280.782 107.832 

p-value < 0.001 < 0.001 < 0.001 

Stepwise mode 

Eigenvalue 184.206 18.727 5.820 

% of variance 86.200 9.900 3.900 

Wilks’ Lambda 0.001 0.017 0.199 

Chi-square 576.560 270.789 97.839 

p-value < 0.001 < 0.001 < 0.001 
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In Table 5.10, for both standard and stepwise modes of DA, seven SWQPs, with 

variable score > 0.30, were identified as the most significant discriminating variables 

among all the measured SWQPs. The first discriminant function categorized COD, BOD, 

and DO variables as the best predictors, while both EC and pH were identified as the 

most significant variables among all the SWQPs in the second discriminant function. 

Finally, both Turb and TSS are the most important SWQPs in the third discriminant 

function. 

Table 5.10 Structure matrix along with variable scores for DA of Table 5.9. 

SWQPs 

Standard mode Stepwise mode 

Function 

1 

Function 

2 

Function 

3 

Function 

1 

Function 

2 

Function 

3 

Turb 0.221 -0.196 0.437 0.219 0.193 0.560 

TSS 0.112 -0.165 0.468 0.111 0.164 0.575 

TS 0.112 -0.281 -0.168 0.110 0.284 0.179 

TDS -0.106 -0.274 -0.178 0.125 0.225 -0.162 

COD 0.438 0.298 -0.229 0.303 -0.205 0.243 

BOD 0.337 -0.147 -0.132 0.325 -0.118 0.199 

DO -0.371 0.293 0.270 -0.357 -0.131 -0.229 

pH -0.003 -0.411 -0.114 -0.011 0.341 0.144 

EC -0.058 -0.541 -0.287 -0.055 0.301 0.272 

Temp -0.269 -0.272 -0.137 -0.259 0.222 0.105 

 

Table 5.11 showed the discriminant function score for each discriminant function 

and it was calculated using discriminant function coefficients. Finally, as shown in Table 
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5.12, in both the standard and stepwise modes, the generated classification matrix 

reached 100% accuracy in the regions assigned by DA. 

Table 5.11 Discriminant function coefficients for DA of Table 5.9. 

SWQPs 

Standard mode Stepwise mode 

Function 

1 

Function 

2 

Function 

3 

Function 

1 

Function 

2 

Function 

3 

Turb 1.702 -0.926 -0.668 -0.955 1.011 0.595 

TSS -0.379 0.441 0.364 0.005 0.044 -0.016 

TS 0.014 -0.059 0.008    

TDS 0.111 -0.023 0.097    

COD 0.018 0.118 -0.042 0.021 -0.121 0.029 

BOD -2.262 -0.081 0.316 1.762 0.522 0.014 

DO 0.199 0.169 2.172    

pH 2.546 1.619 0.468 -2.454 -0.237 3.783 

EC 0.033 0.013 -0.081 0.022 0.039 0.049 

Temp -1.183 -0.447 0.775    

Constant -10.645 -1.520 -27.113 -7.558 -15.199 -28.625 

 

The results indicated that DA technique is very helpful in surface water quality 

research studies because it is able to test the significance of the obtained discriminant 

functions and to determine the most significant variables associated with differences 

among both spatial and temporal groups. 
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Table 5.12 Classification matrix for DA of Table 5.9. 

Mode 
Monitoring 

groups 
% correct 

Regions assigned by DA 

Early 

Spring 

Late 

Spring 

Early 

Summer 

Late 

Summer 

Standard 

mode 

Early Spring 100 13 0 0 0 

Late Spring 100 0 10 0 0 

Early Summer 100 0 0 28 0 

Late Summer 100 0 0 0 15 

Total 100 13 10 28 15 

Stepwise 

mode 

Early Spring 100 13 0 0 0 

Late Spring 100 0 10 0 0 

Early Summer 100 0 0 28 0 

Late Summer 100 0 0 0 15 

Total 100 13 10 28 15 

 

5.4 Conclusion 

Due to the overload of both natural and anthropogenic processes, evaluating 

surface water quality represents a great challenge to researchers. Water body treatment 

should be directed to SWQPs responsible for spatial/temporal water quality variations. As 

a result, effective savings and appropriate utilization of resources could be easily 

achieved. Therefore, in our study, multivariate statistical techniques, such as PCA/FA, 

hierarchical agglomerative CA, and DA, were used to (1) classify the most significant 

SWQPs that negatively influence surface water quality in the selected study area of the 

SJR, (2) minimize the complexity of a water quality dataset to a great extent, and (3) 

evaluate both spatial and seasonal variations in surface water quality of the SJR.  
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The main results of our study demonstrated that Turb, TSS, COD, BOD, and EC 

are the major SWQPs contributing to water quality variations in the river by using 

PCA/FA technique. Moreover, hierarchical agglomerative CA grouped 66 water 

sampling stations into four groups (clusters) based on similar water quality 

characteristics, which means a noticeable reduction in the water quality dataset was 

achieved. Additionally, DA technique was used to recognize the differences in surface 

water quality between both the four groups identified by hierarchical agglomerative CA 

and the four seasonal groups (early spring, late spring, early summer, and late summer). 

The future work is to carry out further sampling trips on the SJR, especially in the 

upper basin of the river, to provide a whole picture of surface water quality in the river. 

Finally, this study is valuable for local administrators who have to make right decisions 

to protect surface water quality in their water bodies by using a cost-effective method. 
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Chapter 6: SUMMARY AND CONCLUSION 

This chapter summarizes the research presented in this PhD dissertation. It begins 

with the summary of each chapter (Chapters 2 to 5). The achievements of this research 

are then presented. Finally, recommendations for future work are provided. 

6.1 Summary of Research 

In this dissertation, remote sensing Landsat 8 satellite data were exploited for 

assessing surface water quality in water bodies. Chapters 2-5 introduced progressively 

improved methods addressing the four identified challenges associated with the 

evaluation of surface water quality from satellite imagery. While satellite reflectance data 

and multiple regression techniques were incorporated effectively in Chapter 2 for 

estimating concentrations of both optical and non-optical SWQPs, artificial intelligence 

was successfully exploited in Chapter 3 for mapping the relationship between satellite 

multi-spectral data and concentrations of SWQPs. Chapter 4 extended the concept of 

Chapter 3 to improve the accuracy of surface water quality level (SWQL) extraction by 

integrating satellite data, artificial intelligence, and the water quality index (WQI). 

Finally, identifying the most significant SWQPs that contribute to spatio-temporal 

surface water quality variations by using multivariate statistical techniques was 

demonstrated in Chapter 5. 

6.2 Achievements of the Research 

A summary of the introduced technologies and achievements in each of the four 

main chapters is presented in the following subsections. 
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6.2.1 Developing the Landsat 8-based-SWR Technique for Estimating 

Concentrations of Optical and Non-optical SWQPs 

Chapter 2 introduced a solution for the problems and limitations associated with 

quantifying the concentrations of SWQPs from satellite imagery. In this context, remote 

sensing estimation of non-optical SWQPs, such as COD, BOD, DO, pH, and EC, has not 

yet been performed because these parameters are less likely to affect the reflected 

radiation measured by satellite sensors. The solution introduced in this chapter is to 

develop a stepwise regression (SWR) technique to estimate the concentrations of both 

optical and non-optical SWQPs from the Landsat 8 satellite imagery, which is freely 

available and has the potential to support surface water quality studies.  

The developed Landsat 8-based-SWR technique was generated in three major 

phases: (1) deriving surface reflectance data (i.e., water leaving reflectance) from Landsat 

8 satellite imagery by eliminating radiometric and atmospheric distortions, (2) deriving 

the actual concentrations of all the measured SWQPs based on the standard methods for 

lab examination of water and wastewater of the American Public Health Association 

(APHA), and (3) developing Landsat 8-based-SWR models to estimate the 

concentrations of the selected SWQPs with accurate results.  

To the best of our knowledge, the Landsat 8-based-SWR technique is developed 

for the first time to estimate the concentrations of three non-optical SWQPs, namely 

COD, BOD, and DO, which have not been estimated before with Landsat data or any 

other optical instrument. Compared to previous studies, significant correlation between 

Landsat 8 surface reflectance data and concentrations of SWQPs was achieved and R2 

values reached high level of accuracy (R2 > 0.85) for turbidity, TSS, COD, BOD, and 
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DO. These findings are very helpful for local administrators who have to make decisions 

and enact strict measures in order to protect water quality in potable water resources.  

6.2.2 Developing the Landsat 8-based-BPNN Framework for Mapping 

Concentrations of SWQPs 

 Chapter 3 replaces regression-based methods by learning-based methods to map 

the complex relationship between satellite multi-spectral data and concentrations of 

SWQPs. The problem is that surface water quality is complex to have a simple 

relationship with satellite multi-spectral signatures and consequently it is challenging for 

regression-based techniques to model such a complex relationship. Therefore, this 

chapter introduced the developed Landsat 8-based-backpropagation neural network 

(BPNN) framework for mapping the concentrations of SWQPs from space.  

The novel Landsat 8-based-BPNN framework was generated in three major 

phases: (1) deriving water leaving reflectance values from Landsat 8 satellite imagery by 

eliminating radiometric and atmospheric distortions, (2) measuring the actual 

concentrations of the selected SWQPs based on the standard methods for lab examination 

of water and wastewater of the APHA, and (3) developing Landsat 8-based-BPNN 

models for mapping concentrations of SWQPs from Landsat 8 satellite data and 

consequently providing a spatial distribution map for each optical and non-optical SWQP 

over each pixel of the selected study area. 

To the best of our knowledge, our Landsat 8-based-BPNN framework is the first 

to map concentrations of different SWQPs, especially the non-optical parameters, with 

highly accurate results, compared to regression-based or even other learning-based 
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methods. Compared to previous methods, significant R2 between Landsat 8 surface 

reflectance and concentrations of SWQPs were obtained by using the developed 

framework. The obtained R2 ≥ 0.93 for turbidity, TSS, COD, BOD, and DO. These 

findings demonstrated the feasibility of using the developed framework to generate 

highly accurate models to map concentrations of SWQPs, and to generate spatio-temporal 

maps of SWQPs from Landsat 8 imagery. 

6.2.3 Developing the Landsat 8-based-CCMEWQI Technique for Extracting the 

Accurate Levels of SWQPs 

Chapter 4 represents an extension to the last introduced solution for mapping 

concentrations of surface water quality parameters. The problem/challenge of simplifying 

the expression of surface water quality and improving the accuracy of delineating the 

accurate SWQLs was addressed in this chapter. The solution introduced in this chapter 

exploited the concept in Chapter 3 and developed a novel technique that combines remote 

sensing multi-spectral data, the BPNN algorithm, and the water quality index, introduced 

by the Canadian Council of Ministers of the Environment (CCMEWQI), to extract 

accurate surface water quality levels to be accessible to decision-makers.  

The developed technique was generated in three major phases: (1) developing an 

accurate method for mapping the concentrations of SWQPs over each pixel of the 

selected study area by using the BPNN algorithm, (2) evaluating the performance and 

stability of the developed method using ground truth data provided by the Province of 

New Brunswick, Canada, and (3) utilizing all of the obtained concentrations of the 

selected SWQPs as an input to the CCMEWQI to extract the accurate SWQLs. 
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To the best of our knowledge, the novel Landsat 8-based-CCMEWQI cost-

effective technique is developed for the first time to extract the levels of surface water 

quality with highly accurate results. This study showed that the CCMEWQI was 

classified as Fair in the lower basin of the SJR, which means the water quality is usually 

protected but occasionally threatened or impaired. Moreover, the water quality in the 

middle basin of the SJR was observed as Marginal, which means the water quality is 

frequently threatened or impaired. The result findings were found compatible with the 

results obtained by the New Brunswick Department of Natural Resources; however, they 

used a huge number of water samples, which is costly and labour intensive. 

6.2.4 Categorizing Spatio-temporal Surface Water Quality Variations Using 

Multivariate Statistical Techniques 

Chapter 5 provided a solution for the problems and limitations associated with 

classifying the major SWQPs that negatively affect water bodies. The problem is that 

existing methods are mainly focused on understanding the relationship between different 

SWQPs; however, very few studies have attempted to detect spatio-temporal aspects of 

surface water quality in water bodies. Moreover, due to the complexity of the relationship 

between SWQPs, it is not easy to draw a clear conclusion directly from surface water 

quality data. Therefore, the solution introduced in this chapter is to use the multivariate 

statistical techniques, such as PCA/FA, CA, and DA, to identify the major SWQPs that 

contribute to spatio-temporal variations of surface water quality and to help in the 

interpretation of complex surface water quality data to better understand the surface water 

quality of water bodies.  
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The developed technique was generated in three major phases: (1) classifying the 

major SWQPs contributing to surface water quality variations by using PCA/FA, (2) 

developing multiple levels of clustering for detecting the relationship between the 

collected water samples by using hierarchical agglomerative CA, and (3) evaluating both 

spatial and seasonal surface water quality variations of the study area by using DA. 

To the best of our knowledge, PCA/FA, CA, and DA were combined for the first 

time to categorize the most significant pollution sources contributing to surface water 

quality variations in the Saint John River (SJR) with inexpensive implementation cost. 

This study illustrated that turbidity, TSS, COD, BOD, and EC are the major SWQPs 

contributing to both spatial and temporal variations in the water quality of the SJR. 

Moreover, the result findings showed a reduction in the dimensionality of surface water 

quality data by classifying water sampling stations based on similarities of water quality 

characteristics. Our study demonstrated the significant use of multivariate statistical 

techniques for surface water quality assessment, which can lead to effective savings and 

proper utilization of water resources. 

6.3 Recommendations for Future Work 

Based on the results and contributions discussed in the previous sections, the 

suggested recommendations for future research are given below: 

• The findings of this research are based on field measurements (i.e., water 

samples) collected during two years (2015 and 2016). Long-term monitoring is 

very helpful in providing information on surface water quality aspects and trends. 

Therefore, an intensive monitoring program which would consider more SWQPs 
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that can reach water bodies, such as total nitrogen and total phosphorus, is 

recommended. 

• This research attempted to retrieve the concentrations of both optical and non-

optical SWQPs from Landsat 8 multi-spectral data with highly accurate results. 

However, using new atmospheric correction methods for obtaining the water 

leaving reflectance data is recommended to improve the accuracy of SWQP 

retrieval from Landsat 8 satellite imagery. 

• Our study could be extended to provide information about the extinction of 

different species of fish. In this context, this study could be coupled with 

eutrophication processes which could result from the overload of the nutrients in 

the re-suspended sediments. The relationship between suspended sediments and 

dissolved oxygen demand (DO) is inversely related causing either hypoxia (low 

DO) or anoxia (No DO) which can lead to the death of different fish species.      

• Further research is needed to investigate the optical properties (i.e., absorbance 

and scattering coefficients) of optical SWQPs, such as turbidity, TSS, 

chlorophyll-a, and organic constituents to better understand the relationship 

between surface water quality and the multi-spectral data from remote sensing 

imagery. This would help to further improve the accuracy of the generated remote 

sensing models of the optical SWQPs without being dependent on sampling time 

or even sampling location. 
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Appendix Ι 

Permission from the “Journal of Applied Remote Sensing (JARS)” for the paper 1 

provided in Chapter 2: 
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Appendix Π 

Permission from the “International Journal of Remote Sensing (IJRS)” for the 

paper 2 provided in Chapter 3: 
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Appendix ΠΙ 

Permission from the “International Archives of the Photogrammetry, Remote 

Sensing, and Spatial Information Sciences” for the paper 3 provided in Chapter 4: 
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Appendix IV 

Proof of submission to “Remote Sensing of Environment” for the paper 3 provided in 

Chapter 4: 
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Appendix V 

Proof of submission to “Journal of the American Water Resources Association” for the 

paper 4 provided in Chapter 5: 
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