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ABSTRACT 

This PhD dissertation focuses on the development of new techniques to detect urban solar 

photovoltaic (PV) panel installations and roofing materials utilizing the commercially 

available WorldView-3 satellite imagery, consisting of 1 panchromatic (Pan) band with 

0.3m resolution, 8 visible and near infrared (VNIR) bands with 1.2m resolution, and 8 short 

wave infrared (SWIR) spectral bands with 7.5m resolution. To accurately detect urban 

solar PV panels and roofing materials, it is necessary to analyze the spectral information in 

both the 8 VNIR bands and the 8 SWIR bands at the pixel level. However, the resolution 

difference between the VNIR bands and the SWIR bands is more than 6 times, which 

creates significant challenges for the spectral analysis and thus for the material detection. 

In order to increase the resolution of the SWIR bands from 7.5m to 1.2m, Fuze Go SWIR 

Sharp (FGSS) algorithm is used. The resulting high-resolution 1.2m SWIR bands are then 

combined with the original 1.2m VNIR bands to form a 16-band 1.2m (VNIR+SWIR) 

super spectral imagery. A method to detect solar PV panel installations and a method to 

detect roofing materials in the 16-band super spectral imagery are also developed.  

     In order to increase the resolution of WorldView-3 SWIR bands from 7.5m to 1.2m and 

take advantage of their capability for material identification, this research investigated the 

capacities of 9 popular, industry adopted pan-sharpening algorithms for pan-sharpening the 

WorldView-3 SWIR bands. The general principles of the pan-sharpening algorithms are 

reviewed. The WorldView-3 Pan images were down-sampled from 0.4m to 1.6m to fuse 

with the 7.5m SWIR image. Experiments demonstrate that the most commonly used 

algorithms are not suitable for pan-sharpening SWIR images, whereas the new pan-

sharpening algorithm, Fuze Go SWIR Sharp (FGSS), can produce satisfactory results. The 
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reasons why most algorithms fail to produce quality pan-sharpened SWIR bands are also 

examined. 

     To detect solar PV panels, a new method is developed that can effectively analyze the 

spectral information in the newly formed high-resolution (HR) 16-band 1.2m super spectral 

(SS) imagery by adapting the spectral angle mapping (SAM) algorithm. The proposed 

method, named HR-SSF-SAM method, is tested on the WorldView-3 imagery of Brea, 

California, USA. The results demonstrate a true detection rate of 93.3% with 0% false 

detection. Even solar PV panels and glass roofs can be differentiated from each other.  

     To detect roofing materials, such as fiberglass, ethylene propylene diene monomer 

(EPDM), metal, and concrete, using WorldView-3 imagery, a novel method is proposed. 

The method utilizes the newly formed high-resolution 16-band 1.2m super spectral 

imagery and introduces a new approach to detect roofing materials. Experiments with the 

WorldView-3 imagery of Brea, California, USA, demonstrate that the proposed method 

achieves an overall accuracy of 97.59% and Kappa accuracy of 95.59% for roofing material 

detection in commercial areas, and an overall accuracy of 93.88% and Kappa accuracy of 

88.98% for roofing material detection in residential areas with family houses. 

     Because of the complexity of using WorldView-3 imagery for solar PV panel detection 

and roofing material detection, very few publications can be found in this area. The 

literature review undertaken for this research confirms that the accuracies achieved are 

significantly better than those found in the literature.   
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Chapter 1 : INTRODUCTION 

This PhD dissertation presents solutions for detecting solar photovoltaic (PV) panels and 

roofing materials in an urban environment using WorldView-3 imagery. This is an article-

based dissertation which contains the following three papers: 

 

Paper 1 (Peer Reviewed): 

Mishra, R. K. and Y. Zhang (2017), Effects of industry adopted fusion methods on 

pan-sharpening WorldView-3 short wave infrared (SWIR) imagery, Journal of 

Applied Remote Sensing - Letters (under review) 

 

Paper 2 (Peer Reviewed): 

Mishra, R. K. and Y. Zhang (2017), Solar photovoltaic panel detection using 

WorldView-3 satellite imagery, Journal of Photogrammetric Engineering & Remote 

Sensing (under review) 

 

Paper 3 (Peer Reviewed): 

Mishra, R. K. and Y. Zhang (2017), Roofing material detection using WorldView-3 

satellite imagery, International Journal of Remote Sensing (under review) 
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1.1 Dissertation Structure 

This article-based dissertation consists of five chapters. Three peer reviewed journal papers 

are incorporated in the dissertation, which are under review. Chapter 1 provides an 

introduction to the research, chapters 2 to 4 present the three journal papers. Finally, 

Chapter 5 presents the summary of the work and conclusions.  Figure 1.1 illustrates the 

organization of this dissertation. 

 

Figure 1.1 Organization of this dissertation 

1.2 Background 

In recent years, there has been rapid growth of solar PV panel installations around the world 

because of the technical advancement in PV and battery technologies, fast reduction in 

prices of solar PV panels, and government subsidies and encouragements for green energy. 

Hence, small scale solar power generation is quickly becoming a viable alternative to 

conventional sources of electricity. A report from the California Solar Initiative (CSI) 

shows that, in California alone the solar PV capacity has increased 12 times in the years 
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from 2006 to 2014 (Hallock and Kinman, 2015). Therefore, it is important to acquire 

information about solar PV panel installations, such as the number of solar PV panels 

installed in an area of interest. This information is crucial in quantifying the energy 

production of existing solar PV panels in order to make informed decisions, such as energy 

policies and regulations, system planning for capacity expansion, transmission and 

distribution upgrades, and operation adjustments to ensure grid reliability and resilience 

(Malof et al., 2015). However, the traditional methods, such as on-site surveys and 

information collection from solar PV vendors, are laborious, time consuming, and often 

yield insufficient data for government and utility decision makers. In addition, the data 

collected by traditional methods may quickly become outdated due to the rapid growth of 

solar PV installations. To overcome these challenges, there is a need for new technologies 

that can obtain accurate information on solar PV panel installation and distribution in a 

cost-effective fashion. 

     Urban areas have been rapidly growing in the last few decades around the world. Urban 

areas normally consist of a large variety land covers with different man-made and natural 

materials which influence the environment, climate, and energy conditions of a region 

(Taherzadeh and Shafri, 2013). Roofing materials are some of the important land covers 

that affect the environment and even the safety of an urban area. For example, information 

about roofing material is important for various applications such as determining fire prone 

areas, water flows, disaster preparedness, and pollution sources. In the fire prone areas, 

insurance companies need to know the roofing materials for their flammability. Hence, 

detection of roofing materials is one of the important tasks for urban management and 

planning. However, conventional on-site surveys for roofing material detection are 
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expensive, time consuming, and slower in coping with new construction. They are not 

practical for detecting roofing materials of a large area. Therefore, remote sensing 

technologies have become an attractive option for detecting roofing materials. 

     The launch of WorldView-3 satellite on August 13, 2014, brings new opportunities for 

solar PV panel and roofing material detection because it is the first high-resolution satellite 

to include 8 short wave infrared (SWIR) bands, 8 visible and near infrared (VNIR) bands, 

and 1 panchromatic (Pan) band in the data collection (DigitalGlobe, 2016a). Table 1-1 

shows the characteristics of the WorldView-3 imagery. The SWIR region of the 

electromagnetic spectrum (EMS) refers to non-visible light falling roughly between 

1100nm and 3000nm.  The availability of 8 SWIR bands, which capture the unique spectral 

signatures of certain ground materials, has opened up new opportunities for more high-

resolution information extraction. In addition, because VNIR and SWIR bands measure the 

spectral information of different physical phenomena of the ground materials, the 

combination of VNIR and SWIR bands may offer additional information for solar PV panel 

and roofing material detections. 

    However, as shown in Table 1-1, the resolution of commercially available WorldView-

3 SWIR bands is only 7.5m which is not sufficient for detecting small size solar PV panels 

and roofing materials of residential buildings. On the other hand, the resolution difference 

between the available WorldView-3 VNIR bands (1.24m) and SWIR bands (7.5m) is 

greater than a factor of 6. This large resolution difference makes it difficult to combine the 

VNIR and SWIR bands for effective and accurate spectral analyses. These opportunities 

and challenges motivate us to develop new methods to detect solar PV panels and roofing 

materials in an urban environment. 



 

5 

 

Table 1-1 Characteristics of the WorldView-3 imagery 

 Band Spectral range (nm) Spatial resolution (m) 

 Pan 450 - 800 0.31 

 

 

 

VNIR 

Coastal 400 - 450 1.24 

Blue 450 - 510 1.24 

Green 510 - 580 1.24 

Yellow 585 - 625 1.24 

Red 630 - 690 1.24 

Red Edge 705 - 745 1.24 

NIR-1 770 - 895 1.24 

NIR-2 860 - 1040 1.24 

 

 

 

SWIR 

SWIR-1 1195 - 1225 7.5 

SWIR-2 1550 - 1590 7.5 

SWIR-3 1640 - 1680 7.5 

SWIR-4 1710 - 1750 7.5 

SWIR-5 2145 - 2185 7.5 

SWIR-6 2185 - 2225 7.5 

SWIR-7 2235 - 2285 7.5 

SWIR-8 2295 - 2365 7.5 
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1.3 Selection of research topic 

Because of the unique way that many materials reflect in the SWIR EMS, it is often 

possible to discriminate among different materials which is not possible with reflectance 

only in the VNIR EMS. For example, as shown in Figure 1.2, Roof-1 and Roof-2 which 

are made with different materials have similar reflectance in the WorldView-3 visible 

bands; however, they are different in WorldView-3 SWIR bands. Therefore, WorldView-

3 SWIR bands can be used to detect important land cover materials such as solar PV panels 

and roofing materials. However, the major challenge is the coarser resolution (7.5m) of the 

commercially available WorldView-3 SWIR bands which is not sufficient to identify small 

size solar PV panels and roofing materials of small size roofs because of the spectral mixing 

in the large size SWIR pixels. 

                         

Figure 1.2 Two roofs (with different materials) in visible and SWIR bands of WorldView-3 imagery. 

(a) 1.2m VNIR bands 5, 3, 2 displayed in RGB at 1:1 ratio, (b) enlarged 7.5m SWIR bands 2, 1, 8 

displayed in RGB. Roof-1 and Roof-2 are made with different materials. They have similar colors in 

visible bands; but, different colors  in SWIR bands. 

     Therefore, this research intends to find a solution to increase the resolution of SWIR 

bands from 7.5m to 1.24m (equal to the resolution of VNIR bands) and develop new 

a b 

Roof-1 
Roof-2 

Roof-1 
Roof-2 
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methods to detect solar PV panels and roofing materials using the combined 1.24m VNIR 

and SWIR bands.   

1.4 Review of existing solutions 

1.4.1 WorldView-3 SWIR pan-sharpening 

In order to utilize WorldView-3 VNIR and SWIR bands for solar PV panel and roofing 

material detections, there is a need to increase the resolution of SWIR bands equal to the 

VNIR bands. In the past, several pan-sharpening algorithms have been developed to 

increase the resolution of multispectral/VNIR bands. Also, several publications 

(Nikolakopoulos, 2008; Padwick et al., 2010; Zhang and Mishra, 2012; and Mercovich, 

2015) have reported the qualities of popular algorithms for pan-sharpening VNIR images. 

However, in the literature review, no algorithm has been found that can increase the 

resolution of SWIR bands. 

1.4.2 Solar PV panel detection 

With the recent advancement of earth imaging satellite sensors, researchers have attempted 

to identify solar PV panels using high-resolution color satellite images. However, manual 

interpretation is time consuming, and it is difficult to differentiate solar PV panels from 

roofs with similar color. Malof et al. (2015) did a feasibility study, where a computer vision 

algorithm was tested to detect solar PV panels in a very high-resolution, visible (RGB) 

imagery. Only limited success was achieved, because the spectral information of solar PV 

panels is similar to that of dark roofs, parking lots, and roads. 
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1.4.3 Roofing Material Detection   

Because most of the roofing materials have unique spectral signatures which can be 

recorded by hyperspectral bands, research has explored the potential of using hyperspectral 

data (including field spectroscopy data and hyperspectral imagery) for roofing material 

detection. For example, Cilia et al. (2015) used aerial hyperspectral images to detect 

asbestos cement roofs and their weathering status. Hamedianfar et al. (2014) combined 

data mining and object-based analysis together to classify urban surface materials in aerial 

hyperspectral images. Samsudin et al. (2016) applied feature selection algorithms to field 

spectroscopy data to detect roofing materials. These studies indicated that although aerial 

hyperspectral imagery and field spectroscopy data provide the best possible spatial and 

spectral resolutions for detecting roofing materials, they are expensive and have a limited 

ground coverage, compared to very high-resolution (VHR) satellite imagery.  

     Some research (Taherzadeh and Shafri, 2013; Taherzadeh and Shafri, 2014; Taherzadeh 

and Shafri, 2015; Taherzadeh and Shafri, 2016) utilized the state-of-the-art object-based 

classification methods to detect roofing materials in VHR satellite imagery. However, very 

limited success was achieved with high miss-classification errors, due to the lack of 

necessary spectral information in VHR multispectral imagery. 

1.5 Problem statement 

From the literature, it can be inferred that the remote sensing technologies can offer an 

efficient and cost-effective solution to detect solar PV panel installations and roofing 

materials in an urban environment. However, most of the VHR satellite imagery lacks 

necessary spectral information to differentiate solar PV panels and roofing materials from 
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other land cover objects. Aerial hyperspectral imagery and spectrometer data can provide 

necessary spatial and spectral information to detect roofing materials; however, they are 

expensive and have a limited ground coverage, compared to the VHR satellite imagery. 

The recently launched VHR satellite, WorldView-3, with additional 8 SWIR bands can be 

useful for solar PV panel and roofing material detection. However, the following specific 

problems were identified in solar PV panel and roofing material detections using 

WorldView-3 imagery.  

a. SWIR bands with 7.5m resolution are not sufficient to effectively detect solar PV 

panels and roofing materials in an urban environment; a higher resolution SWIR 

bands are desired.  

b. The experiments conducted for this research revealed that the spectral information 

in the SWIR bands is not sufficient to separate solar PV panels from some building 

roofs that have certain special materials. 

c. The experiments conducted for this research revealed that the spectral information 

in the SWIR bands is not sufficient to separate roofing materials from some non-

roof materials such as roads and parking lots.  

d. The VNIR bands of WorldView-3 have a resolution of 1.2m, which is more than 6 

times higher than that of the available SWIR bands. Therefore, it is not only 

difficult to detect solar PV panels and roofing materials using either the original 

VNIR bands or the available SWIR bands; but also difficult to combine the VNIR 

bands and the SWIR bands to collectively detect solar PV panels and roofing 

materials. 
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e. The experiments conducted for this research revealed that there are a few land cover 

objects such as roads and bare earth which have similar reflectance to that of some 

building roofs in both VNIR and SWIR bands.  

This PhD dissertation covers the aforementioned problems and they are addressed in 

three journal papers mentioned in section 1.1.  

1.6 Research objectives 

The objectives of this research are to provide effective solutions to the problems mentioned 

in the section 1.5 that include: 

a. Find an effective solution to increase the resolution of WorldView-3 SWIR bands 

from 7.5m to 1.2m (equal to the VNIR bands) and form a 16 band 1.2m super 

spectral imagery by combining 1.2m VNIR bands and 1.2m SWIR bands. 

b. To develop a novel method to detect solar PV panel installations with more than 

90% accuracy using WorldView-3 imagery. 

c. To develop a novel method to detect four types (fiberglass, ethylene propylene 

diene monomer (EPDM), metal, and concrete) of roofing materials in an urban 

environment with more than 90% accuracy using WorldView-3 imagery. 

1.7  Data and Metrics 

The data and metrics used to evaluate methods presented in chapters 2 to 4 are summarized 

in Table 1-2. 
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Table 1-2 Data and Metrics used for accuracy assessment 

No. Data Metrics Descriptions Chapter 

1. WorldView-3 images 

covering 88 km2 of 

Sebastopol, Ukraine, 

Europe. Pan GSD is 0.4m, 

VNIR GSD is 1.6m and 

SWIR GSD is 7.5m. 

Image acquisition date: 

October, 2014. 

Spectral and spatial quality of each 

pan-sharpening method was 

evaluated both visually and most 

commonly used statistical evaluation 

methods such as ERGAS, SAM, Q, 

Q-8, and SSIM 

Chapter 

2[Mishra 

and Zhang, 

2017] 

2.  WorldView-3 imagery 

covering 20 km2 of Brea, 

California, USA. Pan 

GSD is 0.5m, VNIR GSD 

is 1.2m and SWIR GSD is 

7.5m. 

Image acquisition date: 

November, 2014. 

The accuracy assessment of solar PV 

panel detection was done using True 

Detection Rate(TDR), Missed 

detection (MDR), and False 

Detection Rate (FDR) formulas. The 

ground truth was collected using 

Google Earth imagery (5cm spatial 

resolution). 

Chapter 

3[Mishra 

and Zhang, 

2017] 

3.  WorldView-3 imagery 

covering 20 km2 of Brea, 

California, USA. Pan 

GSD is 0.5m, VNIR GSD 

is 1.2m and SWIR GSD is 

7.5m. 

Image acquisition date: 

November, 2014. 

The accuracy assessment of roofing 

material detections was done using 

the conventional error matrix and it 

elements including producer 

accuracy (PA), user accuracy (UA), 

overall accuracy (OA), kappa 

coefficient (KC), and non-roofing 

object detection rate (NRODR). The 

ground truth was collected using 

Google Earth imagery (5cm spatial 

resolution) and Google Street view.  

Chapter 

3[Mishra 

and Zhang, 

2017] 
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1.8 Overview of each chapter 

• Chapter 1 is an introduction to this dissertation presenting a background of the 

study, selection of research topic, review of the existing solutions, statement of the 

problem, objectives of the study, and an overview of each chapter. 

• Chapters 2 to 5 comprise the three journal papers of this dissertation with the main 

contributions of this research included. 

o Chapter 2 investigates the capacities of nine popular pan-sharpening 

algorithms adopted by industry for improving the resolution of WorldView-

3 SWIR bands from 7.5m to 1.2m (equal to the resolution of the VNIR 

bands). A solution to increase the resolution of SWIR bands from 7.5m to 

1.2m is proposed. The outcome of this research provides useful information 

to remote sensing researchers and practitioners for effectively utilizing 

WorldView-3 SWIR bands for advanced remote sensing applications.  

Note: Resolution of the WorldView-3 VNIR bands used in chapter-2 

(paper-1) was 1.6m, therefore, resolution of the WorldView-3 SWIR bands 

was increased from 7.5m to 1.6m.   

o Chapter 3 presents a high resolution, super spectral formation, and spectral 

angle mapping (HR-SSF-SAM) integrated method for solar PV panel 

detection using WorldView-3 imagery. First, the resolution of the 8 SWIR 

bands is increased from 7.5m to 1.2m using the Fuze Go SWIR Sharp 

algorithm. Then, the 8 1.2m SWIR bands are integrated with the 8 1.2m 
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VNIR bands to form a 16-band 1.2m super spectral image. At the end, the 

Spectral Angle Mapper (SAM) algorithm is adapted to identify solar PV 

panels in the 16-band super spectral image. The proposed HR-SSF-SAM 

method is tested on the WorldView-3 image of the Brea city, California, 

USA. The results demonstrate that a true detection rate of 93.3% is achieved 

with a 0% false detection rate. Even solar PV panels and glass roofs can be 

differentiated from each other. 

o Chapter 4 presents a novel method to detect four types of common roofing 

materials (fiberglass, ethylene propylene diene monomer (EPDM), metal, 

and concrete) using WorldView-3 imagery. To suppress non-roofing 

objects such as roads and parking lots, a suppressed non-roofing objects 

(SNRO) image is created using VNIR bands. Whereas, to solve the coarse-

resolution problem of the available SWIR bands and spectral limitations of 

either the VNIR bands or the SWIR bands for roofing material detection, 

the Fuze Go SWIR Sharp algorithm (Fuze Go, 2016) is utilized to increase 

the resolution from 7.5m to 1.2m, and the 8 original 1.2m VNIR bands are 

integrated together with the 8 new 1.2m SWIR bands to form a 16-band 

1.2m super spectral image set. Finally, SAM algorithm is modified to detect 

roofing materials by utilizing SNRO image, super spectral imagery, 

reference spectrums, and non-target reference spectrums. The proposed 

method was tested using WorldView-3 imagery over the city Brea, 

California, USA. A commercial area and a residential area were chosen to 

test the effectiveness of the proposed method. For the commercial area, the 
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overall accuracy and Kappa coefficient of 97.59% and 95.59 respectively 

were achieved; whereas, for the residential area, overall accuracy and 

Kappa coefficient of 93.99% and 88.98%respectively were achieved. 

• Chapter 5 presents the summary of the work accomplished in this research, 

concluding remarks, contributions of the research, and the future work. 

1.9 References 

Cilia, C., Panigada, C., Rossini, M., Candiani, G., Pepe, M., & Colombo, R. (2015). 

Mapping of asbestos cement roofs and their weathering status using hyperspectral 

aerial images. ISPRS Journal of Photogrammetry and Remote Sensing 4(2), 928–941. 

 

DigitalGlobe, Inc. Exploring the benefits of SWIR satellite imagery, white paper. 

Accessed 22 February 2017: 

http://global.digitalglobe.com/sites/default/files/DG_SWIR_WP.pdf 

 

DigitalGlobe, Inc. Moving from Pixels to Products… and data to insight, white paper. 

Accessed 22 February 2017: 

http://global.digitalglobe.com/sites/default/files/DG_Pixels_to_Products_forWeb.pdf 

 

Hallock, L., Kinman, M., (2015). California's Solar Suc- cess Story: How the Million Solar 

Roofs Initiative Trans-formed the State's Solar Energy Landscape. Environment 

California report. 

 

http://global.digitalglobe.com/sites/default/files/DG_SWIR_WP.pdf
http://global.digitalglobe.com/sites/default/files/DG_Pixels_to_Products_forWeb.pdf


 

15 

 

Hamedianfar, A., & Shafri, H. Z. M. (2014). Development of fuzzy rule-based parameters 

for urban object-oriented classification using very high resolution imagery. Geocarto 

International. 29(3), 268–292. 

 

Hamedianfar, A., & Shafri, H. Z. M. (2015). Detailed intra-urban mapping through 

transferable OBIA rule sets using WorldView-2 very-high-resolution satellite images. 

International Journal of Remote Sensing. 36(13), 3380–3396. 

 

Hamedianfar, A., & Shafri, H. Z. M. (2016). Integrated approach using data mining-based 

decision tree and object-based image analysis for high-resolution urban mapping of 

WorldView- 2 satellite sensor data.  Journal of Applied Remote Sensing, 10(2), 025001. 

 

Malof, J. M., Rui Hou., Collins, L. M., Bradbury, K., and Newell, R. (2015). Automatic 

solar photovoltaic panel detection in satellite imagery. International Conference on 

Renewable Energy Research and Applications (ICRERA), Palermo. 1428-1431.  

 

Marchisio, G. (2014). An Overview of the WorldView-3 Sensor. Geospatial World 

Forum, Centre International Conference, Geneva, Switzerland. May 05-09. Accessed 

10 June 2017.   

https://geospatialworldforum.org/2014/presentation/Sensors/WGF%202014b%20-

%20Giovanni%20Marchisio%20-%20DigitalGlobe_PDF.pdf 

 

 



 

16 

 

Nikolakopoulos, K. G. (2008). Comparison of nine fusion techniques for very high 

resolution data.  Photogrammetric Engineering & Remote Sensing, 74 (5), 647–659.  

 

Padwick, C., Deskevich, M., Pacifici, F. and Smallwood, S. (2010). Worldview-2 

Pansharpening. Proceedings of the American Society for Photogrammetry and 

Remote Sensing Annual Conference, San Diego, CA. April 26–30.  

 

Samsudin, S. H., Helmi, Z. M., Shafri & Hamedianfar, A. (2016). Development of spectral 

indices for roofing material condition status detection using field spectroscopy and 

WorldView-3 data. Journal of Applied Remote Sensing, 10(2), 025021. 

 

Taherzadeh, E., & Shafri, H. Z. M. (2013). Development of a generic model for the 

detection of roof materials based on an object-based approach using WorldView-2 

satellite imagery. Advanced Remote Sensing, 2(4), 312–321. 

 

Taherzadeh, E., & Shafri, H. Z. M. (2013). Development of a generic model for the 

detection of roof materials based on an object-based approach using WorldView-2 

satellite imagery. Advanced Remote Sensing, 2(4), 312–321. 

 

Zhang, Y., & Mishra, R. K. (2012). A review and comparison of commercially available 

pan-sharpening techniques for high resolution satellite image fusion. Proceedings of 

the IEEE International Geoscience and Remote Sensing Symposium, Munich, July 22-

27.   



 

17 

 

Chapter 2 : Effects of Industry Adopted Fusion Methods on Pan-

sharpening WorldView-3 SWIR Imagery    

Abstract 

The launch of the WorldView-3 (WV-3) in August 2014 opened up new opportunities to 

use short wave infrared (SWIR) spectral bands for advanced and detailed remote sensing 

applications, which are beyond the capacity of visible and near infrared (VNIR) spectral 

bands. WV-3 SWIR sensor captures eight spectral bands with 3.7 m resolution; however, 

the commercially available resolution is limited to 7.5 m. In order to take advantage of the 

SWIR bands for their unique applications, such as smoke penetration, material 

identification, mineral mapping, and crop health identification, it is highly desired by the 

remote sensing community to find a way to increase the resolution of the SWIR bands to 

the resolution of the available VNIR bands; i.e. from 7.5m to 1.6m. This research 

investigates the capacities of 9 popular, industry adopted pan-sharpening algorithms for 

increasing the resolution of WV-3 SWIR bands. The general principles of the pan-

sharpening algorithms are reviewed. The WV-3 panchromatic (Pan) images are down-

sampled from 0.4m to 1.6m to fuse with the 7.5m SWIR image. Experiments demonstrate 

that most commonly used algorithms are not suitable for pan-sharpening SWIR images, 

whereas the new Fuze Go SWIR Sharp algorithm can produce satisfactory results. The 

reasons why most algorithms fail to produce quality pan-sharpened SWIR bands are also 

examined. 
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2.1 Introduction 

The short wave infrared (SWIR) region of the electromagnetic spectrum (EMS) refers to 

non-visible light falling roughly between 1100 and 3000 nm. There are several benefits of 

collecting image bands within the SWIR region, including improving atmospheric 

transparency, smoke penetration, material identification, and crop health identification. 

Therefore, SWIR data can significantly improve applications in material identification, 

mineral/geology mapping, agriculture, and wildfire response, which are generally not 

possible for visible and near-infrared (VNIR) data. Further details about SWIR applications 

can be found in the references (DigitalGlobe, 2016a; DigitalGlobe, 2016b). 

     WorldView-3 (WV-3) is the first commercial satellite (launched on August 13, 2014) 

to include 8 SWIR bands in the data collection, (DigitalGlobe, 2016a). Together with the 

Pan band and 8 VNIR bands, the WV-3 satellite collects 1 Pan band and 16 spectral bands 

simultaneously (Table 2-1). The availability of 8 SWIR bands, which capture the unique 

spectral signatures of certain ground materials, has opened up new opportunities for more 

high-resolution information extraction which were not possible before. The native 

resolution of the SWIR bands is 3.7m; however, due to the US government regulation, the 

commercially available, maximum resolution of the SWIR bands is only 7.5m.  

     To utilize the advantages of SWIR bands for its unique applications, high-resolution 

SWIR imagery is desired. For example, it is not possible to accurately identify roof 

materials of buildings with a 7.5m resolution. It is also difficult for mineral mapping, 

understanding crop health conditions, and pinpointing the sites of active burning in a 

wildfire, when the resolution is 7.5m. Marchisio 2014 showed how much more information 
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a 3.7m SWIR image from WV-3 can provide compared to a 30m SWIR image from 

ASTER. The difference is significant.  

     To maximize the application potential of the available 16 spectral bands of WV-3 

satellite, it will be ideal to obtain the same resolution for both VNIR and SWIR image 

bands. Because VNIR and SWIR bands measure different physical phenomena of the 

ground objects, the combination of VNIR and SWIR bands can offer additional information 

for remote sensing analytics (DigitalGlobe, 2016b). For example, the yellow, red edge, and 

two near-infrared bands of the VNIR data are sensitive to changes in green chlorophyll of 

crops and expose the carotenoids of leaves during crop stresses.The SWIR bands can 

measure crop moisture. The combination of these bands can increase the accuracy of crop 

growth analysis. However, the resolution difference between the available WV-3 VNIR 

bands (1.6m) and SWIR bands (7.5m) is greater than a factor of 4. This difference makes 

combined analyses difficult. 

     Because of the large demand for high-resolution SWIR images- which would preferably 

have the same resolution as that of the VNIR images- there is a need to investigate the 

potential of existing pan-sharpening algorithms for improving the resolution of WV-3 

SWIR bands. Several publications (Nikolakopoulos, 2008; Padwick et al., 2010; Zhang 

and Mishra, 2012; and Mercovich, 2015) have reported the qualities of popular algorithms 

for pan-sharpening VNIR images. However, no publication has been found by this author 

that examines the capacities of existing algorithms for pan-sharpening SWIR imagery. 

Therefore, this paper aims to investigate the capacities of nine popular pan-sharpening 

algorithms adopted by industry for improving the resolution of WV-3 SWIR bands from 

7.5 m to 1.6 m. The outcome will provide useful information to remote sensing researchers 
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and practitioners for effectively utilizing WV-3 SWIR bands for advanced remote sensing 

applications. 

Table 2-1 Characteristics of the Pan, VNIR, and SWIR sensors of WV-3 satellite 

 

 

 

Band Spectral Range 

(nm) 

Spatial 

Resolution (m) 

Available Spatial 

Resolution (m) 

Pan 450 - 800 0.31 0.4 

Coastal 400 - 450 1.24 1.6 

Blue 450 - 510 1.24 1.6 

Green 510 - 580 1.24 1.6 

Yellow 585 - 625 1.24 1.6 

Red 630 - 690 1.24 1.6 

Red Edge 705 - 745 1.24 1.6 

NIR-1 770 - 895 1.24 1.6 

NIR-2 860 - 1040 1.24 1.6 

SWIR-1 1195 - 1225 3.7 7.5 

SWIR-2 1550 - 1590 3.7 7.5 

SWIR-3 1640 - 1680 3.7 7.5 

SWIR-4 1710 - 1750 3.7 7.5 

SWIR-5 2145 - 2185 3.7 7.5 

SWIR-6 2185 - 2225 3.7 7.5 

SWIR-7 2235 - 2285 3.7 7.5 

SWIR-8 2295 - 2365 3.7 7.5 
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2.2.Pan-sharpening algorithms 

The general principles of the nine pan-sharpening algorithms most widely-used by industry 

are discussed below. 

2.2.1 High Pass Filter (HPF) 

In HPF pan-sharpening (Gangkofner, 2008), the high frequency information is extracted 

from the high-resolution pan image using a high pass filter. The high frequency information 

is then added into each band of the up-sampled low-resolution MS image with a specified 

weight. 

2.2.2 Intensity-Hue-Saturation (IHS) 

IHS pan-sharpening (Siddiqui 2003) utilizes the IHS (intensity, hue, saturation) 

transformation to convert three MS bands from RGB (red, green, blue) into IHS space and 

then replaces the intensity band with the Pan band, followed by an inverse IHS 

transformation. 

2.2.3 Principle Component Analysis (PCA) 

PCA pan-sharpening (Chavez et al. 1991) method uses the principal component (PC) 

transformation to convert MS bands into PCs according to the eigenvectors of their 

corresponding covariance matrices. The first principal component (PC-1) is then replaced 

by the high-resolution Pan image. The pan-sharped MS image is obtained by applying an 

inverse PC transformation on the new set of components. 
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2.2.4 Brovey 

In Brovey pan-sharpening (Klonus and Ehlers 2009), each pan-sharpened band is generated 

by multiplying the corresponding MS band with the Pan band and then dividing by the sum 

of all MS bands to be fused. 

2.2.5 Wavelet 

Wavelet pan-sharpening utilizes a wavelet transformation to decompose the high-

resolution Pan image into one low frequency approximation image and three high 

frequency feature images. The low frequency approximation image is then replaced by the 

low-resolution MS bands, and then followed by individual inverse wavelet transformations 

for each MS band. 

2.2.6 Gram Schmidt 

Gram Schmidt pan-sharpening (Laben, 1998) generates a simulated lower resolution Pan 

image through weighted sum of MS bands. A Gram Schmidt transformation is then applied 

to the simulated low-resolution Pan and the low-resolution MS bands, with the simulated 

Pan as the first band. The high-resolution Pan image is adjusted to match the first band of 

Gram Schmidt transformed bands. Then the adjusted high-resolution Pan is used to replace 

the first band of the Gram Schmidt transformed bands, followed by an inverse Gram 

Schmidt transformation to produce pan-sharpened bands. 
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2.2.7 Hyperspherical Color Space (HCS) 

In HCS pan-sharpening (Padwick et al., 2010), image data is transformed from native 

colour space to a hyperspherical colour space. The pan-sharpened image is obtained by 

reverse transformation from HCS colour space to the original colour space. 

2.2.8 NNDiffuse 

This algorithm (Sun et al., 2014) assumes that each new spectrum in the high-resolution 

fused image is a weighted combination of the immediate neighboring super-pixel spectra 

in the low-resolution MS image. The weights are controlled by a diffusion model inferred 

from the pan image that relates the similarity of the pixel of interest to the neighbouring 

super-pixels. 

2.2.9 Fuze Go SWIR Sharp (FGSS) 

FGSS (Zhang and Mishra 2012, Zhang 2004) is an extension of the Fuze Go algorithm 

(formerly known as UNB pan-sharp (Zhang 2004)). The FGSS algorithm utilizes the least 

squares technique to find the best fit between the grey values of the Pan band and the 

VNIR+SWIR bands to adjust the contribution of individual bands to the fusion. It employs 

a set of statistical approaches to estimate the grey value relationship between all the input 

bands to eliminate the problem of dataset dependency (i.e. reduce the influence of dataset 

variation in the fusion. In the fusion process, original 1.2m VNIR bands, 7.5m SWIR 

bands, and 0.3m Pan band of WorldView-3 are utilized to generate  1.2m SWIR bands. 
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2.3 SWIR fusion results 

The WV-3 imagery covering 88 km2 of Sebastopol, Ukraine, Europe, provided by Exelis 

for DigitalGlobe was used in the SWIR pan-sharpening. The imagery was the first data set 

made available to the user community for testing. It includes different types of land covers 

such as urban, forest, agriculture, and water body.  

     The WV-3 Pan image was down-sampled from 0.4m to 1.6m using bilinear 

interpolation for the SWIR pan-sharpening, to produce pan-sharpened 1.6m SWIR bands 

that have the same resolution as the VNIR bands.  

     The nine algorithms discussed in section 2.2 were used to pan-sharpen the SWIR bands. 

The best processing procedure suggested by the respective user manual of each individual 

pan-sharpening technique and the default pan-sharpening parameters were used. The 

interpolation methods used in each pan-sharpening algorithm are summarized in Table 2-

2.  Due to space limit and for clear visualization, only small subsets are displayed in this 

paper.  

Table 2-2 Interpolation methods used in different pan-sharpening methods 

 HPF PCA Brov Wave GS HCS NND FGSS 

Interpolation  

method 

BLI  BLI BLI BLI CCI BL CCI BLI 

BLI: Bilinear interpolation; CCI: Cubic Convolution interpolation 

 

     Figure 2.1 shows an enlarged subset of the original 1.6m RGB bands from the VNIR 

image, a down-sampled 1.6m Pan image, a color composite of three original 7.5m SWIR 
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bands, and the pan-sharpened 1.6m SWIR bands produced by the nine different pan-

sharpening algorithms.  presents the color composites of different three-band combinations 

of the pan-sharpened SWIR bands of the FGSS algorithm. 

2.4 Quality evaluation and result analysis 

2.4.1 Visual comparison 

To avoid bias in the evaluation of SWIR pan-sharpening qualities, all the images before 

and after fusion were displayed under the same visualization conditions in Figure 2.1 and 

Figure 2.2. 
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Figure 2.1 Comparison between the original VNIR (1.6m), Pan (down-sampled to 1.6m), SWIR 

(7.5m) WV-3 images and the pan-sharped (1.6m) WV-3 images from different pan-sharpening 

algorithms (2 times enlarged subset). 

 

Figure 2.2 Comparison of different band combinations of the original (7.5m) and FGSS pan-

sharpened (1.6m) WV-3 SWIR images. 
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2.4.1.1 Spatial quality evaluation 

The spatial detail evaluations of SWIR bands were done by comparing the original 1.6m 

RGB bands from VNIR sensor and the down-sampled 1.6m Pan band with the pan-

sharpened SWIR bands shown in Figure 2.1. It can be clearly seen that the spatial details 

of the FGSS pan-sharpened SWIR bands are almost identical to the  down-sampled Pan 

image; whereas the Brovey result is sharper than the down-sampled Pan image and HPF is 

close to the down-sampled Pan image. The spatial detail distortion further enlarges from 

PCA, HCS to Gram Schmidt, until the total loss of the spatial details in the IHS result. 

2.4.1.2 Spectral quality evaluation 

For spectral quality evaluation, the colour of the original SWIR image was compared to 

those of the pan-sharpened SWIR images. The focus of comparison was to examine the 

presence or absence of colour distortions in the pan-sharped images.  In Figure 2.1, it can 

be seen that the colour of the FGSS result is closest to that of the original SWIR image, 

followed by that of HPF and Gram Schmidt methods. NNDiffuse produces severe colour 

distortion and IHS completely distorts the colour. 

2.4.1.3 Spatial and spectral integration quality evaluation 

For the spatial and spectral integration quality evaluation, the quality of spatial and spectral 

integration in the pan-sharped images was examined. When comparing the input 1.6m Pan 

and 7.5m SWIR images with fused images in Figure 2.1, it can be seen that FGSS produced 

the best spatial and spectral integration followed by Brovey, whereas most other algorithms 

produced obvious colour artifacts due to poor spatial and spectral integration. The colour 

artifacts increase from HPF, PCA, Gram Schmidt, HCS to Wavelet. 
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     The visual comparison can be summarized in Table 2-3. 

Table 2-3 Quality ranking of visual comparison 

 HPF PCA Brov Wave GS HCS NND FGSS 

Spa.Q 2 4 3 8 6 5 7 1 

Spe.Q 2 4 5 7 3 6 8 1 

Int.Q 3 4 2 7 5 6 8 1 

1 = best; 8 = last; (IHS is not displayed because of its complete distortion.) 

Spa.Q = Spatial Quality; Spe.Q = Spectral Quality; Int.Q = Integration Quality 

 

2.4.2 Statistical comparison 

In this paper, the following quality assessment indicators are used to assess the quality of 

pan-sharpened SWIR bands. 

2.4.2.1 ERGAS 

The ERGAS value is defined as (Wald 2000): 

 

𝐸𝑅𝐺𝐴𝑆 = 100
ℎ

𝑙
√1

𝑁
 ∑ (

𝑅𝑀𝑆𝐸(𝑖)

𝑀𝑒𝑎𝑛(𝑖)
)
2

𝑁
𝑖=1     (2-1) 

where, h/l is the ratio between pixel sizes of Pan and MS images, RMSE(i) and Mean(i) 

are the RMSE and mean of the ith pan-sharpened band. A low ERGAS value indicates 

better image quality.  
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2.4.2.2 SAM 

SAM (Yuhas et al. 1991) is the absolute angle between the two vectors constructed from 

each pixels of the original image X and the pan-sharpened image Y.  For an ideal fused 

image, the SAM value should be zero. The SAM value is defined as 

𝑆𝐴𝑀 = 𝑐𝑜𝑠−1
∑ 𝑋𝑖,𝑗𝑌𝑖,𝑗𝑖,𝑗

√∑ 𝑋𝑖,𝑗
2

𝑖,𝑗 √∑ 𝑌𝑖,𝑗
2

𝑖,𝑗

            (2-2) 

where X and Y are the two spectral vectors with the same wavelength from the original 

MS image and pan-sharpened image respectively. 

2.4.2.3 Universal Image Quality Index (Q) 

Q (Wang and Bovik 2002) for two images X and Y is defined as: 

𝑄 =
𝜎𝑋𝑌

𝜎𝑋 𝜎𝑌
 ∙
2𝜇𝑋 𝜇𝑌

𝜇𝑋+𝜇𝑌
∙

2𝜎𝑋𝜎𝑌

(𝜇𝑋
2+𝜇𝑌

2)(𝜎𝑋+𝜎𝑌)
         (2-3) 

where 𝜎𝑋 and 𝜎𝑌 are the variances of two images X and Y respectively where as 𝜇𝑋  and 

𝜇𝑌  are the means of the two images X and Y respectively. In (3), the first component is 

the correlation coefficient between X and Y images, the second term is a comparison of 

means between X and Y images, and the third term is a comparison of the image contrast. 

An index value that is close to 1 means good quality. 

2.4.2.4 Q2n Quality Index(Q-8) 

Q2n (Garzelli and Nencini 2009) for two images X and Y is defined as: 

𝑄𝑁×𝑁 =
𝜎𝑋𝑌

𝜎𝑋 𝜎𝑌
 ∙

2𝑋 ̅�̅�

(�̅�)2+(�̅�)2
∙
2𝜎𝑋𝜎𝑌

𝜎𝑋
2+𝜎𝑌

2         (2-4) 

 



 

30 

 

where 𝜎𝑋 and 𝜎𝑌 are the variances of two images X and Y respectively where as 𝜎𝑋𝑌 the 

cross-covariance of images X and Y respectively. Q2n is an extension of the universal 

image quality index. An index value that is close to1 means good quality. 

2.4.2.5 Structural Similarity Index (SSIM) 

SSIM (Wang et al. 2004) is defined as follows: 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥 𝜇𝑦+ 𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥 
2 +𝜇𝑦

2+𝐶1)(𝜎𝑥 
2+𝜎𝑦

2+𝐶2)
          (2-5) 

where 𝜇 is the mean of the image,  𝜎 is the standard deviation, C1 and C2 are constants 

taken from the literature. The closer the SSIM value is to 1, the better the quality. 

 

     The results obtained from the quality indicators are shown in Table 2-4. ERGAS, SAM, 

Q, and Q-8 methods are used to measure the spectral quality of the pan-sharpened image. 

For spectral quality assessment, the original SWIR image (7.5m) was used as a reference 

image, and the Pan and SWIR were down-sampled to 7.5m and 30m respectively to 

generate a 7.5m pan-sharpened result for comparison. The SSIM method is used to measure 

the spatial quality of the pan-sharpened SWIR image, for which the down-sampled 1.6m 

Pan image was used as a reference. 
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Table 2-4 Statistical comparison results 

 HPF PCA Brov Wave GS HCS NND FGSS 

ERGAS 5.09 16.15 21.54 5.01 6.3 5.43 21.6 2.05 

SAM 2.20 19.54 13.99 3.1 2.8 0.61 5.02 1.98 

Q 0.73 0.45 0.005 0.70 0.72 0.89 0.08 0.94 

Q-8 0.70 0.43 0.040 0.65 0.61 0.67 0.01 0.90 

SSIM 0.97 0.67 0.93 0.71 0.95 0.76 0.12 0.99 

Ideal values: ERGAS = 0; SAM = 0; Q = 1; Q-8=1; SSIM = 1 

(IHS is not included because of its complete spatial and spectral distortion) 

 

     Similar to the visual comparison, the statistical indexes also confirm that the FGSS 

algorithm produces the best results in terms of spectral and spatial fidelities. Based on the 

indexes, although HPF, Brovey, and Gram Schmidt reached acceptable spatial quality, their 

spectral qualities are poor. The other remaining pan-sharpening algorithms introduced both 

serious spatial and spectral distortions, which are reflected by their poor spatial and spectral 

indexes. 

2.4.3 Result analysis 

From the general principal of the nine algorithms discussed in section 2.2, one can see that 

most early fusion algorithms (such as HPF, IHS, Brovey, PCA and Wavelet) assume that 

the grey value of the Pan band is similar to that of the multispectral (MS) bands to be fused. 

Therefore, the high-resolution spatial information from the Pan image can be directly 

inputted into the MS bands, through addition, substitution, or division operations. These 
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methods may work well with the Pan and 4-band MS images from early satellites such as 

IKONOS and QuickBird, but, they do not work well with the 8-band MS image of 

WorldView-2 (Zhang and Mishra, 2012). They produce even poorer results for WV-3 

SWIR fusion (Figure 2.1), because the grey value difference between the Pan and the 8 

SWIR bands of WV-3 is even greater.  

     Gram Schmidt is known as a high quality algorithm for pan-sharpening four VNIR (R, 

G, B and NIR) bands. It assumes there is a fixed correlation between the Pan band and the 

four VNIR bands. However, this fixed correlation does not fit the correlation between the 

Pan and SWIR bands of WV-3. Therefore, obvious colour distortion and colour artifacts 

are introduced in the fusion. Colour distortions and artifacts of Gram Schmidt were also 

reported in early studies (Zhang and Mishra, 2012; Sun et al., 2014) where the eight VNIR 

bands of WorldView-2 were pan-sharpened, because the fixed correlation does not work 

with the eight VNIR bands either. 

     The HCS algorithm was developed to fuse all  eight VNIR bands of the WorldView-2 

satellite. It assumes that the intensity component of the VNIR bands can be well 

represented by the Pan band. Therefore, when the spectral bands of the VNIR image do not 

overlap with that of the Pan band, poor fusion results will be produced (Mercovich, 2015). 

Mercovich (2015) evaluated the HCS algorithm and found that although HCS improves 

the spatial details in all bands, it introduces noticeable spectral distortion and softens the 

sharpness. Obviously, the spectral coverage of the SWIR bands of WV-3 is farther away 

from that of the Pan band. Therefore, colour distortion is inevitable when HCS is used to 

fuse the Pan and SWIR bands. 
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     The NNdiffuse algorithm was developed to solve the n-bands fusion problem. It 

assumes that each new spectrum in the pan-sharpened image is a weighted combination of 

the immediate neighboring super-pixel spectrum in the low-resolution MS image. The pan-

sharpening result relies on certain external parameters which are determined based on the 

application of the pan-sharpened product. Due to the dependency on external parameters, 

serious colour distortions and artifacts are introduced into the pan-sharpened SWIR bands. 

     The FGSS algorithm is an image-oriented fusion approach. It does not rely on any 

assumption or any external parameter. It treats each set of Pan and VNIR/SWIR bands 

individually to find the best fit between the Pan and VNIR/SWIR bands and then fuse them 

together. Therefore, FGSS is able to produce high quality pan-sharpened SWIR bands 

(Figure 2-1 and Figure 2-2). 

2.5 Conclusions 

This paper investigated the capacities of nine industry-adopted pan-sharpening algorithms 

for increasing the resolution of WV-3 SWIR bands from 7.5m to 1.6m. The experiments 

prove that the FGSS technique is capable of producing high quality pan-sharpened SWIR 

bands (Figure 2-1 and Figure 2-2); whereas other fusion techniques produced poor results, 

with obvious spectral distortion, poor spatial quality, and/or colour artifacts (Figure 2-1).  

The reason FGSS produces good results is that FGSS treats each Pan and MS set to be 

fused individually and aims to find the best fit between the bands in the fusion. However, 

the other methods use fixed parameters in the fusion. When the MS bands are changed 

from VNIR to SWIR, the fixed parameters do not work anymore, so that colour distortions 

and artifacts are inevitably introduced.     



 

34 

 

     Any resolution increase of WV-3 SWIR imagery will increase its application potential. 

It will further broaden its application potential if the SWIR resolution is increased from 

7.5m to that of the VNIR bands (1.6m). FGSS demonstrated the capacity to produce high 

quality 1.6m pan-sharpened SWIR imagery, which is proved by visually examining two-

times enlarged results and quantitative measurements. This capacity will provide remote 

sensing researchers and practitioners with an effective tool to utilize and extend WV-3 

SWIR imagery for advanced applications. 
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Chapter 3 : Solar Photovoltaic Panel Detection using WorldView-3 

satellite imagery 

Abstract 

Solar photovoltaic (PV) panel installations are exponentially growing worldwide. Quickly 

and effectively detecting solar PV panels is important for energy and environment policy 

making. However, traditional methods such as manual surveys and information collection 

from Solar PV vendors are laborious and often yield insufficient information. WorldView-

3 images with its 16 spectral bands may provide a potential for cost-effectively extracting 

solar PV panel information. However, the resolution of commercially available 8 SWIR 

bands is only 7.5m, which is not sufficient for detecting small solar PV panel installations. 

It is also difficult to differentiate large solar PV panel installations from some large 

building roofs. In addition, the resolution of the 8 VNIR bands of WorldView-3 is 1.2m, 

which is difficult to integrate with the 8 SWIR bands for solar panel detection. This paper 

introduces a high-resolution, super spectral formation, and spectral angle mapping (HR-

SSF-SAM) integrated method for solar PV panel detection. First, the resolution of the 8 

SWIR bands is increased from 7.5m to 1.2m using the Fuze Go SWIR Sharp algorithm. 

Then, the 8 1.2m SWIR bands are integrated with the 8 1.2m VNIR bands to form a 16-

band 1.2m super spectral image. At the end, the Spectral Angle Mapper (SAM) algorithm 

is adapted to identify solar PV panels in the 16-band super spectral image. The proposed 

HR-SSF-SAM method is tested on the WorldView-3 image of Brea, California, USA. The 

results demonstrate that a true detection rate of 93.3% is achieved with a 0% false detection 

rate. Even solar PV panels and glass roofs can be differentiated from each other. 
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3.1 Introduction 

In recent years, there is a rapid growth of solar photovoltaic (PV) panel installations in the 

USA and around the world because of the technical advancement in PV and battery 

technologies, fast reduction in prices of solar PV panels, and government subsidies and 

encouragements for green energy. Hence, small scale solar power generation is quickly 

becoming a viable alternative to conventional sources of electricity. A report from the 

California Solar Initiative (CSI) shows that in California alone the solar PV capacity has 

increased 12 times in the years from 2006 to 2014 (Hallock and Kinman, 2015).  

    Therefore, it is important to acquire information about solar PV panel installations, such 

as the number of solar PV panels installed in an area of interest. This information is crucial 

in quantifying the energy production of existing solar PV panels in order to make informed 

decisions, such as energy policies and regulations, system planning for capacity expansion, 

transmission and distribution upgrades, and operation adjustments to ensure grid reliability 

and resilience (Malof et al., 2015). However, the traditional methods, such as on-site 

surveys and information collection from solar PV vendors, are laborious, time consuming, 

and often yield insufficient data for government and utility decision makers. In addition, 

the data collected by traditional methods may quickly become outdated due to the rapid 

growth of solar PV installations. To overcome these challenges, there is a need for new 

technologies that can obtain accurate information on solar PV panel installation and 

distribution in a cost-effective fashion. 

    With the recent advancement of earth imagining satellite sensors, researchers have 

attempted to identify solar PV panels using very high-resolution color aerial images. 

However, manual interpretation is not only time consuming, but it is also difficult to 
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differentiate solar PV panels from roofs with similar color. Bradbury et al. (2016) 

developed a database of solar PV panel installations for four US cities using very high-

resolution (less than 30cm) aerial imagery by manually delineating individual solar PV 

panel installations. Malof et al. (2015) did a feasibility study, in which a computer vision 

algorithm was tested to detect solar PV panels in very high-resolution, visible (RGB) 

imagery. Only limited success was achieved because the spectral information of solar PV 

panels is similar to that of dark roofs, parking lots, and roads. 

     The launch of WorldView-3 satellite on August 13, 2014, brings a new opportunity for 

solar PV panel detection. It is the first commercial satellite to include 8 short wave infrared 

(SWIR) bands in the data collection (DigitalGlobe, 2016). Together with the existing Pan 

and VNIR bands, WorldView-3 simultaneously collects 1 Pan band and 16 spectral bands. 

The inclusion of the 8 SWIR bands has increased the potential to detect solar PV panels. 

However, the commercially available SWIR bands only have a resolution of 7.5m, which 

is not sufficient for detecting small solar PV panel installations. In addition, the  

experiments reveal that the spectral information in the SWIR bands is not sufficient to 

separate solar PV panels from some building roofs that have certain special materials. On 

the other hand, the VNIR bands of WorldView-3 have a resolution of 1.2m, which is more 

than 6 times higher than that of the available SWIR bands. Therefore, it is not only difficult 

to detect solar PV panels using either the original VNIR bands or the available SWIR 

bands, but also difficult to combine the VNIR bands and the SWIR bands to collectively 

detect solar PV panels. In the  extensive literature review, no successful technique that can 

effectively detect solar PV panels in satellite imagery has been found.   
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     This paper introduces a new method — a high-resolution, super spectral formation and 

spectral angle mapping (HR-SSF-SAM) method — to detect solar PV panels using 

WorldView-3 imagery. To solve the low-resolution problem of the available SWIR bands, 

the Fuze Go SWIR Sharp algorithm (Fuze Go, 2016) is utilized to increase the resolution 

of the SWIR bands from 7.5m to 1.2m, to produce a set of high-resolution SWIR bands 

(HR SWIR, with an equal resolution to that the original VNIR bands). To overcome the 

spectral limitations of either the VNIR bands or the SWIR bands for solar PV panel 

detection, the 8 original VNIR bands are stacked together with the 8 new HR SWIR bands 

to form a high-resolution, super spectral image with 16 bands at 1.2m resolution. To 

effectively detect solar PV panels in the high-resolution, super spectral image, the Spectral 

Angle Mapper (SAM) algorithm (ENVI, 2016; Kruse et al., 1993) is adapted to determine 

the spectral similarity between the image spectrum and the reference spectrum of solar PV 

panels. The image pixels with similar spectral angles are detected as solar PV panel pixels.  

     The proposed HR-SSF-SAM method was tested using WorldView-3 imagery collected 

over Brea, California, USA. A true detection rate of 93% was achieved with a 0% false 

detection rate. Even glass roofs and solar PV panels, that are difficult for human eye to 

separate, can be differentiated by the proposed HR-SSF-SAM method. 

     The remainder of this paper is organized as follows. Section 3.2 describes the study area 

and data set; section 3.3 discusses the spatial and spectral information of the SWIR bands; 

section 3.4 introduces and explains the proposed method; the results and accuracy analysis 

are presented in section 3.5; and the conclusions are given in section 3.6. 
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3.2 Study area and data set 

The study area covers an area of 20 km2 of Brea, California, USA. The WorldView-3 

imagery of the study area was collected in November 2014 and provided by DigitalGlobe. 

As indicated in Figure 3.1, solar PV panels with various sizes are distributed in the area 

among buildings and other ground objects. Quick Atmospheric Correction (QUAC) 

method (ENVI, 2016) was applied to the data. QUAC is a VNIR-SWIR atmospheric 

correction method and works best with scenes that contain man-made structures. The 

spectral and spatial information of the WorldView-3 image bands is provided in Table 3-1. 

  

Figure 3.1 Study area and a subsection with solar PV panels. (a) Overview of the study area in the 

1.2m natural colour image of WorldView-3, and (b) solar PV panels (1), dark roofs (2), and a glass 

roof (3). 
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Table 3-1 Characteristics of the WorldView-3 imagery used in this study. 

Band Spectral range (nm) Spatial resolution (m) 

 Pan 450 - 800 0.5 

 

 

 

VNIR 

Coastal 400 - 450 1.2 

Blue 450 - 510 1.2 

Green 510 - 580 1.2 

Yellow 585 - 625 1.2 

Red 630 - 690 1.2 

Red Edge 705 - 745 1.2 

NIR-1 770 - 895 1.2 

NIR-2 860 - 1040 1.2 

 

 

 

SWIR 

SWIR-1 1195 - 1225 7.5 

SWIR-2 1550 - 1590 7.5 

SWIR-3 1640 - 1680 7.5 

SWIR-4 1710 - 1750 7.5 

SWIR-5 2145 - 2185 7.5 

SWIR-6 2185 - 2225 7.5 

SWIR-7 2235 - 2285 7.5 

SWIR-8 2295 - 2365 7.5 
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     The Pan and VNIR bands of WorldView-3 are almost the same as those of WorldView-

2. The SWIR bands of WorldView-3 are beyond the near-infrared region falling roughly 

between 1100 and 3000 nm. The SWIR sensor is strategically designed to capture the 

unique spectral signatures of certain ground materials (DigitalGlobe, 2016). This opens up 

new opportunities to extract more high-resolution information which were not possible 

before. Particularly, the SWIR spectral bands can significantly improve applications in 

identification of man-made materials beyond the capacity of VNIR spectral bands. Young 

(2015) shows the usefulness of WorldView-3 SWIR spectral bands in the identification of 

man-made materials and minerals. 

3.3 Spatial and spectral information of the SWIR bands 

3.3.1 Spatial resolution of the SWIR bands 

Solar PV panels have some unique absorption features in the WorldView-3 SWIR bands, 

which increases the possibility to detect solar PV panels. However, the 7.5m resolution 

makes it difficult to detect small solar PV panel installations. As shown in Figure 3.2 (a) 

and Figure 3.2 (a) the large size solar PV panel installations can be identified in the 7.5m 

resolution SWIR bands, but small solar PV panel installations cannot be identified. On the 

other hand, as shown in Figure 3.2 (c), both large and small solar PV panel installations 

are clearly visible in 1.2m resolution VNIR bands. 

     Therefore, in order to detect both small and large solar PV panel installations, higher 

resolution SWIR bands are required. In addition, to maximize the application potential of 

the available VNIR bands and SWIR bands of WorldView-3 satellite, it is desirable to 
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obtain a set of high-resolution SWIR bands that have the same resolution as that of the 

VNIR bands. 

 

Figure 3.2 Solar PV panels in different spectral images of WorldView-3. (a) Available 7.5m SWIR 

bands 2, 1, 8 displayed in RGB at 1:1 ratio, (b) enlarged 7.5m SWIR bands, and (c) original 1.2m VNIR 

bands 5, 3, 2 displayed in RGB. (In the available SWIR bands small solar PV panel installations are not 

visible; however, they are clearly visible in the original VNIR bands.) 

3.3.2 Spectral analysis of solar PV panels 

3.3.2.1 Spectral analysis of solar PV panels 

With 1.2m resolution WorldView-3 VNIR bands, the human eye can sometimes identify 

the solar PV panels in a complex urban scene; however, it is difficult for a computer to 

separate them from other ground objects which have similar spectrums. For example, as 

shown in Figure 3.3 (a, b, c and d), in VNIR bands, the spectrums of a solar PV panel, two 

dark roofs, and a glass roof contain similar or almost the same absorption features (Figure 

3.3 (e)). The only difference is that they have a slightly different brightness. Therefore, 

a 

b 

c 
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using VNIR bands  makes it  difficult or impossible for a classifier to differentiate between 

solar PV panels and other objects with similar spectrums. However, these ground materials 

have unique absorption features in different SWIR bands of WorldView-3. For example, 

in Figure 3.3 (f, g, h, i and j), the spectrums of the solar PV panel, two dark roofs, and 

glass roof are different in SWIR bands. Therefore, the SWIR bands of WorldView-3 can 

help differentiate solar PV panels from those objects which cannot be done using VNIR 

bands. 

 

Figure 3.3 Comparison of the spectrums of a solar PV panel, dark roofs and a glass roof in VNIR and 

SWIR bands. (a) (b) (c) (d) solar PV panel, dark roof 1, dark roof 2, and glass roof in VNIR bands 

respectively, (e) the spectral curves of the pixels a, b, c, and d (centtres of the crosses) in VNIR bands, 

(f) (g) (h) (i) solar PV panel, dark roof 1, dark roof 2, and glass roof in SWIR bands respectively, and 
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(j) the spectral curves of the pixels f, g, h and i in SWIR bands. (The SWIR bands shown here are 1.2m 

high-resolution SWIR bands produced using Fuze Go SWIR Sharp to be discussed in the methodology 

section. The spectrums of solar PV panel, dark roof, and glass roof are similar in VNIR bands, but different 

in SWIR bands.) 

3.3.2.2 Limitation of SWIR for solar PV panel detection 

As shown in Figure 3.4 (e, f, g and h), solar PV panels and white roofs have similar 

spectrums in SWIR bands, whereas their spectrums in VNIR bands are different as shown 

in Figure 3.4 (a, b, c and d). Therefore, using the 8 SWIR bands alone make it difficult to 

differentiate solar PV panels from a few other objects such as white roofs. 
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Figure 3.4 Comparison of the spectrums of a solar PV panel and white roofs in VNIR and SWIR bands. 

(a) (b) (c) solar PV panel, white roof-1, white roof-2 in VNIR bands respectively, (d) the spectral curves 

of the solar PV panel pixel (centre of the cross) and the two white roof pixels in VNIR bands, (e) (f) (g) 

solar PV panel, white roof-1, white roof-2 in SWIR bands respectively, (h) the spectral curves of the 

solar PV panel pixel and the two white roof pixels in SWIR bands, and (i) the spectral curves of the 
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solar PV panel pixel and the two white roof pixels in the 16 spectral bands (8 VNIR + 8 SWIR). (The 

solar PV panel and white roofs have similar spectral curves in SWIR bands, whereas they have different 

spectral curves in VNIR bands.) 

3.3.2.3 Necessity of combining VNIR and SWIR bands 

Some ground objects, such as dark roofs and glass roofs, have similar spectrums as that of 

solar PV panels in VNIR bands, but have different spectrums in SWIR bands; therefore, 

SWIR bands can be utilized to separate solar PV panels from dark roofs and glass roofs. 

However, other ground objects, such as white roofs, have similar spectrums as that of solar 

PV panels in SWIR bands, but different spectrums in VNIR bands. Therefore, it is not 

possible to achieve a high accuracy solar PV panel detection using either VNIR bands or 

SWIR bands, respectively.  

     However, as shown in Figure 3.3(e), Figure 3.3(j), and in Figure 3.4(i), the 

combination of the VNIR and the SWIR bands can ensure that sufficient spectrum 

difference can be found in the combined 16 super spectral bands. Therefore, it is necessary 

to combine the 8 VNIR bands and the 8 SWIR bands to form a 16 band super spectral 

image for solar PV panel detection.    

3.4 Methodology of solar PV panel detection 

The proposed high-resolution, super spectral formation and spectral angle mapping (HR-

SSF-SAM) method consists of three major components: (1) increasing the spatial 

resolution of the 8 SWIR bands from 7.5m to 1.2m (equal to that of the VNIR bands) using 

FGSS algorithm (Fuze Go, 2016; Zhang and Mishra, 2014; Zhang, 2004) (2); combining 

the 8 original 1.2m VNIR bands with the 8 HR 1.2m SWIR bands to form a 16 bands super 
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spectral imagery; and (3) adapting the Spectral Angle Mapper (SAM) method from 

hyperspectral image processing to detect solar PV panels in super spectral images. The 

flowchart of the proposed method is shown in Figure 3.5. 

 

                                    

Figure 3.5 Flowchart of the proposed HR-SSF-SAM method for solar PV panel detection. 

 

3.4.1 High-Resolution SWIR bands creation 

As discussed in section 3.2, it is difficult to detect small solar PV panel installations using 

the available SWIR bands (7.5m resolution). It is also desirable to obtain a set of SWIR 

bands that have the same resolution as that of the VNIR bands, to maximize the application 

potential of the available 16 spectral bands of WorldView-3 satellite. Therefore, the Fuze 
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Go SWIR Sharp (FGSS) algorithm (Fuze Go, 2016) was used to increase the resolution of 

SWIR bands from 7.5m to 1.2m to produce high-resolution (HR) SWIR bands. 

     The FGSS algorithm is an extension of the Fuze Go algorithm (formerly known as UNB 

pan-sharp) (Fuze Go, 2016; Zhang and Mishra, 2014; Zhang, 2004). FGSS algorithm 

utilizes the least squares technique to find the best fit between the grey values of the Pan 

band and the VNIR/SWIR bands in order to adjust the contribution of individual bands to 

the fusion. It employs a set of statistical approaches to estimate the grey value relationship 

between all the input bands in order to eliminate the problem of dataset dependency (i.e. 

reduce the influence of dataset variation in the fusion). In the fusion process original 1.2m 

VNIR bands, 7.5m SWIR bands, and 0.3m Pan band of WorldView-3 are utilized to 

generate 1.2m SWIR bands. 

     Figure 3.6(a) and 6(b) show the available 7.5m SWIR image and the 1.2m HR SWIR 

image generated using FGSS algorithm. It can be seen that the generated 1.2m HR SWIR 

image not only has the same spectral information as the 7.5m SWIR image, but also has 

the same spatial resolution as that of the original 1.2m VNIR image (Figure 3.6(c)). 
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Figure 3.6 Comparison between the available 7.5m SWIR image (a), the 1.2m HR SWIR image 

generated using FGSS (b), and the original 1.2m VNIR image (c). 

a 

b 
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3.4.2 Super spectral image formation 

As discussed in section 3.3, in VNIR bands, the spectrum of solar PV panels may be similar 

to that of some ground objects; however, in SWIR bands, spectrums of solar PV panel may 

be similar to the spectrum of other ground objects. However, the spectral analysis of VNIR 

and SWIR bands shows that the solar PV panel has unique spectrum features in the 

combination of VNIR and SWIR bands, that are different from those of none-solar-PV-

panel objects. Therefore, a high-resolution, 16 band super spectral (VNIR+SWIR) image 

was generated by combining the eight 1.2m VNIR bands and the eight 1.2m HR SWIR 

bands. 

3.4.3 Solar PV panel detection 

The spectral angle mapper (SAM) algorithm (Kruse et al., 1993), which determines the 

spectral similarity between two spectrums, was adapted to identify solar PV panel 

installations in the high-resolution, super spectral images.  

     The SAM algorithm performs mapping of the spectral similarity of image spectrum to 

the reference spectrum which uses a n-dimensional angle to match pixels to reference 

spectrum (ENVI 2016; Kruse et al., 1993). The algorithm determines the similarity 

between two spectrums by calculating the angle between the spectrums and treating them 

as vectors in a space with dimensionality equal to the number of bands. The smaller angles 

between the two spectrums indicate high similarity and vice-versa. The reference spectrum 

can either be attained from the field measurements or taken directly from the image. SAM 

algorithm is mostly used to identify objects from hyperspectral images as the SAM 

algorithm can identify the ground materials based on their unique spectrum in the 
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hyperspectral bands. Solar illumination and albedo effects do not affect it as it uses only 

the vector direction and not the vector length. Moreover, the SAM algorithm works well 

in areas of homogeneous regions. The angle between reference and test spectrums is 

calculated using equation 3-1. 

 

𝛼 = cos−1 {
∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1

√∑ 𝑋𝑖
2𝑛

𝑖=1  √∑ 𝑌𝑖
2𝑛

𝑖=1  

}   (3-1) 

 

where n is the number of spectral bands, X is the reference spectrum, and Y is the test 

spectrum. 

     There are two main reasons to utilize the SAM algorithm method: (1) the solar PV panel 

pixels have an unique spectrum in super spectral bands and SAM algorithm can accurately 

identify those pixel; and (2) the surfaces of solar PV panels are mostly homogenous and 

SAM algorithm works well in the homogenous area.  

In the solar PV panel detection, SAM algorithm was applied on the 1.2m super spectral 

bands to detect solar PV panels. A threshold value 0.07 radian (4.01 degree) was used as 

maximum acceptable angle between the reference spectrum vector and the test spectrum 

vector. The average value of the training pixel spectrums was taken as a reference spectrum 

to find the optimum reference spectrum.  

     For result comparison purposes, the 1.2m VNIR bands, original 7.5m SWIR bands, and 

the 1.2m HR SWIR bands were also used for the solar PV panel detection, respectively, 

using exactly the same training pixels and processing parameters. Table 3-2 shows the 

number of training pixels used to detect solar PV panels in VNIR bands, original SWIR 
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bands, HR SWIR bands, and super spectral bands. (Because the 7.5m SWIR image has a 

significantly lower resolution, the total number of pixels and the training pixels are also 

significantly less). 

Table 3-2 The total number of pixels of the study area and the number of training pixels used in the 

solar PV panel detection from the original 1.2m VNIR, original 7.5m SWIR, produced 1.2m HR SWIR 

and combined 1.2m super spectral bands 

 Total no. of pixels No. of training pixels 

1.2m VNIR (8 bands) 16777216 12 

7.5m SWIR (8 bands) 438876 6 

1.2m HR SWIR (8 bands) 16777216 12 

1.2m Super Spectral (16 bands) 16777216 12 

 

3.5 Results and discussions 

3.5.1 Ground truth collection 

The WorldView-3 imagery used in this study for solar PV Panel detection was collected in 

November 2014. Therefore, the very high-resolution and high quality aerial photos of  

Brea, California, USA that are available on Google Earth were chosen for ground truth 

extraction. In the aerial photos, individual solar PV panels can be clearly seen based on 

their color, texture and structure. In addition, a pan-sharpened 0.5m multispectral image 

generated using Fuze Go algorithm (Zhang and Mishra, 2014; Zhang, 2004) from the same 

WorldView-3 image dataset was used to assist the manual solar PV panel extraction.  
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     The solar PV panel installations in Brea were identified and delineated by an image 

analyst through block-by-block scanning of the whole area. The color, texture and structure 

information in the aerial photos and the spatial and multispectral information in the pan-

sharpened image were utilized for the solar PV panel interpretation. A total of 15 solar PV 

panel installations, including large area installations and small area installations, were 

found in the study area. 

3.5.2 Solar PV panel detection results 

Figure 3.7(a) shows the area where solar PV panels were detected using the proposed HR-

SSF-SAM method applied on super spectral bands. The detected solar PV panels are 

indicated in red and WorldView-3 natural color imagery is shown as the background. For 

comparison purposes, Figure 3.7 (b), 7(c), 7(d), and 7(e) show an enlarged area with the 

detected solar PV panels from the four different image datasets.  
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Figure 3.7 Solar PV panel detection results and the comparison (red: detected solar PV panels; yellow 

circle: missed detection; blue circle: false detection). (a) Solar PV panel detected using the proposed 

HR-SSF-SAM method, (b) subsection of Solar PV panel detected using VNIR bands, (c) subsection of 

solar PV panel detected using original (7.5m) SWIR bands, (d) subsection of solar PV panel detected 

using HR (1.2m) SWIR bands, and (e) subsection of solar PV panel detected using the proposed HR-

SSF-SAM method in 16 super spectral (1.2m) bands. (SAM algorithm was used in all of the detections) 
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3.5.3 Methods for accuracy calculation 

3.5.3.1 True detection rate  

True detection is the number of solar PV panels correctly detected and the true detection 

rate is the percentage of correctly detected solar PV panels. The true detection rate (TDR) 

is computed using equation 3-2. 

 

𝑇𝐷𝑅 =
𝑁𝑇𝐷

𝑁
×100   (3-2) 

where TDR is true detection rate, NTD is number of true detections, N is total number of 

solar PV panels in the study area. 

3.5.3.2 Missed detection rate  

Missed detection is the number of solar PV panels that were not detected and the missed 

detection rate is the percentage of missed solar PV panel detection. The missed detection 

rate (MDR) is computed using equation 3-3. 

 

𝑀𝐷𝑅 =
𝑁𝑀𝐷

𝑁
×100   (3-3) 

where MDR is missed detection rate, NMD is number of missed detections, N is total 

number of solar PV panels in the study area. 

3.5.3.3 False detection rate  

False detection is the number of other objects which were falsely detected as solar PV 

panels and the false detection rate is the percentage of false solar PV panel detection. The 

false detection rate (FDR) is computed using equation 3-4. 
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𝐹𝐷𝑅 =
𝑁𝐹𝐷

𝑇𝐷
×100   (3-4) 

where FDR is false detection rate, NFD is number of false detections, TD is total number 

of detections. 

3.5.4 Accuracy comparison and analysis 

Table 3-3 shows the true detections (correctly detected), missed detections (solar PV panel 

was not detected), and false detections (other object was falsely detected as solar PV panel) 

using original VNIR bands, original SWIR bands, HR SWIR bands, and super spectral 

bands, respectively. 

Table 3-3 Solar PV panel detection results using original SWIR bands, HR SWIR bands, and super 

spectral bands. 

 True 

detec

tion 

True 

detection 

rate 

Missed 

detection 

Missed 

detection 

rate 

False 

detection 

False 

detection 

rate 

1.2m Original 

VNIR 

15 100% 0 0% 11012 99.9% 

7.5m Original 

SWIR 

11 73% 4 27% 11 50% 

1.2m HR SWIR 14 93.3% 1 6.7% 16 53.3% 

1.2m Super 

spectral  

14 93.3% 1 6.7% 0 0% 

 

 

3.5.4.1 Solar PV panel detection using VNIR bands  

Figure 3.7(b) shows a subset of solar PV detection result using VNIR bands. As shown in 

Table 3-3, true detection, missed detection, and false detection rates were 100%, 0%, and 

99.9%, respectively. Although all solar PV panels were accurately detected, there was an 

extremely high false detection rate.  Several other objects such as dark roofs, parking lots, 
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and roads, which have similar spectrums to that of solar PV panels, were falsely detected 

as solar PV panels.  

3.5.4.2 Solar PV panel detection using original SWIR bands 

Figure 3.7(c) shows a subset of solar PV detection result using original SWIR bands. As 

shown in Table 3-3, true detection, missed detection, and false detection rates were 73%, 

27%, and 50%, respectively. Because of the large pixel size (7.5m), a high level of spectral 

mixing was encountered. This led to a number of missed and false detections.  Moreover, 

small solar PV panel installations were not detected because of the 7.5m pixel size.  

3.5.4.3 Solar PV panel detection using HR SWIR bands  

Figure 3.7(d) shows a subset of solar PV detection result using HR SWIR bands. As shown 

in Table 3-3, true detection, missed detection, and false detection rates were 93.3%, 6.7%, 

and 55%, respectively. With smaller pixel size (1.2m) the problem of small size solar PV 

panel detection was solved, i.e. HR SWIR bands with 1.2m pixel size reduced spectral 

mixing significantly, therefore, small solar PV panel installations can also be detected. 

However, some other ground objects, such as white roofs, which have similar spectrum to 

that of solar PV panels, were falsely detected as solar PV panels. Because of the high-

resolution, more such objects became apparent which led to more false detections. In 

summary, true detections increased with HR SWIR bands; however, false detections 

increased as well. 

3.5.4.4 Solar PV panel detection using super spectral bands 

Figure 3.7(e) shows a subset of solar PV detection result using super spectral bands. As 

shown in Table 3-3, true detection, missed detection, and false detection rates were 93.3%, 
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6.7%, and 0%, respectively.  The results demonstrated that the use of super spectral bands 

not only reduced spectral mixing, avoiding missed detections, but also eliminated false 

detections.  False detections were eliminated because some other objects such as white 

roofs which have similar spectrums to that of solar PV panels in SWIR spectral bands, have 

different spectrums in super spectral bands. 

 

                      

Figure 3.8 Comparison of solar PV panel true detection, miss detection, and false detection rates using 

VNIR 1.2m, original 7.5m SWIR, HR 1.2m SWIR and 16 super spectral 1.2m bands (HR-SSF-SAM 

method) respectively. 

Based on the detection results shown in Table 3-3 and detections rate comparison shown 

in Figure 3.8, it can be concluded that the proposed HR-SSF-SAM method can produce 

high quality solar PV panel detection result. Furthermore, as shown in Figure 3.9(a), in a 

subset of the pan-sharpened image (50cm resolution), there are three solar PV panels 

installed; however, these were not detected as solar PV panels using the proposed method. 

When matched with the ground truth, it was found that the three objects that look similar 
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to solar PV panels in the pan-sharpened image are actually glass roofs installed on a mall 

(Figure 3.9(b)). This shows that using the proposed method, solar PV panels can be 

differentiated from glass roofs; glass roofs are difficult to differentiate by humans even in 

very high-resolution images. 

 

 

Figure 3.9 Glass roofs of Brea mall, Brea California. (a) 0.5m pan-sharpened natural color 

WorldView-3 image, (b) 3D view of the roof top in Google Earth image. 

3.6 Conclusions 

The latest high-resolution satellite, WorldView-3, with 1 Pan band, 8 VNIR bands and 8 

SWIR bands, significantly increases the potential for detecting solar PV panels in urban 

environments. However, the experiments conducted for this research found that only using 

VNIR bands are not sufficient for solar PV panel detection. Although the available SWIR 

bands of WorldView-3 can provide additional information for solar PV panel detection, it 

is difficult to detect small solar PV panel installations due to low-resolution (7.5m). It is 

also difficult to differentiate large solar PV panels from some large roofs made of certain 

special materials because the spectral information in the original SWIR bands is not 

sufficient for separating them from each other. In addition, although the detection of small 

solar PV panel installations can be made possible by utilizing the FGSS algorithm to 

increase the resolution of available SWIR bands from 7.5m to 1.2m, the resolution increase 
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also increases the false detection rate due to its inability to separate solar PV panels from 

roofs with special materials.   

    Therefore, this research introduced a novel HR-SSF-SAM method to detect solar PV 

panels using WorldView-3 satellite imagery. The method combines the original 1.2m 

VNIR bands and the 1.2m HR SWIR bands generated by the FGSS algorithm to form a 

high-resolution, super spectral image, and then utilizes the spectral similarity detection 

capacity of the SAM algorithm to identify solar PV panels in the high-resolution, super 

spectral bands. The detection results show that the proposed HR-SSF-SAM method 

achieved a true detection rate of 93.3% with a 0% false detection rate. Only one small and 

very narrow solar PV panel installation was not detected, due to the lack of image spatial 

resolution. Even solar PV panels and glass roofs can be differentiated from each other by 

the proposed method, which is difficult for the human eye to achieve. Furthermore, the 

proposed method is applicable world-wide as spectral characteristics of solar PV panels 

are similar everywhere.   

     Similar to the solar PV panels, most of the manmade materials have unique spectrum 

features in the combined VNIR and SWIR bands, which can be utilized to differentiate 

materials. Therefore, the proposed HR-SSF-SAM method has the potential to be extended 

to detect rooftop materials. This extension will be conducted in future research. 
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Chapter 4 : Roofing Material Detection using WorldView-3 Satellite 

Imagery 

Abstract 

Detection of roofing material is an important task in urban management and planning. 

Conventional on-site surveys for roofing material detection are expensive, time consuming, 

and slower in coping with the new constructions. Therefore, remote sensing becomes an 

attractive option for roofing material detection. The availability of WorldView-3 imagery, 

with 16 spectral bands (8 VNIR bands and 8 SWIR bands) plus one panchromatic band, 

significantly increases the possibility of using satellite remote sensing for roofing material 

detection. However, successful roofing material detection using WorldView-3 imagery has 

not been found in a review of the relevant literature yet, because of the coarse resolution 

of the commercially available SWIR bands (7.5m), the difficulty of integrating SWIR 

bands with VNIR bands (1.2m), and other technical challenges. This paper introduces a 

novel method to detect roofing materials, such as fiberglass, ethylene propylene diene 

monomer (EPDM), metal, and concrete, using WorldView-3 imagery. The method 

overcomes the coarse resolution problem of the SWIR bands, effectively integrates the 

SWIR bands with the VNIR bands, and introduces a new approach to detect roofing 

materials using integrated bands (VNIR+SWIR). Experiments with the WorldView-3 

imagery of Brea, California, USA, demonstrates that the proposed method achieves an 

overall accuracy of 97.59% and Kappa accuracy of 95.59% for roofing material detection 

in commercial areas, and an overall accuracy of 93.99% and Kappa accuracy of 88.98% 

for detecting roofing materials of residential houses. 
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4.1 Introduction 

Urban areas have been rapidly growing in the last few decades around the world. Urban 

areas normally consist of a large variety of land covers with different man-made and natural 

materials which influence the environment, climate, and energy conditions of a region 

(Taherzadeh and Shafri, 2013). Roofing materials are some of the important land covers 

that affect the environment and even the safety of an urban area. For example, information 

about roofing material is important for various applications such as determining fire prone 

areas, water flows, disaster preparedness, and pollution sources. In the fire prone areas, 

insurance companies need to know the roofing materials for their flammability. Hence, 

detection of roofing materials is one of the important tasks for urban management and 

planning. However, conventional on-site surveys for roofing material detection are 

expensive, time consuming, and slower in coping with the new constructions. They are not 

practical for detecting roofing materials of a large area. Therefore, remote sensing 

technologies have become an attractive option for detecting roofing materials.  

     Because each manmade material has unique spectral signatures which can be recorded 

by hyperspectral bands, research has explored the potential of using hyperspectral data 

(including field spectroscopy data and hyperspectral imagery) for roofing material 

detection. For example, Cilia et al. (2015) used aerial hyperspectral images to detect 

asbestos cement roofs and their weathering status. Hamedianfar et al. (2014) combined 

data mining algorithm and object-based analysis together to classify urban surface 

materials in aerial hyperspectral images. Samsudin et al. (2016) applied feature selection 

algorithms to field spectroscopy data to detect roofing materials. These studies indicated 

that although aerial hyperspectral imagery and field spectroscopy data provide the best 
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possible spatial and spectral resolutions for detecting roofing materials, they are expensive 

and have a limited ground coverage, compared to very high-resolution (VHR) satellite 

imagery. 

     Some research works (Taherzadeh and Shafri, 2013; Taherzadeh and Shafri, 2014; 

Taherzadeh and Shafri, 2015; Taherzadeh and Shafri, 2016) utilized the state-of-the-art 

object-based classification methods to detect roofing materials in VHR satellite imagery. 

However, very limited success was achieved with high misclassification errors, due to the 

lack of necessary spectral information in VHR multispectral imagery. 

     The launch of WorldView-3 satellite on August 13, 2014, brings a new opportunity for 

roofing material detection, because it is the first high-resolution satellite to include 8 short 

wave infrared (SWIR) bands, 8 visible and near infrared (VNIR) bands and 1 panchromatic 

(Pan) band in the data collection (DigitalGlobe, 2016). However, numerous technical 

challenges also exist for detecting roofing materials from WorldView-3 imagery. (1) The 

resolution of the commercially available SWIR bands (7.5m) is too coarse to detect roofing 

materials of individual family houses. (2) The experiments conducted for this research 

reveal that just using the 8 SWIR bands is not sufficient to separate roofing materials from 

some non-roof materials (such as roads and parking lots), (3) A recent study (Samsudin et 

al., 2016) proved that if just using the 8 VNIR bands and field spectroscopy data, only two 

types of roofing materials (concrete and metal) can be detected. And, (4) the resolution 

difference between the VNIR bands (1.2m) and the available SWIR bands (7.5m) is more 

than 6 times, which creates a challenge to effectively integrate them together for roofing 

material detection. In the literature review conducted for this research, no publication was 
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found that demonstrated the ability to detect more than two types of roofing materials 

(concrete and metal) from the WorldView-3 imagery. 

     This paper introduces a new method to detect four types of common roofing materials 

(fiberglass, ethylene propylene diene monomer (EPDM), metal, and concrete) using 

WorldView-3 imagery. To suppress non-roofing objects such as roads and parking lots, a 

suppressed non-roofing objects (SNRO) image is created using VNIR bands and the 

Spectral Angle Mapper (SAM) algorithm (Kruse et al., 1993). To solve the coarse-

resolution problem of the available SWIR bands and spectral limitations of either the VNIR 

bands or the SWIR bands for roofing material detection, the Fuze Go SWIR Sharp 

algorithm (Fuze Go, 2016) is utilized to increase the resolution from 7.5m to 1.2m, and 

then integrate 8 original 1.2m VNIR bands are integrated together with the 8 new 1.2m 

SWIR bands in order to form a 16-band 1.2m super spectral image set. Finally, SAM 

algorithm is modified to detect roofing materials by utilizing the SNRO image, super 

spectral imagery, reference spectrums, and non-target reference spectrums. In this paper, a 

few of the non-roofing objects such as parts of roads and bare earth, which were not 

suppressed in the SNRO image were defined as non-target objects. 

     The proposed method was tested using WorldView-3 imagery over the city Brea, 

California, USA. A commercial area and a residential area were chosen to test the 

effectiveness of the proposed method. For the commercial area, the overall accuracy and 

Kappa coefficient of 97.59% and 95.59% respectively were achieved; whereas, for the 

residential area, overall accuracy and Kappa coefficient of 93.99% and 88.98% 

respectively were achieved. 
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     The remainder of this paper is organized as follows. Section 4.2 describes the study area 

and data set; section 4.3 discusses the potential and limitations of VNIR and SWIR bands; 

section 4.4 introduces and explains the proposed method; the results and accuracy analysis 

are presented in section 4.5; and the conclusions are given in section 4.6. 

4.2 Study area and data set 

The study area covers 20 km2 of the city of Brea, California, USA. The WorldView-3 

imagery of the study area was collected in November 2014 and provided by DigitalGlobe. 

As indicated in Figure 4.1, buildings with various sizes are distributed in the study areas 

among other ground objects. Quick Atmospheric Correction (QUAC) method (ENVI 

2016) was applied to the data. QUAC is a VNIR-SWIR atmospheric correction method 

and works best with scenes that contain man-made structures. The spectral and spatial 

information of the WorldView-3 image bands is provided in Table 4-1. 
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Figure 4.1 Study area and subsections with commercial and residential buildings. (a) Overview of the 

study area in the 1.2m natural colour image of WorldView-3, and (b) an enlargement showing the 

commercial and residential buildings. 
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Table 4-1 Characteristics of the WorldView-3 imagery used in this study. 

 

Band 

Spectral range (nm) Spatial resolution (m) 

 Pan 450 - 800 0.5 

 

 

 

VNIR 

Coastal 400 - 450 1.2 

Blue 450 - 510 1.2 

Green 510 - 580 1.2 

Yellow 585 - 625 1.2 

Red 630 - 690 1.2 

Red Edge 705 - 745 1.2 

NIR-1 770 - 895 1.2 

NIR-2 860 - 1040 1.2 

 

 

 

SWIR 

SWIR-1 1195 - 1225 7.5 

SWIR-2 1550 - 1590 7.5 

SWIR-3 1640 - 1680 7.5 

SWIR-4 1710 - 1750 7.5 

SWIR-5 2145 - 2185 7.5 

SWIR-6 2185 - 2225 7.5 

SWIR-7 2235 - 2285 7.5 

SWIR-8 2295 - 2365 7.5 
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The Pan and VNIR bands of WorldView-3 are almost the same as those of WorldView-2. 

The SWIR bands of WorldView-3 are beyond the near-infrared region falling roughly 

between 1100 and 3000 nm. The SWIR sensor is strategically designed to capture the 

unique spectral signatures of certain ground materials (DigitalGlobe, 2016). This opens up 

a new opportunity to extract more high-resolution information which was not possible 

before. Particularly, the SWIR spectral bands can significantly improve applications in 

identification of man-made materials beyond the capacity of VNIR spectral bands. Young 

(2015) and Kruse et al., (2015) demonstrate the usefulness of WorldView-3 SWIR spectral 

bands in the identification of man-made materials and minerals. 

4.3 Potential and limitation of VNIR and SWIR bands for roofing material detection 

4.3.1 Spatial resolution of the SWIR bands 

Different roofing materials such as fiberglass, ethylene propylene diene monomer 

(EPDM), metal, and concreate have unique absorption features in the WorldView-3 SWIR 

bands; therefore, it increases the possibility of detecting these roofing materials. However, 

with 7.5m resolution, it is difficult to detect the material of small size residential roofs. As 

shown in Figure 4.2(a) and Figure 4.2 (b), materials of large roofs can be identified in the 

7.5m resolution SWIR bands; but materials of small roofs cannot be identified. On the 

other hand, as shown in Figure 4.2 (c), materials of both large and small roofs are clearly 

visible in 1.2m resolution VNIR bands. 

     Therefore, in order to detect materials of both small and large roofs, higher resolution 

SWIR bands are required. In addition, to maximize the application potential of the available 
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VNIR bands and SWIR bands of WorldView-3 satellite, it is desired to obtain a set of high-

resolution SWIR bands that has the same resolution as that of the VNIR bands. 

 

 

Figure 4.2 Roofs in different spectral images of WorldView-3. (a) Available 7.5m SWIR bands 2, 1, 8 

displayed in RGB at 1:1 ratio, (b) enlarged 7.5m SWIR bands, and (c) original 1.2m VNIR bands 5, 3, 

2 displayed in RGB. (Small roofs are not visible in the available SWIR bands; however, they are clearly 

visible in the original VNIR bands.) 

4.3.2 Spectral analysis of roofing materials 

4.3.2.1 Spectral analysis of VNIR and SWIR bands  

Often absorption features of the roofing materials are only apparent in SWIR region of the 

EMS. Therefore, it is difficult to detect roofing materials using 1.2m resolution 

WorldView-3 VNIR bands. For example, as shown in Figure 4.3(a, b, c and d), in VNIR 

bands, the spectrums of a fiberglass roof, an EPDM roof, a metal roof, and a concrete roof 

contain similar or almost the same absorption features (Figure 4.3(e)). The only difference 

a 

b 

c 
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is that they have a slightly different brightness. Therefore, using VNIR bands, it is difficult 

or impossible for a classifier to differentiate among different roofing materials with similar 

spectrums. However, these ground materials have unique absorption features in different 

SWIR bands of WorldView-3. For example, in Figure 4.3 (f, g, h, i and j), the spectrums 

of a fiberglass roof, an EPDM roof, a metal roof, and a concrete roof are different in SWIR 

bands. Therefore, the SWIR bands of WorldView-3 can help differentiate among different 

roofing materials that cannot be done using VNIR bands. 
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Figure 4.3 Comparisons of the spectrums of a fiberglass roof, a EPDM roof, a metal roof, and a 

concrete roof in VNIR and SWIR bands. (a) (b) (c) (d) fiberglass roof, EPDM roof, metal roof, and 

concrete roof in VNIR bands respectively, (e) the spectral curves of the pixels a, b, c, and d (centres of 

the crosses) in VNIR bands, (f) (g) (h) (i) fiberglass roof, EPDM roof, metal roof, and concrete roof in 

SWIR bands respectively, and (j) the spectral curves of the pixels f, g, h and i (centres of the crosses) 

in SWIR bands. (The SWIR bands are 1.2m high-resolution SWIR bands produced using Fuze Go SWIR 

Sharp to be discussed in the methodology section. The spectrums of fiberglass roof, EPDM roof, metal roof, 

and concrete roof are similar in VNIR bands; but different in SWIR bands.) 

a. Fiberglass  b. EPDM 

c. Metal d. Concrete 

e 
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4.3.2.2 Limitations of SWIR bands for roofing material detection 

On the other hand, as shown in Figure 4.4 (d, e, and f), a road and a roof have similar 

spectra in SWIR bands; whereas, as shown in Figure 4.4 (a, b, and c), their spectrums in 

VNIR bands are different. Therefore, using the 8 SWIR bands alone, it will be difficult to 

differentiate roofing materials from non-roofing materials such as roads, parking lots, and 

the like. 

 

Figure 4.4 Comparison of the spectrums of a road and a concretes roof in VNIR and SWIR bands. (a) 

and (b) road and concrete roof in VNIR bands respectively, (c) the spectral curves of the road pixel 

(centre of the cross) and the concrete roof pixels in VNIR bands, (d) and (e) road and concrete roof in 

SWIR bands respectively, (f) the spectral curves of the road and the concrete roof pixels in SWIR 

bands. (The road and the concrete roof have similar spectral curves in SWIR bands, whereas they have 

different spectral curves in VNIR bands.) 
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4.3.2.3 Necessity of combining VNIR and SWIR bands 

Fiberglass, EPDM, metal, and concrete roofs have similar spectrums in VNIR bands, but 

they have different spectrums in SWIR bands; therefore, SWIR bands can be utilized to 

detect roofing materials. However, some other ground objects, such as roads, and parking 

lots have spectrums similar to those of a few roofs in SWIR bands, but different spectrums 

in VNIR bands. Therefore, it is not possible to achieve a high accuracy roofing material 

detection using either VNIR bands or SWIR bands. 

     However, as shown in Figure 4.3(e), Figure 4.3(j), and in Figure 4.4(c), Figure 4.4(f), 

the combination of the VNIR and the SWIR bands can ensure that sufficient spectrum 

difference can be found in the combined 16 super spectral bands. Therefore, it is necessary 

to combine the 8 VNIR bands and the 8 SWIR bands together to form a 16 band super 

spectral image for roofing material detection.    

    Furthermore, previous studies (Herold et al., 2004; Fiumi et al., 2012; Cilia et al., 2015) 

have used both VNIR and SWIR hyperspectral bands to detect roofing materials as the 

combination of VNIR and SWIR bands increases separability among different roofing 

materials. 

4.4 Methodology of roofing material detection 

Based on the discussions in section 4.3, a novel method was proposed to detect roofing 

materials using WorldView-3 imagery. The proposed, method consists of three major 

components: (1) Non-roofing objects were supressed and a supressed non-roofing objects 

(SNRO) image was produced by utilising VNIR bands and SAM algorithm (Kruse et al., 

1993); (2) a 16 bands super spectral imagery was formed by increasing the spatial 



 

79 

 

resolution of the 8 SWIR bands from 7.5m to 1.2m (equal to that of the VNIR bands) using 

FGSS algorithm (Fuze Go, 2016; Zhang, et al., 2016, Zhang and Mishra, 2014; Zhang  and 

Mishra 2012, Zhang, 2004) and  combining the 8 original 1.2m VNIR bands with the 8 HR 

1.2m SWIR; and (3) SAM algorithm was modified to detect roofing materials by utilising 

SNRO image, super spectral imagery, reference spectrums,  and non-target reference 

spectrums. The flowchart of the proposed method is shown in Figure 4.5. 

 

 

Figure 4.5 Flowchart of the proposed method for roofing material detection. 
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4.4.1 SNRO image creation 

SNRO (suppressed non-roofing objects) image was created using VNIR bands to suppress 

non-roofing objects from the study area.  The spectral angle mapper (SAM) algorithm 

(Kruse et al., 1993), which determines the spectral similarity between two spectrums, was 

utilized to generate an SNRO image. 

 The SAM algorithm performs mapping of the spectral similarity of image spectrum 

to the reference spectrum which uses an n-dimensional angle to match pixels to reference 

spectrum (ENVI 2016; Kruse et al., 1993). The algorithm determines the spectrum 

similarity between two spectrums by calculating the angle between the spectrums and 

treating them as vectors in a space with dimensionality equal to the number of bands. The 

smaller angles between the two spectrums indicate high similarity and vice-versa. The 

reference spectrum can either be attained from the field measurements or taken directly 

from the image. SAM algorithm is mostly used to identify objects from hyperspectral 

images as it can identify the ground materials based on their unique spectrum in the 

hyperspectral bands. Solar illumination and albedo effects do not affect it as it uses only 

the vector direction and not the vector length. Moreover, it works well in areas of 

homogeneous regions such as urban environments. Spectrum plot of a reference spectrum 

and test spectrum for a two-band image is shown in Figure 4.6. The angle between 

reference and test spectrums for an n-band image is calculated using equation 4-1. 
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Figure 4.6 Spectral angle between reference and test spectrums for a two-band image (Kruse et al., 

1993). 

𝜶 = 𝐜𝐨𝐬−𝟏 {
∑ 𝑿𝒊𝒀𝒊
𝒏
𝒊=𝟏

√∑ 𝑿𝒊
𝟐𝒏

𝒊=𝟏  √∑ 𝒀𝒊
𝟐𝒏

𝒊=𝟏  

}   (4-1) 

where n is the number of spectral bands, X is the reference spectrum, and Y is the test 

spectrum. 

     As discussed in section 4.3.2.3, the spectrums of non-roofing and roofing objects are 

different in VNIR bands. Therefore, the spectrums of roofing and non-roofing objects in 

VNIR bands can be utilized to suppress non-roofing objects. In order to suppress non-

roofing objects, first, the reference spectrums of roofing objects (fiberglass, EPDM, metal, 

and concrete roofs) in VNIR bands are taken from the reference spectrum generated in 

section 4.4.3.1. Spectral angle between each pixel of VNIR image and the reference 

spectrums were then computed using equation (4-1). This process resulted in four rule 

images (one for each roofing material) where each pixel of the rule images contains the 

spectral angle between respective VNIR image pixel spectrum and respective reference 

spectrum. For example, each pixel of fiberglass rule image contains spectral angle between 
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a VNIR image pixel spectrum and the fiberglass reference spectrum.  Finally, a suppressed 

non-roofing object (SNRO) image was generated by applying equation (4-2) to each pixel 

of four rule images. A subset of the resulted SNRO image is shown in Figure 4.7. In the 

equation (4-2), 0.7 radian (4 degree) was used as the threshold ( 𝑡𝐹 , 𝑡𝐸 , 𝑡𝑀 , and 𝑡𝐶 ) value. 

In the SNRO image, roof pixels were leveled transparent and non-roof pixels were labeled 

as black color.  

 

𝑆𝑁𝑅𝑂(𝑖, 𝑗) =

{
 
 

 
 

𝑅𝑜𝑜𝑓  if   (𝛼𝐹 ≤ 𝑡𝐹 ) ⋀ (𝛼𝐸 , 𝛼𝑀 , 𝛼𝐶 > 𝛼𝐹 )
𝑅𝑜𝑜𝑓  if   (𝛼𝐸 ≤ 𝑡𝐸 ) ⋀ (𝛼𝐹, 𝛼𝑀, 𝛼𝐶 > 𝛼𝐸  )
𝑅𝑜𝑜𝑓  if   (𝛼𝑀 ≤ 𝑡𝑀 ) ⋀ (𝛼𝐹, 𝛼𝐸 , 𝛼𝐶 > 𝛼𝑀 )
𝑅𝑜𝑜𝑓  if   (𝛼𝐶 ≤ 𝑡𝐶 ) ⋀ (𝛼𝐹, 𝛼𝐸 , 𝛼𝑀 > 𝛼𝐶  )

𝑁𝑜𝑛 − 𝑟𝑜𝑜𝑓      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       
                                                                          

               (4-2) 

where 𝑆𝑁𝑅𝑂(𝑖, 𝑗) is the SNRO image and i and j are row and columns; 𝛼𝐹, 𝛼𝐸, 𝛼𝑀, and 

𝛼𝐶 are spectral angles between fiberglass reference spectrum and image spectrum, EPDM 

reference spectrum and image spectrum,  metal reference spectrum and image spectrum,  

and concrete reference spectrum and image spectrum respectively; 𝑡𝐹 , 𝑡𝐸 , 𝑡𝑀 , and  𝑡𝐶  are 

threshold values for fiberglass, EPDM, metal, and concrete respectively.  
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Figure 4.7 SNRO image created using VNIR bands. Most of the non-roofing objects are suppressed in 

the SNRO image. 

4.4.2 Super spectral image formation 

As discussed in section 4.3, it is difficult to detect roofing materials using the available 

SWIR bands (7.5m resolution). It is also desired to obtain a set of SWIR bands that have 

the same resolution as that of the VNIR bands, to maximize the application potential of the 

available 16 spectral bands of WorldView-3 satellite. Therefore, the Fuze Go SWIR Sharp 

(FGSS) algorithm (Fuze Go, 2016) was used to increase the resolution of SWIR bands 

from 7.5m to 1.2m, to produce high-resolution (HR) SWIR bands. 

     The FGSS algorithm is an extension of the Fuze Go algorithm (formerly known as UNB 

pan-sharp) (Fuze Go, 2016; Zhang et al., 2016; Zhang and Mishra, 2014; Zhang and 

Mishra, 2012; Zhang, 2004). It utilizes the least squares technique to find the best fit 

between the grey values of the Pan band and the VNIR/SWIR bands to adjust the 

contribution of individual bands to the fusion. It employs a set of statistical approaches to 

estimate the grey value relationship between all the input bands to eliminate the problem 
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of dataset dependency (i.e. reduce the influence of dataset variation in the fusion). In the 

fusion process original 1.2m VNIR bands, 7.5m SWIR bands, and 0.3m Pan band of 

WorldView-3 are utilized to generate 1.2m SWIR bands. 

     Figure 4.8 (a) and Figure 4.8(b) show the available 7.5m SWIR image and the 1.2m 

HR SWIR image generated using FGSS algorithm. It can be seen that the generated 1.2m 

HR SWIR image not only has the same spectral information as the 7.5m SWIR image, but 

also has the same spatial resolution as that of the original 1.2m VNIR image (Figure 

4.8(c)). 
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Figure 4.8 Comparison between the available 7.5m SWIR image (a), the 1.2m HR SWIR image 

generated using FGSS (b), and the original 1.2m VNIR image (c). 

a 

b 
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As discussed in section 4.3, spectrums of the roofing materials are similar in VNIR bands 

but different in SWIR bands. However, there are a few other ground objects which have 

similar spectrums to those of a few roofing materials in SWIR bands but different spectrum 

in VNIR bands. Spectral analysis of VNIR and SWIR bands shows that the false detection 

of some ground objects as one of the roofing materials could be avoided in combined VNIR 

and SWIR bands. Therefore, a high-resolution, 16 band super spectral (VNIR+SWIR) 

image was generated by combining the eight 1.2m VNIR bands and the eight 1.2m HR 

SWIR bands together. 

4.4.3 Roofing material detection 

SAM algorithm was modified to detect roofing materials by utilising SNRO image, super 

spectral image, reference spectrums, and non-target reference spectrums. 

4.4.3.1 Reference spectrums 

A small number of training pixels referred to as region of interest (ROI) pixels in super 

spectral bands were selected from the known fiberglass, EPDM, metal, and concrete roofs 

in the study area to generate reference spectrums. The reference spectrums were generated 

by averaging the ROI pixels spectrums to find the optimum reference spectrums. The 

generated reference spectrums for fiberglass, EPDM, metal, and concrete roofing materials 

are shown in Figure 4.9. 

     The quality of the roofing material detection is highly dependent on the separability 

among the reference spectrums; i.e. the larger separability among reference spectrums 

leads to better detection results. Hence, in order to ensure the separability of the reference 

spectrums, separability of the selected ROI pixels was computed using Jeffries-Matusita 
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distance (ENVI, 2016; Jeffreys, 1946) and Transformed Divergence (ENVI, 2016; 

Richards, 1999) methods. Formulas to compute Jeffries-Matusita distance are given in 

equation 4-3 and equation 4-4, and formulas to compute Transformed Divergence are given 

in equation 4-5 and equation 4-6.  The computed separability values are shown in Table 

4-2. Jeffries-Matusita and Transformed Divergence separability values range from 0 to 2.0 

and indicate the quality of ROI data pairs. The separability values greater than 1.9 indicate 

that the ROI data pairs are highly statistically separate. As shown in Table 4-2, the 

separability values for the ROI pixels pairs selected for this study are very high which 

indicates the highest level of separability among the ROI pixels pairs. 

 

Figure 4.9 Reference spectrums produced from the ROI pixels in the super spectral bands. 

 

 

𝐽𝑀𝐷𝑖𝑗 = 2(1 − 𝑒−𝛼)  (4-3) 
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𝛼 =
1

8
(𝜇𝑖 − 𝜇𝑗)

𝑇
(
𝐶𝑖+𝐶𝑗

2
)
−1

(𝜇𝑖 − 𝜇𝑗) +
1

2
𝑙𝑛 (

1

2
|(𝐶𝑖+𝐶𝑗)|

√|𝐶𝑖|×|𝐶𝑗|   
) (4-4) 

 

where 𝐽𝑀𝐷𝑖𝑗  is Jeffries-Matusita distance between two reference spectrums i and j; 𝛼 is 

the angle; 𝜇𝑖 and 𝜇𝑗 are mean vector of reference spectrums i and j respectively; 𝐶𝑖 and 𝐶𝑗 

are covariance matrices of reference spectrums i and j respectively; T is the transposition 

function. 

𝑇𝐷𝑖𝑗 = 2 [1 − 𝑒𝑥𝑝 (
−𝐷𝑖𝑗

8
)]   (4-5) 

 

𝐷𝑖𝑗 =
1

2
𝑡𝑟[(𝐶𝑖 − 𝐶𝑗)(𝐶𝑖

−1 − 𝐶𝑗
−1)] +

1

2
𝑡𝑟 [(𝐶𝑖

−1 − 𝐶𝑗
−1)(𝜇𝑖 − 𝜇𝑗)(𝜇𝑖 − 𝜇𝑗)

𝑇
] (4-6) 

 

where 𝑇𝐷𝑖𝑗  is Transformed Divergence between two reference spectrums i and j; 𝐷𝑖𝑗  is 

distance between two reference spectrums i and j; 𝜇𝑖 and 𝜇𝑗 are mean vector of reference 

spectrums i and j respectively; 𝐶𝑖 and 𝐶𝑗 are covariance matrices of reference spectrums i 

and j respectively; tr is the trace function; T is the transposition function.  
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Table 4-2 Jeffries-Matusita distance and Transformed Divergence separability measurements among 

different roofing materials ROI pixels. 

  Fiberglass EPDM Metal Concrete 

Fiberglass JMD 0 2.0 2.0 2.0 

TD 0 2.0 2.0 2.0 

EPDM 

 

JMD 2.0 0 2.0 2.0 

TD 2.0 0 2.0 2.0 

Metal 

 

JMD 2.0 2.0 0 2.0 

TD 2.0 2.0 0 2.0 

Concrete 

 

JMD 2.0 2.0 2.0 0 

TD 2.0 2.0 2.0 0 

JMD: Jeffries-Matusita distance; TD: Transformed Divergence 

 

4.4.3.2 Non-target material reference spectrum 

In the SNRO image (Figure 4.7), most of the non-roofing materials were suppressed; 

however, still there are a few non-roofing objects which were not suppressed. The 

experiment results reveals that there are a few other ground objects such as a few roads and 

bare earth which have similar reflectance to that of the concrete roofs in both VNIR and 

SWIR bands. For example, in Figure 4.10 (a, b, c, and d), the spectrums of the concrete 

roof, road, bare earth are similar in the super spectral bands. Therefore, based on their 

spectrums, the road and bare earth pixels will falsely be detected as concrete. 
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Figure 4.10 Comparison of the spectrums of a concrete roof, road and barren land in super spectral 

bands. (a) (b) (c) concrete roof, road, and bare earth in super spectral bands respectively, (d) the 

spectral curves of the pixels a, b, and c (centres of the crosses) in super spectral bands. (The spectrums 

of concrete roof, road, and bare earth are similar in super spectral bands.) 

 

     All pixels of a roofing material ideally should have the same spectrums; however, in 

reality, there are slight differences in the spectrums of those pixels. Therefore, to optimally 

detect the roofing materials, the SAM algorithm requires a threshold value as maximum 

acceptable angle between the reference spectrum vector and the test spectrum vector. Pixels 

further away than the specified maximum angle threshold are not detected. However, the 

threshold value also leads to false detections when the angle between the reference 

spectrum vector and the spectrum vector of other ground materials come within the range 
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of the specified threshold value. For example, the spectral angle between the concrete 

reference spectrum (Figure 4.9) and the road pixels spectrum (Figure 4.10) is 0.054 

radians and the spectral angle between the concrete reference spectrum (Figure 4.9) and 

the bare earth pixels spectrum (Figure 4.10) is 0.06 radians. Therefore, with a threshold 

0.07 radian, both road and bare earth pixels will falsely be detected as concrete. 

     Therefore, to eliminate the false detection problem, road and bare earth were identified 

as non-target materials for the study area. Mean reference spectrums of non-target materials 

were generated in super spectral bands using region of interest (ROI) pixels selected from 

the study area (shown in Figure 4.11). 

 

 

Figure 4.11 Non-target reference spectrums produced from the ROI pixels of the non-target objects 

(road and bare earth).  
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4.4.3.3 Roofing material detection 

The SAM (Kruse et al., 1993) algorithm was modified to utilize the SNRO image, super 

spectral image, reference spectrums, and non-target reference spectrums to detect roofing 

materials. In the modified SAM algorithm, the SNRO image was used to suppress the non-

roofing objects such as roads and parking lots in the super spectral image using equation 

(4-7) and a modified super spectral image was generated.  A section of the modified super 

spectral image is shown in Figure 4.12. 

 

𝑆𝑆𝐼′(𝑖, 𝑗) = 𝑆𝑆𝐼(𝑖, 𝑗) − 𝑆𝑁𝑅𝑂(𝑖, 𝑗)               (4-7) 

where 𝑆𝑆𝐼′(𝑖, 𝑗) is the modified super spectral image with suppressed non-roofing objects 

and i and j are rows and columns; SSI is the super spectral image; SNRO is the suppressed 

non-roofing objects image (shown in Figure 4.7). 

 

 

Figure 4.12 Modified super spectral image 
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     The spectral angle between each pixel of the modified super spectral image and 

reference spectrums (reference spectrums and non-target reference spectrums) were 

computed using equation (4-1). Spectral angles of the modified super spectral image pixels 

which were suppressed using equation (4-7) were not computed. This process resulted in 

six rule images (four rule images for four types of roofing materials and two rule images 

for non-target materials) where each pixel of the rule images contains the spectral angle 

between the respective super spectral image pixel spectrum and the respective reference 

spectrum. For example, each pixel of fiberglass rule image contains the spectral angle 

between the super spectral image pixel spectrum and the fiberglass reference spectrum.  

The final output image was computed by applying equation (4-8) to each pixel of six rule 

images. In equation (4-8), 0.7 radians (4 degrees) was used as the threshold ( 𝑡𝐹 , 𝑡𝐸 , 𝑡𝑀 , 

𝑡𝐶 , 𝑡𝑁𝑇1 , and 𝑡𝑁𝑇2 ) value. In the final output image, fiberglass, EPDM, Metal, and 

Concrete pixels were leveled as red, green, blue, and yellow colors respectively and other 

pixels were labeled as black color.  

𝐼(𝑖, 𝑗) =

{
  
 

  
 
𝐹𝑖𝑏𝑒𝑟𝑔𝑙𝑎𝑠𝑠  if   (𝛼𝐹 ≤ 𝑡𝐹 ) ⋀ (𝛼𝐸 , 𝛼𝑀, 𝛼𝐶 , 𝛼𝑁𝑇1 , 𝛼𝑁𝑇2 > 𝛼𝐹 )

𝐸𝑃𝐷𝑀  if   (𝛼𝐸 ≤ 𝑡𝐸 ) ⋀ (𝛼𝐹, 𝛼𝑀, 𝛼𝐶 , 𝛼𝑁𝑇1 , 𝛼𝑁𝑇2 > 𝛼𝐸  )
𝑀𝑒𝑡𝑎𝑙  if   (𝛼𝑀 ≤ 𝑡𝑀 ) ⋀ (𝛼𝐹, 𝛼𝐸 , 𝛼𝐶 , 𝛼𝑁𝑇1 , 𝛼𝑁𝑇2 > 𝛼𝑀 )

𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒  if   (𝛼𝐶 ≤ 𝑡𝐶 ) ⋀ (𝛼𝐹, 𝛼𝐸 , 𝛼𝑀, 𝛼𝑁𝑇1 , 𝛼𝑁𝑇2 > 𝛼𝐶  )
𝑂𝑡ℎ𝑒𝑟𝑠  if   (𝛼𝑁𝑇1 ≤ 𝑡𝑁𝑇1 ) ⋀ (𝛼𝐹, 𝛼𝐸 , 𝛼𝑀, 𝛼𝐶 , 𝛼𝑁𝑇2 > 𝛼𝑁𝑇1 )
𝑂𝑡ℎ𝑒𝑟𝑠  if   (𝛼𝑁𝑇2 ≤ 𝑡𝑁𝑇2) ⋀ (𝛼𝐹, 𝛼𝐸 , 𝛼𝑀, 𝛼𝐶 , 𝛼𝑁𝑇2 > 𝛼𝑁𝑇2)

       𝑂𝑡ℎ𝑒𝑟𝑠       Othervise                                                                    

              (4-8) 

 

where 𝐼(𝑖, 𝑗) is the output image and i and j are rows and columns; 𝛼𝐹, 𝛼𝐸, 𝛼𝑀, 𝛼𝐶, 𝛼𝑁𝑇1, 

and 𝛼𝑁𝑇2 are spectral angles between the fiberglass reference spectrum and the image 

spectrum, the EPDM reference spectrum and the image spectrum,  the metal reference 

spectrum and the image spectrum, the concrete reference the spectrum and the image 
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spectrum, the non-target-1 reference spectrum and the image spectrum, and  the non-target-

2 reference spectrum and the image spectrum, respectively; 𝑡𝐹 , 𝑡𝐸 , 𝑡𝑀 , 𝑡𝐶 , 𝑡𝑁𝑇1 , and 

𝑡𝑁𝑇2 are threshold values for fiberglass, EPDM, metal, concrete, non-target-1, and non-

target-2, respectively.  

    For result comparison purposes, first, the SAM algorithm was applied to the 1.2m VNIR 

bands, original 7.5m SWIR bands, 1.2m HR SWIR bands, and the 1.2m super spectral 

bands for the roofing material detection, using the same ROI pixels and processing 

parameters. Table 4-3 shows the number of ROI pixels used to detect roofing materials in 

VNIR bands, original SWIR bands, HR SWIR bands, and super spectral bands (Because 

the 7.5m SWIR image has a significantly lower resolution, the total number of pixels and 

the training pixels are also significantly fewer). The proposed method was then used to 

detect roofing material using the 1.2m VNIR and the 1.2m super spectral bands. As the 

proposed method also used the non-target reference spectrums in addition to the reference 

spectrums, the number of non-target ROI pixels used to detect non-target materials is 

shown in Table 4-3. 
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Table 4-3 Total number of pixels of the study area and the number of ROI pixels used to generate 

reference spectrums of roofing materials and non-target materials from the original 1.2m VNIR, 

original 7.5m SWIR, and 1.2m super spectral bands. 

  Fiberglass EPDM Metal Concrete Non-

target-1 

(Road) 

Non-

target-2 

(Bare 

earth) 

1.2m 

VNIR, 

1.2m HR 

SWIR, 

and 1.2m 

Super 

spectral 

No. of 

ROI 

pixels 

79 78 92 82   

% of 

the 

test 

areas 

0.0006% 0.0006% 0.0007% 0.0006%   

7.5m 

SWIR 

No. of 

ROI 

pixels 

12 13 9 11   

% of 

the 

test 

areas 

0.0035% 0.0037% 0.0026% 0.0032%   

1.2m 

VNIR, 

and 1.2m 

super 

spectral 

(proposed 

frame 

work) 

No. of 

ROI 

pixels 

79 78 92 82 33 74 

% of 

the 

test 

areas 

0.0006% 0.0006% 0.0007% 0.0006% 0.0002% 0.0005% 

Total number of pixels in the study area:  13377536 (1.2m image) and 343088 (7.5m 

image) 
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4.5 Results and discussions 

4.5.1 Ground truth collection 

Very high-resolution (approximately 5cm spatial resolution) and high quality aerial photos 

of Brea, California, USA that are available on Google Earth and Street View were used for 

ground truth extraction. In the aerial photos, individual roofs can be clearly seen and 

therefore based on their color, texture, and structure of the building roofs, their roofing 

materials can be mannualy identified. 

     To demonstrate the effectiveness of the proposed method, two test areas (commercial 

and residential) were selected from the study area for accuracy assessment. Building roofs 

made with fiberglass, EPDM, metal, and concrete in the two test areas were identified and 

delineated by an image analyst using Google Earth imagery and Google street view. The 

color, texture and structure information in the aerial photos and Google street view were 

utilized for the roofing material interpretation. Ground truths delineated with different 

colors are shown in the Figure 4.13. Furthermore, the spectrum of each roof was compared 

with the reference spectrum (Figure 4.10) of fiberglass, EPDM, metal, and concrete to 

make sure the manually identified roofing materials are correct. Table 4-4 shows the total 

number of different roofing materials identified in the two test areas. 
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Figure 4.13 Texture and color of different roofing materials and ground truth image of two test areas. 

(a) textures of different types of roofing materials in the Test Area-1 (commercial) and ground truth 
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image; (b) textures of different types of roofing materials in the Test Area -2 (residential) area and 

ground truth image. 

 

Table 4-4 The total number of different roofing materials identified in the two test areas.   

 Test area-1 Test area-2 

Fiberglass 52 183 

EPDM 8 4 

Metal 5 14 

Concrete 6 66 

Others 8 16 

 

4.5.2 Roofing material detection results 

Figure 4.14 (b,c,d,e) shows the roofing material detection results in the Test  Area-1 using 

different data sets and Figure 4.14(f) shows the  roofing material detection results using 

the proposed method. Whereas Figure 4.15(b,c,d,e) shows the roofing material detection 

results in the Test Area-2 using different data sets and Figure 4.15(f) shows the  roofing 

material detection results using the proposed method. 
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Figure 4.14 Roofing material detection results and the comparison for the study area-1 (commercial 

buildings). (a) RGB image of the study area-1, (b) roofing materials detected using VNIR bands, (c) 

roofing materials detected using original (7,5m) SWIR bands, (d) roofing materials detected using HR 

(1.2m) SWIR bands, (e) roofing materials detected using 16 super spectral (1.2m) bands, and (f) roofing 
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materials detected using the proposed framework. Results shown in (b), (c), (d), and e) were generated 

using the SAM algorithm; the result shown in (f) were generated using the proposed method. 
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Figure 4.15 Roofing material detection results and the comparison for the study area-2 (residential 

buildings). (a) RGB image of the study area-1, (b) roofing materials detected using VNIR bands, (c) 

roofing materials detected using original (7,5m) SWIR bands, (d) roofing materials detected using HR 
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(1.2m) SWIR bands, (e) roofing materials detected using 16 super spectral (1.2m) bands, and (f) roofing 

materials detected using the proposed framework. Results shown in (b), (c), (d), and e) were generated 

using the SAM algorithm, and the result shown in (f) was generated using the proposed method. 

4.5.3 Accuracy comparison and analysis 

The accuracy assessments of roofing material detections were done using the conventional 

error matrix (Congalton and Green 2009) and it elements including producer accuracy 

(PA), user accuracy (UA), overall accuracy (OA), and kappa coefficient (KC). Table 4-5 

shown the PA, UA, OA, and KC computed for Test Area-1; whereas,Table 4-6 shows the 

PA, UA, OA, and KC computed for Test Area-2. Non-roofing object detection rates 

(NRODR) using each data set was calculated using equation (4-9) and are shown in Table 

4-7. Figure 4.16(a) and Figure 4.16(b) show the accuracy comparisons for the Test Area-

1 and Test Area-2, respectively. 
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Table 4-5 PA, UA, OA, and Kappa of the Test Area-1 for VNIR bands, original SWIR bands, HR 

SWIR bands, super spectral bands and, the proposed method. 

 1.2m 

VNIR 

7.5m 

SWIR 

1.2m 

SWIR 

1.2m super 

spectral  

Proposed 

Method 

Roofing 

materials 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

Fiberglass 98.11 

50.00 

91.37 

80.30 

88.33 

89.83 

96.36 

91.37 

100.0 

96.36 

EPDM 33.33 

53.84 

100.0 

75.0 

100.0 

50.00 

100 

37.5 

100.0 

100.0 

Metal 11.32 

85.71 

45.45 

100.0 

75.00 

100.0 

85.71 

100.0 

100.0 

100.0 

Concrete 18.75 

30.0 

40.00 

85.71 

50.00 

60.00 

38.46 

62.5 

75.00 

100.0 

Others 0.00 

0.00 

60.00 

33.33 

44.44 

50.00 

66.66 

80.00 

100.0 

100.0 

OA 47.22 76.84 78.94 83.33 97.59 

Kappa 24.05 57.73 63.27 70.78 95.59 
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Table 4-6 PA, UA, OA, and Kappa of the Test Area-2 for VNIR bands, original SWIR bands, HR 

SWIR bands, super spectral bands and, the proposed method. 

 1.2m 

VNIR 

7.5m 

SWIR 

1.2m 

SWIR 

1.2m super 

spectral  

Proposed 

method 

Roofing 

materials 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

Fiberglass 76.96 

33.09 

68.90 

   44.80 

89.22 

81.42 

97.88 

75.95 

99.41 

93.44 

EPDM 7.84 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

Metal 6.34 

66.66 

22.72 

35.71 

58.33 

100.0 

92.30 

85.71 

85.71 

85.71 

Concrete 27.55 

29.91 

55.17 

24.24 

67.12 

69.01 

70.78 

95.45 

96.92 

95.45 

Others 58.33 

87.50 

0.0 

0.0 

15.00 

18.75 

28.57 

62.50 

57.14 

100.0 

OA 35.50 37.80 76.04 80.56 93.99 

Kappa 9.69 8.32 57.29 67.21 88.98 
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𝑁𝑅𝑂𝐷𝑅 =
𝑁𝑁𝑅𝑂𝐷

𝑇𝐷
×100   (4-9) 

 

where NRODR is non-roofing object detection rate, NNROD is number of non-roofing 

object detections, TD is total number of detections (both roofing and non-roofing objects). 

 

Table 4-7. Non-roofing object detection rates (NRODR) of the Test Area-1 and Test Area-2 for VNIR 

bands, original SWIR bands, HR SWIR bands, super spectral bands and, the proposed methods. 

  1.2m 

VNIR 

7.5m 

SWIR 

1.2m 

SWIR 

1.2m 

superspectral  

Proposed 

Method 

Non-roofing 

object 

detection rate 

(NRODR) 

Test area-

1 

29.41% 56.01% 62.89% 39.18% 16.16% 

Test area-

2 

4.20% 23.92% 40.37% 19.83% 2.07% 

 

4.5.3.1 Roofing material detection using VNIR bands 

Figure 4.14(b) and Figure 4.15(b) show the results of roofing material detection using 

VNIR bands in Test Area-1 and Test Area-2, respectively.  As shown in Table 4-5 and 

Table 4-7, for Test Area-1, the OA, KC, and NRODR were 47.22%, 24.05%, and 29.41%, 

respectively; whereas, as shown in Table 4-6 and Table 4-7, for Test Area-2 the OA, KC, 

and NRODR were 35.5%, 9.69%, and 4.20% respectively. Although most of the non-

roofing objects were successfully suppressed, there were extremely high false detections. 

Because of the spectral similarities of different roofing materials in VNIR bands, one type 
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of roofs was detected as other types.  For example, many of the fiberglass roofs were 

detected as metal. 

4.5.3.2 Roofing material detection using original SWIR bands 

Figure 4.14(c) and Figure 4.15(c) show the results of roofing material detection using 

original SWIR bands in the Test area-1 and Test area-2, respectively.  As shown in Table 

4-5 and Table 4-7, for Test Area-1, the OA, KC, and NRODR were 76.84%, 57.73%, and 

56.01%, respectively; whereas, as shown in Table 4-6 and Table 4-7, for Test Area-2 the 

OA, KC, and NRODR were 37.80%, 8.32%, and 23.92% respectively. Because of the large 

pixel size (7.5m), a high level of spectral mixing is encountered. This led to several missed 

and false detections.  Moreover, roofing materials of small buildings were not detected 

correctly because of the 7.5m pixel size.  

4.5.3.3 Roofing material detection using HR SWIR bands 

Figure 4.14(d) and Figure 4.15(d) the show results of roofing material detection using HR 

SWIR bands in the Test Area-1 and Test Area-2, respectively. As shown in Table 4-5 and 

Table 4-7, for Test Area-1, the OA, KC, and NRODR were 78.94%, 63.27%, and 62.89%, 

respectively; whereas, as shown in Table 4-6 and Table 4-7, for Test Area-2 the OA, KC, 

and NRODR were 76.04%, 57.29%, and 40.37% respectively. With smaller pixel size, 

1.2m, the problem of large pixel size was solved, i.e. HR SWIR bands with 1.2m pixel size 

reduced spectral mixing significantly as well as roofing materials of smaller residential 

buildings can also be detected. However, some other non-roofing objects, such as roads 

and parking lots, which have similar spectrums to that of roofing materials, were falsely 

detected as roofs. Because of the high-resolution, more such objects became apparent 
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which led to more false detections. In summary, with HR SWIR bands, true detections 

were increased; however, false detections were increased as well. 

4.5.3.4 Roofing material detection using super spectral bands 

Figure 4.14(e) and Figure 4.15(e) show the results of roofing material detection using 

SWIR bands in the Test Area-1 and Test Area-2, respectively.  As shown in Table 4-5 and 

Table 4-7, for Test Area-1, the OA, KC, and NRODR were 83.33%, 70.78%, and 39.18%, 

respectively; whereas, as shown in Table 4-6 and Table 4-7, for Test Area-2 the OA, KC, 

and NRODR were 80.56%, 67.21%, and 19.83% respectively. Super spectral bands solve 

the problem of spectral mixing and reduce the false detection. However, still there were 

few non-roofing objects such as roads parking lots, and bare earth whose spectrums in 

super spectral bands are similar to the concrete roof spectrum and therefore they were 

detected as concrete roofs.  

4.5.3.5 Roofing material detection using the proposed method 

Figure 4.14(f) and Figure 4.15(f) show the results of roofing material detection using 

SWIR bands in the Test Area-1 and Test Area-2, respectively. As shown in Table 4-5 and 

Table 4-7, for Test Area-1, the OA, KC, and NRODR were 97.59%, 95.59%, and 16.16%, 

respectively; whereas, as shown in Table 4-6 and Table 4-7, for Test Area-2 the OA, KC, 

and NRODR were 93.99%, 88.98%, and 2.07% respectively. The result demonstrated that 

the use of the proposed method not only reduced the spectral mixing to avoid miss-

detections but also significantly reduced the false detections. The false detections were 

reduced because (1) the SNRO image helped in suppressing most of the non-roofing 

objects; (2) use of non-target spectrums further reduced the false detections. 
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     The accuracies of the roofing material detection using the proposed method illustrated 

the capability of mapping roofing materials using affordable and easily accessible 

WorldView-3 satellite data.   

4.6 Conclusions 

The latest high-resolution satellite, WorldView-3, with 1 Pan band, 8 VNIR bands and 8 

SWIR bands, significantly increases the potential for detecting different roofing materials 

in urban environments. However, our experiments found that using only VNIR bands is 

not sufficient for roofing material detection. Although the available SWIR bands of 

WorldView-3 can provide additional information for roofing material detection, it is 

Figure 4.16 Comparison of overall accuracy and Kappa coefficients of roofing material detection in test 

area-1 (a) and test area-2 (b) using VNIR 1.2m, original 7.5m SWIR, HR 1.2m SWIR, 16 super spectral 

1.2m bands and proposed method respectively. 

a b 

0%

20%

40%

60%

80%

100%

VNIR Original
SWIR

HR SWIR Super
spectral

Proposed
method

Overall accuracy Kappa coefficient

Non-roofing objects

0%

20%

40%

60%

80%

100%

VNIR Original
SWIR

HR SWIR Super
spectral

Proposed
method

Overall accuracy Kappa coefficient

Non-roofing objects



 

109 

 

difficult to detect roofing materials of small size residential buildings due to its low-

resolution (7.5m). It is also difficult to differentiate roofs from some non-roof objects such 

as roads and parking lots, because the spectral information in the original SWIR bands is 

not sufficient for separating them from each other. In addition, although the detection of 

roofing materials of small size buildings can be made possible by utilizing the FGSS 

algorithm to increase the resolution of available SWIR bands from 7.5m to 1.2m, the 

resolution increase also increases the false detection rate due to its inability to separate 

roofs from some non-roof objects.  

     Therefore, this research introduced a novel method to detect roofing materials using 

WorldView-3 satellite imagery. The proposed method (1) suppresses non-roofing objects 

by applying the spectral angle mapper (SAM) algorithm on VNIR bands; (2) combines the 

original 1.2m VNIR bands and the 1.2m HR SWIR bands generated by the FGSS algorithm 

to form a high-resolution, super spectral image; (3) detects roofing materials by applying 

the modified SAM algorithm on super spectral bands. The proposed method was tested on 

both commercial (large size buildings) and residential (small size buildings) areas. The 

accuracy analysis results show that the proposed method achieved overall accuracy and 

Kappa coefficient of 97.59% and 95.59% respectively for the commercial area; whereas, 

for the residential area, overall accuracy and Kappa coefficient of 93.99%, and 88. 98% 

respectively was achieved. Therefore, the proposed method can be used to detect roofing 

materials using affordable and easily accessible WorldView-3 satellite data.  

     The proposed method has achieved a high level of accuracy; however, there are still a 

few false detections. For example, a very few pixels of roads and parking lots (made with 

concrete) are detected as concrete. This problem could be eliminated, if elevation data 
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could be incorporated in the roofing material detection process.  Elevation data will be 

conducted in future research. Furthermore, the proposed method was tested to detect four 

types of roofing materials. However, in order to detect other types of roofing materials, the 

proposed method requires spectral signatures of those roofing materials. 
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Chapter 5 : SUMMARY AND CONCLUSIONS 

This chapter summarizes the research conducted for this dissertation. The outlines of the 

research from chapter 2 to 4 as well as the contributions of this research are presented in 

this section. At the end, some suggestions for future work are provided. 

5.1 Summary of research 

In this dissertation, the great potential of WorldView-3 satellite imagery is exploited for 

detecting solar PV panels and roofing materials in an urban environment. Chapter 2 focuses 

on finding a solution to increase resolution of commercially available WorldView-3 SWIR 

bands.Chapter 3 and Chapter 4 focus on developing new methods to detect solar PV panels 

and roofing materials, respectively. A summary of research works performed from Chapter 

2 to Chapter 4 are discussed as follows. 

5.1.1 Chapter 2 

This chapter investigated the capacities of nine industry-adopted pan-sharpening 

algorithms for increasing the resolution of WV-3 SWIR bands from 7.5m to 1.2m. The 

general principles of the pan-sharpening algorithms are reviewed. The WV-3 panchromatic 

(Pan) images are down-sampled from 0.3m to 1.2m to fuse the 7.5m SWIR image. 

Experiments demonstrated that most commonly used algorithms are not suitable for pan-

sharpening SWIR images, whereas the new FGSS algorithm can produce satisfactory 

results.  
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5.1.2 Chapter 3 

This research introduced a novel HR-SSF-SAM method to detect solar PV panels using 

WorldView-3 satellite imagery. The method combines the original 1.2m VNIR bands and 

the 1.2m HR SWIR bands generated by the FGSS algorithm to form a high-resolution, 

super spectral image; and then utilizes the spectral similarity detection capacity of the SAM 

algorithm to identify solar PV panels in the high-resolution, super spectral bands. 

5.1.3 Chapter 4 

This chapter introduced a novel method to detect roofing materials using WorldView-3 

satellite imagery. The proposed method (1) suppresses non-roofing objects by applying the 

spectral angle mapper (SAM) algorithm on VNIR bands; (2) combines the original 1.2m 

VNIR bands and the 1.2m HR SWIR bands generated by the FGSS algorithm to form a 

high-resolution, super spectral image; (3) detects roofing materials by applying the 

modified SAM algorithm on super spectral bands. The proposed method was tested on both 

commercial (large size buildings) and residential (small size buildings) areas. 

5.2 Achievements of the research 

Based on the three main chapters of this dissertation, the summary of overall contributions 

is presented as follows. 

5.2.1 WorldView-3 SWIR bands pan-sharpening 

The experiments conducted for this research proved that the FGSS pan-sharpening 

algorithm is capable of producing high quality pan-sharpened SWIR bands without losing 

their spectral information; whereas other fusion techniques produced poor results, with 
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obvious spectral distortion, poor spatial quality, and/or colour artifacts. The outcome of 

this research provides remote sensing researchers and practitioners with an effective tool 

to utilize WorldView-3 SWIR imagery for advanced applications. Furthermore, as the 

resolution of SWIR bands can be increased equal to that of VNIR bands, the combination 

of VNIR and SWIR bands can offer additional information for remote sensing analytics 

such as material identification, mineral/geology mapping, agriculture, forestry, and 

wildfire response.  

5.2.2 Solar PV panel detection 

A novel method is developed to detect solar PV panels using WorldView-3 satellite 

imagery. The outcome of this research provides an efficient and cost-effective solution to 

detect solar PV panels as compared to the traditional manual surveys which are expensive, 

time consuming, and laborious and often yield insufficient information. Therefore, using 

the proposed method, information about solar PV panel installations can easily be available 

to energy and environment policy makers in order to make informed decisions. 

Furthermore, using the proposed method, even solar PV panels and glass roofs can be 

differentiated from each other, which is difficult for the human eye to achieve. 

5.2.3 Roofing material detection 

A novel method is developed to detect fiberglass, ethylene propylene diene monomer 

(EPDM), metal, and concrete roofing materials using WorldView-3 satellite imagery. The 

outcome of this research provides an efficient and cost-effective solution to detect roofing 

materials as compared to the conventional on-site surveys which are expensive, time 
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consuming, and slower in coping with new construction. The proposed method can provide 

timely and cost-effective information about the roofing materials to city decision makers. 

5.3 Suggestions for future work 

The proposed method to detect roofing materials has achieved a high level of accuracy; 

however, there are still a few false detections. For example, a few pixels of roads and 

parking lots (made with concrete) are detected as concrete. The elevation data can be used 

to differentiate between roofs and other ground objects such as parking lots and roads. 

Therefore, the false detections could be eliminated, if elevation data could be incorporated 

in the roofing material detection process.  

     The proposed 16 bands super spectral imagery (VNIR+SWIR) with 1.2m resolution can 

be useful for material identification, agriculture applications, forestry applications, smoke 

penetration, and mineral/geology mapping. In this research, the focus was on material 

identification (solar PV panels and roofing materials); however, new methods can be 

developed for agricultural, forestry, and mineral/geology applications.   

5.3.1 Agriculture 

Crop stresses replace the green chlorophyll content of the leaves with carotenoids which 

can be detected in VNIR EMS. In addition, SWIR EMS can be used to detect crop moisture, 

soil types, and crop residue. Therefore, the proposed 1.2m super spectral imagery can be 

used to develop solutions for precision agriculture practices.  
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5.3.2 Forestry 

Different tree species have unique spectral signatures in VNIR and SWIR EMS. In 

addition, tree stress, pest infestation, and forest moisture exhibit unique characteristics in 

VNIR and SWIR EMS. Therefore, the proposed 1.2m super spectral image can be utilized 

for forestry applications. 

5.3.3 Mining/Geology 

Different minerals absorb specific wavelengths and reflect others in the VNIR and SWIR 

EMS. Therefore, the proposed 1.2m super spectral image can used for precise mineral 

exploration applications.  
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Appendix I From UNB PanSharp to Fuze Go – the success behind 

the pansharpening algorithm 

Zhang, Y., & Mishra, R. K. (2014). From UNB PanSharp to FuzeGo — the success behind 

the pan-sharpening algorithm, International Journal of Image and Data Fusion, Vol. 5, 

No.1, pp. 39-53 

Abstract 

The pan-sharpening algorithm, known as UNB PanSharp, was adopted by PCI Geomatics 

in 2002 and by DigitalGlobe (DG) in 2003, resulting in PCI PanSharp and DG PanSharp. 

Now, UNB PanSharp is developed as a stand-alone software tool, named Fuze Go™, that 

can be used stand-alone, integrated into ENVI and potentially into other major geo-spatial 

software packages such as EDARS, ESRI, and SOCET. In addition, it is in the process to 

integrate Fuze Go into GeoMarketSpace – a new online system that turns all geospatial 

information into answers. What has made UNB PanSharp successful for the last 10 years 

and still standing out from millions of research publications in the area? This article will 

go through the general principles of individual pan-sharpening algorithms that have been 

adopted by industry and widely used by users globally to find out the differences between 

UNB PanSharp and the other pan-sharpening algorithms. 

Keywords: image fusion; pan-sharpening; algorithms; fusion quality; differences 

 

1 Introduction 

 

More than 70% of optical earth observation satellites and many modern aerial digital 

cameras simultaneously collect low-resolution multispectral (MS) and high-resolution 

panchromatic (Pan) images (Zhang, 2010). Many new satellites to be launched in the next 
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years are also equipped with both MS and Pan sensors. In addition, the number of spectral 

bands of the MS sensors is increasing, from traditional 4 spectral bands to 8 or more bands, 

such as WorldView-2 with 8 MS bands and WorldView-3 with 16 MS bands (8 in VNIR 

and 8 in SWIR). 

     Therefore, it becomes increasingly important to find a fully automated pan-sharpening 

algorithm that can constantly produce high quality, high-resolution MS images by fusing 

the low-resolution MS images and high-resolution Pan images from the same satellite. It 

is also important that the pan-sharpening quality is independent of sensor, season, and 

region differences, because (1) different sensor systems may have different spectral 

bandwidths and different numbers of bands, (2) images collected in different seasons 

contain different spectral information, and (3) ground surfaces in different regions reflect 

the sun’s radiation differently. All these differences may lead to different pan-sharpening 

results. 

    In the late 1980s, research on pan-sharpening was started to fuse the high-resolution Pan 

(10 m) with low-resolution MS (20 m) images from SPOT-1 (launched in 1986) or fuse 

the SPOT Pan (10 m) and the Landsat MS (30 m) images. After the launch of IKONOS 

satellite in 1999, research on image fusion or pan-sharpening has quickly increased. To 

date, more than 2.2 million publications (including patents) have been published on the 

topic of image fusion, and more than 47,000 publications have been published on topic of 

pan-sharpening, according to a Google Scholar search on 17 December 2012. 

     Until now, only a dozen of most successful pan-sharpening algorithms have been 

adopted by remote sensing industry. The algorithms adopted by the major commercial 

software packages such as ERDAS, ENVI, PCI, and ESRI include HPF (ERDAS), IHS 
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(ERDAS, PCI, and ESRI), PCA (ERDAS, ENVI), Brovey (ERDAS, ENVI, ESRI), 

Wavelet (ERDAS), Gram Schmidt (ENVI, ESRI), and UNB PanSharp (PCI, Fuze Go). 

However, discrepant pan-sharpening results have been obtained by users using different 

software tools or using the same tool but different images. For example: 

• Du et al. (2007) compared PCA, Brovey, Multiplicative, Adjusted Multiplicative, 

Gram Schmidt, and UNB PanSharp for the fusion of one IKONOS Pan and MS 

image and one QuickBird Pan and MS image. They concluded that Gram Schmidt 

and UNB PanSharp generated best results when measured using both quality 

indexes and application algorithms. 

• Nikolakopoulos (2008) evaluated nine pan-sharpening algorithms for fusing one 

QuickBird Pan and MS image scene, namely IHS, Modified IHS, PCA, UNB 

Pansharp, Wavelet, LMM (Local Mean Matching), LMVM (Local Mean and 

Variance Matching), Brovey, and Multiplicative algorithm. Based on the 

quantitative and qualitative measurements – correlation coefficient, histogram 

statistics, unsupervised classification, and visual analysis – the author concluded 

that LMVM, UNB Pansharp, and LMM algorithms produced better pan-sharpening 

results than all other algorithms. 

• Padwick et al. (2010) compared IHS, PCA, Gram Schmidt, and HCS 

(Hyperspherical Color Sharpening) algorithms for fusing WorldView-2 Pan and 

MS images and confirmed that Gram Schmidt, PCA, and IHS do not produce 

acceptable pan-sharpened natural colour MS images. 

• In a recent study by Zhang and Mishra (2012), 11 different pan-sharpening 

algorithms adopted by major commercial software packages were used to fuse large 
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coverage Pan and MS images from IKONOS, QuickBird, GeoEye-1, and 

WorldView-2. The pan-sharpening results were analysed and evaluated by 

independent remote sensing professionals. The conclusions reached by all the 

evaluators were that UNB PanSharp produced the best fusion quality for all types 

of sensors, images, and spectral bands; Gram Schmidt produced high quality for 

most images, but poor results for some other images, especially WorldView-2 

images; and other algorithms worked well with some images or sensors, but not 

with others. 

     What are the reasons that UNB PanSharp produces consistent, good fusion results 

despite the differences in sensors, seasons, regions, and number of bands, although other 

pansharpening algorithms produce good fusion results for some sensors, images, or MS 

bands, but not for others? To answer these questions, we need to understand the general 

principles of individual pan-sharpening algorithms first, which will be described in Section 

2. 

 

2 Pan-sharpening algorithms 

The general principles of the nine popular pan-sharpening algorithms used by ERDAS, 

ENVI, PCI, and ESRI are described below. They were developed based on certain 

assumptions and need to be operated under certain conditions. They have also associated 

advantages and limitations. In all the pan-sharpening processes, the low-resolution MS 

bands need to be up-sampled to the same pixel size of the Pan image before pansharpening 

process. 
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2.1 High pass filter 

This algorithm is used by ERDAS named HPF Resolution Merge (Gangkofner et al., 2008, 

ERDAS, 2010). The general principle is to extract high frequency information from the 

high-resolution Pan image using a high pass filter (HPF). The high frequency information 

is then added into each band of the up-sampled low-resolution MS image with a specified 

weight. The weight is relative to the global standard deviation of individual MS image 

bands. 

     In the implementation of the HPF algorithm, first the ratio (R) of low-resolution MS 

image pixel size to high-resolution Pan image pixel size is computed. A high pass 

convolution kernel (HPK) is created to filter the Pan image to generate a HPF image. The 

size of HPK is dependent on “R”. In the next step, the MS image is up-sampled to the pixel 

size of the high-resolution Pan image. The pan-sharped MS image is computed using 

Equations (1) and (2). Finally, the mean and standard deviation of pan-sharpened MS 

image bands are matched with those of the original MS image bands. 

 

𝑃𝑆𝐼𝑖𝑗 = 𝑀𝑆𝐼𝑖𝑗 + 𝐻𝑃𝐹𝐼𝑖𝑗×𝑊 (1) 

 

𝑊 =
𝜎𝑀𝑆𝐼    

𝜎𝐻𝑃𝐹𝐼    ×   𝑀
 (2) 

 

where PSI is the Pan-sharped high-resolution MS image; MSI is the up-sampled MS image; 

HFPI is the HPF image; W is the weighting factor of the HPF image corresponding to 
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individual MS bands; σMSI    is the standard deviation of the MS band; M is the user-

adjustable modulating factor to determine the crispness of the output image which depends 

on R. 

     To achieve a good pan-sharpening result, the size of the HPF filter (HPK) and the 

weights for each MS band need to be adjusted. The suggested sizes of HPK, suggested 

weights for individual MS bands, and suggested values of M are provided by the user 

manual. 

2.2 IHS 

It is used by ERDAS, PCI, and ESRI but with different variations. It utilises the IHS 

(intensity, hue, saturation) transformation to convert three MS bands from RGB (red, 

green, blue) into IHS space and then replaces the intensity (I) band by the Pan, followed 

by an inverse IHS transformation. 

     Several IHS transformation models have been discussed in the literature. One common 

IHS transformation is based on a cylindrical colour model. The equations used in the 

cylindrical colour model IHS transformation are given as follows: 

[
𝐼
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𝑆 = √𝑣1
2 + 𝑣2

2 
(5) 

 

where: 𝑣1 and 𝑣2 are two intermediate values. 

However, it can only fuse three MS bands each time. In addition, the fusion quality strongly 

depends on the degree of spectral overlap between the MS bands and the Pan to be fused. 

• To fuse four or more MS bands, ERDAS adopted a modified IHS algorithm named 

Modified IHS Resolution Merge (Siddiqui, 2003; ERDAS, 2010). It repeats the 

IHS fusion process twice, each time for three different MS bands. In the end, 4 out 

of 6 pan-sharpened MS bands are selected as final fusion output. This technique 

works by assessing the spectral overlap between each MS band and the high-

resolution Pan band. The weights are calculated based on the relative wavelengths 

of the overlapping MS bands. 

• To reduce colour distortion, ESRI (ESRI, 2013) suggested altering the Pan image 

by subtracting certain weighted intensity (I) value from the Pan and then replace 

the intensity (I) with the altered Pan. But the weight is not given in the manual. The 

default weights, 0.33, are set in the software for R, G, and B bands. 

2.3 PCA 

It is named Resolution Merge (Principal Components) in ERDAS (Chavez et al., 1991; 

ERDAS 2010) and PC Spectral Sharpening in ENVI (ENVI, 2012). This method uses the 

principal component (PC) transformation to convert MS bands into PCs according to the 

eigenvectors of their corresponding covariance matrices. The first principal component 

(PC-1) is then replaced by the high-resolution Pan image. The pan-sharped MS image is 
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obtained by applying an inverse PC transformation on the new set of components after PC-

1 is replaced by Pan. 

    To perform a PC transformation, the covariance matrix of the MS bands needs to be 

computed and then the eigenvalues and eigenvectors of the covariance matrix are 

determined. The eigenvectors are used to form an eigenvector matrix. The eigenvector 

matrix is then used to transform the MS bands into PCs using equation (6). 

𝒚 = 𝐺𝒙 (6) 

where y is the vector of principal components; x is the vector of original MS image bands; 

and G is the eigenvector matrix To fuse the Pan image into the MS bands, the Pan image 

is used to replace the first principal component (PC-1). An inverse PC transformation is 

then applied to the PCs where the PC-1 is replaced by Pan to produce pan-sharpened MS 

bands, based on equation (7). 

𝒛 = 𝐺−1𝒚′     (7) 

where z is the vector of pan-sharpened MS bands; y’ is the vector of the PCs where the PC-

1 is replaced by Pan; and G-1 is the inverse matrix of G. _To reduce colour distortion, the 

histogram of the Pan needs to be matched to that of the PC-1 before the inverse principal 

component transformation. It assumes that the spectral range of the low-resolution MS 

bands overlap with that of the high-resolution Pan image. Therefore, the fusion quality 

strongly depends on the degree of spectral overlap between the MS bands and the Pan to 

be fused.  In addition, PC transformation is a computationally intensive process and 

requires more time to process compared to other pan-sharping methods. 
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2.4 Brovey 

It is used by ERDAS, ENVI, and ESRI with some modifications. The Brovey 

transformation uses three MS bands and one Pan band to produce three pan-sharpened MS 

bands. Each pan-sharpened MS band is generated by multiplying the corresponding MS 

band with the Pan band and then divided by the sum of the three MS bands to be fused. As 

it is computationally simple, the processing speed is fast. 

     General equations used to compute the Brovey transformation is given as follows: 

 

𝑅𝑒𝑑𝑜𝑢𝑡    =
𝑅𝑒𝑑𝑖𝑛    

𝐵𝑙𝑢𝑒𝑖𝑛   + 𝐺𝑟𝑒𝑒𝑛𝑖𝑛    + 𝑅𝑒𝑑𝑖𝑛    
×𝑃𝑎𝑛 

(8) 

𝐺𝑟𝑒𝑒𝑛𝑜𝑢𝑡    =
𝐺𝑟𝑒𝑒𝑛𝑖𝑛    

𝐵𝑙𝑢𝑒𝑖𝑛   + 𝐺𝑟𝑒𝑒𝑛𝑖𝑛    + 𝑅𝑒𝑑𝑖𝑛    
×𝑃𝑎𝑛 

(9) 

 

𝐵𝑙𝑢𝑒𝑜𝑢𝑡    =
𝐵𝑙𝑢𝑒𝑖𝑛    

𝐵𝑙𝑢𝑒𝑖𝑛   + 𝐺𝑟𝑒𝑒𝑛𝑖𝑛    + 𝑅𝑒𝑑𝑖𝑛    
×𝑃𝑎𝑛 

(10) 

 

where 𝑅𝑒𝑑𝑜𝑢𝑡, 𝐺𝑟𝑒𝑒𝑛𝑜𝑢𝑡, and 𝐵𝑙𝑢𝑒𝑜𝑢𝑡    are the pan-sharped high-resolution MS bands in 

RGB; 𝑅𝑒𝑑𝑖𝑛, 𝐺𝑟𝑒𝑒𝑛𝑖𝑛, and 𝐵𝑙𝑢𝑒𝑖𝑛    are the low-resolution MS bands in RGB. 

     However, only three MS bands can be pan-sharpened. In addition, it assumes that the 

sum of spectral bandwidths of three MS bands overlaps with those of the Pan image. 

Otherwise, significant colour distortions will be produced. Therefore: 

• In ERDAS (ERDAS, 2010), only three MS bands, such as bands 3, 2, 1 from a 

SPOT or Landsat TM image or 4, 3, 2 from a Landsat TM, are suggested. 
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• In ENVI, an extension of the Brovey algorithm named Color Normalization is 

used (Klonus and Ehlers, 2009; ENVI, 2012). The MS bands are grouped into a 

spectral segment defined by the MS bands falling in the spectral range of the Pan 

image. The corresponding band segments are processed together in the manner 

that each MS band is multiplied by the high-resolution Pan band and then divided 

by the sum of the MS bands in the segment (Vrabel et al., 2002). Only the MS 

bands that fall within the spectral range of the Pan image can be pan-sharpened, 

whereas all other MS bands are unchanged in the output. 

• In ESRI (ESRI, 2013), it is suggested to use weighted sum of the three MS bands 

instead of a simple sum of the MS bands. It is also suggested to use near-infrared 

band if it is available. However, it did not suggest how to find the weights (ESRI, 

2013). But, by default, 0.33 is used as the weights for R, G, and B. 

2.5 Subtractive fusion 

Used by ERDAS (ERDAS, 2010; Ashraf et al., 2012), named Subtractive Resolution 

Merge, the algorithm produces a low-resolution synthetic Pan image from the weighted 

sum of the low-resolution MS bands. This synthetic Pan is then up-sampled to the same 

pixel size of high-resolution Pan and then subtracted from the high-resolution Pan to extract 

edge details. It also uses a mix of HPF and LPF (low pass filter) to control spatial details. 

The kernel size of the HPF and LPF is fixed at 3 × 3 and 5 × 5, respectively, and the central 

weight of the HPF is defined by users. 

     The synthetic Pan image is computed using following equation: 

𝑃𝑎𝑛𝑆𝑦𝑛    =
(𝑊𝐵𝑆 − 𝜇𝑊𝐵𝑆)

𝜎𝑊𝐵𝑆
×𝜎𝑃𝑎𝑛 + 𝜇𝑃𝑎𝑛 

(11) 



 

129 

 

where 𝑃𝑎𝑛𝑆𝑦𝑛     is the synthetic Pan image; WBS is a weighted sum of MS bands; μWBS is 

the mean of WBS; μPan is mean of Pan;  σWBS is the standard deviation of WBS; and σPan  is 

the mean of Pan. 

     Once, synthetic Pan image is computed, the pan-sharpened image is computed using 

following equation: 

𝑃𝑆𝐼    = (𝐿𝑃𝐹 ∗ 𝑀𝑆) + (𝐻𝑃𝐹 ∗ 𝑃𝑎𝑛 − 𝐿𝑃𝐹 ∗ 𝑃𝑎𝑛𝑆𝑦𝑛    )×𝑃𝐶𝑊×𝑁𝐹 (12) 

where PSI is the pan-sharpened image; LPF is the low pass filter; HPF is the high pass 

filter; PCW is the Pan contribution weights (ranging from 0.7 to 1.3); NF is a normalization 

function. 

     A range of weights for producing the low-resolution synthetic Pan are suggested by the 

software manual so that the user needs to choose proper weights to achieve a balance 

between spectral fidelity and spatial contrast. In addition, the user also needs to select the 

central weight (value) of the HPF from a number of suggested values. 

2.6 Wavelet 

The algorithm is adopted by ERDAS, named Wavelet Resolution Merge (ERDAS, 2010). 

It is a modification of the work by King and Wang (2001) with extensive input from 

Lemeshewsky (1999, 2002). It utilises a wavelet transformation to decompose the high-

resolution Pan image into one low frequency approximation image and three high 

frequency feature images. The low frequency approximation image is then replaced by the 

low-resolution MS bands, respectively and then followed by individual inverse wavelet 

transformations each for one MS band. 

     In the implementation of the wavelet-based pan-sharpening, first the DWT (Discrete 

Wavelet Transform) operation is applied to the high-resolution Pan image, which 
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transforms Pan image into a set of sub-images comprising one low frequency 

approximation image and three high frequency images. Equation (13) is used to transform 

Pan image into the set of four frequency images. 

𝑊𝑇𝐼 = 𝐷𝑊𝑇(𝑃𝑎𝑛) (13) 

where WTI is the wavelet transformed image; DWT is the discrete wavelet transform 

operation; and Pan is high-resolution panchromatic image. 

     Once the set of wavelet transformed images are computed, the low frequency 

approximation image of the Pan image is replaced by one of the MS bands. This results in 

a new set of four wavelet transformed images (WTI′) comprising one MS image band and 

three high frequency images. Finally, individual bands of high-resolution pan-sharpened 

image is computed using the IDWT (Inverse Discrete Wavelet Transform) operation. 

Equation (14) is used to transform WTI′ into high-resolution pan-sharpened image. 

 

𝑃𝑆𝐼𝑖 = 𝐼𝐷𝑊𝑇(𝑊𝑇𝐼𝑖
′) (14) 

where PSI is the high-resolution pan-sharpened image; IDWT is the Inverse Discrete 

Wavelet Transform operation; and WTI’ is the set of wavelet transformed sub-images after 

its low frequency approximation image is replaced by a MS band. This inverse wavelet 

transform is operated repeatedly, each for producing one pan-sharpened MS bands.   

     However, the algorithm can only down-sample the high-resolution Pan image by a 

factor of two in each iteration, reducing the resolution of the approximation image by a 

factor of two. This is suitable to fuse images with a Pan/MS resolution ratio of 1/2 or 1/4, 

such as Landsat ETM+ Pan and MS and IKONOS Pan and MS. But it has problems to fuse 
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SPOT Pan (10 m) with Landsat MS (30 m). In addition, obvious artefacts in the fused 

images are an unavoidable problem of wavelet-based pan-sharpening techniques. 

2.7 ESRI pan-sharpening 

This is an ESRI pan-sharpening algorithm (ESRI, 2013). It first generates a weighted 

average image using the MS bands (near-infrared band is an optional). An adjustment 

image (ADI) is then created by subtracting the grey values of the weighted average image 

from those of the original Pan image. Finally, the adjustment image (ADJ) is added to each 

individual MS bands, respectively, to produce individual pan-sharpened MS bands. 

     ESRI Pan-sharpening uses the following equations to compute a pan-sharpened image: 

 

 

𝐴𝐷𝐽 = 𝑃𝑎𝑛 −𝑊 (15) 

𝑅𝑒𝑑𝑜𝑢𝑡 = 𝑅𝑒𝑑𝑖𝑛 + 𝐴𝐷𝐽 (16) 

𝐺𝑟𝑒𝑒𝑛𝑜𝑢𝑡 = 𝐺𝑟𝑒𝑒𝑛𝑖𝑛 + 𝐴𝐷𝐽 (17) 

𝐵𝑙𝑢𝑒𝑜𝑢𝑡 = 𝐵𝑙𝑢𝑒𝑖𝑛 + 𝐴𝐷𝐽 (18) 

𝑁𝐼𝑅𝑜𝑢𝑡 = 𝑁𝐼𝑅𝑖𝑛 + 𝐴𝐷𝐽 (19) 

 

where ADJ is the adjusted image; W is a weighted average image of the MS bands; Pan is 

the high-resolution panchromatic image; 𝑅𝑒𝑑𝑜𝑢𝑡, 𝐺𝑟𝑒𝑒𝑛𝑜𝑢𝑡,  𝐵𝑙𝑢𝑒𝑜𝑢𝑡, and 𝑁𝐼𝑅𝑜𝑢𝑡    are the 

R, G, B and NIR Pan-sharped high-resolution MS bands; 𝑅𝑒𝑑𝑖𝑛, 𝐺𝑟𝑒𝑒𝑛𝑖𝑛, 𝐵𝑙𝑢𝑒𝑖𝑛, and  

𝑁𝐼𝑅𝑖𝑛    are the R, G, B and NIR low-resolution MS bands. Several sets of predefined 

weights for generating the weighted average image are provided by the software package 

based on the tests with existing images. Each set for one satellite, such as: GeoEye-1: 0.6, 



 

132 

 

0.85, 0.75, 0.3; IKONOS: 0.85, 0.65, 0.35, 0.9; QuickBird: 0.85, 0.7, 0.35, 1.0; 

WorldView-2: 0.95, 0.7, 0.5, 1.0. 

     However, when the spectral characteristics of Pan and MS images are different than 

those of the tested images, poor fusion results will occur. In addition, only four MS bans 

can be pan-sharpened. 

2.8 Gram Schmidt 

It is named Gram Schmidt Spectral Sharpen in ENVI (ENVI, 2012) and Gram Schmidt in 

the latest ESRI ArcGIS version 10.1 (ESRI, 2013). The original Gram Schmidt fusion 

(Laben and Brower, 1998) generates a simulated lower resolution Pan image through 

weighted sum of blue, green, red, and near-infrared MS bands. The weights for the four 

MS bands are calculated based on the sensor’s optical transmittance and spectral response 

for the four MS bands and the Pan band. A Gram Schmidt transformation is then applied 

to the simulated low-resolution Pan and the low-resolution MS bands, with the simulated 

Pan as the first band. The high-resolution Pan image is adjusted to match the first band of 

Gram Schmidt transformed bands. Then the adjusted high-resolution Pan is used to replace 

the first band of the Gram Schmidt transformed bands, followed by an inverse Gram 

Schmidt transformation to produce pan-sharpened MS bands. 

     The equation for computing the simulated low-resolution Pan image is 

𝑃𝑎𝑛𝑆𝑦𝑛 = (𝐵×𝐵𝑤) + (𝐺×𝐺𝑤) + (𝑅×𝑅𝑤) + (𝑁𝐼𝑅×𝑁𝐼𝑅𝑤) (20) 

where 𝑃𝑎𝑛𝑆𝑦𝑛 is the simulated low-resolution Pan image; B, G, R, and NIR are the MS 

bands; and 𝐵𝑤, 𝐺𝑤, 𝑅𝑤, and  𝑁𝐼𝑅𝑤 are the weights for the B, G, R, and NIR bands, 

respectively. 
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     Because the simulated low-resolution Pan image from equation (20) is inserted into 

original MS image as a first band (GS1) for the Gram-Schmidt transformation, if the MS 

image has N bands, after inserting simulated Pan image, the new MS image will have N+1 

bands. Below is the equation for the Gram-Schmidt Transformation: 

𝐺𝑆𝑇(𝑖, 𝑗) = (𝐵𝑇(𝑖, 𝑗) − 𝜇𝑇 ) −∑𝜑(𝐵𝑇 , 𝐺𝑆𝐼  )

𝑇−1

𝐼−1

×𝐺𝑆𝐼(𝑖, 𝑗) 
(21) 

where T is the band number being transformed; B is the original band; µT is the mean of 

band T (BT); 𝜑(𝐵𝑇 , 𝐺𝑆𝐼  )  is the covariance between BT and GSI, and GSI is the simulated 

low-resolution Pan image.  

In equation (21), µT is given by:  

𝜇𝑇      =
∑ ∑ 𝐵𝑇(𝑖, 𝑗)

𝑅
𝑖=1

𝐶
𝑗=1

𝐶×𝑅
 

(22) 

where C is the total number of columns in the image; and R is the total number of rows in 

the image. 

The covariance 𝜑(𝐵𝑇 , 𝐺𝑆𝐼  ) is given by: 

𝜑(𝐵𝑇 , 𝐺𝑆𝐼  ) =
𝜎(𝐵𝑇 , 𝐺𝑆𝐼  )

𝜎(𝐺𝑆𝐼 , 𝐺𝑆𝐼  )2
 

(23) 

where 𝜎(𝐺𝑆𝐼 , 𝐺𝑆𝐼  )
2 is the variance of GSI. Because the sensor’s optical transmittance and 

spectral response are not readily available for most cases, ENVI and ESRI introduced 

different remedy solutions: 

• ENVI uses three different methods to simulate low-resolution Pan image  

o Average the MS bands. 
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o Simulate a Pan image for the selected sensors such as IKONOS, IRS1, 

Landsat7, QuickBird, SPOT 5, KOMPSAT-2, RapidEye, and GeoEye-1, 

and WorldView-2. 

o Simulate a Pan image for the selected filter function. This option requires 

radimetrically corrected data. 

• In ESRI, one or two sets of weights are suggested for each satellite. In each set, one 

weight is specified to one of the four MS bands. Therefore, ESRI Gram Schmidt is 

unable to pan-sharpen more than four MS bands each time. In addition, it produces 

very poor results for the MS bands other than blue, green, red, and near-infrared. 

     On the other hand, even though the optical transmittance and spectral response of each 

satellite sensor were available to the users, the pan-sharpening quality of Gram Schmidt 

would vary as well, because seasonal, regional, and atmospheric differences also alter the 

spectral characteristics of the MS and Pan images. These differences are not taken into 

account by the Gram Schmidt fusion algorithm. In addition, the Gram Schmidt 

transformations (forward and reverse) are computationally intensive and hence it takes 

more time in generating pan-sharpened images. 

2.9 UNB PanSharp (Fuze Go™) 

Used by PCI, DigitalGlobe and Scene Sharp, named PCI PanSharp, DG PanSharp, and 

Fuze Go, respectively, the algorithm (Zhang 2004) utilises the least squares technique to 

find the best fit between the grey values of the Pan band and the MS bands to adjust the 

contribution of individual bands to the fusion result. It employs a set of statistic approaches 

to estimate the grey value relationship between all the input bands to eliminate the problem 

of data set dependency (i.e. reduce the influence of data set variation in the fusion). It is a 
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fully automated one-step process, producing high quality fusion results regardless of sensor 

and image variations and number of MS bands. 

     It has two pan-sharpening modes. The standard mode produces a pan-sharpened MS 

image with exactly the same spatial detail as that of the original Pan, whereas the enhanced 

mode produces a pan-sharpened MS image with slightly sharper spatial detail than the 

original Pan for a better visual effect. 

    Because it uses the method of least squares to find the best fit between the MS and Pan 

bands first and then fuse them together. Consistent good fusion results are achieved 

regardless the variations in sensors, seasons, regions, number of MS bands, and 

combinations of MS bands. No user-specified parameters or matching between Pan and 

MS bands is needed. 

    However, if the MS and Pan images are taken at different times or from different 

satellites, colour distortion may occur due to seasonal difference and/or miss-registration 

between the two images. Practically, it may not be viable to fuse Pan and MS images from 

two high-resolution satellites, because most of the images are off-nadir, and precise 

coregistration of high-resolution images from different viewing angles is still an unsolved 

technical problem. 

3 Pan-sharpening results 

Large coverage Pan and MS images from IKONOS, QuickBird, GeoEye-1, and 

WorldView-2 were fused using the nine algorithms mentioned above. The images were 

taken in different years and months and from different regions (San Diego, USA; Beijing, 

China; Hobart, Australia; and Moncton, Canada). In the pan-sharpening process, the best 

processing procedure suggested by the user manual of each pan-sharpening technique was 
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used. It was attempted to pan-sharpen all the MS bands with the corresponding Pan image 

at once. But some algorithms just allow for the pan-sharpening three MS bands each time. 

Therefore, two times of fusions were needed to get four pan-sharpened MS bands. The 

ESRI Gram Schmidt just allows for the fusion of four MS bands each time. At least two 

times of fusions are needed to pan-sharpen the 8 MS bands of WorldView-2 images. 

 
Figure 1 Subset of WorldView-2 Pan image used for pan-sharpening. 

 

     More than 36 pan-sharpened images were produced using the nine different algorithms. 

Because of space limitation, this article just focuses on the detailed comparison between 

UNB PanSharp and Gram Schmidt, especially the fusion of WorldView-2 images, because 

previous research publications have proven that UNB PanSharp is the top one, followed by 

Gram Schmidt. For the fusion results of other algorithms and/or other satellites, readers 

can refer to the papers by Du et al. (2007), Nikolakopoulos (2008), Padwick et al. (2010), 

and Zhang and Mishra (2012). 

     Figure 1 shows a subset of the WorldView-2 Pan image used for fusion. The original 

size is 130 MP. Figure 2 shows the MS images of different band combinations and the 
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corresponding fusion results of Fuze Go (UNB PanSharp) (FG), ENVI Gram Schmidt 

(GS1), and ESRI Gram Schmidt (GS2). 

     Figure 3 shows a few fusion examples of other satellites produced using Fuze Go, that 

is IKONOS, QuickBird, and GeoEye-1. Each of the fused images is larger than a quarter 

of the full image scenes. 

 

4 Quality evaluation and analysis 

4.1 Quality evaluation 

To avoid bias in the fusion quality evaluation, all the images before and after pan-

sharpening were displayed under the same visualisation condition in Figures 1–3 (i.e. 

exactly the same image area was displayed and the same histogram stretching was applied 

to all the images).  

     For spatial detail evaluation, readers can clearly see, by comparing Figures 1 and 2, that  

• The spatial detail of the Fuze Go (FG) and ESRI Gram Schmidt (GS2) is identical 

to that of original Pan image, whereas 

• The ENVI Gram Schmidt (GS1) results are blurred in all the band combinations. 

     For spectral quality evaluation, readers can see, by comparing the MS images and the 

pansharpened images in Figure 2, that  

• Fuze Go (FG) produces almost identical colour to that of the original MS image in 

all the band combinations; 

• ENVI Gram Schmidt (GS1) results in obvious colour distortion in all the band 

combinations and introduces strange artefacts in nature colour and band 1, 2, and 3 

combination; 
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Figure 2 Subset of WorldView-2 MS images with different band combinations and the corresponding 

pan-sharpened results by Fuze Go (FG) (formerly UNB PanSharp), ENVI Gram Schmidt (GS1), and 

ESRI Gram Schmidt (GS2). 
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Figure 3 Original Pan and MS images and the pan-sharpened natural colour and colour infrared 

images of Fuze Go (formerly UNB PanSharp). 
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• ESRI Gram Schmidt (GS2) produces relative good fusion results for natural colour 

and colour infrared images with minor colour distortions, but with serious colour 

distortions for other band combinations. 

    From Figure 3, readers can also see that Fuze Go produces perfect fusion results, with 

identical spatial detail of the original Pan and the same colour of the original MS images, 

for all the band combinations of IKONOS, QuickBird, and GeoEye-1 images. 

    There are several methods discussed in the literature to evaluate both the spectral and 

spatial quality of pan-sharped images. However, currently there is no consensus in the 

literature (Li 2000, Padwick et al. 2010) on the best quality index for Pan-sharpening. In 

addition, our previous literature review and our previous research (Zhang 2008) also 

demonstrated that no existing quantitative methods can provide consistent and convincing 

evaluation results. Therefore, quantitative evaluation methods have not been used to 

evaluate the quality of Pan-sharped images. 

4.2 Differences between Fuze Go and other algorithms 

From the principles of the different pan-sharpening algorithms introduced in Section 2, we 

can see that: 

• Most pan-sharpening algorithms (e.g. HPF, IHS, PCA, Brovey, and Wavelet) are 

developed based on the assumption that, except for the resolution difference, the 

grey value information of Pan and MS images are similar. Therefore, pan-

sharpened results can be achieved by extracting high-resolution information from 

the Pan image and then adding it into all bands of the MS image. 

• Many other pan-sharpening methods (e.g. Gram Schmidt and other modifies/ 

advanced algorithms) assume that the image difference caused by seasonal and 
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regional differences does not influence image fusion quality, as long as the sensor 

differences are taken into account. Therefore, one set of fusion parameters that are 

successful for some images of a specified sensor can be applied to the fusion of all 

images of the sensor, without considering the spectral differences caused by 

seasonal and regional differences. 

    However, both assumptions are not always true. Therefore, it happens often that a 

pansharpening algorithm achieves good results with some images, but fails with other 

images. 

    On the contrary, Fuze Go treats every set of Pan and MS images individually to find out 

the best fit between the Pan and MS images and then fuse them together. Therefore, it 

constantly achieves good fusion results regardless of the differences in sensors, seasons, 

and regions. 

    In other words, Fuze Go is an image-oriented pan-sharpening approach. It treats each set 

of Pan and MS images individually in the fusion. Therefore, it is sensor independent and 

achieves high quality fusion results for all sensors and all images. 

    However, other pan-sharpening algorithms are either sensor-oriented or sampleoriented 

approach, or both. They use a single set of fusion parameters extracted from some sample 

images to fuse all the images of the same sensor. Therefore, they achieve good fusion 

results with some images, but fail with other images. 

 

5 Conclusion 

Nine different pan-sharpening algorithms and their variations adopted by ERDAS, ENVI, 

PCI, and/or ESRI were evaluated and analysed in this article. From the tests of this research 
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and papers published by other researchers, it has been proven that Fuze Go and its 

predecessor UNB PanSharp produce consistent good fusion results for all sensors and all 

images. Gram Schmidt produces good fusion results for majority of images, but fails in the 

fusion of WorldView-2 images. Other pan-sharpening algorithms produce good results 

with some images and fail with others. 

    The quality inconsistency problem of Gram Schmidt and other pan-sharpening 

algorithms is due to the fact that the assumed conditions for developing the pan-sharpening 

algorithms are not always true in the real world. Therefore, good fusion results can be 

achieved when the images meet the assumed conditions. Otherwise, visible colours 

distortions and even strange artefacts will appear. 

   The reason for consistent good fusion results of Fuze Go is that it treats every set of Pan 

and MS images individually. It finds out the best fit between the Pan and MS images first 

and then fuses them together. Therefore, good fusion results can always be achieved 

regardless of the sensor, season, and region differences. 
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Appendix II A review of optical imagery and airborne LiDAR data 

registration methods 

Mishra, R. K., & Zhang, Y. (2012). A review of optical imagery and airborne LiDAR 

data registration methods, The Open Remote Sensing Journal. vol. 5, pp. 54-63, 2012. 

 

Abstract 

Representing a scene completely from remote sensing data requires both spectral and 3-D-

surface information. Integration of spectral information from optical images and 3-D-

surface information from LiDAR is important in a number of remote sensing applications 

such as feature extraction, image classification, image analysis, building extraction, 3-D 

city modelling, canopy modelling etc. Therefore, numerous methods have been developed 

in the last decade to align both data sets into a common reference frame to effectively 

utilize their complementary characteristics. However, due to the significantly different 

characteristics between optical image and LiDAR data, there are a number of technical 

challenges in the alignment of both data sets. Different research papers introduced different 

strategy or methodology to overcome the challenges, reaching different 

alignment/registration results. This paper presents a review of classical and up to date 

optical-LiDAR registration methods with the emphasis on control point detection and 

matching. The aim of this paper is to provide readers with an overview of existing methods, 

identify their advantages and limitations, and give readers the overall information on what 

will be useful for researchers and practitioners to realistically select proper method for their 

application. 
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1 Introduction 

The technological advancement in computer, sensor technology, data processing and 

communication led to the launch of the new generation of High-Resolution (HR) 

commercial Earth imaging satellites. The HR satellite image has the advantage of high user 

interpretability, rich information content, high image clarity, and integrity, which opens the 

door for many new applications. The recently emerged technique of airborne altimetric 

LiDAR (Light detection and ranging) provides accurate 3-D surface information which 

helps in deciphering 3-D geometric information of ground features. However, sudden 

elevation changes along the surface are not clearly visible in the LiDAR data due to 

insufficient points. The LiDAR data provides high density surface information in 

homogenous areas and low density surface elsewhere (i.e. object space break-lines). On 

the other hand, an optical image provides high quality details along object boundaries with 

height variations (Kim et al., 2006). Optical images and LiDAR data have unique 

characteristics that make them preferable in certain applications. The disadvantage of one 

technology is contrasted by an opposite strength in the other. Hence, integrating of data 

from these two systems would lead to higher quality surface information (Baltsavias, 

1999). Accurate registration of optical images and LiDAR data is important in a number 

of remote sensing applications such as: 

a. Building extraction: In the past, many efforts have been made to automatically extract 

buildings from optical images or LiDAR derived DSM.  Building extraction using either 
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optical image or LiDAR data has limitations due to the fact that both sensors have some 

limitations. Integration of these two data sets can overcome the limitations of optical and 

LiDAR sensors as both sensors have complementary characteristics. Many recent studies 

to extract buildings, use both optical image and LiDAR data together to improve the 

accuracy of the building extraction. Rottensteiner and Jansa (2002) have shown that the 

LiDAR data integration with optical imagery is helpful in building extraction. Integration 

of optical image with LiDAR data facilitates utilizing the characteristics of both data sets 

in building extraction. However, the prerequisite of using both data sets together is accurate 

alignment of both data sets in a common reference frame. 

b. Image classification: At present, the image classification algorithms mainly use either 

spectral or contextual information of optical images for land-cover classifications. The 

object-oriented image classification method has been found better over the pixel-based 

image classification methods particularly for HR optical images. However, there is still 

enough scope in improving the image classification so the results can be used on 

operational basis. Integration of optical images and LiDAR data can greatly improve the 

classification accuracy by sharing redundant and complementary information of both data 

sets (Haitao et al. 2007).  A number of research works have been done to utilize LiDAR 

data to improve the classification of optical images (Haitao et al. ,2007; Cui et al., 2006; 

Syed et al., 2005; Park et al., 2001). However, to use LiDAR data in image classification, 

the LiDAR data should be perfectly registered with the corresponding optical image. 

c. 3-D City Modelling: 3-D city modelling is useful in understanding a scene of interest 

(Mastin et al., 2009). This has gained popularity in games and many commercial 

applications. 3-D city modelling has many valuable applications such as urban planning 
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and simulation, virtual reality, interpretation, and real-time emergency response. 3-D 

models are constructed by texture mapping of optical images onto 3D geometry models. 

These models have traditionally been constructed manually. The LiDAR technology has 

made the acquisition of high-resolution elevation data more efficient and cost effective. 

Brenner (2005) reviewed many building reconstruction methods and concluded that 

combining optical images with LiDAR data is the better way to increase automation and 

obtain accurate results. However, using LiDAR data in 3-D city modelling needs optical 

images accurately registered with corresponding LiDAR data.  

d. Canopy modelling:  Many research works have utilized the spectral characteristics of 

optical images to detect forest and tree crowns. However, optical images are not good 

enough to model canopy structure as it does not capture forest structure directly. As LiDAR 

data provides very accurate and dense horizontal and vertical information, the canopy 

height can directly be retrieved from LiDAR data.   Chen et al. (2005) have shown that the 

use of LiDAR data with optical images is useful in canopy modelling. The precise canopy 

modelling requires optical images accurately registered with corresponding LiDAR data.  

    However, due to the distinguished differences between optical image and LiDAR data, 

the registration remains challenging.   

 

2 Difficulties in optical image and LiDAR data registration 

A complete scene description from remote sensing data requires both spectral and 3-D 

surface information. However, the complementary information of optical images and 

LiDAR data can be fully utilized only after precise registration of both data sets. Therefore, 

registration of optical images and LiDAR data models relative to a common reference 
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frame (Habib and Schenk, 1999;  Postolov et al., 1999) is highly beneficial for many remote 

sensing applications. The optical image can be aligned with the corresponding LiDAR data 

manually or automatically through an image registration process using control points. The 

manual process is performed by selecting control point pairs from both data sets. This 

process is very time consuming and is prone to human bias given a large area. Therefore, 

automated registration process is highly desirable to reduce processing time. An optical 

image and corresponding LiDAR data are shown in Figure 1. In Figure 1, the potential 

control points, building corners are highlighted with yellow circles.   There are various 

important issues which make optical image and LiDAR data registration a quite difficult 

task (Wong and Orchard, 2008). These are given as follows: 

a. Control-Point Detection: To register a pair of images with each other, a set of conjugate 

control-points must be detected from both images to compute the registration parameters. 

However, there are substantial differences in characteristics of optical images and LiDAR 

data. Therefore, it is very difficult to determine the same points of interest in both data sets.  

b. Difference in characteristics of optical image and LiDAR intensity image: There are 

substantial differences between an optical image and a LiDAR intensity image due to their 

very different processes of intensity recording. This makes it difficult to perform a direct 

similarity comparison between a LiDAR intensity image and an optical image. However, 

the intensity image from LiDAR sensor can be used to improve the registration accuracy. 

Further, the elevation image (DSM) obtained by LiDAR data has also very different 

characteristics than the optical image.  

c. Different Structure: As the optical and LiDAR sensors capture data in entirely different 

environments, the structural characteristics recorded by optical image may not be present 
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in LiDAR data or vice-versa. This makes it difficult to perform comparisons of structures 

appearing in both data sets such as edges and shapes. 

d. Relief displacement: In the HR optical images relief displacement is highly apparent. 

Relief displacement shifts the position of an object’s image caused by the relief of the 

object. There is no relief displacement in LiDAR data. Therefore, shift of objects (control-

points) in optical images makes it difficult to associate control-points of optical images 

with control-points in LiDAR data.   

 
Figure 1 Optical image (left) and corresponding LiDAR data (right). Notes: The yellow circles in this 

Figure represent the building corners. These corners are the potential control points for optical image 

and LiDAR data registration. 

3 Optical image and LiDAR data registration methodology 

The optical images and LiDAR data registration methods consist of following three steps: 

a. Feature Extraction: Salient and distinctive features (homogenous regions, edges, object 

boundary, lines, line intersection, corners, etc.) are manually or automatically detected 

from optical images and LiDAR data. These features can be represented by their lines, 

corners, center of gravity, etc. which are called control points.  

c. Feature matching: This step determines correspondence between the control points 

detected in optical images and LiDAR data. Many similarity measures and feature 

descriptors are used for matching the control points.  
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d. Transformation model: Image transformation parameters are computed using 

correspondence between the matched control points from optical images and LiDAR data. 

     The above steps are similar to steps required for image-to-image registration (Zitova 

and Flusser, 2003). Many successful methods have been developed for the registration of 

the optical images. However, given the substantially different imaging principles between 

optical and LiDAR sensors, the captured data sets exhibit substantially different 

characteristics. Therefore, the method proposed for image-to-image registration cannot be 

directly applied to register optical images and LiDAR data. Intensity based methods for 

image registrations are not suitable for optical images and LiDAR data registration since 

there are substantial differences in their data characteristics.  The 3-D surface can be 

generated using photogrammetry techniques and then registration of optical images and 

LiDAR data can be done (Shenk and Castho, 2002); however, it requires overlapping 

optical images and processes are not automatic. Feature-based techniques are suitable for 

this type of registration as features can be extracted both from optical images and LiDAR 

data. The result of featured-based technique depends on the similarity of image features 

determined by feature extraction algorithms. The main problem with optical images and 

LiDAR data registration is to determine correct control points from both data sets and then 

their accurate matching. As discussed above, due to the importance of optical image and 

LiDAR data registration in many remote sensing applications, several methods have been 

developed over time to solve the problems of this type of registration. These methods are 

categorized as per their types and discussed as follows in detail: 

 

 



 

154 

 

3.1 Featured based registration   

Feature-based methods have been found better than the intensity based registration 

methods as many similar features are present in both optical images and LiDAR data sets. 

These methods depend on the features determined by feature extraction algorithms. The 

detection of control-points depends on feature extraction as control points that correspond 

to positions of image fragments with particular features (Zitova and Flusser, 2003). 

Therefore, feature extraction is crucial for successful optical image and LiDAR data 

registration. Linear features, corners, lines and polygons are considered as features here.  

3.1.1 Corner: Corners are the most common features used for image-to-image registration 

(Zheng et al., 1999). The advantages of using corner points are their uniqueness and high 

precision in their localization. Wong and Orchard (2008) were used modified Harris corner 

detector (Noble 1989) to detect corners (control points) from the optical image and then 

corresponding control points from the LiDAR data was extracted through exhaustive 

search. 

3.1.2 Straight lines: An optical image and LiDAR data registration method proposed by 

Habib et al. (2004) utilizes straight line features extracted from both data sets and 3-D 

similarity transformation for aligning the optical image relative to the corresponding 

LiDAR data reference frame. The straight line features are used due to the fact that the 

straight lines can be reliably, accurately and automatically extracted from both optical 

images and LiDAR data. In this approach, first, planer surfaces from LiDAR data are 

extracted and adjacent planes are intersected to determine 3-D straight line segments. 

Secondly, linear features from optical images are obtained through aerial triangulation. A 

mathematical model for expressing the necessary constraints for the alignment of conjugate 
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optical images and LiDAR data straight lines is established. This model ensures that the 

corresponding straight lines are collinear after registering two data sets relative to a 

common reference frame.  

     Habib et al. (2005) introduced another approach which starts by manipulating the 

photogrammetric imagery to produce a 3-D model, including a set of linear features along 

object space discontinuities, relative to an arbitrarily chosen coordinate system. Then, 

conjugate photogrammetric and LiDAR straight line features are used to establish the 

transformation between the arbitrarily chosen photogrammetric coordinate system and the 

LiDAR reference frame. 

     Habib et al. (2006) proposed an alternative method for the purpose of integrating 

LiDAR data into photogrammetric triangulations. Two methodologies are introduced that 

utilize straight line and aerial features derived from both data sets as primitives.  The first 

methodology directly incorporates LiDAR lines as control information in the 

photogrammetric triangulation, while in the second methodology, LiDAR patches are used 

to geo-reference the photogrammetric model.  

     Deng et al. (2008) proposed a registration procedure in which first straight lines are 

detected using Canny edge detection. Then pair-wise correspondence of detected straight 

lines is achieved by matching the straight-line pairs detected from LiDAR point clouds and 

optical images using generalized point photogrammetry. In the generalized point 

photogrammetry, all kinds of features are treated as generalized points and incorporated 

into extended collinearity equations (Zhang, et al, 2008). The collinear condition is applied 

in generalized point photogrammetry to match straight lines. 
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3.1.3 Sensor invariant features: Schenk and Csatho (2002)fused aerial images with LiDAR 

data to obtain better scene description of topography. This method utilizes the sensor 

invariant features found in both data sets at the registration stage. Such features correspond 

to the same object space phenomena, for example breaklines and surface patches. Matched 

sensor invariant features have been used to establish a common reference frame. Feature-

level fusion has been performed with sensor specific features that are related to surface 

characteristics.  

3.1.4 Building roofs: Building roofs are frequently used for optical images and LiDAR data 

registration as building roofs are linear features and available in both data sets. A method 

for optical images and LiDAR data registration has been proposed by Kwak et al., (2006) 

which uses centroids of plane roof surfaces as control information. This research was done 

on scenes where roofs are plane. The centroids of the plane roofs were extracted from the 

optical image using Canny edge detector. Then, Local Maximum Filter was used to extract 

centroids of the plane roofs from the LiDAR data. The extracted centroids from the LiDAR 

data were used as control information to compute exterior orientation parameters of optical 

(aerial) imagery. For verification purposes, exterior parameters were computed using GCPs 

(Ground Control Points) and the accuracy of registration is evaluated. This research shows 

that the centroid of a building roof is a useful source of control information.   

         Shorter and Kasparis (2008) were proposed a registration method which uses building 

roofs resent in optical image and LiDAR data. In this method, first, buildings present in an 

optical image and LiDAR data were detected. Then, the LiDAR data was interpolated to a 

fixed point spacing (DSM) to produce a binary building mask. In the binary building mask 

image, the bright pixels correspond to buildings and dark pixels to everything else. In the 
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next step, buildings from the optical image were detected and then the binary building mask 

was generated. The 2-D Fourier transform and 2-D log polar Fourier transform of both 

images were computed. The computed 2-D Fourier transforms and phases of the log polar 

2-D Fourier transforms of the optical image  and LiDAR data were used to compute  

parameters for translation, rotation and scaling geometric transformations (Reddey et al. 

1996). The computed transformation parameters were then used to register optical images 

and LiDAR data.  

3.1.5 Displacement correction method: A two-step displacement correction method for 

LiDAR point cloud and aerial images registration is proposed by Wu et al. (2010). This is 

a linear registration approach for LiDAR data and aerial images registration without using 

orientation parameters. Pre-processing is performed on LiDAR data to classify the point 

cloud into ground-points, building points, and above ground points. These classified 

LiDAR point clouds are used in two displacement correction steps to select control points 

for the registration. These two displacements corrections are tilt displacement corrections 

and height displacement corrections. The tilt displacement is defined as displacement 

caused by the non-parallelity of the image plane and the datum plane in the object space. 

An algorithm has been developed to remove tilt displacement which creates a functional 

relationship to map the datum plane to the image plane. The height displacement correction 

algorithm has been developed to remove the displacement caused by the perspective 

geometry of the camera and the height difference of each LiDAR point relative to the datum 

plane. The control points are selected manually in the LiDAR point cloud and aerial image 

respectively. The control points are divided into two groups; one group is ground points 

which are used for tilt displacement correction. Another type of control points are object 
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points. Object points are mainly roof corners, which are used for height displacement 

correction.  

3.1.6 Summary: As per the above discussions, it has been investigated that the feature-

based registration method is relatively well suited for optical images and LiDAR data as 

these data sets contains enough distinctive and easily detectable objects required for 

registration. Registration of optical images and LiDAR data has been often performed by 

using building roofs as control information; however, the use of roof as control information 

is limited by the fact that many natural scenes do not contain buildings. Mostly remote 

sensing data contains both manmade objects such as buildings, roads, etc. and natural 

objects such as rivers, forests, etc. The feature-based registration methods are not very 

effective for the natural settings. Furthermore, the main problem with feature based 

registration is that the optical image and LIDAR data often capture different feature 

characteristics that make feature-based techniques less effective. A two-step displacement 

correction algorithm for optical image and LiDAR data registration without using 

orientation parameters proposed by Wu et al. (2010) have achieved the same accuracy level 

as the traditional photogrammetric space resection algorithm. However, the problem 

associated with this approach is that the selections of control points are manual. The 

advantages and limitations of feature based algorithms are discussed in Table 1. 
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Table 1 Advantages and limitations of feature-based algorithms 

Category Advantages Limitations 

Corners • Uniqueness and high 

precision in their 

localization 

• Suitable for urban 

environment 

• Fast computation 

• Same corners may not be 

present in optical images and 

LiDAR data 

• Not suitable for natural 

environment 

 

Straight lines • Can be reliably, accurately 

and automatically extracted 

from both optical image and 

LiDAR data 

• Suitable for urban 

environment 

• Need overlapping optical 

images to generated 3-D 

model 

• Not suitable for natural 

environment 

Sensor 

invariant 

features  

• Breaklines and surface 

patches are common in 

optical images and  LiDAR  

data 

• Suitable for both urban and 

natural environment 

• Need stereopair aerial  images 

to orient aerial images with 

LiDAR  data 

• Computationally expensive 

Building roofs • Suitable for urban 

environment 

• Excellent source of  

information for control 

points 

• Same building structures may 

not be present in optical 

images and LiDAR data 

• Performance is poor if 

building roofs are complex 

• Not suitable for natural 

environment  

Displacement 

correction 

method  

• Better registration accuracy  

• There is no need of 

orientation parameters 

• Manual selection of control 

points from optical images 

and LiDAR data 

• Not suitable for natural 

environment  

 

3.2 Mutual information based registration 

As discussed in aforesaid registration methods, the majority of feature based registration 

methods utilizes only one type of features. However, as characteristics of optical images 
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and LiDAR data are very different and many features available in one data set may not be 

available in others, registration using single features does not produce accurate registration 

results. To overcome this problem, statistical and information-theoretic methods have been 

extensively used for multi-modal image registration. This method is called mutual 

information (MI) registration, which provides a means to measure statistical dependence 

between two random variables or the amount of information that one variable contains 

about other. The basic concept behind the use of MI for registering images is that MI 

(similarity matrix) calculated from the two images will reach its maximum MI when the 

images are perfectly geometrically aligned (Viola and Wells, 1997). A MI based approach 

to register optical images with LiDAR data has also been proposed by Mastin et al, (2009). 

This approach evaluates registration statistics in the 2-D image plane via projection of 

LiDAR features within the constraints of a camera model for comparison with the image 

features. MI based registration methods seek the camera matrix that maximizes the MI 

between the distribution of image features and projected LiDAR features.  

     MI is defined in terms of entropies of the optical image features, LiDAR data features 

and their joint entropy (Mastin et al., 2009): 

𝐼(𝑢; 𝑣𝑇) = 𝐻(𝑢) + 𝐻(𝑣𝑇) − 𝐻(𝑢, 𝑣𝑇)               (1) 

where u is the features in an optical image and vT  is the features in projected LiDAR data 

in 2-D space. 

    The entropy of optical image features remains constant and the entropy of the LiDAR 

features remains approximately constant. The registration algorithm discussed in Mastin et 

al. (2009) renders 3-D LiDAR data points onto the optical image plane for evaluating 

statistics. The three different methods for evaluating MI between optical image and 
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projected LiDAR data have been proposed. The first method simply uses the mutual 

information between elevation in the LiDAR point cloud and luminance in the optical 

image. The point cloud is rendered with height intensities, where the brighter point 

indicates a higher elevation. Only image pixels that have corresponding projected LiDAR 

points are used for calculating registration statistics. The reason for doing this is that the 

visual appearance of urban scenes tends to vary structurally by height for architectural 

regions. Also, there is measurable dependence between the optical appearance and the 

measured LiDAR height. A scene shown by both modalities is shown in Figure 2(a) and 

Figure 2(b). The second method uses the mutual information between luminance in the 

optical image and intensity values in the LiDAR point cloud. A LiDAR intensity image is 

shown in Figure 2 (c). The walkway between the buildings can easily be seen in the LiDAR 

intensity image. Finally, the third method calculates entropy among optical image 

luminance, LiDAR elevation and LiDAR intensity values. It is assumed that the LiDAR 

intensity image is statistically independent of the LiDAR elevation image. This leads to the 

following joint entropy: 

𝑯(𝒖, 𝒗𝒆, 𝒗𝒊) = 𝑯(𝒖, 𝒗𝒆) + 𝑯(𝒖, 𝒗𝒊)  (2) 

where u is the image luminance, ve is the LiDAR elevation, and vi is the LiDAR intensity 

values. 

    Based on the joint entropy the registration statistics is calculated. The oblique aerial 

photographs are used in this research since this research is aimed to produce 3-D models 

of urban scenes. 
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Figure 2 Detail of optical and LiDAR data. Note: (a) Shows an optical image of two buildings with 

pathways in between, (b) shows the registered LiDAR data set of the same scene with intensity encoded, 

while (c) shows the LiDAR data with the Pdet attribute.  Courtesy: (Mastin et a., 2009), Computer 

Vision and Pattern Recognition, CVPR 200, IEEE Conference. 

 

3.2.1 Summary: From the MI based registration methods, it can be concluded that the 

mutual information based methods are better than the feature based methods as they include 
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different features at the same time. The mutual information based registration method 

proposed by Mastin et al. (2009) has been achieved using 3D-2D rendering of height and 

probability of detection attributes of the LiDAR system. The registration accuracy is shown 

on average to be 90% when both LiDAR elevation and a LiDAR intensity images are used 

in registration. The registration accuracy is slightly less when only LiDAR elevation image 

is used which shows that the use of a LiDAR intensity image can improve registration 

accuracy. The mutual based registration methods have shown their effectiveness for urban 

scenes; however, it is ineffective for natural scenes as information-theoretic methods 

cannot be applied to natural scenes. 

3.3 Frequency based registration 

Frequency based methods have been frequently used in optical image registration (Castro 

and Morandi, 1987;, Reddy and Chatterji, 1996;  Zavorin and Moigne, 2005). Frequency 

based methods use phase to determine the alignment between two images. One of the 

popular frequency based method is phase correlation, which has been extended to handle 

geometric distortions such as rotation and scaling (Reddy and Chatterji, 1996). These 

frequency based methods cannot be applied directly to register optical images and LiDAR 

data due to differences in data characteristics. An improved version of the frequency based 

method to register optical images and LiDAR data has been developed by Wong and 

Orchard (2008). In this proposed algorithm, the control points are extracted only from an 

optical image. To extract control points, this algorithm applies local normalization on an 

optical image to compensate for non-uniformity in image illumination and contrast. Then 

a modified Harris corner detector is applied (Noble, 1980). Only the strongest control 

points are selected based on threshold values. Once control points from optical image are 
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detected, an exhaustive region correspondence search algorithm is applied to find the 

optimal correspondence between regions from an optical image to a LiDAR image. Fourier 

transform (FFT) (Cooley and Tukey, 1965) has been used to reduce the cost of an 

exhaustive search. The problem of different intensity image characteristics of optical and 

LiDAR images has been solved through an integrated local intensity mapping 

transformation optimization process. 

 
Figure 3: Final set of detected control points (as indicated by crosses). (Left) Optical image. (Right) 

LiDAR image.  Note: This Figure shows the effectiveness of the methodology developed by Wong and 

Orchard [13] in control point detection. Courtesy: (Wong and Orchard 2008), IEEE transactions on 

Geoscience and Remote Sensing. 

     Wong and Orchard (2008) used the 4th random sample consensus (RANSAC) 

algorithm to remove incorrect control-point pairs to improve registration process. A final 

set of control points in the optical and the LiDAR intensity image are shown in Figure 3. 
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The method proposed by Wong and Orchard (2008) determines the image transformation 

model and estimates the transformation parameters from the initial sample of control-

points. This method calculates close values of transformation parameters (e.g. sift, rotation, 

and scale) for the corresponding control-points. 

3.3.1 Summary: The frequency based method used for optical image and LiDAR data 

registration uses only LiDAR intensity images which contain less information about the 

topography as compared to LiDAR elevation images. A LiDAR intensity image can be 

used to improve registration accuracy; however, using only LiDAR intensity images for 

registration purposes is not enough to produce accurate registration results. The registration 

method produced by Wong and Orchard (2008) has introduced the region correspondence 

search that uses Fourier transform (FFT) (Cooley and Tukey 1965) to reduce the cost of an 

exhaustive search. Wong and Orchard (2008) claims that the developed methodology for 

optical images and LiDAR data registration produces good level of accuracy under various 

difficult optical and LiDAR image pairs. Wong and Orchard (2008) have used 

orthorectified low-resolution optical images to test the developed algorithms; however, 

today very high-resolution satellite imagery is available which is more useful for various 

remote sensing applications. 

3.4. Salient-point based registration 

The optical image and LiDAR data registration techniques discussed in the above section 

are mostly suitable for man-made settlements and are not well suitable for the natural 

scenes where building, roads, etc. are not present. Considering the general type of features 

present in remote sensing data a salient point approach with combination of multiscale 

image analysis (Zheng et al., 1999) is helpful to improve overall registration accuracy. The 
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general overview of a salient-point detector in the context of image matching is given in 

(Sebe, 2003; Lindeberg, 1998). Salient points in images refer to image locations with 

distinctive features providing discrimination between objects of interest and the 

background (Palenichka and Zaremba, 2010). A salient-point detector is a visual operator 

used to find image locations or regions containing object of interests (Kadir and Brady, 

2001;  Itti, et al., 1998; Reisfeld, et al.,  1995; Tagare et al., 2001; Lowe 2004, Harris and 

Stephens, 1998). A salient-point visual operator can detect various types of salient features 

such as corners, lines, junctions, intensity blobs, and homogenous regions (Zheng et al., 

1999; Itti et al., 1998; Alhichri and Kamel, 2003; Palenichka and Zaremba 2005). 

Although, these techniques have proven their effectiveness for control-point extraction, 

there are, however, many weaknesses (Palenichka and Zaremba, 2010). Feature extraction 

and salient point detection using these techniques gives poor results at a large scale during 

image analysis.  Irrelevant sharp edges may become more highlighted than salient regions 

and corners (Lindeberg, 1998; Kadir and Brady, 2001; Lowe, 2004). Difficulties in salient-

points detection appear when edges in images are not sharp or corrupted by noise.  

     To overcome the aforesaid shortcomings (Palenichka and Zaremba, 2010) proposed a 

new method of control point extraction using a salient visual operator. The purposed 

solution was designed with the intention to register optical images and LiDAR data 

automatically with high accuracy. The development of control point extraction schemes 

starts with an extraction of image fragments which satisfy given requirements for intensity 

and shape features (local features). The centers of these image fragments were considered 

as control points.  The control point extraction was realized using the concept of multiscale 

salient image discs (SIDs). The multiscale SID concept is an extension of a salient point 
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method of feature extraction for multiscale high-contrast homogenous regions (Kadir and 

Brady, 2001; Itti and Niebur, 1998).  A SID is defined (Palenichka and Zaremba ,2010) as 

a circular image fragment of a variable diameter, which is inscribed into a homogeneous 

region (i.e., is tangent to the background in at least two points) and has the local maximum 

of contrast-to-homogeneity ratio.  Three SID image descriptors were introduced: 1) planar 

pose characteristics (e.g. center coordinates, local scale, and local orientation); 2) planar 

shape descriptors; and 3) image intensity descriptors. The control points selected are the 

centers of those SIDs.  

         In the approach of Palenichka and Zaremba (2010), a multiscale isotropic matched 

filtering (MIMF) was developed to effectively identify candidate SID positions. MIMF 

was used to extract SIDs from images in a way that is invariant to translation, scale and 

rotation. The MIMF operator was originally developed by Palenichka and Zaremba (2005) 

to detect individual trees in LiDAR images. This MIMF operator was modified to detect 

SIDs both from optical images and LiDAR data. This operator does not require pre-

segmentation images.  The MIMF operator produces two sets of detected control points 

from optical images and LiDAR data.       

     Intersection matching distance (IMD) algorithm was developed to establish pair wise 

correspondence between two sets of extracted SIDs. This algorithm is based on the 

minimization of a dissimilarity measures (i.e. a distance between two sets of descriptor 

vectors) over all possible subsets of control point SIDs detected from optical image and 

LiDAR data. 
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Figure 4: Example of a heterogeneous image registration (Ottawa test area). (a) A LiDAR height 

image. (b) A rotated and shifted panchromatic image. (c) SID extraction from a LiDAR image. (d) SID 

extraction from a panchromatic image. (e) An image registration result. Courtesy: (Palenichka and 

Zaremba, 2010) IEEE transactions on Geosciences and Remote Sensing. 
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     Experiments of the developed algorithms were done using Quickbird imagery and 

LiDAR generated DSM images. Optical images and LiDAR data for the forest and urban 

areas were registered to show the effectiveness of the developed algorithm. The 

performance of the SID extraction is evaluated by the receiver operating characteristics 

(ROC) method.  The similarity transformation mapping method was used to estimate 

transformation models using SIDs pair correspondence.  Figure 4 shows the registration 

result with four quadrants: two diagonal quadrants from the LiDAR image and other two 

from the transformed optical image. 

3.4.1 Summary: The multiscale version of a salient point approach is suitable when 

combining optical images with LiDAR data as both data sets may have different resolution. 

This technique facilitates automatic selection of multiple control points even for images of 

natural scenes. Moreover, multitude of control points with their relative location enhances 

the accuracy of registration. Location saliency ensures the uniqueness of control points in 

images which is important for control point extraction. The old saliency based methods 

have problems: a lack of explicit saliency conditions, poor results on feature extraction, 

and a high computational cost. The saliency based approach proposed by Palenichka and 

Zaremba (2010) to register optical images with LiDAR data aims to overcome these 

problems of saliency based methods. This approach automatically extracts control points 

from optical images and LiDAR data using transformation-invariant detection of image 

discs (SIDs). Pair-wise correspondence between two sets of extracted SIDs is determined 

by the calculation of the IMD. Finally, registration of optical images and LiDAR data is 

performed using a similarity transformation model. This technique has shown good 

accuracy in control point extraction from both optical images and LiDAR data. Also, the 
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registration results are relatively good particularly for natural scenes. However, the 

problem of relief displacement, which is apparently present in HR imagery, has not been 

addressed. Moreover, the developed technique is complex and is computationally 

expensive thus difficult to implement for real world applications.  

 

3.5 Analysis of the advantages and limitations of different approaches 

     Many research works have been done on accurate registration of optical images with 

LiDAR data since integration of these two data sets is important for various remote sensing 

applications. In conclusion advantages and disadvantages of existing methods to register 

optical images with LiDAR data are listed in the Table-2 and discussed as follows. 

3.5.1 Feature-based methods: Feature-based methods have been considered effective for 

the alignment of optical images with LiDAR data as optical and LiDAR sensors capture 

distinguishable features. Feature-based methods have been widely used for image-to- 

image registration. The feature-based methods have been modified to register optical 

images and LiDAR data. However, the main problem with feature based registration is that 

the optical images and LIDAR data often capture different feature characteristics that make 

feature-based techniques less effective. Also, the majority of feature based registration 

methods utilizes only one type of features. Furthermore, mostly remote sensing data 

contains both manmade and natural objects such as buildings, roads, and rivers, forests 

respectively. The feature-based methods are less effective for the regions where natural 

objects (river, lakes, forest, etc.) are present.  
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Table 2: Advantages and limitations of optical images and LiDAR data registration methods. 

Category Advantages Limitations 

Feature-based 

methods  

• Distinguishable features are 

available in optical images 

and LiDAR data 

• Suitable for urban 

environment 

• Fast computation 

 

• Optical images and LIDAR 

data often capture different 

feature characteristics  

• Not suitable for natural 

environment 

 

Mutual 

information 

based methods 

• It includes different features 

at the same time 

• Suitable for urban 

environment 

• Not suitable for natural 

environment 

Frequency-

based methods 

• Fast computation • Uses only LiDAR intensity 

images  

• Low registration accuracy 

Salient point 

based methods 

• Suitable for urban and 

natural environment 

• Better registration accuracy  

• Computationally expensive  

• Do not consider relief 

displacement present in HR 

imagery 

 

 

 

3.5.2 Mutual information (MI) based methods: The methodology developed by Mastin et 

al. (2009)[8] to register optical images and LiDAR data shows that the MI-based methods 

are better  compared to the feature-based methods as it includes different features at the 

same time. The registration accuracy was shown on average to be 90% when both LiDAR 
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elevation and LiDAR intensity images are used in registration. The mutual based 

registration has shown its effectiveness for the urban scenes, however, it is ineffective for 

the natural scenes as information-theoretic methods cannot be applied to natural scenes. 

3.5.3 Frequency-based methods: Most of the frequency based method used for optical 

images and LiDAR data registration uses only intensity images of LiDAR which contain 

less information about the topography compared to LiDAR elevation images. Also, the 

nature of optical images and LiDAR intensity images are very different in nature. The 

LiDAR intensity images can be used to improve registration accuracy; however, using only 

LiDAR intensity images for registration purpose is not enough to produce accurate 

registration result.  

3.5.4 Salient point based methods: A salient point approach with a combination of 

multiscale image analysis suggested by Palenichka and Zaremba (2010) has shown 

relatively better result than the earlier registration techniques particularly for natural 

scenes. However, the problem of relief displacement present in HR optical images has not 

been addressed. Moreover, this technique includes complex algorithms which are 

computationally expensive and hence difficult to implement for real world applications. 

 

4. Conclusion 

Optical images and LiDAR data registration is a prerequisite to utilize the complementary 

characteristics of both data sets. Accurate registration between optical image and LiDAR 

data is vital for many remote sensing applications such as; feature extraction, image 

classification, 3D city modelling, and canopy modelling. This paper did a survey of the 

classical and up-to-date registration methods developed to register optical images and 
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LiDAR data. The registration methods are grouped into different categories according to 

the nature of their calculation principles. Although many methods have been developed in 

the last decade for the registration of optical image and LiDAR data, however:   

• In spite of different characteristics of optical images and LiDAR data, many 

methods are still using the previously developed algorithms for image-to-image 

registration.  

• Automatic and accurate registration of these data sets still remains an open 

problem.  

• No techniques have been found that can register optical images and LiDAR data 

automatically with the required accuracy and efficiency for practical applications. 

 

5. Future outlook 

As per the review of the existing registration methods, it has been found that the use of a 

multiscale saliency based approach is best suited to detect control points from both data 

sets. The interest point matching algorithm (Xiong and Zhang, 2009), which provide 

accurate and efficient matching of image control points in optical images may have 

potential to be extended to match detected control points from optical images and LiDAR 

data. The problem of relief displacement of HR imagery is another issue for accurate 

registration between optical image and LiDAR data. It is also important to incorporate 

sensor information of optical and LiDAR sensors to solve the relief displacement problem.  

     To achieve the goal of automatic and accurate registration of optical images and LiDAR 

data, it is worth to explore the appropriate algorithms from existing registration methods 

and develop new algorithms.   
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