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ABSTRACT 

Timely and accurate prediction of flood inundation extent and potential negative 

impacts and consequences is fundamental for the sustainable development of a given 

region and allows decision makers and the local community to understand their exposure 

and vulnerability. Complex computer models exist for flood risk assessment and while 

technologically sophisticated, these programs are intended, first of all, for use by a small 

number of technical and scientific experts and require considerable processing time and 

extensive inputs. These existing solutions are generally not well suited for flood 

prediction in near real-time and often exceed the data available for any given community. 

This research developed standardized methods, adapted into user-friendly tools which 

accept limited user input, are based on hydrologic principles and processes, widely 

accepted risk computation methods and leverage open data. The developed flood 

mapping approaches access, and through a novel data fusion method, create a better 

quality digital elevation model (DEM) from multiple open source elevation datasets. This 

fused DEM is combined with other open source data (e.g., IDF curves, river flow data, 

watershed boundaries, etc.) to generate a flood inundation surface through two methods: 

(i) a 0D bathtub model and (ii) a hybrid 1D/2D raster cell storage approach. The 0D 

model ignores flow rates and changes over time, producing a grid of the maximum spatial 

extent and depth, calculated as the difference between the terrain elevation and the 

computed water surface. The hybrid model solves 1D kinematic wave approximation of 

shallow water equations in the channel and treats the floodplain as 2D flooding storage 

cells. Water depths from the flood grid are combined with local inventory data (e.g., 

building structural type, occupancy, valuation, height of the first floor, etc.) to compute 
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exposure and damage estimates in either a user friendly MS Office application or a web-

based API. The developed methods and user-friendly tools allow non-experts the ability 

to rapidly generate their own flood inundation scenario on demand and assess risk, thus 

minimizing the gap between the existing sophisticated tools, designed for scientists and 

engineers, and community needs in order to support informed emergency response and 

mitigation planning. 
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1. Introduction 

Every year, disastrous climatological and geologic hazards take place in Canada 

and across the globe [Nastev and Todorov, 2013]. In recent years, there is a trend of 

increased damages resulting from natural disasters, specifically floods. In New 

Brunswick, over 70 floods have been recorded since the 1700s, with a single event in 

2008 causing an estimated $23 million dollars in damages [Public Safety Canada, 2014]. 

The costliest natural disaster on record in Canada is the June 2013 flood in southern 

Alberta, with reported damages exceeding $6 billion dollars [Environment Canada, 

2013]. A number of factors have been identified which contribute to increasing flood 

damages, including: population growth, increased urbanization in flood-prone areas and 

the changing climate [Jongman et al., 2012; de Moel and Aerts, 2011; UNISDR, 2011]. 

As such, government officials, GIS specialists, emergency managers, and first responders 

look for tools to assess risk, identify vulnerable communities, and develop mitigation 

strategies and emergency response plans [Neighbors et al., 2013].  

Through the use of computer models which simulate hazards and compute exposure 

one can evaluate the cost effectiveness of mitigation measures, optimize investments, and 

enable insurance companies, municipalities and residents to prepare for disasters [Apel et 

al., 2009; de Moel and Aerts, 2011]. A limitation of existing computer models is the 

requirement of highly trained personnel to prepare the necessary input (hazard, inventory 

of the built environment, and vulnerabilities) and analyze model outputs. Of the 

watershed modelling and risk assessment applications available today, few are capable of 

non-expert implementation [Al-Sabhan et al., 2003]. In addition, the data requirements 

and data manipulation required to run these complex models often exceed the available 
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data as well as the technical capabilities of the broader non-expert safety community 

[Nastev et al., 2015]. These existing models therefore leave a gap between what is needed 

and when by decision makers [Leskens et al., 2014]. 

This PhD dissertation presents developed standardized methods and tools for risk 

assessment which fill in the current gap between rapid, user-friendly tools and 

sophisticated tools designed for use by scientists and engineers, with respect to flood risk 

analysis. This research commenced with an identification of major influencing 

parameters and data used to compute flood hazard and assess community vulnerability. 

From these results, the key components were identified and applications which compute 

flood hazard and estimate exposure and potential damages were developed, with a 

primary impetus on leveraging open source data and minimal user input while 

incorporating established equations and processes. This is an article-based PhD 

dissertation, which is presented and supported through the following chapters: 

 

Paper 1 (Peer Reviewed)  

McGrath, H., Stefanakis, E., and Nastev, M. (2015). “Sensitivity analysis of flood 

damage estimates: A case study in Fredericton, New Brunswick.” International 

Journal of Disaster Risk Reduction, 14, 379-387. doi:10.1016/j.ijdrr.2015.09.003. 

 

Paper 2 (Peer Reviewed) 

McGrath, H., Stefanakis, E., and Nastev, M. (2016). “Rapid Risk Evaluation (ER2) 

Using MS Excel Spreadsheet: a Case Study of Fredericton (New Brunswick, 

Canada).” International Society for Photogrammetry and Remote Sensing Annals 

of Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 

III-8, 27-34. 

 

Paper 3 (Peer Reviewed) 

McGrath, H., Stefanakis, E., and Nastev, M. (2016). “DEM Fusion of Elevation REST 

API Data in Support of Rapid Flood Modelling.” Geomatica, Vol. 70, No. 4 

 

Paper 4 (Under Review) 
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McGrath, H., Stefanakis, E., and Nastev, M. (2017). Online Reduced Complexity Flood 

Modelling: Leveraging Open Data and Limited User Input  

 

 

1.1 Dissertation Structure 

This research is presented as a six chapter, article-based dissertation, Figure 1.1. 

Chapter 1 provides an introduction to and description of the motivation for this research. 

The next four chapters (Chapter 2 to Chapter 5) present peer reviewed or under review, at 

the moment of drafting of the thesis, journal papers, while Chapter 6 provides a summary 

and conclusion of the presented research and contribution. In Chapters 2 through 5, the 

first author conducted the primary research while the co-authors provided auxiliary 

advice on content and structure. 

 

 

Figure 1.1 Dissertation structure 

 

1.2 Background 

Riverine flood risk analysis is the process of measuring the likelihood of the 

negative impacts and involves the combination of: flood hazard model, inventory model 
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of the exposed built environment, and a selection of respective vulnerability functions 

[Nastev and Todorov, 2013], Figure 1.2. While sophisticated software solutions exist, 

they are typically based on desktop solutions, requiring commercial programs, extensive 

processing time, sizable inputs, and expert knowledge to run and interpret results 

[Leskens et al., 2014]. As such, they are not well adapted to respond to the needs of the 

non-expert public safety community to fully understand their own exposure (value of 

assets at risk) and vulnerability to inundations. On the other hand, timely and accurate 

prediction of inundation extent and potential impacts and consequences is fundamental 

for the sustainable development of a given region and provides valuable information 

necessary for understanding respective exposure and vulnerability [Scawthorn et al., 

2006]. Currently, no application is suitable or available specifically for interventions 

where flooding is imminent or in progress [Poulin et al., 2012]. 

 

 

Figure 1.2 Schematic representation of hazards, inventory, vulnerability and risks. 

Source: [Nastev and Todorov, 2013] 
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1.2.1 Flood Modelling  

Modelling urban flooding is a complex process and a vast amount of research and 

literature exist addressing different modelling and simulation aspects [Kulkarni et al., 

2014]. Most modelling estimations of design flow are based on methods designed more 

than 20 years ago and there is ambiguity in model output depending on the input data, 

type of model selected, and description of river geometry [Cook and Merwade, 2009]. 

Depth of submersion, flow velocity, sediment load, and duration of flooding are all 

parameters which contribute to flood hazard, however, access to this data is often limited 

or non-existent [Poulin et al., 2012].  

Hydraulic models are classified through different forms or numerical methods, or 

by their dimensionality. There are six common approaches: 0D, 1D, 1D+, 2D-, 2D, 2D+, 

and 3D [Pechlivanidis et al., 2011]. The 0D model involves no physical laws or 

processes, the flood surface is simply calculated as the difference between the terrain and 

the modeled water surface, where the water surface may be flat or an inclined plane. 1D 

models, as found in HEC-RAS (U.S. Army Corps of Engineers (USACE), 

http://www.hec.usace.army.mil/software/hec-ras/) and Mike 11 (DHI, 

http://www.mikebydhi.com/products/mike-11), are based on 1D solutions of Saint 

Venant equations and simulate floodplain flow as part of the 1D channel with an 

assumption that flow is in the same direction of the main channel [U.S. Army Corps of 

Engineers, 2010]. The 1D+ approach abandons the assumption of floodplain flow in the 

same direction and models the floodplain as storage reservoirs, thereby taking a storage 

cell approach in the floodplain flow simulation. While there are obvious limitations to the 

1D approach, case studies in narrow floodplains (where the width of the floodplain is less 
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than three times the width of main channel) with no separation factors (e.g.: 

embankments or levees) of HEC-RAS and Mike11 have been validated and show 

reasonable results [Pechlivanidis et al., 2011].  

2D models of flood inundation are derived from the dynamic 2D water flow 

equations (e.g.: HEC-RAS-2D, Mike 21, FLO-2D (www.flo-2d.com/), and ANUGA 

(open source, AU)) which describe flowing water in both longitudinal and lateral 

directions while assuming a hydrostatic pressure distribution. These fully dynamic 

models require considerable input and computation time and generally yield reliable 

results in urban environment [Pechlivanidis et al., 2011].  

3D models require significant computational power and specialized scientific and 

engineering expertise primarily found at universities and larger hydraulic laboratories 

[Haestad Methods, 2003]. Inputs to the 3D model include: velocities in the x, y, and z 

direction collected at nodes across the river, water quality and sediment samples. As well, 

these models can accommodate 3D hydrodynamics, salinity, and sediment transport 

conditions. 

Despite the advantages of sophisticated flood modelling applications, experience 

shows many of the existing models are of limited use in flood disaster management 

[Leskens et al., 2014]. A primary disadvantage of these applications is that necessary 

input data requirements often exceed available data [Al-Sabhan et al., 2003]. 

The best model is often the one which provides the end user the information 

required whilst using proxies or reasonably fitting the available data, as the processes 

necessary to include the best approximate historic/future events are still subject to 

considerable uncertainties [Bates and De Roo, 2000]. A popular alternative to save 

http://www.flo-2d.com/
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computation time without losing accuracy takes advantage of both the 1D river model 

and the 2D model for floodplain simulation. Increasing consensus in the literature 

indicates that the channel flow below bankfull depth can be adequately described by a 

simplified form of 1D Saint Venant equations [Hunter et al., 2007]; however, the 1D 

models have difficulties simulating field conditions when transferred to the floodplain. 

Coupling 1D channel flow with a 2D raster storage cell approximation for the floodplain 

has produced models which are computationally efficient and suited to adequately 

reproduce the hydrograph and inundation measurements simultaneously [Bates and De 

Roo, 2000; McMillan and Brasington, 2007]. Advantages of this solution are numerous, 

including: reliance on regular gridded digital elevation models to parameterize flows, 

quality of spatial predictions which are comparable to similar finite element codes, with 

much shorter runtimes. [Bates and De Roo, 2000; McMillan and Brasington, 2007].  

 

1.2.2 Vulnerability  

In the risk assessment process, vulnerability indicates the susceptibility to sustain a 

certain level of damage or loss [Nastev and Todorov, 2013]. Knowledge of vulnerability 

remains one of the biggest hurdles in flood risk assessment [Koks et al., 2015]. 

Traditionally, risk assessment studies include the physical vulnerability of structures to a 

certain flood hazard or assessing the risk to life through the assumption of homogenous 

vulnerability across the study region. 

The most common and internationally accepted method for assessment of urban 

flood damage is through the use of depth-damage curves or stage-damage curves [Plazak, 

1984; Prettenthaler et al., 2010]. Structure and contents damage resulting from flood 
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hazard are influenced by many factors; however, usually only building use and 

inundation depth are considered as damage-causing factors and included in the 

formulation of depth-damage curves [Merz et al., 2004]. Depth-damage curves relate 

water depth to estimates of damage to various types of infrastructure to estimate potential 

damage [Scawthorn et al., 2006]. Depth-damage curves, at a minimum, require two 

inputs, namely the occupancy classification of the structure and the depth of flooding 

(Figure 1.3). The output is an estimate of the damage, expressed generally as a 

percentage of the replacement cost. Depth-damage functions are developed separately for 

structural or load-bearing components; for contents (e.g.: interior furniture, art, 

appliances, etc.,); and for inventory in place (e.g.: commercial stock) [FEMA, 2010]. 

The suite of damage functions referenced in this research are extracted from Hazus, 

are termed ‘credibly weighted’, and considered regionally applicable [Scawthorn et al., 

2006]. Hazus is a GIS based quantitative risk assessment and decision support tool for 

natural hazard risk mitigation and emergency management [FEMA, 2010], developed in 

the U.S by the Federal Emergency Management Agency (FEMA) and adopted for use in 

Canada (Nastev and Todorov, 2013). These depth-damage curves are based on the best 

available damage data from floods in the U.S. and represent more than 20 years of losses 

They were derived from data collected and analysed by the Federal Insurance 

Administration (FIA) and surveys completed by the U.S. Army Corps of Engineers 

(USACE) on U.S. infrastructure [FEMA, 2012].  
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Figure 1.3 Depth-damage curves for select building occupancy types 

  

1.2.3 Consequences 

 Negative consequences are computed by combining the flood hazard and the 

vulnerability of the inventory data of the exposed assets. Inventory data includes detailed 

information regarding, for example, infrastructure, buildings, and population. There is a 

wide variety of risk assessment models in use internationally, differing substantially in 

their approaches and estimates of economic costs [Jongman et al., 2012].  

 Direct losses occur as result of direct physical contact of the flood water with 

humans, properties, or other objects, while indirect losses represent those which are 

induced by flood impact and may occur (in time or space) outside of the flood event 

[Merz et al., 2004]. Direct economic losses include calculations of repair and 
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construction costs resulting from the flood event, whereas indirect economic losses can 

be related to lost jobs, business interruption, increased transportation costs, etc. [FEMA, 

2010]. For this study, it was the calculation of the direct economic losses which were of 

primary interest in the development of the risk assessment tool referred to as Rapid Risk 

Evaluation (ER2) (Chapter 3).  

 ER2 is designed and implemented as described in Chapter 3 in an intuitive and easy 

to use MS Excel worksheet. To widen the scope and use of ER2 and allow easier access 

to local inventory data, the underlying calculations, tables and equations were re-used and 

implemented in a web-based API (hmcgrat1.ext.unb.ca/ER2_Online/Index.html). This 

API can be used as a web-page where a user individually adds buildings; however, the 

primary benefit of the API is the ability to programmatically formulate an “unclean 

URL”, for example from a web-mapping application. The request is posted to the host 

server and the returned result is exposure and estimated damages in a well formatted 

XML or JSON document. Variables in the GetDamages request for building-by-building 

processing include: building count (BC), building occupancy (BO), foundation type (FT), 

year built (YB), number of stories (ST), basement (BA), garage (GA), building quality 

(BQ) and water depth (WD). An example request and response is shown in Figure 1.4. 

 

 http://hmcgrat1.ext.unb.ca/ER2_Online/FloodRiskEvaluation?Request=GetDamage&amp;Fo

rmat=XML&amp;ID=1&amp;BC=1&amp;BO=RES1&amp;FT=0&amp;YB=1987&amp;ST=1&amp;BA=0&amp;

GA=0&amp;WD=2&amp;BQ=Average 

http://hmcgrat1.ext.unb.ca/ER2_Online/Index.html
http://hmcgrat1.ext.unb.ca/ER2_Online/FloodRiskEvaluation?Request=GetDamage&amp;Format=XML&amp;ID=1&amp;BC=1&amp;BO=RES1&amp;FT=0&amp;YB=1987&amp;ST=1&amp;BA=0&amp;GA=0&amp;WD=2&amp;BQ=Average
http://hmcgrat1.ext.unb.ca/ER2_Online/FloodRiskEvaluation?Request=GetDamage&amp;Format=XML&amp;ID=1&amp;BC=1&amp;BO=RES1&amp;FT=0&amp;YB=1987&amp;ST=1&amp;BA=0&amp;GA=0&amp;WD=2&amp;BQ=Average
http://hmcgrat1.ext.unb.ca/ER2_Online/FloodRiskEvaluation?Request=GetDamage&amp;Format=XML&amp;ID=1&amp;BC=1&amp;BO=RES1&amp;FT=0&amp;YB=1987&amp;ST=1&amp;BA=0&amp;GA=0&amp;WD=2&amp;BQ=Average
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Figure 1.4 Example XML request and response from ER2 API 

1.2.4 Existing solutions 

Flood risk assessment tools have been around for decades. However given 

technological advances in data collection, processing and modeling, these tools are 

undergoing modernization [Messner and Meyer, 2006]. These tools, which historically 

have been directed at planning for natural disaster response or developing flood insurance 

rate maps [FEMA, 2010], are increasingly being used in a broader range. Existing 

software applications include licensed, closed source, open access and open source 
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solutions, where open source refers to software in which the source code is available to 

the end user.  

In 2011, after researching existing applications which assess geohazard risks, the 

Public Safety Geoscience Program (PSG) of Natural Resources Canada (NRCan) made 

the decision that the U.S. Federal Emergency Management Agency (FEMA) Hazus 

MultiHazard program was one of the best practice methods and decided to adopt the 

program for the Canadian environment [Nastev and Todorov, 2013]. Both the earthquake 

and flood modules have been adapted for Canada. A limitation, however, of the Hazus-

Canada flood model is that the hydrology and hydraulic computation components have 

not been fully enabled. Instead, users must upload pre-computed flood hazard grids into 

the program in order to assess and visualize respective negative consequences. A further 

concern with the Canadian adaptation is that extensive re-development of Hazus was 

required. This began in 2011 when Hazus was compatible with Esri ArcMap 10.0. Since 

that time, FEMA has implemented major changes to the U.S. version, with respect to the 

underlying data structure, programming and ArcGIS compatibility. The Canadian version 

is now out of sync with the US version and compatible with an outdated version of 

ArcMap. Given that this solution only assesses risk and does not compute the flood 

hazard, there was uncertainty that additional funding for Hazus Canada flood model 

would be prudent. In the meantime, the support for the Canadian version has been phased 

out as considerable expense and time would be required to modernize it. 

In 2014, the World Bank reviewed open source and open access software packages 

from around the globe to understand the strengths and challenges of each [World Bank, 

2014]. A total of 82 programs covering all natural hazards were initially examined, with 
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the number being reduced to 31 programs after initial testing and review. A range of 

criteria was assessed with respect to these existing programs which offer combined flood 

hazard computation and risk assessment: 

 Access: open source, open access or licensed 

 Flood modeling capabilities 

 Data Inputs and outputs  

 Technical skill of user/ease of use 

 

Table 1.1 provides a summary of key software programs which made it to the top of their 

list, including two licensed programs, Cadyri and Mike11, not considered by the study. In 

terms of coding language, Python or Fortran are considered best practice; however C++ 

is also popular, as is Java for its fast computational abilities [World Bank, 2014]. A well-

presented and easy to interpret graphical user interface (GUI) is important to allow ease 

of use, which was found in InaSAFE. The World Bank [2014] found programs which 

require inventory data for the risk module should provide sample datasets available for 

download and release clear documentation noting structure and details of the required 

data. Many of the tested programs from Table 1.1 are extensions of, or plug into, popular 

GIS packages, such as: Esri’s ArcGIS (Cadyri, Hazus, and Mike11) or Quantum GIS 

(InaSAFE), while others, such as RiskScape and Kalypso have designed their own GIS 

platform and are therefore not reliant or limited by external software. Most of the 

applications, with respect to flood modeling, solve some version of the 1D Saint Venant 

equations, while the Cadyri application instead requires a minimum of two existing flood 

grids and uses linear regression to compute flood grids at user defined flow rates [Poulin 

et al., 2012]. 
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Table 1.1 Summary of select existing programs, partially adapted from World Bank [2014] report 

Name / 

Country  

License/ 

Language/ 

Dependency 

Flood Model Inputs/Outputs Risk Module Ease of use 
C

a
d

y
ri

 
(C

an
ad

a)
 

Licensed 

 

Python 
 

Requires: 
ArcGIS 

Yes.  

Computes new flood 

grid at user input 
discharge rate using 

linear regression 

Inputs: Minimum of 

two flood grids 

 
 

ArcGIS 

 

 python tools built into 
ArcGIS toolbox 

Moderate 

D
el

ft
 3

D
 

F
lo

w
 

(W
o

rl
d

w
id

e)
 Open Source 

 
(C++) 

Yes.  

3d flow takes all 
boundary phenomena 

into account 

unsteady flow using 
meteorological and 

tidal forcing  

Outputs: inundation 

depth, flow, and 
other hydrodynamic 

characteristics, 

including turbulence 
quantities 

External 

 
delft3d-wave or HIS-

SSM to view results 

Risk assessment 

difficult to use, 
require extensive 

data inputs 

H
a

zu
s 

 
(U

.S
.)

 

Open access 
 

Requires: 

ArcGIS 

Yes. (U.S. version) 
No. (Canadian 

version) 

 
Combination of 

hydraulic & 

hydrologic modelling 
confined to floodplain 

Inputs: included in 
program files or link 

to web to download 

DEM 
 

 

ArcGIS 
 

Depth-damage curves, 

a lognormal pdf vs. 
inundation depth is 

used. Social losses 

calculated via simple 
function 

Training available, 
well documented 

manuals. Designed 

for U.S. 
 

H
E

C
-R

A
S

 
(U

.S
.)
 

Open Access 

 
Fortran 

 

HEC-2 

Yes.  

1D steady flow, 1, 2D 
unsteady flow, 

sediment transport/ 

mobile bed, water 
temperature/ water 

quality  

Outputs: depth or 

duration grids, plots, 
rating curves, 

hydrographs, 

animations 

External 
 
Flood Impact Analysis 

(HEC-FIA) module 

Many tutorials, 

well documented 
manuals, only 

support for 

USACE  

In
a

S
A

F
E

 
(I

n
d
o

n
es

ia
) 

Open Source  

 
Python 

 

Requires: QGIS 

No. 

 
Hazard computed 

outside program.  

User input of 

exposure from 
shapefile or 

OpenStreetMaps 

QGIS 

 
Simple vulnerability 

functions to calculate 

output 

Well documented, 

simple GUI 
 

K
a

ly
p

so
  

(G
er

m
an

y
) 

Open Source 
 

Java 

Yes. 
Multi-module, 

hydrology, water level 

analysis, 1D/2D, flood 
risk determination 

Outputs: hazard 
inundation maps (2 – 

100years)  

 

External module 
 

Risk computed as 

damage function vs 
inundation depth or 

duration/frequency 

Wiki-style system 
and manual 

 

M
IK

E
1

1
 

(D
en

m
ar

k
) 

Licensed.  

 

AcrGIS for 
damage 

estimate 

Yes. 

1D & 2D. Simulate: 

flow and water level, 
quality, sediment 

transport 

Outputs include: 

water level and 

discharge, 
comparison maps, 

plan graphics, 

animated results 

ArcGIS 

 

Toolbox available for 
flood damage 

assessment integrates 

with ArcGIS 

Well documented, 

large number of 

features 

R
is

k
S

ca
p

e 
 

(N
ew

 Z
ea

la
n
d
) Open Access  

 

Java 

Yes. 
Computes flood 

hazard, easily import 

and analyze historic 
flood 

Outputs: velocity, 
inundation depth, 

ponding and 

inundation duration 

Integrated 
 

Empirical method to 

create loss 

Easy to use, well 
designed GUI. 

Software well 

documented. 
Designed for NZ 

S
o

b
ek

 

1
D

/2
D

 
(N

et
h
er

la
n
d

s)
 Open Source  

 

C++ 

Yes. 

1d/2d hydrodynamic 

modeling by solving 
flow equations on 1D 

network system & 2D 

horizontal grids 

Outputs: Flow 

velocity and 

inundation depth at 
different times 

External module 

 

Connect to other (e.g. 
HIS-SSM for 

casualties & damage) 

Simple to run and 

install 

Computationally 
efficient 
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While there are a number of presented applications in Table 1.1 they are designed for 

use, primarily, in the country of origin and may not easily translate to other regions. 

Many of the presented solutions require data inputs to solve (some version of) the Saint 

Venant equations which exceed those available for many Canadian watersheds. Most 

solutions require interfacing with 3rd party software or external module thus another 

software package is necessary to install, learn and maintain. No single solution offers full 

capabilities for near-real-time assessment of flood risk within a single easy to use 

program for easy adoption and use in Canada which may be run by non-expert users. 

 

1.3 Research Topic 

The primary goal of this research was to help end users from the public safety 

community run their own flood scenarios and prepare informed emergency response and 

long term mitigation plans. To this end, different methods were developed and 

programmed into user friendly tools which allow communities the ability to simulate 

their own flood hazard scenarios and assess respective risk in support of planning of 

emergency response and long term mitigation activities. A primary aim was leveraging 

the abundance of public domain and open source data as primary inputs for these tools. 

 

1.4 Problem Statement 

Timely and accurate prediction of flood inundation extent and potential negative 

impacts and consequences is fundamental for the sustainable development of a given 

region and provides valuable information necessary for understanding respective 

exposure and vulnerability. Existing solutions require considerable processing time, 
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extensive inputs, are not well suited for flood prediction in near real-time and/or user-

friendly, and often exceed the data available for any given community.  

 

1.5 Research Objectives 

The objective and original contribution of this research fills in the current gap 

between rapid, user-friendly tools and sophisticated tools, designed for scientists and 

engineers, in regards to flood risk assessment. The specific research objectives are as 

follows:  

 Determine the sensitivity of input data and/or parameters to the results of flood risk 

assessment 

 Implement a method of simply calculating loss, through leveraging existing building 

inventory data, depth-damage curves and published replacement costs 

 Develop a new method of DEM Fusion which requires no user input, to produce a 

better quality DEM from multiple REST API elevation data services 

 Develop an application capable of computing flood hazard, 0D and hybrid 1D/2D, 

requiring minimal user input, which can be run by a non-expert user and provides 

results accurate enough for mitigation planning and emergency response  

 

The developed standardized methods, based on these specific objectives, is 

comprised of rapid and easy to use tools based on limited user input, hydrologic 

principles and processes and accepted risk computation methods which leverage open 

source datasets. These modular tools form the basis of a flood risk assessment framework 

which will allow access to otherwise complex flood hazard scenarios and in-depth 
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knowledge of the community exposure and vulnerability to flood events to the non-expert 

public safety community. 

 

1.5.1 Future Combined Application 

By combining the developed tools into a single application, such as a web map, a 

user with limited expertise can simulate and visualize flood risk based on input via a 

series of intuitive drop-down menus. The proposed future web application illustrated in 

Figure 1.5, will first access the DEM fusion tool which extracts elevation data from 

multiple REST API services and fuses them together into a single, better quality DEM. 

Next, a flood inundation map is computed based on the user supplied details for a simple 

flood (0D) or rain event (hybrid 1D/2D). Finally, the potential consequences from the 

simulated event is computed and visualized by combining the embedded inventory data, 

the computed flood grid depth and the ER2 API, with the resulting data themed and 

overlaid on the map. 

 

Figure 1.5 Example of potential future combined framework web mapping application 
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1.6 Data and metrics 

The data resources which were accessed to test the specific research objectives 

include both open source data and public domain datasets, Table 1.2. Public domain data 

are data which are freely available to use without restrictions, sharing or modification 

limitations, while open data refers to those datasets which may include restrictions on 

use, licenses and/or copyright. 

The study area for all research was Fredericton, NB and/or Bathurst, NB. The flood 

scenarios referenced are the historic 2008 and 2005 floods in Fredericton and a potential 

4.5 m sea level rise in Bathurst, NB. 

Table 1.2 Summary of Datasets  

Data Type Source Location Metric Chapter 
Inventory  

(building type, 

occupancy, 

etc) 

Damage 

parameters 

Flood Grid 

Hazus Canada 

 

 

Hazus (U.S.) 

 

Government of New 

Brunswick, Dept. 

Environment and 

Local Government  

Fredericton Range and σ² of full 

and depreciated 

economic losses and 

Influence Factor in 

comparison to base 

case  

Chapter 2 

McGrath, H., 

Stefanakis, E., 

Nastev, M. [2015] 

 

Depth-Damage 

curves 

Hazus Canada Fredericton Statistical comparison 

to Hazus Canada results 
Chapter 3 

McGrath, H., 

Stefanakis, E., 

Nastev, M. [2016] 

Elevation Data  

(REST API 

Elevation 

Services) 

 

LiDAR 

Canadian Digital 

Elevation Model 

(CDEM), Google, and 

Bing 

LiDAR, City of 

Fredericton, City of 

Bathurst 

Fredericton, 

Bathurst, NB 

Statistical comparison 

to LiDAR (σ,µ, R2), 

FIT Measure 

Chapter 4 

McGrath, H., 

Stefanakis, E., 

Nastev, M. [2016] 

 

Elevation Data 

Hydrometric 

Data  

National 

Hydro 

Network 

(NHN) 

(as above) 

Government of 

Canada, Water Office 

GeoGratis, Natural 

Resources Canada 

Fredericton FIT Measure, profile 

comparison 
Chapter 5 

McGrath, H., 

Stefanakis, E., 

Nastev, M. [2017] 
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1.7  Chapter Summaries 

In Chapter 1, the motivation, objectives and structure of the research have been 

presented. Additionally, background information pertaining to how flood risk analysis is 

being computed by existing solutions have been introduced and their limitations 

described. 

Chapter 2 examines the sensitivity of parameters and data inputs to a flood risk 

analysis scenario. A baseline solution was generated by running Hazus Canada using the 

default values and the 2008 flood in Fredericton, NB. These default values were selected 

by the software provider on the presumption of regional similarities between Canadian 

provinces and U.S. states south of the border. To illustrate the sensitivity that can be 

associated to the selection of depth-damage function, flood level, and restoration duration 

and to identify their relative impacts on the resulting losses, the respective values were 

modified and the analysis re-run. Each modified parameter was isolated in the re-analysis 

to determine the relative impact on estimates of exposure and risk. 

Chapter 3 presents the developed Rapid Risk Evaluation (ER2) which runs loss 

assessment analyses in a MS Excel spreadsheet. User input is limited to a handful of 

intuitive drop-down menus utilized to describe the building type, age, occupancy and the 

expected water level. The application computes exposure and estimated economic losses 

related to the structure and the content of the building(s). 

DEMs are the primary input to flood inundation mapping. Chapter 4 tests the 

accuracy of open source REST Elevation API services to evaluate their accuracy and a 

novel fusion technique is developed which combines multiple DEMs to generate a better 

quality elevation dataset. The proposed fusion technique incorporates concepts of 
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clustering and inverse distance weighting (IDW). Three Canada wide elevation sources 

are included: Canadian Digital Elevation Model (CDEM), Google and Bing.  

Chapter 5 illustrates how public domain data can be leveraged and combined with 

physically based flood inundation models to compute flood hazard and how to optimize 

computations and generate flood model outputs in near-real-time by users with limited 

knowledge. Two flood models are explored: 0D bathtub model and a hybrid 1D/2D raster 

cell storage approach. In the former, user input is limited to a number of points and an 

associated water depth or data may be extracted from nearby river gauges. In the hybrid 

model user input includes four categories: (i) geographic location, (ii) rain event, (iii) 

local conditions, and (iv) average water depth which accept user input from a series of 

pre-populated drop-down menus. 

Chapter 6 presents the conclusions of this research. Included in this chapter are details 

pertaining to the assumptions and limitations of the proposed framework as well as 

suggestions for future research and exploration.  

By combining the tools developed in Chapter 3 through 5 a standardized method for 

flood risk assessment has been developed which minimizes the gap between what is 

needed (and when) by decision makers and the sophisticated tools designed for scientists 

and engineers currently available for flood risk assessment. Thus these tools help end 

users from the public safety community run their own flood scenarios and prepare 

informed emergency response and long term mitigation plans 
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2. Sensitivity Analysis of Flood Damage Estimates: A Case Study in 

Fredericton, New Brunswick1 

Abstract 

Recently, the U.S. FEMA’s standardized best-practice methodology Hazus for 

estimating potential losses from common natural hazards, including earthquakes, flood, 

and hurricanes has been adopted for use in Canada. Flood loss estimation relies on the 

combination of three components: flood level, inventory of the built environment, and 

pre-selected vulnerability parameters such as depth-damage functions, all of which have 

large associated uncertainties. Some of these parameters, such as occupancy schemes and 

vulnerabilities, have been carried over from the U.S. version on the presumption of 

regional similarities between Canadian provinces and states south of the border. Many of 

the uncertainties can be reduced by acquiring additional data or by improving the 

understanding of the physical processes. This paper presents results from a series of flood 

risk analyses to illustrate the sensitivity that can be associated to the depth-damage 

function, flood level, and restoration duration and to identify their relative impacts on the 

resulting losses. The city of Fredericton is chosen as the test case as it was subjected in 

2008 to flood water levels breaching 1.86 m above flood stage resulting in more than 680 

residents evacuated from their homes, and economic costs of more than $23 million. The 

loss results are expressed by the number of flooded residential buildings which varied 

between 579 and 623 and the range of replacement cost is $21 million. These results 

                                                 
1 Reprinted from International Journal of Disaster Risk Reduction, Volume 14, Part 4, H. McGrath, E. 

Stefanakis, M. Nastev, Sensitivity analysis of flood damage estimates: A case study in Fredericton, New 

Brunswick, Pages 379–387., Copyright (2015), with permission from Elsevier.  
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highlight the importance of proper selection of input parameters customized to the study 

area under consideration. 

 

2.1. Introduction 

Every year disastrous climatological and geological hazards take place in Canada 

and across the globe [Nastev and Todorov, 2013]. Of these natural disasters, flooding of 

river systems is the most frequent and costly natural disaster, affecting the majority of the 

worlds’ countries on a regular basis, and accounts for approximately one-third of total 

natural disasters related economic losses in Europe [de Moel and Aerts 2011; Jongman et 

al., 2012]. The costliest natural disaster in Canadian history, the southern Alberta flood in 

June of 2013, exceeds $6 billion Canadian dollars [Environment Canada, 2013]. In recent 

decades, the trend of increased damages resulting from flood events may be attributed to 

a number of factors including: population growth, increased urbanization in flood-prone 

areas and the changing climate [Jongman et al., 2012; de Moel and Aerts, 2011 Aerts et 

al., 2015; UNISDR, 2011]. 

Government officials, GIS specialists, emergency managers, and first responders 

look for tools to develop mitigation and recovery plans as well as preparedness and 

response procedures in anticipation of these natural disasters [Neighbors et al., 2013]. 

Timely and accurate prediction of potential losses is fundamental for the sustainable 

development of a given region and provides valuable information necessary for 

understanding of risks and creation and implementation of mitigation measures and post-

disaster emergency planning [Scawthorn et al., 2006]. Through the use of computer 

models which simulate hazards and compute risk we can evaluate the cost effectiveness 
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of mitigation measures, optimize investments, and enable insurance companies, 

municipalities and residents to prepare for disasters [Apel et al., 2009; de Moel and Aerts, 

2011]. 

Flood risk analysis involves the combination of three components: a probabilistic or 

deterministic flood hazard model, an inventory model of the built environment defining 

the characteristics of the exposed elements (structural type, occupancy category, content), 

and a selection of respective depth-damage functions [Apel et al., 2009; de Moel and 

Aerts 2011; Merz and Thieken, 2004]. Loss estimations include physical damage and 

direct and indirect social and economic losses. A direct loss occurs as a result of direct 

physical contact of the flood water with humans, property, or other objects, while indirect 

losses represent those that are induced by the direct impact, and may occur (in time or 

space) outside of the flood event [Merz et al., 2004]. Physical damage to buildings and 

certain transportation and essential facilities is estimated based on depth-damage 

functions which represent the relationship between inundation depth and percent damage 

[Plazak, 1984 and others]. For buildings, depth-damage functions are developed for 

structural or load-bearing components; for contents (e.g.: interior furniture, art, 

appliances, etc.,); and for inventory (e.g.: commercial stock and inventory) [FEMA, 

2009]. These three types of damage functions are unique for a given building structural 

type and occupancy classification (e.g.: residential, commercial, industrial, etc.) The 

reason behind this is that the underlying structure, for example a single family residence 

has a different damage response to a given water level than would a multi-family 

apartment complex. Direct economic losses include calculations of repair and 

construction costs resulting from the flood event, whereas indirect economic losses are 
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related to lost jobs and business interruption [FEMA, 2009]. The analysis may also 

include estimates of volume of debris and removal costs. Social impact of the flood event 

is estimated based on population demographics, flood extent and inundation depths, and 

is usually expressed by the number of displaced households or people which may require 

shelter, time needed for re-building (or restoration), recovery needs, etc. Risk analysis 

can be run on aggregated data, e.g. at the census block level, where the percentage of 

each census block is determined for a given water level. For more accurate analyses, one 

can perform a micro-scale analysis where individual structures are introduced with proper 

parameters and physical damage and direct economic loss estimations are derived on a 

per structure basis. 

Regardless of the applied method, one of the most important aspects of constructing 

a flood loss model is to identify, quantify, and incorporate uncertainties owing to 

approximations of the input parameters and simplifications in simulating the physical 

processes [Merz and Thieken, 2004; Neighbors et al., 2013; FEMA, 2009]. These 

uncertainties may be linked to the hazard model used (from simple interpolation to 

sophisticated equations solving the shallow water equations), the choice of vulnerability 

models and parameters, scale of the study region (micro, meso, or macro), inventory data, 

or any combination of these [Apel et al., 2009]. In addition, uncertainties propagate 

through the calculation and accumulate in the resultant damage estimate [de Moel and 

Aerts, 2011]. Studies acknowledge that flood damage estimates feature a degree of 

uncertainty, with most efforts focusing on the influence of the hydrological component 

[de Moel and Aerts, 2011]. Examples of such research include: Dutch FLORIS study 

using different inundation scenarios, flood frequency statistics and levee breach scenarios 
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[Apel et al., 2006], boundary effects [Hall et al., 2005], and 1D and 2D numerical models 

[Horritt and Bates, 2002]. Beyond the hydrologic component, Merz et al., [2004] 

presented research which found considerable uncertainty in the internationally accepted 

damage functions – which describe the relationship between the inundation level and 

damage. Adjusting the value of elements at risk as performed by Egorova et al., [2008] 

has also shown to affect the loss estimates from a given flood scenario and de Moel and 

Aerts [2011] computed the influence of four components (inundation depth, land use, 

value of elements at risk, and depth-damage curves) on the outcome of flood risk 

analysis. 

In this study epistemic uncertainties resulting from incomplete knowledge are 

considered as they can potentially be reduced by acquiring additional customized data 

representative of the study region under consideration. The well-known U.S. FEMA’s 

Hazus software, recently adapted for use in Canada, is used to conduct this sensitivity 

analysis. Hazus is one of the most comprehensive and standardized methodologies 

presently available for the assessment of potential losses from natural hazards [FEMA, 

2009; Neighbors et al., 2013; Nastev 2014].  

A number of parameters required for loss estimation including damage functions 

(e.g.: building, contents, and inventory), restoration functions, and economic replacement 

values provided with the Canadian version of Hazus are based on U.S. data. Thus the 

default damage functions suggested to Canadian users were derived from data collected 

and analyzed by the Federal Insurance Administration (FIA) and surveys completed by 

the U.S. Army Corps of Engineers (USACE) on U.S. infrastructure. The damage 
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functions have been regionally adopted into the Canadian model and replacement costs 

per square foot have been adapted from R.S. Means Co., Inc. [Hazus Canada, 2014].  

The parameters reviewed and varied in this sensitivity analysis include (i) structural 

and contents depth-damage functions for single family residences, RES1, (ii) changes to 

flood depth, and (iii) changes to restoration duration. The Hazus model was first run 

using the suggested default values for the considered flood scenario. Additional scenarios 

were completed with the parameters varied in the respective anticipated ranges to create a 

range of possible outcomes. Each analysis parameter was isolated so that the influence of 

each could be determined independently. Parametric analysis was conducted to determine 

the sensitivity of the final results to each parameter. 

The remainder of the paper is structured as follows, in Section 2.3; the study area of 

Fredericton, New Brunswick (NB) is introduced. In Section 2.4 the methodology of 

Hazus is briefly described. In Section 2.5 the methodology and parameterization tests are 

outlined and results are presented. Section 2.6 contains results and conclusions and 

recommendations for further research are outlined in Section 2.7. 

 

2.2. Study Region 

The study area selected in this sensitivity analysis is Fredericton, New Brunswick, 

Canada. Fredericton is located in the west-central portion of this Atlantic province and is 

bisected by the St. John River (Figure 2.1), a major waterway which runs throughout the 

province. Its watershed drains an area of approximately 55,000km2, and encompasses 

much of New Brunswick and parts of Quebec, Canada, and Maine, U.S.A. [McGrath et 

al., 2014].  
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Cardy [1976], in a report for the Saint John River Basin Board reviewed flood 

records and spending in New Brunswick between 1887 and 1971 and found total 

damages in excess of one million dollars. Between 1971 and 1976 (when their report was 

published) they report an additional 17 million dollars spent in the province on recovery 

from flood related damages. A comprehensive database of flood events dating back to the 

1600s is available on the Government of New Brunswick web site 

(www.elgegl.gnb.ca/0001/en/Home/Main). The largest of these are shown in Table 2.1. 

The second largest flood, used in this sensitivity study, occurred in 2008, with water 

levels 1.86 m over flood stage. Estimated expenditures across the province for the 2008 

flood exceed $23million dollars.  

Fredericton was chosen as the study location due to its long flood history, the mix 

of government and private infrastructure, and the open data policy. Fredericton is the 

capital of New Brunswick, and, as a result, there are a significant number of government 

offices and service locations across the city. The community of Fredericton is the third 

largest in the province with a population of 94,000 [Statistics Canada, 2011] and 

approximately 22,000 households (Chang et al., 2010). A mix of public (municipal, 

governmental) and private infrastructure is therefore potentially at risk of flood hazard. 

The downtown core of Fredericton (along the southern shore of the Saint John River) 

contains a number of historic buildings, with those in the eastern section of downtown 

having been built in the late 1700s. In 2011 the City of Fredericton announced an open 

data policy. The data collected by the city is available to the public via the City of 

Fredericton (fredericton.ca/en/open-data). This open data policy facilitates locating 
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appropriate datasets for Hazus inventory, including essential facilities, transportation, and 

utility networks.  

 

Figure 2.1 City of Fredericton study area, bisected by the Saint John River. Displaying total 

structures (per census block) and 2008 flood boundary 

 

Table 2.1 Flood history database records for Fredericton. Cause key (R = heavy rain, IJ = Ice 

jam, W = mild weather, T = high tides, SM = snowmelt, F= freshet, SF = snowfall, U = 

unknown) Damage amount in thousand dollars spent across all communities affected. Source: 

Government of New Brunswick [2014] 

Date River level (masl)* Damage claims Cause 

April 30, 1973  8.608 m $11,877 R, SM 

April 30, 1979  8.062 m $2,113 R,SM 

April 14, 1993  6.60 m $12,738 R, F, IJ 

April 18, 1994  7.87 m $4,130 IJ, R 

April 30, 2005  7.893 m $5,600 IJ, R, W 

May 1, 2008  8.36 m $23,288 R,F,SM,W, SF 

Dec 13, 2010  7.73 m $13,830 R 

*Flood Stage is 6.50 metres above sea level (masl) 
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The study region created in Hazus contains 617 census dissemination blocks, over 

27,000 households and 66,050 residents. Essential facilities in the area include: two 

hospitals, 30 schools, 4 fire stations and 3 police stations. There are 19,178 buildings 

within the study area with an estimated total building replacement value (excluding 

contents) of $5,400 million dollars. Of the buildings in the study area, approximately 

90.3% (and 68% of building value) are residential housing.  

Within the residential occupancy classification, there are 11 sub-classes: single 

family residences (RES1), manufactured homes (RES2), apartment buildings (RES3A 

thru 3F), temporary lodging (RES4), institutional dormitory (RES5) and nursing homes 

(RES6). To determine if one occupancy classification was more prominent than others in 

the flood plain, the building stock inventory was reviewed. The distribution of occupancy 

classifications within the Fredericton project study, based on the nationally supplied 

inventory layer is shown in Table 2.2. Within the study area over 75% of the residential 

structures are classified as single family homes, RES1. This fact narrows down the 

number of potentially representative damage curves which will be varied to examine the 

sensitivity of the loss estimates. Note that there are over 900 damage curves pre-defined 

in Hazus [Scawthorn et al., 2006].  

 

Table 2.2 General building stock count of Residential structures at risk of flood hazard 

(within flooded census blocks), by specific occupancy classification in the study area 

 RES

1 

RES

2 

RES 

3A 

RES 

3B 

RES 

3C 

RES 

3D 

RES 

3E 

RES 

3F 

RES

4 

RES

5 

RES

6 

Building 

count 

3193 561 299 7 8 60 8 0 16 0 2 
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2.3. Flood Damage Estimation 

The most common and internationally accepted method of estimation of urban flood 

damage is through the use of depth-damage functions [Plazak, 1984; Smith 1994]. 

Structure and contents damage resulting from flood hazard are influenced by many 

factors, however, usually only building use and inundation depth are considered as 

damage-causing factors and included in the formulation of depth-damage functions 

[Merz, 2004]. The building age, foundation type, and elevation of the first floor can be 

included as factors which contribute to the estimated damage of a structure, which are 

external to the depth-damage functions [FEMA, 2009]. 

2.3.1 Flood Hazard 

The flood hazard is based on a depth grid, an ESRI grid file which contains the 

flooding extent and the water depth. The flood hazard file may be supplied by local 

government or calculated using, for example HEC-RAS [FEMA, 2009], or CADYRi 

[McGrath et al., 2014] software. 

In this study the flood depth grid was acquired from the New Brunswick 

Department of Environment. Digital elevation data for the study area was downloaded 

from GeoBase (http://www.geobase.ca/) and U.S. Geologic Survey Earth Resources 

Observation and Science (EROS) data Center (http://eros.usgs.gov/find-data).  

2.3.2 Inventory 

The next input parameter is the inventory of assets as risk, such as population and 

infrastructure. To facilitate this, a number of Hazus datasets come pre-populated. For this 

study, aggregated building data and population demographics were used. The inventory 

of the residential buildings and demographics were derived from the 2011 Census data 
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[Statistics Canada, 2011], while the commercial and industrial structure data was 

acquired from Dun and Bradstreet [Hazus Canada, 2014].  

From the results of the first analysis in Hazus the predominant building type found 

at risk in this study area is “Wood”, followed distantly by “Manufactured Housing” 

(Table 2.3). There are a total 375 wood structures which are expected to incur damage as 

a result of the 2008 flood scenario, and 36 manufactured housing buildings.  

Table 2.3 Expected building damage by building type in study area, based on flood 

hazard 1.86 m above flood stage 

Building Type Expected Damage 

11-20% 21-30% 31-40% 41-50% Substantial 

(>50%) 

Concrete  0% 0% 0% 0% 0% 

Manufactured Housing 0% 0% 0% 0% 100% 

Masonry 20% 0% 0% 0% 80% 

Steel 100% 0% 0% 0% 0% 

Wood 2.13% 3.2% 15.20% 18.93% 60.53% 

 

2.3.3 Damage Functions 

Depth-damage curves represent a fundamental concept regarding assessment of 

damage resulting from a flood and are internationally accepted as the standard approach 

to accessing urban flood damage [Plazak, 1984; Prettenthaler et al., 2010]. Depth-damage 

functions, at a minimum, require two inputs, namely the occupancy classification of the 

structure and the depth of flooding. The output is an estimate of the damage, expressed 

generally as a percentage of the replacement cost. 

The suite of damage functions which come with Hazus are termed ‘credibly 

weighted’ and considered regionally applicable [Scawthorn et al., 2006]. They are based 

on the best available damage data and represent more than 20 years of losses. For each 

specific occupancy classification, default damage functions have been regionally selected 
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for structures, contents and inventory. Due to the similar construction practices, these 

standardized building types were judged more than sufficient to reflect the characteristics 

of the building stock in Fredericton. For this study, we have not (presently) derived our 

own damage functions. Contents loss valuation is calculated as a percentage of the full 

replacement value per the contents replacement cost ratios [FEMA, 2009]. For residential 

properties the contents value is typically estimated at 50% of the structure replacement 

value, while commercial, industrial, and other general occupancy classes range from 50 

to 150% of the replacement values.  

 

2.4. Methodology 

The loss estimation analysis was first run using the default parameters for the 

Fredericton study region (base case) based on the flood level resulting from the 2008 

flood event, where water levels rose 1.86m above flood stage. 

The full replacement cost direct economic results for the base case are summarized 

in Table 2.4. The total estimated losses amount to over $170 million. The largest 

contributors to this estimate are the building and contents losses with estimates at 52.42% 

and 46.10% respectively. The occupancy classification with the highest impact on the 

structural losses is residential (~76%) followed by commercial occupancy (~18%). Given 

the distribution of results as shown in Table 2.4, the damage curves for residential 

occupancy were selected as critical parameters and varied in the subsequent loss 

estimations.  
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Table 2.4 Estimated losses based on default settings in Hazus flood model for flood 

scenario in Fredericton, NB. Results are in thousands of dollars per general occupancy 

 Total Building Contents Inventory Relocn Income Rental 

Income 

Wage 

Loss 

Direct 

Output 

Education $809 $175 $625 $0 $0 $2 $0 $7 $74 

Government $1,190 $235 $912 $0 $2 $1 $0 $40 $8 

Religion $3,320 $785 $2,513 $0 $1 $6 $0 $15 $99 

Agricultural $175 $50 $107 $18 $0 $0 $0 $0 $0 

Industry $10,660 $3,337 $6,254 $1,068 $0 $0 $0 $1 $6 

Commercial $48,907 $16,496 $31,297 $735 $37 $139 $23 $180 $447 

Residential $105,158 $68,159 $36,760 $0 $110 $22 $48 $59 $139 

Total $170,219 $89,237 $78,468 $1,821 $150 $170 $71 $302 $773 

 

 

2.4.1 Structure Damage Functions 

Two examples of depth-damage functions for single family residences (RES1) are 

shown in Figures 2.2 and 2.3. The RES1 classification is dissected into sub-curves based 

on the number of stories of the structure and the presence or absence of a basement. 

Figure 2.2 represents damage functions for a one-story home with no basement, while 

Figure 2.3 is for a two-story home with a basement. In both figures the red lines represent 

the default applied depth-damage function RES1 for the study area; the other lines 

represent other pre-computed FIA and USACE curves. Negative values indicate water 

levels affecting only the basement. As expected, for the one-story with no basement, 

damage remains at 0% until the water depth has reached 0 ft and starts to submerge the 

first floor. Damages could include items such as flooring, baseboard trim, and drywall, 

among others. The two-story curves reflect damage to a finished and (possibly) furnished 

basement. 

In total, for the RES1 occupancy classification there are 63 pre-defined depth-

damage curves (functions) spread over 8 residence types: one-story, two-story, three-

story, and split-level each with and without basements. Of these 63 curves; 24 curves are 
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defined for one-story structures, 23 for two-story, 3 three-story and 13 split-level depth-

damage curves. This allows for a considerable number of potential combinations of 

damage functions and loss estimates using the pre-defined depth-damage curves. For this 

study, a sample of n=85 damage curves was chosen to estimate the sensitivity of the loss 

estimation with respect to depth-damage curves. The damage functions chosen for the 

sample scenarios represented only those which would be representative of flooding for 

the Saint John River and the building types found in the study area. 

 

Figure 2.2 Depth-Damage curves for 1-story structures with no basement 

 

Figure 2.3 Depth-damage curves for 2-story structures with basement 
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Functions selected for this sensitivity analysis included those classified from 

different districts across the U.S (Figures 2.2 and 2.3). The Galveston District damage 

curves developed using historic flood damage records and are applicable to fresh-water 

flooding under slow-rise, slow-recession conditions with low velocity on structures 

without basements [FEMA, 2009]. The Chicago District curves represent generic 

structure and content functions based on models developed by the Galveston and 

Baltimore District. New Orleans District functions include those developed based on 

expert opinion are divided into riverine or rainfall (freshwater) flooding of long or short 

duration types. The New York District functions include those with and without 

basements as well as split level structures. The St. Paul District (Minnesota) functions 

were developed as part of the 1998 flood control project in the Grand Forks area. Two 

remaining district curves are for Wilmington and the USACE Institute for Water 

Resources (IWR). The IWR functions are a working project of compiled ‘past flood 

damage surveys’ with the objective of becoming the USACE national standard damage 

functions [FEMA, 2009].  

A random sampling of depth-damage curves including both FIA credibly-weighted 

and USACE District damage functions were selected and analysis was re-run for each of 

the sample scenarios. Report outputs included general building stock by occupancy 

(which reports the total square footage per census block of damage), building count (total 

and damaged), and full and depreciated economic losses. The resulting losses were 

analyzed in MatLab to determine the range, variance and influence factor. 
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2.4.2 Contents Damage Functions 

The contents depth-damage function contains the same 8 sub-classifications of 

single family residence (RES1) occupancy classes with 43 different pre-defined content 

depth-damage curves: 15 curves defined for one-story structures, 14 for two-story, 2 for 

three-story and 12 split-level. A sample of n = 65 of content damage curves was selected 

and the same procedure was repeated as with the depth-damage functions for structural 

damage. In this case the output from each of these sample analysis were full and 

depreciated economic losses. 

 

2.4.3 Water Depth  

As mentioned, the flood depth grid in the base case scenario represents the 2008 

flood where water levels were 1.86m above flood stage. To test sensitivity of the loss 

estimations to water depth, this raster was modified by adding 0.25m (2.11m) and 

subtracting 0.46m (1.40m). The lower flood level represents the 2005 flood of the Saint 

John River in Fredericton, while the higher flood level (+0.25m) approximates the largest 

flood on record in Fredericton which occurred in 1973. The outputs from this analysis 

include estimation of building loss, building interruption, and debris generated. 

 

2.4.4 Restoration Duration 

Disruption costs to building owners are considered as restoration time dependent 

direct economic losses, and include relocation expenses, wage and rental income losses, 

and capital related income losses. Their calculation includes the following input 

parameters: restoration time in days, assumed rental costs in dollars per square foot per 
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day, square footage and water depth per occupancy classification, percent structure 

damage, disruption costs in dollars per square foot, and the percent of owner occupied 

units in each census block. 

The restoration time (measured in days) is computed in four discrete water levels, -

4ft to 0ft, 0ft to 4ft, 4ft to 8ft, and 8ft to 24ft and outputs are given in thousands of 

dollars. The number of days to restoration were modified to determine sensitivity of 

respective losses based on recovery time. As with previous scenarios, focus was on RES1 

buildings. A sample of n=4 scenarios were run using the default restoration times (base 

case), 30% and 60% longer times, which may represent a remote location with difficulty 

getting access to supplies and workers, and a scenario with restoration times 20% shorter 

than the base case.  

 

2.5. Results 

The presented results illustrate the sensitivity associated to the variation of depth-

damage function, flood level, and restoration duration and identify their relative impacts 

on the simulated losses. 

2.5.1 Variation of Depth-Damage Functions 

The results based on the variation of the representative depth-damage functions for 

both structure and content damage indicate significant variability in the estimated number 

of structures affected, total inundated square footage, and replacement costs for both 

structures and contents. 
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2.5.1.1 Building Count 

In aggregate analyses, losses are calculated based on uniform distribution of 

structures throughout the census block and respective damage curves. Using the 

percentage of census block inundated, percent damage based on the depth-damage 

function, and the numbers of buildings in the census block, an estimate of buildings 

affected are calculated for each general occupancy classification. If, for example, 20% of 

the census block is considered to have 5ft of water, according to the depth-damage curve 

(#105) residential structures sustain ~30% damage, and when damage curve #129 is 

applied the damage is ~52% for the same water level. Hence, the estimated number of 

flooded structures (building count) changes with respect to the applied depth-damage 

function (Figure 2.4). The minimum estimated structures affected from the flood are 579, 

while a maximum from the sample scenarios was 623. This range represents the potential 

difference in total loss claims submitted by residential households. 

 

Figure 2.4 Count of total building affected from the flood per scenario. Solid red line 

indicates base case with building count of 607 
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2.5.1.2 Damage by Square Foot 

Figure 2.5 shows the results of the sample depth-damage scenarios for residential 

structures based on the percent damage to a structure (damage state). In the 0 – 10% 

damage range, the variance is less than 5, while the highest variance is found in the 61-

70% damage range. In Hazus slight damage is defined within the 1-10% range, moderate 

damage is between 11-50%, while substantial damage is 51% or greater. Buildings which 

are categorized as substantially damaged (>50%) represent 33.87% of the base case, with 

the average of the sample (n=85) is very close, 33.27%, however, the distribution within 

the damage state does vary largely within each category. 

2.5.1.3 Economic Losses 

With respect to full replacement values, the default settings estimate $43,425,000 in 

structural damages (Figure 2.6). Eighty-one percent of the estimates are found within +/-

$5million dollars of the default scenario, while the standard deviation is σ =$4,014,700, 

Table 2.5. The structural depth-damage function scenarios which estimated losses greater 

than one sigma include those defined for New Orleans freshwater long flood duration and 

short duration curves for one and two-story structures, those below one sigma include 

damage functions as designed for St. Paul District.  
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Figure 2.5 Distribution of simulated RES1 damage by square footage (in thousands) for 

damage states based on sample of 85 structural damage curves. Boxplots indicate the 

median, 75th centile, 25th centile, min, and max values 

 

Figure 2.6 Full and depreciated replacement value (in thousands of dollars) for structures 

over the sample of 85 depth-damage curve scenarios 
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Table 2.5 Economic Losses - full and depreciated losses. (Dollar values in thousands) 

 Full Replacement Value (RES1) Depreciated Value 

(RES1) 

 Building Contents Reloc’n Rental 

Income 

Building Contents 

Base case $43,425 $21,862 $103 $18 $27,139 $13,652 

Median $44,302 $22,922 $103 $18 $27,729 $14,328 

Standard 

Deviation 

$4,014.7 $1,864.1 - - $2,471.1 $1,220.5 

Maximum $57,368 $30,526 $103 $18 $35,844 $19,063 

RANGE $21,635 $11,463 - - $13,518 $6,566 
 

The contents costs for residential occupancy are considered at 50% of the structural 

costs. Therefore, if a single-family residence has a valuation of $200,000, the 

replacement costs for the contents would be $100,000. The damage functions as applied 

to the contents values display a similar trend to the building structure costs. Contents full 

replacement values for RES1 base case are $21,862,000 (Figure 2.7). Sixty-eight percent 

of the scenarios are +/- $1,864,000 of the base case, with a maximum loss estimate ~40% 

larger. The St. Paul District damage function estimated again the lowest structural 

replacement costs, however this damage function reported the highest contents 

replacement cost. 

The applied depreciated model is based on industry-standard depreciation method 

as presented in R.S. Means, Means Square Foot Cost [FEMA, 2010]. The base case 

scenario estimates $27,139,000 (about 62% of the full replacement costs) in structural 

replacement costs and $13,652,000 for building contents in the study area. The New 

Orleans District long and short duration damage functions represent the highest estimates, 

15-32% larger for depreciated structural losses, and up to 39% larger contents estimates 

based on St. Paul District damage functions.  
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Figure 2.7 Depreciated replacement value (in thousands of dollars) over the sample of 60 

contents depth-damage curve 

 

2.5.2 Variation of Water Level 

The water level increase was achieved by calculating new cell values by simply 

adding 0.25m, whereas the scenario of 0.46m below the default value was based on a 

provincially supplied depth grid. The simulated results indicate that increasing the flood 

water level, by 0.25m leads to an increase of $93.49 million dollars in total building 

related loss and business interruption costs across the study area, for a total of $263.73 

million dollars (Table 2.6). As the flood boundary was not adjusted with the increased 

flood level, the loss estimates are likely underestimated. As a result, the estimated shelter 

needs remain unchanged between this and the base case, i.e., an estimated 1,130 

households and 3,390 people are displaced, with 3,096 residents requiring short term 

shelter. 
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Table 2.6 Building and Business interruption losses (in millions) over water level 

scenarios, 1.86m (default), 2.11m (plus 0.25m), and 1.4m (minus 0.46m) above flood 

stage 

 Base case scenario + 0.25m  - 0.46m  

 Residential Commercial Others Residential Commercial Others Residential Commercial Others 

Building loss 

Structural 68.16 16.5 4.59 117.37 29.03 8.13 63.10 14.36 3.8 

Content 36.76 31.3 10.41 53.91 38.9 13.27 34.41 28.53 9.07 

Inventory 0 0.74 1.09 0 0.9 1.39 0 0.62 0.9 

Subtotal 104.92 48.54 16.09 171.28 68.83 22.79 97.50 43.50 13.78 

Business loss 

Income 0.02 0.14 0.01 0.03 0.17 0.01 0.02 0.13 0.01 

Relocation 0.11 0.04 0 0.13 0.04 0 0.09 0.03 0 

Rental Income 0.05 0.02 0 0.06 0.03 0 0.04 0.02 0 

Wage 0.06 0.18 0.06 0.07 0.21 0.08 0.05 0.17 0.05 

Subtotal 0.24 0.38 0.07 0.29 0.45 0.09 0.21 0.35 0.06 

TOTAL 105.16 48.92 16.16 171.57 69.28 22.88 97.71 43.85 13.84 

 170.24 263.73 155.4 

 

The structural and content losses are over 400 times larger than the losses due to 

business interruption, which considers income, relocation, rental income and wage. In the 

base case scenario, business interruption amounts to $0.24 million dollars, whereas it is 

$0.29 million dollars for 25 cm higher water levels (Table 2.6). These values depend 

much on the applied occupancy scheme, which indicate the percentage of industrial and 

commercial buildings. At the same time building related losses are estimated at $68.16 

million dollars for the base scenario and to $117.37 million dollars when the water levels 

are raised 25cm. Debris generated from the flood hazard includes finishes (drywall and 

insulation), structure (wood and brick), as well as foundation (concrete slab, concrete 

block and rebar). In the base case, it’s estimated that 1452 truckloads (at 25 tons per 

truck) are required to remove the debris. The estimated debris more than doubles, 

estimating 73,965 tons (2,959 truckloads) if the water level is raised by 25cm.  
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The second water level considered a flood hazard representing flooding at 1.4 m 

above flood stage (the 2005 flood event). This scenario puts the water level at 0.46m 

below the base case. 

As expected loss estimations are lower with respect to building and business 

interruption given the lower flood level. The total estimated economic loss for this 

scenario is $155.39 million dollars, with residential occupancies comprising 68% of the 

total loss. Compared to the base case, residential structural and content losses are 92.6%, 

93.6% respectively, with a total estimated loss of $97.5 million dollars. Commercial 

building losses were also lower by 9% to 13%.  

Business interruption totals in this scenario indicate less than $10 million dollars 

from default, with the largest difference being relocation expenses. 

The estimated debris generated from this scenario is 30,432 tons or 1,217 

truckloads which are ~83% less debris. An estimated 884 households are displaced from 

this flood event with an estimated 2,322 people requiring temporary shelter. The shelter 

needs of the 2005 flood scenario are 75=% of those of the base case, and displaced 

households are 78% of base case. 

 

2.5.3 Changes to Restoration Time 

The base case suggests 180 days of restoration for RES1 with water between -4ft 

and 0ft up to nearly 2 years for inundation between 8ft and 24ft. The annualized 

relocation expenses for the Fredericton study area associated with the base case are 

$167,000 and rental income losses $74,000 (Table 2.7). Capital related income losses and 

wage losses in the base case and across all scenarios remained constant, with estimates of 
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$189,000 and $332,000 respectively. By increasing the estimated restoration days by 

30% in each of the water depth classes, there is an estimated ~20% increase in both 

relocation expenses and rental income losses incurred by residents. A further increase of 

restoration days to 60% of the base case leads to 48% and 33% increases in relocation 

expenses and rental income losses respectively. Increases in restoration time continue to 

increase at 20% or more of the base case in these two scenarios, however the rental 

income losses increase at a decreasing rate with longer restoration times.  

Consideration of more available workers for restoration and increased supply of 

building materials, for example 20% fewer days than base case, leads to decreases in both 

relocation expenses and rental income losses. If restoration of a structure with water 

levels between -4ft and 0ft takes 150 days, instead of 180 in the base case, the relocation 

expenses are smaller by 15% and 5% for rental income losses. 

Table 2.7 Direct Economic Annualized Income Losses for Buildings 

  Water Depth (in feet) Income Losses 

-4 to 0 0 to 4 4 to 8 8 to 24 Relocation 

expenses 

Capital related 

income losses 

Wage Losses Rental income 

losses 

  (Days to restoration) (All values are in thousands of dollars) 

Less 20% 144 288 360 576 $156  $189  $332  $74  

Base Case 180 360 450 720 $167  $189  $332  $74  

Plus 30% 234 468 585 936 $203  $189  $332  $91  

Plus 60% 288 576 720 1152 $248  $189  $332  $99  

 

2.5.4 Influence Factors 

To understand the individual impacts on the results, parameters were varied against 

a single flood hazard scenario, and multiple flood scenarios are tested using a single set 

of parameters. In the first set of tests, depth-damage functions were modified to 

determine their relative influence on the resulting loss estimates in terms of buildings 

affected and economic impact. The influence factor is determined by dividing the 
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maximum value by the lowest value in a given test. The influence factor therefore 

denotes the range, i.e., how far off an estimate may be, which is akin to the method used 

by de Moel and Aerts et al., [2011]. The results are given in Table 2.8. 

 Modification of depth-damage functions: the highest impact is found with respect to 

the full replacement value (1.605), while the building count is affected the least 

(1.076) (Table 2.8). This indicates that we can expect to see the largest variance in the 

results of the total economic losses (building and contents) with respect to full 

replacement value when the user modifies the depth-damage curve used in the 

analysis.  

 Modification to the water depth: the influence factor is calculated using the total 

damages to the study area at each water level. The largest influence factor (1.54) is 

found with the +0.25m (1973 flood) scenario. The flood scenario of -0.46m, has an 

influence factor of 0.91.  

 Modification of restoration time for a single flood scenario (base case): an influence 

factor of 2 is computed for days to restoration across all water depths in the study 

area. With respect to income losses, capital and wage losses both have a factor of 1, 

while rental income influence is slightly larger at 1.3. The largest influence factor 

when looking at economic losses with respect to restoration time is relocation 

expenses (1.589). 

These results present only a case study in a single region, as recommended by Apel 

et al., [2009], further test cases in other regions should be undertaken to corroborate the 

applicability of these conclusions. 
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Table 2.8 Influence factor obtained as a ratio between the maximum and the minimum 

value in a given test 
Varied 

parameter 

Depth-damage Function Water Depth Restoration 

Building 

Count 

Full 

Replacement  

Depreciated 

Replacement  

+0.25 -0.46 Restoration 

Days 

Relocation 

Expenses 

Capital 

losses 

Wage 

losses 

Rental 

income  

1.076 1.605 1.576 1.54 0.912 2 1.589 1 1 1.3 

 

2.6. Conclusions and Recommendations 

In this paper, the sensitivity of flood risk assessment input parameters was 

investigated using the Canadian version of the U.S. FEMA’s loss assessment tool Hazus. 

The variation of three parameters was considered: depth-damage functions (structure and 

contents), flood depth and restoration time. First, the default values were used and 

scenario was considered as the base case scenario. Then, the considered parameters were 

varied individually. The comparative analysis included: the number of structures which 

experience damage, economic losses (full and depreciated), and square footage affected. 

The selected study area was Fredericton, New Brunswick. The default inventory 

and demographics from Statistics Canada 2011 census indicate 617 census blocks 

containing 66,050 residents and 19,178 buildings within the study boundary. Total 

estimated building replacement value across the study area, excluding contents, is $5,402 

million dollars, of which 68% are associated with residential housing. Nationally 

supplied inventory data were used in this analysis. 

Loss estimates indicate that changes in both the structure and associated depth-

damage function have significant impact on the final results with respect to building 

count, total square footage and economic losses. Eighty-one percent of the estimates for 

full structure replacement are within ±$5million dollars of the default scenario, while the 

σ = $4,014.7. Depreciated replacement costs within one sigma are ± $1,864 million of the 

base case, with a maximum loss estimate approximately 40% larger.  
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The content range was smaller at (roughly) $10 and $6.5 million for full and 

depreciated replacement costs respectively. Only the damage curves for single family 

residence (RES1) were modified in this analysis, and if the project were expanded to 

include other specific and general occupancy classifications parameters (e.g.: multi-

family homes, manufactured homes, commercial, religious structures) the uncertainty in 

the output is expected to increase. 

In this study area, the majority of losses are structural and content building losses, 

with just a fraction being associated with business interruption, 1.3% in average. As the 

flood water level with respect to the base-case scenario was raised 0.25m, the total loss 

estimates to the study region increased by ~55%, conversely, when the flood hazard 

decreased by 0.49m, the total losses decreased to approximately 91% of the base case. 

The residential structural classification is estimated to incur the greatest damage in this 

area, followed by the building contents, and then commercial content. 

The above results highlight the importance of proper selection of input parameters 

customized to the study area under consideration. These should include local inventory of 

assets at risk (structures, occupancies, and population) and as much as possible 

consideration of loss assessment on per building basis. Depth-damage damage functions 

for structures and contents in New Brunswick have not yet been developed. Thus, 

particular attention should be paid to the adoption of damage curves from other regions 

where building characteristics are not necessarily the same. These results present only a 

case study in a single region, further test cases in other regions should be undertaken to 

corroborate the applicability of these conclusions. 
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3. Rapid Risk Evaluation (ER2) using MS Excel spreadsheet: A case 

study of Fredericton (New Brunswick)2 

 

3.1. Abstract  

Conventional knowledge of the flood hazard alone (extent and frequency) is not 

sufficient for informed decision-making. The public safety community needs tools and 

guidance to adequately undertake flood hazard risk assessment in order to estimate 

respective damages and social and economic losses. While many complex computer 

models have been developed for flood risk assessment, they require highly trained 

personnel to prepare the necessary input (hazard, inventory of the built environment, and 

vulnerabilities) and analyze model outputs. As such, tools which utilize open-source 

software or are built within popular desktop software programs are appealing alternatives. 

The recently developed Rapid Risk Evaluation (ER2) application runs loss assessment 

analyses in a Microsoft Excel spreadsheet. User input is limited to a handful of intuitive 

drop-down menus utilized to describe the building type, age, occupancy and the expected 

water level. In anticipation of local depth-damage curves and other needed vulnerability 

parameters, those from the U.S. FEMA’s Hazus-Flood software have been imported are 

temporarily accessed in conjunction with user input to display exposure and estimated 

economic losses related to the structure and the content of the building. Building types 

and occupancies representative of those most exposed to flooding in Fredericton (New 

                                                 
2  McGrath, H., Stefanakis, E., & Nastev, M. (2016). Rapid Risk Evaluation (ER2) Using MS Excel 

Spreadsheet: a Case Study of Fredericton (New Brunswick, Canada). International Society for 

Photogrammetry and Remote Sensing Annals of Photogrammetry, Remote Sensing and Spatial Information 

Sciences, Volume III-8, 27-34. 
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Brunswick) were introduced and test flood scenarios were run. The algorithm was 

successfully validated against results from the Hazus-Flood model for the same building 

types and flood depths. 

 

3.2. Introduction 

Every year disastrous climatological and geological hazards take place in Canada 

and around the globe [Nastev and Todorov, 2013]. In 2010, an estimated 178 million 

people across the world were affected by flooding and billions of dollars of damage 

caused [Leskens et al., 2014]. The costliest single disaster on record in Canada is the 

2013 flood in Calgary, AB, with an estimated price tag exceeding $6 billion 

[Environment Canada, 2013]. In New Brunswick (NB), the study area of this project, 

over $23 million in damages resulted from the Saint John River flooding in 2008, and 

over 70 floods have been recorded since the 1700s [Public Safety Canada, 2014]. 

 Government officials, GIS specialists, emergency managers, and responders require 

tools to develop mitigation and recovery plans as well as preparedness and response 

procedures for natural disasters [Neighbors et al., 2013; McGrath et al., 2015]. Evaluation 

of risk involves the combination of three components: the potential flood hazard, 

inventory of the built environment, and representative vulnerability functions – which 

relate the inundation depth to a percent damage of the asset. Studies of past flood events 

have shown that the majority of losses arise in urban areas, due to impairment of 

structures, costs of business shut-down, and failure of infrastructure [Jongman et al., 

2012]. 
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Over the past 20 years, considerable progress has been made with respect to flood 

mitigation strategies by combining strategic planning and risk-based management 

techniques [Nicholls et al., 2013]. There are a wide variety of flood damage models in 

use internationally, differing substantially in their approaches to flood computation and 

estimates of economic costs [Jongman et al., 2012]. There are commercial (AIR Germany 

Flood Model, AIR UK Flood Model) and open (Basement, Hazus-MH, Kalypso) 

software solutions available. Many of these solutions have been built specifically to 

address flood concerns in their country of origin, which, by design, are tailored to meet 

the conditions, infrastructure, and processes relevant in their geographic region - which 

often make transferability to another geographic region difficult. 

Of the watershed modelling and risk assessment applications available today, few 

are capable of non-expert implementation [Al-Sabhan et al., 2003]. In addition, the data 

requirements and data manipulation required for these models to run may exceed the 

technical capabilities of the broader non-expert safety community [Nastev et al., 2015]. 

These existing models therefore leave a gap between what is needed (and when) by 

decision makers and the output a model is able to provide [Leskens et al., 2014]. 

In this paper, we present the Rapid Risk Evaluation (ER2) tool, which uses a 

spreadsheet application to compute replacement cost of the building and estimate 

potential damages resulting from user input flood scenarios. User input is limited to a 

handful of intuitive drop-down menus utilized to describe the building type, age, 

occupancy and the expected water level. In anticipation of local depth-damage curves and 

other needed vulnerability parameters, those from the U.S. FEMA’s Hazus-Flood 

software have been imported temporarily. The computations are done on building-by-
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building or aggregate scenario basis. The results of structural and content damage are 

validated for flood scenarios in Fredericton, NB against Hazus estimates. The paper is 

structured as follows, In Section 3.3 a brief introduction to flood loss estimation in 

included and in Section 3.4 the framework of ER2 is described. Section 3.5 introduces the 

study area. In Section 3.6 ER2 results are presented and comparisons made to Hazus. 

Section 3.7 summarizes findings and details future research to enhance the application. 

 

3.3. Flood Loss Estimation 

Direct losses occur as result of direct physical contact of the flood water with 

humans, properties, or other objects, while indirect losses represent those which are 

induced by flood impact and may occur (in time or space) outside of the flood event 

[Merz et al., 2004]. Direct economic losses include calculations of repair and 

construction costs resulting from the flood event, whereas indirect economic losses are 

related to lost jobs and business interruption [FEMA, 2010]. It is the calculation of the 

direct economic losses which were of primary interest in the development of ER2. The 

most common and internationally accepted method of estimation of urban flood damage 

is through the use of depth-damage functions [Plazak, 1984]. Structure and contents 

damage resulting from flood hazard are influenced by many factors, however, usually 

only building use and inundation depth are considered as damage-causing factors and 

included in the formulation of depth-damage functions [Merz et al., 2004]. The building 

age, foundation type, and elevation of the first floor can be included as factors which 

contribute to the estimated damage of a structure, which are external to the depth-damage 

functions [FEMA, 2010].  
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3.4. ER2 Methodology 

Following the findings of Plazak [1984], Merz et al., [2004] and FEMA [2010], 

primary inputs for the computation of direct economic losses focus on depth-damage 

functions, inundation depth, building use (occupancy), foundation type, age, and height 

of first floor. Using these inputs, estimates of the building value are computed, along with 

estimates of damage to the structure, its contents, and the sum of these to show total 

losses in Canadian dollars (Figure 3.1). The calculation of building valuation and 

estimated damages utilize nationally compiled data tables from the Hazus software, 

which have been modified to represent Canadian parameters. The data tables from Hazus 

which are used in ER2 include occupancy classification, depth-damage function, 

replacement costs per square meter, and floor area (square meter) of a structure, 

described in Table 3.1. 
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Figure 3.1 Flow diagram for ER2. White boxes indicate user inputs, grey are computed 

interim values, and green and red are computed valuation and estimated damages 

respectively. 

 

Table 3.1 Hazus tables used 

Table Description Hazus Table 
Occupancy Classification BldgStrDmgFn 

Depth-Damage Functions BldgStrDmgFn, BldgContentsDmgFn 

Replacement costs ($/sf) hzReplacementCost, hzRes1ReplCost 

Square footage of building hzSqftFactors 

Depreciation factors DepFunction 

Exposure contents hzExposureContentGBldgTypeB 

Basement status BldgStrDmgFn, BldgContentsDmgFn, hzRes1ReplCost 

Garage valuation hzRes1GarageAdjustment 

 

The Occupancy Classification table is a primary nominal data category in the 

worksheet, and is the parent of many other elements in the calculations. Occupancy 

classifications used in this application include 11 classes of residential occupation, 10 

commercial classes, 6 industrial, two for each government and education, and one for 
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each of agriculture and religious structures. The selection of occupancy is the determiner 

of the floor area (square meters), replacement costs per square meter, and damage 

functions. Each of these values is accessed via a lookup table using a common occupancy 

identifier. The square meters table (hzSqftFactors) is based on distributions of floor area, 

developed at the dissemination area level for all provinces and territories from the 2011 

Canadian Census and Duns & Bradstreet data [Hazus Canada, 2014]. Replacement costs 

per square meter were derived from the same data, using RSMeans 2006 values for all 

occupancy codes. The replacement costs per square meter have been averaged over 

various alternatives for exterior wall construction (e.g.: wood siding over wood frame, 

brick veneer over wood frame, etc.) [FEMA, 2010].  

Presently, the damage functions used in the ER2 algorithm are based on regionally 

adapted depth-damage functions, based on more than 20 years of claims and measured 

data in the U.S, however as derived Canadian damage functions become available, they 

will be imported and set as the default. A table of depreciation factors based on the age of 

the structure is used to appropriately assign value to the structure. Additionally, tables 

which account for presence of garage and basement (finished or unfinished) are used in 

computation of building value and selection of the appropriate damage curve. Using these 

nationally derived data tables, the ER2 tool results are considered as average for a group 

of buildings with similar structural and content characteristics. As the data in these tables 

represent an average, they do not necessarily account for differences and regional 

variations. To overcome this, an alternative option allowing user input of a known 

building value is included in ER2 Advanced. 
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3.4.1 ER2 Design Interface 

ER2 is comprised of three worksheets which allow user input and present results, 

and provide a geospatial view via Esri Maps for OfficeTM, while the remaining 

worksheets provide supporting information for lookup functions and contain 

computational data. The three worksheets each provide unique scenarios. The first 

worksheet computes exposure and estimated damages to a single building type with a 

single user input water level. The second worksheet computes building-by-building 

losses, allowing up to 300 unique structures, each requiring its own flood level. On the 

third worksheet users can simulate an aggregated flood risk analysis with up to 50 

different building types and four discrete water levels with user input percentages for the 

dissemination area or block. The tool has been setup for manual user input, or, if data 

exist in another format, they may be pasted to into ER2 building input section - so long as 

the fields correspond to expected values. 

 

3.4.1.1 ER2 Interface Design  

The required user input includes building details and potential water depth, Figure 

3.2. The user interface has been configured to accept input to cells via colour coded 

options. The dark grey cells represent fields for which a user can select an option from 

pre-determined set of values via a drop down menu. The dropdown menu options have 

been created using the List option of the Data Validation settings and selecting the 

defined group name representative of the cells. Light grey cells allow users to input 

numeric values. Conditional formatting has been used for the manual input cells to 

restrict user inputs to a given range. Advanced settings which over-ride default 
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parameters are colored in blue and allow for a user to input a known building value and 

manual selection of depth-damage curve or input of a user defined curve. 

 

Figure 3.2 User input of building details (inventory) and water level (hazard) 

 

3.4.1.2. ER2 Result Design 

The results available in ER2 are estimates of building exposure and potential direct 

economic losses, relevant to the structure and its contents. These data are presented in 

tabular format via a pivot table, providing the user the ability to choose the desired level 

of detail for reporting and charts which graphically illustrate the damage estimates, 

Figure 3.3.  
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Figure 3.3 Pivot table and chart results 

 

3.4.1.3. ER2 Geospatial Result Design 

Included in the building input section of each worksheet is the option to include the 

spatial location of buildings. The location may be entered in the form of geographic 

coordinates or the physical address. Through the use of the Esri Maps for MS Office3, 

users of the spreadsheet can easily visualize the building details and loss estimations, 

Figure 3.4. The user may select any field from the spreadsheet to theme the data and 

select from an abundance of choices regarding colour, symbol and size. To further 

improve the information portrayed in the map, a user may add any layers from ArcGIS 

Online or Portal for ArcGIS [ESRI, 2015]. These results may be shared online, sent to a 

power point presentation or captured as a static image of the map. 

                                                 
3 Esri Maps for Office is a registered software product of Esri, Inc., Redlands, CA, USA. 
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Figure 3.4 ER2 results, visualized in Esri Maps for Office 

 

3.4.2 ER2 Calculations 

ER2 computes building valuation (if needed), estimated building losses, structural, 

contents and total losses, in Canadian dollars. 

 

3.4.2.1. Building Exposure Valuation  

To avoid confusion with market value or government assessed property, value the 

cost of a building is computed via a formula reflecting average construction costs. 

Building value is computed using the age of building, number of stories, size of the 

structure and the replacement cost per square meter (eq. 3.1). Additional costs are added 

based on building quality (residential only), basement status and/or garage presence (eq. 

3.1). 

To compute building valuation, the first input required is the building occupancy 

classification, for example, consider a single family residence (RES1). Using RES1 

occupancy class, the size of the structure (𝐴𝑏𝑙𝑑_𝑘) is extracted from the ‘hzSqftFactors’, 
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in this example: 185.80m2. RES1 and the number of stories (s) are required to look up the 

replacement cost per square meter (𝐶𝑤𝑖), $709.45 for a one-story average RES1 building. 

Building value is increased if a basement exists (𝑏) and if it is finished or not (𝐶𝑤𝑏). 

Building value is further increased if a garage is present (gwg) and depends on the type 

of garage (𝐶𝑤𝑔). The building value is then multiplied by an age depreciation factor 

(𝐴𝑔𝑒) and by the number of structures of the same type (𝑛). Residential structures are a 

special class, and have multiple RSMeans replacement cost options based on the 

construction class (i), (e.g.: economy, average, luxury, etc.). These construction classes 

take into account factors such as the quality of building materials and superiority of 

craftsmanship [FEMA, 2012]. 

𝐄𝐱𝐩𝐤 = (𝐀𝐛𝐥𝐝_𝐤 (𝐬𝐰𝐢𝐂𝐰𝐢) + 𝐀𝐛𝐥𝐝_𝐤 𝐛𝐂𝐰𝐛 + 𝐧𝐠𝐰𝐠𝐂𝐰𝐠)𝐀𝐠𝐞 ∗ 𝒏      (3.1) 

 

3.4.2.2. Contents Exposure 

The contents valuation is based on the estimated exposure as described above 

multiplied by a contents value percentage. The contents value is a fixed percentage, based 

on the occupancy class of the input structure. For residential structures, contents are set at 

50% of the building value, most commercial structures, in part, to account for inventory, 

compute contents at 100% of the building value, while most industrial buildings, 

hospitals, and education facilities compute contents value at 150% of the building value. 

These valuation percentages are based on RSMeans, as read from the 

‘hzExposureContentGBldgTypeB’ table (Table 3.1). 

 



69 

 

3.4.2.3. Structure damage estimation 

Of primary influence to the damage estimation is the selection of depth-damage 

curve, a core of the vulnerability analysis. A damage function is described by an 

estimated percent of damage at any given water level. There are numerous depth-damage 

curves available in the literature, describing structural, contents, and inventory damage 

for each building occupancy type. ER2 (at present) is configured to select a Federal 

Insurance Administration’s (FIA) or modified FIA depth-damage functions for residential 

structures while the remaining occupancy classes refer to U.S. Army Corps of Engineers 

(USACE) damage curves. Each building occupancy type has a recommended default 

damage function associated to it. In addition to the occupancy type, damage functions are 

unique per basement status and the number of stories. Figure 3.5 illustrates a number of 

depth-damage functions available in ER2. 

 

Figure 3.5 Examples of Depth-Damage curves (FEMA, 2010). 



70 

 

 

3.4.2.4. Contents damage estimation 

Estimating the contents damage to a building at a given water level is also based on 

the relationship of flood depth and percent damage. A separate table of damage curves, 

designed specifically to represent percent contents damage is referenced. As with the 

structure depth-damage curves, the contents depth-damage curves are unique per 

occupancy class, basement status and number of stories. To estimate the contents 

damages in dollars, the required inputs are: contents valuation (Cval), and the percent 

contents damage (𝑃𝐶) (eq.3.2). Where 𝑃𝐶 is equal the intersection of the water depth 

(𝑊𝐷) minus the foundation type (𝑓) of the appropriate selected contents depth-damage 

curve (𝐶𝐷𝐶), and 𝐶𝐷𝐶 is determined based on the occupancy class (𝐴), number of 

stories (𝑠), basement status (𝑏) (eq. 3.3). 

CDk = Cval * 𝑷𝑪      (3.2) 

𝑷𝑪 = [𝑪𝑫𝑪𝑨𝒔𝒃]⋂[(𝑾𝑫 − 𝒇)]     (3.3) 

 

3.5. Study area: Fredericton, NB 

The City of Fredericton is the capital of the Canadian province of New Brunswick 

and located in the west-central portion of the province in Atlantic Canada. The city is 

split by the St. John River which flows from west to east through the city. The local 

topography varies considerably with elevations ranging from 2 m to ~175m above sea 

level, and includes undulating and hilly land [Stobbe, 1940] (Figure 3.6). The basin 
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immediately surrounding the St. John River and downstream of Fredericton is relatively 

flat, with an average mean water level of 2m above sea level [Lantz et al., 2012].  

Data from the 2011 Canadian Census indicate approximately 30,000 households in 

Fredericton and the surrounding suburbs with a total population of approximately 71,000 

[Lantz et al., 2012; Statistics Canada, 2011]. The population of Fredericton is primarily 

adults, between 16 and 65 with smaller representation by children (11%) and seniors 

(13%). As shown in Figure 3.6 there is a relatively high population density in the flats flat 

on the south side of the Saint John River in the Fredericton downtown. Of these 

households, approximately 320 buildings have an elevation within 5m of the river bank. 

Single family residential buildings are the most common in Fredericton, comprising 

73% of the residential structures. Under 10% of residential buildings in the area are 

classified as multi-family apartment buildings, and 6.5% of these residences are mobile 

homes. Other buildings in the city limits include those classified as commercial (2,100), 

industrial (225), Religious (200), government (80) or education (60). The single family 

buildings are primarily wood framed, one or two-story buildings, with unfinished 

basements or crawlspaces. The mean house value is $212,800. 

Flood records, dating back to the 1700s indicate over 70 such events have occurred 

in the area, with heavy rainfall, mild weather, snowmelt, and ice jams indicated as 

primary causes of this flooding [New Brunswick, Environment and Local Government, 

2014]. Flooding in Fredericton occurs when the river level exceeds flood stage, which is 

6.5m above sea level. The highest flood levels ever recorded were in 1973, when the 

water level was 2.04 m above flood stage, while the second largest flood occurred in 

2008, where water level reached 1.86 m above flood stage. The 2008 flood caused 
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~$23million in damages to New Brunswick communities situated along the Saint John 

River [Public Safety Canada, 2014]. For testing of the ER2 algorithms, water levels from 

two historic flood events were used: the 2008 flood, and the third largest flood on record 

which occurred in 2005 (Figure 3.7). 

 

Figure 3.6  Fredericton, NB. Local topography and population density 
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Figure 3.7 Two historic flood events, Fredericton, NB 

 

 

3.6. Results 

Flood depth grid and user defined facilities representing local structures were 

imported to Hazus, and analysis was run. The results from Hazus, with (respect to these 

user defined facilities), indicate that 356 single family residences experience flooding. 

These houses range in value from $41,000 to $495,600, with an average value of 

$147,019. The flood depth in these structures, for the 2008 scenario ranges from 1.3cm to 

1.67m. The oldest building in the study area has a year of construction dating back to 

1901, while the median year of construction 1995. Also damaged in this scenario are 161 

manufactured houses, 7 triplexes and 6 multi-family dwellings with 10-19 units. In 

addition to residential properties, retail, wholesale trade, churches and entertainment 
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facilities are expected to incur flood damage. Aggregated losses at the dissemination 

block level were also computed. 

At present, local claims data archived by the N.B. Department of Emergency 

Measures Organization (EMO) are currently unavailable to validate ER2 against field 

data. Analysis of the results of ER2 are therefore compared only to Hazus in this paper.  

As described in Section 3.4, users of ER2 are able input building details and have 

ER2 compute the estimated building value or they may input a known building value. 

Each of these options and aggregated results are described in the following sections. 

 

3.6.1 Percent Damage 

There are over 900 different damage curves defined in ER2. The selection of 

damage curve for a given structure is based on many factors including: occupancy class, 

basement, number of stories, type of flooding (riverine or coastal). For a one-story single 

family residence in Fredericton without a basement, the FIA depth-damage curve with an 

ID of 105 is the default curve used to predict structure damage (Figure 3.8). The depth-

damage definitions are given at foot (0.3048cm) intervals, with percent damage in-

between being linearly interpolated. Figure 3.8 illustrates positive correlation of the ER2 

damage estimates with the depth-damage curve definitions. However, the Hazus 

estimates of structure and contents damage do not align as well with the damage curve 

definitions. Hazus data do follow a similar trend to the depth-damage curve, but tend to 

be, below 1m water depth: under estimating damage, and over 1m water depth over-

estimating damage. The contents damage is underestimated at all water levels in 

comparison to the curve definition. Plotting percent damage versus water depth for 
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another flood scenario in Fredericton, NB, the third largest flood (2005) produced a 

similar figure with the ER2 damages following the damage curve definition while the 

Hazus results pivot from below to above the curve definition when approximately 1m 

water depth is recorded. 

 

 

Figure 3.8 Percent Damage based on water level and depth-damage curve, one-story 

single family residence with no basement 

 

3.6.1 Economic Losses 

As discussed in Section 3.4, estimates of damage are based on water depth and 

percent damage. The percent damage is then converted to currency via the percent of 

structure value. If a user does not input a known building value, one is computed via 

average values based on RSMeans. For example, all single family residences are assumed 

to be 185m2, and replacement cost per square meter of an average quality home is 
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$709.45. Given this assumptions of generalized costs and size, we can expect the ER2 

damage estimates to vary from the Hazus results. 

Of the 356 single family residences which, according to Hazus analysis experience 

flooding, 182 have been identified as single story family residences. Of these 1-story 

residences, 156 have no basement, while the remainder are considered to have a finished 

basement. Plotted in Figure 3.9 are estimates of the total losses from each scenario: 

Hazus, ER2 using computed building value, and ER2 using user input building value. The 

minimum water depth for which damage is estimated is 1.5cm, with the maximum from 

the 2008 flood event for one-story single family residences is 1.66 m. There is a trend of 

increasing uncertainty in the damage estimates as the water depth increases, and the 

inverse with respect to standard deviation.  

When the total damages are plotted against water depth for the three scenarios 

(Figure 3.9) Hazus, ER2 –user input (ER2-UI) building value, and ER2 – computed 

building value (ER2-C) we can clearly see a trend to the loss estimates. ER2-C there is a 

linear increasing trend to the damage estimates with increasing building value. There are 

two clear trends for ER2-C in Figure 3.9: as water levels increase, from 0 to 0.6m, there is 

an increase in the total estimated damages across the buildings which have a uniform 

value. As the water depth exceeds 0.6m there is a shift in damages and the linear trend 

continues, seeing increased damages with increasing water depth. For the Hazus and ER2-

UI the total damage estimates are more randomly distributed, and do not follow the same 

linear trend, however there is generally an increase of damages with increasing water 

level. The scattering of the damage estimates for ER2-UI and Hazus represent damages 

which are not based solely on floor area and a generic value of replacement cost, but an 
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assessed property value which better represents the true value of the building. As ER2-UI 

and Hazus both use the same input building value, we expect to see a good correlation of 

total estimated damages.  

Comparison of ER2-UI to Hazus structural damage shows, on average an over-

estimate of $1,447, with a standare deviation of 6,058 ( 

Table 3.2). The difference in the estimated contents damages, between ER2-UI and 

Hazus also indicate an over estimate by ER2-UI, by an average of $4,700 across this 

sample of 156 single family residences with no basement. As ER2-UI uses the same input 

building value as does Hazus, the difference we see in the total loss estimate can be 

related back to the differences in percent damage as shown in Figure 3.8. The ER2-C 

structural and content losses deviate farther from the Hazus and ER2-UI losses, primarily 

due to the buildings initial value. Since all buildings (ER2-C) started with roughly the 

same building value, $186,000, the computed estimated losses have a smaller standard 

deviation, but are, in magnitude, more different than the Hazus results. On average, the 

difference between the ER2-C and Hazus loss estimate is 26%, or an over estimate of 

26% for structural damage and 45% with respect to contents damage.  
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Figure 3.9  Total Damages versus water depth for Hazus, ER2 using user input building 

value and ER2 using computed building value 

 

Table 3.2 One-story single family residences, statistics from 156 buildings in 

Fredericton, NB Estimates from 2008 flood event ER2 user input building value (ER2-

UI), ER2 Computed building value (ER2-C ) 

 Hazus ER2-UI ER2-C 

 Structure Contents Structure Contents Structure Contents 

Average $27,964 $12,738 $29,410 $17,439 $35,413 $18,825 

Minimum $ 8,293 $ 3,554 $ 6,637 $ 2,122 $0 0$ 

Maximum $81,451 $31,942 $76,364 $ 48,762 $54,277 $34,639 

 

In addition to the flooded one-story buildings, there are 80 two-story buildings in 

the study area which experience flood damage from these flood scenarios. The majority 

of these residences have a finished basement. The flood depth experienced by these 

houses ranges from 1.3cm to 1.25m. Given the large percentage of houses with finished 

basements, total damages are much higher at lower water levels Figure 3.10. Figure 3.10 

shows damages computed using the ER2-C (computed building value) which follows a 
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linear trend which follows the shape of the damage curve, while those which used real 

property assessment values (Hazus and ER2-UI) are represented by scattered data when 

plotted against depth. 

 

Figure 3.10 Total Damages versus water depth for Hazus, ER2 using user input building 

value and ER2 using computed building value, 2 Story residences, with and without 

basements 

 

The majority of construction of residential housing in Fredericton began in the 

1960s. Plotting the same total loss data from Figure 3.9, using building age instead of 

water depth along the x-axis, we are able to visualise the estimated damage to structures 

over four decades (Figure 3.11). From Figure 3.11, it appears that buildings which have a 

recorded construction date between 1990 and 2005 are those which have the greatest 

damage incurred based on the 2008 flood scenario. These results seem contradictory to 

the flood risk mapping and New Brunswick Community Planning Act [New Brunswick 

Department of Environment, 2013]. A review of the assessment database which lists the 
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building age should be completed to verify structure construction date and thus building 

age. 

 

 

Figure 3.11 Total Damages versus water depth for Hazus, ER2 using user input building 

value and ER2 using computed building value by building age. Points within red-dashed 

polygon represent those with expected damage built between 1990 and 2005 

 

3.6.2 Dissemination Area  

To simulate an aggregate scenario over a dissemination area similar to Hazus, the 

buildings are assumed to be equally distributed throughout the area, regardless of their 

actual location. The water depth is computed as a percent of the dissemination area. 

Therefore, in the case of the example shown in Figure 3.12, the dissemination area is 

assumed to have 9% of the area inundated by 3ft of water (5 of 56 cells), 18% with 2ft of 

water, and 37% with 1ft of water, while 36% of the dissemination area is not flooded. 

The calculation of damage will assume 4 structures with 3ft of water and multiply this 
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result by 9% to scale the estimation to represent the inundation area appropriately, and so 

forth for the remaining water depths. 

 

Figure 3.12 Dissemination area 

 

The sample Fredericton dissemination area contains 52 residential buildings, 

primarily comprised of 1 story buildings with no basement. Forty percent of the 

dissemination area was not inundated, while the remainder was flooded with between 1ft 

and 4ft of water. To simulate four water depths across the study area, the flood levels 

were queried to find values between 0ft and 1ft, and the average value in this range was 

selected as the average water depth. This process of selection within an integer range was 

performed for the remaining ranges and the average value chosen to input to the 

algorithm. The results of this aggregated style scenario find the total damages to be in 

agreement within 5.55%, with a larger deviation if looking at just the structure losses 

individually, Table 3.3. 
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Table 3.3 Comparison of ER2 to Hazus results for sample dissemination area 

  Hazus ER2 Difference (%) 

Structure Damage $760,000 $859,241 -13.05% 

Contents Damage $412.000 $377,874 8.28% 

Total Damages $1,172,000 $1,237,115 -5.55% 

Exposure $11,058,000 $10,599,561 4.15% 

 

3.7. Conclusions  

This paper presents the principal characteristics and considerations of the flood risk 

assessment tool, Rapid Risk Evaluation (ER2) developed within a familiar MS Excel 

office package, providing capabilities for any user, with (or without) specialized technical 

knowledge to simulate potential flood risk scenarios and view estimates of exposure and 

damages.  

Results from ER2 from two flood scenarios in Fredericton, NB were compared to 

those results computed by Hazus. We intend to further test these ER2 results against field 

data once access to historic flood claims data is made available. 

When ER2 User input building values are used, the structural, contents, and total 

losses computed are in agreement with Hazus results. On average, structure loss 

differences to be within 1.05% and contents 1.27%.  When comparing ER2 using 

computed building values against Hazus loss estimates, the error was higher, an average 

of 26% difference for structural damage and 45% with respect to contents damage. ER2 

uses nationally averaged data in the calculation of building area, replacement cost per 

square meter, and construction costs, it was therefore expected the results from ER2 

(computed values) to be larger than those computed using assessment data. In both use 

cases of ER2, the damage estimates were found to be higher than those computed using 



83 

 

individual building data. In the aggregated scenario over a dissemination area total 

damage estimates to be within a ±5.5% range mainly due to the interpolation method.  

The comparison is between Hazus and ER2, and these estimates have not been 

validated against field data. Recommendations for improving this algorithm include 

expansion of results against insurance claims data and to review results of occupancy 

classes other than single family residences. Additionally, further testing of ER2 in other 

communities to see how ER2 compares to Hazus, itself (computed building value and 

user input building value), and field data are of interest. Furthermore, adding in 

capabilities which would reflect flow velocity, flood duration, and water contamination 

are potential enhancements to the application. 

Future plans for this algorithm is to offer it up as a web service and to enrich the 

application with a spatial component which reads building information and details data 

from local and provincial datasets. This spatial component will provide visualization of 

results through thematic maps and provide an option alternative to the Esri Maps for 

Office. ER2 is presently available for download from http://hmcgrat1.ext.unb.ca/ 

(McGrath, 2015). 
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4. DEM Fusion of Elevation REST API Data in Support of Rapid Flood 

Modelling4 

4.1.  Abstract 

Digital elevation models (DEM) are an integral part of flood modelling. High 

resolution DEM data are not always available or affordable for communities, thus other 

elevation data sources are explored. While the accuracy of some of these sources has 

been rigorously tested (e.g.: SRTM, ASTER), others - such as Natural Resources 

Canada’s Canadian Digital Elevation Model (CDEM), and Google and Bings’ Elevation 

REST APIs have not yet been properly evaluated. Details pertaining to acquisition source 

and accuracy are often unreported for APIs. To include these data in geospatial 

applications and test and reduce uncertainty, data fusion is explored. Thus, this paper 

introduces a new method of elevation data fusion. The novel method incorporates 

clustering and inverse distance weighting (IDW) concepts in the computation of a new 

fusion elevation surface. The results of the individual DEMs and fusion DEMs are 

compared to a high-resolution Light Detection and Ranging (LiDAR) surface and flood 

inundation maps for two study areas in New Brunswick. Comparison of individual 

surfaces to LiDAR find they all meet their posted accuracy specifications, with the Bing 

data computing the smallest mean bias and the CDEM the smallest RMSE. Fusion of all 

three surfaces via the proposed method increases the correlation and minimizes both 

RMSE and mean bias when compared to LiDAR, independent of the terrain, thus 

producing a more accurate DEM. 

                                                 
4  McGrath, H., Stefanakis, E., and Nastev, M. (2016). “DEM Fusion of Elevation REST API Data in 

Support of Rapid Flood Modelling.” Geomatica, Vol. 70, No. 4 
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4.2. Introduction 

DEMs are an integral part of flood modelling [Cook and Merwade, 2009]. Using 

the best available elevation data is advised: as DEM resolution and accuracy are the main 

properties which affect hydraulic and hydrologic modelling results [Vaze et al., 2010]. 

Flood modelling therefore typically involves high-resolution, e.g. 1m or less, LiDAR 

elevation data. While LiDAR data is increasingly popular, it is still costly to acquire and 

computationally expensive [Hummel et al., 2011]. Many larger communities in Canada 

have budgeted for the expense and invested in a LiDAR dataset; however, this is not 

feasible for all communities. In lieu of high resolution elevation data coarser and freely 

available datasets are investigated for rapid flood modelling. 

Currently there are several providers of online elevation data with varying levels of 

coverage, spatial resolution and accuracy. For example, Shuttle Radar Topography 

Mission (SRTM) (lta.cr.usgs.gov/SRTM), ASTER (asterweb.jpl.nasa.gov/gdem.asp), and 

Google (developers.google.com) and Bing (msdn.microsoft.com) offer global coverage. 

Natural Resources Canada (NRCan) offers the CDEM, a Canada wide elevation dataset 

(geogratis.gc.ca). At the provincial level, several provinces provide access to elevation 

data, and at a micro level, some municipalities have acquired LiDAR data and enable 

online access to it. Consequently, multiple datasets covering a single terrain area exist; 

however, details pertaining to accuracy, acquisition source or technology and collection 

date vary amongst them and in some cases, are not clearly documented [Buckley and 

Mitchell, 2004].  
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While the accuracy of SRTM, ASTER and Cartosat-1 are well documented 

[Mangoua and Goïta, 2008; Mukherjee et al., 2013; Patel et al., 2016; etc.], the reliability 

and accuracy of elevation data available from REST APIs, specifically Google and Bing, 

for uses other than purely recreation, are not. Representational State Transfer (REST) is 

an architectural style for designing networked applications [Masse, 2011]. An application 

program interface (API) “exposes a set of data and functions to facilitate interactions 

between computer programs” and allows for exchange of information [Masse, 2011]. If 

an API conforms to REST architectural style and guidelines, it is considered a REST 

API. Though readily available and easy to use, there are certain limitations to these API 

services, including: source data is often not clearly documented, resolution is not clearly 

reported, and the interpolation method applied for the calculation is unknown [Stefanakis, 

2015]. For example, the Google Elevation API (developers.google.com) is said to be 

comprised of data from hundreds of providers and is stitched together to provide the best 

level of coverage available [Thor, 2010]. Recognizing these limitations, there are several 

advantages to inclusion of these data in the flood modelling process: (i) utilization of 

REST services is convenient and powerful as there is simple, machine readable data 

access accessible through a lightweight solution accessed via a URL, (ii) data is 

processed on the providers’ server, and (iii) the data is returned in a well formatted 

document (JSON or XML). The consistency in the returned data, the ease of access and 

speed of data acquisition combine to make this a desirable service to include in web 

projects; and what is probably most important, using this data is computationally 

inexpensive, resulting in generation of rapid flood models.  
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Data fusion is considered to improve the trustworthiness of the elevation data of 

REST API services. This is particularly relevant as resolution and accuracy are the main 

properties of a DEM which affect hydraulic and hydrologic results [Vaze et al., 2010]. 

Many researchers, including Costantini et al., [1997] and Buckley and Mitchell [2004] 

found that fused datasets convey improved knowledge about an area compared to a single 

dataset. Rationale supporting fusion include the availability of duplicate or partially 

overlapping datasets, different acquisition techniques, different angles or positions of 

sensors over different times which may support identification of outliers or 

inconsistencies [Buckley and Mitchell, 2004]. The benefits of fusion include: (i) 

surmounted deficiencies associated with one dataset/representation of the area, (ii) 

increased probability of better surface representation (collection at different angles), (iii) 

removal of systematic errors, including errors or drifts captured by the inertial navigation 

system or GPS of the collection sensor, and (iv) variation in resolution, accuracy and 

scale [Buckley and Mitchell, 2004].  

Several data fusion techniques have been proposed, from simple techniques such as 

data gap filing and weighted averaging [Roth et al., 2002], spatial distribution of error 

and residual density weighting [Reinartz et al., 2005] and weighting by a priori DEM 

error and derivatives of terrain [Papasaika et al., 2009], to more sophisticated techniques 

including: sparse representations using segmented patches (unique combinations of 

terrain shape) along with error weights derived from DEM slope and roughness 

[Papasaika et al., 2009], frequency domain filtering [Honikel, 1998; Crosetto and 

Aragues, 2000; Karkee et al., 2008], self-consistency where two DEMS are generated 

from the same pair of images by switching the reference and target [Schultz et al., 1999], 
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multi-scale kalman filtering [Slatton et al., 2002], and k-means clustering [Fuss, 2013] 

among others. Many of the fusion techniques are successful in increasing the accuracy 

and/or the precision of the elevation estimates and typically involve only two DEMs in 

the analysis. However, despite this synergistic effect, there is no consistent globally 

applicable solution in place which facilitates merging multiple DEM’s [Buckley and 

Mitchell, 2004; Papasaika et al., 2009]. In addition, most approaches are not data-driven, 

instead relying on a high quality DEM to improve a less accurate one and on a priori 

knowledge of the accuracy of the input datasets [Fuss, 2013].  

Clustering algorithms, typically used in data mining, seem to be one of the most 

promising methods for merging multiple DEMs. They explore data via an ‘unsupervised 

learning’ data driven approach, where a priori knowledge of the dataset is not required 

[Jain and Dubes, 1988]. Data are grouped/clustered based on data similarity, without the 

need of category labels or described relationships between data. Clusters are considered 

‘a set of entities which are alike’, in that the distance between any points within a cluster 

is less than the distance of any point outside the cluster [Jain and Dubes, 1988]. Many 

types of clustering algorithms exist and may be selected based on the data type (e.g.: 

interval, nominal, binary, ratio, etc.) and how clusters vs individuals will be determined 

(recursive or iterative, strict or fuzzy membership, etc.). Fuss [2013] analyzed the 

applicability of k-means, which requires user input of the number of clusters, initial 

centroid locations, and multiple iterations. On the other hand, the Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) method works by finding core samples 

of high density data and expands clusters from them [Duan et al., 2007]. 



92 

 

The development of a framework for simplified flood risk assessment which may 

be used by any community is explored. The focus is put on DEM use in supporting flood 

modelling for regions without access to a high resolution DEM. A fused elevation grid 

from multiple open elevation sources (CDEM, Google and Bing Elevation APIs) is 

generated using a data-driven approach. The proposed method incorporates the 

fundamentals of the DBSCAN algorithm [Sander et al., 1998]: neighborhood (eps) and 

minimum points (MinPts) to form a cluster and identify outliers to exclude from an 

inverse distance weighted estimate of elevation. To illustrate the effectiveness of the 

fused DEM for flood modelling, flood grids were created and the resulting grid compared 

to one derived from a high-accuracy LiDAR surface for two study locations in New 

Brunswick. 

4.2.1 Input Data and Study Areas 

4.2.1.1 Elevation Data 

 Elevation data used in the fusion process include the Canadian Digital Elevation 

Model (CDEM) from NRCan (geogratis.gc.ca), Google Maps (developers.google.com) 

and Bing Maps (msdn.microsoft.com) REST API data. Metadata regarding these data 

sources are found in Table 4.1. A statistical comparison of the datasets in the two study 

areas is found in Table 4.2. In Bathurst, the CDEM and Google datasets are very similar, 

with an RMSE of 1.10 and a mean bias of -0.07m. The highest correlation is found 

between the CDEM and Google datasets while the poorest involve the Bing DEM, with 

R2 values of 0.9714 (Google/Bing) and 0.9706 (CDEM/Bing). 

 The CDEM data were extracted from “hypsographic and hydrographic elements of 

the National Topographic Data Base or various scaled positional data acquired from the 

file:///C:/Users/hmcgrat1/Dropbox/Papers/Dissertation/geogratis.gc.ca
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provinces and territories” [NRCan, 2015]. This dataset stores ground elevations in metres 

relative to Mean Sea Level (MSL) based on the North American Datum 1983 (NAD83) 

horizontal reference datum and the national Canadian vertical reference Canadian Vertical 

Geodetic Datum of 1928 (CGVD28). The measured altimetric accuracy of the CDEM 

varies across the country from 0 –70m. In the chosen NB study areas, this data is reported 

to be vertically accurate 0 to 10m and verified between 1981 and 1990. Horizontally, the 

cell size of the CDEM varies across the country with changing latitude, from 23m x 16m 

to 93m x 65m. In these two study areas, the resolution of available data from the Google 

and Bing REST APIs is 30m.  

Local LiDAR data, acquired by Leading Edge Geomatics in 2011 (Fredericton) and 

2013 (Bathurst) is used for the base elevation data. The average flying height for the 

Fredericton, NB project area is 1400m which produces a horizontal accuracy of ~0.35m 

@ 1 sigma [Leading Edge Metadata, 2011]. The elevation data was tested against 200 

GPS RTK Survey points, 0.13278m at 95% confidence interval, and RMSE of 

0.067745m. 

Table 4.1 Elevation service data resources 

 CDEM (Geogratis) Google Maps 

(Google) 

Bing Maps (Bing) Lidar 

Resolution/ 

horizontal 

vertical 

23 x 16m to 93 x 65m  

0 – 70m 
*rounded to nearest 

metre 

10 – 900 m (depending 

on location) 

 

10 – 900 m (depending on 

location) 
*rounded to nearest metre 

1m horizontal 

Source NRCan  unknown unknown  Leading Edge 

Geomatics 

Vertical 

Reference 

 (CGVD28) WGS84 EGM96 

Geoid 

EGM2008 2.5’ or Height 

Above Ellipsoid (HAE) 

WGS84 

(CGVD28) 

Date 1945- 2011 (study 

area: 1981 – 1990) 

unknown 2008 2011 – 2013 

Coverage 

Area 

Canada wide Global Global: Only latitude in 

range:  -85 to +85  

Study wide 
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Table 4.2 Statistical Comparison of CDEM, Google and Bing. Shaded boxes with bold 

characters indicate best fit values, µ =- mean bias, σ = standard deviation, RMSE = root 

mean square error, R2 = correlation 

Location DEMs µ (m) Avg. 

µ (m) 

σ (m) RMSE Avg. 

RMSE 

R2 

Fredericton CDEM/Google 0.60 
0.26 

2.87 2.93 
2.02 

0.9978 

Bathurst CDEM/Google -0.07 1.10 1.10 0.9969 

Fredericton CDEM/Bing 0.82 
0.54 

3.58 3.68 
3.52 

0.9964 

Bathurst CDEM/Bing 0.27 3.34 3.35 0.9706 

Fredericton Google/Bing 0.22 
0.30 

4.01 4.01 
3.67 

0.9956 

Bathurst Google/Bing 0.37 3.31 3.33 0.9714 

 

4.2.1.2 REST Elevation API 

The REST Elevation API requests are constructed as Uniform Resource Locator 

(URL) strings which contain information about the geographic location of interest, data 

spacing, and an API key. Once sent to the server, the URL request is processed, and the 

elevation data is returned to the user in a formatted JSON or XML document. An 

example of a request to the Google Elevation API service is shown below: 

https://maps.googleapis.com/maps/api/elevation/xml?path=y1,x1|y2,x2&samples=s&key=API_KEY 

Variables which are user defined and may change per request include the start and end 

coordinates of the request: 𝑦1, 𝑥1, 𝑦2, 𝑥2 and the number of data points to extract along the 

path, samples=s. Additionally, an API Key is required to access these services. 

A Python script was developed which relies on user input in the form of a bounding 

box and cell resolution. The script takes this input and forms requests of appropriate 

syntax and length to call to the server. For the Bing API, the request format is in the form 

of bounding box, including the number of rows and columns - where the number of 

returned elevation points cannot exceed 1024, while the Google API utilized the path 

request, as illustrated above. CDEM is also accessible via REST API, taking a similar 

‘path’ form as the Google service. Python libraries including Math, Urllib2, and Json 

https://maps.googleapis.com/maps/api/elevation/xml?path=y1,x1|y2,x2&samples=s&key=API_KEY
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were utilized to take the user input and compute the appropriate individual requests, such 

that the number of points requested in a single request did not exceed the stated 

capabilities. Once the API request url was sliced and formatted, the request was sent to 

the appropriate server, the returned JSON document was parsed to extract position and 

elevation data, stitched together to generate a single array, and then converted to 

GeoTIFF. Geospatial Data Abstraction Library (GDAL) library was utilized for the 

creation of a georeferenced raster from the elevation data points. 

 

4.2.1.3 CDEM Extraction 

An alternative to accessing CDEM from the REST API, is via interactive web 

browser. The CDEM can be downloaded by selecting the geographic extent on the web 

map from the Geospatial Data Extraction page of Geogratis, (geogratis.cgdi.gc.ca/). The 

GeoTIFF DEM is emailed to you once the request has been processed by the servers, 

additionally other DEM derived products can be downloaded: slope, shaded relief, etc. 

The time this takes depends on current servers’ load and complexity of request. 

 

4.3 Study Areas 

 To evaluate the suitability of elevation data from CDEM, Google and Bing 

Elevation APIs and the proposed fusion technique for rapid flood modelling, two study 

areas in New Brunswick were selected: Fredericton and Bathurst, NB. These have been 

selected as there are a mix of urban and rural land use and include shallow and steep 

sloping terrain with rivers and waterbodies in the vicinity.  

 

http://geogratis.cgdi.gc.ca/


96 

 

4.3.1 Fredericton 

The City of Fredericton is the capital of New Brunswick and located in the west-

central portion of the province in Atlantic Canada, at a latitude of ~45.96°N. The city is 

split by the St. John River which flows from west to east through the city (Figure 4.1(i)). 

The local topography varies considerably with elevations ranging from 2m to ~120m 

above sea level, and includes fairly flat land surrounding the St. John River [Stobbe, 

1940]. The Fredericton area is predominately low slope, with 66.7% of the area having 

slopes < 5°, and less than 2% of the area with slopes > 10°. The city and surrounding 

region has a population of 56,000 [Statistics Canada, 2014] with approximately 12,000 

dwellings. The study area selected for analysis is 5 x 5 km.  

 

4.3.2 Bathurst 

Bathurst is located on the north east coast of New Brunswick, approximately 

47.62°N, on the estuary of Nepisiguit River and the southernmost part of the Chaleur Bay 

(Figure 4.1(ii)). There are two spits of land, Carron Point and Alston Point, which nearly 

enclose the entrance to Bathurst Harbour. Additionally, there are two major rivers which 

flow into Bathurst Harbour, the Tetagouche River and the Nepisiguit River. Although 

riverine flooding is a concern, the primary susceptibility to flooding within the region is 

sea level rise and storm surge. Bathurst has about 12,300 residents and approximately 

6,300 dwellings [Dietz, 2016]. The city centre is relatively protected by its location well 

above sea level, however houses and cottages built along the sand pits are directly 

exposed to high velocity winds and storm events coming off the bay [Dietz, 2016]. The 

study area is approximately 10 x 15 km, with an elevation range of 0 – 113 m above sea 
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level. The slope distribution in the Bathurst area is similar to Fredericton: over 72% of 

the area is low slope (< 5°), 6% in the mid-range, (5 – 10°) and 2% of the area has slopes 

steeper than 10°. 

 

Figure 4.1 Topography of two New Brunswick study areas, (i) Fredericton, (ii) Bathurst 

NB, dashed boundaries indicate extent shown in Figures 4.4 and 4.5 

 

4.4 Fusion Method  

The section describes the proposed method of fusion which incorporates concepts 

of clustering and inverse distance weighting (IDW). The aim of fusion is to derive a 

better-quality DEM, where ‘better’ is defined as minimizing the mean bias and relative 

height accuracy (RMSE). A multi-step process was applied to generate the fusion DEM: 

(i) a DEM stack was created first from the input surfaces, (ii) clustering to determine 

which values fall within each Cluster, (iii) IDW to compute new fusion elevation data, 

and (iv) the fusion DEM surface compiled.  

 

4.4.1 DEM Stack 

In this first step, all images were projected to same horizontal projection (NB 

Double Stereographic) NAD83 CSRS, and vertical reference datum of Canadian 



98 

 

Geodetic Vertical Datum of 1928 (CGVD28). The cell resolution of each of the data 

sources differ, varying from 1 m (LiDAR) to 30 m (Bing and Google), with the CDEM 

within this range ~23 m. A common cell size of 30m was selected as it was the coarsest 

of the available datasets. Point data from the LiDAR and CDEM datasets were used to 

generate DEM of common cell size, 30m using the kriging interpolation method. The 

LiDAR and CDEM data are both available as CGVD28 reference. For the Bing dataset, 

the data was downloaded from the REST API referenced to “height above ellipsoid” and 

converted to CGVD28 via the Natural Resources Canada GPS-H tool 

(webapp.geod.nrcan.gc.ca/geod/tools-outils/gpsh.php?locale=en). The Google data has an 

unknown vertical reference. An assumption was made that, in Canada, the vertical 

reference of mean sea level is to CGVD28, and thus data was not vertically adjusted. 

Once all the DEMs were in the same horizontal and vertical projection, they were clipped 

to the same extents, and the number of rows and columns counted to ensure the cell 

assignments were consistent among the DEMs, creating a DEM stack. 

4.4.2 Clustering  

The method proposed utilized the fundamentals of DSCAN clustering. The key 

concepts of: (i) neighborhoods (eps) of a given radius and (ii) minimum number of points 

(MinPts) to form a cluster are used, where clusters are considered dense regions in the 

data space. The idea is for each data point, the neighborhood (eps) of a given radius has 

to contain at least a minimum number of points otherwise a cluster is not formed [Xu 

1997]. The neighborhood of a point, p, is denoted by 𝑁𝐸𝑝𝑠(𝑝) and is defined by: 

𝑵𝑬𝒑𝒔(𝒑) = {𝒒 ∈ 𝑫|𝒅𝒊𝒔𝒕(𝒑, 𝒒) ≤ 𝑬𝒑𝒔}    (4.1) 
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where 𝑑𝑖𝑠𝑡(𝑝, 𝑞) is a distance function for two points, 𝑝, 𝑞. Any data points which do not 

satisfy the condition of MinPts, are outliers and considered noise. 

For each cell in the DEM, the primary cell elevation (𝑧𝑖,𝑗) value was extracted along 

with its eight surrounding neighbors, Figure 4.2(i, ii). In the case of all three DEMS, each 

cell passes 27 elevation data points through to the DBSCAN algorithm from the scikit-

learn machine learning library for Python to determine cluster assignment. During cluster 

assignment, the elevation value was the only considered data, thus the cell location and 

horizontal distance (e.g. 𝑧𝑖+1,𝑗−1) was ignored. Based on the selection of eps and MinPts, 

the elevation values were classified into clusters or noise Figure 4.(i). In Figure 4.(i) there 

are two clusters which are generated, based on the condition of MinPts = 7 and eps =1.75, 

and three elevation points are considered noise as they do not meet the minimum density 

or number of point’s required to form a cluster. Of the two derived clusters, the cluster 

with the greater number of members (𝐶𝑚𝑎𝑥), in this example Cluster 1, is selected and 

passed to IDW to compute the new fusion elevation (𝑧𝑓). If zero clusters are formed, 

elevation data from only cell 𝑧𝑖,𝑗 are passed to IDW. 

  

 

Figure 4.2 (i) Data extraction for fusion of cell i,j and cell size, (ii) Example data from 

single cell (i,j) and neighbors 
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The values of eps and Minpts parameters were varied using set values, 0.5 to 10, 

and values which floated based on the range of the input elevation data to determine the 

most suitable values. The floating value was computed as the standard deviation of the 

input i,j cell elevations. MinPts was also varied to determine the best parameter value. 

MinPts values between 2 and 12 were used as was a floating value of MinPts, based on 

the range of input elevation values. For example, if the input elevation range was less 

than 3 m, 10 points were required for a cluster, and if the elevation range was greater than 

6 m, 3 points were required for a cluster. The results of the derived fusion surfaces were 

compared to the LiDAR DEM and the mean difference (bias) and RMSE statistics were 

considered to determine the most suitable eps and MinPts for each of the fusion 

combination surfaces,  

 

Figure 4.3 (i) Sample cluster classification based on EPS = 1.75 and MinPts = 7, and (ii) 

Accuracy results of from varying eps and MinPts parameters. Accuracy results with 

respect to Mean Difference and RMSE in comparison to LiDAR elevation data. 
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4.4.3 Inverse Distance Weight 

Elevation data which are part of 𝐶𝑚𝑎𝑥 are passed to the inverse distance weight 

algorithm to compute fusion elevation value (𝑧𝑓). 

To compute 𝑧𝑓 for cell i,j, data in 𝐶𝑚𝑎𝑥 are averaged based on the inverse distance 

to the cell centre of i,j (eq.2). Data from i,j are given weight of 100%, orthogonal cells (o) 

have distance of 30m and those diagonal (𝑑) are 42.42m centre-to-centre, these elevation 

points are thus assigned weights of 30% and 20% respectively. 

𝒛𝒇= 
∑ 𝒊𝒏

𝒐 + ∑ 𝒐𝒏
𝒐 ∗𝒘𝒐 + ∑ 𝒅𝒏

𝒐 ∗ 𝒘𝒅
𝒏𝒊∗ + 𝒏𝒐∗ 𝒘𝒐+ 𝒏𝒅∗𝒘𝒅

     (4.2) 

where i = cell i,j data, o = orthogonal cells, and d = diagonal cells and 𝑤𝑖𝑗 = 1, 𝑤𝑜 =

(1 30⁄ ) ∗ 10  𝑤𝑑 = (1 42⁄ ) ∗ 10. 

 

4.4.4 Final DEM 

The point data was then converted to an elevation raster surface using the GDAL 

write array to raster function. 

4.5 Results 

The results are divided into two sections: (i) evaluation of the elevation data of the 

individual and fusion DEMs and (ii) comparison of DEM flood grids to the flood surface 

derived from the LiDAR surface – including both water depth and spatial coverage of 

flood extent.  
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4.5.1 DEMs  

To facilitate comparison, all DEMs were analyzed with cell size of 30m. While this 

increase of cell size of the LiDAR data reduces accuracy, when input to hydrologic 

program, the estimate of volume of runoff is relatively insensitive to this increase 

[Fellows and Ragan, 1986]. Goulden et al., [2014] found that changes in cell size affect 

the topography and contribute to variability in watershed attributes, including: basin area, 

stream length and location. However, given the width of waterbodies in these study areas, 

the chosen 30m cell resolution is sufficiently able to represent the watershed attributes.  

 Individual DEMS: The three individual surfaces fit the LiDAR well within their 

posted accuracy specifications (Tables 4.1 and 4.3). The largest errors are found in the 

area of an old growth forest in Fredericton (5-20 m) and within the boundaries of the 

water bodies. In Fredericton DEM errors within the Saint John River, are found to be up 

to 4 m (CDEM), 2 m (Bing), and less than 1m (Google).  

All individual DEMs have a positive bias, on average over-estimating the elevation 

comparison with the corresponding LiDAR surface. This is likely a result of the elevation 

data containing surface returns, not just bare-earth measurements as found in the LiDAR 

dataset. For example, if the elevation data of the Bing or Google REST API is comprised 

of the SRTM data, elevations will likely be overestimated as SRTM does not produce a 

bare-earth DEM [Zanderbergen, 2008]. In the SRTM dataset forested areas the elevation 

values typically fall somewhere between ground and canopy, and in urban areas pixel 

elevations are affected by any buildings in that pixel [Zanderbergen, 2008], thus 

producing a positive bias to a bare-earth dataset. 
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The root mean square error (RMSE) of the CDEM dataset is lower than either the 

Bing or Google data, making it a better fit, Table 4.3. However, the overall error bias of 

the Bing data is more closely aligned to the LiDAR in both study areas, with an average 

bias over the two areas of 0.68m above the LiDAR. Results of the Google dataset find 

better overall mean bias, but lower RMSE than the CDEM, and the inverse when 

compared to the Bing results, thus the Google dataset is ranked 2nd in both statistics. The 

elevation scatter plots in Figure 4.4, 4.5(ii), compare cell by cell elevation values and 

indicate a strong linear trend across all elevations and fairly high density, indicating good 

correlation. The Google dataset from Fredericton has the largest R2, indicating the 

regression model accounts for 0.9951 of the variance, however all individual DEMs are 

found to have R2 values above 0.97. The histogram of the individual DEM differences 

from LiDAR show the Google data with the most normally distributed data, with most of 

the elevation differences within ±2m, while the Bing data is more widely distributed with 

a large frequency of pixels around -2m and the CDEM data having a right tailed 

distribution (Figure 4.4 (iii), a-c). The Pearson correlation coefficient (r) of all datasets 

indicate strong correlation of the individual DEM data to the LiDAR data, with values 

ranging from 0.9861 to 0.9987. 

As the resolution of the CDEM data set varies with latitude, 0.75 arc seconds 

(south-north) to 3 arc seconds (west-east), and the vintage of the data from CDEM varies 

across the country from 1945 to 2011, fusion of this dataset with a more current dataset 

would provide greater confidence in the validity of the data and the representation of 

present day terrain.  
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Table 4.3 Statistical comparison of individual DEMs to LiDAR. Shaded boxes with bold 

characters indicate best fit values, µ =- mean bias, σ = standard deviation, RMSE = root mean 

square error, R2 = measure of fit to regression line, r = Pearson’s correlation coefficient  

Location DEM µ (m) Avg µ 

(m) 

σ 

(m) 

RMSE Avg 

RMSE 

R2 r 

Fredericton Bing 0.53 0.68 3.33 3.37 2.91 0.9937 0.9969 

Bathurst Bing 0.83 2.30 2.44 0.9789 0.9894 

Fredericton Google 0.75 0.79 3.04 3.13 2.98 0.9951 0.9976 

Bathurst Google 0.83 2.71 2.83 0.9724 0.9861 

Fredericton CDEM 1.35 1.11 2.15 2.54 2.69 0.9974 0.9987 

Bathurst CDEM 0.86 2.71 2.84 0.9726 0.9862 

 Fusion DEMs: Four fusion DEM surfaces were created using unique 

combinations of the individual DEMs (CDEM/Bing, Bing/Google, CDEM/Google, and 

CDEM/Google/Bing). The LiDAR DEM is subtracted from the results of the fusion 

DEMs to create difference DEMs (dDEM). 

The fusion dDEMs in Fredericton all have relatively high computed values for 

Pearson’s correlation coefficient (r) and R2 with values of ranging from 0.973 to 0.9974 

and 0.9864 to 0.9987 respectively, Table 4.4. The highest correlation coefficient (r) and 

R2 is found for the fusion surface which uses all three DEMs. This three DEM fusion 

dataset (CDEM/Google/Bing) also reports the lowest root mean square error in each 

study area, with an average RMSE = 2.50. However, this fusion DEM has the second 

smallest mean bias, average +0.01m larger than the Bing/Google dataset. The poorest 

results were from the CDEM/Bing and CDEM/Google fusion DEMs, however, the 

average bias and RMSE of these two fusion datasets is equal to or less than that of the 

individual Google and CDEM DEMs. 
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Table 4.4 Statistical comparison of fusion DEMs to LiDAR. F=Fredericton, B = 

Bathurst, shaded boxes with bold characters indicate best fit values, µ =- mean bias, σ = 

standard deviation, RMSE = root mean square error, R2 = correlation to best fit line, r = 

Pearson’s correlation coefficient  

Site Fusion µ 

(m) 

Avg µ 

(m) 

σ 

(m) 

RMSE Avg 

RMSE 

R2 r 

F CDEM/Google/Bing 0.60 
0.72 

2.80 2.27 
2.50 

0.9974 0.9987 

B CDEM/Google/Bing 0.84 2.60 2.74 0.9742 0.987 

F CDEM/Bing 0.62 
0.73 

2.61 3.04 
2.92 

0.9950 0.9975 

B CDEM/Bing 0.85 2.65 2.79 0.9730 0.9864 

F CDEM/Google 0.75 
0.80 

2.61 2.71 
2.76 

0.9964 0.9982 

B CDEM/Google 0.85 2.68 2.81 0.9730 0.9864 

F Bing/Google 0.59 
0.70 

2.98 2.87 
2.82 

0.9958 0.9979 

B Bing/Google 0.82 2.65 2.77 0.9730 0.9864 

As discussed above for the individual surfaces, Bing has the lowest mean bias 

however it does not have the smallest RMSE; CDEM on the other hand, shows the 

smallest RMSE, but not the smallest mean bias, with the Google dataset ranking second 

in each of these statistics. In both study areas, comparison of the individual to the fusion 

DEM data, the CDEM/Google/Bing fusion surface produced the best DEM when 

compared to LiDAR DEM, with respect to RMSE and R2. The correlation (r) of the data 

of the CDEM/Google/Bing dataset is equivalent to the best individual result of CDEM in 

Fredericton. The average mean bias is smallest in the individual Bing datasets, µ = 0.68, 

however the average mean bias in the Bing/Google and CDEM/Google/Bing fusion data 

is not much larger, µ = 0.71 and µ = 0.72 respectively. Thus, the fusion process improves 

DEM accuracy. 

4.5.2 Flood Inundation Maps 

To verify the spatial distribution of the correlation to the LiDAR dataset and the 

impact of the terrain on the accuracy of the final DEMs, inundation maps were created 
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for the three individual DEM surfaces and the four final fusion generated DEMs using the 

Flood Information Tool (FIT) in ArcMap 10.0 [FEMA, 2010]. The inputs required to 

compute the flood depth grid include: the DEM, floodplain boundary and a series of cross 

sections with attributes containing height of water and/or discharge. The Fredericton 

flood scenario, which is approximately representative of the 2008 flood event, was used 

with a discharge volume of 9,120m3/s, in Bathurst, the scenario was based on sea level 

rise of 4.5m.  

First, the total flooded area is used as a simple measure of the accuracy of the 

DEMs. Applying the LiDAR DEM surface, a total of 8.45% and 18.35% of the study 

area is flooded in Fredericton and Bathurst respectively Table 4.5. In the Fredericton 

scenario, the flood surface obtained with the CDEM/Google/Bing fusion DEM showed 

the closest match to the LiDAR surface, indicating 8.79% of the area is flooded, an 

overestimation of 0.34% which is equivalent to 0.26km2. In Bathurst, the individual Bing 

data was the best match when comparing total area flooded, with a difference of -0.09%, 

while the Google and the CDEM/Google/Bing fusion were ranked second, with a 

difference of 0.30%. All flood surfaces correlated within ±1.6% of total flooded area or 

0.75km2 (Fredericton) and 1.59km2 (Bathurst). In the both study areas, the flood grids 

from the fusion surfaces, on average, over-estimated the total flooded area, while the 

individual DEMs in Fredericton underestimated total flood area. 

However, just comparing the total flooded area does not take into consideration the 

overlapping, i.e., which cells are flooded and which are dry in each of the flood grids. A 

robust approach to derive areal statistics is achieved using a fit measure, as suggested by 



107 

 

Bates and deRoo [2000], eq.3. In this approach the observed inundated area (𝐴𝑜𝑏𝑠) is 

compared to that of the predicted by the model (𝐴𝑚𝑜𝑑): 

𝑭 =
𝑨𝒐𝒃𝒔∩𝑨𝒎𝒐𝒅

𝑨𝒐𝒃𝒔 ∪𝑨𝒎𝒐𝒅
∗ 𝟏𝟎𝟎     (4.3) 

when F = 1, the two flood rasters coincide perfectly.  

In Fredericton, the CDEM/Google/Bing results most closely matched the LiDAR 

total flooded area, with a difference of just 0.34% flooded area. However the fit measure, 

or cell-by-cell comparison finds a relatively low correlation of flooded areas, F = 0.7933, 

Table 4.5 - indicating that many of the cells flooded in the LiDAR flood grid are not 

flooded in the CDEM/Google/Bing grid. The Bing dataset has a much higher fit measure, 

F = 0.9183 in Fredericton and F = 0.8956 in Bathurst. Overall, the fit measures in 

Bathurst study area are higher than Fredericton, with nearly all being greater than 0.9. In 

Fredericton the fit measures of the individual surfaces range from 0.7652 (Google) up to 

0.9183 (Bing), while the fusion DEMs have fit measures between F = 0.73 and F = 0.80. 

 Fredericton: In the CDEM/Google flood grid has 49% of the cells indicate water 

depth ±1 m of the LiDAR flood grid, with 37% of these within ±0.30m, Figure 4.4(i), a-

g. The CDEM/Google/Bing fusion DEM created the next best result, with 48% within ±1, 

with 31% of these within 0.3m, Figure 4.4(d). The individual Bing DEM has the poorest 

result, with just 5% within ±0.3m and 11% within ±1m, Figure 4.4(c). 
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Table 4.5 Difference in flooded area (%) using individual and fusion derived elevation data 

surfaces and Fit measure (F). Flooded area computed using Flood Information Tool. Results 

compared to flood surface generated from LiDAR DEM. Bold values represent best values 

` Fredericton Bathurst 

 % Flooded % change F % Flooded % change F 

LiDAR 8.45% - 1 18.35   1 

CDEM ONLY 7.46% -0.99% 0.8856  19.03 0.68% 0.9233 

Google ONLY 7.94% -0.51% 0.7652 18.65 0.30% 0.9282 

Bing ONLY 7.79% -0.66% 0.9183 18.26% -0.09% 0.8956 

Fusion:       

CDEM/Google/Bing 8.79% 0.34% 0.7933 18.65% 0.30% 0.9154 

CDEM/Bing 9.22% 0.77% 0.7246 19.88% 1.53% 0.8796 

CDEM/Google 9.67% 1.22% 0.7866 18.81% 0.46% 0.9252 

Bing/Google 7.79% -0.66% 0.7354 19.04% 0.68% 0.9464 

 

In the north-west portion of the map in Figure 4.4(i), north of the St. John River, the 

entire area is flooded in the base LiDAR case. The Bing, Google and fusion surfaces 

capture nearly the extent of flooding in this neighborhood, while the CDEM does not. 

While these surfaces capture flooding in this area, the reported depth of water varies from 

0.20m to 5m. Moving east across Figure 4.4(i), along the north bank of the river, the Bing 

and CDEM/Bing surfaces do not illustrate flooding at all along the north bank, from Ring 

Road to Gibson St, contrary to the LiDAR flood grid. The remainder of the surfaces do 

present flooding along the north bank, though not perfectly representing the base case, 

but the CDEM/Google/Bing and CDEM/Google surfaces are good approximations. On 

the north shore south of the Nashwaak River the CDEM surface greatly overestimates 

flooding and the Bing underestimates flooding in this area. The CDEM/Google/ Bing and 

the CDEM/Google best correspond to the LiDAR in this area. On the southern shore of 

the St. John River, in the downtown area, all surfaces overestimate flooding, however the 

Bing data does the worst job at representing flooding, overestimating flooding from the 

western extent of the study area by up to 6m, all the way along the southern shore to 



109 

 

University Avenue in the east. Overall, based on qualitative analysis, the 

CDEM/Google/Bing fusion surface, provides the nearest approximation to the LiDAR 

flood surface. 

The elevation scatter plots in Figure 4.4(ii), which compare cell by cell elevation 

values, indicate a strong linear trend and fairly high density, indicating good correlation 

in elevation data. The mean and standard deviation are computed from the observed data 

to the polynomial fit line. The mean for all elevation data, individual and fusion surfaces, 

are slightly below zero, while the mean for all flood grid data is zero. The individual 

CDEM data has the lowest standard deviation, with respect to the elevation data, σ = 

2.15, with the CDEM/Google/Bing being slightly larger, σ = 2.16, and the Bing dataset is 

the highest, σ = 3.3. Of the flood grids, the Bing/Google surface has the lowest standard 

deviation, σ = 1.64. 

Each of the fusion flood grids have smaller computed RMSE than the individual 

surfaces. The CDEM /Google fusion, in terms of relative mean error, computes the best 

matching flood grid, with RMSE = 1.17, Figure 4.4(iii). This flood surface also has a 

relativly small, positive mean bias, µ = 0.48. All of the flood grids produce a positive 

correlation (r > 0). The elevation histograms (Figure 4.4(iii)), for the fusion flood 

surfaces better approximate a normal distribution, than do the individual DEMs. 

Overall, the fusion surface of the CDEM/Google, Google/Bing and 

CDEM/Google/Bing produce flood grids with strong correlation, r = 0.5758 to 0.6194. 

The individual CDEM surface is weakly correlated with the LiDAR generated flood grid, 

with r = 0.2833.  
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 Bathurst: The flood grids generated by the individual and fusion DEMs better 

approximate the LiDAR flood grid in Bathurst than in the Fredericton area. All DEMs 

produce flood grids which approximate the flooding extent along both Alston and Carron 

Point, Figure 4.5(i), however the magnitude of the computed flood differences vary 

amongst the grids in these areas, with ranges within ±2m of the LiDAR derived flood 

surface. Along the northwestern shore of Chaleur Bay, west of Alston Point, some inland 

flooding captured in the LiDAR surface is not represented by any of the individual or 

fusion DEMs. On the east shore of Chaleur Bay flooding is generally underestimated, as 

many cells are flooded in the LiDAR surface and not in any of the other grids. However 

the Google and CDEM/Google/Bing surfaces show a more mixed composition of under 

and overestimation of flooding in this area. 

The elevation scatter plots which plot the LiDAR elevation values against the 

DEM surface elevation values show lower density than that of the Fredericton study area, 

especially in the lower elevation ranges, 0 to 40m. Some of this may be explained by 

differences in elevation computed in water bodies of Chaleur Bay, Bathurst Basin, and 

the rivers, Figure 4.5(ii). The mean differences from the elevation data to the polyfit line 

approximate zero. The fusion surfaces derived from combining Bing with CDEM or 

Google show more outliers, indicating the poorer correlation to the LiDAR data. Overall, 

the standard deviation of all surfaces are similar, within the range of σ = 2.2 to 2.6.  

The histograms for each surface follow a normal distribution, with peaks near zero. 

The elevation data from the Bing/Google fusion has the smallest mean bias, µ = 0.82 with 

the Bing and Google surfaces having the next smallest bias, µ = 0.83. The elevation 
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histograms are all have two peaks: -1m and 0.8m. Reviewing the spatial distribution of 

these peaks find these to be primarily within Bathurst Harbour and Chaleur Bay.  

Of the individual datasets, the CDEM/Google/Bing surface produces the flood grid 

which is most statistically similar to the LiDAR flood grid. The CDEM/Google/Bing 

fusion flood grid computes a large correlation value, r = 0.9945, and a computed relative 

height accuracy, RMSE = 0.92, Figure 4.(iii).  

In the individual datasets, in both locations, the Bing data has the smallest mean 

bias, the CDEM has the smallest RMSE, while the Google surface is in between in each 

of these measures. With respect to the fusion surfaces, the CDEM/Google/Bing DEMs 

compute smaller RMSE and higher correlation when compared to the LiDAR DEM. This 

fusion surfaces therefore results in flood grids which better approximate the flooding 

extent and depth than the individual DEMs for both study areas. 
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Figure 4.4 Fredericton study area (i) flood depth grids, (ii) correlation scatter plot, and (iii) histogram of 

individual DEMs: (a) CDEM, (b) Google, and (c) Bing and fusion DEMs (d) CDEM/Google/Bing, (e) 

CDEM/Bing, (f) CDEM/Google, (g) Bing/Google compared to LiDAR (red) and LiDAR derived flood grid 

(blue) determined as the baseline surface 

(i) (ii) (iii) 
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Figure 4.5 Bathurst study area (i) flood depth grids, (ii) correlation scatter plot, and (iii) histogram of 

individual DEMs: (a) CDEM, (b) Google, and (c) Bing and fusion DEMs (d) CDEM/Google/Bing, (e) 

CDEM/Bing, (f) CDEM/Google, (g) Bing/Google compared to LiDAR (red) and LiDAR derived flood grid 

(blue) determined as the baseline surface 

(i) (ii) (iii) 
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4.6 Conclusion 

The development of a framework for simplified flood risk assessment which may 

be used by any community is explored, with a focus on how one can support flood 

estimation for regions without their own high resolution DEM. This is particularly 

relevant as resolution and accuracy are the main properties of a DEM which affect flood 

modelling results. Three readily available Canada wide elevation datasets were 

considered: CDEM, Google Maps and Bing Maps REST APIs. There is limited 

transparency regarding the source of the data from these providers, thus data fusion is 

considered to improve their reliability. A fused elevation grid is generated using a data-

driven approach to achieve the best-accuracy DEM possible from these inputs. The 

proposed method used fundamentals of DBSCAN clustering algorithm: eps and MinPts, 

to determine elevation clusters from noise, and inverse distance weighting to generate a 

new fusion DEM. To illustrate the effectiveness of the individual and fusion DEMs for 

flood modelling, they were imported to flood modelling software and the resulting flood 

depth grid compared to one derived from high-accuracy LiDAR. 

Two locations in eastern Canada were used as study areas to test the applicability of 

open source REST API elevation data over different terrain configurations. Overall, the 

three individual surfaces fit the LiDAR well within their posted accuracy specification. 

The CDEM dataset has the lowest RMSE, making it a better choice; however, the error 

bias of Bing is more closely aligned to the LiDAR in both study areas, with the Google 

dataset ranking second in each of these statistics.  

Fusion was performed via a novel approach which incorporates clustering and 

inverse distancing weighting to combine the DEMs with the aim of improving DEM 
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accuracy. In both study areas fusion was able to reduce the RMSE and mean bias while 

increasing the R2 and correlation. The best results were found when all three DEMs were 

combined. Flood grids derived from the fusion DEMs generated a better match, in both 

spatial extent and depth, to the LiDAR derived flood surface than any of the individual 

DEMs. 

Based on these results, the combination of open source CDEM elevation data fused 

with Bing and Google REST API elevation data provides a better DEM than any of those 

a forenamed individual surfaces. While the resolution of these data ~30m is significantly 

coarser than LiDAR, many applications exist for which data of this resolution and 

accuracy are suitable, including rapid and preliminary flood modelling. 

Future recommendations include analysis of other geographic locations to see if 

they validate these findings and testing these data sources using other documented fusion 

techniques to determine if this method may provide better results than those previously 

proposed. Additionally, testing the effect of maintaining 3 dimensions in the clustering 

algorithm and other clustering methods may be tested to determine if they provide better 

results.  
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5 Online Reduced Complexity Flood Modelling: Leveraging Open 

Data and Limited User Input 

 

5.1 Abstract 

Modeling flood inundation is a complex process involving numerous variables and 

factors and extensive literature addressing different modeling and simulation aspects. 

Existing sophisticated solutions are run on desktop computers requiring considerable 

processing time, inputs, and user knowledge and are typically not suitable for rapid flood 

prediction. Hence, important communication gaps between the experts on one side and 

the needs of the local public safety community and population living in flood prone zones 

to understand their own exposure and vulnerability on the other exist and are not well 

addressed. Coupling recent advances in remote sensing techniques and the augmentation 

of open data with the notion that the best model is the simplest one, a framework for 

simulating flood inundation via web browser is introduced. Two reduced complexity 

flood models are explored, (i) 0D flooded water surface and (ii) hybrid 1D/2D cell 

storage model. The framework considers limited user input, thus facilitating its use by 

non-expert users. Leveraging freely available open source data, including digital 

elevation models (DEM), river gauge measurements, intensity duration frequency tables 

(IDF), and applying basic hydrologic principles and processes, flood scenario modelling 

capabilities at user specified level or recurrence interval have been created. Initial results 

reveal significant advantages for the non-expert public safety community: rapidity and 

ease of use. The presented user-friendly tools allow communities to generate their own 
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flood inundation scenarios on demand in support of informed emergency response and 

mitigation planning. 

5.2 Introduction 

Modeling flood inundation is a complex process involving numerous variables and 

factors and extensive literature exist addressing different modeling and simulation aspects 

[Kulkarni et al., 2014]. The best model is often the one which provides the user with the 

information required, whilst reasonably fitting the available data – recognizing that the 

processes necessary to include to best approximate historic/future events are still subject 

to considerable uncertainties [Bates and De Roo, 2000]. While sophisticated software 

packages exist, they are typically based on desktop solutions, requiring extensive 

processing time, sizable inputs, and knowledge to run and interpret [Leskens et al., 2014]. 

Timely and accurate prediction of inundation extent and potential impacts and 

consequences is fundamental for the sustainable development of a given region and 

provides valuable information necessary for understanding respective exposure and 

vulnerability [Scawthorn et al., 2006]. Currently, no application is suitable or available 

specifically for interventions where flooding is imminent or in progress [Poulin et al., 

2012]. Kulkarnie et al., [2014] successfully developed a web based GIS and urban flood 

simulation model, however the run time in their test sites exceeded 6 hours. 

Hydraulic models solve unsteady flow along the considered length of an open 

channel as governed by continuity and momentum equations (eq 5.1, 5.2), together called 

Saint Venant equations, and are classified through different forms or numerical methods, 

or by their dimensionality. The components of the momentum equation (eq. 5.2) include: 

local acceleration, convective acceleration, pressure forces, gravity and friction force 
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components. One dimensional (1D) models may solve a simplified form of these 

equations by assuming shallow water terms have an insignificant impact on the result. 

The 1D kinematic wave approximation assumes all the terms, with the exception of 

friction and bed gradient, as negligible. On the other hand, the diffusive wave 

approximation includes water slope in addition to friction and gravity forces. The 

dynamic wave approximation includes all terms of the momentum equation (eq. 5.2). 
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There is increasing consensus in the literature that channel flow below bankfull 

depth can be adequately described by a simplified form of 1D equations [Hunter et al., 

2007]. However, these 1D models have difficulties simulating field conditions when 

more complex floodplains are considered.  Hybrid models combining the best attributes 

of 1D and 2D models have been recently explored with promising results [Fewtrell et al., 

2011; Bates et al., 2010; Hunter et al., 2008; McMillan and Brasington, 2007; Bates and 

De Roo, 2000]. Coupling 1D channel flow with 2D raster storage cell approximation for 

the floodplain has produced models which are computationally efficient and suited to 

adequately reproduce the hydrograph and inundation measurements simultaneously 

[Bates and De Roo, 2000; McMillan and Brasington, 2007]. Advantages of this hybrid 
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parameterize flows, spatial predictions comparable to similar finite element codes and 

much shorter runtimes [Bates and De Roo, 2000; McMillan and Brasington, 2007]. 

Additionally, most of the hybrid modelling studies have used cell sizes roughly 

equivalent to the river width, further simplifying the definition of the river channel as a 

chain of interconnected cells [McMillan and Brasington, 2007].  

Topography represents an integral part and a major source of errors in flood 

modelling [Cook and Merwade, 2009]. Recent advances in remote sensing techniques 

have led to widespread availability of sufficiently accurate DEMs which provide nearly 

globally coverage. The availability of DEMs has improved significantly the ability to 

parameterize topographic boundaries needed for hydraulic computations [McMillan and 

Brasington, 2007]; however, the geometric descriptions of river bathymetry is often 

missing in these data. Input data requirements of existing hydrodynamic software 

solutions, which model river flow in 1, 2 or 3 dimensions, include: initial flow conditions, 

change in discharge and side flows, in channel flow characteristics such as velocity, shear 

stress, water level, etc., land use, and river bathymetry. All these requirements often 

exceed what is currently available for many Canadian watersheds. 

The recognized data limitations coupled with the need for tools which allow 

sufficiently accurate and rapid computations have prompted this research. The objective 

of this paper is to illustrate methods developed to: (i) leverage open source and public 

domain data (e.g., DEM, IDF curves, river flow data, watershed boundaries, etc.) 

combined with physically based flood inundation models to compute flood hazard, and 

(ii) optimize computations and generate model output in near real-time. The proposed 

reduced complexity models are intended to fill a gap in the available applications suitable 
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specifically for interventions where flooding is imminent or in progress and to allow 

access to otherwise complex flood hazard scenarios and in-depth knowledge of the 

exposure and vulnerability to flood events to the non-expert public safety community. 

 

5.3 Background 

Two reduced complexity rapid flood modelling approaches are explored: (i) 0D 

bathtub model; and (ii) a hybrid 1D/2D raster cell storage approach.  

In the first approach, the flooded area is directly delineated from the DEM and 

interpolated water surface using a simple, practical approach for rapid computation. The 

flood surface is interpolated by kriging using known water levels at user provided points 

or from nearby river gauges. Flood depth in the bathtub model is calculated as the 

difference between the terrain elevation and the computed water surface [Yunus et al., 

2016]. Any location where terrain elevation is lower than the water surface is considered 

flooded. As elevation data is the primary component, this model may be implemented in 

any areas where otherwise detailed hydrological data is unavailable. The computed flood 

grid is tested for hydrological connectivity. Usually, the eight-way connectivity rule is 

applied: indicating a cell may be flooded if any of its eight neighboring cells is flooded 

[Yunus et al., 2016]. In this study, the hydrological connectivity test is based on a cost 

raster. The cost raster is initialized with a low friction value (cost unit) for cells which are 

flooded and larger friction value for non-flooded cells. For each cell in the study area, the 

total cost is computed by summing the cost of each cell it passes to reach the main 

channel, based on flow direction computed from the DEM. All cells with total costs 

larger than the Euclidean distance from cell to main channel are discarded and set as non-
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flooded [Werner, 2001]. In this method flow rates and changes of flood boundary and 

depth over time are not considered. 

The second reduced complexity model implemented is based on the model 

popularized by Bates and De Roo [2000]. The authors approximated the channel flow by 

a 1D kinematic wave approximation and treated the floodplain as 2D flooding, where the 

spreading is simulated using cell storage reservoirs over a raster grid. This physically 

based raster model solves momentum and continuity equations for the kinematic wave. In 

this study, a linear scheme which uses the backward-difference method is used to derive 

the explicit finite-difference equations in terms of space (j) and time (i) [Chow et al., 

1988]: 
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     (5.3) 

where, 𝑄 is volumetric flow rate in Cartesian (x) direction at distance x, 𝛽 is a constant, 𝛼 

is computed from Manning’s coefficient of friction (n), width of channel (w), and slope 

of channel, q is lateral flow and t stands for time.  

First, a linear feature describing the centerline of the main channel is determined 

from the Canadian National Hydro (NHN) datasets (geogratis.cgdi.gc.ca/). From the main 

channel the downstream cells are identified. Then for each channel cell the input 

parameters required to solve the kinematic wave approximation are identified.  

Once the bankfull depth is exceeded, and/or to evacuate overland rainfall, water is 

routed over the floodplain by solving 2D momentum and continuity equations [Bates and 

De Roo, 2000]. The cell dimensions (length and width) are known from the DEM and 
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friction coefficient is derived based on land use class from pre-processed LandSAT 

imagery (ftp.geogratis.gc.ca/pub/nrcan_rncan/vector/geobase_lcc_csc). For a given cell 

in a given time step, the volume variation is computed as the sum of the fluxes of each of 

the four neighbouring cells as follows: 

𝑑𝑉

𝑑𝑡
= 𝑄𝑢𝑝 +  𝑄𝑑𝑜𝑤𝑛 +  𝑄𝑙𝑒𝑓𝑡 +  𝑄𝑟𝑖𝑔ℎ𝑡   (5.4) 

Flow between neighbouring cells is assumed to be a function of the free surface 

height difference between the cells, following discretization of continuity and kinematic 

momentum, (based on Manning’s Law (eq. 5.6)) [Bates and De Roo, 2000; Maugeri, 

2012], Figure 5.1:  

∆ℎ𝑖,𝑗

∆𝑡
=

Q𝑥
𝑖−1,𝑗

+Q𝑥
𝑖,𝑗

+ Q𝑦
𝑖,𝑗−1

+ Q𝑦
𝑖,𝑗

∆𝑥∆𝑦
         (5.5) 

𝑄𝑥
𝑖,𝑗

= ±
ℎ𝑓𝑙𝑜𝑤

5/3

𝑛
 (

ℎ𝑖−1− ℎ𝑖,𝑗

∆𝑥
) ∆𝑦       (5.6) 

where, ℎ𝑖,𝑗 is the water depth at cell i,j, ∆𝑥, ∆𝑦 are the cell dimensions, ℎ𝑓𝑙𝑜𝑤 is the free 

water depth between the two cells and the constant 5/3 is calculated by approximating the 

channel shape as a wide, shallow rectangle [Bates and De Roo, 2000; McMillan and 

Brasington, 2007]. 

 

Figure 5.1  (i) discretization of floodplain cells, (ii) flow between cells on floodplain 

(eq5.6), after Bates and De Roo, 2000; Maugeri, 2012 
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A minimum time step for the model is computed based on solution of Courant 

condition to maintain numerical stability [Chow et al., 1988]:  

∆𝑡 ≤
∆𝑥𝑖

𝑐𝑘
        (5.7) 

where, 𝑐𝑘 is the kinematic wave celerity, and ∆𝑥𝑖 is distance. The computed time step must 

be less than the time necessary for a wave to travel a distance of ∆𝑥𝑖 to satisfy the Courant 

condition. In general, the explicit method is unstable unless ∆𝑡 is sufficiently small. 

Although the Courant condition does not guarantee stability, it does provide a guideline for 

a suitable time step [Chow et al., 1988]. An adaptive time step is used herein in the designed 

workflow to vary time throughout the duration and minimize runtime. 

Assumptions of this hybrid 1D/2D method include: negligible lateral friction, flow 

velocity and direction controlled purely by friction coefficient and DEM elevation, and no 

momentum exchange between channel and floodplain, only mass [Bates et al., 2005].  

 

5.4 Framework Development 

The estimated flood boundary and inundation depths are computed using minimal 

user input as selected from intuitive drop down menus via a series of developed python 

scripts which reference and download appropriate online data and process it through 

application of hydrological processes. 

5.4.1 0D Bathtub Model 

The DEM is the primary consideration for the 0D inundation model. Estimated 

flood depth at a given number of points, either input by the user or extracted from nearby 

river gauges are the inputs to ordinary kriging algorithm and an interpolated flood surface 
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is generated. The DEM data is subtracted from the simulated flood surface to generate the 

flood inundation extent and water depths and then screened for hydrological connectivity. 

5.4.1.1 Kriging 

In this simulation, observed water level data used for kriging of the flood surface is 

derived from five river gauge stations in New Brunswick, where water levels were 

measured at the time of the 2008 flood. These observation data was then treated in a 

MatLab program: (i) to compute the experimental variogram, which describes the spatial 

tendency of the data, (ii) select an appropriate variogram model (exponential and 

isotropic spherical model were tested) and (iii) cross validate the resulting statistics to 

ensure the best model is selected to generate the flood surface. Regularly gridded (~30m) 

coordinates within the boundaries of the study area were input as the penultimate step to 

estimate values of water levels and error variance at each of these unknown cell 

locations. Lastly, the elevation data of each cell was subtracted from the water level 

surface to generate the flood grid. 

Ordinary point kriging uses weighted averaging of neighboring points to estimate 

the value at unknown points, using a data driven weighting function, rather than an 

arbitrary function [Bohling, 2005; Oliver and Webster, 2014]. Kriging estimates have 

statistically optimal properties, producing the minimum error variances of any linear-

estimation method (Snyder, 2008). Additionally, this method maximizes available 

measured data to help compensate for effects of clustered observations and provides a 

map of the uncertainty of the estimates. 

In ordinary kriging, observed values for the variable z at a number of known 

locations, 𝑥1, 𝑥2, … 𝑥𝑁 are required, and any new point 𝑥0, 𝑍 can be predicted by: 
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�̂�(𝑥0 ) =  ∑ 𝜆𝑖𝑍(𝑥𝑖)𝑁
𝑖=1      (5.8) 

where 𝜆𝑖 are weights chosen to minimize the error variance through solution of: 

∑ 𝜆𝑖𝛾(𝑥𝑖 − 𝑥𝑗) +  𝜓(𝑥0)𝑁
𝑖=1 = 𝛾(𝑥𝑗 − 𝑥0)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗  (5.9) 

where the sum of all weights (𝜆𝑖) is equivalent to 1, 𝛾(𝑥𝑖 − 𝑥𝑗) is the semivariance 

between points 𝑖 and 𝑗, 𝛾(𝑥𝑗 − 𝑥0) is the semivariance between 𝑗 and the target point 𝑥0, 

and 𝜓(𝑥0) is a Lagrange multiplier introduced for minimization of the error variance. 

The mean-squared error, in terms of the variogram can be computed by Trauth et al. 

[2007]: 

𝐸((�̃�𝑥𝑜 − 𝑧𝑥𝑜)2) = 2 ∑ 𝜆𝑖𝛾(𝑥𝑖, 𝑥𝑜) −  ∑ ∑ 𝜆𝑖𝜆𝑗𝛾(𝑥𝑖 , 𝑥𝑗)𝑁
𝑗=1

𝑁
𝑖=1

𝑁
𝑖=1    (5.10) 

where 𝐸 is the estimation or kriging variance, 𝛾(𝑥𝑖, 𝑥𝑜) is the variogram between the 

observed data point and the ‘unknown’, 𝛾(𝑥𝑖, 𝑥𝑗) represents the variogram between data 

points 𝑥𝑖 and 𝑥𝑗 and 𝜆𝑖𝜆𝑗 are the weights of the 𝑖𝑡ℎ and 𝑗𝑡ℎ data points. In order to 

minimize eq. 5.10, a Lagrange multiplier is included, resulting in a linear kriging system 

of 𝑁 + 1 equations and 𝑁 + 1 unknowns. 

 

5.4.1.2 Hydrological Connectivity 

To determine and remove any disconnected flood areas from the flood raster, total 

cost of overland flow from each cell to the main channel is computed [Yunus et al., 

2016]. For each cell in the raster, a cost value is assigned. Cells which are non-flooded 

receive a large friction value (cost) while cells which are classed as flooded in the 

preliminary flood surface are given a low friction value. The total cost of each cell is 

computed by summing up the cost of each cell it passes to reach the main river channel, 

based on flow direction raster. All cells with total costs less than the Euclidean distance 
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between the cell and the river channel are kept, while those with higher costs are 

discarded, producing the final flood surface. 

 

5.4.1.3 Bathtub model flood surface 

The final flooded cells are rasterized and three flood surfaces are computed: the 

difference between DEM and water level estimate and the difference with the ± variance 

per cell from the kriging results. 

 

5.4.2 Hybrid 1D/2D cell storage model 

The design framework to compute the hybrid 1D/2D flood inundation map is 

illustrated in Figure 5.2.  

 

Figure 5.2 Data flow diagram from user input to computed intermediate data, to 

computation of flood inundation surface 

 

User input is described in four categories: (a) geographic location, (b) rain event, (c) 

local environmental conditions, and (d) average river depth. The geographic location is 
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determined as the watershed limit provided by GeoGratis 

(ftp.geogratis.gc.ca/pub/nrcan_rncan/vector/geobase _nhn_rhn/), based on the bounding 

box of the map extents or may be manually selected by drawing graphics. The rain event 

is selected by the user as a time period of rain, (e.g.: 5m, 1h, etc.) over a specified 

recurrence interval from a series of drop-down menus. The local environmental 

conditions include: condition (level of saturation), soil group (clays, loam, etc.) and land 

use category (e.g.: residential, forest, farmland, etc.), which allow the program to select 

an appropriate Soil Conservation Service (SCS) Curve Number (CN). Finally, since the 

DEM data do not contain actual river depths, the user is prompted to input an average 

depth for the river. This average river depth could be extracted from hydrographic charts, 

local knowledge or other data or surveys completed in the area. 

The geographic location, bounding box, is used as the extents for which to request 

elevation data from Representational State Transfer (REST) Application Program 

Interface (API) services, including Google, Bing, and Canadian Digital Elevation Model 

(CDEM) from Natural Resources Canada. Additionally, the geographic location is used 

to estimate base flow in the river, by extracting the flow level from the nearest station in 

the compiled HYDAT (www.ec.gc.ca/rhc-wsc/default.asp?lang=En&n=9018B5EC-1) 

database, available through the Water Survey of Canada. If the nearest station does not 

contain flow, then another station, on the same river or in the same watershed is selected, 

and the flow rate is computed based on the area ratio method [Mann et al., 2004]. Finally, 

the geographic location is used to select the nearest station with Intensity-Duration-

Frequency (IDF) data.  

ftp://ftp.geogratis.gc.ca/pub/nrcan_rncan/vector/geobase
http://www.ec.gc.ca/rhc-wsc/default.asp?lang=En&n=9018B5EC-1
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5.4.2.1 Calculation of Upstream Boundary Conditions 

 Design Rainfall 

Statistics from the IDF files are used to generate a time varying intensity rainfall 

event over the given time period. Public data from the Government of Canada 

Engineering Climate datasets (climate.weather.gc.ca/prods_servs/ engineering_e.html) 

are the basis for these calculations. The nearest climate station, based on great circle 

distance is used, and the coefficients 𝐴 and 𝐵 are extracted based on user input of return 

period to compute total design rainfall using the interpolation equation: 

𝑅 = 𝐴𝑇𝐵     (5.11) 

where, 𝑅 is the interpolated rainfall (mm/h) and 𝑇 is the rainfall duration (h).  

 Excess Rainfall 

Using the calculated rainfall, excess rainfall is computed using the Soil 

Conservation Service (SCS) Method of abstraction. The Curve Number (CN) is 

automatically selected based on the user input characteristics of soil type, land use and 

degree of saturation. Excess rainfall is computed (eq. 5.12):  

𝑄(𝑡) =  
(𝑃(𝑡)− 𝐼𝑎)2

(𝑃(𝑡)+𝑆− 𝐼𝑎)
        (5.12) 

where, 𝑄(𝑡)is the accumulated depth of effective rainfall (mm) over time (t), 𝐼𝑎 is the 

initial abstraction and 𝑆 potential storage. The change in discharge per unit width of the 

river over the length of the rain event is then computed at the upstream boundary of the 

considered reach as follows: 

𝑞𝑜 = 𝑟𝑖 ∗ 𝑤𝑣 ∗ cos (𝑆)      (5.13) 

where, 𝑟𝑖 is rainfall, 𝑤𝑣 is a constant viscosity of water, set at 20°C, S is slope.  

The initial depth and velocity at the upstream boundary is computed: 

http://climate.weather.gc.ca/prods_servs/%20engineering_e.html
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𝑦 =
𝑛0.6

𝑠0.3
 𝑞𝑜

3/5
+ 𝑄𝑔𝑎𝑢𝑔𝑒     (5.14) 

𝑣 =  
𝑞𝑜

𝑦
       (5.15) 

5.4.2.2 Channel Flow 

The calculation of channel flow is governed by continuity and momentum equations 

for the kinematic wave as discussed in section 5.3. The backward difference method is 

applied to setup the finite difference equations, where 𝑄𝑖+1
𝑗+1 is found by substituting values 

of Q from the previous time step (j) and space (i). The remainder of the river channel 

flow is computed using this input volume and the water is propagated downstream as per 

eq. 5.3 [Chow et al., 1988]. 

  

5.4.2.3 Cell storage/Overland flow 

As described in section 5.3, the raster cell storage approximation method is 

employed when bankfull depth is exceeded for cells in the floodplain. Data required are 

computed from the input DEM. The DEM was processed in the Python PyGeoProcessing 

routing package (pythonhosted.org/ pygeoprocessing/index.html) to fill regions in the 

DEM which don’t drain to the edge of the dataset and to create flow accumulation and 

flow direction rasters. The slope is obtained from the DEM using the Numpy gradient 

script (www.numpy.org/).  

The Python scripts are configured to write output depth and flow rasters at 

predefined intervals in addition to the final time step. These intermediate rasters allow the 

end user the ability to visualize the changes in extent and velocity of the inundation area 

over time. 

 



133 

 

5.5 Model Validation 

Both models were applied to a 5km x 5km area in central New Brunswick, centered 

in Fredericton. This test area is bisected by the Saint John River, which is between 600 

and 800m wide in this area. Fredericton is the capital of the province with a population of 

94,000, approximately 22,000 households, and a long history of flooding [McGrath et al., 

2015]. The primary elevation data used in these models was from the Canadian Digital 

Elevation Model (CDEM) (geogratis.gc.ca), with a cell size of approximately 23m x 

16m. LiDAR from the City of Fredericton was also used in the 0D model. The study area 

is located within a sub-watershed of 2,909km2 about 2.5km from the nearest river gauge.  

The historic 2008 flood was due to a late spring thaw of a heavier than normal snow 

pack, 50% above normal, and heavy rains causing runoff flow rates to be 400% greater 

than normal [Public Safety New Brunswick, 2013]. The historic flood extent from the 

2008 flood event is used as the base case in the 0D bathtub model. However, in section 

5.5.2, the hybrid 1D/2D model results, the historic boundary has been added only to 

illustrate historic boundaries and water depth, and is not used for real comparison - as the 

developed model does not consider snow pack melt. 

 

5.5.1 0D Bathtub Results 

Kriging estimates for the flood surface based on the known elevations of historic 

flood levels measured at five nearby gauging stations were computed using two models: 

isotropic spherical and exponential, through leave-one-out cross-validation [Hyndman, 

2010]. Table 5.1 compares the measured and modelled flood surface values to determine 

the quality of the applied variogram model.  

http://geogratis.gc.ca/
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Table 5.1 Cross validation statistics for applied variograms – kriging estimates at 

observed water depths at considered stations. Values are given in meters 

Station Measured Isotropic spherical Exponential 

 value Estimated / error 

1. Fredericton 8.286 8.286/0.00 8.286/0.00 

2. Upper Gagetown 5.979 5.979/0.00 5.979/0.00 

3. Gagetown 5.499 5.499/0.00 5.499/0.00 

4. Oak Point  4.634 4.634/0.00 4.634/0.00 

5. Saint John 4.433 -1.494/3.273 -1.495/2.967 

   

Mean Error  0.654 0.593 

Mean Squared Error  2.143 1.760 

Mean Squared Deviation Ratio  1 1 

 

From the results in Table 5.1, the exponential model appears to produce the lower 

mean error and mean square error, and was thus chosen as the preferred model for 

interpolation of the flood surfaces in this study. The elevation data was subtracted from 

the interpolated water surface for three flood levels: (i) derived from the kriged surface 

(expected flood level), (ii) minimum boundary computed as the expected flood level 

minus the error variance at each cell, and maximum boundary computed as expected 

flood level plus error (Figure 5.3, Figure 5.4).  

DEM data obtained from two elevation providers were tested with the kriged water 

surface to evaluate the accuracy of the derived flood surface, CDEM and LiDAR. The 

resulting flood surfaces were compared to the observed flood boundary of the 2008 flood 

event to determine the goodness of fit of the simulated inundation extent. Three profile 

lines were generated along the northern shore of the Saint John River to compare the 

water depth for each of the surfaces. In Figure 5.4 are given the mean flood depth along 

three selected profiles computed using LiDAR and Geogratis elevation data together with 

the water depth from the historic 2008 flood. It can be observed that the LiDAR water 

depth data lines up fairly well with the historic flood event, while the CDEM under-
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estimates flooding from shoreline inland, with a maximum difference in water depth of 

5.6 in profile 2 (Figure 5.4). On average, in all three profiles the difference is 2.38m for 

using the CDEM. Over 70% of the mean LiDAR flood surface data points along all three 

profile lines are within ~30cm of the water depth from the historic flood grid, indicating a 

positive correlation, though there are areas along the profile where there are 

discrepancies. A comparison of the CDEM water depth data to the historic flood grid 

levels indicates that 10% of the water depths fall within 30cm of historic values and 

approximately 42% fall within 2m of those historic values. The LiDAR data illustrates 

that this method, when used with accurate elevation data can compute a good 

approximation of the flood extent, including areas which may be flooded by backwater 

effects. With lower quality elevation data, relative to both cell size and elevation 

accuracy, the quality of the computed flood grid is inferior. 

  

Figure 5.3 Flood area generated via kriging, mean flood extent using (i) CDEM and (ii) LiDAR 

DEM surfaces 



136 

 

  

 

Figure 5.4 Profile of Flood surface for three x-sections on the northern shore of the Saint John 

River, profiles reference locations from Figure 5.3. 

 

Spatial statistics were derived using a fit measure, as suggested by Bates and deRoo 

[2000]. In this approach the observed inundated area from the historic flood (𝐴𝑜) is 

compared to that of the predicted by the model (𝐴𝑝) and the overlapping area (𝐴𝑜𝑝): 

𝐹 = (
𝐴𝑜𝑝

𝐴𝑜+ 𝐴𝑝− 𝐴𝑜𝑝
)     (5.16) 

A value of F=1, indicates a perfect match between predicted and observed areas, while 

lower F values indicates larger discrepancies. In the case where the LiDAR data was the 

base elevation, the computed flooded area has F value greater than 0.98, indicating near 

perfect match to the extents of the historic flood, Table 5.2. The flood grid based on 

CDEM elevation data, has computed F values between 0.77 - 0.80 based on the minimum 

to maximum flood prediction.  

Table 5.2: Fit Measure comparing flood surface generated with Bathtub model using (a) 

CDEM and (b) Lidar data against flood surface from historic 2008 flood in Fredericton 

 CDEM LiDAR 

Estimate - Error 0.7737 0.9895 

Estimate  0.7853 0.9996 

Estimate + Error 0.7946 1.00 

 

Computation time for this method in the tested study area, ~5km x 5km, is under 2 

minutes on a 2.70GHz, 4 core Windows computer. 
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5.5.2 Hybrid 1D/2D cell storage model 

A 25yr, 1 hour rain event is modeled according to the above described hybrid 

1D/2D framework. The results of this simulation are compared to those derived from the 

input data being reconfigured and input to the LISFLOOD-FP code 

(bristol.ac.uk/geography/research/ hydrology/models/lisflood/). LISFLOOD-FP is a non-

commercial research software developed at the University Of Bristol (UK) based on the 

simple physically based flood model proposed by Bates and De Roo [2000]. This 

application is “specifically designed to simulate floodplain inundation in a 

computationally efficient manner over complex topography” [University of Brisol, 2016]. 

The primary component of LISFLOOD-FP is a raster DEM which has sufficient accuracy 

to identify the channel and floodplain topography [Bates and De Roo, 2000]. This 

method is as described in section 5.2, with respect to 1D channel flow and 2D raster 

storage cell approximation. 

The baseflow, rainfall and change in river discharge are computed as described in 

Section 5.4.2, Figure 5.5. The time step computed to satisfy the courant condition was 

0.96s. The simulation took about 22min to complete on a 2.70GHz, 4 core Windows 

computer.  

http://www.bristol.ac.uk/geography/research/hydrology/models/lisflood/
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Figure 5.5 Computed rainfall for 25yr, 1hr event, excess rainfall hyetograph and River 

flow for study area location 

 

Results from the developed model is compared to that derived using LISFLOOD-

FP. The historic flood boundary is shown for illustration purposes, as this historic event 

included melt of considerable size snow pack which is not incorporated in the tested 

models.  

It’s expected, that the simulated event would have lower flow rates and therefore 

shallower water depths that the historic event. Given this magnitude of rain fall across the 

study region, the flooded area in the LISFLOOD-FP scenario seems to overestimate the 

distribution of flooding, on both the northern and southern banks of the river, as is 

illustrated in Figure 5.6 and the profiles in Figure 5.7. The LISFLOOD-FP solution, at the 

1hr time interval, over 45% of the flooded cells have computed water depth exceeding 5 

m, additionally, there is considerable water depth in cells on the south side of the river, 

extending beyond the historic flood boundary. In the LISFLOOD-FP solution, 

approximately half of the cells along the profile from shoreline to 2008 flood boundary 

over-estimate the water depth. 
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The flood boundary and water depths appear more realistically presented by Figure 

5.6(i), the designed model, in reference to the historic flood event. Looking at the profiles 

for the developed model, the first ~100m from the shoreline has computed water depths 

exceeding the historic flood, while the remainder has lower water depths. Given the 

steepness of the curve, especially in Profile 1 and 2, Figure 5.7, this may be due to water 

not properly being transferred to cell storage at the interface between streamflow and 

floodplain flow. However, the differences may also be due to the accuracy and cell size 

of the DEM used.  

 

Figure 5.6 Flood inundation after 1hour, (i) designed algorithm, (ii) LISFLOOD-FP. Red 

line represents historic flood boundaries and lines 1,2 and 3 profile lines for Figure 5.7. 

 

 

Figure 5.7. Profile of Flood surface for three x-sections on the northern shore of the Saint 

John River, profiles reference locations from Figure 5.6. 
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Table 5.3: Fit measure (F) of proposed algorithm to LISFLOOD generated flood grid. 

 F 

Flooded Area after 1 hr 0.2825 

Time Step:   

                   15min 0.3018 

                   30 min 0.2776 

                   45 min 0.1717 

 

The computed Fit measure (F) between the two algorithms is quite poor – which is 

expected based on visual comparison of Figure 5.6 and the profiles in Figure 5.7, Table 

5.3. The fit measure ranges from a maximum F = 0.3018 at 15 minutes into the 

simulation and lowest F = 0.1717 at 45 minutes.  

 

5.6 Conclusions 

The objective of this paper was to present ongoing work on the development of 

methods and tools for rapid and user friendly modelling of flood surfaces and intended 

for the non-expert public safety community. Reduced complexity models fill a gap in the 

available applications suitable specifically for interventions where flooding is imminent 

or in progress. These tools aim to allow access to otherwise complex flood hazard 

scenarios and in-depth knowledge of the exposure and vulnerability to flood events to the 

non-expert public safety community. This research focused on limited user input and 

basic hydrologic principles and processes to compute flood inundation maps. Open 

source and public domain data was leveraged to provide the necessary input data and 

combined with physically based flood inundation models.  

Two reduced complexity models were tested to generate model outputs in near-real-

time by users with limited knowledge. The first reduced complexity method, based on the 
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‘bathtub’ model utilizes measured river level data from nearby river gauges or user input 

data at a number of more locations. An inclined flood surface was computed via ordinary 

kriging from which the DEM data was subtracted. The resulting flood inundation surface 

was then screened for hydraulic connectivity and rebuilt. Results from this method 

indicate Fit values of 0.98 – 1.0 when using high-resolution LiDAR data and F ≈ 0.8 with 

the Canadian national elevation dataset, CDEM, when compared to a historic flood grid. 

Processing time for this solution was minimal, i.e., under 2 minutes. 

The second model, a hybrid 1D/2D solution simulating a probabilistic rain event 

and simulation of flow in channel using simplified solution of momentum and continuity 

equations for the kinematic wave and a 2D raster cell overland storage method. This 

model provides output at numerous time steps through the simulation, thus allowing 

visualization of changing depth and velocity through time and space. This model is based 

on an iterative method using small time steps, thus time to run is greater than the former 

model, ~22min for the 5km x 5km study area. The proposed model did not fit the 

LISFLOOD-FP solution well at all time steps with greater divergence as time passed. 

However, the results from this developed method which leverages open data presented a 

more realistic match when viewed in comparison to a historic flood event. 

Suggested improvements to the above framework include integration of the 

Intensity-Duration-Frequency Curves under Climate Change, available through 

University of Waterloo (idf-cc-uwo.ca/default.aspx), enhancing the hybrid model to 

include D-infinity flow directions, and significant refinements to the algorithm to 

improve speed for the developed hybrid model. Furthermore, adding in capability to 

http://www.idf-cc-uwo.ca/default.aspx
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include melting of snow pack is of interest as this is a concern for many Canadian 

communities. 
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6 Summary and Conclusions 

The existing sophisticated tools for flood risk analysis are generally not well suited 

for rapid flood predictions and they often exceed the data available for any given 

community; as well, they are ill suited for application by the non-expert public safety 

community. The purpose of this research was to develop standardized methods and tools 

which help end users from the public safety community run their own flood scenarios and 

prepare informed emergency response and long term mitigation plans. The primary focus 

and contribution of this research is in the development of standardized risk computation 

methods transformed into a set of user-friendly tools considering limited user input, basic 

hydrologic principles and processes whilst leveraging open source data.  

 

6.1 Summary of Research 

The preparatory steps of this research were to: (i) investigate existing software 

solutions available which combine both computation of the flood hazard and assessment 

of risk and (ii) to test the sensitivity and relative impacts on the resulting losses due to 

parameter changes, including: selection of depth-damage function, input flood level, and 

restoration duration, Chapter 2. Once software options and limitations were reviewed and 

the relative impact of parametric changes and data were identified, applications were 

developed which required limited user input to compute damages, Chapter 3, and 

simulate flood hazard, Chapter 4 and Chapter 5.  

Chapter 3 introduced the newly developed tool referred to as Rapid Risk Evaluation 

(ER2). ER2 was originally programmed as a MS Excel worksheet application, 
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designed specifically for users to input necessary information on a building-by-

building or aggregate scenario basis and respective measured or predicted water 

levels. The outputs of this application include both exposure and estimates of 

potential damages and losses - expressed as a percentage of the reconstruction 

costs. MS Excel was chosen as an initial platform as it is one of the most common 

spreadsheet applications in use today and therefore has widespread familiarity. 

The primary input data considered in this research is in the form of open source and 

public domain data. As elevation data is an integral, and probably most important, part of 

flood modelling, a novel method of DEM fusion was developed, Chapter 4, with the 

objective to create a new, better quality DEM from multiple input DEMs freely available 

from REST API services. The proposed novel method is based on concepts of clustering 

and inverse distance weighting and requires no input by the user in selection of clustering 

criteria or weighting. By using REST API services, the point elevation data is 

downloaded on-demand and able to be manipulated, as needed – by fusion technique or 

by users wanting to test out mitigation measures, such as the effect of sandbagging or 

installing other temporary flood barriers - before the final increased accuracy DEM is 

generated. 

The objective of Chapter 5 was to illustrate how public domain data can be 

leveraged and combined with physically based flood inundation models to compute flood 

hazard and how to optimize computations and rapidly generate model outputs by users 

with limited expertise. Two techniques of reduced complexity flood models were 

explored: 0D bathtub model and a hybrid 1D/2D raster cell storage approach. In the 

‘bathtub’ model, users select and set expected/historic water levels at several locations. 
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The flood inundation surface is then computed using kriging. Next, the flooded area is 

computed by subtracting the terrain elevation data from the computed water surface. To 

test the flood grid for hydrological connectivity, a cost raster was created and the ‘total 

cost’ of travel from each cell to the main channel was computed - keeping only those 

flooded cells whose total cost was less than the Euclidean distance to the main channel. 

The second method considers a hybrid 1D/2D flood model developed, assuming channel 

flow approximated by 1D kinematic wave approximation of shallow water equations, and 

the floodplain is treated using cell storage reservoirs over a raster grid. The user input is 

limited to: geographic location, precipitation rate and local runoff conditions. The rain 

event selected by the user as a time period of a given precipitation rate over a specified 

recurrence interval and the local runoff conditions include: level of saturation of soils, 

soil group and land use category, all selected from a series of intuitive drop-down menus. 

 

6.2 Achievements of Research 

 Development of a relatively simple flood risk assessment method programmed in 

MS Excel worksheet allowing any user with any level of expertise the capability of 

estimating building exposure and vulnerability due to a flood event. This worksheet 

application was subsequently implemented as an API, capable of working with any web 

based request. The application has been viewed and downloaded about 200 times by 

users in over 35 countries around the globe, including: Canada, US and Germany. 

Additionally, this application has been used by Canadian insurance companies, including 

Deloitte (Sharma, 2015). The website hosting the MS Excel and API applications has 
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been visited more than 2,000 times and is a successful example and a showcase of the 

University of New Brunswick’s expertise in the domain. 

 Novel DEM Fusion technique which improved the quality of the elevation data 

available from REST API services. A multi-step process was applied to generate the 

fusion DEM which required no user input, other than geographic extent.  

 Simulation of flood hazard by non-expert users, leveraging public domain data. 

Development of a method of 0D and 1D/2D flood modeling which required limited user 

input and no hydrologic expertise to run. In the hybrid 1D/2D model, users select the 

study area/watershed, and input details about the rain event and the local environment 

from dropdown menus. The remainder of the application automatically extracts the 

appropriate files from pre-defined internet resources and simulates 1D flow in the 

channel and 2D flow over the floodplain. The program generates spatial variations of 

depth of water and velocity at multiple time steps, thus allowing users to visualize 

changes over both space and time. In the 0D model, using LiDAR DEM the model is 

exemplary in its’ ability to reproduce the historic flood event, while the coarser DEM 

produces ~80% match. 

 The DEM fusion and flood mapping tools, written in Python, are considered 

primary components to the flood risk application framework. The loss-estimation 

module, originally written in MS Excel is also available as an API. This API, combined 

with a web mapping application referencing inventory data and the DEM fusion and 

flood mapping tools allows users with limited knowledge to simulate flood hazard and 

assess risk.  
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6.3 Limitations and Recommendations for Future Work 

While every effort was made to test these developed applications against real-world 

scenarios and validate the generated results against actual claims and reported damage, 

access was ultimately not granted as of publication of this dissertation. Instead, to 

validate the results of the ER2 spreadsheet, it was tested against a solution obtained from 

Hazus Canada analysis. The need to test these results against actual claims is still an 

outstanding goal in order to calibrate the model and assign quality or confidence in the 

derived flood surface and risk estimate. By comparing the results of the developed tools 

to historic claims, in the tested areas and from other Canadian cities we can begin to 

establish a confidence interval and accuracy for our results based on different criteria, 

such as building type or building age for risk. Enhancements to the ER2 application 

include adding additional depth-damage curves considering flow velocity, flood duration, 

building foundation type and their incorporation into the damage estimates.  

With respect to the DEM fusion method, future recommendations include analysis 

of other geographic locations to validate the encouraging findings from the two NB 

communities. Furthermore, additional recommendation for future research of the 

proposed fusion method is testing the effect of maintaining three dimensions in the 

clustering algorithm. 

In Chapter 5, two reduced complexity flood inundation methods were tested. 

Enhancements to this portion of the research include optimizing the codes to improve 

efficiency and further reduce the processing time. Validation in other locations 

susceptible to riverine flooding is of interest as well as comparison to historic events to 

better assess the potential accuracy. Additionally, accessing results from the University of 
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Waterloo online tool which develops IDF curves under climate change would be a great 

addition as well as input of snow pack age and depth to better represent spring thaw and 

ice jamming. 

 

6.4 Conclusion 

By combining the tools discussed in Chapters 3 through 5 into a single application, 

such as a web map, a user with limited expertise can simulate a flood hazard, based on 

limited input via a series of intuitive drop-down menus. The future web application, will 

access the DEM fusion tool which extracts elevation data and fuses the multiple 

providers datasets into a single, better quality DEM. Next, based on the details input per 

the simple flood or rain event a flood inundation map may be computed. Finally, the user 

can compute flood risk which uses embedded (or uploaded) inventory data, the computed 

flood grid depths and the ER2 API to create data layers which can be themed and overlaid 

on the map. 
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GLOSSARY 

Exposure: the assets and values located in flood prone areas [Koks et al., 2015] 

Vulnerability: potential for loss of property or life from environmental hazards [Cutter, 

Mitchell, and Scott, 2000] 

Social Vulnerability: used to define the susceptibility of social groups to potential losses 

from hazard events or societies resilience to hazards [Cutter et al., 2000] 

Risk: likelihood of the event occurring and includes: potential source, impact of the risk, 

and estimate of its frequency of occurrence 

Mitigation: suite of efforts to reduce risk or lessen their impacts 
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