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ABSTRACT 

 

     Smartphone accelerometers and gyroscopes are quite common in today‟s society but 

little work has been done on assessing how accurate and reliable they are to be used in 

inertial navigation systems (INS). The goal of this research is to develop a loosely-

coupled INS filter that only uses sensors found inside a Moto-X Android smartphone. 

Micro-electro-mechanical sensors (MEMS) accelerometers and gyroscopes provide the 

raw motion sensor data whereas the high-sensitivity GNSS receiver in the smartphone is 

used to provide position and velocity updates to the filter. Magnetometers, also included 

in the MEMS are a potential source of heading aiding that not only aids in INS 

alignment but helps constrain the heading drift. A successful filter implementation could 

potentially open the doors of inertial navigation to the everyday smartphone user. This 

would allow developers of smartphone applications to focus on the creative side of their 

application while using the loosely-coupled INS in the background.  

     The loosely-coupled INS filter was developed in C++ and was run offline although 

the operations are exactly those that would be applied in real time. The INS filter was 

verified by using raw inertial measurement unit (IMU) measurements from a high-end 

Northrop Grumman IMU-LN200 motion sensor and single-point GNSS 

position/velocity updates from a high accuracy NovAtel Flexpak6 receiver. Two datasets 

with distinct environments were used. The first one was a relatively open-sky dataset in 

NW Calgary and the second was an urban canyon dataset in downtown Calgary. Once 

the INS was verified to work within expectations, two more datasets were collected, this 

time with the Moto-X Android smartphone and the NovAtel SPAN system (IMU-LN200 
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+ Flexpak6 running INS capable firmware). The datasets were again in open-sky and 

urban canyon environments. Due to the high noise of the Moto-X sensors, the high 

frequency noise of the raw data was removed via wavelet decomposition. This was very 

important as the faint sensor signal is buried under a lot of noise. Empirically derived 

estimates for sensor turn-on bias and scale factor errors were then found.  

     The easiest way to assess the validity of the filter is to compare the attitude with the 

truth trajectory, where the truth trajectory is that of the NovAtel SPAN solution. The 

reason for this is that position and velocity are directly dependent on the quality of input 

filter updates. It is possible to have good results in position and velocity but still have a 

filter that diverges in attitude. When ran with the IMU-LN200 and NovAtel Flexpak6 

data, the loosely-coupled INS filter had RMS differences in pitch and roll under 0.4
º
 in 

the open-sky dataset and under 0.8
º
 in the urban canyon dataset. RMS differences in 

heading were below 1
º
 in the open-sky dataset and slightly above 1

º
 in the urban canyon 

dataset. When ran with the Moto-X Android smartphone sensors, the INS filter had 

RMS differences in pitch and roll below 4.5
 º 

in the open-sky dataset and below 16
 º 

in 

the urban canyon datasets respectively. The RMS differences in heading were around 13
º
 

for the open-sky dataset and large enough to make the system useless for the urban 

canyon dataset. The results show the Moto-X Android smartphone sensors can be used 

for civilian enthusiast level of navigation under open-sky environments. It is however 

expected for MEMS sensors to improve over time thus improving the usability of a 

loosely-coupled INS filter using smartphone sensors. 
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CHAPTER 1: INTRODUCTION 

 

The world is changing rapidly before our very own eyes in the realm of 

automated navigation. Some current services inside some car manufacturers such as 

BMW‟s Parking Assistant allows for automated parallel parking, while others such as 

Dodge use the automated safety braking feature as an important selling point consumers 

are interested in. It is also common knowledge that Google has been successfully testing 

self-driven cars in California. In other words, automation is a selling point to consumers.  

This need for automation and technology can be seen in our everyday life in the 

the smartphone: a technological device that has become as essential as carrying a wallet. 

Smartphones are able to do a lot of advanced tasks because of the different sensors it has 

become standard for them to have. Smartphones have accelerometers, gyroscopes, 

magnetometers, pressure sensors, temperature sensors, and high sensitivity GNSS 

receivers. It is these sensors that rotate the smartphone screen when oriented one way or 

another, count the steps taken per day, and allow the owner to share their location with 

their friends in social media.  

The purpose of this thesis is to put the two concepts mentioned above together. 

Accelerometers and gyroscopes inside smartphones are meant to be used for identifying 

obvious changes in orientation, but how good are they to be used for automated 

navigation? The sensors required in the Google self-driven car are orders of magnitude 

better, larger and more expensive. This thesis will explore the suitability of currently 

available smartphone sensors for navigation through the creation of a loosely-coupled 
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inertial navigation system (INS) that blends the smartphone accelerometer, gyroscope 

and GNSS data.  

 

1.1 Background 

 

The following section introduces some of the core components used in this thesis 

research such as smartphones, GNSS, and INS.  

 

1.1.1 Smartphone Sensors 

 

 Smartphones are able to fit so many sensors inside a small, constrained space 

through the use of micro-electro-mechanical sensors (MEMS) that are quite inexpensive 

to make and have a small form factor. The three smartphone MEMS that were used in 

this thesis were accelerometers, gyroscopes, and magnetometers. Accelerometers 

measure the specific forces acting on the body, gyroscopes measure the rate of rotations, 

and magnetometers measure the magnetic field around the body. When put together, 

accelerometers and gyroscopes form an inertial measurement unit (IMU). The downside 

of being so small and cheap is that these sensors are quite noisy and have errors that are 

orders of magnitude bigger than those of their traditional (and considerably more 

accurate) counterparts. This does not mean all MEMS are obsolete as far as high-grade 

navigation is concerned. In fact, Honeywell has a number of MEMS IMUs that are 

export-controlled due to their ability at measuring high rates of rotations and 

accelerations that could easily be put in a guided military weapon (NovAtel, 2015e). 
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High-quality MEMS are used every day in the industry but they are in a whole other 

league compared to those used herein.  

As stated earlier, smartphones also contain high sensitivity GNSS receivers. 

These receivers are able to compute a position in places were traditional high-accuracy 

receivers aren‟t able to. The reason for this is smartphone developers aim to provide 

solution availability over accuracy so that users are able to provide a position inside 

buildings. Having said that, the use of very low quality antennae in smartphones means 

the high sensitivity aspect is not exploited to its fullest.  

 

1.1.2 INS 

 

Using the data coming out of the smartphone accelerometers, gyroscopes, and 

high-sensitivity receiver, we have the building blocks for an INS. These same 

instruments (albeit of better quality) are integrated in the same way in the self-driven 

cars mentioned earlier. The difference being that the type of integration is more complex 

as it involves added sensors to check for proximity to other objects, among others. The 

algorithm part of an INS can be divided into two components: the mechanization 

equations, and the extended Kalman filter (EKF) (El-Sheimy, 2012).  

The mechanization equations are the expressions used to integrate the raw data 

from the accelerometers and gyroscopes in order to get position, velocity, and attitude 

estimates. This is traditionally referred to as dead-reckoning and was the method used by 

the early navigators of the Renaissance. The navigators of the 15
th

 and 16
th

 centuries 

would sail vast oceans by using stars for positioning (could only be done at night. Sun 
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observations were used for latitude determination), the chip log for measuring velocity, 

and clocks to determine the time elapsed (Misra and Enge, 2011). These measurements 

weren‟t constantly available so they had to extrapolate the measurements in order to 

estimate where they were in between. There are many flaws with this and is the fact that 

many of them were able to discover as many lands as they did is truly astonishing. This 

is in essence what the mechanization equations are doing with the raw IMU data. 

Integrating raw accelerometer data twice gives us the change in position and integrating 

raw gyroscope data once gives us the change in rotation; both related to when the 

previous measurements were taken. This makes it possible to estimate the epoch-to- 

epoch change in position, velocity, and attitude (El-Sheimy, 2012). However, there is no 

such thing as a perfect instrument and accelerometers and gyroscopes aren‟t the 

exception; even the high-grade sensors proven in automated navigation have sources of 

error. This is where the EKF come in. 

The EKF uses measurement and dynamic models recursively to provide an 

estimate that is optimal in the least-squares sense (Gao and Sideris, 2007). The dynamic 

model describes the system‟s behaviour and is kept in check via the measurement 

model. In terms of the INS, the dynamic model is that which describes how the position, 

velocity, and attitude relate to one another in the IMU whereas the measurement model 

is made up of the GNSS observations that are fed into the filter. The dynamic model 

requires estimates of the position, velocity, and attitude errors (known as the states) as 

well as their respective accuracies (ibid). Similarly, the measurement model requires 

GNSS observations and their respective accuracies. The EKF runs in two stages. The 

first stage is known as the prediction and consists in the filter using the characteristics of 
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the system to come up with uncertainties of the position, velocity, and attitude estimates 

found in the mechanization equations. The second stage is called the update and takes 

place when GNSS inputs are present. The observed GNSS measurements are compared 

to what the INS predicted at the exact same epoch. The INS then uses knowledge of both 

system and measurement uncertainties to blend them in the mathematically optimal 

sense. Incoming GNSS measurements that aren‟t accurate compared to what the system 

is estimating will be weighted accordingly and vice-versa. The important concept with 

the INS is that the system quality will degrade quickly in the absence of GNSS updates. 

The reason being it is the GNSS measurements that are keeping the INS sensor errors in 

check. Without these updates, the INS solution will drift at a rate that corresponds to the 

grade of sensors being used (Schwarz and Wei, 2000).  

 

1.1.3 GNSS Outages in INS 

 

INSs are not required to be used only when GNSS measurements are available. 

In fact, one of the purposes of an INS is to bridge areas where GNSS outages are 

present. This is only possible with high-grade accelerometers and gyroscopes. The idea 

is that high grade motion sensors have very accurate sensors whose errors are well 

understood, thus allowing an INS to accurately run in the prediction mode for a certain 

amount of time when a GNSS outage is present (El-Sheimy, 2012). However, when in 

the absence of GNSS input the position, velocity, and attitude will drift so it really 

becomes a ticking bomb as far as at what point the INS prediction can produce estimates 

accurate enough for the level of navigation required by the user.  
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1.1.4 INS Integration Methods 

 

There are two main ways in which the INS can be designed: loosely-coupling 

and tightly-coupling (Petovello, 2003). Loosely-coupled integrations use position and 

velocity estimates as measurement updates in the filter. These could technically come 

from any source but GNSS is the obvious choice for providing absolute position and 

velocity. Tightly-coupled integrations make use of raw GNSS observations as inputs in 

the filter. That is, it uses GNSS pseudorange, Doppler, and carrier-phase measurements 

(ibid). In other words, loosely-coupled integrations have the INS estimating position, 

velocity, and attitude, whereas in tightly-coupled integrations the INS estimates the raw 

GNSS observations in addition to position, velocity, and attitude (El-Sheimy, 2012). The 

loosely-coupled integration was selected for this project due to the inability of the 

smartphone to provide the necessary raw measurements required in the tightly-coupled 

integration. 

 

1.1.5 INS Alignment 

 

As was stated earlier, an IMU provides relative navigation from epoch to epoch 

if the accelerometer and gyroscope raw data are integrated. This means a starting 

position, velocity, and attitude is required. This is what is referred to as the INS 

alignment. There are different methods for aligning depending on the application, 

equipment, and sensor quality (NovAtel Inc, 2015g). An initial position and velocity can 

be fed through GNSS, whereas pitch and roll can be estimated with enough accuracy 

through gravity (Schwarz and Wei, 2000); the real problem with INS alignment is with 
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the initial heading estimate. High-end IMUs are sensitive enough to the Earth‟s rotation 

rate and can estimate heading statically. Lower quality IMUs require vehicle movement 

to estimate an initial heading. The best possible way is an aided alignment which uses an 

initial heading estimate from an external source such as GNSS (NovAtel Inc, 2015b). 

This type of alignment can take place whether the vehicle is static or kinematic, and best 

of all is instantaneous. The INS alignment is a very important part of the INS. Wrong 

initial estimates will lead to solution divergence (Godha, 2006). 

 

1.2 Previous Research and Limitations 

 

 There has been extensive research done in the field of INS that has assessed the 

validity entry-level inertial measurement units such as that done by Kong (2000), Gao 

(2007), Godha (2006), among others. However, the entry-level sensors in those 

publications are orders of magnitude better than the smartphone sensors used herein. 

That is, those sensors are entry-level as far as industry standards are concerned and cost 

thousands of dollars compared to the smartphone sensors that are in the single digit 

dollar range (Dixon, 2014). A research paper by Guo et al. (2015) performed a loosely-

coupled integration using sensors inside the Apple iPhone but limited results to position 

and velocity which are largely dependent on the position and velocities fed into the filter 

from the GNSS receiver. A complete analysis of smartphone-level sensors requires an 

analysis of attitude and especially of heading as it is the attitude component that is 

hardest to estimate due to it not being directly observable in the absence of external 

heading-aiding sensors (Bobye, 2015).  
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1.3 Contributions 

 

The main contributions of this work can be summarized as follows: 

1. Development of a loosely-coupled INS filter that makes use of smartphone 

accelerometers, gyroscopes, and GNSS observations. The filter can 

potentially be provided to an entire community of developers of smartphone 

applications looking for highest grade of navigation possible with 

smartphone sensors. 

 

2. Development of the methodology to assess GNSS velocities and height 

accuracies as they are not reported by the smartphone.  

 

3. Assessment of Hall effect magnetometers inside smartphones as heading 

aiding sources in the INS for alignment and bias drift constraint purposes.   

 

4. Assessment of the relative difference in performance of industry leading 

tightly-coupled INS filter with user-generated loosely-coupled INS filter 

under open-sky and urban canyon environments using a high accuracy GNSS 

receiver and high-end IMU. 

 

5. Assessment of position, velocity, and attitude using smartphone sensors in an 

author-generated loosely-coupled INS under open-sky and urban canyon 

environments.   
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1.4 Outline 

 

     Chapter 1 presents motivation, objectives, background, and contributions of the work 

done in the creation of a loosely-coupled INS filter that uses MEMS accelerometers and 

gyroscopes from the Moto-X Android smartphone. 

     Chapter 2 provides an overview of both GNSS and INS technologies used in this 

thesis. GNSS measurements and error sources are presented in the first part. INS frames, 

errors, mechanization equations, classification and alignment methods are presented in 

the second part.  

     Chapter 3 is an introduction to processing methods. Specifically, the least-squares 

adjustment and extended Kalman filter.  

     Chapter 4 provides an in-depth look at the extended Kalman filter taking place 

behind the scenes of the INS. The integration strategies are described as well as INS-

specific dynamic and measurement models, vehicle motion constraints, and sensor 

heading aiding.  

     Chapter 5 assesses the author-generated loosely-coupled INS with that of the tightly-

coupled SPAN filter in open-sky and urban canyon environments. The NovAtel 

Flexpak6 with the IMU-LN200 was used throughout. Position, velocity, and attitude 

differences are shown. 

    Chapter 6 assesses the author-generated loosely-coupled INS using the Moto-X 

Android smartphone sensors in open-sky and urban canyon environments. The results 
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were compared to the truth trajectory from the NovAtel SPAN system (NovAtel 

Flexpak6 and IMU-LN200). Position, velocity, and attitude differences are shown. 

    Chapter 7 concludes with the results and findings obtained in this research. It provides 

recommendations for future work and states the limitations from the work in this thesis.  
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CHAPTER 2: OVERVIEW OF GNSS AND INS 

 

     Global navigation satellite systems (GNSS) allow users to determine their real time 

absolute position anywhere in the world through means of multilateration provided they 

are able to track at least four GNSS satellites. A GNSS is made up of three components 

or segments: space segment, control segment, user segment. 

     The Space segment consists of the satellites orbiting the Earth at around 20,000 km 

altitude (Misra and Enge, 2011). The control segment consists of data uploading 

stations, master control stations, and base stations which are used to monitor the health 

and status as well as to control the satellites. The user segment consists of GNSS 

receivers able to decode and use the incoming satellite signals to multilaterate a user 

position. The three segments are shown below in Figure 2-1. 

 

Figure 2-1: GNSS overview (NovAtel Inc, 2015d) 
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    There are currently 4 GNSS constellations in use (ibid). GPS (the original GNSS) and 

GLONASS are maintained by the United States and Russia respectively and they 

provide global coverage with GPS typically having 30 operational space vehicles (SVs) 

and GLONASS having 24 operational SVs. It is worth mentioning both of these 

constellations also have in-orbit spares. The European-maintained Galileo constellation 

has only deployed 10 satellites that are currently still being used for development 

purposes. However, the plan is to have Galileo fully running with 30 SVs by 2020 

(NovAtel Inc, 2015b). The fourth system in use is called BeiDou and is maintained by 

the People‟s Republic of China. BeiDou currently has 14 SVs covering Asia and the 

Middle East but a full, global constellation is expected to have 35 SVs by 2020.  

     The introduction of additional constellations to GPS is very good for users as it 

provides increased position availability in adverse environments such as urban canyons. 

The higher satellite availability also means improved satellite geometry (especially at 

high and low latitudes) which translates to improved position accuracy (Misra and Enge, 

2011).  

     GPS, Galileo, and BeiDou work through code division multiple Access (CDMA) in 

which all satellites in a given constellation operate at the same reserved frequency. Each 

satellite‟s raw signal (sent on two or more frequencies) is encoded with a navigation 

message (e.g. 50 bps for GPS) and by either an open or encrypted code that when known 

on the receiver end allows differentiating each satellite in the constellation (ibid). 

GLONASS on the other hand, operates through frequency division multiplier access 

(FDMA) in which satellites are distinguished from one another by operating at different 

frequencies. The encrypted frequencies (such as the legacy GPS L2P) are exploited in 
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civilian applications through the use of semi-codeless tracking inside the receiver. All 

constellations have plans of providing a secondary open code which will negate the need 

for semi-codeless technology in receivers and thus increase accuracy for entry level 

GNSS receivers.   

 

2.1 GNSS Measurements 

 

     GNSS provide users with three types of measurements which serve as updates in an 

INS filter: pseudorange measurements, carrier-phase measurements, and Doppler 

measurements.  

 

2.1.1 Pseudorange Measurements 

 

     Pseudorange measurements consist of the time it takes for a signal to travel from the 

satellite to the receiver multiplied by the speed of light. As the name implies, these 

ranges contain errors which have to be taken into account in the positioning algorithm 

(ibid). The ranging errors are caused by a number of factors such as the satellite and 

receiver clocks not being completely in sync with the constellation time base. Let‟s 

focus on GPS for the next example.  

     Recall that the raw satellite signal is sent over two or more predefined frequencies. 

These signals are modulated by the navigation message (50 bps) and both the C/A 

(transmitted at 1.023 MHz on L1) and P(Y) codes (transmitted at 10.23 MHz on both L1 

and L2). The C/A codes are modulated on the quadrature part of the signal and the P(Y) 
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codes are modulated on the in-phase part of the signal. The receiver knows what the 

unique code (known as pseudo-random noise, PRN code) for each satellite is. When the 

raw signal reaches the processing part of the receiver, the received PRN code is shifted 

until it lines up with the internal PRN code (Langley, 2016). The time shift required to 

line up both PRN codes is the time of travel of the signal. The pseudorange equation is 

as follows: 

 

                                                                                    (2.1) 

where: 

     is the measured pseudorange (metres) 

  is the true range between the satellite and receiver antennas (metres) 

  is the speed of light in vacuum (m/s) 

   is the receiver clock error (seconds) 

   is the satellite clock error (seconds) 

     is the ionosphere induced error (metres) 

      is the troposphere induced error (metres) 

     is the orbital error (metres) 

      is the code level multipath plus noise (metres) 
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     An important point worth mentioning is that the chips that make up the PRN code 

have a period of 1 μs meaning each chip is 293 metres in length (ibid). This low 

resolution from which C/A based pseudorange positioning is computed from translates 

to a positioning accuracy of a few metres depending on the type of receiver correlators. 

The pseudorange measurement itself is accurate to tens of cm in high-accuracy receivers 

(Langley, 2016). 

 

2.1.2 Carrier-Phase Measurements 

 

     Also referred to as accumulated-Doppler-range (ADR), carrier-phase measurements 

have a much higher resolution than pseudorange measurements and as such when used 

in a base-rover setup can provide positioning accuracies of 1-2 cm, sometimes even 

better (Langley, 2016). That is because these types of observations make use of the fact 

that at the specific GNSS frequency, the carrier wave has a small wavelength (e.g. 19 cm 

for GPS L1, 24 cm at GPS L2). Thus, the distance from the antenna to the satellite can 

be thought of as a sum of wavelengths (cycles) through the propagation space. The 

number usually has an integer and fractional component so an analogy of a pseudorange 

measurement (in cycles) plus an initial integer offset can be made. The fractional 

component and the change in integer offsets can be measured easily by the tracking 

loops but the same cannot be said about the initial integer offset (NovAtel Inc, 2015d). 

This value is referred to as the integer ambiguity. Thus, the total carrier-phase (      ) 

is made up of the carrier phase measurement (         ) (which includes integer and 

fractional changes) plus the integer ambiguity term (N).  
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Figure 2-2: Carrier phase observation 

 

                                                                                                             (2.2) 

                                                                                                             (2.3)           

which after following the derivation in Wells et al., (1999), gives us: 

                                                                            (2.4) 

where the differences with respect to Equation 2.1 are: 

          is the cm level multipath plus noise from the carrier (metres) (Langley, 2016) 

   is the integer ambiguity multiplied by the carrier wavelength (metres) 

 

     As can be seen in Equation 2.4, the carrier-phase observable contains the same types 

of errors as the pseudorange measurement plus the integer ambiguity component. There 

are two more differences that stand out. The first one is that the ionospheric effect is 

N Fr(φ) Int(φ;t0, t) 

ΦOBSERVED 

ΦTOTAL 

t0 
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subtracted rather than added because of the fact the ionosphere causes an advance in 

carrier-phase observations whereas it causes a delay in the pseudorange measurements. 

The second difference is that the multipath and noise in the carrier phase measurements 

are much smaller (cm-level) instead of the metre-level that would be caused from the 

code measurements. 

 

2.1.3. Doppler Measurement 

 

The Doppler frequency is the instantaneous rate of change of the carrier-phase 

measurement and is useful for providing velocity. This observation is not impacted by 

the integer ambiguities (derivative of constant is zero) meaning the derivative of 

Equation 2.4 becomes: 

                         ̇        ̇   (  ̇     ̇)       
̇        

̇        
̇    ̇                    (2.5) 

where,    

 ̇      is the observed rate of range (m/s) 

 ̇ is the true range rate between the satellite and the receiver (m/s) 

  ̇ is the receiver clock error drift (m/s) 

  ̇ is the satellite clock error drift (m/s) 

    
̇  is the orbital error drift (m/s) 

 ̇ is the drift due to multipath and noise (m/s)  
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2.2 Error Sources in GNSS and How to Mitigate Them 

 

     It is now time to take a look at the individual GNSS error sources mentioned in the 

previous section as well as how to mitigate them. Knowing what causes the errors is 

important in our understanding as to how to minimize or cancel out their effect. First, it 

is important to mention that the positional accuracy is a function of the sum of error 

sources as well as satellite geometry (Misra and Enge, 2011). The distribution of 

satellites in the sky is quantified through the unitless dilution of precision (DOP). The 

sum of errors in the line of sight from the antenna to the receiver is referred to as the 

user equivalent ranging error (UERE): 

                                                                                                     (2.6) 

Hence, the more satellites in view, the better the geometry, and the better the position 

accuracy will be. 

     The errors making up the UERE can be dealt with by either modelling or cancelling 

them out as will be further explained below. The first method called differential GNSS 

consists of having a static GNSS receiver (called the base) transmit corrections or raw 

observations to a secondary stationary (or kinematic) GNSS receiver, referred to as the 

rover (Novatel Inc, 2015d). There are two types of differential GNSS methods used: 

code-based and carrier-phase-based (referred to as RTK). RTK stands out for real time 

kinematic but doesn`t necessarily have to be performed in real time (Langley, 2016). 

Both methods require the base to be static and placed over a previously surveyed point.  



 19 
 

     In code-based differential GNSS, the known position of the base is compared with 

the computed position and the difference in known vs. computed range for each satellite 

is sent as corrections to the rover. Code-base differential GNSS will reduce or eliminate 

orbital, atmospheric, and satellite errors (O‟Keefe, 2007). These corrections On the other 

hand, RTK sends the raw observations to the rover which then computes a double 

differencing of observations in order to reduce or cancel out common errors experienced 

by both receivers. Readers are invited to read Petovello (2003), Godha (2006) and Wells 

et al. (1999) among others for further details on double differencing.  RTK requires the 

use of carrier-phase measurements which complicates matters because the integer 

ambiguity needs to be known. However, it is these carrier-phase measurements that 

allow 1 cm + 1 PPM accuracy in RTK compared to half-metre accuracy in code based 

differential GNSS (NovAtel Inc, 2015b).  

     The second method for correcting a receiver‟s position is through modelling of 

errors. This can be done either in post-processing through software, or in real-time 

through satellite delivered corrections. The latter requires the antenna to be able to track 

a separate set of geostationary satellites that broadcast corrections as well as a 

subscription to the service. The most common satellite correction systems are 

OmniSTAR, TerraStar and StarFire. These satellite-based correction services are able to 

offer decimetre positioning accuracy throughout the world (NovAtel Inc, 2015b) but do 

require about 20 minutes of convergence. This long start-up time is due to noise in 

ionosphere-free measurement combination, tropospheric wet delay estimation and 

carrier-phase ambiguity resolution (Maron, 2014).  It is worth mentioning this type of 

satellite derived corrections (also known as precise point positioning, PPP) use wide-
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lane ambiguity fixing which means that it converges to a stable but not unique solution, 

unlike RTK (ibid). Wide-lane and narrow-lane combinations are used for integer 

ambiguity determination. Readers are invited to read Misra and Enge (20011) for further 

information on these topics.  

 

2.2.1 Ionospheric Errors 

 

     The ionosphere extends from about 50 to 1000 km, or higher, and consists of ionized 

air caused by the Sun‟s radiation. This means the ionosphere behaviour is dependent on 

the time of day (Misra and Enge, 2011). The Sun also has an 11 year cycle during which 

there are variations in the amount of sunspots and solar flares. The peak of the solar 

cycle is when there is a maximum in solar flares which generate a very active ionosphere 

and subsequently large ionospheric errors in GNSS (O‟Keefe, 2007).  

     The total electron content (TEC) in the ionospheric line of sight changes the 

refractive index and affects RF signals at GNSS frequencies by advancing the carrier 

phase measurements and delaying the code measurements (Misra and Enge, 2011).  The 

ionosphere is also dispersive in nature, which means it affects different GNSS 

frequencies differently. This means that in the absence of differential methods, the 

ionospheric errors can be cancelled through the use of a dual frequency receiver (ibid).  

Single frequency receivers not receiving differential corrections model the ionosphere 

through the Klobuchar model that is broadcast by the satellites (NovAtel Inc, 2015b).  

On the other hand, receivers using differential positioning methods effectively cancel 
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out the ionospheric effect provided the atmospheric behaviour is the same at both ends 

of the baseline.  

 

2.2.2 Troposphere Errors 

 

     The troposphere extends from sea level to the stratosphere (~9 km – 17 km) and it 

contains a dry part and a wet part (water vapour) (O‟Keefe, 2007). Unlike the 

ionosphere, it is not dispersive in nature meaning its effect is the same over the multiple 

frequencies broadcast by a specific GNSS satellite. An interesting fact about the 

troposphere error is that 90% of it comes from the dry component which can be 

modelled with an accuracy of 1% whereas the remaining 10% comes from the wet 

component. This wet component is difficult to predict due to variation in water vapour 

density meaning the models are only 20% accurate (Misra and Enge, 2011). This type of 

error is reduced through modelling and differential techniques leaving a 10-15 cm error 

residual for a 100 km baseline (ibid). This error can actually be smaller if residual 

tropospheric delay is estimated from the data itself (Langley, 2016). 

2.2.3 Orbital Errors 

 

     These types of errors arise from imperfections in the satellite orbit with respect to the 

planned trajectory as defined by the ephemerides. The satellite health and status are 

monitored continuously through the ground control stations and the orbits are typically 

corrected once a day (Misra and Enge 2011). The uploaded corrected orbital parameters 

are then transmitted to receivers via the broadcast ephemerides. Differential GNSS 
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techniques minimize the effect of the orbital errors. Usually, a 100 km baseline will 

contain a remaining orbital error baseline of around 5 cm (ibid).  

 

2.2.4 Satellite and Receiver Clock Errors 

 

     Satellite and receiver clock errors are biases due to the fact that receivers and 

satellites are not completely in sync with the GNSS set time base (e.g. GPS Time for 

GPS). Both of these clock biases cancel out during RTK due to the nature of double 

differencing. The receiver clock error can be expected to be from a few metres to a few 

thousand kilometers (Misra and Enge, 2011). If running in single point mode (i.e.: 

without double differencing), the receiver clock error is computed in the filter in 

addition to the three-dimensional positional coordinates whereas the estimated error of 

the satellite clock is computed from satellite clock coefficients broadcast in the 

navigation message.   

 

2.2.5 Multipath  

 

     Multipath is originated by reflections in the nearby environment that cause the GNSS 

signal delays to be longer than they should be (O‟Keefe, 2007). Since the receiver 

expects the signals to be a direct line-of-sight, a bias is introduced to the ranging 

measurements. Multipath is hard to model due to the fact that it is dependent on the 

environment but there are methods to mitigate it (Park et al., 2004). The most obvious 

one is not to set up the antenna in a challenging environment. Another way is to choose 
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a high quality antenna that rejects signals coming from below the horizon as well as 

those that are left handed polarized (Weill, 1997). The reason for this is that GNSS 

signals are right handed polarized and become primarily left-handed if reflected. Only 

nearby objects will induce troublesome multipath because the receiver tracking loops are 

designed to reject indirect ranges longer than 1.5 chips (~440 m). The type of correlator 

in the receiver also plays a very important role in multipath determination. Narrow 

correlators are better at computing the PRN autocorrelation peak meaning they are also 

better at identifying and rejecting multipathed signals (O‟Keefe, 2007). Figure 2-3, 

shown below illustrates the effect of multipath on the ranged signals.  

 

 

 

 

 

 

Figure 2-3: Antennas in multipath environment (NovAtel Inc, 2015b) 

 

 

2.2.6 Measurement Noise 

 

     The amount of noise in the receiver tracking loops plays a very important role in how 

accurately a receiver can measure pseudoranges and carrier phase (Langley, 1997). The 

unreflected signals 

reflected signals 

RX 
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most basic kind of electrical noise is produced by random movement of electrons in a 

conductor (such as those in a GNSS receiver) and is referred to as thermal noise (ibid). 

This random movement of electrons in turns creates an electromagnetic radiation. The 

antenna ends up picking up electromagnetic radiation from the receiver, the sky, the 

ground, and objects in the vicinity of the receiver antenna (ibid).  

     Noise experienced by the receiver in the form of cable loss and receiver temperature 

also has to be taken into account (ibid). Putting all of these noise sources together, C/A 

code measurements can be observed with a precision of 4 cm whereas carrier phase 

measurements can be observed with a precision of around 0.5 mm (NovAtel Inc, 2015h). 

Table 2-1 below summarizes the characteristics and approximate magnitudes of GNSS 

errors in single point positioning. 

 

Table 2-1: Characteristics and magnitudes of GNSS errors (adapted from Godha (2006), 

Gao (2007), O‟Keefe (2005), and Langley (2016)) 

GNSS Errors Characteristics Magnitude in Single 

Point 

Ionosphere Spatially correlated 

Frequency dependent 

Varies with location and solar activity 

2 – 50 m 

Troposphere Spatially correlated 2 – 30 m 
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Frequency independent 

Orbital Spatially correlated  < 1 m 

Satellite clock  Estimated through coefficients broadcast in 

ephemerides 

<1 m 

Receiver clock Estimated in filter along with position 

 

200 ns – several ms 

Code Multipath Depends on environment, antennas and 

elevation angle 

0.2 –500 m 

Code 

Measurement 

Noise 

Depends on noise experienced by antenna 

and receiver 

~ 0.4 m 

 

2.3 High Sensitivity Assisted GNSS 

 

     The differential correction methods mentioned in the previous section are not 

commonly used with low-end receivers such as those found in the Moto-X Android 

smartphone, used in this thesis. However, these low-end receivers do have a few 

differences in design that give them an advantage over high accuracy receivers.  GNSS 

receivers such as those found in smartphones have a higher sensitivity compared to their 

high accuracy counterparts due to the fact the incoming signals are integrated for a 

longer amount of time (Driscoll et al., 2011). The code-correlation computation in 
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GNSS receivers is what is able to raise the buried signal from the strong ambient noise 

(Langley, 1997). High accuracy GPS receivers integrate the received signal for 1 ms, 

which is the duration of one C/A cycle and results in the ability to acquire and track 

signals at around -160 dBW. Every 20 ms there is a new bit of navigation data 

transmitted (recall the navigation message is sent at 50 bps) and this bit change limits the 

coherent integration in the receiver unless the navigation bits are known a priori 

(MacGougan, 2003). High sensitivity receivers make use of assisted GNSS to remove 

the navigation message via the cellular provider. This, along with a large increase in 

number of correlators compared to those in high accuracy receivers, and limitation of 

residual frequency errors, enable high sensitivity receivers to track much weaker GNSS 

signals. By removing the navigation message, the 1 ms integration can now be 

lengthened about 1000 times which in turn is able to raise weaker signals out of ambient 

noise (Zhang et al., 2011). This means high sensitivity GNSS receivers are able to 

acquire and track signals down to the -190 dBW level, which is a 30 dB increase with 

respect to high accuracy receivers.  Thus the advantage of high sensitivity GNSS 

receivers is they can track GNSS signals indoors, albeit at a very low accuracy. They 

were not meant for providing survey grade accuracies. The high sensitivity aspect of the 

GNSS receiver inside the smartphone did not provide any advantages due to the nature 

of this project being related to getting the highest accuracy possible rather than the 

greatest availability. 
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2.4 Coordinate Frames Used in Inertial Navigation 

 

     There are different frames that have to be considered when dealing with inertial 

navigation systems. The mechanization equations are computed in either the Earth-

Centred-Earth-Fixed frame (e-frame) or the Local-Level frame (l-frame) although the 

position and velocity are usually output in the latter due to it being much easier to 

physically relate to.  

Inertial Frame (i-frame) 

Origin = Earth‟s centre of mass 

Z
i
-axis = Parallel to Earth‟s spin axis 

X
i
-axis = Towards mean vernal equinox 

Y
i
-axis =Orthogonal to X and Z axes forming a right-handed system 

     The inertial frame is a fixed non-rotating frame that is used in the mechanization 

equations to distinguish observables induced by the Earth‟s rotation (Coriolis effect, 

centrifugal acceleration) from those that don`t (raw gyroscope measurements). 

 

Earth Centred Earth Fixed (ECEF or e-frame) 

Origin = Earth‟s centre of mass 

Z
e
-axis = Parallel to Earth‟s spin axis 

X
e
-axis = Towards mean Greenwhich meridian  
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Y
e
-axis = Orthogonal to X and Z axes forming a right-handed coordinate frame 

 

Local-Level (LLF or ENU or l-frame) 

Origin = IMU centre of navigation 

Z
l
-axis = Upwards (parallel to normal gravity) 

X
l
-axis = Orthogonal to normal gravity, pointing towards East 

Y
l
-axis = Orthogonal to normal gravity, pointing towards North 

     As per Schwarz and Wei (2000), mechanizing in the e-frame is mathematically 

simpler than the l-frame because the normal radius of curvature of the ellipsoid does not 

have to be taken into account which greatly simplifies most computations. However, the 

normal gravity computation in this frame is more complicated than in the l-frame. Note 

that the Local-level frame is defined here as being right-handed. However some 

applications such as hydrography define the l-frame as a left-handed. In such cases the Z 

axis is positive downwards, in line with normal gravity.  Both e-frame and l-frame are 

shown below in Figure 2-4. 
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Figure 2-4: ECEF frame (e-frame) and local level frame (l-frame) 

 

Vehicle Frame (v-frame) 

Origin = IMU centre of navigation 

Z
v
 = Upwards 

X
v
 = Towards right side of vehicle 

Y
v
 = Towards front of vehicle 

     The vehicle frame is used for attitude purposes. During the use of the mechanization 

equations, the attitude estimate in either ECEF of LLF will be rotated to the computation 

frame and then to this frame. The reason for this is that most applications require the 

attitude of a moving vehicle.  To be able to output in this frame it is necessary to take 

into account the difference between the IMU enclosure frame, computation frame (see 

below), and the vehicle frame.  
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Z 
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     In all of the tests carried out in for the research reported, the smartphone was 

mounted in such way that the IMU enclosure frame (see below) matched the vehicle 

frame. This was done for ease of setup although there are no mathematical constraints to 

how the IMU is mounted provided the appropriate rotations are taken into account.  The 

v-frame is shown below in Figure 2-5. 

 

Figure 2-5: Vehicle frame (NovAtel Inc, 2015g) 

 

 

IMU Enclosure Frame 

     This is the frame of the physical sensors in the IMU. It is suggested to mount the 

IMU in the default way where the enclosure‟s axes match that of the vehicle frame. 

Otherwise, further rotations would be required to get the solution output in the vehicle 

frame. This frame is shown below in Figure 2-6  for the sensors used herein.  

Origin = IMU centre of navigation 
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Z
b
 = Upwards, away from the smartphone 

X
b
 = Towards right side of smartphone 

Y
b
 = Towards top of smartphone 

 

 

 

 

 

Figure 2-6: IMU enclosure frame 

 

Computation Frame (b-frame) 

Origin = IMU centre of navigation 

Z
c
-axis = Upwards in line with gravity 

Y
c
-axis = Dependent on mapping 

X
c
-axis = Dependent on mapping 

     Depending on the vehicle size constraints, the IMU might not be mounted in such a 

way that the enclosure frame matches the vehicle frame. For example, it might be 

mounted with the enclosure frame`s X-axis in line with gravity instead of the Z-axis. 

This frame is used to map the axes of the enclosure frame to a computation frame where 

Z 

X 

Y 

IMU 

IMU 

IMU 
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the Z-axis is always in line with normal gravity. The computation frame will match the 

enclosure frame if the enclosure Z-axis points upwards.  

 

2.5 Coordinate Transformation 

 

     Throughout this thesis it will be necessary to transform vectors back and forth from 

the e-frame to the l-frame as well as the b-frame. Rotating from one frame to another can 

be done by sequentially rotating each axis in the “from” frame until the “to” frame is 

matched. The elementary rotations around the three axes are defined as follows: 

                                               (

   
   s   s     

  s       s   
+                                            (2.7) 

                                               (
  s     s     

   
s        s   

+                                         (2.8) 

                                                ( 
  s   s      

s       s    
   

+                                         (2.9) 

     The product of elementary rotations forms a rotation matrix   
 
 where the subscript 

indicates the “from” frame and the overscript indicates the “to” frame. The basis vectors 

that make up a rotation matrix are of unit length and their dot product defines the cosine 

of the angles between the vector pairs. This is why the rotation matrices are sometimes 

also referred to as direction cosine matrices (Mohamed and Mamatas, 2012).   This 
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allows us to convert vectors from one frame to another as in the example below where 

the arbitrary vector B is to be converted from the e-frame to the l-frame: 

                                                                     
                                                     (2.10)   

A very important property that facilitates transforming vectors from one frame to 

another is:  

                                                    (  
 
)
  

  (  
 
)
 

    
 
                                        (2.11) 

The rotation between the e-frame and l-frame consists of two consecutive rotations 

around the   and    axis. The conversion between e-frame and l-frame is shown below 

in Figure 2-7. 

                                           
    (  

 )
 
      

                                   (2.12) 

 

 

 

 

 

 

 

 

Figure 2-7: Visual of e-frame to l-frame conversion 
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     The other type of rotation that is done often is the conversion from either the l-frame 

or the e-frame to the b-frame. Note that unlike with the previous transformation, the 

order of rotations does matter when working with the b-frame because of the ENU 

convention behind it (Mohamed and Mamatas, 2012). When defining a rotation from a 

mechanization frame (either e-frame or l-frame) to the body frame a sequence of       

must be employed. Thus, a rotation from the b-frame to the mechanization frame would 

consist of the opposite order of       as follows: 

                                   
  (  

 )
 
                                                  (2.13) 

     where the   overscript stands for either the e-frame or l-frame. Note that if   =l the 

rotations around the x,y,z axes are called pitch, roll and yaw respectively. Since 

navigation applications deal with heading instead of yaw, Equations 2.13 would have to 

be modified accordingly. 

                                     
  (  

 )
 
                                                   (2.14) 

     Recall that throughout this thesis the b-frame matches the v-frame and therefore no 

further rotations would be required to output the vehicle pitch, roll and, heading. 

 

2.6 Mechanization Equations 

 

     As was mentioned at the start of the chapter, INS is essentially a dead reckoning 

system providing position, velocity, and attitude from the measurements inside an IMU 

(El-Sheimy, 2012). The first step in the INS solution is to integrate the raw 
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measurements from the accelerometers and gyroscopes inside the IMU. Because the 

phone was mounted in such way that the enclosure frame already matches the vehicle 

frame, the raw measurements are already in the b-frame. Therefore, the mechanization 

equations will rotate the raw observations from the b-frame to the e-frame (or l-frame). 

Note that just running the mechanization equation won`t provide an accurate INS as the 

solution will drift due to sensor biases explained in the INS Error section of this thesis. 

That is, in order to provide a proper INS solution, the sensor errors have to be accurately 

modelled and removed. The first order differential equations representing vehicle motion 

can be mathematically modelled as follows (El-Sheimy, 2012). 

                                         (
 ̇ 

 ̇ 

 ̇ 
 
+   (

  

  
        

       

  
     

      
  

)                                    (2.15) 

 Where the dots on top of the variable represents the time derivative, e, b represent the e-

frame and b-frame respectively, and the bold values represent the input raw data from 

the IMU. The remaining symbols are: 

  is the position vector            

  is the velocity vector (  
    

     
 ) 

  is the normal gravity vector 

  
  is the rotation matrix from the b-frame to the e-frame 

   
  is the skew-symmetric matrix of the rotation rate,    

  

   
  is the skew-symmetric matrix representing the Earth‟s rotation rate 
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  is the specific force vector (raw accelerometers observations) 

   
  is the skew-symmetric matrix of the rotation rate,    

 , representing the raw 

gyroscope observations.  

     The mechanization equations are the solution to the first order differential equation 

shown above. The following is the solution derivation of the mechanization equations in 

the e-frame as shown in Schwarz and Wei (2000). 

1. Remove bias from raw accelerometer and gyroscope measurements: 

 

                                                
   ( ̃  

       ) (    )                                           (2.16) 

                                  
   (  ̃ 

       )                                                (2.17) 

 

where  ̃  
  corresponds to the gyroscope measured angular increments. The subscript 

indicates the rotation is from the i-frame to the b-frame and the overscript indicates the 

rotation is measured in the b-frame.   ̃ 
  corresponds to the accelerometer measured 

velocity changes. The subscript indicates the measurement is done in the body frame.  

   and    correspond to the gyroscope and accelerometer biases respectively.    and    

correspond to the gyroscope and accelerometer scale factors respectively. 

     Note the biases are multiplied by the IMU operating time increment (inverse IMU 

operating frequency). The reason for this is that IMUs usually output the raw 

observations as velocity increments (for accelerometers) and angular increments (for 
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gyroscopes). Thus, the bias estimates have to be transformed to increments prior to 

being removed from the raw measurements. Something worth stating is the Moto-X 

Android phone used in this thesis outputs raw measurements as acceleration and angular 

velocity. Thus, raw measurements were also multiplied by the IMU operating time 

increment in order to match the equations above. 

 

2. Remove Earth‟s rotation from raw gyroscope measurements. 

                                                        
     

    
                                                            (2.18) 

                                                         
      

     
                                                    (2.19) 

 

     Equation 2.18 transforms the Earth‟s mean rotation rate from the e-frame to the b-

frame. It then multiplies it by the IMU time increment in order for the units to match that 

of 2.16. Equation 2.19 represents the raw gyroscope measurements after being corrected 

for the Earth‟s rotation rate.  

     Note that only IMUs with a gyroscope bias of less than 15 deg/hour are capable of 

sensing the Earth‟s rotation (NovAtel Inc, 2015e). This is an important concept that will 

be brought up again in the INS alignment section. Very low-end gyroscopes such as the 

ones inside the Moto-X Android phone are unable to sense the Earth‟s rotation and 

therefore removing the Earth‟s rotation is not necessary. The procedure nevertheless was 

added here for the sake of completeness.  
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3. Quaternion update  
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                  (2.24) 

 

     Equation 2.24 uses a quaternion approach for updating the attitude. A Quaternion is a 

four dimensional complex matrix that provides a convenient mathematical 

representation of orientations and rotations of objects in three dimensions (Mohamed 

and Mamatas, 2012). The quaternion contains four differential equations whereas a 

rotation matrix requires six differential equations. The quaternion also avoids the 

singularities that might be encountered with rotation matrices when dealing with pitch 

and roll values that are close to 90 degrees (El-Sheimy, 2012).   

     Please note that an initial rotation matrix with respect to the b-frame, expressed in the 

e-frame is required during the INS alignment procedure which will be explained in a 
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later chapter. This rotation matrix is then converted into the quaternion              
 
 
 

used in Equation 2.24.  

 

4. Convert quaternion to rotation matrix in e-frame 
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+                                                                                         (2.24)         
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5. Transform specific force from b-frame to e-frame 
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)                                                     (2.25) 

 

                                        
     

 
 
(  

 

 
  )   

                                                    (2.26) 

     Equation 2.26 uses the rotation matrix from the previous epoch,   
 
 
,  from Equation 

2.24 to convert the measured velocity changes to the e-frame. It also takes into account 

the corrected angular increments from the current epoch.   

6. Coriolis effect correction 
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+                        (2.27) 

     Because the IMU is located on the surface of the Earth, it experiences so called 

pseudo-forces from the Earth‟s rotation which need to be taken into account.  Equation 

2.27 shows the computation for the Coriolis Effect.  

 

7. Gravity correction 
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)   (
  

   

  
   
 

+                   (2.28) 

     The left-hand side of Equation 2.28 corresponds to the normal gravity correction 

where r is the radius to the centre of mass of the Earth (origin of e-frame) using e-frame 

coordinates           . 

The right-side of Equation 2.28 corresponds to the Earth‟s centrifugal force. The 

centrifugal force is a function of the Earth‟s spin rate and the separation from the spin 

axis. That is, equatorial latitudes are under a higher centrifugal acceleration than 

higher/lower latitudes (Braun, 2006). 

 

8. Apply Coriolis and gravity corrections to measured specific forces 

                                                 
                                                            (2.29) 
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Note that the Coriolis (  ) and gravity (  ) corrections are multiplied by the IMU time 

increment due to the fact specific forces are measured in velocity increments. The output 

of Equation 2.29 is the corrected velocity increments in the e-frame. 

9. Compute velocity at current epoch 

                                          
       

                                                      (2.30) 

     Velocity at the current epoch is computed by adding the average velocity estimates at 

current and previous epoch with the previous computed velocity. 

10. Position computation at current epoch 

                                     
       

        
       

                                       (2.31) 

The position is computed in a similar manner to velocity in Equation 2.30. Note the 

change in time which is integrating velocity to position. 

 

11. Convert coordinates from ECEF to geodetic 

As was already mentioned earlier, it is more intuitive to deal with geodetic coordinates 

than with the e-frame coordinates. The geodetic coordinates also need to be used in the 

attitude computation. 

 

12. Compute attitude matrix in l-frame,   
   

                                                            
     

   
                                                 (2.32) 
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The current attitude estimate from the mechanization equations,   
  is rotated into 

the local level frame for attitude computation purposes. The rotation matrix,   
  , 

computed from geographic coordinates is used for the transformation. 

 

13. Compute attitude 

                                       [   
         

      ]                                           (2.33) 

                                                     [  
      ]                                                      (2.34) 

                                    [   
         

      ]                                             (2.35) 

The complete mechanization equation procedure is shown below in Figure 2-8. 

 

 

 

 

 

 

Figure 2-8: e-frame INS mechanization (adapted from Godha, 2006) 
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2.7 Inertial Sensor Errors 

 

     The mechanization equation process from the previous section is the dead-reckoning 

part of the INS system integrated with an IMU. If the accelerometers and gyroscopes 

were free of errors then we would be pretty much done. However that is not the case. As 

per El-Sheimy (2012), all sensors are subject to errors which limit the accuracy with 

which the observable can be measured.  Recall that accelerometer and gyroscope bias 

were removed in Equations 2.16 and 2.17. These are but a couple of the errors affecting 

accelerometers and gyroscopes that will be further discussed in this section. As can be 

expected, very low-level MEMS such as the ones inside the Moto-X Android 

smartphone are going to have much higher errors than MEMS used in the industry such 

as the ADIS16488, STIM300, HG1930, let alone non-MEM IMUs such as the IMU-

CPT, KVH1750, or LN200 (NovAtel Inc, 2015e). 

     The performance of accelerometers and gyroscopes inside an IMU can be quantified 

through bias offsets, scale factors, bias drift, non-orthogonality of the axes and noise. 

The following equations show the accelerometer and gyroscope measurement models: 

                                         ̃                                                       (2.36)     

                                      ̃                                                       (2.37) 

    Where the „~‟ overscript represents the measured readings and the „a‟ and „g‟ 

subscript represent accelerometer and gyroscope respectively. The „w‟ and „f‟ represent 

the angular rate and specific force respectively. The remaining symbols are: 
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Figure 2-9: Visual of bias offset, noise and scale factor 

 

     Figure 2-9 above is a very good visual for explaining what the bias offset, noise and 

scale factors are. The X-axis represents the true, error-free quantity being measured 

(either velocity increments for accelerometers or angular increments for gyroscopes). 

The Y-axis represents the actual sensor measurement. Ideally, if the sensors were 

errorless we would expect the ratio slope of the line to be 1 (dashed line in diagram), 

provided the sensor output has the same units as the physical quantity being measured 

(Langley, 2016). The fact the slope does not start at the origin of the plot indicates the 

measurement is in the presence of a bias. Also, the deviation from the ideal slope 

Scale factor (slope) 

Sensor output 

Bias offset 

Noise 

Physical Quantity 
(velocity increments or angular increments) 

 



 45 
 

indicates the noise in the measurements and sensor drift. Changing this figure a bit will 

help explain what a bias drift is as shown below in Figure 2-10 . 

 

 

 

 

  

 

 

 

 

Figure 2-10: Bias drift 

 

     The x-axis in the figure above now represents time whereas the y-axis represents the 

measured acceleration by an accelerometer in line with the gravity vector. The example 

shows the accelerometer has a bias offset of 0.01 m/s
2
 at the very start and a bias offset 

of 0.02 m/s
2
 by the end of the plot. The difference in the bias at the end of the plot with 

respect to the start represents the bias drift. Let us now take a deeper look at each error. 

 

2.7.1 Sensor Bias Offset 

 

     In literature, it is sometimes referred to as turn-on bias because of the fact it 

represents the bias in the sensor output when the unit is powered on. It is expressed in 

Bias drift 

Measured acceleration by accelerometer  

Bias offset 

Time 

True Value 

Sensor output 

9.81 m/s2 

9.82 m/s2 

9.83 m/s2 

in line with gravity vector 
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°/h (or rad/s) for gyroscopes and in m/s
2
 (or mg) for accelerometers. The sensor bias 

offset is a deterministic error that can be removed through a calibration procedure such 

as the six position test or the turntable calibration. The former consists of measuring raw 

data in six different positions to cancel out other errors and the latter consists on putting 

the IMU on a multi-axis turntable whose axes are oriented precisely to the l-frame.  The 

repeatability of the sensor bias offset from turn-on to turn-on is very accurately 

determined for industry-used IMUs (both low and high grade). These errors are so small 

in tactical and navigation grade IMUs that their effects are negligible (Nayak, 2000).  

However, this is not the case with industry-used MEMS and therefore must be taken into 

account. As will be mentioned in the Results section of this thesis this wasn‟t the case 

with the ultra-low-end sensors inside the Moto-X smartphone. This deterministic bias 

offset was not repeatable from power cycle to power cycle and its effect can easily break 

the solution if not properly removed.   

 

2.7.2 Scale Factor Error 

 

     As was stated earlier in the explanation for Figure 2-9, the scale factor represents the 

ratio of sensor output to true quantity were 1 is the ratio of an ideal sensor. The scale 

factor is sometimes divided into linear and a non-linear component due to the fact the 

inertial sensor‟s response is not exactly linear (El-Sheimy, 2012).  The scale factor errors 

are measured in PPM and are negligible in tactical and navigation grade IMUs but not 

MEMS. As was the case with the sensor bias offset, the scale factor errors are 

deterministic and can be removed through the six position test or the turntable 
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calibration. The scale factor errors can change with time in MEMS in which case they 

are modelled stochastically. The scale factor errors proved to be quite important in the 

ultra-low-end sensors inside the Moto-X smartphone and had to be found empirically.  

 

2.7.3 Non-orthogonality of the axes 

 

     This error results from imperfection of the mounting of the sensors and is sometimes 

referred to as the axes misalignment error. The result is that the axes are not completely 

independent of one another in the body frame (El-Sheimy, 2012). This error can be 

removed through the six position test or the turntable calibration.  

 

2.7.4 Sensor noise 

 

     Noise present in the raw signal of accelerometers and gyroscopes adds an additional 

signal to the output signals being measured (El-Sheimy, 2012).  Unlike the bias and 

scale factor, noise cannot be determined deterministically and instead must be modelled 

stochastically. Noise can be modelled in different ways depending on the stochastic 

characteristics it presents. For example, it can be modelled as white, random constant 

(bias), random walk, periodic random process, or Gauss Markov. Accelerometers and 

gyroscopes inside an IMU are usually modelled as a Gauss Markov process due to its 

simple mathematical description and ease of implementation. There are actually two 

types of noise that have to be modelled: sensor noise (high frequency component) and 
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bias noise (low frequency component). The high frequency component can be easily 

found by measuring the standard deviation of each sensor axis over a small amount of 

time (usually one or two seconds). The reason for this is that industry-used IMUs 

operate at a frequency >100 Hz thus a couple of seconds give enough samples to come 

with an estimate but it‟s also relatively a small time sample where the longer frequency 

noise is not taken into account.  The low frequency noise component is attributed to the 

bias drift noise (and scale factor in MEMS) and is a bit more complicated to model. It is 

usually separated from the high frequency noise through wavelet decomposition where 

the level of decomposition is determined by the level at which the standard deviation of 

the remaining low frequency signal component reaches a minimum (Nassar, 2003). 

However, as was shown by Nassar (2003), and as will be explained in Chapter 6 of this 

thesis, INS sensor noise cannot be accurately modelled as a Gauss Markov process and 

instead ends up being empirically found. 

 

2.8 Classification of IMUs 

 

     IMUs can be classified into different grades according to the magnitude of errors 

shown in the previous section. These sensors, in increasing order of quality, are referred 

to in the industry as entry level, mid performance level, and high performance level 

(NovAtel Inc, 2015e).  Given the advances in MEMS technology over the last few years, 

industry-used MEMS have been grouped into the same grade as FOG technology IMUs 

such as the IMU-CPT from KVH. Recall that this thesis deals with a MEMS of much 

more lower quality that is not currently used for inertial navigation. As such, a new 
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grade henceforth referred to as recreation grade MEMS will be used to refer to MEMS 

such as those found inside smartphones.  

Table 2-2: IMU grade comparisons (adapted from NovAtel Inc, 2015e) 

IMU Grades Recreation  Entry Mid Performance High 

Performance 

Gyro Bias (deg/hr) > 720 720 – 20 2 – 5 <= 1 

Angular Random Walk 

(degrees/rt-hour) 

> 0.3 0.0667 - 0.3 0.012 - 0.125 0.07 – 0.1 

Accelerometer Bias (mg) >50 >50 1- 2 <= 1 

Measurement Rate (Hz) <50 100- 200 100- 200 >=200 

Technology MEMS MEMS, FOG Ring Laser Gyro, 

FOG 

FOG 

Examples Smartphone IMU-CPT, 

ADIS16488 

KVH-1750, 

HG1700-AG62 

LN200, FSAS 

 

     Table 2-2 above shows some of the metrics used to differentiate amongst the 

different grades of IMU, the most important one being gyroscope quality. Although 

varying quality of accelerometers do exist, gravity is a very strong signal easy to pick up 

even with recreation-level accelerometers. As will be seen in the next chapter, 

accelerometers are used to measure the pitch and roll of the vehicle. Granted, high 

performance IMUs will be able to measure gravity more accurately than entry level 
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IMUs but the accelerometer quality wouldn`t be the differentiator in choosing the IMU 

needed for a specific application.  

     Gyroscopes however, are the main differentiator for each IMU grade level. 

Gyroscopes that have a sensor bias offset greater than 15 deg/hour are not able to sense 

the Earth rotation rate which is a very important limitation as far as how to initialize the 

INS as will be seen in the next section. Gyroscope quality directly translates to how 

accurately heading can be measured. Barring the use of aided-heading in the system, a 

low quality IMU won`t be able to determine its heading statically. Instead, the heading 

will depend on the kinematics the system experiences. If changes in heading are not 

observed over a long period of time, the system will lose knowledge of heading and the 

estimate will drift according to the quality of the gyroscope.  

     The angular random walk shown in Table 1 represents the noise level created by the 

gyroscope. The higher the quality of the IMU, the easier it is to estimate its angular 

random walk and any other noise level/errors due to the sensors being more stable. On 

the other hand, as will be seen in the Results section of this thesis, the recreation-level 

sensors inside the smartphone proved to have very unstable sensors from turn-on to turn-

on making it very tough to accurately model its stochastic properties.  The changing 

gyroscope bias offsets and angular random walk from turn-on to turn-on the reasons why 

the recreation sensor was only able to observe heading accurately to 15 degrees at best. 
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2.9 Initial Alignment 

 

     As was briefly alluded to when the mechanization equations were presented, one of 

the most important points in INS is the initial alignment. This can be considered an INS 

initialization process. Recall that INS sensors provide very accurate relative estimates 

due to the epoch-to-epoch integration taking place in the mechanization equations. 

However, they need an initial estimate to know what to add the accurate angular and 

velocity increments to. The initial alignment consists of providing an initial position, 

velocity and attitude, along with corresponding uncertainties for each estimate. 

Providing erroneous uncertainties to the estimates could potentially break the filter. Let 

us now talk about the different methods used in the industry to align an INS. 

     The initial absolute position and velocities are fed through GNSS. Lately, there have 

been more and more indoor navigation tests that require use of RFID technology in 

order to determine the offset with respect to a well-known point (whose position is 

accurately known by GNSS). Although mathematically possible, these indoor navigation 

projects haven`t hit the mainstream market as outdoor projects have.  

     Pitch and roll are easily determined by accelerometers (from ultra-low-end to high-

end IMUs) because they are solely dependent on the gravity vector (El-Sheimy 2012) as 

follows. Suppose an orthogonal triad of accelerometers is sitting on a parked car on a 

slope. The specific forces on the x-axis and y-axis can be related to pitch and roll as 

follows: 

                                                                                                                          (2.38) 
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                                                                                                                          (2.39) 

    Where     and    correspond to the specific forces in the x-axis and y-axis 

respectively,   is the gravity scalar, and     are the rotations around the x-axis (pitch) 

and y-axis (roll) respectively. The formulation is a bit more complicated when the IMU 

is in motion because the specific forces will now measure vehicle motion as well as 

gravity but the principle is in essence the same. By modelling what gravity is at each 

point we are able to isolate the specific force components that are not related to vehicle 

dynamics and can therefore estimate pitch and roll. 

The accuracy of the pitch and roll estimates is dependent on the accelerometer biases as 

follows (Nayak, 2000): 

                                                                   
   

 
                                                      (2.40) 

                                                                   
   

 
                                                      (2.41) 

     The heading (or azimuth) is the hardest component to estimate because of a couple of 

facts. The first one is that heading is not directly observed (unlike gravity). Instead, 

heading is indirectly observed through vehicle kinematics (more on this later). The 

second reason is that only tactical and navigation grade IMUs containing a gyroscope 

bias < 15 
o
/hr are able to sense the Earth‟s rotation. That is, a navigation grade IMU such 

an IMU-LN200 is sensitive enough to Earth‟s rotation and is therefore able to statically 

tell where its axes are pointing with respect to North. However, MEMS such as the 

Sensonor STIM300 (or the ultra-low entry sensors inside the Moto-X smartphone for 

that matter), have gyroscope biases greater than the 15 
o
/hr meaning they are not able to 
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discern where their axes are pointing with respect to North statically. Thus the methods 

for coming up with the initial heading estimates in INS are: 

1. Kinematic Alignment: Can be applied to any IMU but is usually used for the 

lower end sensors unable to sense Earth‟s rotation. The kinematic alignment is a 

fairly simple process. The course made good from the vehicle‟s change in 

position over consecutive epochs is injected as an initial INS estimate.  

                                                    ta   *
        

        
+                                             (2.42) 

Or, since GNSS already provides velocity through Doppler or carrier-phase 

measurements, we can use a velocity estimate directly: 

                                              ta   *
  

  
+                                                    (2.43) 

 

By doing covariance propagation on Equation 2.43 we can come up with the 

accuracy of the heading estimate: 

                          
     

   
    

          
      

    

          
      

   

                     (2.44) 

     Where      is the variance in the horizontal velocity vector and    is the 

horizontal velocity. As per Equation 2.44, the greater the horizontal velocity the 

smaller the heading estimate. 
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2. Static Alignment 

     For IMUs that do have a gyroscope bias of less than 15 
o
/hr, it is possible to 

align the INS statically. In the static alignment, pitch and roll are averaged from 

Equations 2.40, 2.41. Heading is found by taking the inverse tangent of the 

average of the raw angular increments after having been rotated from the body to 

the horizontal. This is shown in Equations 2.45, 2.46 below (Petovello, 2003): 

                                               ̅  
 
               ̅  

                                       (2.45) 

                                             ta   (
(  ̅  

 
)
 

(  ̅  
 
)
 

+                                             (2.46) 

     Where the bar corresponds to the average values over a specified amount of 

time (usually one minute).  

 

3. Aided Heading 

     This is the optimum method for providing the initial INS heading estimate 

due to the fact it is instantaneous and can be used with low-end or high-end INS 

sensors. The idea is to feed the initial heading from an external source. Usually, 

this aided heading comes from a secondary GNSS receiver-antenna pair that 

provides a heading estimate with respect to the master GNSS receiver-antenna 

pair (NovAtel Inc, 2015d). The dual antenna GNSS heading also helps constrain 

the heading drift (more on that on Chapter 4). Lately, there has also been 

research on using magnetometers for providing an aided heading estimate. Tang 

(2014) showed a filtered static magnetometer-derived solution form the 
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commercial product 3DM-GX1 had an accuracy of 0.7º when in the absence of 

magnetic anomalies and 4.7º when in the presence of magnetic disturbances. As 

will be further explored in this thesis, the magnetometer inside Moto-X 

smartphone proved to be very unreliable and as such as was not used for heading 

even after calibrating for soft-iron and hard-iron effects.  
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CHAPTER 3: INTRODUCTION TO DATA PROCESSING 

METHODS 

 

     This chapter provides an introduction to data processing methods used in this thesis, 

focusing with the Kalman Filter. First, let us start with the most basic of estimation 

processes. Growing up we are taught how to solve for unknowns using mathematical 

equations that relate known information with quantities trying to be solved. We are also 

taught that in order to find a unique solution, we need the number of equations 

(observables) to be equal to the number of unknowns. If we are dealing with a linear 

system of equations we can then represent the equations in the following matrix form: 

                                                                                                                              (3.1) 

where, 

                is a vector representing the measurements 

                is the design matrix (Jacobian) which represents the derivatives (geometry) 

of the functions with respect to the unknowns 

                is the vector of unknowns 

     This works really well mathematically except that in real life we usually cannot 

directly measure the quantity of interest and instead must compute it from other known 

information; thus measurement and hence the variable of interest isn‟t perfectly 

determined. Measurements contain blunders, systematic biases due to equipment and/or 

measuring techniques, and random errors (El-Sheimy, 2008). Systematic errors and 

blunders can be removed if known, but the measurements will still have random errors. 
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These errors cannot be computed deterministically and instead must be modelled 

statistically. Equation 3.1 would then become: 

                                                                                                                         (3.2) 

where   is the random error in the observations caused by measurement noise.  

 

3.1 Estimation using Measurements Only 

 

     Let us consider an example in which the length of a table is desired (thus only one 

unknown).  If the length of the table is measured 10 times with a measuring tape (giving 

us nine redundant observations), most of the measurements are more than likely going to 

differ from one another due to the errors mentioned earlier. Some observations will be 

very different from others (due to blunders), whereas a systematic bias may be inherent 

in all measurements due to the observation technique as well as material 

expansion/contraction. The best possible estimate in this example (table length) is the 

arithmetic mean of the measurements (sans blunders and systematic biases). The reason 

for this is that the mean is the least squares estimate for a group of measurements of a 

certain parameter. The least squares estimate is that in which in addition to satisfying the 

mathematical model, minimizes the weighted sum of squares of the residuals. This 

condition satisfies the properties of the best estimate which is most probable (maximum 

likelihood), most precise (minimum variance), and most accurate (unbiased) (El-

Sheimy, 2008). The residuals are the differences between the model and the 

measurements (  in Eq. 3.2). Thus, the least square principle is to minimize the 
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difference between observations and the estimates of the state vector. Going back to the 

purely mathematical example posted earlier, if we had four equations and three 

unknowns there is more than one solution that meets the model, but there is only one in 

which the sum of squares of the residuals is a minimum. On the other hand, a system of 

equations with the same number of equations (knowns,  ) as unknowns ( ) would only 

have one unique solution and thus no adjusting of observations is necessary.  

     It should be noted that in the real world we usually deal with multivariate (     

instead of univariate (   = 1) problems. Also, ideally we want as many redundant 

observations as possible as it means having a better estimate of the parameter(s) of 

interest. Thus, the idealistic arithmetic mean procedure of above does not apply to over-

determined mathematical models in which     and    .  

    The general least squares expression can be derived as follows. Recall that the least 

squares principle minimizes the weighted sum of squares of residuals. From Eq. 3.2 ,  

                                                               ̂                                                          (3.3) 

where  ̂  is the estimate of the parameters. Thus the cost function,  , which is the 

function to be minimized is: 

                                                  ̂           ̂                                            (3.4) 

where   is the weighting function used.  Recall that a function is minimized by taking 

the derivative and setting it to zero. Thus, if we take the derivative of Equation 3.4, set it 

to zero and solve for  ̂ we end up with: 

                                                ̂                                                            (3.5) 
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Applying the law of covariance propagation, the covariance of the unknown (state) 

vector,   ̂ is: 

                            ̂                      
                                  (3.6) 

where    is the covariance of the observation vector. Setting    as the weighting 

function   simplifies Eq. 3.5 and 3.6 to: 

                                                ̂        
          

                                           (3.7) 

                                                     ̂        
                                                        (3.8) 

     The least squares estimation shown above is used when dealing with time invariant 

parameters which can be fully modelled through measurements (e.g. geodetic networks). 

An important concept to keep in mind is that least squares estimation can be used for 

linear and non-linear mathematical models. The linearization takes place during the 

computation of the design matrix, which as explained earlier is computed through taking 

the derivatives of the functions with respect to the unknowns. Non-linear models require 

multiple iterations to converge, where the number of iterations depends on the closeness 

of the initial estimate of the states with respect to the true value of the states. If the initial 

estimate (point of expansion, POE) is not chosen wisely, the adjustment might converge 

to a different answer. Thus, the design matrix is constantly changing from iteration to 

iteration. It can also be expected to see the residuals get smaller and smaller with every 

iteration until the solution converges. On the other hand, linear models consist of 

constant design matrices meaning the solution will converge in the first iteration 

regardless of the POE chosen (El-Sheimy, 2008).  
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 3.2 Estimation using Dynamic Modelling 

 

     The least square adjustment mentioned above is used in estimation processes that can 

be fully modelled by measurements. That is, the state vectors are time invariant. 

However, many real world processes and mathematical models aren‟t. One such 

example is GNSS/INS as it consists in estimating the position, velocity and attitude of a 

moving platform. Time variant models then need a dynamics model that describes how 

the system behaves over time. A continuous time-variant model is modelled through: 

            Dynamics model                       ̇                                                 (3.9) 

            Measurement model                                                                  (3.10) 

 where,  

                   is the dynamics matrix describing the kinematics of the system at time  . 

                   is the state vector at time  .  

              ̇    is the time derivative of the state vector at time   

                  is the shaping matrix of system noise input at time   

             All other quantities are the same as Eq. 3.2 at time  . 

 

The discrete equivalent of Equations 3.9 and 3.10, which is what will be used throughout 

this thesis, is: 
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           Dynamics model                                                                     (3.11) 

           Measurement model                                                                       (3.12) 

where 

       is the discrete state transition matrix from epoch k to k+1. 

   is the state vector at epoch k 

     is the state vector at the epoch k+1 

   is the shaping matrix of the process noise at epoch k 

   is the process noise at the epoch k with a covariance matrix,    

   is the measurement vector at epoch k 

   is the design matrix relating the state vector to the measurements at epoch k 

   is the zero-mean measurement noise at epoch k with a covariance matrix,    

     The discrete transition matrix,        , can be computed from the continuous 

dynamics matrix,     , provided the assumption the system does not change over the 

time transition interval. That is,   is fixed from epoch k to k+1. The computation is 

through a Taylor series expansion as follows (Brown and Hwang 1997). 

                                               
      

  
  

      

  
                         (3.13) 

where   is the identity matrix and     is the time interval. Should the assumption 

above not apply, the error can be mitigated by shortening     (Petovello, 2003).  
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The discrete process noise     is uncorrelated zero mean with Gaussian distribution: 

                                      {
 [  ]   

 *         
 
 
+   {

      
      

                                    (3.14) 

A numerical algorithm presented by Grewal and Andrews. (2001) for computing    is 

                     [    
 ]                     

       
       

             (3.15) 

where   is the matrix describing the spectral densities of the noise in the system.  

The covariance matrix of the measurements     is defined similarly to the covariance 

matrix of the process noise: 

                                             {
 [  ]   

 *         
 
 
+   {

      
      

                               (3.16) 

 

3.3 Kalman Filter Algorithm 

 

      The Kalman filter makes use of the dynamics and measurement models above 

recursively to optimize the estimate of the state vector by minimizing the variance (Gao 

and Sideris, 2007). The Kalman filter is optimal with respect to virtually any criterion 

that makes sense due to the fact it processes all available measurements regardless of 

their precision to estimate the current values of the state vector (ibid). This is 

accomplished through knowledge of system and measurement dynamics, stochastic 

description of uncertainty of dynamics, measurement errors and system noises, and 
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initial information about the variables being estimated. The recursive behaviour of the 

Kalman filter means it does not need knowledge of all previous data. This is possible 

because the system dynamics are predicted and corrected at each epoch, with each 

computation already containing previous information about the filter‟s behaviour and 

accuracy. This is very similar to the sequential least squares formulation, which 

considers a new batch of observations in conjunction with a previously computed 

solution. In fact, the sequential least squares formulation is closely related to the 

formulation presented in the Kalman filter (O‟Keefe, 2008).  

     The first requirement in the Kalman filter is to have an initial estimate of the states 

being assessed as well as a corresponding covariance. The covariance is very important 

because it will determine by how much these initial estimates are trusted. If the 

covariance is high then the filter won‟t trust the initial conditions much and will instead 

rely on the quality of subsequent measurements as well as the estimation of the 

kinematic model to drive itself.  

     After the initial conditions have been selected, the filter runs through a two stage 

processes consisting of prediction and updates. The prediction stage is run at epochs 

where measurements are not present, whereas the update stage takes place when the 

system has measurement knowledge. The measurement variances also have to be known 

in order for the filter to decide to what degree the observations are to be trusted. High 

accuracy measurements keep the filter in check by indirectly providing knowledge of 

actual system dynamics. Low accuracy measurements are weighted much less and the 

filter‟s predicted kinematics are trusted more. Let us take a closer look at the expressions 

used in the Kalman filter. 
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The prediction stage first consists of predicting the error state using knowledge of the 

previous epoch: 

                                              ̂             ̂                                                   (3.17) 

where  

 ̂     is the predicted estimate of the state vector at epoch k 

       is the transition matrix describing dynamics from epoch k-1 to k 

 ̂       is the updated estimate of the state vector at epoch k-1 

     As can be seen from Eq. 3.17, the predicted state uses a priori knowledge of the last 

known state update as well as the kinematic model of the system. It is entirely possible 

 ̂       came from a prediction rather than an update (i.e., prediction taking place in 

between updates) in which case it would be  ̂      . As has been hinted before, the 

Kalman filter requires knowledge of the quality of the estimates throughout. As such, we 

need to know the quality of the predicted state at  ̂     which is computed as follows: 

                                                          
                                       (3.18) 

where      is as defined in Eq. 3.15 and 

      is the predicted covariance of the states at epoch k 

        is the updated covariance of the states at epoch k-1 

     Equation 3.18 shows that       depends on the sum of squares of the transition 

matrix, which is weighted by the previous state‟s covariance,         as well as the 
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system process noise. The system‟s noise spectral densities, which are the backbone of 

the process noise, are arguably the most difficult part of the Kalman filter.  

     As mentioned earlier, the update part of the Kalman filter is applied whenever new 

observations are fed into the filter. The update part first consists in computing a gain 

matrix, K, that determines to what degree the incoming observations are trusted. As 

such, the gain matrix is optimized to produce the minimum error variance (Godha, 

2006).  

                                                   
           

      
                            (3.19) 

     As can be seen in Equation 3.19, the measurement covariance,   , is the main 

contributor in determining   . The higher   , the smaller    and vice-versa. The gain 

matrix is also a function of the current geometry and the predicted state covariance 

found in Eq. 3.18. 

     The next part of the update is to compute the difference between the actual 

observations,   , and the predicted observations,  ̂  (Godha, 2006). This is referred to as 

the innovation sequence and can be thought of as the residuals,    , for the current 

epoch. As can be seen below, this is possible by mapping the predicted state into the 

observation plane via the design matrix: 

                                                                 ̂                                              (3.20) 

The updated states are then found by adding the current state estimate to the residuals 

after being weighted by the gain matrix:  

                                                     ̂       ̂                                                (3.21) 
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Finally, the updated covariance of the system can be found as follows: 

                                                                                                        (3.22) 

The step-by-step iterative Kalman Filter is shown below in Figure 3-1: 

 

                                              

 

 

 

 

 

 

 

 

 

Figure 3-1: Discrete Kalman filter (adapted from El-Sheimy, 2012) 

 

3.4 Kalman Filter in Non-Linear Systems 

 

     The Kalman filter, like the least squares adjustment is linear by nature. Thus, when 

dealing with non-linear functions such as the ones in INS equations, linearization is 
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required. The linearization is a first order Taylor series representation of the non-linear 

model about a point of interest which can be either a nominal value, or the last estimate 

in the Kalman filter (Petovello, 2003). A non-linear process and measurement model can 

be represented by: 

                                                                                                               (3.23) 

                                                                                                         (3.24) 

where   and   are non-linear functions. Let    be the point of interest at which the 

functions are linearized at such that: 

                                                                
                                               (3.25) 

     Where       is the perturbation from the point of linearization, and      is the 

actual state. Eq. 3.25 holds true if the first order Taylor series expansion performed 

about the point of interest yields a small enough perturbation. If     
  is chosen to be a 

nominal trajectory then a linearized Kalman filter (LKF) is being used. LKFs are then 

meant to be used offline where a nominal trajectory is known. However, one of the 

drawbacks of this implementation is that the deviation between actual and nominal 

trajectories can drift in time without bounds. This in turn conflicts with the small error 

assumption used in Eq. 3.25. The second method called the extended Kalman filter 

(EKF) consists in linearizing about the previous Kalman filter estimate and considering 

the perturbations as deviations between the estimated state and the actual state. Unlike 

the LKF, the EKF does not drift without bounds due to the fact the linearization 

trajectory is continuously updated with the estimated results. On the other hand, large 

initial uncertainties and measurement noise may lead to filter divergence (Gao, 2007). 
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Usually, the EKF implementation for INS applications has the state vector resetting after 

every update. This holds true because of the fact that the Kalman filter is an optimal 

filter with zero mean errors (Petovello, 2003).   

     Going back to Eq. 3.25, if the perturbations are small enough, the discrete dynamics 

and measurement models are represented by: 

                                                                                                        (3.26) 

                                                                                                                (3.27) 

     Thus, just like the state vector, measurements used in the filter are the differences 

between the estimated and actual measurements. Other than this linearization step, the 

Kalman filter process is the same as in Figure 3-1. The final state can then be computed 

by manipulating eq. 3.25 such that  

                                                              
                                                   (3.28) 

The following block diagram, shown in Figure 3-2, is based on El-Sheimy (2012). It 

shows the EKF functionality in INS applications. 

 

 

 

 

 

Figure 3-2: INS extended Kalman filter block diagram (adapted from El-Sheimy, 2012) 
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     A final important point to note about the INS filter is that as shown in Figure 3-2, the 

measurements used in the EKF are actually the differences between the observations and 

the estimated observations. These observations are either in the form of positions, 

velocities, or raw GNSS measurements depending on the type of GNSS/INS integration 

which will be explained in the next chapter. However, regardless of the type of 

integration, one of the most important updates is called the zero velocity update (ZUPT). 

Zero velocity updates are important because by knowing the vehicle is stationary, the 

velocity errors in the filters can be constrained. Suppose for example the INS goes 

through an urban canyon where no satellites can be observed. As explained earlier, in 

the absence of GNSS, the filter will run in its prediction mode only and the INS errors 

will grow. However, by stopping the vehicle, the velocity errors are constrained. The 

position is already off at this point because no position updates have taken place, but the 

growth of the position error is going to be much lower than if the vehicle did not stop 

throughout the GNSS outages in the urban canyon.   
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CHAPTER 4: GNSS/INS INTEGRATION 

 

     The previous chapter explained the Kalman filter that needs to be run in order to 

optimize the INS errors. Recall that the Kalman filter operates in a two-step process 

consisting of predictions and updates. The dynamics model attempts to predict what the 

position, velocity, and attitude of the vehicle will be whereas the measurement model 

inherently keeps all errors in check during the update stage. The INS will operate in the 

prediction stage in the absence of observations and will drift at a rate depending on the 

quality of the INS sensors as well as how accurately the behaviour of the IMU and its 

errors are modelled. This chapter first looks into the two measurement coupling method 

followed by an explanation of the importance of properly measuring the IMU to GNSS 

antenna offset. This is followed by a detailed look at the matrices behind the EKF 

introduced in Chapter 3. Thirdly, an overview of the mathematics behind the aided 

heading using GNSS and magnetometers is presented. The chapter concludes with an 

introduction to vehicle motion constraints used to constrain INS errors when GNSS 

outages are present.   

 

4.1 Integration Strategies 

 

There are two integration strategies that are implemented in INS: tight coupling 

and loose coupling. The difference between both integration methods is in how GNSS 

updates are fed into the INS; both methods are discussed below.   
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4.1.1 Tight Coupling 

 

     In tightly coupled filtering, raw GNSS observations such as raw pseudorange 

measurements, carrier-phase measurements, and Doppler measurements are used in the 

filter update process (NovAtel Inc, 2015b). This then means that with this type of 

integration, both GNSS and INS updates are computed from within the same filter. The 

advantage of tightly coupled filtering is twofold: statistically rigorous sharing of 

information is provided amongst the filter states, and there is lower filter noise when 

compared to the loosely coupled solution (Petovello, 2003). However, tightly coupled 

filtering is heavier computation-wise due to the added states compared to the loosely 

coupled alternative. The biggest advantage of the tightly coupled filter is that a 

measurement update can be computed from two satellites as opposed to four which 

would be required from a loosely coupled integration. That is, a position can be 

computed from 2 satellites instead of 4. The reason being that each satellite provides 

more than one independent type of observation, with two satellites meeting the 

minimum four linearly independent observations required to compute a position. This 

makes this type of integration essential for challenging scenarios such as urban canyons. 

The tightly-coupled integration is shown below in Figure 4-1.  
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Figure 4-1: Tightly coupled integration (adapted from El-Sheimy, 2012) 

 

4.1.2 Loose Coupling 

 

     A loosely coupled GNSS/INS integration consists in separating the GNSS from the 

INS filter. That is, the vehicle position and velocity are first computed by a GNSS filter. 

The results of this filter are then fed as updates to the INS filter in the form of position 

and/or velocity updates. The main advantage of the loosely coupled integration is that it 

can be implemented in systems that are not able to output raw GNSS measurements. For 

example, the Android smartphone used in this thesis research is only able to output 

GNSS positions and velocities meaning it can`t be used in a tightly-coupled approach. 

The second advantage is that loose coupling is a relatively simple and flexible approach 

that lends itself to fusing other sensors. That is, the fact the INS is a stand-alone filter 

means this integration method does not require as many states in the Kalman filter 
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during each update as tight coupling does. The big disadvantage of the loosely-coupled 

integration is that four satellites are required in order to provide an update. That is, if the 

vehicle were travelling in an urban canyon scenario where fewer than 4 satellites were in 

view, it would not be possible to provide an update to the filter. Another disadvantage is 

that having two separate filters increases noise. This can however be accounted for by 

increasing the weights of the GNSS updates prior to feeding them into the filter 

(Petovello, 2003).  The loosely-coupled integration is shown below in Figure 4-2. 

 

 

 

 

 

 

 

 

Figure 4-2: Loosely coupled integration (adapted from El-Sheimy, 2012) 

 

     As has been mentioned before, this thesis deals with loosely-coupled integration and 

as such no further details will be provided on tight coupling. Readers are invited to read 

Petovello (2003) and Godha (2006) for further details on how to construct the matrices 

used in the tightly-coupled integration. 
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4.2 Effect of Lever Arm in INS Solution 

 

     The lever arm is the vector that goes from the IMU centre of navigation (where the 

INS solution is computed with respect to) to the GNSS antenna phase centre. If using a 

dual GNSS setup, then both lever arms have to be known. Lever arm(s) need(s) to be 

taken into account in real-time in order to consider the fact the raw GNSS signals are not 

being received at the IMU centre of navigation. The longer the separation, the greater 

the effect of an uncompensated lever arm on position and velocity estimates. Let us first 

show the expressions used to take lever arm separations into account (Petovello, 2003): 

                                                        
                                                           (4.1) 

                                                  
   

      
    

                                              (4.2) 

where   represents the lever arm in the body frame. Thus, at every GNSS update 

(usually every second), the measured positions and velocities need to be translated to the 

IMU centre of navigation. What is the effect of an error in the lever arm computation? 

Or better yet, what is the required accuracy of the lever arm computation? Applying 

covariance propagation to Eqs. 4.1 and 4.2 we end up with: 

                                                         
                                                        (4.3) 

                                                   
   

       
    

                                            (4.4) 

     Thus, the lever arm effect on position is dependent on the degree of accuracy of the 

estimated positions. In other words, the lever arm needs to be estimated as accurately as 

the positions estimated by the filter. However, from looking at Eq. 4.4 it can be seen that 
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the lever arm effect on velocity depends on the rate of rotation. Assuming a land vehicle 

that is capable of reaching 30 deg/sec, a 1 cm error in the lever arm can cause a velocity 

error of 5 mm/s (ibid). Thus, the lever arms should always be measured as accurately as 

possible using high quality instruments such as a total station. Alternatively, the lever 

arm error can be estimated throughout the lifetime of the filter, thus requiring an initial 

uncertainty to be input. If so, it is very important to make sure the lever arm uncertainty 

is valid. Specifying wrong lever arms with high weight could cause the filter to break 

(Bahan, 2015).    

 

4.3 INS Filter 

 

     Chapter two showed the mechanization equations where position, velocity, and 

attitude estimates are found through integration of the IMU raw data. The process also 

involved accounting for the effects of turn-on biases, Coriolis force, gravity, and the 

Earth‟s rotation rate. However, just integrating the raw data will cause a drift in the 

solution because of the presence of the INS errors. The practical aspects of the EKF 

introduced in Chapter 3 are discussed in this section.  

 

4.3.1 System Model 

 

     Recall from Chapter 3 that linearization about the current estimates in the EKF means 

the error state rather than the states themselves are computed. At the very minimum, the 
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EKF running the INS will require nine error states: three for position, three for velocity, 

and three for attitude. However, this would also mean that the INS error sources are 

completely known, which certainly isn`t the case. The number of states required depends 

on the knowledge of the INS sensors being used which would directly depend on their 

quality. For example, scale factor and non-orthogonality errors are so small in high-end 

IMUs that they can be ignored. The same can`t be said about MEMS IMUs. We will 

refer to the nine main states as the navigation error states and subsequent ones as INS 

error states. Only the loosely-coupled integration method will be shown.  

 

4.3.1.1 Navigation Error States 

 

     The mechanization equations were shown to be the solution to Equation 2.15 shown 

here again for convenience: 
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Readers are invited to read Shin (2001), El-Sheimy (2012), and Savage (2000) for step-

by-step derivations on the perturbations to the above expressions. The final result is: 
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where, the dot on top of the variable represents the rate of change, e corresponds to the 

e-frame, b corresponds to the b-frame, and i corresponds to the i-frame. The remaining 

symbols are: 

   is the position error state vector (           ) 

   is the velocity error state vector (           ) 

  is the misalignment error state vector (        ) 

  is the skew symmetric matrix of the specific force (        ) 

  is the gravitational gradient coefficient matrix 

    is the skew symmetric matrix of the Earth‟s rotation rate from the i-frame to the e-

frame 

  
  is the rotation matrix from the b-frame to the e-frame 

   is the raw accelerometer measurement errors (           ) 

   is the raw gyroscope measurement errors  (           ) 

The gravitational gradient coefficient matrix,  , is shown in detail in Appendix A.  

 

4.3.1.2 INS Sensor Error States 

 

     The navigation error states shown are the minimum number of states required in an 

INS filter. However as mentioned earlier we also have to take into account the fact that 
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not all of the INS sensor errors are completely known and instead must be modelled. 

Recall that for high-end IMUs the turn-on bias, axes misalignment error, and scale factor 

error can be estimated deterministically through a six-position calibration or a local level 

calibration. The remaining IMU errors (bias drift and sensor noise) can only be dealt 

with stochastically and as such have to be modelled as separate error states.   

The accelerometer and gyroscope measurement errors shown in Eq. 4.5 (  ,   ) are 

represented by the following expression (Petovello, 2003; Zhang, 2003): 

                                                                                                                      (4.6) 

                                                                     

     The accelerometer and gyroscope noise, shown in Eq. 4.6 as       respectively, is 

modelled as zero mean white Gaussian. In the literature, the INS bias drifts are modelled 

as first order Gauss-Markov processes. Gauss-Markov processes are often used in 

engineering as they describe many physical random processes with good approximations 

(Brown and Hawng, 1997). The differential equation representing bias drift takes the 

following form (El-Sheimy, 2012; Schwarz and Wei, 2000): 

                                                       ̇                                                         (4.7) 

  ̇               

where accelerometer-specific values have a subscript a and gyroscope-specific values 

have a subscript b. To simplify the notation the subscript i will be used from now on to 

indicate the expression applies to both accelerometers and gyroscopes.  
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   is the inverse correlation time (1/sec) for the sensor 

    is the Gauss-Markov process driving noise with spectral density     

       and     (and therefore    ) should theoretically be computed from an 

autocorrelation sequence. A stationary (time-invariant process) is often used to model 

INS random errors such as the bias drift. Stationary processes are completely defined by 

the autocorrelation sequence which is defined by its time constant and variance (Nassar, 

2003).  There is however a limitation to this. Studies have shown that a large amount of 

data is needed in order for the autocorrelation sequence to be accurate enough. For 

example, if the desired uncertainty level is 10%, the required length of data will be 

approximately equal to 200 times the correlation time of the process (ibid). Thus, 

assuming a reasonable correlation time of 1 hour, 200 hours of data would be required in 

order for estimating the autocorrelation sequence with a 10% accuracy (ibid). The 

autocorrelation method from a static dataset can help with a starting point for    and    . 

However, realistically, these initial values will have to be fine-tuned empirically. It is 

also worth stating the bias drift noise (and hence spectral density) is the more sensitive 

of the two to improper modelling.  

     The process to compute the bias drift and sensor noise values is as follows and has 

been applied in previous studies such as Petovello (2003), Godha (2006), and Gao 

(2007). Static raw IMU data is collected for as long as possible. For this thesis the data 

was collected for about 8 hours although as explained above, the longer the dataset, the 

more accurate the estimate of the Gauss-Markov parameters. The variance of raw 

accelerometer and gyroscope data is computed over evenly spaced one-second data 
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intervals. One-second intervals have been used in these previous studies to separate low 

frequency noise from the actual signal as much as possible. Once the mean of the 

variances is computed, the spectral noise density for the sensor noise can be found 

through the following expression as per Gao (2007): 

                                                              
   
 

    
                                                           (4.8) 

where again the subscript i is used to indicate the variable applies to both accelerometers 

(a) and gyrsoscopes (g). 

   
  is the high frequency noise variance for the sensor. 

    is the bandwidth of the sensor.  

     Once the high frequency noise is estimated through the above procedure, wavelet 

decomposition is performed on the raw signals. Choosing the appropriate level of 

decomposition will separate the high frequency noise from the low frequency part of the 

signal. This is found by comparing the standard deviation of the low frequency 

component (called the approximation) through different decomposition levels (Nassar, 

2003). The chosen decomposition level is that which provides the smallest standard 

deviation (ibid).  The autocorrelation sequence is then computed on the approximated 

signal and is represented by the expression below. 

                                                                   
                                                       (4.9) 

where    
  is the variance of the approximation and    is the inverse correlation time 

from Eq. 4.7. A least-squares analysis is then done in order to find the values    
  and   . 
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Knowing these two values is important as it allows us to compute the bias drift spectral 

noise density,    , (Gao, 2007): 

                                                                     
                                                      (4.10) 

      Computing    ,     for accelerometers and gyroscopes gives us the spectral noise 

densities required to compute the process noise outlined in Eq. 3.15. Putting Eqs. 3.9, 

4.5 – 4.10 together, gives the state-space model for this 15-state system. This system is 

made up of nine navigation error states and six sensor error states as shown below in 

Eq. 4.11: 

                                                                                                                                    (4.11)         
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and the corresponding spectral noise densities for   are: 
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     Note that the scale factor error and non-orthogonality errors are negligible for high-

end IMUs but become more troublesome for lower-end sensors. Making this more 

difficult is the fact the scale factor error and turn-on biases change from turn on to turn 

on for lower-end sensors. As has been mentioned throughout, the lower the quality of 

the INS sensors, the harder it is to model its errors. The scale factor error could be 

modelled directly in the INS filter, or indirectly by relaxing (increasing) the uncertainty 

of the sensor noise (Bobye, 2014).  Also, attempting to model all parameters may 

weaken the model to a point where the system becomes unstable (Gelb, 1974). If 

modelled in the INS, the scale factor error is considered to be a Gauss-Markov process. 

This would then mean there would be an inverse correlation time (     and spectral 

noise density (     associated with it, just like for the bias drift.  

     Likewise, there are a couple of ways to deal with the varying turn-on bias. The first 

option is to observe the biases for about half a minute while the vehicle is static (Kong, 

2000). The turn-on biases for the accelerometers can be removed through the following 

expression: 

                                                                   ̂                                              (4.13) 

                                                                   ̂    
 ( 

 
 
 
+

 

                               (4.14) 

where  

 ̂  is the vector of the average specific forces over the defined static period. 
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   is the expected specific forces by rotating the gravity vector from the l-frame  to the 

body frame as shown in Eq. 4.14. In this method, the turn-on biases for the gyroscope 

are found by computing the average raw gyroscope data throughout the static, half-

minute initialization (ibid).  

     The alternate method is to consider the turn-on biases as white Gaussian noise in 

which case the differential equation would be represented by the expressions below 

(Bobye, 2014): 

                                                                 ̇                                                       (4.15)   

                                                                 ̇            

     Thus, if deciding to model scale-factor errors and turn-on biases as part of the INS 

sensor error states, the following would need to be appended to Eq. 4.11: 

                                                                                                                                    (4.16) 
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with a spectral noise density of 
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)                                      (4.17) 

resulting in the 27-state filter shown in Appendix A. 
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4.3.2 Measurement Model 

 

     The measurement model for the loosely-coupled integration is the same regardless of 

whether the filter is 15-state or 27-state. Recall from Chapter 3 that in an EKF the error 

states are being estimated and that as such, the INS measurement vector is composed of 

the difference between the INS estimates and the observations. The observations in the 

loosely-coupled integration are positions and velocities. Thus the measurement vector 

becomes: 

                                                      (
    
        

 

    
        

 *                                              (4.18) 

The expression above is used in the innovation sequence previously shown in Equation 

3.20.  Let us show it again for convenience: 

           ̂     

    The difference between Equation 4.18 and Equation 3.20 is that the former uses   to 

indicate it is the error state being modelled rather than the state itself. The innovation 

sequence is comparing the actual incoming observation updates with the INS 

predictions. The innovation sequence was then shown to be weighted via the gain matrix 

prior to being used to compute the updated states. Let us show Equation 3.21 again for 

convenience: 

 ̂       ̂           

    It is also worth recalling the gain matrix,   , uses knowledge of the accuracy of the 

incoming GNSS updates as well as the predicted INS states in order to determine to 
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what degree should the updates be trusted. The accuracy of the incoming GNSS updates 

were represented by     in Equation 3.19 shown below for convenience: 

           
           

      
   

The measurement noise variance is then: 

                                                   (
       

     

           
 )                                        (4.19) 

     Note even though the measurement used is the difference between INS estimate and 

GNSS observations, the measurement noise is composed of the variance of the 

observations. The reason for this is that the INS accuracies are already being taken into 

account through the current state covariance,      , in the gain matrix computation.  

    It is entirely possible to have epochs where only positions or velocities are observed 

(e.g. zero velocity updates), but having both will provide the best filter updates. The 

design matrix in the loosely-coupled integration is then: 

                                                 (
                

                
)                                       (4.20) 

 

4.4 External Aided Heading  

 

     As was stated on Chapter 3, the best way to align (initialize) the INS is through a dual 

GNSS antenna due to the fact it can be performed on any IMU grade regardless of 

whether the vehicle is kinematic or static. The standard aided heading is computed from 
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an RTK solution between two GNSS receivers. One of the receivers, called the master, 

sends raw observations to the other receiver (called the rover), which then uses double 

differencing to compute a very accurate baseline between both receivers (NovAtel Inc, 

2015a). From the very accurate baseline, it is possible to find the heading and pitch/roll 

depending on whether the baseline is oriented across track or along track with respect to 

the direction of travel. The only difference with standard RTK is that in the latter the 

base sending corrections to the rover is fixed. The very accurate baseline is computed, 

and the offset is added to the fixed position of the base, thus providing very accurate 

absolute positioning on the rover.  

     The external aided heading from GNSS was not used in this project as it is usually 

used in the higher-end receivers that provide the capability of outputting raw 

measurements (something that cannot be done on the version of Android used herein). 

However, the Android smartphone does have magnetometers that could have been used 

as a heading aiding source. Whether the aiding source comes from GNSS, 

magnetometer, or another sensor, the aided heading plays a very important role not only 

for INS alignment purposes. As was explained in Chapter 2, heading is the most difficult 

attitude component to observe due to the fact it is not measured through any force (like 

pitch and roll, which can be estimated if gravity is known). Instead, heading accuracy 

depends on the quality of the gyroscopes inside the IMU (mainly turn-on biases and bias 

drifts) as well as the kinematics in the system. For example, suppose a high-end IMU 

(single antenna scenario) is used in an application where the vehicle travels in a straight 

path for a long period of time. The EKF running the INS uses previous knowledge of its 

dynamics as well as current observations to determine the position, velocity, and attitude 
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and to control other errors being modelled. Gravity is observed indirectly through a 

gravity model, which requires position, meaning the pitch and roll are indirectly taken 

care off. The same cannot be said about heading. Thus in a scenario such as this one, the 

filter`s heading will start drifting as it will lose knowledge of changes in heading over 

time. This is the secondary case in which a dual GNSS antenna or magnetometer or any 

secondary aiding source will help. By providing constant heading updates, the heading 

drift is constrained (slowed down).  

     If using an external heading sensor or any other type of sensor for that matter, all that 

is required is to model the design matrix describing the relation of the measurements to 

the error states as well as use an appropriate measurement variance. In the external 

heading sensor case, the corresponding row of the design matrix is:  

                                        (          
  ̂

   
 
  ̂

   
 
  ̂

   
         *                           (4.21) 

where, 
  ̂

   
 
  ̂

   
 
  ̂

   
 are the derivatives of the heading function with respect to the attitude 

errors in the X, Y, and Z of the e-frame. Readers are invited to take a look at Godha 

(2006) for further details. The corresponding row of the measurement vector is: 

                                                                                                 (4.22) 

Note that because these equations represent the geometry of the heading measurement 

model with respect to the unknowns, the expressions are the same regardless of whether 

the heading estimate comes from a secondary GNSS antenna, a magnetometer, or some 

other sensor. Magnetometer calibration is shown in Appendix B. 
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4.5 Motion Constraints 

 

     As has been mentioned over the last two chapters, an INS solution will drift if there is 

a GNSS (measurement) outage due to the system having to rely on its predicted model 

that, without guidance, will drift. The drift of the system is dependent on the quality of 

the INS sensors and has been shown before, the INS sensors inside the Android 

smartphone are orders of magnitude worse than entry-level sensors used in the industry 

(MEMS), let alone high-end ones. Given the fact it is entirely possible for the vehicle to 

encounter a GNSS outage in an urban canyon scenario, something has to be done. The 

idea in this section is to use the knowledge of the application where the INS is to be used 

in order to constrain these drifts. Specifically, the INS tests in the research reported in 

this thesis were carried out in land applications. This doesn`t mean it can`t be used in 

other (e.g. aerial) applications but it means the filter is optimized for land kinematics. 

The first constraint is to consider the fact the vehicle will only move along-track (Y-axis 

of vehicle frame), thus the vehicle should only accelerate as such (Sukkarieh, 2000). The 

second constraint is the vehicle will not experience rapid changes in height over 

consecutive epochs. Recall the IMU operates at a high rate (~25 Hz for the sensors used 

herein), thus a sudden height change from epoch to epoch is unexpected. Due to the fact 

the constraints are to control error state growth during outages, they are only applied 

when no measurements are present.   
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4.6 Velocity Constraints 

 

     The vehicle constraints mentioned above are derived from the fact the vehicle will 

not slip, and that it won`t accelerate upwards (Godha, 2006). If both assumptions are 

correct, then the across-track and vertical velocities of the vehicle must be zero 

(Sukkarieh, 2000). For simplicity‟s sake, let us assume the IMU enclosure frame 

matches that of the vehicle frame thus accelerations along the X and Z axes of the b-

frame should be zero. Mathematically, we will require considering measurement noise 

due to imperfections in the above assumptions. The expected imperfections determine 

the magnitude of the noise (ibid). The following block diagram shown in Figure 4-3, 

explains where velocity constraints would be used in the filter: 

 

 

 

 

 

 

 

 

Figure 4-3: Velocity constraints (adapted from El-Sheimy, 2012) 

      

A complete derivation of the velocity constraints can be found in Godha (2006). Only 

the final measurement model will be shown here. Recall the INS solution was 
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mechanized in the e-frame. Therefore, the INS velocity estimates need to be transformed 

from the e-frame to the b-frame as shown below: 

                                                               
                                                           (4.23) 

The design matrix relating the velocity updates from the e-frame to the b-frame is: 

                      (4.24) 
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The measurement updates used are: 
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    In previous research carried out by Shin (2001), estimated velocity constraint 

measurement noise was estimated by projecting the forward velocity into the x and z 

axes using an assumption of the expected misalignment angle between the IMU body 

frame and the vehicle frame. For the research carried out in this thesis better results were 

obtained using the INS velocity accuracies in the x and z axes for the last known INS 

epoch that contained an update.                                            
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4.7 Height Constraints 

 

     The second type of constraints mentioned earlier has to do with knowing that the 

epoch-to-epoch change in elevation is not going to vary much. A constant value of the 

height in the area is used as a measurement update, with the value being used from a 

priori information or from the last known computed INS update. Applying a height 

constraint will prevent the vehicle from appearing to move vertically when the INS is in 

prediction mode during a GNSS outage while also improving the horizontal accuracies 

(Schwarz and Wei, 2000). However, as with any type of INS update, care must be taken 

in choosing the measurement variance of the height estimate; using wrong values can 

skew the horizontal position (MacGougan, 2003). The block diagram for using height 

constraints in the EKF is shown below in Figure 4-4: 

 

 

 

 

 

 

 

 

Figure 4-4: Height constraints (adapted from El-Sheimy, 2012) 

 

     As with the velocity constraints, the measurement model isn`t straight forward due to 

the fact the mechanization takes place in the e-frame but the l-frame is used for output. 
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First, let us look at the coordinate transformation from geodetic coordinates to ECEF 

Cartesian coordinates: 

          s    s  

                                                             s  s                                            (4.26) 

            s    

where, 

         are Cartesian coordinates 

      are the geodetic latitude, longitude, and height respectively 

  is the ellipsoidal prime vertical radius of curvature 

  is the ellipsoidal eccentricity 

   The expression representing the position perturbations in the e-frame with respect to 

the perturbations in the l-frame is as follows. Complete derivation can be found in 

Farrell and Barth (2001).                                                                                                            
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The design matrix for the height constraint update is computed from the last row of  ̂: 

                                          (  ̂   
   ̂   

        ̂   
                 )                       

(4.29) 

The measurement updates used are: 

                                                                                               (4.30) 

where         is a constant height value for the duration of the outage. In the research 

carried out in this thesis,        was the height in the last INS epoch that contained an 

update. As per Godha (2006), the measurement noise for        depends on the quality 

of the height being used as constant. Since INS heights from the last known epoch were 

used as       , the INS derived height for the respective epoch was used as the 

measurement noise.   

    Putting together Figure 4-3 and Figure 4-4, the block diagram representing both 

velocity and height constraints is shown below in Figure 4-5. 

 

 

 

 

 

 

 

 

Figure 4-5: Motion constraints (adapted from El-Sheimy, 2012) 
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     If the motion constraints were to be also used during the update stage of the filter, the 

      matrices would be made up from appending the above equations to the standard 

measurement model equations used during loosely coupling shown earlier in the chapter 

(Gao, 2007). Due to the increasing processing times of doing so, the motion constraints 

used in this thesis were only applied during the prediction stage at a rate of 1 Hz in the 

absence of GNSS updates.  
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CHAPTER 5: FILTER VERIFICATION THROUGH TRUTH 

TESTING 

 

     As has been mentioned in previous chapters, the purpose of the research described in 

this thesis was to develop a loosely coupled GNSS/INS integration using sensors inside 

the Android Moto-X smartphone and to assess its performance in land vehicle 

kinematics. The GNSS/INS filter was written from scratch in C++ with the theoretical 

background coming from the sources referenced throughout this thesis. Because of the 

fact it was known ahead of time it would be hard to get good results with the smartphone 

sensors, the INS code had to be first tested against higher-end, easier-to-model sensors. 

This would allow verifying the backbone of the filter was operating as expected. 

Otherwise, it would have been practically impossible to distinguish code issues from 

filter tuning due to high sensor noise and sensor variability. Once the filter was verified, 

the smartphone sensors‟ performance was assessed through comparisons with a truth 

trajectory obtained at the same time with the vehicle.  

 

5.1 IMU-LN200 

 

     The first part of the task consisted in comparing the tightly-coupled real-time single 

point NovAtel SPAN solution against the INS solution using the created filter. Single 

point positioning was used due to the fact the smartphone GNSS receiver would not be 

receiving any external corrections either. This in turn means the filter‟s performance is 

assessed to perform to the expected level of the smartphone. As mentioned in the 
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introduction, high-end sensors were required for this initial comparison which is why the 

IMU-LN200 was chosen. The specifications for this IMU are shown below (NovAtel, 

2015g): 

Table 5-1: IMU-LN200 characteristics 

Gyro input range ± 1000 
o
 /s 

Gyro rate bias 1
o
/hr 

Gyro rate scale factor 100 ppm 

Angular random walk 0.07 
o
/√   

Accelerometer range ± 40 g 

Accelerometer scale factor 300 ppm 

Accelerometer bias 0.3 mg 

Input voltage range +12 to +28 V DC 

Power Consumption 16 W 

Dimensions 13.5 cm x 15.3 cm x 13.0 cm 

Weight 2.99 kg 

 

     The IMU-LN200 is a high performance IMU containing three accelerometers and 

gyroscopes orthogonally mounted to one another. The IMU enclosure contains the 

LN200 as well as an interface card whose main role is regulate IMU power and control 
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the highly precise IMU timing. The relatively small size and weight for a high 

performance IMU makes this dual-connector enclosure variant easy to install in tight-to 

-fit spaces. Important values to make note of are the gyroscope input range, gyroscope 

bias, angular random walk and accelerometer bias. The high gyroscope input range of 

1000 deg/s and overall quality make this IMU a controlled good meaning it is export 

regulated by International Traffic in Arms Regulations (ITAR), among other regulatory 

bodies. The IMU-LN200‟s gyroscope input range in particular matches high rotation 

rates achieved by autonomous military projectiles. The low gyroscope turn-on bias of 

1
o
/hr makes this IMU highly sensitive to the Earth‟s rotation rate thus not requiring any 

external input in order to align the INS. For the purpose of this project, this IMU offers a 

highly accurate truth trajectory when used in NovAtel SPAN firmware. The following 

are achieved when the IMU-LN200 is integrated with the tightly-coupled INS solution 

from NovAtel SPAN under ideal conditions, where an ideal condition corresponds to a 

properly set up system experiencing high kinematics: 

Table 5-2: NovAtel SPAN + IMU-LN200 (NovAtel Inc, 2015e) 

Outage 

Duration 

Position 

Mode 

Position Accuracy 

RMS (m) 

Velocity Accuracy 

RMS (m/s) 

Attitude Accuracy RMS 

(degrees) 

Horizontal Vertical Horizontal Vertical Pitch Roll Heading 

0 s Single 1.200 0.600 0.020 0.010 0.011 0.011 0.022 

 RTK 0.020 0.050 0.020 0.010 0.011 0.011 0.020 

10 s Single 1.340 0.670 0.030 0.012 0.012 0.012 0.029 

 RTK 0.120 0.070 0.025 0.011 0.011 0.011 0.022 
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60 s Single 3.510 0.960 0.105 0.019 0.015 0.015 0.039 

 RTK 2.790 0.630 0.102 0.023 0.013 0.013 0.031 

 

     Table 5-2 above shows the RMS accuracy of the SPAN+IMU-LN200 tightly-coupled 

solution for both single point and RTK under different outages. Note that attitude and 

velocity are quite accurate after a 60-second outage, even when in single point 

positioning. It is also worth mentioning that due to the fact the INS filter developed was 

loosely coupled, the filter‟s performance was assessed with the SPAN single point 

solution rather than RTK. That is, the filter inputs are single point position and 

velocities. The IMU-LN200 used is shown below in Figure 5-1.  

 

Figure 5-1: IMU-LN200 strapped to vehicle 

 

5.2 Other Equipment Used 

 

     The other GNSS-related equipment required to perform the truth testing consisted of 

a NovAtel Flexpak6 loaded with GPS+GLONASS dual frequency SPAN firmware and a 
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NovAtel GPS-702-GG pinwheel antenna. Note that only a single antenna was used 

throughout in order to assess the INS filter performance without heading aiding. This 

allows for a more direct attitude convergence comparison of the NovAtel SPAN tightly-

coupled solution with the developed loosely-coupled solution.  

    The high grade antenna was attempted to be placed directly over the IMU‟s centre of 

navigation to facilitate lever arm measurements. This was done eyeballing it with the 

help of a couple people. The actual lever arms themselves were measured as follows. 

First, a static point (let‟s refer to it as the reference point, RP) was placed outside on the 

right hand side of the vehicle. The offsets of both antenna phase centre and IMU centre 

of navigation were then measured with respect to this external RP using a tape measure. 

From these two offsets, the IMU centre of navigation to antenna phase offset was 

computed. The arithmetic mean of three different sets of measurements was then used. 

An uncertainty of 7 cm was chosen to take into account the fact the measuring tape 

wasn‟t completely level, and the fact human error could play a part in the measurements. 

This procedure was chosen because the external reference point was easier to measure to 

rather than the IMU centre of navigation to antenna phase centre offset directly. The 7 

cm uncertainty is just fine for these tests given the fact the GNSS updates used are single 

point positioning, with metre-level standard deviation (Bahan, 2014).  

    The other equipment used consisted of a laptop to store GNSS computed positions 

and velocities (to be used as INS updates in developed filter) as well as the real-time 

NovAtel SPAN solution for truth trajectory comparison. Two 12 volt car batteries were 

used to power the Flexpak6 and IMU-LN200 separately. The setup is shown below in 

Figure 5-2. 
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Figure 5-2: Equipment used for truth testing 

 

5.3 Procedure for Acquisition used for Truth Testing 

 

     Truth testing was performed on three datasets with different conditions in the city of 

Calgary, AB. The first dataset was an open-sky static test that was used to test filter 

convergence with zero velocity updates (ZUPTs). The remaining datasets were 

kinematic. The first kinematic dataset was obtained under open skies in NW Calgary on 

April 18
th

, 2015. The second kinematic dataset was obtained in an urban canyon 

scenario in downtown Calgary on April 20
th

, 2015. Both kinematic scenarios started 

with a static INS alignment which is sometimes referred to as coarse alignment in the 

literature. This was followed by making figure 8s with the vehicle in order to introduce 

kinematics and provide the filter with changes in heading (sometimes referred to as fine 

alignment). This was done until the SPAN INS status changed from 



 101 
 

INS_ALIGNMENT_COMPLETE to INS_SOLUTION_GOOD, which would be at the 

point the INS heading standard deviation is less than 1
o
. GNSS pseudorange positions, 

Doppler-derived velocities, and IMU raw data were stored from the time the receiver 

was powered on. These would later be run into the developed INS filter. The datset 

locations are shown below in Figure 5-3 and the tests of the results are discussed in the 

upcoming sections. 

 

Figure 5-3: Overview of truth tests in Calgary (Google, 2015) 

 

5.4 Static Test 

 

     The static test was the first one performed in order to assess filter convergence under 

position updates and ZUPTs. It was carried out in the Calgary Transit parking lot in 

Panorama Hills in NW Calgary, on a weekend morning when it is for the most part 
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empty. A relatively empty parking lot was desired to minimize the effect of multipath on 

the position estimates.  

The NovAtel SPAN solution with the IMU-LN200 was once again used as truth. This 

static test was very important because it was a good starting point for verifying the 

overall effectiveness of the mechanization equations and filter updates. The static test 

environment is shown below in Figure 5-4. 

 

Figure 5-4:  Static test environment (Google, 2015) 

 

    The main assessment of the static test is in attitude as the position and ZUPT updates 

should maintain the position and velocity in check. The following is the change in 

position for the filter with respect to the first position estimate. 
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Figure 5-5: Differences in position for static test 

 

As can be seen in Figure 5-5, the position estimates of the filter are well within the 

expected 1.2 metres uncertainty (NovAtel Inc, 2015g) for single point positioning 

provided by the NovAtel firmware. The position updates were weighted as per their 

respective standard deviations reported in the firmware, which were as shown below in 

Figure 5-6. 

 

Figure 5-6: Standard deviations of single point position 
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     The reason why the position estimates are much better in the INS compared to the 

input updates is that the final position estimate is not only dependent on the pseudorange 

position updates, but rather also on the ZUPTs that were highly weighted in the filter. 

This shows that at the single point update level, the INS is going to compute position 

estimates of greater quality than those that are being fed as updates. If the vehicle was 

moving or if the ZUPT knowledge wasn‟t as high as it is here, the INS position 

estimates are expected to be less accurate than shown here, but still better than the single 

point estimates being originally fed. If the position updates fed into the filter were of 

RTK quality, then the expectation would be for the difference in position with respect to 

the initial epoch to be at the cm-level.  

     The best assessment on this test is to see what the attitude in the created filter is like. 

It is important to recall that an INS is in essence a kinematics filter and that in the 

absence of heading aiding sources, the INS heading estimate will drift at a rate inversely 

proportional to that of the quality of the gyroscopes inside the IMU.  The following two 

figures show the attitude computed by the INS filter during the static test. 

 

Figure 5-7: Pitch and roll during static test 
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Figure 5-8: Heading during static test 

 

 

Figure 5-9: Difference in attitude with respect to truth in static test 

 

     Figure 5-9 above shows there is a bias in the attitude differences between the SPAN 

filter and the author-generated INS. The biases come from differences in spectral noise 

densities between both filters. The bias found in this test is added to the turn-on-biases 

already applied to the IMU-LN200 raw data in the kinematic datasets for higher 

accuracy. After taking into account the biases, the differences in pitch/roll are about 0.01 

degrees, which is within the expected accuracies as per the NovAtel SPAN solution 

(about 0.01 degrees). The heading difference (sans bias) is about twice as much as the 

NovAtel SPAN specifications which is attributed to better heading constraints in the 
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SPAN firmware during ZUPTs. An important point to make is that the NovAtel solution 

has the benefit of years of experience tuning the process noise values which is a never-

ending process (Dixon, 2015). The results being produced by the author-developed INS 

are therefore considered to be within expectations.  The final computed differences are 

shown below in Table 5-3. 

 

Table 5-3: Differences in attitude between author-generated INS and SPAN 

 Pitch (deg) Roll (deg) Heading (deg) 

Mean 0.0752 0.0368 0.0415 

Standard Deviation 0.0046 0.0048 0.0310 

RMS 0.0753 0.0371 0.0518 

 

5.5 Open-sky Kinematic Truth Test 

 

     The open-sky kinematic truth test started at the same parking lot where the static test 

was done and consisted of a round trip to Cross Iron Mills, a shopping complex, just 

outside of NW Calgary. The test was pretty much in open-sky conditions for the entire 

duration except for an overpass that was passed underneath on the way back from Cross 

Iron Mills. Going below this overpass required an epoch of INS prediction as it wasn‟t 

possible to get a single point pseudorange GNSS position from the Flexpak6. There 

were a few red lights encountered on the way which were good to confirm the ZUPT 
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capabilities seen in the static test. The traverse also includes a few spots of large heading 

change, which are perfect for testing the attitude robustness of the author-created INS 

compared to the tightly-coupled SPAN solution. The results were quite good and 

confirmed what was said in Chapter 3. That under open-sky, there isn‟t much benefit 

accuracy-wise for a tightly-coupled over a loosely-coupled integration. The complete 

open-sky position results are shown below in Figure 5-10.  

 

Figure 5-10: Open-sky kinematic truth test (Google, 2015) 

 

     The traverse can be divided into three different sections. The first section is mainly 

north-south at the start consisting of a number of red lights with maximum speeds of 

around 60 km/hr. It is followed with a fast-moving east-west part once the highway 

(Stoney Trail) is reached. Speeds in this part were as high as 110 km/hr. The second 

section is a long free-flowing road interchange for merging in/out of Deerfoot Trail (AB 

Hwy 2). The third section goes through a couple of red lights and is slower moving 
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when approaching Cross Iron Mills. The left-hand side of this section shows the merge 

back to Deerfoot Trail, where the underpass mentioned earlier is located. 

           

Figure 5-11: Sections in open-sky truth testing (Google, 2015) 

 

     The three different sections mentioned above in Figure 5-11 have been shown on all 

the plots below to better identify whether there is a direct correlation to solution quality 

with the kinematics encountered. The first and last sections correspond to the first leg, 

and the middle section corresponds to the Cross Iron Mills sections and includes the 

underpass where the INS predicts without receiving an update.  

 

Figure 5-12: Position difference between SPAN and author-generated INS (open sky) 
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     Figure 5-12 above shows that the position accuracy of the author-generated INS is 

within the NovAtel single point specifications of 1.2 m horizontal and 1.8 m vertical 

accuracies. The SPAN INS specifications shown in Table 5.2 represent better accuracies 

than seen in this dataset, which can be attributed to the difference in tightly-coupled vs. 

loosely-coupled implementations as well as how the updates fed into the INS are being 

weighted.  Recall the position and velocity updates in the author-generated INS are 

weighted as per the accuracies reported in the raw PSRXYZB message from the 

NovAtel firmware. The spike seen in the mid-section of Figure 5-12 corresponds to the 

underpass where the GNSS outage took place. Its appearance indicates differences in 

how the vehicle motion constraints were handled in SPAN compared to the loosely-

coupled INS.  

 

Figure 5-13: Velocity difference between SPAN and author-generated INS (open sky) 

 

     Figure 5-13 shows the velocity difference between the truth and the loosely-coupled 

filter. The larger differences correspond to the up component which is expected from the 

fact satellite geometry is better horizontally than vertically. The differences are within 

the expectation of the filter, which is for smart-phone sensor use.  
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Figure 5-14: Standard deviations of pseudorange position updates fed into INS (open 

sky) 

 

 

Figure 5-15: Standard deviation of velocity updates fed into INS (open sky) 

 

 

Figure 5-16: Satellites tracked (open sky) 
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     Figure 5-14 through Figure 5-16 show the correlation between the position and 

velocity updates fed into the INS and number of satellites being tracked. Even though 

the only GNSS outage occurred at the underpass on the way back from Cross Iron Mills, 

there are a few times in the dataset where the number of satellites tracked dips and these 

dips correspond to a decrease in position and velocity precision. As was explained in 

Chapter 2, GNSS accuracy is directly proportional to satellite geometry, where a better 

geometry is achieved with higher number of satellites used. Note that towards the end of 

the mid-section of the dataset there is a large dip in the number of satellites tracked. This 

corresponds to when the car was right beside the Cross Iron Mills building while driving 

in the parking lot. The vehicle speed was quite low, part of the sky was covered, and 

there was significant multipath from the large number of vehicles around. One last thing 

worth mentioning is that ZUPTs were applied if horizontal velocities fed into the 

updates were smaller than 5 cm/sec and were weighted higher than non-zero velocity 

updates.   

 

Figure 5-17: Attitude difference between SPAN and author-generated INS (open sky) 

 

     This last plot, Figure 5-17, the attitude difference between the loosely-coupled filter 

and the truth. The pitch and roll differences are quite small throughout the dataset 
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meaning the normal gravity model was being properly handled in the mechanization 

equations and corrected accordingly in the INS filter. The heading, as mentioned in 

Chapter 3, is the least accurate attitude component due to it not being directly measured 

(as pitch/roll are through gravity) but instead depend on vehicle kinematics and validity 

of sensor modelling. The sections in the plot where heading differences are increased to 

just below 3
º 
are those in which velocities are lower, the number of satellites tracked 

dips, and there is a higher multipath from surrounding environment. Higher multipath 

impacts the accuracy of the position and velocity updates in the filter which in turn 

affects how the INS errors are handled. Recall the error states in the filter are indirectly 

controlled through filter updates. Thus, if the quality of the updates fed into the filter 

suffers, so will how the errors are handled. These things added to the fact the kinematics 

are lowered and that there isn‟t heading aiding and you end up with a decrease in quality 

with which the INS heading is estimated. As was mentioned earlier, the SPAN filter 

benefits from a tightly-coupled implementation that has been maintained, improved, and 

tested for many years. The position/velocity/attitude differences between both filters can 

be seen in Table 5-4 below.  

Table 5-4: Differences between author-generated INS and SPAN in open-sky test 

  Mean Std. Dev RMS 

Latitude (m) 0.055 0.273 0.279 

Longitude (m) -0.108 0.280 0.300 

Height (m) -1.034 0.262 1.068 

Velocity N (m/s) -0.013 0.042 0.044 

Velocity E (m/s) -0.024 0.043 0.050 

Velocity U (m/s) -0.031 0.059 0.067 

Roll  (deg) 0.059 0.259 0.266 

Pitch (deg) -0.058 0.381 0.385 

Heading (deg) 0.085 0.935 0.939 
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       Note there is a large position bias, especially in the vertical component, which is 

directly attributed to the pseudorange positions fed into the filter. Figure 5-18 below 

shows the difference in height between the raw pseudorange positions fed into the filter 

and the SPAN solution. The plot is also overlaid with the height standard deviation. This 

shows that SPAN is better at smoothing position estimates, partly because of the tightly-

coupled integration and partly because of how the updates are weighted in the filter.  

 

Figure 5-18: Height differences between raw pseudorange position and SPAN (open 

sky) 

 

     The velocity and attitude differences summarized in Table 5-4 show the loosely-

coupled filter matched the SPAN solution well. The loosely-coupled filter is thus 

considered to be performing within its expectations. 

 

5.6 Urban Canyon Kinematic Truth Test 

 

     The second truth test carried out to verify the robustness of the filter was in an urban 

canyon scenario in downtown Calgary as shown below in Figure 5-19. 
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Figure 5-19: Urban canyon in downtown Calgary (Google, 2015) 

 

     The start and end of the dataset were open-sky for the most part with the section of 

interest being the downtown core. The dataset has been split into six different colour-

coded sections as shown below in Table 5-5 and Figure 5-20. 

Table 5-5: Urban canyon sections 

Section Colour Start End 

1  Macleod Trail and 29
th
 Ave. SW Macleod Trail and 6

th
 Ave. SE 

2  Macleod Trail and 6
th
 Ave. SE 6

th
 Ave. SE and 3

rd
 St. SW  

3  6
th
 Ave. SE and 3

rd
 St. SW 9

th
 Ave. SW and 3

rd
 St. SW 

4  9
th
 Ave. SW and 3

rd
 St. SW 9

th
 Ave. SW and Centre St. SW 

5  9
th
 Ave. SW and Centre St. SW Centre St. SW  and 5

th
 Ave. SW 

6  Centre St. SW  and 5
th
 Ave. SW Memorial Dr. NE and 9

th
 St. NE 
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Figure 5-20: Urban canyon downtown core (Google, 2015) 

 

     Figure 5-21 below shows the loosely-coupled INS and SPAN tightly-coupled INS 

respectively in the downtown core.  

     The red Xs in the bottom plan view of Figure 5-21 represent the areas in which 

SPAN used the INS prediction without updates. The left-most part (section 3) is where 

most GNSS outages occurred. This can also be seen in the loosely-coupled plan view 

which is where the largest deviations with respect to truth are present. The tightly-

coupled filter is going to produce better results due to the fact a full INS update can be 

performed when only 2 satellites are seen whereas an INS update can only be performed 

in the loosely-coupled solution if 4 satellites are seen. Section 3 for the loosely-coupled 

integration shows the INS performed well when in prediction-only mode. There are 

some issues towards the end of this section, due to lower quality pseudorange-computed 

positions fed as updates. The metrics will be seen in the upcoming plots.   
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Figure 5-21: Loosely-coupled INS (top) vs. SPAN tightly-coupled INS (bottom) 

(Google, 2015) 

 

    Figure 5-22 shown below shows the difference in position between the loosely-

coupled INS and SPAN. Section 1 is very good for the most part except for the part 

towards the end, which is where some of the high rise buildings start appearing. Section 

two was surprisingly very good given there were a lot of surrounding obstructions. 
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Figure 5-22: Position difference between SPAN and author-generated INS (urban 

canyon) 

 

     The big issues are seen in the third section, which is what was seen in Figure 5-21. It 

is important to note the error is in the latitude component, and that this third section 

traverses north-south. This then shows the effect of the vehicle motion constraints 

explored earlier. Without these constraints one expects to have a much larger longitude 

error than what was seen. The issues of the third section carry over to the fourth section 

in the dataset, which is where the largest longitudinal error is encountered. The 

longitudinal error is a product of lower accuracy position estimates being fed into the 

filter. Sections 5 and 6 are pretty good except for the interface between both. This issue 

is caused by the large building on the corner of Centre St. SW and 5
th

 Ave. SW.  
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Figure 5-23: Velocity difference between SPAN and author-generated INS (urban 

canyon) 

 

     Figure 5-23 above shows the sections with largest velocity differences were a bit 

different compared to what was seen with the position. That is, section 2 showed the 

greatest difference in velocity with it being in the forward direction of motion. Just like 

it was seen in the position differences, the velocity differences are mostly in the along-

track component. Section 4 has some velocity differences towards the start and the end 

and the same can be said about the interface between sections 5 and 6 which already had 

been detected as being caused by the building on the corner of Centre St. SW and 6
th

 

Ave. SW. The loosely-coupled filter then performed better in position compared to 

velocity in the urban canyon test. The sections where the greatest differences in velocity 

are seen match those where the vehicle wasn‟t static thus why ZUPTs could not be 

performed to minimize the errors.   
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Figure 5-24: Attitude difference between SPAN and author-generated INS (urban 

canyon) 

 

     Figure 5-24 shows the attitude differences between both filters. The results were 

quite good given the circumstances, which shows the robustness of the filter for attitude 

determination. The reason why attitude performed better than position and velocity is 

that attitude is highly dependent on the process noise modelling of the INS errors. 

Position and velocity are being updated directly through observed updates, which in an 

urban canyon scenario are not optimal. The filter then needs to be smart enough to know 

when to use the presented updates and when to use the INS dead-reckoning using the 

IMU raw data only. This is a potential future enhancement that would improve the 

robustness of the filter in urban canyons. It can be seen in Figure 5-23 that the largest 

differences in pitch, roll, and heading are surprisingly not through sections 2 and 3, 

which is where the largest velocity and position errors were encountered. The estimates 

improve once the position and velocity updates improve in sections 4 -6.   
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Figure 5-25: Standard deviation of pseudorange position updates fed into INS (urban 

canyon) 

 

 

Figure 5-26: Standard deviation of velocity updates fed into INS (urban canyon) 

 

 

Figure 5-27: Satellites tracked (urban canyon) 

 

     Figure 5-25 to Figure 5-27 above show the quality of the updates being fed into the 

loosely-coupled filter. As expected, the largest update error is seen in section 2. Even 
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though the update quality improves in the third section, the errors from section 2 bleed 

into the INS for some time until the filter is able to stabilize the weighting of the updates 

vs. that of the update of the predicted INS solution.  From the results seen above, things 

start improving towards the start of section 4. Surprisingly, the number of satellites seen 

throughout the entire data-set is more or less similar, which is why it can be concluded 

the issues in the accuracy of the updates in section 2 are mostly related to multipath in 

the environment.  

     Table 5-6 below shows the final metrics for the urban canyon test.  Since most of the 

position errors were observed in section 3, which runs north-south, it makes sense that 

the highest RMS encountered in position is in latitude. Note the mean of the height is 

quite high as was seen in the open-sky test. Recall this was shown to be directly related 

to the pseudorange positions being fed as updates. The velocity RMS was similar in both 

latitude and longitude components. The low RMS for the upwards velocity component 

shows the robustness of the vehicle motion constraint under GNSS outages.  

Table 5-6: Differences between author-generated INS and SPAN in the urban canyon 

test 

  Mean Std. Dev RMS 

Latitude (m) 1.000 4.623 4.730 

Longitude (m) -0.287 2.240 2.258 

Height (m) -1.627 2.398 2.900 

Velocity N (m/s) -0.046 2.239 2.240 

Velocity E (m/s) 0.014 2.550 2.550 

Velocity U (m/s) -0.003 0.217 0.218 

Roll  (deg) 0.165 0.752 0.770 

Pitch (deg) -0.339 0.577 0.669 

Heading (deg) 0.303 1.074 1.116 
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     Table 5-7 below shows the RMS for each of the six sections previously identified in 

the dataset. The height difference RMS for sections 1 and 3 is higher than in the other 

sections due to a couple of spikes in the datasets related to outages and lower accuracy 

updates. The velocity values again show the along-track component is where the higher 

differences are seen. The attitude performed really well throughout, with the greatest 

issues being encountered in sections 3 and the start of section 6. The overall results of 

the filter can be considered successful given the fact its end use is with lower-end 

sensors. The SPAN tightly-coupled filter is a very robust filter that has been improved 

on for a number of years. Also, the fact it is tightly-coupled means it is able to perform 

full INS updates in more challenging conditions compared to the loosely-coupled filter. 

The loosely-coupled filter used some empirically derived process noise values for the 

LN200 but they could be further tuned to provide better results. This process is quite 

involved and is improved on over time. 

 

Table 5-7: RMS of differences between author-generated INS and SPAN in the urban 

canyon test 

  Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 

Latitude (m) 2.078 2.03 10.770 2.255 1.114 1.171 

Longitude (m) 0.933 1.367 4.937 2.002 0.604 0.332 

Height (m) 3.913 1.893 3.769 1.968 1.21 1.405 

Velocity N 

(m/s) 
2.304 1.382 3.141 0.824 3.537 0.659 

Velocity E 

(m/s) 
0.247 5.322 1.145 4.603 0.579 2.021 
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Velocity U 

(m/s) 
0.1556 0.352 0.208 0.270 0.213 0.178 

Roll  (deg) 0.300 0.661 1.540 0.765 0.235 0.466 

Pitch (deg) 0.470 1.017 0.726 0.196 0.686 0.796 

Heading (deg) 0.096 1.334 2.076 0.698 0.160 1.15 
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CHAPTER 6: PROCEDURES AND RESULTS 

 

     Now that the filter has been verified with a high-end IMU, it is time to look into its 

robustness using the ultra-low-quality sensors inside the Moto-X Android smartphone. 

The first part of this chapter is an introduction to the sensors found inside the Moto-X 

smartphone. The second part of the chapter will show the procedure used prior to, 

during, and after acquisition. The third part of the chapter presents the magnetometer 

calibration results and the last part presents the results of the loosely-coupled filter with 

the Moto-X raw measurements under open-sky and urban canyon scenarios, similar to 

what was shown in Chapter 5 during the truth testing.  

 

6.1 Sensors inside Moto-X smartphone 

 

     The Moto-X Android smartphone has sensors with the specified characteristics 

shown below in Table 6-1. From looking at the teardown for the Moto-X (iFixit, n.d.), it 

was possible to determine the GNSS receiver inside the Moto-X is the Qualcomm 

WTR1605l (Langley, 2016). This receiver is capable of tracking L1 

GPS+GLONASS+Beidou (Klug, 2013). 
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Table 6-1: Manufacturer-reported characteristics of Moto-X smartphone sensors 

 Accelerometer (m/s
2
) Gyroscope (rad/s) Magnetometer (µT) 

Name LIS3DH L3G4200G AK8975 

Manufacturer ST Micro ST Micro Asahi Kasei 

Maximum range 156.96 2000 1200 

Resolution 4.79E-3 1 0.1 

 

     The manufacturer-reported specifications are not very useful for what is required in 

the loosely-coupled INS integration. Recall that in order for the INS to properly operate, 

it is required to have a detailed understanding of the sensor errors that can be removed 

deterministically and those that are modelled stochastically. What makes this very 

difficult for these types of sensors is the fact the deterministically determined values 

change with every system power-cycle and that these changes are quite sensitive to filter 

operation. The deterministic values ended up having to be determined empirically which 

was quite tedious and greatly impacts the ability of the loosely-coupled INS to be run in 

real time. Table 6-2 below shows the sensor error values used in open-sky and urban 

canyon environments. Note that SF stands for scale factor errors and NSD stands for 

noise spectral density. 
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Table 6-2: Moto-X INS sensor characteristics used 

  Open-sky Urban Canyon 

Time increment s 0.0392 0.0392 

 units X Y Z X Y Z 

Accelerometer bias m/s
2
 0.617 -0.383 0.057 0.441 -0.600 0.057 

Gyroscope bias rad/s 0.016 0.072 0.010 0.009 0.063 0.009 

Time constants s
-1

 -1/14400 -1/14400 

Accelerometer SF
 - 0.01 0.01 0.01 0.13 0.13 0.01 

Gyroscope SF - 5.5 5.5 0.1 4.5 4 0.1 

Accelerometer NSD
 (m

2
/s

4
)/Hz 1E-4 1E-4 

Gyroscope NSD (rad
2
/s

2
)/Hz 1E-4 1E-4 

Accelerometer bias NSD (m
2
/s

4
)/Hz 1E-10 1E-10 

Gyroscope bias NSD (rad
2
/s

2
)/Hz 1E-10 1E-10 

 

     The first value that stands out from Table 6-2 is the time increment, also known as 

the inverse observation rate. Recall the observation rate for industry-used IMUs is quite 

high and is an even number such as 100 Hz, 125 Hz, or 200 Hz for the higher-end 

systems. However, in the Moto-X case, the observation rate is          s           . 

The value isn‟t an integer such as in the other IMUs due to the fact the reported times 
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(just like any other reported observation) are quite noisy. Industry-used IMUs have real-

time low-pass filters that allow for a fixed observation rate as per their respective 

specifications. Higher-rate IMUs are usually considered to have higher grade due to the 

fact they are integrating over a smaller time sample thus establishing the first order 

linearization approximation in the mechanization equations as a valid assumption. The 

lower the IMU rate, the larger the time increment, and thus the greater the risk of 

making an invalid assumption regarding first order approximations. This means that 

IMUs with higher operating rates can be used for high kinematics applications (e.g., 

automatically-guided military projectiles).  

     The second sets of values that stand out are the accelerometer and gyroscope biases. 

As can be seen, the values are completely different in both datasets. It was previously 

stated that the Moto-X sensors have a very high turn-on bias variability. The turn-on bias 

is a value determined through calibration for industry-used IMUs yet in this case the 

values are completely different every time the phone is power-cycled. A field calibration 

procedure described in the next section of this chapter was performed to come up with 

the values. The turn-on biases are quite important to get right. If these values are off then 

the entire solution will diverge. 

     Another very important set of values of are the scale factor errors. The 

accelerometers‟ scale factor errors are different for both datasets, but they don‟t vary as 

much as they do for the gyroscopes. This is expected as low quality accelerometers 

perform much better than gyroscopes. The specific forces are easier to measure than 

rates of rotation. Note how large the gyroscope scale factor errors are. Recall that IMUs 

used in the industry report scale factor errors in terms of parts per million due to how 
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small they are. It was also previously mentioned in Chapter 5 that scale factors for high-

end IMUs can safely be ignored due to their small magnitude.  

     Recall from Chapter 3 that the EKF is modelling position, velocity, and attitude 

errors as well as sensor noise and sensor bias noise. These last two values are required to 

be modelled due to the fact it is not possible to find them deterministically. These values 

are tied to the noise of the raw measurements and the biases. In other words, these 

values are dependent on the noise in the raw measurements, which depend on whether 

the high frequency noise has been previously removed via a low-pass filter. The 

procedure applied to the Moto-X data is explained in the next section of this chapter.  

These values are initially estimated through the autocorrelation of low-frequency data 

mentioned in Chapter 4 and subsequently modified empirically.  

     Out of all the values shown in Table 6-2, the scale factor errors are the most 

important. Not only is the filter highly sensitive to these values, it is also not possible to 

find them through an in-field calibration. Thus, the scale factor errors end up being 

found entirely through empirical means. The biases are also quite important to the filter 

performance but they can at least be computed through the in-field calibration 

mentioned earlier. The filter is also very sensitive to the biases but at least there is a 

proven way to estimate them in the field.   The noise spectral density values are quite 

important but the filter isn‟t as sensitive to these values as it is to scale factor errors and 

biases. Estimating all of these values is what is often called filter tuning. It is quite a 

tedious process requiring a lot of time and patience, especially for those values that are 

estimated empirically such as the scale factor errors, and noise spectral densities of 

sensor noise and sensor bias.   
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6.2 Procedure  

 

    The following section describes the procedure taken prior, during, and after 

acquisition for both open-sky and urban canyon environments.  

 

6.2.1 Prior to Acquisition 

 

     The original concept of the thesis was to develop an Android loosely-coupled INS 

that would run in real time. A C++ program would be written to first verify filter 

adequacy prior to moving to the Android part. However, due to the already difficult task 

of creating the filter itself, and the highly variant turn-on biases and scale factor errors, 

the Android component of the project was limited to data acquisition. Instead, the C++ 

program is run offline with the raw data collected by the Android application.  

     An initial Android application was created. This application was based on the 

Smartphone IMU GPS application by Hector Kay (Kay, 2013). The original application 

outputs the raw data from any sensor, where each observation is time tagged with a 

timestamp indicating the number of seconds the phone has been turned on for. The so- 

called “GPS” sensor in the application outputs ellipsoidal latitude, longitude, height, 

horizontal accuracy, and horizontal speed. The application was modified so that the 

“GPS” sensor output the following: 

1. Geodetic coordinates: latitude, longitude, height 

2. Coordinates in e-frame 
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3. Velocity in e-frame 

4. Velocity in l-frame 

5. Positional accuracy in e-frame 

6. Positional accuracy in l-frame 

     The idea of outputting all of the information above was in order to have position, 

position accuracy, and velocity in both e and l-frames. Recall the INS was mechanized 

in the e-frame so having the input information in the e-frame made it easier to feed the 

data to the INS. The l-frame observations were kept due to them being easier to relate to 

physically. There were two important assumptions that had to be made in order to be 

able to compute the estimates above. First, the course made good of the vehicle was used 

in order to find change in easting and change in northing. These values were paired with 

the horizontal velocity value reported originally by the application in order to find the 

easting and northing velocity components. Note upwards velocity was assumed to be 

zero. Knowing the latitude, it was then possible to rotate the l-frame velocities to the e-

frame which is the frame used in mechanization. Secondly, the vertical position 

component was assumed to be two times the magnitude of the horizontal position 

accuracy. The assumption is derived from the fact NovAtel receivers report the vertical 

position accuracy to be 1.5 times that of the horizontal magnitude (Godha, 2014). Recall 

vertical positioning is less accurate than horizontal positioning due to the difference in 

VDOP compared to HDOP. Both assumptions proved to work just fine for the level of 

accuracy desired in the filter. It is also worth stating the velocity accuracy was derived 

from applying covariance propagation to the velocities from the course made good 

estimate.  
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6.2.1 During Acquisition 

 

     Two datasets were acquired with the Moto-X smartphone on August 22
nd

 2015, one 

under open-sky and another one in an urban canyon. The paths traversed were a bit 

different from those used for the truth performance tests. The same NovAtel equipment 

used in the truth tests was strapped to the car for truth trajectory comparison purposes. 

That is, a Flexpak6 with SPAN firmware, a GPS-702-GG antenna, and the IMU-LN200. 

The IMU was mounted in the same place as it was earlier so measuring the lever arms 

was unnecessary. The only thing required was measuring the offset between the antenna 

phase centre and the middle of the phone (taped to the roof of the vehicle). It is very 

tough from the iFixit Moto-X breakdown referenced earlier to tell the exact position of 

the antenna phase centre is. For the sake of simplicity, the antenna was assumed to be in 

the middle of the phone. Even if off by a few cm, this wouldn`t be a big deal given the 

fact the difference in horizontal positioning is expected to be at the metre level due to 

the accuracy of the position updates fed into the filter. The centre of the phone was 

located 19 cm in front of the antenna phase centre, 28cm to the left, and 7.6 cm below; it 

was mounted in such a way that the IMU enclosure frame matched the vehicle frame for 

computational ease. The setup is shown below in Figure 6-1. Figure 6-2 shows the setup 

inside the vehicle.  
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Figure 6-1: Moto-X smartphone location 

 

     

Figure 6-2: Location of Flexpak6 and IMU-LN200 

 

     Something important worth mentioning about the acquisition process is that the 

Moto-X has different selectable operation rates that are somewhat ambiguous. They 

range from slow to fastest or from normal delay to fastest delay depending on the 

application being used. These, as well as the actual measurement rates for the different 

options are shown below in Table 6-3. 
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Table 6-3: IMU operating rates in Moto-X Android smartphone 

 Terminology in 

application used 

Official Android 

terminology 

Official Android  

description 

Operating 

frequency (Hz) 

Slow Normal delay Rate (default) suitable for 

screen orientation changes 

~ 10 Hz 

Medium UI (user interface) 

delay 

Rate suitable for user 

interface 

~ 25 Hz 

Fast Game delay Rate suitable for games ~ 40 Hz 

Fastest Fastest delay Get sensor data as fast as 

possible 

~ 50 Hz 

 

     Tests were performed to see which rate would work best. The highest data rate was 

desired in order for the first-order approximation assumptions during mechanization to 

be as accurate as possible (i.e: to have shortest possible time between epochs). However, 

the fastest delay proved to create data gaps so the IMU rate was slowed down until data 

gaps weren`t apparent. The chosen data rate for all datasets was medium (user interface 

delay), which as mentioned earlier ended up being a 25.51 Hz rate (0.0392 s sampling 

interval) after the application of a low-pass filter, which will be explained in the 

following subsection.  
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     The last thing worth mentioning is that there was a half a minute static period right 

after both systems were powered on. The reason was to be able to estimate the turn-on 

biases from Eqs. 4.16 and 4.17 (Kong, 2000). 

 

6.2.3. After Acquisition: Discrete Wavelet Decomposition 

 

     Once the data was acquired and downloaded from the phone, it was fed through a 

wavelet decomposition script created through Scilab, the open-source MATLAB variant. 

Scilab uses many function calls from MATLAB making it very easy to use. The sensors 

inside the Moto-X smartphone have the signal buried by noise. The noise can be 

alternatively taken into account through the spectral noise densities in the filter. The 

wavelet signal decomposition method was chosen due to it being more scientifically 

based rather than trial-and-error based.  

     The purpose of wavelet decomposition is to project the signal onto a family of basis 

functions generated through compressions and translations of what is called the mother 

wavelet; where the mother wavelet is a short oscillating zero mean function that decays 

quickly at both ends (Nassar, 2003; El-Sheimy et al., 2003). Wavelet decomposition 

splits the original function into a low frequency signal referred as the approximation and 

a high frequency signal referred as the detail. The approximation is then further 

decomposed into its own approximation and details section, and so forth. Every time this 

happens, the signal is being decomposed further and is referred to as the level of 

decomposition. The level of decomposition (LOD) is crucial in controlling how much 

filtering should be done. Also of importance is that according to the Nyquist theorem, if 
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a signal is sampled at    the highest frequency component of the signal in the first level 

of decomposition is 0.5  . The second level of decomposition would be half of that 

(0.25  ) and so on (Langley, 2016). This applies to each level of decomposition and is an 

important concept which will be used in determining at what level of decomposition to 

stop. Having more levels of decomposition than required will end up filtering out actual 

observed kinematics while having a lower level of decomposition than required will not 

filter out as much noise as required. For a detailed introduction to wavelets readers are 

asked to refer to Nassar (2003) and El-Sheimy et al (2003).  Figure 6-3 shown below 

illustrates the wavelet decomposition process.  

 

 

 

 

 

 

 

Figure 6-3: Wavelet multiple level of decomposition (adapted from Nassar, 2003) 

 

     Finding the level of decomposition for static data is simple because the only forces 

present are gravity, Earth‟s rotation rate and biases or any long term errors (ibid). 

Kinematic datasets like the ones dealt with here have accelerations and rotations whose 
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effects with the data need to be maintained. The procedure used for determining the 

wavelet level of decomposition for a kinematic dataset is as follows. To keep the section 

concise, only the plots corresponding to the raw x-axis accelerometer signal will be 

shown but the procedure was applied to all accelerometer, magnetometer, and gyroscope 

signals in both open-sky and urban canyon datasets. The procedure was followed from 

Nassar (2003).  

1. Compute Fourier transform of raw signal. Since the IMU operating rate in this 

case is 25.45 Hz, the Nyquist frequency is half the sampling rate (12.7 Hz) and 

corresponds to the highest frequency that a sampled dataset can be reproduced 

without error. The frequency response is shown below in Figure 6-4. 

 

Figure 6-4: Amplitude spectrum for raw x-axis accelerometer (open-sky) 
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2. Use the frequency response plot to determine the frequency threshold of usable 

motion kinematics and high frequency noise. For the x-axis accelerometer signal 

shown above, this would be around 0.5 Hz.  

 

3. Run discrete wavelet at different levels of decomposition until the frequency 

response of the remaining approximated (low frequency signal) does not contain 

any responses beyond the threshold specified in step 2. The db8 family of 

wavelets was selected due to it being previously successfully used in INS data by 

Gao (2007).  Figure 6-5 below shows the first five level of decompositions 

(LOD).  
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Figure 6-5: First 5 LOD for raw x-axis accelerometer (open-sky) 

 

4. Use final approximated signal (LOD=5 from above) as raw data in INS. The 

filtered x-axis accelerometer data is shown below in Figure 6-6. 
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Figure 6-6: Original and filtered x-axis accelerometer (open-sky) 

 

     The procedure for filtering the time signal (i.e. the timestamps, which are shared for 

every sensor signal) was different due to the fact the signal is not experiencing any 

kinematics. Timing is very important because the time between IMU observations is 

required in both the mechanization equations and the EKF. In this case, we are interested 

in filtering the Δt signal; that is the change in time from epoch to epoch. Should this 

value be off, it would be impossible to get the INS to converge to a true solution. The 

procedure for filtering noisy static signals is again developed from Nassar, 2003.  

1. Apply wavelet decomposition to static data at different levels of decomposition. 

2. Compute standard deviation for each obtained approximation component. 

3. Proper LOD is the one after which the standard deviation reaches a minimum 

value. 
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Figure 6-7: Standard deviations of approximations for each LOD 

 

     Figure 6-7 shown above shows the first standard deviation minimum (before it 

increases again) is found at LOD of 11. Figure 6-8 shows the raw and filtered Δt signal. 

This is how the 0.0392 s between epochs used in the INS was found. Note that 

originally, the idea was to use the raw Δt from each epoch difference. However, as 

shown in Chapter 2, the success of the mechanization equations depends on the valid 

assumption the kinematics can be represented by a first order approximation. The added 

noise from the raw time signal proved to be relevant enough to cause the filter to diverge 

due to invalid duration of integration. Filter convergence was attained when removing 

the noise from the time signal. 
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Figure 6-8: Comparison of original and filtered Δt signal 

 

6.3 Magnetometer Assessment 

 

     The Moto-X smartphone has three orthogonal AK8975 Hall effect magnetometers 

that can be used for determining the phone‟s azimuth. Hall effect magnetometers are the 

most common magnetic sensing devices used and consist in producing a voltage across a 

metallic surface in response to a magnetic field perpendicular to the metallic surface 

(Cai et al., 2012; Langley, 2003). These types of magnetometers lend themselves more 

as switches (e.g: for an anti-lock braking system) than as heading measuring devices due 

to their lower measuring accuracy and significant drift. Hall effect magnetometers 

produce smaller output signals and have comparatively low sensitivity and stability 

compared to other methods such as ansiotriopic magnetoresistive (AMR) sensors; AMR 

sensors have been shown to produce accurate heading estimates after being calibrated 

(Renaudin et al., 2010; Langley, 2003). Even so, that study only dealt with static 
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headings and calibration of the environment in which the magnetometer was mounted. 

The ferromagnetic components of the outside environment in a kinematic application 

will certainly affect the raw measurements.   

     The smartphone magnetometers measure the sum of geomagnetic field plus any 

magnetic interference caused by ferromagnetic components in the circuit board 

(Ozyagcilar, 2012a). The magnetic interference is caused by hard-iron and soft-iron 

effects. The former are caused by permanently magnetized components in the circuit 

board and induces a bias in the magnetometer measurements. The latter distorts the raw 

magnetometer measurements and is caused by temporarily magnetized components in 

the circuit board (ibid). Five calibrations were done on different days in order to find 

how consistent the values are. Table 6-4 below shows the final results. The offset 

represents the hard-iron effect and the    unitless matrix represents the soft-iron effect 

(see Appendix B for further details on magnetometer calibrations). 

Table 6-4: Magnetometer calibration results 

Calibration Bfield (μT) Offset (μT)   W
-1 

  

Magn_June6_2015.csv 65.0014 

(
      
       
      

+ (
                   
                   
                   

+ 

  

  

  

Magn_Aug1_2015.csv 63.4919 

(
       
       
       

+ (
                    
                   
                   

+ 

  

  

   

Magn_Sept5_2015.csv 63.0598 

(
       
       
       

+ (
                    
                   
                   

+ 

  

  

   

Magn_Dec10_2015.csv 63.8331 

(
       
       
      

+ (
                    
                   
                   

+ 
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Magn_Jan3_2015.csv 62.1444 

(
       
       
       

+ (
                    
                   
                   

+ 

  

     Table 6-4 shows the hard-iron effects are very small compared to the magnitude of 

the magnetic field, both of which are shown in units of μT.  The soft-iron effect 

matrix,    
, appears to be fairly consistent for all calibrations. The five values were 

tested on both open-sky and urban canyon datasets to find how much of an effect the 

values would be and the results were pretty much the same. Figure 6-9 below shows the 

results of the Moto-X magnetometers compared to SPAN (truth) in the open-sky test.  

 

Figure 6-9: Heading from magnetometer compared to SPAN (Open-sky) 

 

     The open-sky test shows the magnetometer-derived heading closely followed that of 

the SPAN heading until about the 60
th

 epoch. From this epoch onwards, the 

magnetometers appear to be recognizing the changes in heading but are not as sensitive 

as they should be causing the heading estimates to never go beyond 260 degrees and 

below 188 degrees. Even though the magnetometer-derived heading is quite off from the 
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truth, it somewhat follows the shape of the SPAN heading. In fact sections in the dataset 

where the heading does not change are properly represented in the magnetometer-

derived heading. This means the sensor errors are not completely random but are rather 

related to sensitivity, scale factor errors, and system biases that haven‟t been removed. A 

few scale factor errors were empirically tested but they didn‟t help much so the major 

culprit appears to be a sensitivity issue. It is also worth noting that the magnetometer 

was previously tested in the same parking lot used for static filter validation in Chapter 

5. In these tests, the Android orientation sensor was used to assess the validity of the 

sensors while being far from any metal objects/surfaces with unsuccessful results. Given 

previous successful tests of smartphone magnetometers such as in Mourcou et al. 

(2015), it is possible the magnetometers inside the Moto-X used in this thesis research 

are defective.  

 

Figure 6-10: Heading from magnetometer compared to SPAN (Urban Canyon) 

 

     Figure 6-10 above shows the magnetometer-derived heading as well as that of the 

SPAN solution. The first thing that stands out is the changes in heading are much less 
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apparent in this scenario which could be attributed to how different the environment is 

compared to the open-sky test. The difference between both is much more substantial in 

this dataset.  

     In order for the magnetometers to be able to provide heading aiding to the loosely-

coupled INS they certainly need to be able to have more accurate heading estimates than 

what was possible with the sensors inside the Moto-X sensor. Studies regarding phone 

magnetometer use for heading estimation have been previously made in similar urban 

environments (e.g. Blum et al. (2012)) with similar unsuccessful results and those were 

done with smartphone magnetometers that proved to work unlike the one used in this 

thesis research. The upcoming Moto-X results therefore do not consider any type of 

heading aiding. 

 

6.4 Open sky Results 

 

     The main purpose of this thesis is to assess the performance of the loosely-coupled 

INS using the Moto-X Android smartphone sensors. Just like it was done with the truth 

testing of the filter, there are two datasets; the first is in open-sky and the second in an 

urban canyon scenario. Both tests were carried out in Calgary, AB. The open-sky test 

started at 1120 – 68
th

 Ave. NE and consisted in traversing northwards towards the Cross 

Iron Mills outlet mall, just outside of Calgary. There is a quicker, more direct route 

through Deerfoot Trail but the chosen route contained bigger changes in heading and 

passed through multiple traffic lights. The trajectory is shown below in Figure 6-11. 
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Figure 6-11: Open-sky dataset with Moto-X (Google, 2015) 

 

     An assessment similar to the ones that were carried out in the truth testing part of the 

thesis was performed here. That is, the route traversed was split up into different 

sections to make it easier to identify the different sections when doing the analysis. For 

this open-sky test, the route traversed was split up into five different sections shown 

below. 

     The first section starts at 1120 – 68
th

 Ave. NE and goes right until after the Deerfoot 

Trail overpass that turns into Beddington Trail NW. The very start of this section 

contains speeds of around 50 km/hr with a few tight heading changes at first on the way 

to 64
th

 Ave. NE. The vehicle then speeds up to 100 km/hr once it has merged onto 

Deerfoot Trail before slowing down to around 70 km/hr for the end of this first section. 

This part does not contain a lot of changes in heading.  
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Figure 6-12: Section 1 & Section 2 of open-sky dataset (Google, 2015) 

 

     The second part of the dataset does not contain a lot of changes in heading. It starts 

from when it merged into Beddington Trail NW and ends right after merging into the 

northward bound Harvest Hills Blvd. NW.  There weren`t any stops in this section as the 

traffic light at the intersection of Beddington Blvd. NE and Beddington Trail NW was 

green when the vehicle passed. Speeds were between 60 km/hr and 85 km/hr. 

 

Figure 6-13: Section three of open-sky dataset (Google, 2015) 
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The third section shown above in Figure 6-13 was traversed northbound on Harvest Hills 

Blvd. NW. There are a lot of stop lights in this section and speed was limited to 65 

km/hr. There are a few slight changes in heading but no tight corners.  

 

Figure 6-14: Section four of open-sky dataset (Google, 2015) 

 

     The fourth section of the open-sky dataset (shown above in Figure 6-14) starts as 

soon as the car has merged onto Stoney Trail NW and goes up until it has merged back 

onto Deerfoot Trail. This section contains speeds of up to 115 km/hr and eastwards up 

until the long overpass that merges into Deerfoot Trail. There were many vehicles 

around this section but there aren`t any buildings that could induce multipath into the 

GNSS receiver.    

     The fifth and last section of the open-sky test is shown below in Figure 6-15. It starts 

Northbound on Deerfoot Trail until merging onto Crossiron Dr. However, unlike the 

truth test shown in Chapter 5, the vehicle did not go to Cross Iron Mills. Instead it took a 

right on Deerfoot Blvd. and then drove Southwards on a road that parallels with 

Deerfoot Trail. The test ended at the intersection of this road (Writing Creek Crescent) 

with 144 Ave. NE.  
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Figure 6-15: Section five of open-sky test (Google, 2015) 

 

Table 6-5: Start, end epochs and cumulative time for open-sky test 

Section Start epoch End epoch Time Cumulative time 

 1 1 186 3‟ 5‟‟ 3‟5‟‟ 

2 187 289 1‟42‟‟ 4‟47‟‟ 

3 290 693 6‟43‟‟ 11‟30‟‟ 

4 694 922 3‟48‟‟ 15‟18‟‟ 

5 923 1172 4‟9‟‟ 19‟27‟‟ 

 

 

     Recall that throughout these tests, the SPAN unit was strapped to the car in order to 

have a truth dataset to compare the vehicle against. The following plots assess the 
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validity of the loosely-coupled filter using Moto-X sensors with that of the tightly 

coupled SPAN system that uses the high-end IMU-LN200.  

 

Figure 6-16: Difference in position with respect to SPAN (open sky) 

 

     The first plot shown above in Figure 6-16 shows the distance separation between the 

loosely-coupled solution and SPAN. The first thing that stands out is that the height 

component contains the highest deviations out of the three and is also the noisiest. Other 

than being the least accurate component, recall that the standard deviation of the height 

measurements were not reported by the phone. Instead, these values were assumed to be 

2 times the magnitude of the horizontal accuracy (using NovAtel‟s 1.5 times horizontal 

magnitude as a guide). There isn‟t any clear pattern as far as position quality is 

concerned with respect to the different sections of the dataset identified earlier. There 

are a few spikes in vertical accuracy but these are not directly related to the accuracies of 

the input positions fed into the filter as shown below. 
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Figure 6-17: GNSS position update standard deviation (open sky) 

 

    Figure 6-17 shown above shows the standard deviation of the GNSS positions that 

were used as updates in the filter. Recall that the phone only reports a horizontal 

accuracy. This standard deviation was split up into northing and easting components 

using the changes from the course made good computation. Figure 6-17 shows there are 

quite a few spikes in the dataset but there aren‟t any in section two of the dataset. At 

first, it appears this could be due to section two having clearer sky and being away from 

multipath-inducing obstructions. However, the spikes are prevalent in the fourth section 

of the dataset, which takes place in Stoney Trail under what is considered to be away 

from any buildings that cause multipath. The difference is that Stoney Trail (section 

four) was much more congested than Beddington Trail (section two). Also, around the 

time data collection took place, there were a number of large vehicles around the test 

vehicle, which induced much more multipath.  One last thing worth mentioning is the 

magnitude of the three dimensional  accuracies is 6 metres at minimum and goes up to 

over 10 metres, with the height component being the main culprit at why it is so high.   
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Figure 6-18: Difference in velocity with respect to SPAN (open sky) 

 

     Figure 6-18 shows the separation in velocity between the loosely-coupled filter and 

SPAN. The start of the dataset shows a bit of a difference in northing and easting, which 

can be attributed to initial bias convergence taking place in the filter. There are quite a 

few spikes in the data which indicates noisy filter updates. Unlike with position, there 

was no indication of the velocity standard deviation from the GNSS receiver in the 

phone. Again, since the loosely-coupled filter uses GNSS position and velocity as 

updates, an estimate of some kind was required. The velocity standard deviation was 

computed by performing covariance propagation on the velocities found by differencing 

subsequent positions and dividing them by the change in time. Although far from ideal, 

this assumption was definitely required in order to have some sort of metric with which 

to judge the incoming velocities in the filter. After all, the standard deviations of the 

updates are used to determine how much the updates should be trusted. Having access to 

velocity standard deviation directly from the GNSS would have been better. Recall 

GNSS velocities are usually computed through Doppler measurements.  
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Figure 6-19: GNSS velocity update standard deviation (open sky) 

 

     Figure 6-19 above, shows the accuracies of the velocities used as updates in the 

loosely-coupled INS filter. Note the pattern of the spikes is identical to Figure 6-18 

which makes sense considering the fact these were directly derived from position, hence 

the same analysis applies. The magnitude is about 80 cm/s throughout which is quite 

high and will have an impact on the attitude reported by the INS.  

 

Figure 6-20: Difference in attitude with respect to SPAN (open sky) 
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     Figure 6-20 shown above shows the attitude performance in the filter. Pitch and roll 

are bounded within 10 degrees throughout. This is good considering there are a number 

of pitch and roll changes encountered at the end of each section in the form of 

over/under passes. The first one is encountered at the end of the first section as the 

vehicle merges onto Beddington Trail NE, the second at the end of the second section as 

the vehicle merges onto Harvest Hills Blvd. NW; the third one as the vehicle merges 

onto Stoney Trail and the last one, which is the biggest one as the vehicle merges back 

onto Deerfoot Trail. Recall as was mentioned earlier that pitch and roll are dependent on 

removing gravity from the observed specific forces, provided the states in the filter are 

being well modelled. Thus, we expect to have pitch and roll metrics somewhat 

equivalent throughout the four sections of the dataset.  

     As has been previously mentioned, the hardest component to accurately model is 

heading. It was stated before that heading depends on kinematics as well as sensor 

quality and how well it is being modelled. From Figure 6-20 we can see heading starts a 

bit off from the SPAN truth (around 10 degrees), before worsening dramatically around 

epoch 154 in section 1. The fact the heading converges afterwards indicates some of the 

initial biases might have taken some time to converge meaning the initial estimates 

might have been a bit off. The estimate then improves through sections two and three 

which encounter slight heading changes at a speed of up to 65 km/hr. The heading 

component might have been helped from the more accurate updates that took place in 

section two and it is encouraging to see it continued to improve through the lower input 

position and velocity updates that were shown in Figure 6-18 and Figure 6-20.  The 

heading difference starts increasing again in the third section of the dataset as the vehicle 
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is on the overpass that merges into Deerfoot Trail. The GNSS position and velocity 

inputs show a steady decrease in quality during this period presumably from multipath 

of surrounding vehicles which could explain the effect on the heading estimation. 

Section 4 does not contain much improvement as far as quality of inputs are concerned 

but there are a number of steep turns that help converge the heading difference back to 

the sub-10-degree range. The two spikes shown in this section four directly correlate to 

when the vehicle makes the sharp turns. Another way of seeing the heading difference is 

by plotting it for both author-created INS filter and SPAN as shown below. 

 

Figure 6-21: Heading comparison (open sky) 

 

     While Figure 6-21 shows the best solution that was attainable it is important to note 

the filter had to be run offline and that numerous attempts were required in order to best 

estimate the turn-on biases and scale factors. A slight change in any of these values and 

the entire solution completely diverges, producing a heading plot that looks nothing like 

the one above. Nonetheless the results are better than what would have been expected at 

the start of the thesis research. There are still a number of parameters that affect the 
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quality of the solution such as how the incoming GNSS updates were weighted, the low 

operating frequency of the IMU, mis-modelled biases, and kinematics that might have 

been removed when the data was smoothed via wavelet decomposition.  

Table 6-6: Differences between Moto-X and SPAN in open sky 

  Mean Std. Dev RMS 

Latitude (m) -1.612 1.529 2.224 

Longitude (m) 0.009 1.460 1.460 

Height (m) -0.060 3.363 3.363 

Velocity N (m/s) 0.004 0.406 0.407 

Velocity E (m/s) 0.006 0.388 0.3885 

Velocity U (m/s) 0.030 0.319 0.321 

Roll  (deg) -2.833 2.967 4.102 

Pitch (deg) 0.0437 2.506 2.506 

Heading (deg) 6.316 11.608 13.215 

 

     Table 6-6 above shows the final metrics of the entire dataset. Position-wise, the 

height component is where the biggest RMS difference is seen, and the longitude 

component was considerably better than latitude. This is because of the -1.612 m bias in 

latitude which is skewed by the quality at the start of the dataset which is caused by the 

building in front of the car blocking some of the satellites in the northern direction. 

Velocity appears to have been quite good considering the assumptions on how the 

velocity updates were filtered into the INS filter. The mean velocities are very close to 

zero which is what was also seen in Chapter 5 when the filter was being assessed with 

the IMU-LN200. Attitude-wise, there is a bias in roll which is attributed to lower roll 

accuracy caused by the over/under passes encountered throughout the dataset. The pitch 

estimates were much closer to truth under these conditions. The biases in both roll and 

heading can also be caused by issues in the turn-on bias and scale factor errors. Heading 
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was actually quite good considering the quality of the sensors used but as was mentioned 

earlier it is pretty optimistic to expect this kind of behaviour in a filter that would run in 

real-time in the phone. The turn-on biases were modelled through the half-minute static 

calibration but the scale factor errors had to be found empirically afterwards. A slight 

variation in turn-on biases, scale factor errors, initial estimates, or process noise and the 

entire INS completely breaks down.  Recommendations for improving the performance 

of the INS are described in Chapter 7.   

     Table 6-7 below shows the RMS of the differences for each specific section of the 

dataset. Position quality was very similar throughout (except for the latitude bias which 

skewed the start of the dataset). The RMS for the velocity differences was impacted in 

the first and fourth sections of the dataset by multipath from surrounding objects. Also, 

there is a decrease in along-track velocity accuracy that is evident in section 3 

(predominantly northwards facing) and section 4 (predominantly eastwards direction of 

travel). Heading-wise, section three had the best heading estimation, which can be 

attributed to the high accuracy ZUPTs that were applied when the vehicle was stopped at 

a traffic light. Since the GNSS receiver does report the horizontal velocity, it is easy to 

know when a ZUPT should be applied.  

Table 6-7: RMS of differences between Moto-X and SPAN in open sky 

  Section 1 
epochs: [1 -186] 

Section 2 
epochs: [187 -289] 

Section 3 
epochs: [290 -693] 

Section 4 
epochs: [694 -922] 

Section 5 
epochs: [923 -1172] 

Latitude (m) 3.435 1.533 1.901 1.968 2.030 

Longitude (m) 1.013 1.581 1.04 1.917 1.759 

Height (m) 3.735 3.328 3.012 2.401 4.278 
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Velocity N (m/s) 0.567 0.161 0.395 0.248 0.467 

Velocity E (m/s) 0.511 0.181 0.322 0.346 0.475 

Velocity U (m/s) 0.184 0.459 0.319 0.416 0.219 

Roll  (deg) 6.455 3.977 3.480 3.461 3.320 

Pitch (deg) 1.728 1.037 2.580 1.824 3.611 

Heading (deg) 17.569 16.813 5.909 10.832 17.622 

 

 

6.5 Urban Canyon 

 

     The last dataset to assess is the one that took place in downtown Calgary. The open-

sky test delivered better than expected results but it took quite a bit of tinkering with the 

scale factor errors, and it had to be run offline. This dataset is certainly going to prove 

much more difficult. Compared to when the loosely-coupled filter was run with high-end 

IMU-LN200+FLEX6 data, the GNSS receiver inside the Moto-X smartphone should be 

able to provide more positions in this dataset due to the fact it is a high sensitivity 

receiver as explained in Chapter 2. However, the positions fed into the filter will be of 

very low accuracy due to the receiver being able to only track single frequencies, lower 

antenna quality, and lack of multipath mitigation firmware techniques found in the high 

precision FLEX6. These lower quality positions will greatly impact the filter. At least 

with the NovAtel raw data used in the truth test in Chapter 5, there are different flags 

indicating the quality of the GNSS data. Some examples are INSUFFICIENT_OBS, 
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NO_CONVERGENCE, SINGULARITY, INVALID_FIX, SOLN_COMPUTED, etc. If 

GNSS is very bad or non-existent, dead-reckoning could be used using the IMU-LN200 

raw data. The difference is that now we are using very-low- quality sensors that will 

drift by a lot when an outage is encountered. The drift is going to be much worse than if 

the INS carries on using the low-accuracy positions and velocities from the high-

sensitivity receiver. The figure below shows the location of the urban canyon dataset in 

downtown Calgary. The dataset coverage is directed primarily west-east. 

 

 

Figure 6-22: Urban canyon dataset overview with Moto-X sensors (Google, 2015) 

 

     As has been customary throughout the thesis, the dataset has been divided into 

smaller sections for ease of analysis. This time, the data will be divided into four 

sections. 
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Figure 6-23: First section of urban canyon dataset (Google, 2015) 

 

     The first section as shown above in Figure 6-23 starts with a very benign 

environment. The vehicle starts just north of the Bow River, travels south and merges 

onto 9
th

 Ave. SW Eastbound. Speeds topped at 55 km/hr with the only stop taking place 

at the traffic light of the intersection with 11
th

 St. SW. 

 

Figure 6-24: Section two of urban canyon dataset (Google, 2015) 
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     The second section as seen in Figure 6-24 goes through the heart of downtown, with 

large buildings all around a three block loop. The southernmost part of this section is a 

bit farther away from the tall buildings but towards the end of the section, as the vehicle 

heads north, it goes through a couple of underpasses. Speed was limited at a maximum 

of 50 km/hr and there were a few stops due to traffic lights. The following plots, Figure 

6-25 and Figure 6-26, show the three block loop where most of the high-rises are 

encountered. The SPAN solution has been overlaid in green whereas the Moto-X 

loosely-coupled solution is shown in red. As before, the red Xs are the areas in which 

the SPAN solution did not have a GNSS update but rather used the IMU for dead-

reckoning. The area is shown from a couple of perspectives to better identify the areas 

where position separation was the largest. 

 

 

Figure 6-25: Section two looking west (Google, 2015) 
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Figure 6-26: Section two looking southeast (Google, 2015) 

 

 

Figure 6-27: Section three of urban canyon dataset (Google, 2015) 

 

     The third section shown above in Figure 6-27,  starts with the vehicle heading 

northwards on 4
th

 St. SW before turning right on 8
th

 Ave. SW on its way back eastwards 

on 9
th

 Ave. SW.  The vehicle goes through an area with quite few large structures on 

both northern and southern ends of 9
th

 Ave. SW (including the Calgary Tower) before 
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heading northwards. The start of this section, shown in Figure 6-28 and Figure 6-29 

below visualize the effect of the high multipath environment on the position 

determinations.  

 

Figure 6-28: Start of section three looking southeast (Google, 2015) 

 

 

Figure 6-29: Plan view of start of section three (Google, 2015) 
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     The next part of section three continues to suffer quite a bit from the high multipath 

environment with the vehicle trajectory offset enough to be off the road and going 

through buildings.  This is shown below in Figure 6-30.  

 

 

Figure 6-30: Last part of section three looking westward (Google, 2015) 

 

     The last part of this section has the vehicle going northbound on Centre St. SW 

before turning eastward on 5
th

 Ave. SW. This intersection is important as it is where the 

tallest building in Calgary, The Bow, is located. The Bow is a 237 m, 58-story building 

with a glass exterior. The effect of The Bow on the position is shown below in Figure 

6-31. 
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Figure 6-31: Effect of the Bow (Google, 2015) 

 

 

Figure 6-32: Section four of urban canyon dataset (Google, 2015) 

 

     The last section of this dataset is shown above in Figure 6-32. It starts on the corner 

of 5
th

 Ave. SW and 1
st
 St. SE, just a block eastwards from The Bow. This last section 

contains an ideal open-sky environment.  
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Table 6-8: Start, end epochs and cumulative time for urban canyon test 

Section Start epoch End epoch Time Cumulative time 

 1 1 259 4‟ 18‟‟ 4‟18‟‟ 

2 260 674 6‟54‟‟ 11‟12‟‟ 

3 675 953 4‟38‟‟ 15‟50‟‟ 

4 954 1169 3‟35‟‟ 19‟25‟‟ 

 

     Although it was previously known this dataset would likely be too difficult for the 

filter using the Moto-X sensors, the interesting thing is to see whether the filter is able to 

converge once the urban canyon has been left behind.  Let us now look at the separation 

plots. 

 

Figure 6-33: Difference in position with respect to SPAN (urban canyon) 

 

     Figure 6-33 shows the position differences in the first and fourth sections of the 

urban-canyon dataset were about the same as for the open-sky dataset. The middle 
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sections, which contained quite a challenging environment, have position differences of 

up to 60 m in the latitude. The longitude performed slightly better in section two but still 

had a couple of peaks of 30 m and 18 m difference. Both latitude and longitude were 

equally bad in the third section whereas height was equally bad in both middle sections. 

As has been stated previously, the quality of the computed position is as good as what is 

fed into the filter. As expected, the GNSS position updates fed into the INS were quite 

bad for these middle sections as shown below in Figure 6-34. 

 

Figure 6-34: GNSS position update standard deviation (urban canyon) 

 

 

Figure 6-35: Difference in velocity with respect to SPAN (urban canyon) 
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     Figure 6-35 above, shows the velocity differences compared to truth. The fact the up 

component difference was minimum shows the vehicle motion constraints worked well. 

The velocity differences in the open-sky dataset showed there were some spikes, which 

correlated to times at which the GNSS velocity updates were troublesome. It isn‟t any 

different in this case except we are now looking at much more pronounced peaks. Figure 

6-36 below shows the decrease in velocity accuracy during the second and third 

sections.  

 

Figure 6-36: GNSS velocity update standard deviation (urban canyon) 

 

 

Figure 6-37: Difference in attitude with respect to SPAN (urban canyon) 

0

1

2

3

4

5

6

7

1
5

4
1

0
7

1
6

0
2

1
3

2
6

6
3

1
9

3
7

2
4

2
5

4
7

8
5

3
1

5
8

4
6

3
7

6
9

0
7

4
3

7
9

6
8

4
9

9
0

2
9

5
5

1
0

0
8

1
0

6
1

1
1

1
4

1
1

6
7

G
N

SS
 v

e
lo

ci
ty

 u
p

d
at

e
 s

ta
n

d
ar

d
 

d
e

vi
at

io
n

 (
m

/s
) 

Seconds since INS alignment 

σ Northing 

σ Easting 

σ Up 

Magnitude

-250

-150

-50

50

150

250

1

5
3

1
0

5

1
5

7

2
0

9

2
6

1

3
1

3

3
6

5

4
1

7

4
6

9

5
2

1

5
7

3

6
2

5

6
7

7

7
2

9

7
8

1

8
3

3

8
8

5

9
3

7

9
8

9

1
0

4
1

1
0

9
3

1
1

4
5

D
if

fe
re

n
ce

 in
 a

tt
it

u
d

e
 w

it
h

 
re

sp
e

ct
 t

o
 S

P
A

N
 (

d
e

gr
e

e
s)

 

Seconds since INS alignment 

Δ Roll 

Δ Pitch 

Δ Hdg 



 170 
 

     This last plot above, Figure 6-37, shows the pitch and roll were fairly stable for the 

first section and the first half of the second section until the urban canyon environment 

was too much for the filter to handle causing it to blow out. The heading estimate didn`t 

hold on as well, which indicates the turn-on biases and scale factor errors are not 

completely accurate. Nonetheless, the effect of the troublesome environment is the same 

on the heading component. Once this part of the dataset is reached, attitude accuracy 

completely collapses. An interesting fact is that pitch and roll start converging once the 

urban canyon is left behind in section four. The heading difference plateaus for a little 

bit until a sharp turn left turn is taken by the vehicle. The heading goes out in the 

complete opposite direction. Thus, while pitch and roll improve outside the urban 

canyon, heading did not. 

     Table 6-9 below shows the RMS of the differences for the different sections. As 

expected, position and velocity are least accurate in the middle sections when the vehicle 

is traversing through the heart of downtown Calgary. Pitch and roll were quite good in 

the first section, which did not contain a challenging environment. The heading estimate 

on the other hand was not as good as it was in the open-sky dataset. All three attitude 

components decrease considerably in quality within the middle sections with the last 

section seeing an improvement in pitch and roll once the vehicle has left downtown. 

However, the RMS for the differences in heading shows it was never able to recover 

from the urban canyon. This is expected as there isn‟t any direct or indirect heading 

measurement taking place. Once it diverges in downtown, there is nothing to help steer 

it back into place. Having a heading aiding sensor such as a secondary GNSS 

receiver/antenna pair would have definitely helped keeping the heading estimates in 
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check, at least once the vehicle left downtown. The reason why this wasn‟t an issue with 

pitch and roll estimates is that both are indirectly kept in check by gravity. 

.  

Table 6-9: RMS of differences between Moto-X and SPAN in urban canyon 

  Section 1 
epochs: [1 -259] 

Section 2 
epochs: [260 -674] 

Section 3 
epochs: 675 -953] 

Section 4 
epochs: [954 -1169] 

Latitude (m) 2.593 11.983 12.192 2.284 

Longitude (m) 1.502 8.042 12.595 3.339 

Height (m) 3.137 15.635 19.037 5.062 

Velocity N (m/s) 0.351 1.326 1.298 0.357 

Velocity E (m/s) 0.398 0.809 0.989 0.344 

Velocity U (m/s) 0.207 0.136 0.128 0.256 

Roll  (deg) 3.322 34.389 51.836 15.730 

Pitch (deg) 2.993 25.573 40.412 14.560 

Heading (deg) 24.811 52.360 155.966 165.717 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

 

The work presented in this thesis dealt with a thorough assessment of 

smartphone-level IMUs in a loosely-coupled INS. The motivation for the work stems 

from the fact smartphones have become quite normal nowadays, providing a large 

percentage of the population with a potentially compact INS that fits in a pocket. The 

primary equipment used was the Moto-X Android smartphone, which is equipped with 

MEMS accelerometers, gyroscopes, magnetometers and a high-sensitivity single 

frequency GNSS receiver capable of tracking both GPS and GLONASS. The 

magnetometers were assessed as to whether their heading estimate was accurate enough 

to be used for heading aiding in the filter. The other equipment that was used for truth 

trajectory purposes was the NovAtel Flex6 loaded with SPAN firmware, a GPS-702-GG 

survey-grade antenna, and a high-end IMU-LN200 motion sensor. The initial purpose of 

the thesis was to develop the INS filter inside the Android phone so that it would be 

completely stand-alone. However, as the difficulty of developing the loosely-coupled 

INS filter became apparent, the goal of the thesis ended up being geared towards 

developing the INS filter in C++ where the smartphone-logged raw data could be 

processed offline. There is nothing applied in this offline filter that cannot be applied in 

a real-time Android implementation provided there is an accurate a priori knowledge of 

turn-on biases and scale factor errors for the accelerometers and gyroscopes.  

The author-generated loosely-coupled filter was first assessed by using the raw 

data from the IMU-LN200 and the single-point pseudorange measurements from the 

NovAtel position filter inside the Flexpak6. The truth testing was performed using an 
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open-sky dataset in NW Calgary and an urban canyon dataset in downtown Calgary. The 

loosely-coupled filter continually estimates 15 INS error states and uses GNSS position 

and velocity as updates. The filter contains vehicle motion constraints to control the 

estimated vehicle trajectory from accelerating upwards or moving sideways when a 

GNSS outage is encountered. It also applies zero velocity updates (ZUPTs) when there 

is a GNSS outage if it knows the vehicle is static (from looking at the accelerometer raw 

data). ZUPTs constrain the velocity error growth making them useful when outages 

occur. Once the filter was verified, an open-sky and urban canyon dataset was obtained 

with GNSS and raw IMU sensor data from the Moto-X smartphone, with the NovAtel 

SPAN solution being used as a truth for performance validation. The following are the 

conclusions from the work done and documented herein. 

 

7.1 Conclusions 

 

1. Tightly-coupled INS filters such as NovAtel SPAN perform better than 

loosely-coupled INS filters when in challenging conditions such as urban 

canyons. The reason for this is that a tightly-coupled integration can make 

use of a complete filter update with as few as two satellites whereas a 

loosely-coupled integration requires a minimum of 4 satellites. 

 

2. INS navigation consists of two steps: the mechanization equation and an 

extended Kalman filter. The mechanization equations integrate the raw IMU 

data in order to get position, velocity, and attitude estimates. The EKF uses 
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knowledge of the sensor errors and current filter inputs in order to steer the 

mechanization equations. Inaccurate modelling of system process noise will 

cause the INS to diverge.  

 

3. A 15 error state EKF was used in this project where 9 of the states 

correspond to three position, velocity, and attitude error estimates. The 

remaining 6 states correspond to error states for sensor bias drifts in the 

accelerometers and gyroscopes. The added error sources associated with the 

Moto-X smartphone sensors (e.g. axes misalignment, turn-on bias, scale 

factor errors) can be considered by adding states to the filter or by increasing 

the modelled error for the sensor bias drifts.  

 

4. The author-generated loosely-coupled filter performed within expectations 

when using the NovAtel pseudorange measurements as updates to the filter 

running raw IMU-LN200 data in both open-sky and urban canyon datasets. 

The latter required use of IMU dead reckoning when a GNSS outage was 

encountered. Vehicle motion constraints were also added to minimize 

vertical and lateral movement. These constraints can only be applied to land 

vehicles.  

 

5. The removal of scale factor errors for high-end IMUs such as the IMU-

LN200 did not modify the output of the filter. On the other hand, the scale 

factor errors in the Moto-X sensors are required in order to achieve a 
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relatively accurate INS solution. The scale factor errors proved to be very 

sensitive; modifying them ever-so-slightly breaks the filter altogether. 

 

6. Turn-on biases can be accurately determined for high-end IMUs such as the 

IMU-LN200 through a six-position calibration. These turn-on biases proved 

to be very repeatable from turn-on to turn-on. On the other hand, the turn-on 

biases on the Moto-X smartphone sensors change with every system reset 

meaning their biases have to be estimated with a 30-second in-field 

calibration.  

 

7. The Hall effect magnetometers inside the Moto-X smartphone proved to be 

inaccurate even after calibrating them for soft-iron and hard-iron effects. The 

scale factor errors were estimated empirically but even then, results show the 

magnetometers are not as sensitive as they need to be. Previous research has 

shown accurate results with static heading estimates with AMR 

magnetometers. Hall effect magnetometers are more suited to be used as 

switches due to comparatively low sensitivity and stability when compared to 

other types of MEMS magnetometers. 

 

8. The loosely-coupled INS using Moto-X raw data performed better than 

expected in open-sky conditions. The RMS difference of the heading was 

13.215 degrees which means the Moto-X can be used for civilian enthusiast- 

level navigation. The big issue is in removing turn-on biases and scale factor 

errors accurately. 
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9. As technology improves, it is expected for INS sensors inside smartphones to 

get better making them more suitable for INS navigation. If Android devices 

logged raw GNSS measurements, it would even be possible to do a tightly-

coupled GNSS/INS integration in the smartphone.  

 

10. The loosely-coupled INS using Moto-X raw data performed as expected in 

the urban canyon scenario. The high-sensitivity GNSS receiver in the 

smartphone will provide position and velocity estimates in tougher 

environments when compared to a high-accuracy GNSS receiver (e.g. 

NovAtel FlexPak6), but these estimates won`t be accurate enough for high- 

grade navigation. The low-accuracy updates cause the attitude to completely 

blow out in the urban canyon. While pitch and roll recover somewhat after 

the vehicle leaves the urban canyon, heading is not able to recover. The 

reason for this is that pitch and roll are indirectly kept in check through 

gravity and accurate GNSS position/velocity updates whereas heading is 

directly dependent on vehicle motion and error estimates in the filter.  

 

11. Three assumptions related to accuracy of input filter updates were made 

when running the INS with the raw data from the Moto-X smartphone. The 

first is that the vertical component of position is two times less accurate than 

the horizontal accuracy. This assumption is partly to blame for the poor 

vertical position in the Moto-X. The second assumption is that both easting 

and northing components have the same accuracy. The third assumption 

derived accuracies for the input velocity updates from changes in position. 
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This assumption might work when the vehicle travels at fast speeds but is not 

applicable when the vehicle is stationary or moving slowly.  

 

7.2 Recommendations 

 

    Based on the results and conclusions presented in this thesis, the following is 

recommended for future research: 

1. Implement the author-generated loosely-coupled filter in an Android device as 

was originally intended in this thesis research. Rewriting code that works is 

easier than writing it from scratch, especially in Android which is not the most 

user-friendly operating system for coding. As technology improves, so will the 

sensors inside smartphones. Having a released loosely-coupled INS filter freely 

available to everyone is a great way to provide tested inertial navigation to 

smartphone application developers so they can spend more time on the more 

creative side of their application. 

 

2. Using the loosely-coupled filter as a starting point, develop a tightly-coupled 

integration using smartphone sensors to assess the level of improvement for 

urban canyon scenarios. If smartphones are still unable to log raw measurements 

when the project is undertaken, any other GNSS receiver capable of doing so can 

be used instead.  
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3. Add an in-field turn-on bias calibration to the Android application following the 

procedure used in this thesis.  

 

4. Develop a method to estimate scale factor errors while in the field in real time, 

similar to that of the turn-on bias calibration.  

 

5. Come up with a more accurate way of determining the accuracy of velocity 

updates. Current estimates are derived from the accuracy in the changes in 

position; this is inaccurate when moving at slow velocities. 

 

6. Implement and assess a 27-error-state filter where the scale factor errors and 

turn-on biases are directly modelled in the INS. Further states could be added to 

more accurately estimate the misalignment of the axes.  

 

7. The current filter implementation assumes the IMU enclosure frame matches that 

of the vehicle frame. The application needs to be modified so that the necessary 

rotations are applied so that the IMU can be mounted any way in the vehicle.  

 

8. Allow filter to use aided heading from external sensors in order to allow 

instantaneous alignments and constrain heading drifts. Filter should be smart 

enough to determine if sensors are accurate enough to be used or not through 

vehicle calibration by assessing the difference of the external sensor‟s heading 

with that of the vehicle‟s course made good. Users should be required to move at 

a pre-determined speed given that course made good will be more accurate at 

higher speeds.  
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9. Current initial alignment is hard coded in the filter from knowledge of the truth 

system (SPAN). The filter should default to align kinematically and allow an 

aided heading alignment if point eight above is implemented.  
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APPENDIX A: DYNAMICS AND MEASUREMENT MODELS FOR 

INS ERROR STATES IN THE E-FRAME 

 

Dynamics model for 15-State Filter 

(

  
 

  ̇ 

  ̇ 

 ̇ 

  ̇ 

  ̇ ⏟)

  
 

 ̇

  

(

 
 
 
 

                    

    
       

          
    

         

             
            

     
                  

    

                      ⏟                                  )

 
 
 
 

 

(

  
 

   

   

  

   

   ⏟)

  
 

 

                

(

 
 
 

                

   
                 

       
             

                

                ⏟                    )

 
 
 

 

 (

  

  

   

   ⏟

,

 

          

The dot on top of the variable represents the rate of change, e corresponds to the e-

frame, b corresponds to the b-frame, and i corresponds to the i-frame. The remaining 

symbols are: 

   is the position error state vector (           ) 

   is the velocity error state vector (           ) 

  is the misalignment error state vector (        ) 

    is the accelerometer bias drift error 

    is the gyroscope bias drift error 

  
  is the rotation matrix from the b-frame to the e-frame 



 187 
 

   is the raw accelerometer measurement errors (           ) 

   is the raw gyroscope measurement errors  (           ) 

  is the identity matrix 

   is the inverse time constant for accelerometer bias drift 

   is the inverse time constant for gyroscope bias drift 

   is the skew symmetric matrix of the specific force (        ) in the e-frame. Its form 

is as follows: 

    (

      
      
      

) 

    is the skew symmetric matrix of the Earth‟s rotation rate from the i-frame to the e-

frame, expressed in the e-frame. Its form is as follows: 

   
   (

     
    
   

+ 

where 

      is the Earth‟s mean rotation rate of 15.041 º/h  

   is the gravitational gradient coefficient matrix in the e-frame. Its form is as follows: 
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where 

     is the gravitational constant,               
  

    
 

     is the mass of the Earth,                 

     is the radius of the Earth, √               

      is the rotation rate of the Earth 

   is the accelerometer sensor noise with a spectral density of    

   is the gyroscope sensor noise with a spectral density of    

    is the accelerometer bias drift noise with a spectral density of     

    is the gyroscope bias drift noise with a spectral density of     

     is the spectral noise density matrix 
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Dynamics model for 27-State Filter 
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where the additional symbols with respect to the 15-state filter are: 
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           is the accelerometer turn-on bias 

           is the gyroscope turn-on bias 

   is the accelerometer scale factor error 

   is the gyroscope scale factor error 

    is the inverse time constant for the accelerometer scale factor 

    is the inverse time constant for the gyroscope scale factor 

    is the accelerometer scale factor error sensor noise with a spectral density of     

    is the gyroscope scale factor error sensor noise with a spectral density of     

 

Loosely Coupled Measurement Model  
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where, 

    
  is the INS position prediction at current epoch 

    
  is the INS velocity prediction at current epoch 

     
  is the GNSS position observation at current epoch 
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  is the GNSS velocity observation at current epoch 

      
 is the GNSS position measurement noise with variance        

  

      
 is the GNSS velocity measurement noise with variance        
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APPENDIX B: SMARTPHONE MAGNETOMETER CALIBRATION 

 

    Chapter 4 indicated it is theoretically possible to use magnetometers as external 

heading sources in INS. It was also mentioned the measurement model specific to aided 

heading is the same regardless of whether the aided heading source is from GNSS or 

magnetometers. As per Chapter 5, the magnetometers inside the Moto-X Android 

smartphone provided very bad estimates that proved to be unusable for INS navigation. 

Even so, for the sake of completeness, the calibration procedure applied is shown below.  

A smartphone magnetometer measures the sum of geomagnetic field plus magnetic 

interference from ferromagnetic components present in the smartphone circuit board 

(Langley, 2003). It is suggested for the circuit board manufacturers to place the 

magnetometers far from sources of magnetic interference, as well minimize use of 

ferromagnetic components. However, even after minimizing this as much as possible in 

the design stage, there smartphone magnetometers will experience hard iron and soft 

iron interference (ibid). Hard iron interference is caused by permanently magnetized 

ferromagnetic components in the circuit board and will be present as a bias in the 

magnetometer reading (ibid). Soft iron interference is caused by the induced magnetic 

field acting on normally unmagnetized components in the circuit board (ibid). The 

smartphone magnetometer reading is shown below: 

                                                        
                                                             B.1 

where, 

  is the matrix representing the soft-iron coefficients 
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  is the hard iron vector 

   is the raw magnetometer vector in the b-frame 

   is the raw magnetometer vector in the l-frame defined by 

                                                       (
 

   s  
 s   

+                                                          B.2 

where    is the magnitude of the observed geomagnetic field vector and   is the 

magnetic inclination. The horizontal component of the geomagnetic field always points 

to the magnetic north pole which is why the raw magnetometer measurements need to be 

rotated to the local frame using   
  before being used (Langley, 2003; Ozyagcilar, 2013).  

The calibration is performed in this thesis research was carried out by logging raw 

magnetometer data at different orientations over 10 minutes to ensure enough samples 

are taken. For the results presented in this thesis research, 10 minutes at ~ 40 Hz were 

observed thus providing around 24000 samples. An ellipsoid is then best fitted over the 

raw data. As per Langley (2003), in principle, only four measurements are required but 

redundancy is important to accomplish a more accurate calibration.  

An ellipsoid can be expressed in general algebraic form as follows: 

                                                              B.3 

where the bold values represent the 9-coefficients that define the shape of the ellipsoid. 

The       coefficients represent the coordinates of the ellipsoid centre in the x,y,z axes 

respectively.  
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We can formulate the fitting of the magnetometer raw data to an ellipsoid as: 

                                                           ̂                                                                      B.4 

where, 

      is the design matrix of B.3 with respect to the unknown ellipsoidal coefficients 

     ̂ is the vector of unknown coefficients                       

      is a vector of ones 

The least squares solution for   takes the following form: 

                                                     ̂                                                                   B.5 

 ̂ can be used to create the square symmetric matrix,  ̃, as follows                    

                   ̃   
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,                    B.6 

The ellipsoid centre, which represents the hard iron effect,  , can be computed from 

elements of  ̃: 

                                               (

  
  
  

)   (
   
   
   

+

  

(
 
 
 
+                                        B.7 

Applying the hard-iron effect to the measurements we get the bias-free measurements in 

the body frame as shown below. Note we still need to account for the soft-iron effect.  
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                                     B.8 

The bias-free ellipsoid now takes the following form: 

                     
       

       
                                       B.9 

Performing a new least squares adjustment on the bias-free measurements gives us  ̂  , 

which can be used to build the new bias-free ellipsoid coefficient matrix:  

                  ̃    (

 ̂       
 ̂       

 ̂       

 ̂       
 ̂       

 ̂       

 ̂       
 ̂       

 ̂       

,   (
         

         

         

+               B.10 

The eigenvalues,              
 , and eigenvectors,  ̅, of  ̃   are computed. These 

values allow us to compute the inverse soft-iron matrix. 

                                                                  ̅   ̅                                                   B.11 

Now that the hard-iron and soft-iron effects have now been found, the corrected 

magnetometer readings in the l-frame can be computed from the incoming raw 

measurements by re-ordering Eq. B.1: 

                                                             
 (     )                                           B.12  

Finally, the estimated heading from the corrected magnetometer readings is found 

through: 

                                                            ta   ( 
   

   

*                                              B.13 
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