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ABSTRACT 

The ever growing human activities and economic development will eventually change the 

relationships between human and the environment. A matter of grave concern is the 

unsustainable patterns of land use that are considered a major cause for the deterioration of the 

environment. The Grand Lake Meadows is an important part of the Saint John River wetlands 

that form the largest freshwater wetland habitat in the Maritimes (east Canada).  

 

In this paper, remotely sensed images were used for mapping the use of land use and cover in 

the Grand Lake Meadow over a period of 20 years. The goal was to undertake a detailed 

spatially explicit inventory of local trends in land use and land cover changes through 

classifying the historical images. Other available data like the road network to mention a few 

were combined with this information to create a database that was used to investigate 

consequences of land use/cover change. 

 

The results demonstrates the flexibility and effectiveness of this technology in establishing the 

necessary baseline and support information for sustaining eco-services of a wetland thereby 

depicting the rate of change undergone in the GLM area over time. The study identified a 38% 

decrease in the wetland from the 1990 to 2001, while there was 4.32% overall increase in the 

wetland area since then. The result will help the managers to comprehend the dynamics of the 

changes, prompting a better management and implementation of LULC administration in the 

GLM area. 
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Chapter 1 

INTRODUCTION 

 

Extensive loss of wetlands has occurred in many countries throughout the world [Mitsch 

and Gosselink, 1993]. About 80% of the world’s wetlands are either degrading or 

disappearing, thus more attention is being paid to conservation of wetlands as the value of 

wetlands cannot be overemphasized. Landscape fragmentation divides wetlands into 

isolated islands which thereby hinder the energy flow and nutrient cycling within the 

wetland. Changes in the land cover and land use significantly affect key aspects of 

ecosystem functioning and services. They directly impact the biotic diversity; contribute 

to local and regional climate change and soil degradation by altering the ecosystem and 

affect the ability of biological systems to support human needs.  

 

Grand Lake Meadows (GLM) is the largest fresh water wetland in New Brunswick. The area 

is classified as a Protected Natural Area due to its historical and ecological significance to 

the province of New Brunswick. The area is home to a number of species of diverse and 

significant plant communities and can be counted as one of the unique treasures of Canada’s 

Heritage. GLM provides several ecosystem services that a wetland would typically provide, 

such as carbon storage, timber production, water-quality improvement and sediment 

retention. It also provides several economic services that include recreation (bird watching, 

boating, cross country skiing, duck hunting, and snowmobiling), beef cattle operation, 

growing crops (cabbage, pumpkins, corn, tomatoes, and potatoes) and harvesting (firewood, 

fiddleheads, and muskrats) [Washburn and Gills,1996]. 
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Historical maps of the region and data from Canadian census depict changes in the 

demographic aspects and trends in the GLM area. The maps show also changes in the land 

cover and use of the area. There are considerable amounts of highway and settlements that 

can be seen in the topographic maps of the area. Land cultivation decreased significantly 

from 1901 - 2001 primarily due to the construction in Gagetown and people’s movement 

from a rural area to an urban area as noted by the acreage of Hay, Buck wheat and Oats 

[Paponnet-Cantat and Black, 2003]. 

 

There has been very little work done to depict the biodiversity of the GLM and as a result 

there is a lack of public awareness and appreciation of the GLM area [Papoulias, Chaplin, 

and Bishop, 2006; McGrath and Stefenakis, 2013]. The decision-makers need to identify 

the driving forces responsible for these changes and hence, to develop management 

strategies to protect the GLM wetland effectively. 

 

1.2 THE STUDY AREA  

Washburn and Gillis [1996] were responsible for a preliminary environmental impact 

assessment of the proposed rerouting of the Trans-Canada highway in the 1990s and 

defined the area of GLM as being bounded: on the east by the Jemseg River to the north 

by various bodies of water including Grand Lake, Back Lake, Maquapit Lake, French Lake, 

and two extensive thoroughfares - the Main Thoroughfare and the Lower Thoroughfare: 

the southern extent of the GLM area is bound by the Saint John River: the western limit as 

being a road that connects McGowans Corner to Lakeville Corner [Washburn & Gillis, 

1996; Paponnet-Cantat and Black, 2003]. Figure 1.1 illustrates the location of the Grand 
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Lake Meadow area in a map of New Brunswick, Canada and that of New Brunswick in a 

map of Canada. 

 

 

Figure 1.1: Location of the Grand Lake Meadows in New Brunswick, Canada. 

 

1.3 BRIEF HISTORY OF DEVELOPMENT IN GLM 

The Maliseet (Wolastoqiyik) and Mi'kmaq people existed in the GLM as early as the 1600's 

[Zelazny, 2007]. From the 1700’s and 1800’s inhabitants including the English, French, 

and Loyalists in this area vied for its rich mineral resources [Queens County Heritage, 

2013]. In the 1800s' land conflicts dissipated, coal and wood commercial ventures 

developed and got to be extremely prosperous, enticing more immigrants [Wright, 1966]. 

As the population of people increased, the resources of the GLM diminished at an 

increasing pace.  
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A depletion of mineral resources was envisaged in the 1880s. Towards the start of the Cold 

War in 1947 the Canadian government was searching for an area to secure a suitable 

military base for the Canadian Army [Bruce, 2013]. The territory under consideration was 

the plateau west of the St. John River between St. John and Fredericton. In the early 1950s 

the seizure of lands started as the development of facilities began for the Canadian Forces 

Base (CFB) in Gagetown, Oromocto [Govcda, 2013]. This seizure of lands is regarded by 

a few as the "end of cultivation" in the area as pioneers were relocated from their property 

and migrated to a different area in the province. This base and seizure of lands, while being 

outside to the GLM area, affected those living in GLM. 

 

Transportation routes in the province were enhanced to encourage movement to and from 

the base. The developments included railway connections made possible by the Canadian 

National and the Canadian Pacific Railway, another alternative to the Trans-Canada 

Highway (Route 2) in the early 1960s, and the development of another bridge over the St. 

John River at the town of Burton. 

 

In the late 1990s an alternate re-alignment of the Trans-Canada Highway started. This 

extended the Trans-Canada Highway to a 4-lanefreeway with a specific goal of meeting 

the area's developing transportation needs and this was completed in 2001 [GNB, 2013]. 

This interstate spanned six kilometers of GLM and included building two new extensions: 

one over the St. John River and the other spanning over Jemseg River and influenced an 

expected 55 ha of GLM wetlands [Blair and Perley, 2004]. In 1990, the government of 

New Brunswick proclaimed GLM a "Class 2 Protected Natural area" [McGrath and 
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Stefenakis, 2013] which in-turn limits the utilization of the territory to low-impact 

recreational activities and conventional sustenance gathering activities, while limiting 

industrial, business and horticultural improvements [Zelazny, 2013]. 

 

The Province of NB collaborated with the five other easternmost enterprises that included 

the Canadian Wildlife Service, Ducks Unlimited Canada and Wildlife Habitat Canada (to 

mention a few) to structure the Eastern Habitat Joint Venture [PCNWA/GLM Mgmt. Plan, 

2000]. The commissioning of this joint venture of about 3,050ha of land in the GLM has 

been secured [PCNWA/GLM Mgmt. Plan, 2000]. Also, the GLM Project Management 

Committee was commissioned to raise the awareness of the GLM area and its unique 

ecology. This prompted a history of developments and the bounty of improvement 

prompted concerns over a risk to its ecology which has risen to secure the region and raise 

awareness of its importance in the province. 

 

1.3 CHARACTERISTICS AND IMPORTANCE OF THE GLM 

1.3.1 Agricultural Use  

The two soil types predominantly found in the GLM area are clay-loam and loam soil. 

Therefore the well-drained slopes in the region are quite fertile and are used for the 

cultivation of crops such as vegetable and fruits while the rest of the well-drained regions 

are less fertile due to the lack of relief and the generally fine texture of the soils often 

impedes drainage, which decreases the growth rate of vegetation [Paponnet-Cantatand 

Black, 2003]. 
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1.3.2 Forestry Use  

The Grand Lake Meadow is one of the richest wetlands in Eastern Canada. Most of the 

lands around the region are around the Trans-Canada Highway. The GLM acts as a heat 

sink to the province of New Brunswick thereby aiding in temperature moderation of the 

province. There are some vegetation species that are exclusive to the region for example 

the eskers with the red oak dominant forests [Paponnet-Cantatand Black, 2003]. 

 

The Grand Lake Meadows provides a complex setting for migrating waterfowl, aquatic 

and terrestrial plants, animals and unique communities of hardwood swamp vegetation 

which are abundant south if the GLM [Paponnet-Cantatand Black, 2003]. This occur 

basically on the broad, fertile and alluvial flood plains. Some of these plant species grow 

predominantly in certain parts of the GLM for example the coarse, alluvial deposits support 

trees such as white pine. Fertile alluvial soil support trees such as bur oak and silver maple 

[Paponnet-Cantatand Black, 2003]. Disturbances associated with settlement, particularly 

agriculture and forestry, have altered the original forest considerably, resulting in numerous 

stands of red maple, gray birch, white birch and trembling aspen, with scattered spruce and 

fir [Paponnet-Cantatand Black, 2003]. 

 

1.3.3 Transportation and Communication Routes  

A review of accessible maps acquired for the zone creates the impression that the essential 

land transportation courses have been located along the well-drained levee to the south of 

the GLM. The earliest maps created by the Geological Survey of Canada in 1880 and 1884, 

show that a bit of what is currently the Trans-Canada Roadway was available, reaching out 
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to more or less the region as of now known as The Intervale. At this point Highway 690, 

from McGowans Corner to Lakeville Corner, is likewise indicated to have been in 

presence, crossing at Fulton Island as it does today. At low water, the remaining parts of 

thebridge pilings are still obvious at the western tip of the island, promptly east of the 

current bridge [Paponnet-Cantatand Black, 2003].  

 

Map data for the study region was hard to get for the initial years of the twentieth Century. 

This map data shows that by the early parts of the twentieth Century, the route that finished 

at The Intervale was stretched-out eastward to a point where it crossed the waterway at 

Jemseg. Highway 690 had already been constructed at this time, found in basically the 

same area as it is today [Paponnet-Cantatand Black, 2003]. 

 

By 1958, the main road through the Grand Lake Meadows had gotten to be a piece of the 

Trans-Canada Highway. Likewise, a ship connection was added connecting The Intervale 

to Upper Gagetown, on the southern shore of the Holy person John Waterway. This ship 

association stayed in administration until the end of the twentieth Century, when an 

extension was developed over the Saint John River roughly 3 km downstream from the 

ship crossing.  

 

All through the twentieth Century, the essential land transportation courses stayed 

unaltered; in any case, towards the end of the twentieth Century, another course was 

proposed through the Grand Lake Meadows for the development of the new Trans-Canada 

Highway [Paponnet-Cantatand Black, 2003]. 



 
 

8 
 

1.3.4 Demography 

Grand Lake Meadows is located within Queens and Sunbury areas. Notwithstanding, just 

two of the ten Queens District wards, Cambridge and Canning, and one Sunbury parish, 

Sheffield, are inside the Grand Lake Meadows. Canadian Census information was acquired 

by Paponnet-Cantat and Black in 2003 for eight registration years comprising of 1901, 

1911, 1921, 1931, 1941, 1961, 2001 and 2011. On the other hand, just a segment of the 

information has been discharged for the 2001 statistics year.  

 

Thereafter, census information were used between 1901, 1911, 1921, 1931, 1941, 1961, 

2001 and 2011 thereby trying to isolate the information acquired from Queens and Sunbury 

districts. The seven areas found inside Sunbury region incorporates: Blissville, Burton, 

Gladstone, Lincoln, Maugerville, Northfield and Sheffield. Inside Queens’s district, data 

from ten areas is incorporated in the statistics information, including: Brunswick 

Cambridge and Canning, Chipman, Gagetown, Hampstead, Johnston, Petersville, 

Waterborough, and Wickham [Paponnet-Cantatand Black, 2003]. 

 

The demographic data referred to in the contents of the report addresses total population, 

total migration, provincial and urban economy, estimation of timberland production, 

farming land patterns relating to significant field harvests, for example field crops such 

ashay, oats and buckwheat. The same questions were not generally asked in each year; in 

this manner, it was not generally achievable to compare information from year to year. A 

few inquiries reflect patterns relating to the registration year [Paponnet-Cantatand Black, 

2003]. As seen in (Figure 1.2), the GLM area and its surrounding region has undergone a 
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steady increase in its total population from the year 1901 till 2011 which is also noted in 

this study with increase in roads from 1992 till 2013 thereby resulting in urbanisation of 

the GLM area. 

 

Figure 1.2: Total population in the GLM as of 2011. 

 

1.4 RESEARCH QUESTIONS 

The previous review of the biophysical and historical changes in the Grand Lake Meadows 

area leads to few research questions; 

1. How has the landscape of GLM changed over the years? 

2. Is there a relationship between the landscape changes with other physical or policy 

changes? 

3. Can satellite remote sensing images help in answering these questions? How? 
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4. How this study can influence the planning and strategies for a sustainable 

management of the GLM area and its resources? 

 

1.5 RESEARCH OBJECTIVES 

The main goal for this study is to assess the state of the GLM landscape through identifying 

the land use land cover patterns over the years using satellite images. To achieve this main 

goal, this study must address the following objectives: 

1. Identification of the best methods used to extract relevant/useful information from 

satellite imagery. To answer this question after completing an inventory of the 

available set of geo-images, the study will: 

 Establish a methodology for selecting ground control points that ensure 

consistent referencing between the images and with other data sets. 

 Select spatial ecological parameters and indicators relevant to the study that can 

be extracted from all images. 

 Identify the appropriate methods and their parameters to extract the information 

from the multispectral satellite images. 

2. Determination of the spatial scale that is appropriate for conducting this study and 

producing meaningful results. Answering this question requires also defining the 

spatial frame of reference that will be applied to all extracted information as well 

as to the secondary data. 

3. The selection of an appropriate approach for analysing changes in the use and cover 

of GLM. 
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1.6 THESIS ORGANISATION 

The subsequent part of the thesis is outlined as follows. Chapter 2 is a general overview of 

the classification methods and classification schemes employed for the analysis of the 

satellite imageries and forestry maps. It also provides a review of literature and case studies 

on the use of satellite images in wetland mapping and monitoring. Chapter 3 provide details 

on data used in the study, the pre-processing stage (georeferencing and clipping) followed 

by multi-resolution segmentation, spectral indices used for classification in section 3.4 and 

subsequently an insight into the following Class selection for classification, GLM Image 

classification using Feature Space Optimization and lastly Accuracy Assessment. The 

analysis of results obtained from change detection i.e. change matrix is addressed in 

Chapter 4 subdividing the results into two subsections from 2013 till 2001 and 2001 till 

1992, another table showing changes with respect to area in hectares and difference and 

finally the results in individual pie-charts. Finally, Chapter 5 discusses briefly the change 

detection results, sheds more light into the most appropriate spatial and suggest future work 

that can be done on this study. 
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Chapter 2 

MAPPING AND CHANGE DETECTION OF LAND USE AND LAND COVER  

 

There are few landscapes remaining on the Earth’s surface that have not been significantly 

altered or are not being altered by humans in some manner [Yang and Lo, 2002]. Maps of 

urban land use and land cover (LULC) are very important sources for many applications 

such as socio-economic studies, urban management, planning and urban environmental 

evaluation. Land uses are primarily the result of human actions and decisions on land. In 

fact human activities arising from a multiplicity of social objectives are the immediate 

source of land cover change. To understand these social objectives one needs to analyze 

the underlying driving forces that motivate or constrain the associated human activities. 

Biophysical driving forces (such as global and local climate change/ variability, 

geomorphic processes) are also responsible for changes in land cover and ultimately land 

use [Suzanchi and Kaur, 2011]. 

 

Environments in sub-urban territories are emphatically affected by anthropogenic 

activities; furthermore more consideration is at present being regulated towards monitoring 

changes in land use land cover changes [Chen and Stow, 2002]. Studies on change 

detection are particularly important because the spatial characteristics of LULC are useful 

for understanding the various impacts of human activity on the overall ecological condition 

of the urban environment [Li and Yeh, 1999]. The objective of change detection is to 

compare spatial representation of two points in time by controlling all variances caused by 
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differences in variables that are not of interest and to measure changes caused by 

differences in the variables of interest [Green et al., 1994]. 

 

Modern technologies such as Remote Sensing (RS) and Geographic Information System 

(GIS), provide some of the most accurate means of measuring the extent and pattern of 

changes in landscape conditions over a period of time [Miller et al., 1998]. Satellite data 

have become a major application in change detection because of the repetitive coverage of 

the satellites at short intervals [Mas, 1999].  

 

GIS is a widely used technique in wetland analysis. Modern GIS gives users the capacity 

to do visual and quantitative investigation using various sorts of digital spatial information, 

including remotely sensed imagery. In many studies, Landsat data post- classification are 

combined with GIS data for further wetland examination. Using, GIS different component 

layers can be overlaid to investigate relationships between individual wetland components. 

Classified images can be combined with additional shape files, such as permanent water 

bodies, rivers, soils types and population changes [Ummai et al., 2011]. The image 

overlaying and binary masking techniques are useful in revealing quantitatively the change 

dynamics in each category. GIS permits the use of aerial photographic data of current and 

past land use data with other map data while its disadvantage is due to the fact that different 

data might have geometric accuracy and classification systems might reduce the accuracy 

of results [Lu et al., 2004]. 
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This chapter reviews the main techniques of extracting information from satellite images 

and it also reviews how remote sensing and GIS are used in similar studies of wetlands. 

 

2.1 MULTI-RESOLUTION SEGMENTATION 

Segmentation is simply the sub-division of an image into separated regions of similar 

spectral reflectance. A reason why segmentation is very important to image processing is 

because of the high number of degrees of freedom which the image must be reduced to or 

the few segments which satisfy the given requirements. Another reason is that in many 

cases regions of interest (ROI) are heterogeneous; ambiguities arise and the necessary 

discerning information is not directly available. Requirements concerning quality, 

performance, size of data set and processing time and reproducibility can be fulfilled at the 

same time only by very few approaches [Karakış et al., 2004]. 

 

In object-oriented classification approaches, segmentation is not an aim in itself. The image 

objects resulting from a segmentation procedure are intended to be rather image object 

primitives, serving as information carriers and building blocks for further classification or 

other segmentation processes [Karakış et al., 2004]. In this sense, the best segmentation 

result is the one that provides optimal information for further processing [Hofmann et al., 

1998]. 

 

Image segmentation uses two basic approaches to segment images; these are top-down 

methods and bottom-up methods. The basic difference between both approaches is: top-

down methods usually lead to local results because they just mark pixels or regions that 
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meet the model description, whereas bottom-up methods such as multi-resolution 

segmentation perform a segmentation of the complete image. They group pixels to spatial 

clusters which meet certain criteria of homogeneity and heterogeneity [eCognition, 2004]. 

Figure 2.1 depicts how homogenous objects result in larger objects and heterogeneous 

objects result in smaller ones in the right image and the RGB layer in the left image. 

 

Multiresolution segmentation is a bottom up region-merging technique starting with one-

pixel objects. In numerous subsequent steps, smaller image objects are merged into larger 

ones. How homogeneous/heterogeneous the objects are allowed to get is operated by the 

‘scale parameter’. 

 

 

Figure 2.1: Differences between homogenous-objects and heterogenic-objects 

[eCognition, 2004]. 
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2.2 SATELLITE IMAGE CLASSIFICATION  

Image classification is perhaps the most important part of digital image analysis. 

Classification is used in remote sensing analysis by which pixels with similar spectral 

reflective characteristics are grouped together to form a distinct cluster. More innovative 

approaches do not treat pixels in isolation but consider neighborhoods. Texture metrics are 

used to quantify the distribution of spectral reflectance in a pixel’s immediate vicinity. 

Contextual classifiers look at the land types within a pixel’s neighborhood to detect and fix 

illogical class assignments. Object-oriented approaches categorize polygons rather than 

individual pixels [Jensen et al., 2009]. 

 

There are two main categories for classification methods which are the supervised 

classification method and the unsupervised classification method. Supervised classification 

requires labelled training data to establish the statistics to identify spectral classes (or 

clusters) in a multiband image. On the other hand, unsupervised classification is a method 

which examines unknown pixels and divides the pixels into classes based on natural 

groupings present in the image values. Unsupervised classification doesn’t require labelled 

training data, and, as such, it does not require the analyst’s intervention.  

 

The main principle of unsupervised classification is that features which have the same 

range of values have the same cover type and should be classified in the same category and 

vice versa. The two unsupervised classifications most commonly used in remote sensing 

are the ISODATA and K-mean algorithm. They are both iterative procedures in which the 

cluster properties are gradually defined from the pixels belonging to that cluster and all 
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pixels are assigned to the closest cluster [Yale Center for Earth Observation, 2009]. The 

advantage of using the unsupervised classification approach is possibility to discover 

classes that were not known before classification. 

 

For the supervised classification all classes have to be derived usually through a training 

stage with the use of training examples. The selection of appropriate variables is a critical 

step for successfully implementing an image classification and land cover classification. 

But it is noted that the usage of large number of variables would result in a reduction in 

classification accuracy. It is important to select only the variables that are most useful for 

separating land-cover or vegetation classes, especially when hyper spectral or multisource 

data are employed. Different combinations of variables will be evaluated to successfully 

get a consistent set of land cover information through the time period of this study. 

 

Pixel based classification plays a very vital role in LULC classification. Lu and Weng 

(2006) in their study discussed that because of the nature of the urban environment and the 

large number of mixed pixels associated with moderate resolution images, it is often 

difficult to classify land use/land cover based on spectral signatures. They are of the 

opinion that using medium data whose sensors mainly reveal land details is more 

appropriate for land cover classification rather than land use classification. The following 

are types of classification techniques. For further research on image classification, the 

reference (Jensen et al., 2009) will be a good source of information. The classification 

techniques that will be discussed are: 

 Nearest neighbour classification 



 
 

18 
 

 Maximum likelihood classification 

 Fuzzy classification  

 Parallelepiped classification 

 Minimum distance 

 Support Vector Machine (SVM) 

 Object-oriented classification 

 Decision tree classification 

 

2.2.1. Nearest Neighbor Classification 

Nearest‐neighbor classification is a simple and commonly used method for supervised 

classification. The basic principle is to classify a query point as being a member of a certain 

class of the k‐nearest neighbors of the query point, more of them belong to this class than 

to any other class [Sutton, 2012]. 

 

The nearest neighbour method classifies images with of 256 possible class signature 

segments as identified by signature parameter on a database file. Each has its special 

signature, for example, it stores signature data related to a particular class [Zhang, 2014], 

and only the mean vector in the individual class signature segment is used. Other data, such 

as standard deviations and covariance matrices are not used but it must be noted that the 

maximum likelihood classifier also uses this concept. Classification with membership 

functions is based on user-defined functions of object features, whereas Nearest Neighbor 

classification uses a set of samples of different classes to assign membership values. The 

procedure consists of two major steps these are  
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 Training the system by giving it certain image objects as samples 

 Classifying image objects in the image object domain based on their nearest sample 

neighbors 

 

The Nearest Neighbor classifier returns a membership value of between zero and one, 

based on the image object's feature space distance to its nearest neighbor [eCognition, 

2004]. The membership value has a value of one if the image object is identical to a sample. 

On the off chance that the image object varies from the example, the feature space distance 

has a fuzzy dependency on the feature space distance to the nearest example of a class. The 

user has the option to choose the elements to be considered for the feature space. Figure 

2.2 demonstrates the nearest neighbour classification and shows the membership value 

with respect to feature space distance. 

 

Figure 2.2: Membership function created by Nearest Neighbor classifier [e-Cognition, 

2004]. 

 

For an image object to be classified, only the nearest sample is used to evaluate its 

membership value. The effective membership function at each point in the feature space is 

a combination of fuzzy function over all the samples of that class. When the membership 
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function is described as one-dimensional, this means it is related to one feature; in higher 

dimensions, depending on the number of features considered. Figure 2.3 shows how 

difficult it is to depict the membership functions with two features and two classes only 

[eCognition, 2004]. 

 

Figure 2.3: Membership function showing class assignment in two dimensions. 

[eCognition, 2004]. 

 

In the figure, the samples are represented by little circles. Membership values are in red 

and blue classes compare to shading in the particular color, whereby dissimilar areas will 

be classified red, the blue membership value is disregarded, and vice-versa. Note that in 

areas where all membership values are below a defined threshold (0, 1 by default), image 

objects get no classification; those areas are depicted white in Figure 2.3 [eCognition, 

2004]. 

 

2.2.2 Maximum Likelihood Classification 

Maximum likelihood classification is a pixel-based statistical classification method which 

helps in the classification of overlapping signatures; pixels are assigned to the class of 
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highest probability. When conducting a maximum likelihood classification, one must know 

quite a bit about the land-cover present in the study area [Jensen et al., 2009]. 

 

The maximum likelihood classifier produces most accurate results than any other method 

of classification however it takes a longer time to generate results due to extra 

computations. The reason it is more accurate is due to the fact that it assumes that classes 

in the input data have a Gaussian distribution and that signatures were well selected but 

this is not always the case. This method is prone to misclassification of results which is 

dependent on the class threshold selection. 

 

Figure 2.4 shows an example of maximum likelihood classification with point 1 belonging 

to the blue class as it is the most probable and point 2 would generally unclassified as the 

probability for fitting one of the classes would be below the threshold. 

 

Figure 2.4: Maximum likelihood diagram [Zhang, 2014]. 

2.2.3 Fuzzy Classification 

Fuzzy classification can be regarded as a procedure for sorting data that permits 

characteristics to apply objects by membership values, therefore an object can be 

considered as a whole or partial member of that class where 1 is regarded as full 
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membership of the class and zero as no membership of the class therefore objects are 

permitted to lie in between zero and one. In GIS, fuzzy classification can be used in the 

examination of vegetation and phenomena that slightly change in physical composition. 

Figure 2.5 shows a simple illustration of a fuzzy set depicting the membership function in 

a crisp set named A. 

 

Figure 2.5: An illustration of fuzzy sets. 

 

2.2.4 Parallelepiped Classification 

The parallelepiped classifier uses the class limit and class signature to determine what class 

a pixel falls into. The class limit gives the standard deviation of each side of a 

parallelepiped surrounding the mean of the class in feature space [Zhang, 2014]. If the pixel 

falls inside the parallelepiped, it is allotted to the class. However, if the pixel falls within 

more than one class, it is allotted to the overlap class. If the pixel does not fall inside any 

class, it is assigned to the null class.  
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The parallelepiped classifier is a time efficient method. The disadvantage is in most cases 

is low accuracy and a large number of pixels are classified as misclassified [Zhang, 2014]. 

Figure 2.6 shows an illustration of the parallelepiped classification method with six classes. 

 

Figure 2.6: Pixel observations from selected training sites plotted on a scatter diagram 

[Zhang, 2014]. 

 

2.2.5 Support Vector Machine (SVM) 

A support vector machine (SVM) is a concept in computer science for a set of related 

supervised learning methods that analyze data and recognize patterns, used for 

classification and regression analysis [eCognition, 2004]. The standard SVM takes a group 

of input data and predicts, for every given input, which of two possible classes the input 

could be a member of. For example a set of training examples, each regarded as belonging 

to one of two classes, a SVM training algorithm assembles a model that assigns out new 

examples into one spectral class or the other. 
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A SVM model is a representation of the examples as points in space, mapped so that the 

examples of the separate categories are divided by a clear gap that is as wide as possible. 

New examples are then mapped into that same space and predicted to belong to a category 

based on which side of the gap they fall on. Support Vector Machines are based on the 

concept of decision planes defining decision boundaries. A decision plane separates 

between a set of objects having different class memberships [eCognition, 2004]. 

 

2.2.6 Object-Oriented Classification (OOC) 

The availability of high-spatial resolution multispectral imagery from satellite sensors 

requires new approaches to classify remote sensing data. Traditional classification 

algorithms based on per-pixel analysis may not be ideal to extract the information desired 

from the high spatial resolution remote sensing data [Visual Learning Systems, 2002]. 

 

Object-oriented analysis typically incorporates both spectral and spatial information in the 

image segmentation phase by subdividing the image into meaningful homogeneous regions 

based on shape, texture, size, and other features as well as spectral characteristics, and 

organizing them hierarchically as image objects (commonly referred to as image segments) 

[Blaschke 2005]. 

 

Once homogeneous image objects are created, any classification algorithm such as nearest 

neighbor, maximum likelihood, decision trees and neural networks can be used to classify 

the objects [Civco et al., 2002]. However, only a few algorithms integrate both spectral and 

spatial characteristics to produce image objects. One of the algorithms widely used in 
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remote sensing digital image classification was developed by Baatz et al. (2001) which 

incorporates both color criterion and shape criterion. Figure 2.7 shows an example of how 

object oriented classification can be used to classify roof-tops using eCognition the red 

vectors are rooftops at a site. 

 

 

Figure 2.7 Object oriented classification of roof tops [Bruce, 2008]. 

 

2.2.7 Decision Tree Classification 

Decision trees have tree-like structures where leaves in the tree represent classes and 

branches represent conjunctions of features that lead to the classes [Jensen, 2005]. A 

decision tree takes a set of attributes as input, which can be discrete or continuous, and 

returns an output (i.e., decision) through a sequence of tests [Russell and Norvig, 2003]. 

Decision trees can be converted into a series of “if-then” rules, which are easier to 

understand in the decision-making process. It is often difficult to understand and interpret 

the weights and biases formed during the creation of an Artificial Neural Network [Jensen 

et al., 2009]. 
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The output value can be discrete or continuous. For example in image classification, 

analysts are interested in extracting discrete class information (e.g., forest, agriculture). 

However, many applications require the extraction of biophysical information about a 

pixel. Such classification is based on the use of continuous functions and is called 

regression learning [Lawrence and Wright, 2001]. 

 

2.3 CLASSIFICATION SCHEMES 

Two widely used classification schemes are usually used to classify land use and land cover 

types. The classification schemes are: 

 Anderson Classification System. 

 IGDP Classification System. 

 

2.3.1 Anderson Classification System (ACS) 

The ACS, essentially developed by Anderson et al. (1976), was designed for national use 

in the United States, aimed at categorizing remote-sensing information (Table 2.1). The 

classification system itself offers four levels of increasing detail from level I to level IV, 

being adaptable to user demands by defining categories that are more detailed and 

simultaneously compatible for generalizations up to the smaller scales at the national level 

[Herold et al., 2009]. Level II was intended for statewide and inter-state regional land-

use/land-cover compilation and mapping. The level II class, in this work, has been 

translated into LCCS [Anderson et al., 1976]. 
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Table 2.1 Anderson Classification System [Anderson et al., 1976]. 

 LEVEL 1  LEVEL 2 

1 Urban or built-up 11 Residential 

  12 Commercial and services  

  13 Industrial 

  14 Transportation, communication and utilities 

  15 Industrial and commercial complexes 

  16 Mixed urban and built-up land 

  17 Other urban or built-up land 

2 Agricultural land  21 Cropland and pasture  

  22 Orchards, groves, vineyards, nurseries, and 

ornamental horticultural areas 

  23 Confined feeding operations 

  24 Other agricultural land 

3 Rangeland 31 Herbaceous rangeland 

  32 Shrub and brush rangeland 

  33 Mixed rangeland 

4 Forestland 41 Deciduous forestland 

  42 Evergreen forestland 

  43 Mixed forestland 

5 Water 51 Streams and canals 

  52 Lakes 

  53 Reservoirs 

  54 Bays and estuaries 

6 Wetland 61 Forested wetland 

  62 Non-forested wetland 

7 Barren Land 71 71 Dry salt flats 

  72 Beaches 

  73 Sandy areas other than beaches 

  74 Bare exposed rock 
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  75 Strip mines, quarries, and gravel pits 

  76 Transitional areas 

  77 Mixed barren land 

8 Tundra 81 Shrub and brush tundra 

  82 Herbaceous tundra 

  83 Bare ground tundra 

  84 Wet tundra 

  85 Mixed tundra 

9 Perennial snow or 

ice 

91 Perennial snow fields 

  92 Glaciers 

 

2.3.2 International Geosphere Biosphere Program Data and Information System 

(IGBP-DIS) 

The Land cover working group of IGBP-DIS data was created with guidance of the U.S 

Geological Service in order to meet the demands of the various IGBP initiatives for global 

land cover data since data sets proved unsuitable for upcoming IGBP core projects (IGBP 

1990). Its legend comprises classes designed to provide a consistent and exhaustive 

characterisation of global land cover as shown in Table 2.2. More detailed specifications 

can be found in Belward (1996). 

 

 

Table 2.2: IGBP Nomenclature [IGBP, 1990] 

CLASSIFICATION 

CODE 

IGBP CLASS 

1 Evergreen Needle-leaf Forests 
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2 Evergreen Broad-leaf Forests 

3 Deciduous Needle-leaf Forests 

4 Deciduous Broad-leaf Forests 

5 Mixed Forests 

6 Closed Shrub lands 

7 Open Shrub lands 

8 Woody Savannas 

9 Savannas 

10 Grasslands 

11 Permanent Wetlands 

12 Cropland 

13 Urban and Built-up 

14 Cropland/ Natural Vegetation Mosaics 

15 Snow and Ice 

16 Barren or Sparsely vegetated 

17 Water Bodies 

 

2.4 THE USE OF REMOTE SENSING IN WETLAND MONITORING  

Wetland classification is the fundamental step to generating a wetland inventory. In recent 

times, computer-based classification of wetland from satellite image data has been widely 

used because these methods are less time consuming and the source data provide high 

temporal resolution and high accuracy in geo-referencing procedures [Jensen, 1996]. 

Various datasets have been effectively utilized as a part of wetland classification, for 

example, aerial photos, Landsat images, and Système Pour l'Observation de la Terre 

(SPOT) image.  

Landsat-based image classification of wetland is regarded as having the best accuracy 

[Bolstad and Lillesan, 1992] which is primarily due to the sensitivity of the bands of 
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Landsat sensors (Thematic Mapper - TM, and Enhanced Thematic Mapper Plus - 

ETM+).TM band 1 can detect water depth mapping along coastal zones and is helpful for 

soil-vegetation separation and for recognizing forest types.TM band 2 can recognize green 

reflectance from viable vegetation, and band 3 is intended for recognizing chlorophyll 

absorption in vegetation. TM band 4 is perfect for near infrared reflectance peaks in healthy 

green vegetation and for identifying wetlands. The two mid-infrared groups on TM are 

helpful for vegetation and soil water studies, and distinguishing between mineral types. 

The thermal infrared band on TM is intended to support in thermal mapping, and for soil 

dampness and vegetation studies. 

 

Unsupervised and supervised classification techniques are most common approaches in 

wetlands analysis [Ozesmi and Bauer, 2002]. The major disadvantage of using supervised 

method for classification is the problem of misclassification; therefore any mislabelling in 

the training examples will affect the accuracy of the final result. For example with 

supervised maximum likelihood classification method, Ndzeidze (2008) utilized the 

Region of Interest tool (ROI) to generate training set of pixels. Each chosen pixel, both 

within and outside the training site was assessed and assigned to the class where it had the 

highest probability of being a member. 

 

The study by Jiang et al. (2014) used pixel by pixel classification, GIS and redundancy 

analysis (RA) were used to classify wetlands in the Heihe region of China. The main aim 

of this project was to characterise wetland fragmentation in this region. Wetlands in this 

region were classified into four different classes which were core, edge, perforated and 
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patch. This study shows that there was a decrease in the mean patch size of the wetland 

between the years 1975-2010. In summary there was a 42.54% decrease of core wetland 

from 1975 – 2010 and correspondingly a decrease in pixel size from 49.17% - 36.83% over 

the stated period [Jiang et al., 2014]. 

 

Frohn et al. (2009) used object oriented analysis and ancillary GIS data to classify a Landsat 

7 image to determine the utility of Landsat 7 image to accurately detect and classify isolated 

wetlands in St Johns River area in Florida. GIS data layers of buffered hydrology and lakes 

were also used in the classification process. These were used to mask data where potential 

wetlands intersected stream, river, and lake buffers, to prevent these data from being 

classified as isolated wetlands. The segmentation/object-oriented classification was also 

compared to a potential isolated wetland of Landsat 7 imagery from January 2000 till 

October 2000. At this point, the study discovered that there were about 4388 isolated 

wetland spanning about 27.7 sqkm. Accuracy for individual isolated wetlands was 

determined based on the intersection of reference and remotely sensed polygons. The 

January data yielded producer and user accuracies of 88%and 89%, respectively, for 

isolated wetlands larger than 0.5 acres (0.20 ha). The producer and user accuracies 

increased to 97% and 95%, respectively, for isolated wetlands larger than 2 acres (0.81 ha). 

Remote sensing was also used to classify wetlands in and around the Tibetan Plateau, 

where rule-based classification was used to classify these images [Zhao et al., 2015]. The 

Tibetan plateau has about 131900 km of wetland which is of special significance to China. 

In the past 40 years the research objective of the Tibetan Plateau has gone through dynamic 

changes in wetland monitoring, landscape patterns and the eco-environment based on 
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remote sensing technology. More attention has been attached to constructing models with 

an ecological system perspective and analyzing patterns and change in trends within the 

Tibetan Plateau wetlands. The result derived on the Tibetan plateau using remote sensing 

were as follows somewhere around 1970 and 2006, the Tibetan Plateau wetland area 

diminished at a rate of 0.23%/a while the landscape diversity declined at a rate of 0.17%/a. 

In other words somewhere around 1976 and 2009, the lake area of the inland river basin in 

the Tibetan Plateau increased at a rate of 0.83% per year [Zhao et al., 2015]. 

 

Supervised method of classification was used to classify Landsat images (TM and ETM+) 

in Mar Mengor Lagoon between the year 1984-2000 [Carreño et al., 2008]. Change 

patterns in the vegetal communities were studied due to hydrological and biological 

changes. Each classification was carried out with two images and Normalised Difference 

Vegetation Index (NDVI) was used to increase classification accuracy of vegetation cover. 

It was noticed that the overall accuracies were higher than those found in other studies due 

to the inclusion of NDVI the accuracy increased to about 84.17% and 91.06% [Carreño et 

al., 2008]. 

 

Powers et al. (2012) made use of a multi-scale segmentation and multi-scale geographic 

object based image analysis (GEOBIA) to classify 15 different wetland types in Canada. 

This method took into consideration the object based texture measure (geotex) and a 

decision tree classifier to assess 5 common spatial resolutions which were 5m, 10m, 15m, 

20m, 25m, 30m. Two themes were used which were Ducks Unlimited (DU: 15 classes) 

and Canadian Water Inventory (CWI: 5 classes). Results reveal that the highest overall 
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accuracies (67.9% and 82.2%) were achieved at the 10 m spatial resolution for both the 

DU and CWI classification schemes respectively. It was also found that the DU wetland 

types experienced greater area differences through scale with the largest differences for 

both classification schemes occurring in classes with a large treed component. 

 

2.5 CHANGE DETECTION 

Change detection is the process of identifying differences in the state of an object or 

phenomenon by observing it at different times [Singh, 1989]. Change detection is a critical 

process in monitoring and overseeing natural resources and urban advancement on the 

grounds that it gives quantitative examination of the spatial distribution of the feature of 

interest. 

 

The rate of change can either be dramatic or abrupt (such as changes caused by logging, 

hurricanes, and fire) or subtle and gradual events (such as regeneration of forests or damage 

caused by insects) [Verbesselt et al., 2010]. A major objective of land use land cover 

change detection is to better understand the relationships and interactions between humans 

and its environment in order to manage and use resources in a better way for sustainable 

development [Lu et al., 2004]. 

 

In recent times the availability of Landsat satellites since 1972 and its use has made 

available a lot more information such as large volumes of multi-temporal data which can 

be used for land use land cover investigation. Various digital change detection techniques 

have been developed over the last two decades. Several review papers and book have 
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summarized and compared these techniques. A good source would be [Lu et al., 2004] and 

[Coppin and Bauer, 1996] to mention a few. Some common change detection algorithms 

are listed below: 

 Post classification comparisons. 

 Composite analysis. 

 Image differencing. 

 Multi-temporal linear data transformation. 

 Change vector analysis. 

 Image regression. 

 Multi-temporal biomass index 

 Image ratio 

 

The following section provide details on a few common techniques of change detection: 

 

2.5.1 Spectral Mixture Analysis (SMA) 

In SMA, the signal recorded for a pixel is assumed to be a mixture of the radiances of the 

component end–members contained within that pixel [Giri, 2012]. Knowing or deriving 

spectrally pure end-members of all the components within a pixel, using linear or non-

linear mixture approaches [Chen et al., 2004]. Some previous land cover change techniques 

have aimed at detecting changes that are smaller at individual pixels. The SMA techniques 

can be used to quantify cover fractions of the interested vegetation [Lu et al., 2004]. 
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SMA is practically appropriate and practical for detecting image-element changes over 

time coarse-resolution images especially subtle changes such as vegetation regeneration to 

mention a few [Giri, 2012]. For further research on this method Remote Sensing of Land 

Use Land Cover by Giri, 2012 would be a good resource. 

 

2.5.2 Bi-Temporal Analysis 

Bi-temporal change detection enables comparison of land cover of the same area, based on 

a two-point scale [Giri, 2012]. The basic principle of bi-temporal change detection is to 

find the difference of two images. This can be done either using the original image 

information (e.g. radiance or reflectance data) or derived imagery for example spectral 

indices [Giri, 2012]. Therefore both images will need to geo-registered or radiometrically 

corrected [Coppin et al., 2004]. 

 

A major disadvantage of this method is that it only uses two dates of imagery in the process 

thus there is no way to really distinguish between older changes/disturbances from the more 

recent ones [Giri, 2012]. 

 

The method requires a careful selection of dates because the detected changes may reveal 

differences in phenology and not in the features of interest [Weber, 2001]. For bi-temporal 

change detection images from the summer peak greenness period work best because they 

minimize reflectance difference from the same cover type caused by seasonal vegetation 

phenology such as leaf-off conditions, autumn coloration and sun angle difference [Coppin 

et al., 2004]. 
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2.5.3 Multi-Temporal Change Detection 

This strategy is a snappy and productive method for showing changes between comparative 

images of varying dates. It utilizes a basic unsupervised classification on two combined 

images. The regions that have changed will bring about varying classification statistics or 

color than the regions that no changed has occurred. The system is not utilized for 

quantitative purposes, it gives little data on 'from-to' class changes and can be hard to name 

the changed classes. In any case, this strategy is especially helpful as an exploratory system 

for recognizing regions that have changed. 

 

2.5.4 Principal Component Analysis (PCA) 

Another method for accomplishing this change detection is the Principal Components 

Analysis. This system is a multivariate statistical strategy that is utilized with the end goal 

of data reduction. The two images must be put inside of the same planimetric base map and 

same database. PCA is used to minimize the amount of spectral components by recognizing 

the uncorrelated primary components that expatiate on the most variance. 

 

These principal components are illustrative of the new dataset of which a few are typically 

straightforwardly identified with change. This method does not give from-to change class 

information and may be hard to label the changed classes. In any case, this technique is 

generally utilized and advantageous as only classification is necessary. 
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2.5.5 Post-classification Change Detection 

This method avoids problems encountered at the pixel level (such as shadows and 

reflections) and requires both images to be individually rectified and classified before they 

can be compared pixel by pixel (Jensen 1996). This comparison is accomplished using a 

change detection matrix (see Table 4.1 and Table 4.2 in Chapter 4). Care must be taken to 

guarantee that all the image classifications are as accurate as can be because any 

lapses/errors that happen in the classification will be extended into the change detection.  

 

This method provides good from-to information and results in a base map that can be used 

for the next year. It identifies where the change has occurred and how much change has 

occurred. Be that as it may, creating a change map taking into consideration that the 

classification of two images can be a little tasking and the final change detection is just as 

precise as the result of reproducing the accuracies of every individual classification. 

 

Post-classification comparison characterizes images from different time frames 

independently and afterwards analyzes class values on pixel by pixel basis between dates. 

High sensitivity to the individual characterization accuracy is a real downside of this 

classification method. Error is multiplicative as misclassification from base maps affect the 

accuracy of this procedure. In any case, post-classification can be carried out without the 

need for radiometric calibration and make do with the training examples set by the user. 

 

Post-classification change detection was used in this study due to the fact that eliminates 

effects of shadow and due to the availability of several Landsat data available in the GLM 
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area and the relatively high classification accuracy archived which would further result in 

relatively high change detection analysis. 

 

2.6 CHANGE DETECTION TECHNIQUES IN WETLAND STUDIES. 

Satellite information have turned into a significant application in change identification due 

to the repetitive coverage of the satellites at short intervals. The study by Li and Yeh (1998) 

found out that the principal component analysis of multi- temporal images combined with 

supervised maximum likelihood classification can effectively monitor urban land use 

change in the Pearl River Delta. 

 

Yang and Lo (2002) used an unsupervised classification approach, GIS-based image spatial 

reclassification with GIS to map the spatial dynamics of urban land-use/land cover change 

in the Atlanta, Georgia metropolitan area. GIS approaches have shown many advantages 

over traditional change detection methods in multi-source data analysis [Yang and Lo, 

2002]. 

 

Adia and others investigated the spatio-temporal change detection of vegetation cover of 

Jos (Nigeria) and its surrounding areas. The study used Landsat images (TM and ETM+) 

of November, 1986 and Nov, 2001. For recognition of vegetation reflectance, layer 

stacking of bands 4, 3 and 2 (false color composite) for TM and ETM+ were performed to 

generate change maps of the vegetation cover for the respective dates and find out the 

pattern of change[Adia et al, 2008]. 
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Miwei (2009) observed transient vegetation in Poyang Lake utilizing Moderate-Resolution 

Imaging Spectrometer (MODIS) satellite image. The study delved into the change over 

time in Area of Ephemeral Vegetation (AEV) by investigating time change of satellite 

imagery and explored how this change is identified with changes in hydrological conditions 

[Miwei, 2009]. 

 

Dewan and Yamaguchi (2009) used the GIS method where past and present maps of land 

use with topographic and geological data. Image overlaying and binary masking are useful 

in showing quantitatively change dynamics. This method allows incorporation of aerial 

and photographic data of current and past land use data with other map data but different 

GIS data with varying geometric accuracy and classification system reduces the quality of 

results [Lu et al, 2004]. Likewise, Damizadeh et al. (2000) utilized satellite images, as a 

compelling procedure to study how changes in vegetation spread is developing.  

 

Thereafter, Suzanchi and Kaur (2011) used data derived from Landsat imageries, survey if 

India-topo sheets to map the spatial temporal attributes of the national capital region of 

India. This study aims at quantifying the spatial temporal pattern of the land use land cover 

change thereby identifying the major bio-physical factors governing LULC. This study 

shows that the study area experienced a steep increase of 67.4% in its cropland during 

1989-1998 and a relatively smaller increase between the years 1998-2006 of about 5.7%. 

 

Post classification comparison was used by Abd El-Kawy and others (2011) to classify 

multi-temporal images into thematic maps. Thereby a pixels by pixel comparison is 
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implemented which would minimize the impact of atmospheric sensor and environmental 

differences between multi-temporal images this could be time wasting and requires a great 

deal of expertise to produce classification results.  

 

In other words, unsupervised change detection was used by Yang and Lo (2002) in which 

similarly spectral groups of pixels are selected and clusters from the first image into 

primary clusters and then labels spectrally similar groups into the second image into 

primary clusters in the second image and finally identifies changes and outputs results. 

This method makes use of the unsupervised nature and automation of change analysis 

process but there is a difficulty in identifying and labelling change trajectories [Lu et al, 

2004]. 

 

Another method that can be used is the change vector analysis (CVA) by Baker et al. (2007) 

and land cover change mapper (LCM) by Castilla et al. (2009) which are based on spectral 

change between acquisition dates [Du et al., 2013]. The CVA technique identifies changes 

in pixel values by considering the pixel locations for the two dates in the multi-dimensional 

spectral space. It recognizes the change magnitude threshold which is utilized to distinguish 

between real land cover changes from unobtrusive/subtle changes [Hame et al., 1998]. 

Moreover, like other methods that use the radiometric change, CVA has an absence of 

programmed or semi-automatic strategies to viably determine the change magnitude 

threshold between change and no-change pixels. LCM works better with small regions and 

is extremely successful likewise in recognizing areas with sizeable changes. The major 
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disadvantage of this method is that the type of change in the region of interest must be 

identified by the analyst. 

 

Im et al. (2008) performed object-based change detection using correlation image analysis 

and image segmentation using bi-temporal QuickBird datasets. They created object 

/neighborhood correlation images to extract change information from the composite 

imagery based on the single set of objects showing bi-temporal topology using two 

different classification methods (i.e., machine learning decision trees and nearest neighbor 

classifiers).  
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Chapter 3 

METHODS 

 

The goals for the study will be achieved by undertaking a detailed and spatially explicit 

inventory of patterns in land use and land cover changes thereby analyzing the state of 

degradation in the GLM. This study tends to depict the state of ecological management in 

the GLM across a range of spatial and temporal scales. Figure 3.1 shows the GLM area in 

an ArcGIS environment showing the study area as polygon on GIS. 

 

The methodology’s main thrust is the use of a series of archival satellite images covering 

a period from the years 1986 till as recent as 2013. Comprehensive land cover maps for the 

Grand Lake Meadows area will be extracted from these images and then analyzed to depict 

the changes in land cover. A specific set of indicators (for example land use and vegetation 

cover) will be selected based on being easily extracted and updated, directly or indirectly, 

using geo-imaging techniques. This would give answer to the issues of ecological 

administration in the GLM over a scope of spatial and temporal scales. Of special interest 

is assessing the ecological impacts of the Trans-Canada Highway on the GLM area. 
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Figure 3.1: The Grand Lake Meadow (Google Maps) and the study area. 

 

GIS is used in this study to enable the integration and the presentation of the spatial and 

temporal information. Additionally, it allows for conducting a series of spatial and geo-

statistical analysis to quantify the rate of changes and the association between different 

parameters.  

 

Figure 3.2 is a flow chart depicting the process to achieve the aim of analyzing the state of 

degradation in the GLM region. It can be used as a summary of the project depicting each 

stage of the project from data acquisition through image classification and to the 

presentation of the final report. The following paragraphs detail the procedure to achieve 

the intended goals of the study. 
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Figure 3.2: Data and processes flow. 

 

The following sections provide details on data used in the study (Section 3.1) and the pre-

processing stage (georeferencing and clipping) followed by multi-resolution segmentation 

in section 3.3, spectral indices used for classification in section 3.4 and subsequently an 

insight into the following class selection for classification, GLM Image classification using 

Feature Space Optimization and lastly Accuracy Assessment.  

 

3.1 DATASETS 

The images used for this study were all Landsat imagery with world reference system 10/28 

from http://earthexplorer.usgs.gov/ covering the study area dating as the 27th of July, 1986 

till the 28th of August, 2013. All the images used in this study are of the same time-frame 

which is between the months of May and July to negate vegetative effects on the image, 

cloud cover or snow. It must be noted that the Landsat guide [Landsat 8 User Guide, 2015] 

was used to make sure the right combination of bands was used and for the proper 

utilisation of various spectral indices for classification of the images. 

 

http://earthexplorer.usgs.gov/
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The Landsat TM and ETM+ have similar 7 bands (Table 3.1), while ETM+ band 6 has a 

higher resolution of 60 meters. The Landsat 7 satellite also has newly added panchromatic 

band 8 with resolution of 15 meters [Shi, 2013].  

 

Table 3.1: Landsat 7 and ETM+ bands and wavelength range [Landsat 8 User Guide, 2015] 

 

 

Table 3.2 shows the spectral bands of the Landsat 8 OLI and TIRS with the band 1 Coastal/ 

Aerosol basically used for ocean color observations and Cirrus which is useful in detection 

of thin clouds [Landsat 8 User Guide, 2015]. 

 

 

 

 

Band Region Wavelength (μm) Resolution (meters) 

1 Blue-green 0.441 – 0.514 30 

2 Green 0.519 – 0.601 30 

3 Red 0.631 – 0.692 30 

4 Near IR 0.772 – 0.898 30 

5 SWIR - 1 1.547 – 1.749 30 

6 Thermal IR 10.31 – 12.36 60 

7 SWIR - 2 2.064 – 2.345 30 

8 Pan 0.515 – 0.896 15 
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Table 3.2 Landsat 8 OLI and TIRS Spectral bands [Landsat 8 User Guide, 2015] 

Band Region Wavelength (μm) Resolution 

(meters) 

1 Coastal/Aerosol 0.435 – 0.451 30 

2 Blue 0.452 – 0.512 30 

3 Green 0.519 – 0.601 30 

4 Red 0.636 – 0.673  30 

5 NIR 0.851 – 0.879 30 

6 SWIR - 1 1.566 – 1.651 30 

7 SWIR -2 2.107 – 2.294 30 

8 Pan 0.503 – 0.676 15 

9 Cirrus 1.363 – 1.384 30 

10 TIR - 1 10.60 – 11.19 100 

11 TIR - 2 11.50 – 12.51 100 

 

Table 3.3 shows an inventory table of imageries used during the course of this study. All 

satellite data included, at least, images from four spectral bands (Band 1: Blue, Band 2: 

Green, Band 3: Red, Band 4: Near-infrared) with a resolution of 30m. All images used in 

this study had a cloud threshold value of less than 10% to minimize the effects of cloud 

cover in this study. 

 

The 1986 image could not be used for classification due to the fact that the Landsat imagery 

available has 3 bands because a criteria was set to negate effects of cloud cover to less than 
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10%.Secondly, the absence of the 4th band makes it difficult for classification to be done 

as there was a lot of inconsistency with classification. 

 

Table 3.3: Satellite images used in the study 

Date File name Satellite Spectral Bands Spatial 

Resolution 

1986/05/01 MTN-19-45_LOC Landsat 

5 

3: B, G, R, All bands: 

30m 

1992/08/07 ETP009R28_5T19920807 Landsat 

5 

4: B, G, R, IR All bands: 

30m 

2001/06/28 ELP010R028_7T2001628 Landsat 

7 

7: B, G, R, NIR, SWIR 1, 

TIR, SWIR 2, 

Panchromatic 

VIR: 30m,  

TIR: 60m 

2013/08/24 LC80100282013236LGN00 Landsat 

8 

11: B, G, R, NIR, SWIR-1, 

TIR, SWIR-2, 

Panchromatic, TIRS, 

Cirrus 

VIR: 30m,  

Pan: 15m,  

Cirrus: 30m,  

TIRS: 100m 

 

Two other datasets were used for this study; forestry maps and the road network. Forestry 

maps were acquired from the Department of Natural Resources (DNR) to provide training 

sample selection to classify the satellite images. These maps are of 1:12,500 scale and bear 

the numbers 4852, 4952 and 5053 and represent the area in 2014. Figures 3.3, 3.4 and 3.5 

show the forestry map used to select samples for classification. The road network dataset 

for 2013 was downloaded from http://www.snb.ca/geonb1/e/DC/catalogue-E.asp, the file 

name for the road network shapefile is called New Brunswick Road Network (NBRN) and 

it has a scale of about 1:15000.  

http://www.snb.ca/geonb1/e/DC/catalogue-E.asp,
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Figure 3.3: Forestry map (4852) for the west part of the study area. 

 

Figure 3.4: Forestry map (4952) representing the central part of the study area. 
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Figure 3.5: Forestry map (5053) representing the eastern part of the study area. 

 

3.2 DATA PRE-PROCESSING  

The satellite imageries were georeferenced to the New Brunswick’s coordinate reference 

system and map projection (NAD83 CSRS 19N, New Brunswick Stereographic Double 

projection). An Ortho-image for the area downloaded from GeoNB was used for Ground 

Control Point (GCP) selection; PCI Geomatica was used for georeferencing the images for 

the fact that it has an automated GCP finder which reduced processing time significantly. 

 

To ensure consistent referencing between the images, the same ground control points 

(GCP) are to be used on all the imageries classified. This task is challenged by the fact that 

there have been changes between the different years. As such, some of the points chosen 

for georeferencing an image may not be the same for another image. However, there was 
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a good set of the same points available on all imageries that ensured correct co-referencing 

among the images. An average of 18 ground control points was used for geo-referencing 

the image, two check points were also used to further verify the accuracy of results. 

 

The RMSE for the georeferenced imageries was less than 0.25 of a pixel (about 8m) based 

on selected representative ground control points. Atmospheric calibration is compulsory 

when a multi sensor data is used for image classification. However, it was not implemented 

in this study considering that all images were of Landsat. Figure 3.6 is a natural colour 

composite for 2000 Landsat image (used as the base image) showing its GCP points. Figure 

3.7 shows the output of georeferencing including the RMSE result of the 2000 image which 

is about 0.25 of a pixel (8m) based on selected representative GCP’s.  

 
Figure 3.6: Geo-referenced Landsat 2000 image showing GCP points. 
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Figure 3.7: RMSE result of geo-referencing 2000 image. 

 

The roads of 2013 was then modified (backdated) using the satellite images to represent 

the road network at the different time frames as shown in (Figure 3.8), and later super-

imposed with other relevant environmental data which would depict the rate of change of 

the road network in the GLM.  
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Figure 3.8: 2013 road network (in red) superimposed on the Landsat 8 (2013) image. 

 

3.3 MULTI-RESOLUTION SEGMENTATION 

To get the best segmentation results in eCognition the value scale parameter was set as 

185. The scale parameter is an abstract term which simply restricts objects from being too 

heterogeneous. By modifying the value in the scale parameter one can vary the size of 

image objects [eCognition, 2004]. This process basically done by trial and error method 

because there is no rule in using a certain scale parameter this is a pretty iterative process 

and should be repeated with varying scale parameter till the required result/goal is 

achieved.  
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The downside of having a low scale parameter and using multi-resolution segmentation is 

the very huge processing time, sometimes it took as much as 12 hours to segment an image 

which is also due to huge size of the Landsat satellite imagery used in this study. Figures 

3.9 and 3.10 show the image for the study area been segmented at different zoom levels. 

As can be seen, Figure 3.9 has more heterogonous feature due to the fact that it has a higher 

scale parameter, while Figure 3.10 has more homogenous features for the same reason. 

 

Figure 3.9: Segmentation of the image (5000 scale parameter). 

 

Figure 3.10: Segmentation of the image (185 scale parameter). 
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3.4 SPECTRAL INDICES FOR GLM AREA 

Spectral indices are composed of surface reflectance at two or more wavelengths that 

demonstrate relative abundance of components of interest. Vegetation indices are the most 

prominent type, however different other indices are available for burned regions, man-

made (built-up) features, water, and geologic elements. They can reduce the data volume 

for processing and analysis thereby providing information that is more strongly related to 

the changes in the scene than any single band [Coppin et al., 2004]. Due to the fact that the 

spectral bands in Landsat 7 ETM+ is quite different from the Landsat 8 OLI and TIRS 

spectral bands more attention to detail was taken in band selection so as not to confuse the 

4th band which is red in Landsat 8 with the 4th which is near infra-red band in Landsat 7. 

 

The main reason for using spectral indices is to properly distinguish between vegetation 

classes. For example, NDVI can be very useful in distinguishing between forest and non-

forest land. Spectral indices can also be used to quantify cover fractions of the interested 

ground components such as forest canopy, pasture, second growth, impervious surface and 

damaged vegetation [Lu et al., 2004]. 

 

3.4.1 Normalized Difference Vegetation Index (NDVI) 

NDVI is a widely used vegetation index, which can reduce the atmospheric and 

illumination effects by using the difference of the mean and the ratio of red and near- 

infrared band bands [Giri, 2012]. NDVI values strongly correlate with green vegetation 

and changes in NDVI indicate changes in forest activities [Verbesselt et al., 2010]. NDVI 

decreases significantly after green biomass is removed so it’s used significantly for 
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mapping and monitoring fire disturbance, land cover changes, urbanization and so on  

[Verbesselt et al., 2010]. 

 

Due to the Normalized Difference Vegetation Index’s (NDVI) inability to accurately 

distinguish between the classes used in this study, it was disregarded as a parameter used 

to distinguish between the classes solely due to the fact that the Feature Space Optimization 

in eCognition technique didn’t regard the NDVI as a viable method in distinguishing 

between these classes i.e. it shows a weak separation distance between the samples. Figure 

3.11 show the result for NDVI in the 2013 image (Landsat 8 image). 

 

 

Figure 3.11 NDVI result for 2013 image (Landsat 8 image). 
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3.4.2 Near-Infrared Ratio 

A simple division of the near- infrared with the red band (i.e. NIR/R) was used instead of 

NDVI. It can be said that the classes were a lot more separable using this method especially 

forest and non- forest. Figure 3.12 shows the result of NIR ratio on the 2013 image. 

 

 

Figure 3.12 NIR ratio result for 2013 image (Landsat 8 image). 

 

3.5 CLASS SELECTION FOR CLASSIFICATION 

The classes used for classification in this study was derived from the forestry maps 

obtained from the Department of Natural Resources (DNR) and followed roughly 

Anderson Classification system. The legend for forestry maps has an extensive list of 

LULC maps has an extensive list of LULC classes as shown in Figure 3.13. Classes in this 

study are somewhat modified to meet the requirement of this study. Accordingly, the 

adopted classification scheme comprises of the following classes: 
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 Water: covers streams, river, lakes and other water bodies. 
 Wetland 
 Submerged Wetland: wetland that is seasonally flooded with water. 
 Non-forest: combines the classes of non-forest land, partial cuts, burns and 

cutovers. 
 Forest: Includes all the different categories and forest types. 
 Roads: Includes all the different types and categories of roads. 

 

 

Figure 3.13: Forestry map Legend.  

 

3.6 GLM IMAGE CLASSIFICATION USING FEATURE SPACE OPTIMISATION 

(FSO) 

Feature Space Optimization is a tool that helps to find the combination of features most 

suitable for separating classes, in conjunction with a nearest neighbor classifier 

[eCognition, 2004]. It compares the features of selected classes to find the combination of 

features that produces the largest average minimum distance between the samples of the 
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different classes. The Feature Space Optimization function offers a method to 

mathematically calculate the best combination of features in the feature space. 

 

The results without the use of feature space optimization was very unrealistic as it couldn’t 

properly distinguish between the water class, forest and non-forest. Therefore the feature 

space optimization was deemed important to properly distinguish between the classes used 

for classification. 

 

Figure 3.14 shows the feature space optimisation dialog box showing the best separation 

distance, classification classes and dimension and Figure 3.15 is the advanced feature space 

optimisation dialog box depicting the feature that best separate the individual classes in 

this study. Bands used in this study for a better separation of the classes are Brightness, 

Mean layers 4, 5, 6, Standard deviation 1, 3, 4, 5, 6 and the near infrared ratio. 

 
Figure 3.14: The Feature Space Optimization dialog box. 
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Figure 3.15: Feature Space Optimization – Advanced Information dialog box. 

 

In this research, satellite images of the Landsat 7 ETM+ and Landsat 8 OLI and TIRS 

downloaded from the USGS website between the years 1986 and 2013 were used in the 

classification for land-cover. Six land cover and land use classes were applied namely: 

forest, non-forest, wetland, submerged-wetland, water class and roads.  

 

Definiens eCognition software was used to perform object oriented classification since it 

is an object oriented program designed by Definiens Imaging GmbH. The method used in 

the classification for this study is the standard Support Vector Machine (SVM) because of 

the ability of the SVM algorithm to take a group of input data and predict, for every given 

input, which of two possible classes the input could be a member.  
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Sample areas required for supervised classification (Figure 3.16) were extracted from 

forestry maps of the GLM and were imported into the project scene by means of Training 

and Test Area (TTA) mask [eCognition, 2004]. Spectral signatures were obtained from 

different locations on the image which were then grouped according to the classes.  

 

 

Figure 3.16: Training samples. 

 

There appears to be some confusion between the road network, non-forest land and forest 

which is due to the spectral resemblance between the two classes. The main reason for this 

misclassification between the road, forest and non-forested land is primarily due to the fact 

that some of the secondary roads are not tarred and thereby give a similar spectral 
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reflectance to the non-forested land. Another reason is that some of the roads are covered 

by trees so in that scenario it also emit similar spectral reflectance close to the forest. 

 

Figure 3.17 shows the classification result of 2013 image using the eCognition software; 

Figure 3.18 shows the classification result of 2001 image and Figure 3.19 shows the 

classification result of 1992. 

 

 

Figure 3.17: LULC classification results for 2013. 
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Figure 3.18: LULC classification results for 2001. 

 

Figure 3.19: LULC classification results for 1992. 



 
 

63 
 

3.7 ACCURACY ASSESSMENT OF LULC MAPS 

To evaluate the accuracy of an image classification, it is a regular practice to create a 

confusion matrix. In a confusion matrix, the classification results are contrasted with 

additional reference (Google maps) data. The quality of a confusion matrix is that it 

distinguishes the nature of the classification errors, and also their quantities. Frequently, 

surrogates to ground truths are obtained from existing land cover data (e.g., forestry map) 

which are perceived as suitable reference and which obviously are independent of the 

sample selection data. 

 

The classification accuracy was evaluated using reference data (forestry maps), Figure 3.19 

shows the test area samples used for the accuracy assessment; the set of sample used for 

the TTA mask differs from that of the training samples. The same test area samples were 

used in all the images to get the classification accuracy of each image to maintain 

consistency. 

 

The corresponding classes were linked to form the confusion matrix. Several 

measurements such as Producer’s, User’s, Overall accuracy and Kappa index of agreement 

were derived for each class. Figure 3.20 shows the confusion matrix of the classification 

result for the 2013 image. It shows an overall accuracy of about 84%. Figure 3.21 and 

Figure 3.22 show the accuracy assessment for 2001 and 1992 respectively where the 

accuracy is about 85% for 2001 and about 82% for 1992. 
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Figure 3.19: Test area samples. 

 

3.7.1 Producer Accuracy  

It is the fraction of correctly classified pixels with regard to all pixels of that ground truth 

class. For each class of ground truth pixels (row), the number of correctly classified pixels 

is divided by the total number of ground truth or test pixels of that class [Akbari, 2006]. 

For example the producer accuracy for wetland in the Figure 3.20 is 9383/13917= 67% 

(Producer, User and Overall accuracy are usually in percentile). 

 

3.7.2 User Accuracy  

The figures in the User column represent the reliability of classes in the classified image: 

it is the fraction of correctly classified pixels with regard to all pixels classified as this class 

in the classified image. For each class in the classified image (column), the number of 

correctly classified pixels is divided by the total number of pixels which were classified as 
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this class [Zhang, 2014]. For example the user accuracy for wetland in Figure 3.20 is 

9383/11682= 80%. 

 

3.7.3 Overall Accuracy  

The percentage of all correctly classified pixels (from all the classes) against the total 

number of pixels being checked [Zhang, 2014]. For example the overall accuracy in Figure 

3.20 is 51,185/60974 = 84% 

 

3.7.4 Kappa Coefficient  

Cohen's Kappa (often simply called Kappa) coefficient is a measure of agreement between 

two sets of datasets. Kappa coefficient measures the percentage of data values in the main 

diagonal of the table and then adjusts these values for the amount of agreement that could 

be expected due to chance alone. 

 

Figure 3.20: Accuracy assessment for Land cover classification for 2013. 



 
 

66 
 

 

 

Figure 3.21: Accuracy assessment for Land cover classification for 2001. 

 

 

Figure 3.22: Accuracy assessment for Land cover classification for 1992. 

 



 
 

67 
 

The overall accuracies (which are 84% for 2013, 85% for 2001 and 82% for 1992) obtained 

from the classification are quite similar to each other and of high standard with 82% as the 

least classification accuracy obtained in this study. Table 3.4 shows the producer accuracy 

for the combined case of wetland and submerged wetland in the 3 different images. 

 

Table 3.4: Producer accuracy of the three images 

YEAR (WETLAND + 

SUBMERGED)% 

2013 67 

2001 75 

1992 63 

 

The wetland and submerged wetland accuracy in the three images can be said to be very 

different due to the fact that the wetland and submerged wetland depend on the weather 

conditions, especially rainfall in the period prior to the imaging. Consequently, so they 

differ in their natural state greatly for instance an area in 2013 that is classified as a partly 

a submerged wetland and wetland is classified as water in both 2001 and 1992 this might 

be due to the decrease in water level during the time of capture of the satellite imagery. 
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CHAPTER 4 

CHANGE DETECTION ANALYSIS 

 

4.1 CHANGE DETECTION RESULTS FROM THE YEAR 1992 TILL 2001. 

Figure 4.1 shows wetland changes from the year 1992 to the year 2001 with its change 

matrix both in pixel and percentage (Tables 4.1 and 4.2). This shows a 38% decrease from 

the year 1992 to 2001. To get this change we assume that wetland to wetland there is no 

change and that change exists between wetland and the several different classes. The total 

number of pixels in this change matrix is 526580. 

 

Figure 4.1: wetland changes from the year 1992 to the year 2001 
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Table 4.1: Change matrix 2001 x-axis and 1992 y-axis (in pixels). 

  1992  

 CLASSES Water Wetlan

d 

Non-

Forest 

Forest Road Submerged

-Wetland 

SUM 

200

1 

Water 94794 2709 2267 2743 59 2095 10466

7 

Wetland 1829 34296 12865 2815 274 9081 61160 

Non-Forest 3095 12750 10785

3 

21363 7842 14267 16717

0 

Forest 849 30047 31702 90349 2992 1640 15757

9 

Road 674 1844 8831 5655 6418 978 24400 

Submerged

-Wetland 

1007 1889 2289 997 159 5263 11604 

 SUM 10224

8 

83535 16580

7 

12392

2 

1774

4 

33324 52658

0 

 

Table 4.2: Change matrix 2001 x-axis and 1992 y-axis (in percentage). 

  1992 

 CLASSES Water Wetland Non-

Forest 

Forest Road Submerged-

Wetland 

2001 Water 92 4 1.3 2 0.3              6 

          Wetland 2     41        8 2    2             27 
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          Non- 

forest 

3 15        65 17   44             43 

Forest    1.3       36 19    73   17              5 

         Road   0.7 2 5.3 5 36             3 

Submerged 

wetland 

1 2      1.4 1 1             16 

 

4.2 CHANGE DETECTION RESULTS FROM THE YEAR 2001 TILL 2013 IN THE 

GLM 

Figure 4.2 shows wetland changes from the year 2001 to the year 2013 with its change 

matrix both in pixel and percentage (Tables 4.3 and 4.4). This shows a 68% increase from 

the year 2001 to 2013. To get this change we assume that wetland to wetland there is no 

change and that change exists between wetland and the several different classes. 

N.B Percentile is derived from the total number of pixels in a class divided by the number 

of pixels in the image. 
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Figure 4.2: wetland changes from the year 2001 to the year 2013 

 

Table 4.3: Change matrix 2001 x-axis and 2013 y-axis (in pixels) 

  2001  

 CLASSES Water Wetlan

d 

Non-

Forest 

Forest Road Submerged

-Wetland 

SUM 

201

3 

Water 94389 3888 2775 1173 794 677 10369

6 

Wetland 2919 27681 23211 38469 1608 6161 10004

9 

Non-Forest 962 16328 82875 15132 9036 951 12528

4 
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Forest 566 6486 41784 90490 4437 1338 14510

1 

Road 315 2509 11784 8280 7217 492 30597 

Submerged

-Wetland 

5516 4268 4741 4035 1308 1985 21853 

 SUM 10466

7 

61160 16717

0 

15757

9 

2440

0 

11604 52658

0 

 

Table 4.4: Change matrix 2013 x-axis and 2001 y-axis (in percentage). 

  2001 

 CLASSES Water Wetland Non-

Forest 

Forest Road Submerged-

Wetland 

2013 Water 91    6  2 1 3      6         

            

Wetland 

2    45    14 24 7      53 

  Non-forest 1    27   50 10 37        8      

Forest  0.5    11   25  57 18       12    

  Road 0.3    4   7 5 30        4 

S/W 5.2   7     2 3 5          17 

 

4.3 TABLE OF SHOWING CHANGE IN HECTARES  

Table 4.5 shows four classes instead of the regular six because in this table forest and non-

forest land was grouped as one class just because non-forest doesn’t mean bare land as 
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there is vegetation such as shrubs, orchids to mention a few and wetland and submerged 

wetland are also grouped as one class just because submerged wetland is also a kind of 

wetland that the water level increases or decreases seasonally or due to rainfall. 

 

Table 4.5: Change matrix showing land cover types with respect to area and percentage 

Land 

Cover 

Type 

1992 2001 2013 

 AREA 

(ha) 

% AREA 

(ha) 

% CHANGE 

(2001-

1992) 

AREA 

(ha) 

% CHANGE 

(2013-

2001) 

Roads 1597 3.36 2196 4.63 599 2754 5.81 558 

Water 9202 19.41 9420 19.88 218 9333 19.69 -87.   

Forest + 

Non-forest 

26076 55.03 29227 61.67 3151 

  

24334 51.35 -4893   

Wetland + 

Submerged 

wetland 

10517 22.2 

 

6549 13.82 -3968   10971 23.15 4422 

Sum 47392 100 47392 100 0 47392 100 0 

 

Figure 4.3 shows a bar-chart depicting the different Land cover types and with respect to 

the area each land cover type covers in hectares. 
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Figure 4.3: Land cover type with respect to area in the years 1992, 2001 and 2013. 

 

Water body area increased by 2.36% from 1992 till 2001 but there was steady decline of 

about 1.42% from 2001 – 2013 due to the fact that more submerged wetland was 

regarded as water. 

There was increase by 12% in the forest and non-forest from 1992 – 2001which is called 

afforestation (planting of trees), this might be solely because of the classification of the 

GLM area in the 1990’s as a "Class 2 Protected Natural area” which in-turn limits the 

utilization of the territory to low-impact recreational activities and conventional 

sustenance gathering activities, while limiting industrial, business and horticultural 

improvements. In the year 2001 – 2013 there has been a steady depletion (deforestation) 

of about 7%, this could result in the fact that urbanisation has resulted significantly in the 

area over time. This might also be the reason why from the year 2007 – 2012, a crown 

land management plan was enacted.  The Annual allowable cut (AAC) of the hardwood 



 
 

75 
 

was reduced from 1.77 million cubic metres to 1.41 million cubic metres. This reduction 

will ensure a sustainable hardwood supply in the future. 

 

Lastly, the result of this study show a decrease in the wetland resources which also 

includes the submerged wetland class from 1992 – 2001 of about 38% decrease and an 

increase of 68% from 2001 – 2013 and a 4.32% overall increase in the wetland in the 

GLM area. As noticed there was a decrease in the wetland as the water class increased 

which could be due to rainfall as the land is partially or fully submerged in water. 
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CHAPTER 5 

CONCLUSION 

 

After reviewing the characteristic of the GLM area, this study was concerned with three 

main questions: 

1. How has the landscape of GLM changed over the years? 

2. Is there a relationship between the landscape changes with other physical or policy 

changes? 

3. Can satellite remote sensing images help in answering these questions? How? 

 

With these questions in mind, an extensive literature review was executed. The findings 

supported the thesis’s proposal, and the main goal, for using geo-images for mapping the 

land cover status of GLM area and assessing the changes at different times. 

 

5.1 ACHIEVED OBJECTIVES 

This study was successful in developing a methodology to monitor and evaluate the land 

use and land cover changes of the study area using remote sensing. Thereby highlighting 

the wetland changes in the GLM undergone over a period of about 20 years with the aid of 

other secondary data such as road network downloaded from the Service New Brunswick 

(SNB) and Forestry Maps obtained from the Department of Natural Resources (DNR). 

 

With respect to establishing a methodology to extract relevant information from satellite 

imagery, this study succeeded in: 
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1. Establishing a methodology for selecting ground control points. To ensure 

consistent referencing between the images and other datasets, the study used mostly 

the same set of control points to georeference all satellite images. The coordinates 

for these points were extracted from an ortho-photo map downloaded from Service 

New Brunswick. 

 

2. Selecting the land cover types and their areas as the spatial ecological indicators 

relevant to the study. The study also developed the land cover classification scheme 

that incorporated the used land cover scheme by the forestry maps, and follow the 

Anderson Classification System. The chosen parameters can be extracted 

consistently and easily from all images used in this study. 

 

3. As with respect to the best method used to extract relevant information from 

satellite imagery, this study found that the support vector machine classifier was 

appropriate for the task. This study established a set of training samples of land 

cover types to aid in the classification, as well as testing samples to assess the 

accuracy of the land cover maps. Both datasets were used consistently in processing 

the Landsat satellite images of 1992, 2001, 2013. 

 

The study also answered the question on the spatial scale that is appropriate for conducting 

this study and producing meaningful results. Theoretically there should be a multiple of 

spatial and categorical scales to accommodate the internal variations of different landscape 

patches. However, the scale used in this study was constrained by the resolution of Landsat 
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data used in this study. Landsat images have a resolution of 30m, therefore the spatial scale 

for this study was equivalent to around 1/100,000, or at the best condition, 1/50,000. 

 

This study adopted the post classification change detection approach for analysing changes 

in the use and cover of GLM after mapping the land cover type for each of the study years 

1992, 2001, 2013. 

 

Pertaining to the research questions, the outcome of this study was an information base that 

reflected and aided in visualizing how the landscape of GLM has changed over several 

years. This information base was also essential to understand the relationship and 

interaction between human and natural phenomena. The aim is to better manage and use 

the resources in the Grand Lake Meadows. By having information from the past and up to 

date, change detection is a relevant tool for ecological studies, assessing the accuracy of 

results derived from change detection critical step for the use of remote sensed information 

to biological administration framework as a relevant tool for decision making.  

 

It is found in this study that there have been a 68% increase of the GLM from 2001 till date 

and a 38% decrease from the previous decade. There is a potential to predict shifts in trend 

(change detection) of land use which would in turn recommend to the managers of the 

GLM the best way to maintain this Protected Area. The developed methodology provides 

for continuous environmental monitoring of the GLM wetland. This is important for 

evaluating the effectiveness of the implemented management strategies. 

 



 
 

79 
 

5.2 FUTURE WORK 

There are still few issues one can address in the future work. One set of issues will rise 

when dealing with archival aerial images for the periods before the launching of imaging 

satellites being of one band (panchromatic), they cannot be classified in the same approach 

as multi-spectral images. The next phase should address issues associated with linking 

other environmental, demographic, and economical data with the land cover information 

to create a GIS database. Another issue is identifying the appropriate spatial analysis tools 

to provide an understanding of the driving forces responsible for the socio-economic and 

environmental changes in the GLM area. In conclusion, satellite imagery can be collected 

for both the winter period of the GLM area and the summer period to determine the effects 

of moisture on the wetland. 

 

Spatial analysis of such database will provide a better understanding of the interaction 

between human and the environment in the GLM area. 

In conclusion, satellite imagery can be collected for both the winter period of the GLM 

area and the summer period to determine the effects of moisture on the wetland. 

 

 

5.3 PROBLEMS ENCOUNTERED 

The use of different geospatial software in this project brought about its own set of 

problems. One of such is that ArcGIS counts its pixels from the center and most other 

remote sensing software select theirs from the left corner of the pixels. 
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5.4 CONTRIBUTION TO RESEARCH 

 Little research has been carried out with the use of satellite imageries with remote 

sensing as a tool for the spatial analysis of the GLM area, therefore this was done 

successfully in this research. 

 Even though object oriented classification has been done in different parts of the 

world not much has been done in the GLM area in which this study carried out. 
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