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ABSTRACT 

Satellite remote sensing has special advantages for monitoring the extent of 

defoliation caused by insects. Remote sensing has been used to monitor spruce budworm 

defoliation, mostly using the data captured by multispectral sensors such as Landsat 

(MSS, TM, and ETM+), MODIS and SPOT. However, these images have a low spectral 

resolution (using 4 to 36 spectral bands each covers a broad spectral bandwidth) which 

limited their abilities to identify small spectral variations in individual pixels for 

diagnosing specific forest insect infection. As an alternative, the hyperspectral data 

provided by EO-1 Hyperion sensor provides a high spectral resolution using 242 spectral 

bands from 0.4 to 2.5 µm (each band covers a very narrow spectral bandwidth). 

However, little study has been conducted on using Hyperion or other satellite 

hyperspectral images for monitoring spruce budworm defoliation. Taking advantage of 

the rich spectral information, this thesis proposed methods for remotely sensing, 

estimating and mapping spruce budworm (SBW) defoliation using the spectral 

information, i.e. vegetation indices (VIs), extracted from Hyperion images. 15% of 

accuracy improvement in SBW defoliation estimation and mapping has been achieved by 

applying the developed Hyperion VIs compared with conventional multispectral VIs. 

Highly accurate mapping results have been generated by developing suitable feature 

extraction method.     
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1 CHAPTER 1  

INTRODUCTION 

This thesis aims to provide a satellite remote sensing solution for estimation and 

mapping of the defoliation caused by spruce budworm in Quebec, Canada using satellite 

hyperspectral data. Many remote sensing studies have detected differences in spectral 

responses between forest insect defoliation using vegetation indices. Most of them were 

derived from broadband such as NIR (near infrared) and Red bands captured by 

multispectral sensors (Adelabu et al., 2012). Each of the multispectral bands usually 

covers a spectral span (or bandwidth) of hundreds of nanometers, whereas a typical 

hyperspectral band has only a bandwidth of 10 nm. Thus, less accurate spectral 

information can be captured by multispectral sensors, and the comparison between 

responses within a narrow wavelength span was unavailable. As an alternative, 

hyperspectral sensors operate with hundreds of narrow spectral bands, which make it 

possible to design suitable and specific narrowband VIs for monitoring different kinds of 

forest stresses.  

The first paper investigate the possibility of using VIs constructed from 

multispectral data for estimation of spruce budworm defoliation in which correlation 

analysis was introduced. Then the second and third papers in this thesis attempt to 

estimate spruce budworm defoliation by using existing VIs and developing new VIs for 

hyperspectral data. The second paper presents a remote sensing approach based on 

existing VI construction and change detection methods and applies it to generate forest 

stress maps of a defoliated site. The third paper focuses on extending the correlation 
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analysis to find the most relevant VIs and associated bands from the 162 available 

Hyperion hyperspectral bands. Compared with existing VIs, the VIs developed in this 

paper achieved, on average, 15% accuracy improvement in SBW defoliation estimation 

and mapping.  

The classification of damage degree or defoliation intensity has been considered a 

challenging research task. Building on top of the VIs study, the fourth paper in this thesis 

attempts to find an effective way for mapping the spruce budworm defoliation. With 

proposed feature extraction method, a highly accurate classification result for different 

defoliation intensities has been achieved.   

1.1 Thesis Structure 

The structure of the thesis was presented in Figure 1.1 below. 
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Figure 1.1 Thesis structure 
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1.2 Background of the Spruce Budworm Defoliation 

The spruce budworm was arguably one of the most damaging native insects 

affecting spruces and true fir in Canada, causing severely defoliation of tens of millions 

of hectares of trees during a major outbreak. The fir and white spruce were the main host 

species of SBW, black spruce were also increasingly affected (Fan, 2006). 

Spruce budworm population cycles were characterized by epidemic and endemic 

phases, and outbreaks occur every 30 to 40 years. The causes of outbreaks were still 

debated. Suitable climatic factors, such as consecutive warm, dry springs, and biotic 

factors such as homogeneous stands of host trees and changes in natural enemy 

abundance, were possible reasons for the onset of outbreaks. Population collapse was 

attributed to resource depletion, disease and an increase in the impact of natural enemies 

(Boulanger & Arseneault, 2004).  

In eastern North America, the spruce budworm damage appears in May, when 

third instar larvae begin to feed. Evidence of a spruce budworm infestation includes 

defoliation of current-year shoots and the presence of larval nests and excrement. 

Defoliation begins at the top of the tree and quickly progresses downwards. Needles were 

partially or completely consumed. Spruce budworm larvae also feed on male (pollen) 

flowers and cones. During outbreaks, the larvae may destroy all of the cones. Severely 

affected stands turn a rust color as a result of dried-out needles held by strands of silk 

spun by the larvae. In the fall, most dead needles fall off. Defoliated stands take on a 

greyish appearance (Boulanger & Arseneault, 2004). 
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Quebec was one of the provinces in Canada with most areas suffered from 

moderate to severe spruce budworm (SBW) defoliation (Boulanger & Arseneault, 2004). 

In 1994, the Quebec government adopted a Forest Protection Strategy in which some 

approaches (prevention, direct control and recovery) were proposed to counter the 

negative effects of outbreaks of spruce budworm. Prevention measures were integrated in 

the planning of forest management. Direct control by aerial spraying of Bacillus 

thuringiensis var. kurstaki (Btk) was sometimes the only effective way to mitigate the 

socio-economic impact of spruce budworm outbreaks in vulnerable forests. However due 

to high cost in finance and manpower, it was only performed on a small proportion of 

defoliated forests. Finally, when the accessibility of the terrain permits, harvesting of 

dying or recently dead trees can reduce timber losses. To be able to apply the approaches 

of the Strategy, air surveys were conducted in the province to detect and delineate the 

areas affected by this pest (MFFP, 2014).  

The aerial survey of the damage caused by major forest pests was carried out 

annually since 1967 by the Directorate for the Protection of the Ministry of Forests, 

Fauna and Parks (Ministère des Forêt, de la Faune et des Parcs, MFFP). It measures the 

intensity and the extent of damage caused by insects. The aerial survey was conducted in 

regions previously determined according to the damage of the previous year and the 

results of forecasting inventories of populations of the insect (MFFP, 2014).  
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They concluded that in 2014, the areas affected by SBW continue to rise 

significantly in the province. In 2014, they totaled 4,275,065 hectares compared to 

3,200,348 hectares in 2013 (MFFP, 2014). Infested areas (hectares) by SBW in Quebec 

since the beginning of the epidemic in 1992 in shown in Figure 1.2 below. The data were 

provided by MFFP aerial survey report in 2014. The infested regions were divided into 

three categories based on their difference in defoliation intensities, namely, light (loss of 

foliage in the upper third of the tops of some trees), moderate (loss of foliage in the upper 

half of the top of most trees) and severe (loss of foliage on the entire length of the top of 

most trees).  

 

Figure 1.2 Total annual area infested by spruce budworm in Quebec, Canada. (Source: MFFP report 2014, 

Quebec) 
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A sharp increasing of the infested area can be identified from the chart start from 

2009, which suggest an epidemic period of spruce budworm activity.  Early intervention 

to prevent the spread of spruce budworm in Atlantic Canada and Quebec will protect the 

region from losing valuable forest resources to the severe defoliation that would be 

caused by a major outbreak.  

According to the study of Dr. Taylor and Dr. MacLean in 2008 (Taylor & 

MacLean, 2008), from 1985 to 1993, 85% of 332 cases were correctly classified by aerial 

estimate. They concluded that aerial surveys provide a reasonable estimate of defoliation. 

1.3 Monitoring Spruce Budworm Defoliation using Remote Sensing 

Even though the aerial survey was considered an option to provide relative accurate 

mapping as investigator has a relatively close look at the trees when flight height was 

adjusted accordingly, the operation calls for considerable involvement of man-power and 

was meanwhile time-consuming. Alternatively, remote sensing techniques, especially the 

utilization of satellite images, provides wide spatial coverage, high temporal repeatability 

and increasing spatial resolutions make them suitable for such investigations (Adelabu et 

al., 2012). 

Satellite remote sensing technology has a great potential for addressing the issue. 

First of all, it has the advantage of monitoring inaccessible and large areas of forest 

fields. Furthermore, the wide range of spectral wavelengths used in imaging sensors 

makes it possible to capture information beyond human eyes. Especially the reflectance 

in infrared regions can be vital in analysis of forest health (Rullan-Silva et al., 2013). As 
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a matter of fact, considerable efforts and studies can be found using remote sensing 

technologies for investigation of defoliation and forest stress analysis (Foody, 2003; 

Fuller, 2006; Pax-Lenney et al., 2001; Woodcock et al., 2001). 

Remote sensing technologies have also been used to monitor defoliation caused by 

insects. However, many problems and limitations still exist. This section reviews the 

previous studies in order to identify the research gaps. They can be divided into two 

categories: multispectral data based approach and hyperspectral data based approach. 

1.3.1 Studies Using Multispectral Data 

Several studies were conducted on using multispectral images for monitoring 

spruce budworm defoliation. Fan, (2006) conducted studies on evaluating the sensitivity 

of multi-temporal Landsat-5 TM data and a single date SPOT4 HRVIR Image to 

cumulative SBW defoliation in the Prince Albert National Park, Saskatchewan, Canada. 

He concluded that the highest correlation with the defoliation was obtained when using 

one vegetation index calculated from SPOT4. He also concluded the Leaf Area Index 

(LAI) relationships between vegetation indices did not perform as well as those between 

defoliation and vegetation indices. Leckie et al. (1992) found a close relationship between 

spectral features extracted from MEIS imagery and tree defoliation caused by spruce 

budworm. 

There were considerable studies where remotely sensed multispectral data were 

applied to detect, map and monitor forest insect damage in the past decades. For instance, 

Townsend et al., (2012) used Landsat data to predict defoliation severity caused by the 
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Gypsy Moth (Lymantria dispar) in deciduous forests. Eklundh et al., (2009) assessed 

defoliation by European pine sawfly (Neodiprion sertifer) in pine forests using Moderate 

Resolution Imaging Spectroradiometer (MODIS) time-series data. K.M. de Beurs and 

Townsend, (2008) used data from the same sensor to estimate the magnitude of 

defoliation caused by a gypsy moth outbreak that occurred in the US.  

In order to quantity the insect defoliation using images, the construction of 

vegetation indices was applied by many researchers in their studies (Adelabu et al., 

2012). The vegetation indices (VIs) derived from remote sensing has been widely applied 

to estimate vegetation health and greenness. Generally, healthy vegetation will absorb 

most of the visible light that falls on it, and reflects a large portion of the near-infrared 

light. The defoliated forest, in form of unhealthy or sparse vegetation, reflects more 

visible light and less near-infrared light. Existing multispectral sensors were usually 

configured to include reflectance from these two spectral ranges, namely, one Red band 

and one NIR band. For instance, the Band 3 and 4 in Landsat 5 TM, Band 2 and 3 in 

SPOT4 HRVIR (Fan, 2006) and Band 1 and 2 in MODIS (de Beurs and Townsend, 

2008).   

Making use of more spectral bands, studies have been conducted on mapping the 

magnitude of defoliation using more VIs constructed from multispectral images (Rullan-

Silva et al., 2013). Two types of broad-band VIs were compared for measuring different 

types of forest damage in USA (Vogelmann, 1990). In order to map the magnitude of 

defoliation, Vogelmann (1990) tested three VIs that use the R, NIR, SWIR and mid-

infrared (MIR) bands, and found that SWIR reflectance was very sensitive to the amount 
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of water in the vegetation, increasing when leaf water content decreases, a symptom of 

vegetation stress due to pest defoliators. De Beurs and Townsend (2008) further 

concluded that two VIs using SWIR band had better performances for mapping insect 

defoliation in their site when compared with conventional NDVI.  

Change detection based on multi-temporal images was also widely applied in their 

studies using multispectral images. For example, (Thomas et al., 2007) developed a 

Landsat multi-temporal change detection approach for aspen and spruce budworm 

defoliation in two sites in the province of Alberta and one site in Saskatchewan, Canada. 

Multispectral vegetation indices and transformations have also been used extensively as 

data inputs in forest change detection studies. For instance, (de Beurs and Townsend, 

2008) developed a MODIS defoliation index based on the difference between the VIs 

calculated before defoliation (with the highest values) and the ones during the defoliation 

(with lowest values).  

1.3.2 Studies Using Hyperspectral Data 

As hundreds of narrow spectral bands were operated by hyperspectral sensors, 

they can be more suitable and efficient at detecting subtle biophysical changes in foliage 

canopy during the insect defoliation. A few researchers, such as Santos et al., (2010) and 

Adelabu et al., (2012) have addressed the need of using hyperspectral sensors for 

monitoring forest defoliation.  The finer spectral resolution was considered the most 

critical advantage of hyperspectral data. Because of the continuous spectrum provided by 

hyperspectral data, more sophisticated spectrum analysis can be applicable to diagnose 
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the reflectance at certain narrow spectral regions. For instance, Zhang et al., (2010) 

highlighted the advantage of hyperspectral data over multispectral data in analyzing the 

“red edge” position, to detect subtle changes in forest health. In addition, studies have 

been conducted for narrowband VIs construction using hyperspectral bands. For instance, 

Gong et al., (2003) investigated the potential of Vegetation Indices derived from 

Hyperion hyperspectral data for estimation of forest leaf area index. All available 168 

Hyperion bands were involved in their experiments of VIs construction and resulted in 

more specific information on the correlation between the spectral data and forest 

biophysical properties.  

Studies in insect defoliation using hyperspectral data appear to be in an early 

stage and less in number compared with studies using multispectral data. Most of them 

were conducted in the field or in an aircraft close to ground. Pontius et al., (2008) 

examine the capability of a commercially available sensor (SpecTIR VNIR) to map ash 

decline due to exotic emerald ash borer (EAB) infestations in Michigan and Ohio. The 

sensor was carried by a fixed wing aircraft. They applied a linear regression equation 

based on known stress- and chlorophyll sensitive indices to predict decline on a 

continuous 0- to 10 scale. Adelabu et al., (2014) examined the possibility of using ground 

based hyperspectral data to discriminate between three levels of mopane worm 

defoliation severity. Field reflectance was measured and spectral discrimination was 

conducted by applying a Random Forest algorithm.  

Lyytikäinen-Saarenmaa et al., (2008) attempted to detect pine sawfly defoliation 

using remotely sensed EO-1 Hyperion data and GIS technology. They claimed their study 
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to be s the first attempt to analyze and classify insect defoliation with hyperspectral 

imagery. (Somers et al., 2010) investigated the potential of spectral mixture analysis 

(SMA) for defoliation monitoring in Australian mixed-aged Eucalyptus plantations using 

multispectral Landsat 5-TM and hyperspectral EO-1 Hyperion satellite data. However 

they failed to find improvement by using hyperspectral data than multispectral data by 

applying their method. 

No publications yieled in the literature review using airborne or satellite 

hyperspectral data for monitoring spruce budworm defoliation. 

1.3.3 Research Problem 

As mentioned above, previous studies that used multispectral data with less 

spectral information can be less accurate for estimating or mapping spruce budworm 

defoliation. Especially, the VIs constructed using multispectral data can only provide 

broadband information, which can be insufficient for quantified analysis of forest health 

(Adelabu et al., 2012).    

In terms of using hyperspectral data to monitor insect defoliation, the most 

applied ground and airborne based commercial sensors can be costly. It was also less 

efficient to apply them for investigation of larger regions, which was usually the case of 

spruce budworm defoliation. Until now, there was little evidence of aerial or satellite 

hyerspectral images identifying spruce budworm defoliation. Furthermore, few studies 

were designed to take advantage of the finer spectral resolution provided by hyperspectral 

sensors.  
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The EO-1 Hyperion sensor, operated by NASA, was the only spaceborne 

hyperspectral sensor. It was also provided free of charge. However, its spatial resolution 

was only 30 m × 30 m, which indicates a single pixel of the imagery captured from the 

spruce or fir forest covers considerable number of trees. Therefore, the estimation and 

mapping of the defoliation need accurate and specific information in order to discriminate 

defoliated forest pixels.     

Even though a number of VIs were designed for monitoring forest health, 

including broadband and narrowband VIs, questions remain considering on the suitability 

of the VIs constructed from multispectral and hyperspectral data for investigating certain 

forest phenomenon, in our case, the defoliation caused by spruce budworm in Quebec, 

Canada. Thus the first answer needed concerns whether or not the existing VIs derived 

from multispectral data can be suitable for estimating SBW defoliation. If not, we turn to 

consider the potiential of using hyperspectral data in which more spectral information can 

be utilized. Then the second problem was on the potiential of the existing hyperspectral 

narrowband VIs for esitmation of SBW defoliation. In addition, we want to know if the 

current VIs can be extended to better estimating SBW defoliation when hyperspectral 

data were applied, which constitutes our third problem. For example, the Normalized 

Difference Vegetation Index (NDVI) was widely applied to estimate forest health 

(Vogelmann, 1990). For commonly applied multispectral data, the Red and NIR band for 

constructing NDVI were usually limitted if not unique, without room for exploration. 

However, when hyperspectral data were applied for VIs construction, it was reasonable to 

wonder what the most relevant bands to calculate in favor of estimating the defoliation 



 

14 

 

were. Finally, classification or discrimination from different damage degrees in forest 

defoliation caused by insects was long considered challenge remain to solve and has 

never been done with satellite hyperspectral images. This was thus the fourth major 

research problem of this thesis. 

1.4 Research Objective    

As mentioned above, the thesis aims at solving the four major problems exist in 

monitoring SBW defoliation using satellite multispectral and hyperspectral images.  

To investigate the potential of multispectral VIs for estimation of SBW defoliation, 

we applied a statistics based correlation analysis which involves all the available 

multispectral bands for VIs construction. 

To investigate the potential of hyperspectral VIs for estimation of SBW defoliation, 

first of all, the research aims to design a remote sensing method for SBW defoliation. It 

should: 

 incorporate existing VIs constructed using hyperspectral data; 

 apply suitable method, e.g. change detection to investigate the potential of each 

VI; 

 investigate the potential of synthesizing information provided by existing VIs for 

estimating SBW defoliation. 

Secondly, we needed to design a thorough hyperspectral based VIs construction 

method should be designed to further take advantage of the spectral information provided 
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by hyperspectral sensor, which was extended from the correlation analysis used in 

multispectral study. The method should: 

 apply narrowband VIs construction using all available Hyperion bands; 

 couple with reference data from ground-based assessments and ancillary 

information; 

 select relevant VIs and associated bands for estimation and mapping of SBW 

defoliation. 

Finally, a mapping method that can accurately classify defoliation intensities 

should be designed. It should: 

 requires no pre-labeled endmembers; 

 applicable with existing unsupervised classifiers; 

 computationally efficient;  

 be able to detect severe defoliation accurately without using multitemporal 

images. 

1.5 Proposed Methodology 

This section provided a brief description of the research conducted for 

accomplishing the objectives of this study. The satellite data used in this research, i.e., 

EO-1 Hyperion hyperspectral (30 m ground resolution), was obtained with the assistance 

of NASA Goddard Space Flight Center. The data targeting and acquisition were free of 

charge. The data pre- and post-processing were implemented mainly using ENVI/IDL. 
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In Chapter 2, in order to investigate the first problem mentioned in research 

objectives – whether or not the multispectral data can be suitable for estimating SBW 

defoliation – the VIs based correlation analysis was applied on multispectral EO-1 ALI 

image to investigate the possibility of using multispectral images for estimation of SBW 

defoliation.  The ALI image was acquired at the same time with the Hyperion image used 

in Chapters 4 and 5. 

In Chapter 3, in order to investigate the second problem mentioned in research 

objectives – whether or not the existing narrowband hypersepctral VIs can be suitable for 

estimating SBW defoliation – the experiments aimed at analyzing the defoliated 

condition in a forested region in the province of Quebec, Canada by integrating the 

information from VIs that focused at different aspects of overall health and vigor in 

forested areas. Two Hyperion images applied in this study were acquired on June and 

August, 2014 respectively from NASA. The VIs based change detection was applied in 

this study to quantize the change of different VIs between multi-temporal Hyperion 

images acquired from June and August respectively over the study site. VIs from four 

difference categories were investigated to find the VIs with most significant changes in 

response to the increasing defoliation from June to August. Finally, spatial maps of forest 

stress were generated for two images respectively using the selected VIs. 

In Chapter 4,  in order to investigate the third problem mentioned in research 

objectives – if the current VIs can be extended to better estimating SBW defoliation when 

hyperspectral data were applied – the potential of 9 conventional and 3 developed 

vegetation indices using Hyperion data in estimation of defoliation caused by spruce 



 

17 

 

budworm in Quebec region, Canada was investigated. The method used in our study for 

constructing VIs was based on the form of conventional VIs while examine the 

performance of them using spectral bands among 162 available Hyperion hyperspectral 

bands. The VIs include linear, nonlinear as well as soil adjusted models. The assessments 

on the performance of all tested 12 VIs were based on their correlation with defoliation 

data provided by airborne survey on the same site and mapping results.  

In Chapter 5,  in order to investigate the fourth problem mentioned in research 

objectives – classification or discrimination from different damage degrees in forest 

defoliation caused by SBW – a spectral-spatial based method for mapping the defoliation 

caused by spruce budworm in a study site in Quebec, Canada using Hyperion 

hyperspectral data was proposed. The spectral information was derived from vegetation 

index bands. Those bands were proven to be most relevant to defoliation status (Huang, 

2015). As only 5 bands were used, the proposed method can be considered a new 

approach for hyperspectral dimensional reduction. Moreover, the proposed method 

integrates the spatial information from used VI bands by extracting histograms from 

neighborhood of each incident pixel. Thus spectral-spatial features can be extracted from 

hyperspectral data. The efficiency of constructed feature was examined in mapping 

experiments. 

1.6 Overview of Each Chapter 

This thesis was organized into six chapters. Chapter 1 introduces briefly the spruce 

budworm and the defoliation caused by it in Quebec, Canada and reviews previous 
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studies on remote sensing for monitoring SBW defoliation. The identified research gaps 

were used to determine the research objective of this thesis. The general methodological 

design and the thesis structure were also introduced.  

Chapter 2 investigates the potentials of using multispectral vegetation indices 

derived using EO-1 ALI bands for estimating and mapping the SBW defoliation. 

Chapter 3 and 4 investigate the potentials of using existing vegetation indices and 

vegetation indices developed using Hyperion bands for estimating and mapping the SBW 

defoliation. In Chapter 5, a spectral-spatial based mapping method was developed for 

accurately classification of SBW defoliation intensities in the study site.  

The final Chapter, Chapter 6, summarizes and concludes the research presented in 

this thesis, and highlighted the contributions of this thesis towards the research objective. 

Then, recommendations for further research were presented. 
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2  CHAPTER 2 

CAN EO-1 ALI DATA ESTIMATE SPRUCE BUDWORM DEFOLIATION IN 

QUEBEC, CANADA? 

 

Abstract 

Timely and accurate estimation of the spruce budworm defoliation will provide 

crucial support to mitigate the socio-economic impact on vulnerable forests. Remotely 

sensed satellite images make the investigation of infested regions available and 

convenient. A common approach of interpreting the images and get relevant information 

about the forests was to derive vegetation indices (VIs) from the remote sensing images. 

Multispectral data and VIs derived from multispectral images were widely applied for 

estimation of forest properties. In comparison to the hyperspectral data, moderate spatial 

resolution multispectral satellite imagery was easier to obtain and to process. Especially, 

the VIs derived from multispectral imageries have been applied for mapping insect 

defoliation.  Therefore, this study attempted to apply a statistics based correlation 

analysis using VIs derived from moderate spatial resolution EO-1 Advanced Land Imager 

(ALI) multispectral imagery to investigate its ability of estimating and mapping spruce 

budworm defoliation. It suggested that the ALI data could not produce reliable estimation 

of the SBW defoliation in Quebec, Canada.  
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Keywords: EO-1 Advanced Land Imager (ALI), multispectral data, spruce budworm 

defoliation, vegetation index. 

2.1 Introduction 

Spruce budworm causes severe damages to spruce and fir in Eastern Canada in 

each of their outbreaks. Finding the location of defoliation caused by spruce budworm 

was one of the primary as well as difficult tasks for forest experts and relevant 

government agencies. The considerable size of forest regions makes it extremely time-

consuming for field investigations. Even though remote sensing provides an alternative 

indirect investigation method, the SBW defoliation can be hard to identify from a satellite 

image since the difference between defoliated forest pixels and healthy forest pixels can 

be subtle. 

With the recent surge in the availability of spectral imaging sensors, the 

technology of remote sensing offers a potential way to estimate and map insect caused 

defoliations (e.g., Adelabu, Mutanga, Adam, & Sebego, 2014; Adelabu, Mutanga, & 

Azong, 2012; de Beurs & Townsend, 2008; Eklundh, Johansson, & Solberg, 2009; Fan, 

2006). However, remote sensing of insect defoliation was still a big challenge because it 

was often hard to find effective way to relate the image data to the defoliation magnitude. 

A common way was to use the vegetation indices (VIs) derived from remote sensing to 

estimate vegetation health and greenness and thus estimate the defoliation.  

Generally, healthy vegetation will absorb most of the visible light that falls on it, 

and reflects a large portion of the near-infrared light. The defoliated forest, in form of 
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unhealthy or sparse vegetation, reflects more visible light and less near-infrared light. 

Making use of these two spectral bands conventional pairwise VIs can be constructed. A 

list of investigated VIs can be found in Table 2.1. The widely applied broad-band indices 

were usually constructed with near-infrared (NIR) and red (R) bands, use average 

spectral information over broad bandwidths (Blackburn, 1998).  

 

 

Table 2.1 9 Vegetation indices analyzed in this study 

Abbreviation Formula 
Vegetation 

Index Name 
References   

SR 
12 /   Simple Ratio. 

(Qi, Chehbouni, 

Huete, Kerr, and 

Sorooshian, 1994), 

(Birth and McVey, 

1968) 

  

DVI 
12  
 

Difference 

Vegetation 

Index 

(Tucker, 1979)    

NDVI )/()( 1212    

Normalized 

Difference 

Vegetation 

Index
 

(Griffin, May-

Hsu, Burke, 

Orloff, and 

Upham, 2005) 

  

EVI2 )*4.2/()(*5.2 1212    

2-band 

Enhanced 

Vegetation 

Index 

(Jiang et al., 2008)   

SAVI )/()1(*)( 1212 LL    
Soil Adjusted 

Vegetation 

Index 

(Huete, 1988)   

NLI )/()( 1

2

21

2

2    
Non-Linear 

Index 

(Goel and Qin, 

1994; Gong et al., 

2003) 

  

MNLI )/()1(*)( 1

2

21

2

2 LL    
Modified Non-

Linear Index 
(Gong et al., 2003)   

MSR 
1/

1/

12

12








 Modified Simple 

Ratio 
(Chen, 1996)   

RDVI 
1212 /)(  

 

Renormalized 

Difference 

Vegetation 

Index 

(Roujean and 

Breon, 1995) 
  

Note that 1  and 2  represent red and NIR wavelengths respectively for constructing traditional vegetation 

indices but in this study they were extended to all spectral wavelengths provided by 9 available ALI bands. 
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Gong et al. designed a method for correlating Leaf Area Index (LAI) with VIs 

constructed using Hyperion data which demonstrate the advantage of across bands VIs 

construction in modeling biophysical parameters (Gong et al., 2003). To inherit their 

method, we overlapped the EO-1 ALI multispectral imagery with the ground truth map 

provided by the Quebec government report (MFFP, 2014). Correlation analysis was 

applied between the VIs and defoliation measurements. Multispectral bands with high 

correlation coefficients were examined.  

2.2 Study Site and Materials  

A set of EO-1 Hyperion and ALI images was acquired from NASA free of charge 

from June to August, 2014 on a selected site centered at 48°09’54’’S/67 °19’21’’W near 

the Causapscal city, across the Bas-Saint-Laurent region which located along the south 

shore of the lower Saint Lawrence River in the Quebec Province, Canada. It was a 

relatively homogeneous rural area mostly covered by spruce and fir forests. The two tree 

species were alike in appearance, both served as preferred habitats for SBW and mixed in 

the forests in the study site. The high density of trees in the forestry regions makes them 

vulnerable to spruce budworms and the defoliated regions can be formed as large blocks. 

According to the aerial survey report “Infested areas of spruce budworm in Quebec in 

2014” (Quebec, November 2014), the Bas-Saint-Laurent region was one of the most 

dominant infested areas by spruce budworm in Quebec, totaled 316,103 hectares. The 

area affected by SBW continues to rise significantly in the province. In 2014, they totaled 

4,275,065 hectares compared to 3,200,348 hectares in 2013. Part of the ALI imagery was 
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selected as study site (Figure 2.1) to match with the Interpretation ground truth of SBW 

infested fields provided by the Quebec government report (MFFP, 2014). 

 

 

Figure 2.1 Study site 

The selection of imagery was determined by both the image quality which heavily 

affected by the cloud condition and the acquisition date which should reflect most 

infested areas.  An EO-1 ALI multispectral image over the study site acquired on July 19, 

2014, around 10:20 A.M. local time for this study. All nine of the ALI image’s 30 m 

resolution multispectral bands were used to apply vegetation indices analysis in this 
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study. The image was processed to Standard Terrain Correction (Level 1T) before being 

downloaded from the USGS website. Since the imagery was ortho-rectified, only the 

ground truth map needs georefferencing in order to match both of them.   

Interpretation ground truth of SBW infested fields was provided by the Quebec 

government report (MFFP, 2014). The aerial survey of damage caused by major forest 

pests was carried out annually by the Ministry of Forests, Fauna and Parks (Ministère des 

Forêt, de la Faune et des Parcs, MFFP).  The SBW defoliation magnitude levels were 

provided by the aerial survey report (MFFP, 2014) and one thematic map covering our 

study site has been used. The report classifies defoliation into three classes: slight (loss of 

foliage in the upper third of the tops of some trees), moderate (loss of foliage in the upper 

half of the top of most trees) and severe (loss of foliage on the entire length of the top of 

most trees). In order for further process, the three classes were quantified into three 

percentage levels: 33.3% for slight level, 50% for moderate level and 100% for severe 

level. 

According to the study of Dr. Taylor and Dr. MacLean in 2008 (Taylor & 

MacLean, 2008), from 1985 to 1993, 85% of 332 cases were correctly classified by aerial 

estimate. They concluded that aerial surveys provide a reasonable estimate of defoliation. 

2.3 Methodology 

2.3.1 Data Pre-processing 

The pre-processing of ALI data was different from that of Hyperion data. The 

digital numbers were converted into radiance values by using the multiplicative factors 
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and the additive factors of each band (Chander et al., 2009). Radiance of all nine 

multispectral bands was input into the Fast Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes (FLAASH), an atmospheric correction module implemented in the 

ENVI software (ITT Visual Information Solutions, Boulder, CO, USA) to calibrate the 

at-sensor radiance data to land surface reflectance. The FLAASH model was run 

following the “ENVI FLAASH Module User's Guide” (ITT Visual Information Systems, 

2006). As ALI level L1T data were in units of W/(m2 sr μm) while the FLAASH 

atmospheric correction software uses units of μW/(cm2 sr nm), the scale factors 10 were 

used when running the FLAASH model. The projection of the ALI L1T data was UTM 

19N, datum WGS 84. In order to match the ground truth map with the ALI L1T imagery, 

geometric correction was conducted on the ground truth map provided by (MFFP, 2014) 

using the ENVI software. 

2.3.2 Vegetation Indices Construction and correlation with defoliation 

After overlapping the EO-1 ALI imagery with the ground truth map, 30 sample 

pixels were selected as we retrieve reflectance values from the calibrated ALI images 

with correspondence with the defoliation. Note that the spatial resolution of ALI data was 

30 meters which makes each pixel a mixture of a large number of trees. So the 30 points 

were all selected within homogeneous forests areas by examining the ALI image. In 

addition, the ground truth map was roughly delineated that not available for pixel-by-

pixel match with our image. So in order to make sure selected samples contain relatively 

accurate defoliation magnitude, we avoid regions near the boundaries of different classes 

on the map. This gives us 30 observations of defoliation magnitude which constitute a 
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defoliation variable. Furthermore, we need 30 observations of VI which constitute a VI 

variable. In this study, we use 9 available EO-1 ALI bands to construct 9 two-band VIs, 

so that will end up with 9x9x9 different VI variables that will be ran through our 

correlation test. 

In this study, we use the correlation method developed in (Gong et al., 2003). For 

each of the 9 VIs, a linear correlation coefficient 
2R  was calculated between the VI and 

defoliation measurement (30 samples). Since each VI in Table 2.1 could be constructed 

from any pair among the possible 9 bands, a linear correlation coefficient 
2R  matrix 

could be constructed. From the correlation matrices, ALI bands with high correlation 

coefficients were examined. 

2.3.3 Mapping SBW defoliation using VIs 

Based on the correlation results, the most relevant VIs and associated bands in 

terms of defoliation estimation would be selected for mapping SBW defoliation. The 

mapping results were assessed at a selected region in which two pieces of forests were 

clearly separated by their defoliation levels: severe and light as shown in Figure 2.2(b). 

The subset image of the assessment region was extracted. Then a histogram equalization 

was applied on each VI image followed by a global image threshold using Otsu’s method 

(Smith et al., 1979). So the classification result will become a binary image with white 

pixels representing severe defoliation areas while black pixels representing light 

defoliation areas, as shown in Figure 2.2(c). Finally, the assessments were conducted by 

comparing the mapping results with the ground truth map pixel-by-pixel. 
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2.4 Results and Discussion 

Based on the highest correlation values for all 9 VIs used in this study, the 

associated ALI spectral band pairs, wavelengths, bandwidths and spectral regions were 

summarized respectively in Table 2.2. 

 

As shown in the table, all VIs constructed with ALI fail to provide a reliable 

correlation with the defoliation data (with a highest of 0.28 among all obtained), in other 

 

Table 2.2 9 Vegetation indices derived from ALI bands 

Index 2R  

 

ALI spectral bands 

21 /   

 

Wavelength (nm) 

21 /   

 

Bandwidth(nm) 

21 /   

Spectral Region 

21 /   
  

NDVI 0.21 7 / 1p 2226 / 442 272 / 19 
 

SWIR / VNIR(blue) 
  

DVI 0.23 5 / 1p 1640 / 442 171 / 442 SWIR / VNIR(blue)   

EVI2 0.22  Similar to DVI’s     

SR 0.11 4p / 2 866 / 567 44 / 70 VNIR / VNIR(green)   

SAVI 0.21  
 

Similar to NDVI’s 
    

NLI 0.28 5 / 1p 1640 / 442 171 / 442 SWIR / VNIR(blue)   

MNLI 0.28  
Similar to NLI’s 

 
    

MSR 0.11 4 / 2 

 

790 /567 

 

31 / 70 VNIR / VNIR(green)   

RDVI 0.22  Similar to NDVI’s     

For each of the 9 VIs, the highest correlation values yielded were summarized in second column. From the third to 

sixth column, the applied ALI spectral band pairs, their respective wavelengths, bandwidths and spectral regions were 

summarized. 
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words, the VIs constructed from EO-1 ALI multispectral data could not estimate spruce 

budworm defoliation in the study site of Quebec, Canada. 

The accuracy assessment was done pixel by pixel to quantify how well ALI VIs 

can map the spruce budworm defoliation. The NLI which generated the highest 

correlation value among the ALI VIs was used as a mapping example. As shown in 

Figure 2.2, the extract binary image (b) from NLI image (a) fails to differentiate the light 

defoliation level from the severe level as marked by the ground truth (b), as most of the 

vegetation pixels were considered as light defoliated. Similar results stay for the change 

of threshold applied for converting the index image to binary image.  
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Figure 2.2 Defoliation mapping result using NLI index of the study site. (a) A grayscale 

image of the testing area; (b) Ground truth map of assessment region where green blocks 

were light defoliated areas and red blocks were severely defoliated areas; (c) Defoliation 

results detected in EO-1 ALI MS image where black pixels indicate light defoliated 

pixels and white pixels indicate severely defoliated pixels.  

 

Poor results also reflect on accuracy assessment, for light/severe level, the 

mapping result from NLI provided User’s accuracy of 22% / 54% and Producer’s 

accuracy of 99% / 0% with an overall accuracy of 32%. As anticipated, the performance 

was poorer than by chance, which in our specific case was 50% / 50% for either level. 

Thus the kappa coefficient -0.24 was negative. 
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The mapping result and the correlation results consistently suggest the 

incapability of moderate resolution multispectral satellite images in terms of estimation 

of the SBW defoliation in our study site. Even though the multispectral images were 

easier to obtain as well as process, the lack of spectral information could lead to its 

failure of monitoring certain phenomenon of interest. This result stimulates us to 

investigate if it was possible to improve the results by using hyperspectral images.   

2.5 Conclusions  

This study investigated if moderate spatial resolution EO-1 ALI multispectral 

imagery could estimate and map spruce budworm defoliation in a study area located in 

Quebec, Canada. VIs based correlation analysis were applied. By correlating the VIs 

derived from EO-1 ALI data, the results suggest all of the VIs fail to estimate the 

defoliation information derived from our ground truth map. The low accuracies further 

demonstrated the incapability of multispectral ALI data in mapping SBW defoliation in 

Quebec. Thus, moderate spatial resolution multispectral imagery was not recommended 

for mapping the defoliation caused by spruce budworm in sites similar to our study site.   
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3 CHAPTER 3  

REMOTE SENSING OF SPRUCE BUDWORM DEFOLIATION USING EO-1 

HYPERION HYPERSPECTRAL DATA: AN EXAMPLE IN QUEBEC, 

CANADA 

 

Abstract 

Each year, the spruce budworm (SBW) causes severe, widespread damage to 

spruces and true fir in east coast Canada. Early estimation of the defoliation will provide 

crucial support to mitigate the socio-economic impact on vulnerable forests. Remote 

sensing techniques were more suitable to investigate the affected region usually consists 

of large and inaccessible forestry areas. Derived from satellite images, surface reflectance 

at two or more wavelengths were combined to generate vegetation indices (VIs) which 

indicate relative abundance of features of interest. Forest health analysis based on VIs 

was considered as one of the primary information sources for monitoring vegetation 

conditions. Especially the spectral resolution of Hyperion hyperspectral imagery used in 

this study, allows for examination of the red-NIR spectrum in more detail, which helps to 

identify areas of stressed vegetation. Several existing narrowband vegetation indices were 

used to indicate the overall amount and quality of photosynthetic material and moisture 

content in vegetation. By integrating the information from VIs that focused at different 

aspects of overall health and vigor in forested areas, the study aims at investigating the 

defoliation in a forested region in the province of Quebec, Canada. Two Hyperion images 
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applied in this study were acquired on June and August, 2014 respectively from NASA. 

The changes of health and vigor were observed and quantitatively compared as remote 

sensing images from different time were applied. The experimental results suggest the 

narrowband VIs based forest health analysis has potential for estimation of SBW 

defoliation in the study site. 

 

Keywords: Hyperion, hyperspectral data, spruce budworm defoliation, vegetation index. 

3.1 Introduction 

The spruce budworm was arguably the most damaging insect of North America’s 

forest and, in Canada, it occurs throughout most of the range of spruce and balsam fir 

(Gray, 2008). Defoliation begins at the top of the tree and quickly progresses to the 

periphery of the crown from the top downwards. Current-year needles were partially or 

completely consumed. Spruce budworm larvae also feed on staminate (male) flowers and 

cones. During epidemics, the larvae may destroy all of the cones (Boulanger et al., 2012). 

In the province of Quebec, Canada, the government conducted survey and released 

reports annually on the SBW defoliation. They concluded that in 2014, the areas affected 

by SBW continue to rise significantly in the province. In 2014, they totaled 4,275,065 

hectares compared to 3,200,348 hectares in 2013 (MFFP, 2014). Conventional Strategies 

to eliminate or slow the spread of these destructive pests such like pesticide spraying can 

be costly, time consuming and less effective when accurate estimation of defoliated 

regions was not available. The sizes and locations of defoliated regions make field 
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investigation difficult. Aerial survey was considered an option to provide relative 

accurate mapping as investigator has a relatively close look at the trees when flight height 

was accordingly adjusted. This kind of operation has been conducted in Quebec, Canada 

directed by Ministry of Forests, Fauna and Parks (Ministère des Forêt, de la Faune et des 

Parcs, MFFP), Government of Quebec, to provide defoliation mapping results across the 

province. However, the operation calls for considerable involvement of man-power and 

was meanwhile time-consuming. Alternatively, remote sensing techniques, especially the 

utilize of satellite images, provide wide spatial coverage, high temporal repeatability and 

increasing spatial resolutions make them suitable for such investigations.  

There were many studies where remote sensing techniques have been applied to 

detect, map and monitor forest insect damage in the past decades. For instance, 

Townsend et al. (2012) used Landsat data to predict defoliation severity caused by 

Lymantria dispar in deciduous forests. Eklundh et al. (2009) assessed defoliation by the 

European pine sawfly in pine forests using Moderate Resolution Imaging 

Spectroradiometer (MODIS) time-series data. Data from the same sensor have been also 

applied to estimate the magnitude of defoliation caused by a gypsy moth outbreak that 

occurred in the US. Study was also conducted on evaluating the sensitivity of multi-

temporal Landsat-5 TM data and a single date SPOT4 HRVIR Image to cumulative SBW 

defoliation in the Prince Albert National Park, Saskatchewan, Canada (Han et al., 2002).  

To facilitate their investigation, most of abovementioned research involves with 

construction of vegetation indices from the remote sensing data, which have been 

successfully applied on estimating and mapping field forest ecosystem variables or 
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properties (Gong et al., 2003; Rullan-Silva et al., 2013). Detection of vegetation stress by 

remote sensing techniques was based on the assumption that stress factors interfere with 

photosynthesis or the physical structure of the vegetation and affect the absorption of 

light energy and thus alter the reflectance spectrum of vegetation (Riley, 1989; Pinter and 

Hatfield, 2003). The vegetation indices (VIs) derived from remote sensing were generally 

used to estimate vegetation health and greenness (Rullan-Silva et al., 2013). Healthy 

vegetation will absorb most of the visible light that falls on it, and reflects a large portion 

of the near-infrared light. The defoliated forest, in form of unhealthy or sparse vegetation, 

reflects more visible light and less near-infrared light. The widely applied broad-band 

indices were thus usually constructed with near-infrared (NIR) and red (R) bands, use 

average spectral information over broad bandwidths (Blackburn, 1998). 

However, the broad-band VIs have limited spectral information concerning the 

significance of response at different spectral wavelengths. As an alternative, more refined 

VIs can be constructed through the use of distinct narrow bands from hyperspectral 

images. Instead of indicating general health or greenness, the narrow-band VIs provide 

more specific information regarding the overall amount and quality of photosynthetic 

material and moisture content in vegetation. Thus they have advantage over broad-band 

VIs in quantifying different biophysical characteristics of vegetation (Gong et al., 2003). 

It was also believed that the hyperspectral data can be useful in early stress detection as 

spectral differences can be identified from only certain wavelengths while existing 

remote sensing studies on SBW defoliation use mostly broadband VIs or limited narrow 
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bands VIs (Rullan-Silva et al., 2013). However, little evidence has been found on 

mapping SBW defoliation using hyperspectral VIs (Rullan-Silva et al., 2013).  

The hyperspectral data from the Hyperion sensor on the Earth Observing-1 Mission 

(EO-1) satellite was used in this study. Unlike expensive high-resolution multispectral 

images, the Hyperion hyperspectral images were provided by NASA free of charge. 

Despite their coarse spatial resolution (30m), they provide a 10 nm spectral resolution 

across spectral bands from 0.4 to 2.5 µm (Ungar et al., 2003). The fine spectral resolution 

increases the capability to distinguish structures and objects in the image scene (Curran, 

1989). Furthermore, access to multi-temporal images captured by the same hyperspectral 

sensor allows for assessment of changes occurred during the period of time, when SBW 

activities continuously accumulate. This measurement was carried out by observing the 

spectral changes on hyperspectral images by means of VIs. Seven VIs derived from the 

Hyperion images representing different bio-physical properties were used to measure the 

change during SBW defoliation. Three different VIs were combined to assess the forest 

health for estimation of SBW defoliation magnitudes. The aerial survey map provided by 

MFFP was used as reference.  

3.2 Study Site and Materials 

3.2.1 Study site 

Several EO-1 campaigns were established during June, July and August, 2014 on a 

selected site centered at 48°14'32.69"S/ 67°25'45.77"W to the east of the Sainte-Florence 

village, west of Lac Humqui, at the southern part of the Bas-Saint-Laurent region which 
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located along the south shore of the lower Saint Lawrence River in the Quebec Province, 

Canada (Figure 3.1). It was a relatively homogeneous rural area mostly covered by 

spruce and fir forests. The two tree species were alike in appearance, both served as 

preferred habitats for SBW and mixed in the forests in the study site. The high density of 

trees in the forestry regions makes them vulnerable to spruce budworms and the 

defoliated regions can be formed as large blocks. According to the aerial survey report 

“Infested areas of spruce budworm in Quebec in 2014” (Quebec, November 2014), the 

Bas-Saint-Laurent region was one of the most dominant infested areas by spruce 

budworm in Quebec, totaled 316,103 hectares. The area affected by SBW continues to 

rise significantly in the province. In 2014, they totaled 4,275,065 hectares compared to 
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3,200,348 hectares in 2013.  

3.2.2 Materials 

Interpretation reference of SBW infested fields was provided by the Quebec 

government report (MFFP, 2014). The aerial survey of damage caused by major forest 

pests was carried out annually by the Ministry of Forests, Fauna and Parks (Ministère des 

Forêt, de la Faune et des Parcs, MFFP), Government of Quebec. The aerial survey scans 

natural disturbances observed from the air in real time. The observations digital rendering 

was done to the screen with a stylus. To facilitate the work of the observer, a topographic 

map was displayed on the screen depending on the route of the aircraft. These geo-

 

 

 

Figure 3.1 Study site 
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referenced data was then processed and analyzed using geographic information system 

(GIS) software. The aerial survey scans natural disturbances observed from the air in real 

time. The aircraft flies at an altitude of about 240 meters, at a speed of 160 km / h, 

keeping a distance of 4.5 kilometers between flight lines. The survey reports three levels 

of defoliation in Quebec, namely slight, moderate and serious, containing the study site 

mentioned above.  

The SBW defoliation magnitude levels were provided by the aerial survey report 

(MFFP, 2014) and one thematic map covering our study site has been used. The report 

classifies defoliation into three classes: slight (loss of foliage in the upper third of the tops 

of some trees), moderate (loss of foliage in the upper half of the top of most trees) and 

severe (loss of foliage on the entire length of the top of most trees). In order for further 

process, the three classes were quantified into three percentage levels: 33.3% for slight 

level, 50% for moderate level and 100% for severe level.  

According to the study of Dr. Taylor and Dr. MacLean in 2008 (Taylor & 

MacLean, 2008), from 1985 to 1993, 85% of 332 cases were correctly classified by aerial 

estimate. They concluded that aerial surveys provide a reasonable estimate of defoliation. 

A set of EO-1 Hyperion images was acquired from NASA free of charge from June 

to August, 2014. They were targeted to cover the abovementioned study site in order to 

investigate the defoliation magnitude. The selection of imagery was determined by both 

the image quality which heavily affected by the cloud condition and the acquisition date 

which should reflect most infested areas. Two EO-1 Hyperion hyperspectral images were 
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acquired over the study site. The first one were captured on June 16, 2014, around 10:20 

A.M. local time and the second one were captured on August 7, 2014, around 10:30 A.M. 

local time. The image was at level L1R processing, meaning that it was only 

radiometrically corrected and with no geometrically correction applied (Beck, 2003).   

3.3 Methodology 

To process acquired image data for SBW defoliation analysis, the method used in 

this study consists of two major parts: data preprocessing and VIs based change 

detection. The pre-processing of Hyperion data includes: band selection, abnormal pixels 

removal, vertical stripe removal, smile effect correction, atmospheric correction, and 

geometric correction. The VIs based change detection includes: construction of 

individual VIs from multi-temporal images, change detection based on each VI images, 

synthesize several VIs to generate forest health map and change detection based on the 

health map.  

3.3.1 Data Preprocessing 

Since Hyperion operates from a space platform with consequently modest surface 

signal levels and full-column atmospheric effects, its data demand careful processing to 

manage sensor and processing noise (Datt et al., 2003). The approach taken here involves 

band selection which only keeps necessary and useful spectral bands for further analysis, 

noise removal including abnormal pixels and vertical striping noise that existed in visible 

near-infrared (VNIR 400–1000 nm) and shortwave infrared (SWIR 900–2500 nm) arrays, 

“smile effect” removal that adjust the wavelength centers and radiometric and 
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atmospheric correction to apparent surface reflectance. Finally, the reflectance image will 

be geometrically corrected by georeferencing to common geographic coordinates. 

The Hyperion sensor acquire image data with 242 bands in total, including 70 

visible-near-infrared (VNIR) bands, and 172 shortwave-infrared (SWIR) bands. Among 

them, 44 bands were intentionally not illuminated or correspond to areas of low 

sensitivity of the spectrometer materials. In addition, two more zero bands were identified 

in our data of use, which were band 80 and 81. Among the other 196 bands, only 194 

bands were unique (NIR bands 8-57, 427-925 nm and SWIR bands 79-224, 912-2395 

nm) because there were four bands in the overlap between the two spectrometers of 

VNIR and SWIR. In addition, atmospheric water vapor bands which absorb almost the 

entire incident and reflected solar radiation and the bands that have very severe vertical 

stripping were identified by visual inspection of the image data (Datt et al., 2003). Thus, 

the subset of 162 selected bands (bands 10-57, 77-79, 82-119, 134-165, and 181-221 

within 447-2365 nm) were applied in this study.  

Abnormal pixels that have lower DN values as compared to their neighboring 

pixels were corrected by replacing their DN values with the average DN values of their 

immediate left and right neighboring pixels (Han et al., 2002). Vertical stripes were 

removed using the “SPEAR Vertical Stripe Removal” in the ENVI software (ITT Visual 

Information Systems, 2006) (Datt et al., 2003). The "smile effects" that refer to an across-

track wavelength shift from center wavelength due to the change of dispersion angle with 

field position (Goodenough et al., 2003) were removed using the procedure of "Cross-

Track Illumination Correction" (Jupp et al., 2003) in the ENVI software (ITT Visual 
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Information Systems, 2006). This study uses the Fast Line-of-sight Atmospheric Analysis 

of Spectral Hypercubes (FLAASH), an atmospheric correction module implemented in 

the ENVI to calibrate the at-sensor radiance data to land surface reflectance (Beck, 2003).  

Both Hyperion images from June and August were geometrically corrected using 

the ENVI “Image to Map Registration” process. They were first projected to datum WGS 

84 and the “Geographic lat/lon” projection was selected. The latitude and longitude of 

selected ground control points were matched on Google Earth. An overall root mean 

square error (RMSE) of 0.37 pixel and 0.28 pixel were achieved respectively for both 

images. The defoliation map used as reference was also georeferenced using the same 

setting.  

3.3.2  Vegetation Indices Construction 

Presence and condition of leaf foliage were reliable indicators of tree health, 

similarly as canopy foliage was of the forest stand. Research on forest VIs was aimed to 

the spectral identification, detection and quantification of forest health (Rullan-Silva et 

al., 2013). Water, pigments, nutrients, and carbon were each expressed in the reflected 

optical spectrum from 400 nm to 2500 nm, with often overlapping, but spectrally distinct, 

reflectance behaviors. These known signatures allow scientists to combine reflectance 

measurements at different wavelengths to enhance specific vegetation characteristics by 

defining VIs. In order to measure the change of forestry bio-physical properties during 

the SBW defoliation, 13 VIs of 3 major different categories (vegetation greenness, 

Canopy Water Content and Light Use Efficiency) concerning different aspects of forest 
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health were calculated using ENVI, as shown in Table 3.1. 

 

 

Table 3.1 13 Vegetation indices applied for change detection 

Abbreviation Formula 
Vegetation Index 

Name 
Category   

SR 

RED

NIR
 Simple Ratio. 

Broadband 

Greenness 

 

NDVI 

REDNIR

REDNIR




 

Normalized 

Difference Vegetation 

Index 

 

EVI 

1*5.7*6
*5.2





BLUEREDNIR

REDNIR
 

Enhanced Vegetation 

Index 
 

ARVI 

)]([

)]([

REDBLUEREDNIR

REDBLUEREDNIR








 

Atmospherically 
Resistant Vegetation 

Index 

  

RENDVI 

705750

705750








 

Red Edge Normalized 

Difference Vegetation 
Index 

Narrowband 
Greenness 

MRESR 

445750

445750








 

Modified Red Edge 

Simple Ratio 

MRENDVI 

445705750

705750

*2 






 

Modified Red Edge 
Normalized 

Difference Vegetation 

Index  
 

MSI 

819

1599




 Moisture Stress Index 

Canopy Water 

Content 

 

 

WBI 

900

970




 Water Band Index 

NDWI 

1241857

1241857








 

Normalized 
Difference Water 

Index 

PRI 

570531

570531








 

Photochemical 

Reflectance Index 

Light Use 

Efficienc

y 

  

SIPI 

680800

445800








 

Structure Insensitive 

Pigment Index 
  

RDRI 








599

500

699

600

i j

i i

R

R
 

Red Green Ratio 
Index 
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 The vegetation greenness was further divided into broadband greenness and 

narrowband greenness VIs. The broadband greenness VIs were most commonly used as 

they can be derived from broadband multispectral sensors, such as AVHRR, Landsat TM, 

and QuickBird. As long as the sensor provides image data covering near infrared and 

visible regions, the VIs can be constructed without very precise spectral resolution. In 

Table 2.1, NIR stands for a near infrared band and Red stands for a Red band. NDVI was 

the most widely used broadband VIs. Note that as Hyperion hyperspectral data with finer 

spectral resolution than multispectral images, the NDVI as well as other broadband VIs 

listed above derived from Hyperion image was not technically broad as that derived from 

multispectral images. For calculation, it chooses the band nearest 650 nm for the Red 

term and the band nearest 860 nm for the NIR term. SR and NDVI were considered the 

simplest measures of the general quantity and vigor of green vegetation. Both of them 

were combinations of reflectance measurements that were sensitive to the combined 

effects of foliage chlorophyll concentration, canopy leaf area, foliage clumping, and 

canopy architecture. These VIs were designed to provide a measure of the overall amount 

and quality of photosynthetic material in vegetation, which was essential for 

understanding the state of vegetation for any purpose. Both EVI and ARVI attempt to 

reduce the atmospheric influence on NDVI, ARVI uses blue reflectance to correct red 

reflectance for atmospheric scattering (the adjustment parameter   was set to be 1 as 

default) while EVI uses the blue reflectance region to correct for soil background signals. 

 Narrowband reflectance measurements take advantage of finer spectral resolution 

of hyperspectral sensors. Specifically, the spectra of incident vegetation pixels were used 
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to locate a so-called “red edge” in order to enhance the performance of original VIs. Red 

edge was defined as the steeply sloped region of the vegetation reflectance curve between 

690 nm and 740 nm that was caused by the transition from chlorophyll absorption and 

near-infrared leaf scattering. Increased chlorophyll concentration broadens the absorption 

feature and moves the red edge to longer wavelengths. It was believed that making 

narrowband measurements in the red edge allows these indices to be more sensitive to 

smaller changes in vegetation health than the broadband greenness VIs, particularly in 

conditions of dense vegetation where the broadband measures can saturate. 

 The canopy water content VIs provide a measure of the amount of water 

contained in the foliage canopy. Water content was an important quantity of vegetation 

because higher water content indicates healthier vegetation that was likely to grow faster 

and be more fire-resistant. Canopy water content VIs use reflectance measurements in the 

near-infrared and shortwave infrared regions to take advantage of known absorption 

features of water and the penetration depth of light in the near-infrared region to make 

integrated measurements of total column water content. Several relevant wavelengths 

were discovered and applied to construct VIs to represent water content. As the 

absorption around 1599 nm increases with the increasing of water content in canopies 

while absorption around 819 nm stays stable, MSI was constructed by taking advantage 

of these two wavelengths. Two reflectance values at 857 nm in NIR region and 1241 nm 

in SWIR region respectively were used to calculate NDWI, a measurement of their 

relative difference was sensitive to changes in vegetation canopy water content. 

Similarly, reflectance at 970 nm and 900 nm were used to calculate WBI. 
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The light use efficiency VIs provide a measure of the efficiency with which 

vegetation can use incident light for photosynthesis. Light use efficiency was highly 

related to carbon uptake efficiency and vegetative growth rates. Thus the light use 

efficiency VIs provide measurements of the efficiency with which vegetation can use 

incident light for photosynthesis. It was also an important indicator of forest health and 

SBW defoliation, as defoliated forests will suffer from a decreased ability of light use. 

Most reflectance measurements within visible region were applied to construct light use 

efficiency VIs. Photochemical Reflectance Index (PRI) was designed to be sensitive to 

changes in carotenoid pigments in live foliage. Carotenoid pigments were indicative of 

photosynthetic light use efficiency, or the rate of carbon dioxide uptake by foliage per 

unit energy absorbed. Structure Insensitive Pigment Index (SIPI) was designed to 

maximize the sensitivity of the index to the ratio of bulk carotenoids (for example, alpha-

carotene and beta-carotene) to chlorophyll while decreasing sensitivity to variation in 

canopy structure (for example, leaf area index). Increases in SIPI were thought to indicate 

increased canopy stress (carotenoid pigment). The Red Green Ratio Index (RGRI) on the 

other hand, has been used to estimate the course of foliage development in canopies. It 

was an indicator of leaf production and stress, and it may also indicate flowering in some 

canopies. The SBW has the potential of interfering with growth of spruce and fir, 

specifically during the summer season.    

3.3.3 VIs based Change Detection and Forest Stress Analysis 

High resolution Landsat imagery has been widely used in change detection of 

insect defoliation. A normal approach was using one image before the defoliation and one 
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immediately after the defoliation. However, this kind of analysis can be less applicable 

when one of the images were not available, especially the image that capturing the 

healthy forests prior to defoliation. Moreover, it was still difficult to determine such a 

pre-defoliation image, if existed, has such desirable condition, as defoliation from 

previous years can be involved (de Beurs and Townsend, 2008). Finally, the long period 

between two captures can result in the occurrences of forest disturbance other than the 

one of particular interest. It was also a difficult task to differentiate forest stress from 

insect defoliation from natural factors like rainfall, temperature, climate changes, etc. 

Thus, this study focuses on the investigation of spread of defoliation in our study site 

during the summer within the year of 2014. The image data were captured on June and 

August respectively at the study site during the significant SBW defoliation.  

In eastern North America, the spruce budworm damage appears in May, when third 

instar larvae begin to feed. Moths emerge from pupal cases usually in late July or early 

August. In late June, feeding terminates showing the damage to host trees as rust brown 

due to the accumulation of frass, chewed desiccated needles, dead buds and silken 

webbing. The damage continues in the summer and accumulates defoliation for current 

year. The damage reaches the peak approximately in August, and then SBW becomes 

less active as temperature drops in the fall. Thus in this study we aim at monitoring SBW 

defoliation in June and August in order to compare and analysis its spread and 

accumulation in the study site.  

The strategy of using VIs in this study was to find most relevant VIs in each 

category as described and use them to carry out forest stress analysis. In order to find 
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those specific VIs out of their alternatives, change detections were applied using acquired 

Hyperion images. After suitable pre-processing and alignment of the images, we will be 

able to monitor the changes of VIs values in pixel level. This will allow for quantitative 

analysis on the influence of SBW defoliation on different aspects of forest health. Pixel 

level change detection will be applied for each VIs image derived from two multi-

temporal images. The relative difference of VIs (de Beurs and Townsend, 2008) was 

applied to calculate individual change detection for each VIs image: 

               
                 

        
    , 

where          was the value of a vegetation index at the high point before defoliation 

and          was the value of the vegetation index at the low point during the defoliation 

event. In this study,          was derived from the June image whereas          was 

derived from the August image. In order to make the change detection of other VIs more 

efficient and accurate, the NDVI values derived from both images were used as masks. 

To be specific, a NDVI value of 0.2 was used to delineate only vegetation pixels on 

which change detections will be conducted. The change rate of each VI was also 

summarized in a region level. Using the aerial survey map as a reference, the change 

rates at each defoliation magnitude level (light, moderate and severe) were averaged from 

pixels within each region.  

Furthermore, three selected VIs were synthesized to analyze forest health in order 

to estimate the spread of defoliation. This was done using “Forest Health Tool” provided 

by ENVI software (ITT Visual Information Systems, 2006). A spatial map was generated 
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to show the overall health and vigor of a forested region. Forest health mapping was 

useful for detecting pest and blight conditions in a forest, and it was useful in assessing 

areas of timber harvest. A forest exhibiting low stress conditions was usually made up of 

healthy vegetation, whereas a forest under high stress conditions shows signs of dry or 

dying plant material, very dense or sparse canopy, and inefficient light use. The spatial 

maps generated for two multi-temporal images will then be aligned with aerial survey 

map for comparison.      

3.4 Results and Analysis 

3.4.1 Hyperion Data Pre-processing 

The resultant radiance image from vertical stripes removal and cross track 

illumination correction was examined via MNF transformation (Datt et al., 2003). The 

MNF technique responds to interactions between the spatial structure of the data and that 

of the noise when the noise has strong spatial structure. As shown in Figure 3.2, the first 

and sixth MNF bands were generated from MNF transformation on original and output 

radiance data. Specifically "smile effect" can lead to a brightness gradient appearing in 

the first MNF band as shown in Figure 3.2(a) and (e). Stripes can be illustrated in 

subsequent MNF bands as shown in Figure 3.2(b) and (f). The brightness gradient was 

removed after the correction as shown in MNF band 1 in Figure 3.2 (c) and (g). The 

stripes were removed as shown in MNF band 6 in Figure 3.2 (d) and (h).  
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The resultant radiance image from spatial corrections was then input to derive 

reflectance image through atmospheric correction. The spectra of one vegetation pixel on 

both radiance image and reflectance image were shown in Figure 3.3. A pixel was located 

 

Figure 3.2 MNF bands illustrate the effects of vertical stripes removal and cross track 

illumination correction. For the June image, (a) and (b) show the MNF band 1 and 6 

before the correction, (c) and (d) show the MNF band 1 and 6 after the correction. For 

the August image, (e) and (f) show the MNF band 1 and 6 before the correction, (g) 

and (h) show the MNF band 1 and 6 after the correction. 
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at both the June and August images. The spectra of that location on radiance and 

reflectance images were displayed for both images.  

The reflectance curves in Figure 3.3 (b) and (d) provide spectral profile as typical 

vegetation spectral reflectance with significant low responses in visible region and high 

responses in the near infrared region. It can be noticed that both reflectance spectrum 

 

Figure 3.3 Spectral profiles of one same vegetation pixel on radiance and 

reflectance images were displayed. (a) June radiance image, (b) June reflectance 

image, (c) August radiance image, (d) August reflectance image. Data value in 

both curves have unit µW/(cm2 * sr * nm) while the reflectance data has been 

multiplied by a scale factor of 1000. 
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were identical from a visual perspective, this also explains why quantified analysis was 

necessary for the change detection study.  

After geometric correction, both images were overlapped and cropped to generate 

the final reflectance images for further analysis. The images were shown in Figure 3.4(a) 

and (b) respectively. The aerial survey map used as reference in this study was also 

georeferenced in order to match the Hyperion images. Because of rough quality of the 

map, it has been delineated to clearly show regions with different defoliation magnitude. 

The reference map was shown in Figure 3.4(c).  

                     

Figure 3.4 Hyperion image captured on June 16, 2014 was shown in (a) and the one 

captured on August 7, 2014 was shown in (b). Band 29 (732 nm), band 20 (640 nm) and 

band 12 (559 nm) were used to display the natural color images. The defoliation 

magnitude reference map shown in (c) has three delineated defoliation levels: light 

(a) (b) (c) 
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(green), moderate (yellow) and severe (red). The black blocks were either uninvestigated 

regions or forestless regions. 

3.4.2 VIs based Change Detection 

 The VIs based change detection results were based on the four VIs images 

derived from June and August images respectively. The pixel-level changes in 

percentages were calculated for each VI. The change rates for different defoliation 

magnitude regions were summarized in Table 3.2.  
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The change rates for 13 applied VIs varied from one another. Some suggest slight 

changes, less than 10%, from June to August images, such like NDVI and PRI, while 

some suggest significant changes, more than 20%, such like SR and RDRI. It was 

noticeable that for VIs within the same category, the change rates also have spectacular 

   

Table 3.2 Change rates detected with 13 vegetation indices summarized for three 

defoliation regions 

VI Light Moderate Severe 

SR 25% 23% 24% 

NDVI 4.4% 4.1% 3.7% 

EVI 19% 18% 19% 

ARVI 23% 20% 17% 

RENDVI 5.6%
 

6.3% 5.7% 

MRESR 16% 16% 17% 

MRENDVI 12% 12% 11% 

MSI 13% 14% 13% 

WBI 8.8% 8.2% 7.6% 

NDWI 9.3% 7.5% 13% 

PRI 6.0% 4.8% 3.2% 

SIPI 8.8% 8.0% 7.2% 

RDRI 43% 41% 43% 
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differences. Among the broadband greenness VIs, slightest changes were identified with 

NDVI, while its extended version, EVI and ARVI both have a noticeable changes 

between the measurements on two images. In general, NDVI was used as an identifier of 

vigor vegetation. However, the distance from which the satellite images were taken 

compensates the density of the forests that were supposedly diminished by the 

budworms. This was also why a diversity of VIs should be involved in this study. The 

other simple index SR suggests the sharpest changes in all three defoliation levels with 

respectively 25%, 23% and 24%. The distribution of changes detection with SR was 

shown in Figure 3.5(a). 

The distribution of SR change rates in the study site appear to be homogenous with most 

 

Figure 3.5 The percentage changes between June and August were detected in two 

typical greenness VIs. (a) Change detection map of SR; (b) Change detection map of 

MRESR.   
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identifiable changes located at lower left corner as well as small clusters near the center 

of the scene.   

For red-edge involved narrowband greenness VIs, similar change rates with their 

original version NDVI and SR were detected within the defoliation regions. The MRESR 

has the highest change rates among the three with bands within red edges used in its 

construction. The distribution of changes of MRESR was shown in Figure 3.5(b). The 

change rates have a similar pattern with SR while fewer individual sharp bright points 

were presented.  

For the VIs concerning canopy water content, with WBI generates slighter changes, 

the rest two VIs MSI and NDWI have similar change rates for the study site. Their 

respective distributions of changes were shown in Figure 3.6(a) and (b).  
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The distributions of changes in these two VIs, however, suggest noticeable 

difference. The changes in MSI appear to be more homogenous while the NDWI change 

map presents clusters of high brightness with contrast to low ones. Despite the first 

impression of such obvious difference, one can still identify similar patterns from MSI 

map that has been highlighted in the map of NDWI. In order for further analysis, NDWI 

was selected as more contrast in terms of different regions can be used for analysis.  

Light Use Efficiency VIs have considerable differences in terms of their changes 

detection between the two images. The RDRI which incorporates more bands within red 

and green spectral regions generate a highest change rates among the three as well as 

among all 13 investigated VIs. The SIPI has a slight higher change rates than PRI within 

 

Figure 3.6 The percentage changes between June and August were detected in two 

typical canopy water content VIs. (a) Change detection map of MSI; (b) Change 

detection map of NDWI. 
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three defoliation regions. The distributions of changes in RDRI and SIPI were shown in 

Figure 3.7(a) and (b).  

 

The RDRI has a very high change rate between June and August in the study site, 

with more than 40% within each defoliation regions. The SIPI has relatively low change 

rate while its clusters of relatively high change regions were also identifiable in RDRI 

map. RDRI was selected for further analysis of forest stress because of its distinctness.  

   

 

Figure 3.7 The percentage changes between June and August were detected in 

two typical Light Use Efficiency VIs. (a) Change detection map of SIPI; (b) 

Change detection map of RDRI. 
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3.4.3 VIs based Forest Stress Analysis 

As mentioned above, we use the “Agricultural Stress Vegetation Analysis” tool 

provided by ENVI to synthesize the VIs and generate a spatial map showing the 

distribution of the forest stress in the study site. In addition to the hyperspectral image, 

the tool takes in three VIs from different categories as input, namely Greenness Index, 

Canopy Water or Nitrogen Index and Light Use Efficiency or Leaf Pigment Index. In our 

case, SR, NDWI and RDRI were used for these three inputs. The VIs from June and 

August Hyperion images  were respectively used to implement the stress analysis. The 

results from both images were aligned with the aerial survey map for comparison. The 

Agricultural Stress Tool divides the input scene into nine classes, from lowest stress to 

highest stress. The resultant spatial maps generated for June and August image were 

shown in Figure 3.8(a) and (b).   
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Most stressed pixels were from light blue, dark blue to black. In order to better 

illustrate their distribution and compare the two maps, we extract only these three levels 

and aligned with the aerial survey map. The new maps were shown in Figure 3.9(a) and 

 

Figure 3.8 Forest stress maps generated for the June image was shown in (a) and the 

one for the August image was shown in (b), the stress levels for both maps were 

shown as a colormap in (c). 
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(b).  

 

It was noticeable that from June to August, the severe defoliated (red) region and 

light defoliated (green) region, more light blue blocks transferred to black or dark blue 

color, suggesting the stress level getting higher. In the moderate defoliated region 

(yellow), it appears that less highly stressed pixels were identified in August image than 

in June image. However, it also appears that the stressed regions have expanded, as some 

isolated stressed pixels in June image tend to form clusters in August. As a result, the 

 

 

Figure 3.9 Most stressed regions (light blue to black) extracted from stress maps were 

aligned with the aerial survey map as reference. The June map was shown in (a) and the 

August map was shown in (b). The stress levels displayed were from light blue, dark 

blue to black (from level 7, 8 to 9, with 9 being the most). 
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forest stress map generated from VIs generally matched the aerial survey result for 

defoliation.  

3.5 Conclusion 

In this study, we investigated the potential of using remote sensing and vegetation 

indices derived from Hyperion hyperspectral images to analyze the defoliation caused by 

spruce budworm in Quebec region, Canada. The VIs based change detection was applied 

in this study to quantize the change of different VIs between multi-temporal Hyperion 

images acquired from June and August respectively over the study site. 

We investigate the VIs from four difference categories with the aim to find the VIs 

with most significant changes in response to the increasing defoliation from June to 

August. The change rates of different VIs generated from these two images were 

calculated, the VIs with high change rates were then considered as more relevant to the 

SBW defoliation. Finally, spatial maps of forest stress were generated for two images 

respectively using the selected VIs. The result suggest the forest stress distribution 

generated using remotely sensed hyperspectral images and VIs have potential for 

estimating SBW defoliation, in terms of its spread and severity.    
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4 CHAPTER 4  

ESTIMATION AND MAPPING OF SPRUCE BUDWORM DEFOLIATION 

USING VEGETATION INDICES DERIVED FROM HYPERION 

HYPERSPECTRAL DATA 

 

Abstract 

Defoliation during spruce budworm (SBW) outbreaks causes severe, widespread 

damage to spruce and balsam fir forests in eastern Canada. Early estimation of the 

defoliation will provide crucial support to mitigate the socio-economic impact on 

vulnerable forests. Vegetation indices (VIs) from remote sensing images can be used for 

estimation of forestry biophysics characteristics such as defoliation. However, traditional 

VIs constructed from broad multispectral bands provide insufficient spectral information 

which limits the potential in defoliation investigation. In this paper, narrowband VIs were 

constructed using 162 available Hyperion hyperspectral bands, in order to find the most 

relevant spectral bands that capture the defoliation characteristics. The VIs were 

calculated by pairing bands from the all 162 bands. Most relevant VIs and associated 

bands were selected for mapping based on their correlation with the defoliation 

magnitude provided by the ground truth. Nine existing two-band vegetation indices (VIs) 

were explored and three new non-linear two-band VIs were developed for a study site in 

the province of Quebec, Canada. The experimental results indicate that most important 

hyperspectral bands with high correlations to defoliation ground truth were mostly in the 
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near-infrared (NIR) region and some in shortwave infrared (SWIR) region. The 

correlation coefficients generated using those Hyperion hyperspectral bands were 

considerably higher than that generated using ALI multispectral bands. The mapping 

results also demonstrate that the new non-linear VIs have achieved, on average, 15% of 

accuracy improvement in SBW defoliation estimation and mapping over the existing VIs.   

 

Keywords: Hyperion, hyperspectral data, spruce budworm defoliation, vegetation index. 

4.1 Introduction 

The spruce budworm (SBW) was one of the most damaging native insects of 

spruce and fir forests in Quebec, Canada. During a major outbreak, tens of millions of 

hectares of trees can be severely defoliated by the insect (Gray and Re, 2000). An 

outbreak may last for several years, and cumulative defoliation can cause significant 

levels of mortality and growth loss in mature softwood forests. According to the annual 

report released by Quebec Government in 2014 (MFFP, 2014), the areas affected by 

SBW continue to rise significantly. In 2014, they totaled 4,275,065 hectares compared to 

3,200,348 hectares in 2013. Conventional Strategies to eliminate or slow the spread of 

these destructive pests such like pesticide spraying can be costly, time consuming and 

less effective when accurate estimation of defoliated regions was not available. The sizes 

and locations of defoliated regions make field investigation difficult. Alternatively, 

remote sensing techniques, especially the utilize of satellite images, provide spatially 

unlimited and wide coverage for investigation. Researches have been conducted on 
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estimating and mapping field forest ecosystem variables or properties using remote 

sensing data (Gong et al., 2003; Rullan-Silva et al., 2013). The vegetation indices (VIs) 

derived from remote sensing has been widely applied to estimate vegetation health and 

greenness (Rullan-Silva et al., 2013). Generally, healthy vegetation will absorb most of 

the visible light that falls on it, and reflects a large portion of the near-infrared light. The 

defoliated forest, in form of unhealthy or sparse vegetation, reflects more visible light and 

less near-infrared light. Making use of these two spectral bands existing pairwise VIs can 

be constructed. A list of investigated VIs can be found in Table 4.1. The widely applied 

broad-band indices were usually constructed with near-infrared (NIR) and red (R) bands, 

use average spectral information over broad bandwidths (Blackburn, 1998). 

Studies have been conducted on mapping the magnitude of defoliation using VIs 

constructed from multispectral images (Rullan-Silva et al., 2013). Those VIs were broad-

band VIs which indicates only one or two reflectance values at investigated spectral 

wavelength region (e.g. NIR or SWIR) will be applied. Two types of broad-band VIs 

were compared for measuring different types of forest damage in USA (Vogelmann, 

1990). In order to map the magnitude of defoliation, three VIs that use the R, NIR, SWIR 

and mid-infrared (MIR) bands were tested, suggesting that SWIR reflectance was very 

sensitive to the amount of water in the vegetation, increasing when leaf water content 

decreases, as happens in vegetation stressed by pest defoliators. They further concluded 

that two VIs using SWIR band had better performances for mapping insect defoliation in 

their site when compared with conventional NDVI (de Beurs and Townsend, 2008).  
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However, the broad-band VIs have limited spectral information concerning the 

significance of response at different spectral wavelengths. As an alternative, more refined 

VIs can be constructed through the use of distinct narrow bands from hyperspectral 

images. Narrow bands can be crucial for providing additional information over broad 

bands in quantifying biophysical characteristics of vegetation (Gong et al., 2003). It was 

also believed that the hyperspectral data can be useful in early stress detection as spectral 

differences can be identified from only certain wavelengths while existing remote sensing 

studies on SBW defoliation use mostly broadband VIs or limited narrowband VIs 

(Rullan-Silva et al., 2013). Moreover, little evidence has been found on mapping SBW 

defoliation using hyperspectral VIs (Rullan-Silva et al., 2013). Thus in our study, narrow-

band VIs were constructed using hyperspectral data. The aim was to find the most 

important spectral bands in measuring SBW defoliation by means of VIs construction. 

The hyperspectral data from the Hyperion sensor on the Earth Observing-1 Mission (EO-

1) satellite was used in this study. It provides a 10 nm spectral resolution provide spectral 

bands from 0.4 to 2.5 µm (Ungar et al., 2003). The fine spectral resolution increases the 

capability to distinguish structures and objects in the image scene (Curran, 1989). So 

investigations on spectral bands by means of VIs construction can provide more specific 

information for quantifying SBW defoliation. In this study, 12 two-band VIs were 

constructed using reflectance from all 162 available Hyperion bands. Most relevant VIs 

and associated 
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Table 4.1 12 vegetation indices analyzed in this study 

Abbreviation Formula 
Vegetation 

Index Name 
References   

SR 
12 /   Simple Ratio. 

(Qi, Chehbouni, 

Huete, Kerr, and 

Sorooshian, 1994), 

(Birth and McVey, 

1968) 

  

DVI 
12  

 

Difference 

Vegetation 

Index 

(Tucker, 1979)    

NDVI )/()( 1212    

Normalized 

Difference 

Vegetation 

Index
 

(Griffin, May-

Hsu, Burke, 

Orloff, and 

Upham, 2005) 

  

EVI2 )*4.2/()(*5.2 1212    

2-band 

Enhanced 

Vegetation 

Index 

(Jiang et al., 2008)   

SAVI )/()1(*)( 1212 LL    
Soil Adjusted 

Vegetation 

Index 

(Huete, 1988)   

NLI )/()( 1

2

21

2

2    
Non-Linear 

Index 

(Goel and Qin, 

1994; Gong et al., 

2003) 

  

MNLI )/()1(*)( 1

2

21

2

2 LL    
Modified Non-

Linear Index 
(Gong et al., 2003)   

MSR 
1/

1/

12

12








 Modified Simple 

Ratio 
(Chen, 1996)   

RDVI 
1212 /)(    

Renormalized 

Difference 

Vegetation 

Index 

(Roujean and 

Breon, 1995)   

CSR )/cos( 12   
Cosine Simple 

Ratio 

Developed in this 

paper 
  

CDVI )cos( 12    

Cosine 

Difference 

Vegetation 

Index 

Developed in this 

paper 
  

CNDVI 

12

12cos







 

Cosine 

Normalized 

Vegetation 

Index 

Developed in this 

paper 
  

Note that 1  and 2  represent red and NIR wavelengths respectively for constructing 

traditional vegetation indices but in this study they were extended to all spectral 

wavelengths provided by 162 available Hyperion bands. 
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bands were found by correlation with defoliation magnitude  levels reported by airborne 

survey (MFFP, 2014).   

4.2 Background 

Research on VIs aims at the spectral identification, detection and quantification of 

forest health. They have been correlated with a variety of forest ecosystem variables, 

suggesting a strong indicator of field vegetation conditions (Thenkabail et al., 2000). 

With observation on reflectance of plants across the electromagnetic spectrum, we can 

derive information by focusing on the satellite bands that were most sensitive to 

vegetation information (near-infrared and red). Different responses on these two spectral 

regions can be used to distinguish between soil and vegetation and further diagnose 

external disturbance on vegetation amount and health. Constructed with this concept, the 

Difference Vegetation Index (DVI) (Tucker, 1979), the ratio-based NDVI (Datt et al., 

2003; Gong et al., 2003) and Simple Ratio (SR) (Chen, 1996; Gong et al., 2003) were 

most commonly applied VIs (Table 4.1). An enhanced vegetation index (EVI) was 

designed in order to enhance the vegetation signal with improved sensitivity in high 

biomass regions and improved vegetation monitoring through a de-coupling of the 

canopy background signal and a reduction in atmosphere influences (Alfredo Huete et al., 

1999). However, the necessity of a blue band in this index weaken its usage as blue band 

always carries with poor signal to noise ratio (SNR) and blue band was unavailable in 

certain cases. So a two-band EVI (EVI2) was developed attempting to maintain the merit 

of EVI without a blue band (Jiang et al., 2008). Several VIs were proposed by attempting 

to reduce the sensitivity to optical properties of the soil ground. The widely applied 



 

76 

 

methods to account for this background influence were implemented by introducing 

correction factors to original NDVI. The soil-adjusted vegetation index (SAVI) attempts 

to correct for the influence of soil brightness when vegetative cover was low (Huete, 

1988). The SAVI was structured similar to the NDVI but with the addition of a soil 

brightness correction factor, L. The value of factor L varies by the amount of vegetation 

coverage: in vegetation regions with highest density, L equals to zero which makes it 

equivalent to NDVI; whereas for lowest vegetation regions L equals to zero. It was also 

suggested an L=0.5 works well in most situations and was the default value used. 

Traditional VIs use a linear model of NIR and red bands while it was observed 

that the relationship between VIs and biophysical parameters was not necessarily linear. 

In order to stimulate this nonlinear relationship, several nonlinear vegetation indices have 

been proposed, including the nonlinear vegetation index (NLI) (Goel and Qin, 1994), the 

renormalized difference vegetation index (RDVI) (Roujean and Breon, 1995), and the 

modified simple ratio vegetation index (MSR) (Chen, 1996). The soil brightness 

correction from SAVI has been integrated into NLI in order to make it resist to variety in 

soil condition, this approach generate the Modified Non-Linear Index (MNLI) (Gong et 

al., 2003). In this study, in order to find better modeling of VIs for correlating the forest 

defoliation magnitude levels, the tradition SR, DVI and NDVI were modeled using 

cosine functions. We expect that some new two-band VIs, constructed from the 162 

bands, may be found that produce higher correlations with forest defoliation than 

currently used VIs. 
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The advent of hyperspectral sensor allows for narrowband VIs construction and 

provides more concrete information when the VIs was correlated with biophysical 

parameters. The study for correlating Leaf Area Index (LAI) with VIs constructed using 

Hyperion data demonstrate the advantage of across bands VIs construction in modeling 

biophysical parameters (Gong et al., 2003). It was also suggested that the SWIR spectral 

region (1.0–2.5 µm) and middle-infrared (MIR) (1.55–1.75 µm), though neglected in 

traditional VIs construction, were proven to perform better in modeling the LAI. In the 

study of mapping the magnitude of defoliation in a largely broadleaved and oak-

dominated forest area in the USA, it was suggested that Normalized Difference Infrared 

Index bands 6 and 7 (NDIIb6 and NDIIb7, both using the SWIR band) performed 

significantly better than NDVI (Spruce et al., 2011). However, existing remote sensing 

studies on SBW defoliation use mostly broadband VIs or limited narrowband VIs 

(Rullan-Silva et al., 2013). This was because the images originated from multispectral 

sensors fails to provide a fine spectral resolution and combining SWIR with NIR can be 

especially difficult when both bands have different spatial resolution. In this study, we 

focus on the evaluation performance of 12 two-band VIs, as listed in Table 4.1, in 

estimating the spruce budworm defoliation. By taking advantage of the wider wavelength 

coverage and finer spectral resolution provided by Hyperion data, we construct those VIs 

using all 162 available bands after selection. Note that because of our approach, 1  and 

2  in Table 4.1 represent any Hyperion spectral band though we use 1  as RED band 

and 2  as NIR band in traditional VIs. By correlating all the VIs generated, our study 

aims to provide recommendation on not only the suitable VIs for estimating SBW 
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defoliation but also the spectral bands at specific wavelengths that were used for 

constructing these VIs. 

4.3 Study Site and Materials 

4.3.1 Study site 

Several EO-1 campaigns were established during June, July and August, 2014 on 

a selected site centered at 48°09’54’’S/67 °19’21’’W near the Causapscal city, across the 

Bas-Saint-Laurent region which located along the south shore of the lower Saint 

Lawrence River in the Quebec Province, Canada (Figure 4.1). It was a relatively 

homogeneous rural area mostly covered by spruce and fir forests. The two tree species 

were alike in appearance, both served as preferred habitats for SBW and mixed in the 

forests in the study site. The high density of trees in the forestry regions makes them 

vulnerable to spruce budworms and the defoliated regions can be formed as large blocks. 

According to the aerial survey report “Infested areas of spruce budworm in Quebec in 

2014” (Quebec, November 2014), the Bas-Saint-Laurent region was one of the most 

dominant infested areas by spruce budworm in Quebec, totaled 316,103 hectares. The 

area affected by SBW continues to rise significantly in the province. In 2014, they totaled 

4,275,065 hectares compared to 
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3,200,348 hectares in 2013.  

4.3.2 Materials 

Interpretation ground truth of SBW infested fields was provided by the Quebec 

government report (MFFP, 2014). The aerial survey of damage caused by major forest 

pests was carried out annually by the Ministry of Forests, Fauna and Parks (Ministère des 

Forêt, de la Faune et des Parcs, MFFP). The aerial survey scans natural disturbances 

observed from the air in real time. The observations digital rendering was done to the 

screen with a stylus. To facilitate the work of the observer, a topographic map was 

displayed on the screen depending on the route of the aircraft. These geo-referenced data 

 

Figure 4.1 Study site 
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was then processed and analyzed using geographic information system (GIS) software. 

The aerial survey scans natural disturbances observed from the air in real time. The 

aircraft flies at an altitude of about 240 meters, at a speed of 160 km / h, keeping a 

distance of 4.5 kilometers between flight lines. The survey reports three levels of 

defoliation in Quebec, namely slight, moderate and serious, containing the study site 

mentioned above.  

The SBW defoliation magnitude levels were provided by the aerial survey report 

(MFFP, 2014) and one thematic map covering our study site has been used. The report 

classifies defoliation into three classes: slight (loss of foliage in the upper third of the tops 

of some trees), moderate (loss of foliage in the upper half of the top of most trees) and 

severe (loss of foliage on the entire length of the top of most trees). In order for further 

process, the three classes were quantified into three percentage levels: 33.3% for slight 

level, 50% for moderate level and 100% for severe level. 

According to the study of Dr. Taylor and Dr. MacLean in 2008 (Taylor & 

MacLean, 2008), from 1985 to 1993, 85% of 332 cases were correctly classified by aerial 

estimate. They concluded that aerial surveys provide a reasonable estimate of defoliation. 

A set of EO-1 Hyperion images was acquired from NASA free of charge from 

June to August, 2014. They were targeted at the abovementioned study site in order to 

investigate the defoliation magnitude. The selection of imagery was determined by both 

the image quality which heavily affected by the cloud condition and the acquisition date 

which should reflect most infested areas.  An EO-1 Hyperion hyperspectral image over 
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the study site acquired on July 19, 2014, around 10:20 A.M. local time for this study, it 

was captured together with the EO-1 ALI image used in Chapter 2. The image was at 

level L1R processing, meaning that it was only radiometrically corrected and with no 

geometrically correction applied (Beck, 2003).  

4.4 Methodology 

4.4.1 Data Pre-processing 

The Hyperion sensor has 242 bands in total, including 70 visible-near-infrared 

(VNIR) bands, and 172 shortwave-infrared (SWIR) bands. Among them, 44 bands were 

intentionally not illuminated or correspond to areas of low sensitivity of the spectrometer 

materials (Datt et al., 2003). In addition, two more zero bands were identified in our data 

of use, which were band 80 and 81. Among the other 196 bands, only 194 bands were 

unique (NIR bands 8-57, 427-925 nm and SWIR bands 79-224, 912-2395 nm) because 

there were four bands in the overlap between the two spectrometers of VNIR and SWIR 

(Datt et al., 2003). In addition, atmospheric water vapor bands which absorb almost the 

entire incident and reflected solar radiation and the bands that have very severe vertical 

stripping were identified by visual inspection of the image data . Thus, the subset of 162 

selected bands (bands 10-57, 77-79, 82-119, 134-165, and 181-221 within 447-2365 nm) 

were applied in this study.  

Abnormal pixels that have lower DN values as compared to their neighboring 

pixels were corrected by replacing their DN values with the average DN values of their 

immediate left and right neighboring pixels (Han et al., 2002). Vertical stripes were 
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removed using the “SPEAR Vertical Stripe Removal” in the ENVI software (ITT Visual 

Information Systems, 2006) (Datt et al., 2003). The "smile effects" that refer to an across-

track wavelength shift from center wavelength due to the change of dispersion angle with 

field position (Goodenough et al., 2003) were removed using the procedure of "Cross-

Track Illumination Correction" (Jupp et al., 2003) in the ENVI software (ITT Visual 

Information Systems, 2006). This study uses the Fast Line-of-sight Atmospheric Analysis 

of Spectral Hypercubes (FLAASH), an atmospheric correction module implemented in 

the ENVI to calibrate the at-sensor radiance data to land surface reflectance (Beck, 2003).  

Both the ground truth map and the Hyperion data were geometrically corrected 

using the ENVI “Image to Map Registration” process. They were first projected to datum 

WGS 84 and the “Geographic lat/lon” projection was selected. The latitude and longitude 

of selected ground control points were matched on Google Earth. An overall root mean 

square error (RMSE) of 0.39 pixel was achieved.  

4.4.2  Vegetation Indices Construction and correlation with defoliation 

After overlapping the Hyperion imagery with the ground truth map, 30 sample 

pixels were selected as we retrieve reflectance spectra from the calibrated Hyperion 

images. Note that the spatial resolution of Hyperion data was 30 meters which makes 

each pixel a mixture of a large number of trees. So the 30 points were all selected within 

homogeneous forests areas by examining the Hyperion image. In addition, the ground 

truth map was roughly delineated that not available for pixel-by-pixel match with our 

image. So in order to make sure selected samples contain relatively accurate defoliation 
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magnitude, we avoid regions near the boundaries of different classes on the map. This 

gives us 30 observations of defoliation magnitude which constitute a defoliation variable. 

Furthermore, we need 30 observations of VI which constitute a VI variable. Note that we 

use 162 available Hyperion bands to construct 12 two-band VIs, so that will end up with 

162x162x12 different VI variables that will be ran through our correlation test. 

In this study, three new nonlinear VIs were developed in this paper attempting to 

maximize the merit of nonlinear VIs. The three VIs were adapted from NDVI, DVI and 

NLI while using a Cosine function to project the outputs. We analyze the potential of 

different VIs for estimating SBW defoliation by constructing them from all the 162 

available Hyperion bands. After overlapping the Hyperion imagery with the ground truth 

map, 30 sample pixels were selected as we retrieve reflectance spectra from the calibrated 

Hyperion images. We use the correlation method developed in (Gong et al., 2003). For 

each of the 12 VIs, a linear correlation coefficient 
2R  was calculated between the VI and 

defoliation measurement (30 samples). Since each VI in Table 4.1 could be constructed 

from any pair among the possible 162 bands, a linear correlation coefficient 
2R  matrix 

could be constructed. From the correlation matrices, hyperspectral bands with high 

correlation coefficients were examined. 

4.4.3 Mapping SBW defoliation using VIs 

Based on the correlation results, VIs will be constructed using the most relevant 

bands from the georeferenced reflectance image for mapping SBW defoliation. First, the 

VIs were derived from reflectance data using band pairs recommended in correlation 
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results. The band pairs with highest correlations with defoliation were used for mapping 

respectively. So a VI map can be generated by using two associated spectral bands to 

calculate VI for all pixels. Then same process were managed to generate a class image 

from each VI, here we used NDVI, NLI, RDVI and CNDVI for comparison. The 

reflectance at wavelengths 1568 and 691 nm were used for constructing NDVI for 

mapping SBW defoliation, 488 nm and 1568 nm for NLI, 2254 nm and 448 nm for 

RDVI, 702 nm and 752nm were used for CNDVI. For accuracy assessment, one region 

on the upper left corner of the study site was selected as shown in Figure 4.8(a). The 

airborne survey provides cross province defoliation report but the map was very coarse in 

resolution. Thus the mapping results were assessed at a selected region in which two 

pieces of forests were clearly separated by manmade and nature land cover. The upper 

half was covered by light defoliated or relative healthy forestry pixels while the lower 

half was covered with severe ones. The ground truth for this region was delineated by 

taking only vegetation pixels into account using the aerial report (MFFP, 2014) as a 

reference. The severely defoliated regions were delineated as red color while light 

defoliated regions were delineated as green color, as shown in Figure 4.8(c). In order to 

generate binary image to classify original image into specified bi-level map, the subset 

image of the assessment region was extracted for further process. A histogram 

equalization was applied on each VI image followed by a global image threshold using 

Otsu’s method (Smith et al., 1979). So the classification result will become a binary 

image with white pixels representing severe defoliation areas while black pixels 

representing light defoliation areas, as shown in Figure 4.8(b). Finally, the assessments 
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were conducted by comparing the mapping results with the ground truth map pixel-by-

pixel.        

4.5 Results and Analysis 

4.5.1 Hyperion Data Pre-processing 

The resultant radiance image from vertical stripes removal and cross track 

illumination correction was examined via MNF transformation (Datt et al., 2003). The 

MNF technique responds to interactions between the spatial structure of the data and that 

of the noise when the noise has strong spatial structure. As shown in Figure 4.2, the first 

and sixth MNF bands were generated from MNF transformation on original and output 

radiance data. Specifically "smile effect" can lead to a brightness gradient appearing in 

the first MNF band as shown in Figure 4.2(a) and stripes can be illustrated in subsequent 

MNF bands as shown in Figure 4.2(b).  
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The resultant radiance image from spatial corrections was then input to derive 

reflectance image through atmospheric correction. The spectra of one vegetation pixel on 

both radiance image and reflectance image were shown in Figure 4.3(a) and Figure 

4.3(b). The reflectance curve in Figure 4.3(b) provides spectral profile as typical 

vegetation spectral reflectance with significant low responses in visible region and high 

responses in the 

 

Figure 4.2 Original MNF band 1 and 6 were shown in (a) and (b). 

MNF band 1 and 6 after vertical stripes removal and cross track 

illumination correction were shown in (c) and (d). 
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near infrared region.  

4.5.2 Correlation of Vegetation Indices with SBW defoliation 

Based on the correlation values, the bands recommended for estimating 

defoliation were summarized for each VI in Table 4.2 by means of wavelengths and Full 

width at half maximum (FWHM). 

 

Figure 4.3 Spectral profile of one vegetation pixel on both radiance image (a) and 

reflectance image (b). Data value in both curves have unit µW/(cm2 * sr * nm) while the 

reflectance data has been multiplied by a scale factor of 1000. 
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In our experiments, we find high correlation value yielded using both NIR bands and 

 

Table 4.2 Potential Hyperion bands for 12 vegetation indices applied for SBW 

defoliation estimation. 

Index 

2R  
 

 

Band Center (nm) 

21 /   

FWHM (nm) 

21 /   

Spectral Region 

21 /   
  

NDVI 0.55 

1568 / 691 

1770 / 691 

2244 / 691 

 

11.31 / 10.39 

11.50 / 10.39 

10.47 / 10.39 

SWIR / Visible 

SWIR / Visible 

SWIR / Visible 

  

DVI 
0.49 

 

3 pairwise bands similar to NDVI’s 

803 / 488 

922 / 488 

1790 / 488 

 

… 

11.10 / 11.38 

11.04 / 11.38 

11.56 / 11.38 

 

… 

NIR / Visible 

NIR / Visible 

SWIR / Visible 

  

EVI2 0.55 

3 pairwise bands similar to NDVI’s 

569 / 722 

2254 / 488 

 

… 

10.84 / 10.60 

10.46 / 12.38 

… 

Visible / NIR 

SWIR / Visible 

  

SR 0.40 
Similar to NDVI’s 

 … …   

SAVI 0.55 
Similar to NDVI’s 

 
… …   

NLI 0.53 

681 / 488 

1568 / 488 

2113 / 498 

2254 /498 

 

10.33 / 11.38 

11.31 / 11.38 

10.78 / 11.35 

10.46 / 11.35 

NIR / Visible 

SWIR / Visible 

SWIR / Visible 

SWIR / Visible 

  

MNLI 0.53 
Similar to NLI’s 

 
    

MSR 0.52 
Similar to SR’s 

 
    

RDVI 0.51 

803 / 488 

2184 / 691 

2254 / 488 

11.10 / 11.38 

10.60 / 10.39 

10.46 / 11.38 

NIR / Visible 

SWIR / Visible 

SWIR / Visible 

  

CNDVI 0.62 

702 / 752 

763 / 590 

803 / 590 

1104 / 590 

1195 / 590 

 

10.46 / 10.71 

10.73/ 10.65 

11.10 / 10.65 

10.97 / 10.65 

10.82 / 10.65 

NIR / Visible 

NIR / Visible 

SWIR / Visible 

SWIR / Visible 

SWIR / Visible 

 

  

CDVI 0.60 
Similar to CNDVI’s 

 
   

CSR 0.61 Similar to CNDVI’s     

For each of the 12 VIs, the highest correlation values yielded using NIR or SWIR bands respectively 

were summarized in second column. From the third to fifth column, the two band  and  used for 

yielding high correlations were summarized by means of their band center wavelength, FWHM and 

spectral region. 
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SWIR bands different VIs. Among them, NIR bands at 700-800 nm and SWIR bands 

1700-2200 nm generate high correlations with defoliation data. Specifically, the 

correlation matrices 
2R  constructed from SR, EVI2, DVI and MSR have a similar 

pattern as NDVI, shown in Figure 4.4. The high correlation values were distributed as 

stripes close to left and bottom of the matrix square. The highest values were constructed 

from band wavelengths centered at 1568, 1770, 2244 nm in SWIR region. Noticeably 

more high correlation values were constructed with SWIR bands than NIR bands for 

NDVI. The SWIR bands were associated with absorption of water, cellulose, starch and 

sugar (Curran, 1989). The associated visible bands with them belong to yellow-red region 

with a shorter wavelength and higher frequency than the conventional red band. 

   

 

Figure 4.4 Plots for correlation matrix 2R  (from 0 to 1) between defoliation and NDVI 

calculated using pairwise 162 Hyperion bands 447-2365 nm. Two bands (Band 1 and 2) 

were used to calculate one NDVI value and generate one correlation coefficient value in 

the 2R  matrix. NIR bands (band 1-48) and SWIR bands (band 49-162) with high 

correlation values as illustrated were recommended for estimation of SBW defoliation 

and summarized in Table 4.2. 
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 The 
2R matrices of NLI and RDVI have their unique patterns as shown in Figure 

4.5 and Figure 4.6. The results of NLI and RDVI fail to imply a noticeable increase in 

correlation compared with NDVI. NLI yields a maximum value 0.53. The associated NIR 

band resides at 681 nm as a representative of Chlorophyll a while the SWIR bands at 

2123 and 2254 nm were close to the bands that absorb starch and protein (Curran, 1989). 

RDVI yields a maximum value of 0.51. The associated bands were identical or close to 

the bands introduced in other VIs. The soil adjusted VIs fail to improve their original 

formula as the highest correlation values keep increasing as we decrease the adjust 

parameter L from 0.5 to 0. This occurs in both MNLI and SAVI which were soil adjusted 

versions of NLI and NDVI respectively. This was mainly because of the high density of 

selected 

samples which contain very little soil component.  

 

Figure 4.5 Plots for correlation matrix 2R  (from 0 to 1) between defoliation and NLI 

calculated using pairwise 162 Hyperion bands. For more information refer to Figure 4.4. 

 



 

91 

 

 

 All the three Cosine based indices improved the correlation value of original VIs 

by considerable amount. Visualization of 
2R matrix constructed using CNDVI was 

shown in Figure 4.7. The highest correlation value suggests an increase from 0.40 in 

 

Figure 4.6 Plots for correlation matrix 2R  (from 0 to 1) between defoliation 

and RDVI calculated using pairwise 162 Hyperion bands. For more 

information refer to Figure 4.4. 
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original SR to 0.61 in developed CSR. 

  

The highest correlation value suggests an increase from 0.49 in original DVI to 

0.60 in CDVI. The highest correlation value suggests an increase from 0.55 in original 

NDVI to 0.62 in CNDVI. This can due to the use of Cosine function which projected 

them nonlinearly to reflect relevant characteristics related to SBW defoliation. Especially, 

the CNDVI constructed with bands at 752 and 702 nm generated the highest correlation 

value among all the VIs. It was revealed that land-based chlorophyll-producing 

vegetation has a very strong rise in reflectivity at around 700 nm by a factor of 5 or more 

(Seager et al., 2005). These bands were close to the red edge which was the name given 

to the abrupt reflectance change in the 680-740 nm region of vegetation spectra that was 

caused by the combined effects of strong chlorophyll  absorption and leaf internal 

scattering (Dawson and Curran, 1998). The red edge shifts according to a combined 

 

Figure 4.7 Plots for correlation matrix 2R  (from 0 to 1) between defoliation and 

CNDVI calculated using pairwise 162 Hyperion bands. For more information refer to 

Figure 4.4. 
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impact of chlorophyll content, LAI, biomass and hydric status. High chlorophyll content 

and high LAI make its position shifts toward the longer wavelengths and vice versa. 

Instead of seeking for an exact or approximate red edge position, the proposed VI 

construction method makes it possible to capture relevant red edge bands without prior 

knowledge. Other spectral bands with high correlation with defoliation when applied on 

CNDVI construction were residing at 763 nm, 803 nm, 1104 nm and 1195 nm. They 

were controlled by protein, lignin, water, cellulose and starch (Curran, 1989).  

As a summary, the NDVI and EVI2 generated the highest correlation coefficient 

value of 0.55 constructed from the Hyperion hyperspectral bands among existing VIs. 

Furthermore, the three developed VIs generate higher correlation coefficient than any of 

that generated by existing VIs. Among them the CNDVI generate the highest correlation 

coefficient of 0.62. In contrast, the VIs generated using ALI multispectral data only 

provided correlation coefficients as high as 0. 28. 

4.5.3 Mapping SBW defoliation using VIs 

NDVI, NLI, RDVI and CNDVI were applied and compared for mapping SBW 

defoliation in the study site. The mapping results and regions for assessment generated 

from NDVI, NLI, RDVI and CNDVI were illustrated in Figure 4.8- Figure 4.11 

respectively. As a binary classification, each mapping result was displayed as black and 

white distribution map in which black pixels represent lightly defoliated forest pixels and  

white pixels represent severely defoliated forest pixels. The whole study site was mapped 

using NDVI, NLI, RDVI and CNDVI as shown in Figure 4.8(a)- Figure 4.11(a). The 
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region used for assessment was a part of the study site located at upper right corner and 

for assessment purpose binary images were shown in Figure 4.8(b)- Figure 4.11(b) 

respectively. The ground truth map was illustrated in Figure 4.8(c)- Figure 4.11(c). 

 

 

Figure 4.8 Defoliation mapping result using NDVI index of the study site. (a) A 

grayscale image of the testing area; (b) Defoliation results detected in EO-1 Hyperion 

image where black pixels indicate light defoliated pixels and white pixels indicate 

severely defoliated pixels ; (c) Ground truth map of assessment region where green 

blocks were light defoliated forestry and red blocks were severely defoliated areas. 
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Figure 4.9 Defoliation mapping result using NLI index of the study site. For more 

information refer to Figure 4.8. 
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Figure 4.10 Defoliation mapping result using RDVI index of the study site. For more 

information refer to Figure 4.8. 
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It contains two classes shown by red color for severely defoliation pixels, green color for 

lighted defoliated pixels while black color as background stands for areas without 

classified information or not being considered as vegetation regions. The NDVI, NLI and 

CNDVI all have a good performance recognizing the majority of lighted defoliated pixels 

on the upper left corner while the mapping result of RDVI generates a relatively blurred 

scene instead of clean delineation. For the defoliated region, large block of white color 

can be seen from the CNDVI mapping result, followed by NIL and NDVI in which more 

 

Figure 4.11 Defoliation mapping result using CNDVI index of the study site. For more 

information refer to Figure 4.8. 
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pixels were wrongly identified as lighted defoliation. Again, the RDVI fails to generate a 

satisfactory mapping result. 

The mapping results were compared with the ground truth map pixel by pixel to 

calculate producer's, user's and overall accuracies as well as kappa coefficient for 

accuracy assessment, as shown in Table 4.3. The developed CNDVI suggests 

considerable better performances over existing NDVI on mapping both several and slight 

defoliated forestry regions. Accuracy assessment quantified how well different 

defoliation magnitude levels were mapped by using NDVI and CNDVI. CNDVI 

produced the producer's, user's accuracies of 83%, 76% for severe level and 74%, 73% 

for slight level, respectively. It obtains an overall accuracy of 78% and kappa coefficient 

of 0.43 which indicated a moderate agreement. Compared with mapping accuracies of 

NDVI, the CNDVI has made a larger improvement on mapping severe defoliation 

regions. The reason for this was two-folded: the developed index has better simulated the 

responses from defoliated forest spectra and moreover it can also due to the change of 

defoliation magnitude by time as the annual aerial survey report was used. The number of 

defoliated pixels was also estimated in the regions without ground truth providing more 

accountable information on their distribution.  
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The mapping results suggest a correspondence with the correlation results yielded 

using VIs constructed in this study, as the CNDVI constructed from highest correlated 

bands generate the best mapping results. It further demonstrates the advantage of 

spectrally correlation analysis using remotely sensed hyperspectral data. The 

investigation provide more spectrally accurate and specific estimation on SBW 

defoliation by involvement of all 162 available Hyperion bands and 12 VIs. As a 

summary, the developed CNDVI is15% more accurate for mapping SBW defoliation in 

the study site than existing NDVI.  

4.6 Conclusion 

In this study, we investigated the potential of 9 existing vegetation indices (VIs) 

and 3 new VIs developed in this study for the estimation of spruce budworm defoliation 

in Quebec region, Canada, using Hyperion data. Suitable two spectral bands were 

selected from 162 available Hyperion hyperspectral bands for VI calculations. The VIs 

 

Table 4.3 Comparison of accuracies using NDVI and CNDVI for mapping SBW defoliations 

Accuracies NDVI  NLI RDVI CNDVI   

Producer’s (Severe/Light) 79% / 61% 78% / 60% 67% / 59% 83% / 74%   

User’s (Severe/Light) 56% / 82% 54% / 82% 62% / 64% 76% / 81%   

Overall 68% 67% 63% 78%   

Kappa 0.37 0.35 0.26 0.56   

1 and 
2  at wavelength 1568 nm and 691nm were used for NDVI,  488 nm and 1568 

nm for NLI, 2254 nm and 448 nm for RDVI, 702 nm and 752nm were used for 

CNDVI. 
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include linear, nonlinear and soil adjusted models. The assessments on the performance 

of all tested 12 VIs were based on their correlation with defoliation data provided by 

airborne survey on the same site and mapping results. In our experiments, we noticed the 

soil adjusted model fail to improve neither linear VIs nor nonlinear VIs. Existing 

nonlinear VIs fail to improve the correlation results with given data in comparison with 

their linear correspondence. While the developed Cosine function based VIs suggested 

outperformances the existing VIs in our experiments.  

With same methodology applied, the Hyperion hyperspectral image achieved 

considerably better estimation results compared with ALI multispectral image. A possible 

reason was that Huang et al. applied 162 bands of Hyperion hyperspectral data that had 

much more bands with much higher spectral resolution, while this study applied only 

nine bands of ALI multispectral data. Hyperspectral data having a large number of bands 

with narrow spectral interval provide almost continuous spectra of targets and natural 

backgrounds, and this may increase the discrimination capability of subpixel size targets. 

Furthermore, the VIs analysis was statistic based. The increase of the number of bands 

improved the spectral information from the image that involved in the correlation 

analysis. Consequently, spruce budworm defoliation could be better identified from 

Hyperion hyperspectral data. 

Finally, NIR bands at 600-800 nm and SWIR bands 1700-2200 nm were 

identified to be more relevant to defoliation estimation. NDVI together with developed 

CSR, CDVI, and CNDVI were recommended for estimation of SBW defoliation in 

regions similar to our study site.  
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5 CHAPTER 5  

EXPLOITING SPECTRAL AND SPATIAL INFORMATION FOR MAPPING 

SPRUCE BUDWORM DEFOLIATION USING HYPERION 

HYPERSPECTRAL DATA 

 

Abstract 

As an indirect surveying method, remote sensing technique has special 

advantages on monitoring and mapping the forestry properties that caused by external 

damages. The spruce budworm (SBW) defoliates dramatically the spruce and balsam fir 

forests in eastern Canada. Timely and accurate mapping of the defoliation will provide 

crucial support to mitigate the socio-economic impact on vulnerable forests. In this study, 

we provide a method for mapping SBW defoliation for a study site in the province of 

Quebec, Canada using remotely sensed Hyperion hyperspectral data. The Hyperion data 

provide fine spectral resolution among a wide range of spectral wavelengths which 

allows for spectral information extraction. However, its spatial resolution was relatively 

coarse (30m) which results in dominant mixed pixels especially in homogenous forestry 

regions. Such condition makes conventional mapping methods that need pre-located and 

labeled endmembers very difficult to use or even inapplicable. In this study, we propose a 

mapping method that exploits both spectral and spatial information from hyperspectral 

data. The method requires no pre-labeled endmembers and uses an unsupervised K-
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means classifier to map the defoliation. As relevant features were exploited, the classifier 

performs better than applied on original high dimensional data or other dimensionality 

reduction method such as Minimum Noise Fraction (MNF) Transform.     

 

Keywords: Hyperspectral image processing, spruce budworm defoliation, feature 

extraction. 

5.1 Introduction 

Remote sensing has become an invaluable tool in mapping nature disturbance in 

forests. Linked with spatial and spectral properties, the biophysical of forests can be 

identified in remotely sensed imagery. Moreover, the indirect survey makes remote 

sensing more suitable for investigation on inaccessible forestry areas with considerable 

size. Specifically, remote sensing techniques have been applied for mapping the 

defoliation in spruce and fir forests in Quebec, Canada caused by spruce budworm, one 

of their most harmful inhibited inserts (Gray and Re, 2000). Conventional Strategies to 

eliminate or slow the spread of these destructive pests such like pesticide spraying can be 

costly, time consuming and less effective when accurate estimation of defoliated regions 

was not available. Using remote sensing techniques, especially satellite images, provide 

spatially unlimited and wide coverage for investigation. Researches have been conducted 

on mapping forests defoliation caused by SBW or other insects using remote sensing 

data, such like Landsat (Thomas et al., 2007) and MODIS(de Beurs and Townsend, 

2008). However, little evidence has been found on using hyperspectral imagery for 
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mapping SBW defoliation. Especially, the Hyperion hyperspectral data obtained from 

EO-1 satellite were used in this study. The imagery was obtained from NASA free of 

charge. The Hyperion data provide hundreds of channels with spectral interval of around 

10 nm provide almost continuous spectra for field observations. The forests biophysical 

properties can be therefore identified on responses from relevant spectral bands. In order 

to derive useful information from those bands, narrow band vegetation indices (VIs) can 

be constructed using available Hyperion bands. Compared with broad band VIs 

constructed using multispectral bands, narrow-band VIs have advantages in identifying 

more accurate spectral information.    

Research conducted on mapping or classification using hyperspectral data can 

take advantage of its wealthy spectral information. The increase of dimensionality in 

hyperspectral data was expected to increase the abilities of classifying objects in remote 

sensing scenes. However, the classification methods that have been successfully applied 

to multispectral data in the past were not as effective as to hyperspectral data. The major 

cause was that the size of training data set does not adapt to the increasing dimensionality 

of hyperspectral data (Science, 2001). As the dimensionality increases with the number of 

bands, the number of training samples needed for training a specific classifier should be 

increased exponentially, which was usually not available. This will result in overfitting of 

the training data and poor generalization capabilities of the classifier. Moreover, in many 

objects, their reflectance or absorption characteristics only appear at a very narrow 

spectral range. The correlation between the bands was also quite strong (Su et al., 2008). 

All these properties make hyperspectral data redundant in its data volume and 
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classification accuracies can be affected by irrelevant bands. Thus dimensional reduction 

by means of feature extraction in hyperspectral data was usually useful. The feature 

extraction was considered as a data mapping procedure which will reduce the 

dimensionality of data, especially considered as the number of bands in hyperspectral 

data, to an appropriate dimension. The resultant data contain less number of bands while 

preserve critical spectral information. Existing methods, such like Minimum Noise 

Fraction (MNF) Transform (Boardman, 1993) reduces the spectral dimension by 

applying a linear transformation on the image bands and retaining only the significant 

components for further processing. Although these approaches were sufficient for 

reducing data volume, they do not emphasize individual spectral classes or signatures of 

interest (Harsanyi and Chang, 1994). For example, the first principal component image 

contains the most spectral information, but it was generally a linear combination of 

information from different spectral classes. Especially in homogeneous forest areas, the 

spectral information was still highly mixed after the transformation. Thus the MNF 

transformation may not necessarily help separate spectral classes in specific applications.  

In this study, we aim to extract feature from Hyperion hyperspectral imagery 

readily for mapping SBW defoliation. Less or no training samples will be needed. 

Moreover, the feature will be suitable for existing classifiers and achieve better 

performance. A Spectral- Spatial based mapping method (SSM) was developed focusing 

at hyperspectral feature extraction for mapping SBW defoliation. The designed feature 

extraction consists of two phases: spectral information extraction and spatial information 

extraction. Instead of applying principle analysis, the proposed method derives spectral 
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information and reduces the data volume by replacing the original Hyperion bands with 

constructed VI bands. Research on the performances of difference Hyperion bands and 

the vegetation indices yielded from them has been conducted in (Gong et al., 2003). Thus 

the developed VIs constructed with most relevant Hyperion bands were used to extract 

spectral information for mapping purpose. 

Recent studies suggest the advantage of integrate spatial information in 

hyperspectral classifications. Spectral–spatial classification aims at assigning each image 

pixel to one class using a feature vector based on the following: 1) its own spectral value 

(the spectral information) and 2) information extracted from its neighborhood (referred to 

as the spatial information) (Tarabalka et al., 2009). In this study, a histogram based 

method was applied to extract spatial information on derived spectral bands. The method 

was developed with the consideration that neighborhood of similar incident pixel should 

have similar spatial character identified by their respective histograms. Those histograms 

were then combined as features integrated both spectral and spatial information. Finally 

the constructed features as a substitution to the original Hyperion bands were put into a k-

means classifier (MacQueen, 1967)attempting to classify and mapping different forest 

status, i.e., the extent of SBW defoliation in our study site.      

5.2 Study Site and Materials 

5.2.1 Study site 

The study site used in this study for mapping SBW defoliation was shown in 

Figure 5.1. We established several campaigns for Hyperion data acquisition during June, 
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July and August, 2014 on a selected site centered at 48°09’54’’S/67 °19’21’’W near the 

Causapscal city, across the Bas-Saint-Laurent region which located along the south shore 

of the lower Saint Lawrence River in the Quebec Province, Canada. One footprint of the 

Hyperion stripes was shown in Figure 5.1. Our study site locates at the upper right corner 

of the stripe as illustrated.  

 

The study on mapping SBW defoliation not only provides novel research 

approaches but also provides critical information potentially help eliminate spread of 

SBW. According to the aerial survey report “Infested areas of spruce budworm in Quebec 

 

Figure 5.1 Study site 
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in 2014” (Quebec, November 2014), the Bas-Saint-Laurent region was one of the most 

dominant infested areas by spruce budworm in Quebec, totaled 316,103 hectares. It was a 

relatively homogeneous rural area mostly covered by spruce and fir. The area affected by 

SBW continues to rise significantly in the province. In 2014, they totaled 4,275,065 

hectares compared to 3,200,348 hectares in 2013.  

5.2.2 Materials 

Interpretation ground truth of SBW infested fields was provided by the Quebec 

government report (MFFP, 2014). The aerial survey of damage caused by major forest 

pests was carried out annually since 1967 by the Ministry of Forests, Fauna and Parks 

(Ministère des Forêt, de la Faune et des Parcs, MFFP). The aerial survey scans natural 

disturbances observed from the air in real time. The aircraft flies at an altitude of about 

240 meters, at a speed of 160 km / h, keeping a distance of 4.5 kilometers between flight 

lines. The survey reports three levels of defoliation in Quebec, namely slight, moderate 

and serious, containing the study site mentioned above. According to the study of Dr. 

Taylor and Dr. MacLean in 2008 (Taylor & MacLean, 2008), from 1985 to 1993, 85% of 

332 cases were correctly classified by aerial estimate. They concluded that aerial surveys 

provide a reasonable estimate of defoliation.  

The EO-1 Hyperion hyperspectral image stripe applied in this study was acquired 

on July 19, 2014, around 10:20 A.M. local time, it was cropped from the same imagery 

used in Chapter 4. The selection of image stripes was determined by both the image 

quality which heavily affected by the cloud condition and the acquisition date which 
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should reflect most infested areas. The selection of study site for mapping in this study 

was based on observation of airborne report. Even though the report provides across 

province survey results, the distribution map was relatively coarse. So the study site was 

selected at a region where two pieces of forests with different levels of defoliations were 

separated by roads.  The image was at level L1R processing, meaning that it was only 

radiometrically corrected and with no geometrically correction applied (Beck, 2003).  

5.3 Methodology 

5.3.1 Data Pre-processing 

Hyperion data contain 242 spectral bands in total, 44 ones of which were not 

calibrated because they were intentionally not illuminated or correspond to areas of low 

sensitivity of the spectrometer materials (Datt et al., 2003). In addition, two more zero 

bands were identified in our data of use, which were band 80 and 81. In addition, 

atmospheric water vapor bands which absorb almost the entire incident and reflected 

solar radiation and the bands that have very severe vertical stripping also need to be 

removed (Beck, 2003). Thus, the subset of 162 selected bands (bands 10-57, 77-79, 82-

119, 134-165, and 181-221 within 447-2365 nm) were applied in this study.  

For the subset of 162 selected bands, abnormal pixels that have lower DN values 

as compared to their neighboring pixels were corrected by replacing their DN values with 

the average DN values of their immediate left and right neighboring pixels (Han et al., 

2002). Vertical stripes were removed using the “SPEAR Vertical Stripe Removal” in the 

ENVI software (ITT Visual Information Systems, 2006) (Datt et al., 2003). The "smile 
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effects" that refer to an across-track wavelength shift from center wavelength due to the 

change of dispersion angle with field position (Goodenough et al., 2003) were removed 

using the procedure of "Cross-Track Illumination Correction" (Jupp et al., 2003) in the 

ENVI software (ITT Visual Information Systems, 2006). This study uses the Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), an atmospheric 

correction module implemented in the ENVI to calibrate the at-sensor radiance data to 

land surface reflectance (Beck, 2003).  

The ground truth of study site was derived from one thematic map covering our 

study site was provided by the aerial survey report. In the ground truth, two levels of 

defoliations present on two separated pieces of forests: slight (loss of foliage in the upper 

third of the tops of some trees) and severe (loss of foliage on the entire length of the top 

of most trees). As illustrated in Figure 5.6(d), slight defoliation areas were marked by 

green color while severe ones were marked by red color. The black back ground 

illustrates uninvestigated areas from aerial survey. Both the ground truth map and the 

Hyperion data were geometrically corrected using the ENVI “Image to Map 

Registration” process. They were first projected to datum WGS 84 and the “Geographic 

lat/lon” projection was selected. The latitude and longitude of selected ground control 

points were matched on Google Earth. An overall root mean square error (RMSE) of 0.39 

pixel was achieved.  

 



 

114 

 

5.3.2 Exploit Spectral Information  

The proposed SSM method starts with extraction of relevant spectral information 

concerning SBW defoliation. Hyperspectral data contains rich spectral information for 

feature extraction. The spectral feature extraction should serve to preserve the 

information of interest for a special application or problem. In our case, the extracted 

spectral feature should be able to distinguish regions with different conditions in 

defoliated magnitudes. Construction of vegetation indices was effectively applied to 

relate forestry biophysical condition to remotely sensed image data. Meanwhile the 

increase of number of spectral bands in hyperspectral data makes it possible to construct 

narrow-band VIs, which allows for obtaining more specific and precise VIs that highly 

correlated with defoliation status. Those VIs were described by a function whose output 

varies with the input spectral bands. The study on the selection of the function as well as 

accompanied spectral bands were studied in (Huang, 2015). So in this study, we reduce 

the dimensionality of Hyperion data by replacing the original hyperspectral bands with 

constructed vegetation indices bands, as shown in Figure 5.2(a)-(b). The applied 

vegetation index was  
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developed in (Huang, 2015) by applying a Cosine function on conventional normalized 

difference vegetation index (NDVI). Narrow-band VIs were constructed using this index. 

Based on their results, the applied Hyperion bands for constructing the vegetation indices 

bands were summarized in Table 5.1. Unlike conventional dimensional reduction 

methods that derive spectral information by considering spectral significance in general, 

the narrow band VIs used in our study contains most relevant spectral information for 

identifying SBW defoliations. This was supported by researches and experiments 

conducted in (Huang, 2015) where VIs and associated Hyperion bands with highest 

correlation with defoliation data were reported. After the VI band construction, only five 

 

Figure 5.2 Extract spectral information from original Hyperion data as shown in (a) by 

constructing 5 vegetation index bands as shown in (b). 
 

VI bands 
Construction

(a) (b)
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bands were used for mapping and classifying defoliation status in our study site.  

 

As mentioned, existing methods for hyperspectral dimensional reduction, such 

like MNF transformation, was also widely applied in spectral information extraction. 

Therefore in this study we compare our method with conventional MNF method to 

demonstrate the efficiency of proposed spectral extraction method.   

 

Table 5.1 Construction of VI bands used for spectral information extraction 

VI band 

Formulas 

(subscripts shown applied Hyperion bands) 

Wavelengths  

1 
3540

3540cos







 752 nm / 702 nm  

2 
4115

4115cos







 590 nm / 763 nm  

3 
4515

4515cos







 590 nm / 803 nm  

4 
9615

9615cos







 590 nm / 1104nm  

5 
10515

10515cos







 590 nm / 1195nm  

Details on VIs construction and their relationship with SBW defoliation can be referred 

to (Huang, 2015). 
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5.3.3 Exploit Spatial Information  

The second phase of proposed SSM method was about exploiting spatial 

information to enhance the efficiency of extracted feature. Exploit spatial information in 

a hyperspectral scene can increase the robustness of feature and make different objects 

more distinguishable. In proposed method, this process was done by integration of 

information from neighboring pixels of one incident pixel. As pixels on an image were 

highly correlated, i.e. the pixels in the immediate neighborhood possess nearly the same 

feature data. Therefore, the spatial relationship of neighboring pixels was an important 

characteristic that can be of great aid in imaging classification. The combination of 

neighboring information was implemented by using histogram. A histogram was a 

graphical representation of the distribution of data. In images, the histograms serve as a 

statistic summary of pixel values. The summary can be applied on local neighborhood of 

each incident pixel as well, considered as local histogram (Figure 5.3(a)). Local image 

histograms contain a great deal of information useful for applications in image processing 

and computer vision. Making use of such information could help distinguish spectral 

classes that can be hardly classified if only one pair of incident pixels was compared. 

With neighborhood of each pixel taken in to account in homogenous forestry region in 

hyperspectral scenes, the classified regions tend to form blocks instead of discrete points 

which was more close to reality.  

In order to integrate spatial information to construct features, we first define a 

neighborhood surrounding each incident pixel on each VI band image. A histogram was 

extract for each pixel location based on its neighborhood. The process was illustrated in 
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Figure 5.3(a)- (c). Depending on the size of neighborhood, the pixels near the boundary 

of each VI band will not get sufficient neighbors, so we generate a solution in this study 

by applying a symmetric padding around the original VI band image, as illustrated in 

Figure 5.4. An original VI band image was defined inside the black outlines. First, an 

outside boundary was defined in order to make room for neighborhood generation. Given 

a neighborhood with size ww , the four outside boundary was located by extending the 

each original boundary of the VI band image with a width of r , where  ,2/)1(  wr  i.e. 

if the distance r of a pixel was close enough to its closest boundary that not greater half of 

the neighborhood size, it will be copied to generate a new 
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point outside the original boundary with the same pixel value by means of point or line 

symmetry. The pixels inside the red squares on the four corners of the original image will 

be copied to the four corners of the new boundaries by means of point symmetry. Pixels 

within other colored blocks will be copied to outside blocks in new boundaries with the 

same colors. 

This was to provide neighborhood for all the pixels on the original VI bands to 

calculate the histograms. Each histogram was saved as a vector with its dimension equals 

to the bin used in histograms. Finally the histogram generated from each VI band for one 

 

Figure 5.3 Process of exploiting spatial information by extracting histogram vectors (b) 

from each VI band (a) and stacking into a single feature vector (c) for each pixel 

location. 
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pixel will be stacked one after another into one feature vector and put in classifier for 

classification and mapping.   

 

5.3.4 Classification and mapping SBW defoliation  

 The final step of proposed method was to apply a classifier on constructed 

features to generate classified mapping results. An unsupervised k-means classifier was 

applied in this study, meaning that we didn’t provide the classifier any training samples 

of SBW defoliation data. This will further demonstrate the efficiency of our spectral-

spatial feature. k-means classifier was an algorithm developed to partition the n 

 

Figure 5.4 Illustration of symmetric padding method used in neighborhood construction. 

The original VI band image was defined inside the black outlines. The blue and red 

blocks outside the black outlines were generated based on line or point symmetry based 

on their respective locations. 
 

 

r
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observations 
},...,,{ 21 kxxxx

 into k (≤ n) sets 
},...,,{ 21 kSSSS

so as to minimize the 

within-cluster sum of squares (WCSS): 

2

1

||||minarg i

k

i Si


 


xS

x

, 

where i was the mean of the points in set iS
. 

In our particular case, we aim to mapping the SBW defoliation by classifying into 

two sets in which relatively light defoliated pixels and severely defoliated pixels can be 

presented. Thus k =2 in our experiments. Three types of data will be put into k-means 

classifier for comparison, namely the original Hyperion data, MNF bands and feature 

bands constructed using proposed method. Their performances will be compared and 

analyzed in next section.  

5.4 Experimental Results and Assessment 

5.4.1 Comparison of mapping results 

The reflectance image obtained from pre-processing of used Hyperion data was 

used for mapping task. The reflectance data has 162 spectral bands. For comparison of 

the mapping results, three different input data were applied with the same k-means 

classifier, namely, the original reflectance data, with each data point a dimension of 162, 

the MNF bands, with each data point a dimension of 5 and the developed spectral-spatial 

feature, with each data point a dimension of 5h, where h stands for the number of bins 

used in histogram extraction. 
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The MNF transformation which derives principle components from the original 

bands will result in a sequence of MNF bands with decreasing significance in terms of 

spectral information derived. Thus in order to compare the performance of using MNF 

bands with our method, same number of five bands were selected from MNF bands by 

using the first five bands, as shown in Figure 5.5. The five bands contain different 

spectral information though there’s no control or knowledge on which aspect of 

information has been extracted by each MNF band. For instance, the first band appears to 

extract brightness of the scene while the rest appears to have more information concern 

the landscape of scene while features like edges and shapes were still randomly spread 

among the bands.        

 

    

For proposed Spectral- Spatial based mapping method (SSM), a neighborhood 

size of 1515 with a bin of 15 was applied for the histogram. The mapping results of 

 

Figure 5.5 MNF bands 1-5 as shown in (a)-(e) were used for comparison in mapping 

SBW defoliation. 
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using three different inputs with the same k –means classifier were shown in Figure 5.6. 

As a binary classification was applied, the cluster number of the k –means classifier was 

set to be 2 for all the experiments. Then the classified results were displayed with black 

and while colors. As shown in the mapping results Figure 5.6(a)-(c), the white pixels 

represent severely defoliated regions while the black pixels were classified as light 

defoliated regions. The ground truth derived from the airborne survey was displayed in 

Figure 5.6(d) in which red blocks represent severely defoliated regions and green blocks 

represent light defoliated regions. Visually, one can find the SSM mapping result 

displayed in Figure 5.6(a) has the best result and dominant performance compared with 

the rest two. Most classified regions have precise match with the ground truth. In addition 

the mapped regions turn to be more homogeneous just like the real case in defoliated 

forests. The mapping result using MNF bands displayed in Figure 5.6(b) has also 

generate a relatively satisfying result for the light defoliated regions as compared with 

severely defoliation regions. As one find easily find large blocks at the lower right corner 

have been detected as light defoliated regions while they were mostly severely defoliated 

in real case. It was noteworthy that the mapping result also generated relatively 

homogeneous regions for both defoliated conditions. However, the zigzag artifacts were 

also very obvious. The original hyperspectral data, with the highest data volume in terms 

of dimension, fails to generate a satisfying result. The result turns to provide little 

discrimination between different defoliation magnitudes.  
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The mapping results were also evaluated with standard accuracy assessment as 

summarized in Table 5.2. SSM performs the best among the three in terms of Producer’s, 

User’s and Overall Accuracies and a strongest agreement suggested by high Kappa 

coefficient. As a binary classification, a successful classified result should have high 

accuracy detecting both classes. This explains why SSM has the best performance as all 

accuracies achieved for both classes were near or above 90%. This also explains why the 

other two classification results were not satisfactory though they sometimes detected very 

well on one class which was however a result of overcompensating the detection on the 

other. Thus this kind of biased classification result should not be considered as accurate 

 

Figure 5.6 Mapping result for SBW defoliation condition of study site. (a) Mapping result 

by using proposed SSM method; (b) Mapping result by using MNF; (c) Mapping result by 

using original Hyperion reflectance data; (d) Ground truth map of assessment region 

where green blocks were light defoliated areas and red blocks were severely defoliated 

areas. 
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or useful.  

 

As SSM extracts more relevant information from hyperspectral data and uses 

them as features, it shows clear advantage over conventional spectral feature extraction 

method MNF. Noticeably, directly applying k-means classifier on original Hyperion data 

shows its incompetence in classifying the high dimensional data for our mapping 

purpose. The high dimensional data contains considerable noise that can mislead the 

classifier to wrong directions.   

5.4.2 Parameter Adjustments 

As mentioned above, two parameters need to be adjusted for proposed SSM 

method to generate best results, namely the neighborhood size w and the bin size h for 

the histograms. Mutual tests on these two parameters concerning the mapping accuracies 

were conducted. First the bin size h was set to be 12 to seek for best performance given a 

 

Table 5.2 Comparison of accuracies using NDVI and CNDVI for mapping SBW 

defoliations 

Accuracies SSM  MNF Original   

Producer’s (Severe/Slight) 91.8% / 99.7% 95.1% / 64.0% 59.5% / 60.7%   

User’s (Severe/Slight) 99.7% / 89.5% 54.0% / 96.7% 80.8% / 35.0%   

Overall 95.1% 73.6% 59.8%   

Kappa 0.90 0.49 0.16   

Both SSM and MNF used 5 bands as input while the original Hyperion data used 162 bands as input. 
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range of w. Then the w was fixed to seek for a best h. The user’s, producer’s and overall 

accuracies together with kappa coefficients when running these mutual tests were shown 

in Figure 5.7 and Figure 5.8. The results in Figure 5.7 suggest both overall accuracy and 

Kappa coefficient increase from smaller size neighborhood until reached maximum at w 

= 15 then decreases. So w = 15 was used to seek for an optimal bin size h. As shown in 

Fig. 8 the overall accuracies had a slight increasing with increments of w while slight 

fluctuations can be identified with associated Kappa coefficients. This was because k-

means algorithm uses random initialization points which may end up in slight different 

classification results in each execution, but generally we consider the factor h has a less 

impact on our experiments as compared with w. 

 

 

Figure 5.7 Overall accuracies and Kappa coefficients with a range of neighborhood size 

w being used for experiments. The bin size of histograms h was set to be 12. 
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5.5 Conclusion 

In this study, we proposed a spectral-spatial based method for mapping the 

defoliation caused by spruce budworm in a study site in Quebec, Canada using Hyperion 

hyperspectral data. The spectral information were derived from vegetation index bands. 

Those bands were proven to be most relevant to defoliation status. As only 5 bands were 

used, the proposed method can be considered a new approach for hyperspectral 

dimensional reduction. Moreover, the proposed method integrates the spatial information 

from used VI bands by extracting histograms from neighborhood of each incident pixel. 

Thus spectral-spatial features can be extracted from hyperspectral data. The efficiency of 

constructed feature was examined in mapping experiments. The experimental results 

 

Figure 5.8 Overall accuracies and Kappa coefficients with a range of histogram bin 

size h being used for experiments. The neighborhood size w was set to be 15. 
 



 

128 

 

suggests noticeable advantage of applying proposed feature in an unsupervised k-means 

classifier for mapping SBW defoliation than conventional spectral feature extraction 

method MNF or method without feature extraction.    
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6 CHAPTER 6  

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarized this MScE research that aimed to achieve the objective 

of monitoring the spruce budworm defoliation by means of estimating and mapping using 

remotely sensed satellite images. Then, the contributions of this research were 

highlighted. Finally, several recommendations were outlined for future studies.  

6.1 Summary of the Research 

In Chapter 1, the thesis introduced the problem of spruce budworm defoliation in 

Quebec, Canada. The significant amount of forest areas affected and the aggravating 

situation highlighted the necessity of the timely monitoring of spruce budworm 

defoliation through remote sensing. The literature review of remote sensing of spruce 

budworm defoliation identified an important and urgent research problem: how to 

estimate and map the spruce budworm defoliation by taking advantage of the rich 

spectral information provided by spaceborne hyperspectral sensor? Therefore, this thesis 

aimed to find a way to monitor effectively the spruce budworm defoliation in Quebec, 

Canada from EO-1 Hyperion hyperspectral data. The investigation attempted to explore 

the possibility of extending the vegetation indices study on defoliation to narrowband 

level which constructed with nearly continuous hyperspectral bands.  
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Taking EO-1 Advanced Land Imager (ALI) data as an example, Chapter 2 

demonstrated that moderate spatial resolution multispectral data could not provide 

acceptable estimation or mapping results for spruce budworm defoliation. 

In Chapter 3, the potential of using existing form of VIs constructed with Hyperion 

data for monitoring spruce budworm defoliation were investigated. The study site was 

centered to the east of the Sainte-Florence village, west of Lac Humqui, at the southern 

part of the Bas-Saint-Laurent region in Quebec, Canada. Two multi-temporal images 

were applied for VIs based change detection in order to find the VIs with significant 

response during the defoliation. Based on the yielded change rates, narrowband VIs were 

chosen from different aspects of forest health regarding greenness, canopy water content 

and light use efficiency. Forest health analysis was conducted based on those VIs to 

provide a forest stress map. 

Although the VIs based forest health analysis can delineate the forest stress with 

considerable visually correlate with the spruce budworm defoliation, more specific and 

accurate estimation was still needed. Hence, Chapter 4 designed a thorough investigation 

on the potential of existing and new narrowband vegetation indices (VIs) constructed 

with 162 available Hyperion hyperspectral bands on estimating and mapping SBW 

defoliation. The selection of VIs was based on a correlation analysis between the VIs and 

defoliation magnitude. Nine existing and three developed non-linear two-band VIs were 

investigated. Compared with conventional NDVI, the developed CNDVI constructed 

with suitable Hyperion bands achieved 15% of accuracy improvement in general in 

estimation and mapping SBW defoliation. 
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The accurate classification of defoliation magnitude or intensities was considered a 

long challenging problem. Chapter 5 attempted to find a solution to it. The exploration of 

spectral information within hyperspectral data enhanced the ability of VIs for estimating 

SBW defoliation. The constructed VIs bands can be considered as a process of exploiting 

spectral information. Meanwhile, to generate a robust feature with considerable ability to 

differentiate different level of defoliation, the thesis also exploited the spatial information 

within the hyperspectral scenes. Based on the assumption that the defoliation intensities 

should have a homogeneous distribution within the scene as neighboring pixels should 

have effect on the center pixel, a local histogram was applied to derive the feature. A high 

accurate classification result was achieved by applying the constructed spectral-spatial 

feature to an unsupervised classifier. 

Chapter 4 and 5 used the same study site located close to the Causapscal city, 

across the Bas-Saint-Laurent region in Quebec, Canada. All of Chapters 3-5 applied EO-

1 Hyperion hyperspectral data.  

6.2    Contributions of the Research 

The major contributions of this thesis was that the exploration of using 

hyperspectral data for estimating and mapping spruce budworm defoliation. The 

estimation was mainly achieved by taking advantage of the fine spectral resolution 

provided by hyperspectral sensor and thorough analysis on the spectral domain by means 

of vegetation indices analysis. The mapping and classification of spruce budworm 
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defoliation was mainly achieved by integrating exploited spectral and spatial information 

from the hyperspectral scene. 

The studies on defoliation caused by spruce budworm or other insects through 

remote sensing highlight the role of vegetation indices constructed using reflectance from 

relevant spectral regions. This thesis extended the studies in this area to hyperspectral 

level, i.e., more specific narrowbands were used to construct VIs instead of using the 

broadband VIs constructed with multispectral images. The study starts with approaches 

similar to that used in multispectral VIs studies for defoliations and visually satisfactory 

results were achieved. Furthermore, the study breaks the fixed form of conventional VIs 

that specified spectral bands were used to calculate each VI. 162 available Hyperion 

bands were used to calculate VIs through 12 forms of VIs, this amount to 1944 different 

combinations. The aim was then to find the suitable combination of VI as well as the 

bands that were used for estimating defoliation magnitude.  To the knowledge of the 

author, this thesis was the first study attempting to reveal the most relevant narrowband 

VIs with SBW defoliation using satellite hyperspectral imagery. Furthermore, the non-

linear Cosine based VIs developed in this thesis was discovered to be highly correlated 

with the spruce budworm defoliation in the study site. 

The classification of SBW defoliation intensities was solved in the thesis. Even 

though hyperspectral data provide more spectral information than data from any other 

sensors, the high dimensionality and redundancy were making the process of 

hyperspectral images more difficult and less efficient unless suitable feature extraction 

method was applied. This thesis proved the possibility of applying local histogram on 
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derived VIs bands as features for hyperspectral data. The proposed classification method 

achieved high accuracy for classifying the defoliation intensities in the study site. 

To the authors’ knowledge, there was little evidence that aerial and/or satellite 

hyperspectral data have been used to monitor spruce budworm defoliation in previous 

studies. This thesis employed spaceborne EO-1 Hyperion hyperspectral imagery. The 

Hyperion imagery was free of charge. This makes it possible to cover the widely 

distributed spruce and fir forests in Canada. In contrast, high spatial resolution satellite 

imagery and aerial hyperspectral data with high spatial resolution were too expensive for 

this developing country if without financial aids.   

6.3 Recommendations for Furthermore Research 

Remote sensing has been increasingly being used in forest health monitoring of 

insect defoliation. However the research in this field was still at an early stage. Remote 

sensing of defoliation was a complex and multifactorial task, dependent on several 

factors such as physiographic conditions or host and pest phenologies (Rullan-Silva et al., 

2013). Such conditions make it harder to relate the reflectance values captured from 

sensors to the real phenomenon. Furthermore, it can be extremely hard to relate data 

captured by satellite sensors to defoliations happened close to ground, considering the 

distances and phenomenon occurred in between which can affect dramatically the results. 

This calls for evolution of the satellite sensors but more importantly high accuracy of 

correction of the satellite imagery.     
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Forest defoliation does not mean a simple change in foliage condition, so each case 

should be treated as unique, testing different sensors and combining different techniques 

that may produce the best results. For example, mounted on the same satellite EO-1, the 

multispectral sensor ALI provides multispectral images and panchromatic images 

simultaneously as Hyperion images were acquired. The panchromatic images have a 

higher resolution of 10m which help identify better the changes occurred in spatial 

scenes. The image fusion between hyperspectral images or multispectral images and 

panchromatic images can produce images with higher spatial resolution and meanwhile 

remains a good spectral resolution. The airborne and field captured imagery or spectral 

data can be potentially integrated with satellite hyperspectral data by means of 

correlation. The ground based spectroradiometric measurements can be also used to 

improve the retrieved reflectance for each pixel on the satellite hyperspectral image 

(Gong et al., 2003).  

It has been revealed the climate warming trends may provide favorable 

environmental conditions for endemic spruce budworm outbreaks. It then becomes 

relevant and meaningful to synthesize the information from sources other than direct 

monitoring of the forests, e.g., the climate monitoring satellite nowadays can provide real 

time weather data.   

Finally, the methods developed in this study focused at the study sites in Quebec, 

Canada. It was still meaningful to check if it can be successfully applied for other regions 

or other insects’ outbreaks. Therefore, if groudtruth data obtained from field or airborne 

surveys were available in other regions, further testing if this sensor under the different 
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conditions noted would be very useful in assessing the applicability of this approach to 

different regions. 
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