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ABSTRACT 

One of the greatest achievements of humankind with regard to positioning is Global 

Navigation Satellite System (GNSS). Use of GNSS for surveying has made it possible to 

obtain accuracies of the order of 1 ppm or less in relative positioning mode depending on 

the software used for processing the data. However, the elevation obtained from GNSS 

measurement is relative to an ellipsoid, for example WGS84, and this renders the heights 

from GNSS very little practical value to those requiring orthometric heights. Conversion 

of geodetic height from GNSS measurements to orthometric height, which is more useful, 

will require a geoid model. As a result, the aim of geodesist in the developed countries is 

to compute a geoid model to centimeter accuracy. For developing countries, which 

include Ghana, their situation will not even allow a geoid model to decimeter accuracy. 

In spite of the sparse terrestrial gravity data of variable density distribution and quality, 

this thesis set out to model the geoid as accurately as achievable. Computing an accurate 

geoid model is very important to Ghana given the wide spread of Global Positioning 

System (GPS) in the fields of surveying and mapping, navigation and Geographic 

Information System (GIS). The gravimetric geoid model for Ghana developed in this 

thesis was computed using the Stoke-Helmert approach which was developed at the 

University of New Brunswick (UNB) [Ellmann and Vaníček, 2007]. This method utilizes 

a two space approach in solving the associated boundary value problems, including the 

real and Helmert’s spaces. The UNB approach combines observed terrestrial gravity data 

with long-wavelength gravity information from an Earth Gravity Model (EGM). All the 

terrestrial gravity data used in this computation was obtained from the Geological Survey 

Department of Ghana, due to difficulties in obtaining data from BGI and GETECH. Since 
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some parts of Ghana lack terrestrial gravity data coverage, EGM was used to pad those 

areas lacking in terrestrial gravity data. For the computation of topographic effects on the 

geoid, the Shuttle Radio Topography Mission (SRTM), a Digital Elevation Model (DTM) 

generated by NASA and the National Geospatial Intelligence Agency (NGA), was used. 

Since the terrain in Ghana is relatively flat, the topographic effect, often a major problem 

in geoid computation, is unlikely to be significant. This first gravimetric geoid model for 

Ghana was computed on a 1' 1' grid over the computation area bounded by latitudes 4ºN 

and 12ºN, and longitudes 4ºW and 2ºE.  GPS/ trigonometric levelling heights were used 

to validate the results of the computation. 

Keywords: Gravimetric geoid, Stokes’s formula, Earth Gravity Model, Topographic 

effect, Digital Terrain Model, Boundary value problem, GPS/trigonometric levelling. 
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What we call in the geometric sense the surface of the Earth is nothing else but that 

surface which intersects the direction of gravity at right angles and from which the 

surface of the world ocean is part. 

C.F. Gauss (1828) 

 

Chapter 1. Introduction 

1.1 Description of chapters  

Before dealing with the main subject of this thesis, the computation of the gravimetric 

geoid model of Ghana and the conclusion, which can be drawn from it, Chapter 1, gives a 

brief introduction to geodesy, what the geoid is, and the importance of a geoid model. 

This chapter continues with the research objectives and background to geoid computation 

in Ghana. 

Chapter 2 provides a literature review of the various methods of geoid computation and 

gives a brief description of three major methods of computing a gravimetric geoid. All 

these three methods use a combination of terrestrial gravity data and Earth Gravity 

Models (EGM). This chapter places emphasis on the various steps one has to go through 

in order to compute a geoid model using any such technique. The three methods are: the 

Remove-Compute-Restore (r-c-r) approach with the Helmert condensation method for 

handling the topography [Sansò and Rummel, 1997], the second method of computing 

the geoid is the Least Squares Modification of Stokes (LSMS) with Additive Corrections 

(AC) [Ågren et al., 2009], the third is the Stokes-Helmert approach to geoid computation, 

the method of computing the geoid as devised at University of New Brunswick.  
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This is followed by Chapter 3, which is dedicated to the UNB Stokes-Helmert’s method 

selected for the computation of the gravimetric geoid model of Ghana.  This Chapter 

starts with a two-space set-up, used for formulating the boundary value problem and 

defining gravity quantities, which would be appropriate for downward continuation from 

the Earth’s surface to the geoid level. This is followed by the description of the reference 

gravity field and the spheroid, and the reformulation of the Stokes’ boundary value 

problem for the higher-degree reference spheroid. This includes the various steps 

necessary in the UNB’s application of the Stokes-Helmert method in solving the geodetic 

boundary value problem of geodesy.  

Chapter 4 is dedicated to the description of gravity data used in the computation of the 

geoid. This Chapter starts with the background of gravity data acquisition in Ghana. This 

includes a brief history of instrument used in the data acquisition, precautionary measures 

taken during the data acquisition process, reduction of the raw gravity data, computation 

using least squares adjustment and the standard deviation of the junction points. It is 

explained that in order to refer the computed gravity values to the Potsdam system, a link 

was established between the gravity survey network in Ghana with that of the United 

Kingdom. Computations such as Free-air gravity anomalies required for the computation 

of the geoid then follows. This computation process also includes the description of 

software used in gridding the gravity data, the Earth Gravity Models (EGMs), and SRTM 

gridded data at different densities, needed in the computation by the SHGeo software.  

Chapter 5 follows with a discussion and assessment of the results of the computed geoid 

model. This assessment also includes a recommendation about the need to improve this 

computed geoid model, in the near future, by including the airborne gravity data in any 
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new computation of a geoid model for Ghana. It also contains the essential problems 

encountered when assessing the accuracy of this geoid model, as there is a lack of 

GPS/levelling data that would covers the entire country. This Chapter concludes with 

recommendation for further work, which have to done to improve the geoid model. 

1.2 Background 

 

Geodesy as defined by Friedrich Robert Helmert (1880) is the science that deals with the 

measurement and representation of the earth’s surface. Torge, [2001] extends this 

definition to include the determination of the gravity field of the earth in a three 

dimensional time varying space. This extension of the definition of geodesy by Torge 

follows up on a definition of geodesy introduced by Vaníček and Krakiwsky [1986]. 

However, geodesy has been around for centuries. Humankind has been concerned about 

the earth on which they live and carry out virtually all their activities. During very early 

times, most of these human activities were limited to his or her immediate vicinity. The 

development of means of transportation enabled human to travel to distant lands, and as a 

results, humans became interested in the size and shape whole world [Burkhard, 1985]. 

According to Homer (B.C. c.900-800) the Earth was a convex dish surrounded by an 

infinite ocean which he called Oceanus [Bullen, 1975]. Thales (c.625-c.547 B.C) of 

Miletus provides the first document about Homer’s ideas regarding the shape of the earth. 

To Thales the earth is a disc-like body floating on an infinite ocean [Vaníček and 

Krakiwsky, 1986]. To Anaximander (B.C. 610-547), a contemporary of Thales, the earth 

was cylindrical with the axis oriented in an east-west direction [Vaníček and Krakiwsky, 
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1986]. Anaximander was the first to advocate the notion of a celestial sphere, - an idea 

that permeated astronomical thinking in his era [Bullen, 1975]. Anaximenes, a pupil of 

Anaximander, believed strongly that the earth was rectangular and the earth is floating on 

an infinite, circumferential ocean held in space by compressed air [Vaníček and 

Krakiwsky, 1986]. Pythagoras (a mathematician) believed that the earth shape is 

spherical. According to Burkhard, [1985], Pythagoras reasoned that the gods would 

create the most prefect figure, and this perfect figure to him was a sphere. Aristotle 

supported this idea of a spherical earth by Pythagoras about a hundred years later. After 

accepting the theory of a spherical earth, came the efforts to determine the length of its 

circumference. Eratosthenes left an account of a method of estimating the circumference 

of the earth. Plato, Archimedes and Posidonius also contributed in determining the 

circumference of the earth. It is now accepted that the earth is flattened at the poles and 

bulges around the equator. The geometrical figure used in geodesy to nearly approximate 

the shape of the earth is an ellipsoid of revolution [Vaníček and Krakiwsky, 1986].  

Because of the above definition, geodesy is considered to have two parts: The first part, 

which concerns measurement and representation aspect, is often referred to as 

geometrical geodesy. Geometrical geodesy deals with the determination of the size and 

shape of the earth, intercontinental ties among land masses of the earth, and the 

determination of positions, lengths of lines, and azimuths [Ewing and Mitchell, 1970]. 

The second part called physical geodesy, is the study of the shape of the earth and its 

gravity field. In studying the gravity field of the earth, use is made of gravity anomalies 

and other data. Physical geodesy is primarily concerned with the use of gravity 

measurements and dynamic satellite geodesy to determine the shape of the geoid and 
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deflection of the vertical [Cross, 1985]. The aims of physical geodesy according to 

[Bomford,1975] include: 

1. Studies of the variations in the intensity and direction of gravity at the earth’s 

surface and the determination of the irregularities in the form of the geoid and the 

external equipotential surfaces. 

2. The variations in the intensity and direction of gravity with time, which 

contributes directly to control of geodetic framework through Stokes’s and related 

integral. 

3. Some consideration of the variation of the density in the crust, which cause the 

irregularities found. This study is augmented by other geophysical data. 

4. Measurements of horizontal and vertical movements at the Earth’s surface 

including tides.  

5. The use of artificial satellites to study the variation in the intensity and direction 

of gravity at the Earth’s surface and the irregularities in the geoid. 

In studying the gravity field of the earth, use is made of gravity potential rather than 

gravity, which is a vector quantity. The use of potential of gravity is to enable easier 

handling of the potential mathematically, because the difference between the actual 

and normal potential, called the disturbing potential is quite small [Vaníček and 

Krakiwsky, 1986]. Thus, the gravity potential of the earth can be separated into two 

parts: one due to normal potential and the other arising from the mass distribution 

within the Earth [Bomford, 1975]. Potentials of topographic masses form the 

theoretical basis for reducing gravity measured on the surface of the earth to the 

geoid. The gradient of the potentials gives gravity and this gravity is needed for the 



 

6 

 

computation of the geoid. Additionally, the gradient of the gravity gives the 

differential equation whose solution is required in free space in order to compute the 

geoid.  

 

1.3 The geoid 

 

Even though the study of gravity is useful in determining the shape of the earth but not 

the size, the determinations of shape and the size of the earth are not independent objects 

of study. Geodesists are interested in gravity because the outcome of geodetic 

measurements – sets of coordinates, the length, and azimuth of a line, are carried out on 

the Earth’s physical surface in the domain of action of terrestrial gravity. While it is 

necessary to make observations and measurement on or near the physical surface of the 

earth, it is impossible to perform detail mathematical computation on the Earth’s physical 

surface. This is because the surface of the earth is extremely uneven and not definable 

mathematically [Cross, 1985]. A possible surface for computation is mean sea level or 

the geoid. The geoid is defined as the equipotential surface of the Earth’s attraction and 

rotation, which on the average coincides with Mean Sea Level of the Earth in the absence 

of external influences such as wind and ocean current [Vaníček and Krakiwsky, 1986]. 

According to Gauss, the geoid is the mathematical figure of the earth [Burkhard, 1985]. 

Geodesy places a significant emphasis on the geoid, because of its role as the reference 

surface for height systems. Orthometric height is defined a distance between the geoid 

and the point of interest measured along the plumb line [Vaníček and Krakiwsky, 1986]. 
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Most countries in the world use orthometric height for their national height system. The 

geoid is physically meaningful because it is tied to the Earth’s gravity field through the 

plumblines, and also represents the level at which seawaters would stabilize if they were 

homogenously at rest [Kingdon, 2012]. A level surface is everywhere horizontal i.e. 

perpendicular to the direction of the plumb line. Level surfaces are surfaces of constant 

potential and the geoid is one of them [Moritz, 1990].  

The geoid surface is much smoother than the natural earth surface. However, the shape of 

the geoid is irregular and unsuitable as mathematical surface for preforming geometric 

computation. A suitable surface for computation which approximates the geoid in shape 

is the ellipsoid of revolution, generally referred to as biaxial ellipsoid [Vaníček and 

Krakiwsky, 1986]. Figure 1 shows the three basic geodetic surfaces which serves as 

possible definitions of the ―figure of the earth‖. The biaxial ellipsoid, which is a 

mathematical surface, has its dimensions and shape specified in such a way that its 

departure from the geoid is small. This departure of the geoid from the ellipsoid is called 

geoid undulation or geoid ellipsoid separation. Such an ellipsoid is considered a normal 

form or figure of the earth and its corresponding potential and gravity are called normal 

potential and normal gravity. Determining the geoid requires extensive gravity 

measurements and computations [Inerbayeva, 2010]. The problem of computing the 

geoid would be much simplified if there were no masses outside the geoid. Absence of 

topographic masses (masses outside the geoid) would make the potential of the earth 

outside the geoid a harmonic function. According to Stokes, the problem of determining 

the shape of the geoid can be solved if the distribution of gravity over the geoid surface 

were known [Bomford, 1975].  
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Figure 1-1 The surface of the Earth, geoid and ellipsoid Source: [Burkhard, 1985 

1.4 Uses of a geoid model 

 

An essential problem of physical geodesy is the determination of the gravity field of the 

earth from various types of measurements by solving a boundary value problem. The aim 

in solving this boundary value problem is to get a geoid model accurate to one centimeter 

level. The wide use of GPS for geodetic heighting is considered to be the main reason for 

a centimeter geoid model. Conversion of geodetic heights, (the height system in which 

GPS determined heights are given), to orthometric heights requires an accurate geoid 

model. The importance of determining a geoid model can be explained as follows: 
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1. The use of GPS has replaced the time consuming traditional methods of surveying 

which has transformed the fields of survey and mapping, navigation and 

Geographic Information Systems (GIS). Having a geoid model enables effective 

use of GPS determined heights in some applications where is possible to use 

GNSS for surveying, such as when is possible to receive the signals from the 

satellites, and avoids the use of traditional methods of levelling in some cases, 

which are expensive as compared to the use of GPS [Abdalla and Fairhead, 2011]. 

2. Gravity field information is necessary for predicting the positions of satellites in 

their orbit. Since the geoid reflects the various variations in the gravity field of the 

Earth, a good understanding of the geoid enables a better prediction of the 

satellites in the orbits [Inerbayeva, 2010]. 

3.  Knowledge of the geoid is essential for modelling hydrographic surveys and 

marine navigation. 

4. The geoid serves as the reference surface of orthometric heights. 

5. Variations in the gravity field are due to changes in density of matter within the 

Earth. This serves as valuable information for locating natural resources such as 

ore deposits as well as oil and gas [Inerbayeva, 2010]. 

 

1.5 Research objective and contribution 

 

In Ghana almost all survey works, especially horizontal control positioning, are carried 

out using GPS. Yet the main method of determining heights for benchmarks for all 
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geodetic and engineering survey works are still based on spirit levelling procedure. This 

approach of providing benchmarks is very expensive, tedious and inefficient. The 

objective of this research is to provide a geoid model for Ghana. Since Ghana is a 

developing country, a reduction in cost of survey works will have an impact on the 

economy. Moreover, availability of a geoid model for Ghana will replace the traditional 

method of spirit levelling with its attendant disadvantages. An advantage of spirit 

levelling technique is its accuracy, i.e. the ability to estimate to millimeter level in 

ordinary spirit levelling and sub-millimeter level with precise levelling. 

The research question is; what is the level of geoid model accuracy that can be achieved 

by a developing country such as Ghana with sparse gravity data coverage? 

The UNB approach to geoid computation has been used to model the geoid for countries 

such as Canada, Australia and the United States. These countries are developed and have 

huge gravity data coverage, even though not evenly distributed. This data coverage 

makes the geoid model for these countries relatively quite accurate. A new insight will be 

gained by applying the UNB method to a sparse gravity data set with variable density 

from the developing world. Further, there has not been any attempt to compute the geoid 

model for Ghana since 1924, when the British established the triangulation and traverse 

network, which still serves as a basis for horizontal control positioning and mapping.  

  



 

11 

 

According to our opinion we have to determine numerically in the future the derivations 

of the plumbline as long as they have visible origin, namely by a topographic surface of 

the continental relief, by a geological determination of the mass density of its constituents 

and by a systematic survey of the oceans according to well-established method….We 

shall call the previously defined mathematical surface of the earth, of which the ocean 

surface is a part, geoidal surface of the Earth or the geoid. 

J.B. Listing (1873) 

 

Chapter 2. Literature review 

 

2.1 Introduction 

 

Ideas about the geoid as the mathematical surface of the earth as distinguished from the 

ellipsoid had been developed and expounded by renowned mathematicians of the 

eighteenth century such as Gauss (born 1777) and Bessel(born 1784) [Moritz, 1990]. The 

question then is how is the separation between the geoid and the referenced ellipsoid 

determined? One approach towards a solution is astro-geodetic method. However, such a 

solution would only be possible on the continents.  

A theory by G. G. Stokes [1849] made it possible to compute the geoid-ellipsoid 

separation throughout the world. His determination of the geoid is based on gravity 

observations [Vaníček and Christou, 1993].Since that time, the mathematical methods, 

observation techniques and modelling methods have made a great progress. The 
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availability of satellites trajectory data since the 1960s has led to an increased knowledge 

of the long wavelength shape of the geoid and also made the computation of the geoid 

possible since Stokes approach to geoid determination will require gravity data 

throughout the Earth [Amalvict and Boavida, 1993].  

This chapter starts with a discussion on the need for a centimeter geoid and the 

difficulties in achieving such accuracy in computing the geoid computation [Sansò and 

Rummel, 1997]. Molodensky maintained that an accurate geoid computation has to take 

into account topographical density variations which would always be unknown. To what 

level of accuracy then could the geoid be modeled? Research at UNB has shown that 

Helmert’s second condensation method, when used in combination with the theory by 

Stokes, works reasonably well for reducing the effect of limited knowledge of the 

topographic density on the accuracy of geoid determination [Vaníček et al., 2013]. This 

chapter concludes with a review of other techniques of geoid computations such as 

remove-compute-restore approach and the Least Squares Modification methods together 

with a brief comment on the limitations of the remove-compute –restore technique as 

well as questions regarding the validity of the theory behind the Least Squares 

Modification technique. 

2.2 The goal for centimeter geoid 

 

Currently, one of the biggest tasks facing the geodetic community is the determination of 

a centimeter geoid model. A deficiency in the accuracy of geoid models limits the use of 

Global Navigation Satellite System (GNSS) technology, i.e., the technique to do leveling 
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using GNSS technology and the gravimetric geoid model [Sjöberg, 2013]. Advances in 

GNSS technology made it possible to determine geodetic height with an accuracy of a 

few centimeters depending on the observation and processing techniques. Improvement 

in technology may lead to increased accuracy in GNSS positioning in the future. This 

improvement in accuracy will also require more accurate geoid models. The solution to 

this height problem will enable the geodetic community to benefit fully from GNSS 

technology.  

However, this quest for the centimeter geoid determination is not easy, particularly in 

mountainous regions. Knowledge of the mass density distribution within the Earth’s 

topography is required in order to compute such an accurate geoid. Unfortunately, the 

density distribution within the Earth is not known to sufficient accuracy [Kingdon, 2012]. 

As the detail density distribution of the topography is unknown, Molodensky developed 

his famous technique by introducing the quasi-geoid.  

However, according to Vaníček et al.[2012] determining the quasi-geoid using the 

Molodensky method has a fatal problem with the geometry of the Earth’s surface. 

Integrating gravity over the surface of the Earth, which is much rougher then the geoid is 

not possible in certain areas, and in other areas will result in unpredictable errors. They 

argue that vertical rock surfaces represent locations of discontinuity, and there are other 

areas where the surface of the Earth cannot be described as a mathematical function of 

horizontal positions. In these locations, the Molodensky technique fails. Hence, in their 

opinion, the geoid which is a fairly smooth and convex surface, without any kinks, edges 

or other irregularities, is a better surface for integration [Vaníček et al., 2012]. There have 

been several attempts to address this density distribution within the topography issue. 
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Martinec [1993] made his first attempt to model the topo-density effects of lateral 

(horizontal) anomalies. Martinec’s approach modeled the topography as discrete mass 

columns. Huang et al.[2001], carried out a practical application of Martinec’s ideas in 

western Canada. Other advanced technique of topographical density modelling includes 

rectangular parallelepiped prism by Nagy et al.[2000], prisms with inclined surfaces (e.g 

[Smith, 2000]) and bilinear surfaces (e.g [Tsoulis et al., 2003]). All these techniques 

enable computation of any three-dimensional density distribution of topographic masses 

to the desired accuracy using close formula [Nagy et al., 2000]. Additionally, densities 

could be assigned to each prism independent of any neighboring densities. Since no 

close-form solution for prism whose tops are in shape of a curve has been found, all the 

above mentioned techniques use plane surfaces in modelling the density effects, which is 

an approximation for the true topography [Smith, 2000]. Research at UNB towards the 

use of laterally-varying Digital Density Model (DDM) of the topography for geoid 

modelling, created by digitizing geological maps and assigning appropriate rock densities 

were carried out by Fraser et al.[1998], Tenzer et al.[2005], Santos et al.[2006]. Their 

methods are comparable to that due to Martinec [1993]. They reported that the effect of 

lateral density variation on the geoid computation is at most a few decimeters with a 

standard deviation of less than 2 centimeters [Kingdon, 2012]. Additionally, Martinec et 

al.[1995] investigated the influence of the radial changes of densities of topographic 

masses between the geoid and the Earth’s surface (vertical density variation). They 

reported a variation of less than 5 cm even under very extreme conditions, and under 

realistic conditions, are not likely to exceed 2-3 cm [Kingdon, 2012]. Again, research by 

Vaníček et al.[2013] using a synthetic gravity field shows that the geoid could be 
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modeled to a standard deviation of about 25 mm and a maximum range of about 200 mm. 

It is important to mention that these researchers did not use any corrective measures, such 

as surface fitting or biases and tilts, so the resulting errors reflect only the errors in 

modelling the geoid.  

Thus, the quest for centimeter geoid is possible if topo-density information is 

incorporated in the geoid computation. As shown by the researchers at UNB, the 

topographic density issue can be resolve to a few centimeters if the density within the 

crust is reasonably well known [Kingdon, 2012]. 

2.3 Techniques for geoid computation 

 

Methods of computing the geoid depends on the data used for the computation process. 

This includes terrestrial gravity data, airborne and marine gravity data, deflections of the 

vertical, GNSS/levelling data and satellite data. The data sources can be combined in one 

form or another to determine the geoid. Marchenko et al.[2002] combined airborne 

gravity data with gravity data obtained by different techniques to compute the geoid. 

Sjöberg and Eshagh, [2009], also investigated computation of a geoid model from 

airborne gravity data. Their technique combined airborne gravity data with satellite 

positioning data points. Hirt et al.[2009] validated a geoid model for mountainous region 

of the German Alps using astrogeodetic method of geoid computation. They determined 

vertical deflection at 100 stations (with a spacing of about 230m) arranged in a profile of 

23 km length. Repeated observation at 38 stations in different nights revealed an 

observational accuracy of about 08.0  . Comparison of the computed astrogeodetic profile 
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with GPS/levelling data yielded differences of 10 mm. Abd-Elmotaal and Kühtreiber 

[2014] used Airy isostatic hypothesis to topographically-isostatically reduce the 

deflection of the vertical observations.  The reduced deflections were used to interpolate 

deflection of the vertical to form a dense grid. The gridded reduced deflections were used 

to compute astrogeodetic geoid. They report a good fit with GPS/levelling data. 

Terrestrial gravity data set have been used to compute the geoid for several countries 

around the world. Remove-compute-restore and least squares modification methods are 

two main approaches used when computing the geoid using terrestrial gravity data and a 

review of these methods are shown in section 2.4. 

2.4 Remove-compute-restore using Stokes-Helmert method of geoid computation 

 

The National Survey and Cadastre of Denmark (KMS) and the Geophysics Department 

of the Neils Bohr Institute of University of Copenhagen developed the pure remove-

compute restore (r-c-r) method of geoid computation [Forsberg, 1985]. There are several 

approaches to geoid model computation using the r-c-r technique. Each of these 

techniques handles the topography in a different way prior to gravity anomaly data being 

used as input into the Stokes formula. The basic steps of geoid computation using 

remove-compute-restore and Helmert condensation technique for handling the 

topography are as follows: 

1. Remove the effect of topography from the gravity data on the surface of the earth  

 Calculate free-air gravity anomalies from the gravity observation data.  
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 Convert the free-air gravity anomalies to Bouguer gravity anomalies using 

planar approximation. Planar Bouguer anomaly is smoother than free-air 

anomaly and thus easier to grid.  

 Grid the planar Bouguer gravity anomaly  

 Convert the gridded planar Bouguer anomaly back to free-air gravity 

anomaly 

 Apply Helmert second condensation method to remove the effect of the 

topography above geoid to satisfy the boundary conditions of Stokes 

integration 

2. Compute the downward continuation of the gridded gravity anomalies 

 

3. Remove the long-wavelength part of the gravity signal from the terrain reduced 

gravity data 

The long-wavelength part of gravity signal predicted from the geopotential model 

up to a chosen spherical harmonic degree and order is removed from the terrain 

reduced gravity anomalies. The result is referred to as residual gravity anomaly. 

 

4. Compute the residual co-geoid by applying Stokes integral. The residual co-geoid 

undulations are calculated from the residual gravity anomalies using a modified 

Stokes function. 
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5. Restore the long-wavelength part of the gravity signal subtracted earlier using the 

same EGM to the same degree and order by computing the reference spheroid. 

 

6. Compute the primary indirect topographic effect on the geoid.  

 

7. Obtain the gravimetric geoid by adding the residual co-geoid, the reference 

spheroid and the primary indirect topographic effect on the geoid. 

The scheme of remove-compute-restore using Helmert condensation described above 

suffers from truncation errors because the process neglects the far-zone contribution in 

the computation of the residual co-geoid. A more rigorous approach, which accounts for 

the far-zone contribution, is the Stokes-Helmert method of geoid computation developed 

at UNB. 

2.5 Least Squares Modification Method (LSMS) also called KTH method 

 

The Royal Institute of Technology (also known as KTH), in Sweden, developed the KTH 

method of geoid computation. This KTH method is also called Least Squares 

Modification with additive corrections. This technique of geoid computation is based on 

gravity anomaly data. However, the technique does not require gravity reduction but 

rather includes additive corrections for the topographic effect, downward continuation, 

atmospheric and ellipsoidal corrections for the shape of the earth [Yildiz et al., 2012]. A 

review of the computation steps for geoid modelling using the KTH method according to 

Ågren et al. [2009] is as follows 
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1. Compute gravity anomalies from the gravity observation data 

 

2. Use a gridding algorithm to grid the gravity anomalies data 

 

3. Compute an approximate geoid-ellipsoid separation using the terrestrial gravity 

anomalies and the Earth Gravity Model gravity anomalies up to degree and order 

M. In computing the approximate geoid separation, a modified Stokes kernel is 

used. 

4. Compute the combined correction due to the topographic effect using DEMs. 

 

5. Compute the downward continuation effect 

 

6. Compute the atmospheric effect 

 

7. Compute the ellipsoidal correction to the modified Stokes formula  

 

8. Compute the geoid by adding all the corrections to the approximate geoid 

computed in step 3  

As indicated earlier, the above-mentioned steps of computing the geoid, the Least 

Squares Method applies corrections to the approximate geoid computed from surface 

gravity anomalies directly, without applying any of the traditional gravity reductions 

prior to Stokes integration, such as downward continuation of the reduced gravity 

anomalies. Furthermore, the method does not apply indirect effects of the topography and 
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the atmosphere [Inerbayeva, 2010]. According to Sjöberg, [2003], the aim of this Least 

Squares Modification approach to geoid computation is to modify (find a new approach) 

to the traditional procedure used in geoid computation in view of a centimeter geoid 

model. A big question is whether this procedure has a sound theoretical foundation. As 

pointed out in the reference made in section 4.12, downward continuation of gravity 

anomalies is only possible if there are no masses within the range of the continuation 

process. 

 

Over the past two decades, researchers at University of New Brunswick have used the 

Stokes-Helmert approach to geoid computation. Their approach uses a two-space set-up; 

real space, used for  defining gravimetric quantities, appropriate for downward 

continuation from the Earth’s surface to the geoid level, i.e., solid gravity anomalies, and 

Helmert’s space (see below) for formulating and solving the Stokes boundary value 

problem [Ellmann and Vaníček, 2007]. In addition, the topographic effects are 

formulated in their spherical form. Their solution to the Stokes boundary value problem 

employs a modified (but differently from Sjoberg’s modification) Stokes’s formula in 

conjunction with the low-degree contribution from an Earth Gravity Model (EGM). They 

reported that their approach through testing and the  technique in the mountainous 

regions of Canada and on the Australian synthetic gravity field, is suitable for 

determining geoid model with a standard deviation of centimeter accuracy geoid 

depending on the availability of terrestrial gravity data coverage and quality of the 

gravity data [Vaníček et al., 2013]. The next chapter gives a detailed theoretical basis for 

the UNB Stokes-Helmert approach to geoid computation.  



 

 

For a long time mathematicians felt that ill-posed problems cannot describe real 

phenomena and objects.  

A.N. Tikhonov and V.Ya. Arsenin, 1977 

 

 

Chapter 3. Theoretical background of Stokes-Helmert’s approach to 

geoid determination 

3.1 Introduction 

 

The theoretical foundation which forms the basis for the computation of the geoid was 

derived by Stokes in 1849 [Vaníček and Christou, 1993]. According to this theory, the 

geoid can be obtained from gravity observation on the geoid and there should be no mass 

outside the geoid [Tenzer et al., 2003]. This condition is difficult to attain since gravity 

measurements are carried out on the surface of the Earth. To satisfy this boundary 

condition specified by the theorem, gravity anomalies need to be downward continued 

from the surface of the Earth to the geoid. Harmonic quantities are needed for the 

downward continuation and thus a number of different corrections related to the existence 

of topography and the atmosphere needed to be accounted for carefully [Ellmann and 

Vaníček, 2007].  

This reduction process requires knowledge of topographical mass density, which can be 

assumed from geological maps, and they assure quite a high accuracy of the geoid 

computation [Huang et al., 2001]. Helmert [1884] in his first attempt to satisfy this 

condition suggested that the Earth’s topographical masses and atmosphere can be 



 

 

replaced by a condensation layer of an infinitesimal thickness located inside the geoid. 

This condense mass layer has areal density which equals the product of the mean density 

of the topographical column and the height (orthometric) of topographical column above 

the point [Vaníček and Martinec, 1994]. In his second condensation model, Helmert 

placed the condensation layer on the geoid [Heck, 1993]. Martinec and Vaníček, [1994a] 

used Newtonian attraction to formulate the effect of topography on the gravitational 

potential for laterally varying topographical density distribution for the spherical 

approximation of the geoid.  

Vaníček et al.[1987] used an idea introduced by Molodensky, which seeks to modify the 

Stokes function, by introducing higher degree gravity field as a reference field. The 

theory of the reference gravity field, the reference spheroid and the reformulation of the 

Stokes’s  boundary value problem for the higher-degree reference spheroid have been 

described by Vaníček and Sjöberg, [1991], and Vaníček and Featherstone, [1998]. The 

boundary-values, Helmert’s gravity anomalies on the geoid, are computed by the use of 

the Poisson integral equation for the downward continuation.  

The principle of the Stokes-Helmert’s scheme for geoid computation according to Tenzer 

et al., [2003] can be summarized as follows: 

1. Formulation of the boundary-value problem in real space. 

2. Transformation of the boundary-value problem from the real into a harmonic 

space, i.e., transformation of gravity anomalies from the real to Helmert space 

(according to the second Helmert’s condensation technique where the 

topographical and atmospheric masses are condensed directly onto the geoid), 

which consist of adding the Direct Topographic Effect, Direct Atmospheric Effect 



 

 

and other smaller effects to the free-air anomalies on the Earth surface. Helmert’s 

anomalies are not very different in character from the real free-air anomalies. 

3. Solution of Dirichlet’s boundary-value problem, i.e., the downward continuation 

of Helmert’s gravity anomalies from the surface of the Earth to the geoid, by 

applying the Poisson integral equation. This is the most difficult of the whole 

process. 

4. Reformulation of the geodetic boundary-value problem by decomposition of 

Helmert’s gravity field into low frequency and high frequency parts.  It should be 

noted that the residual anomalies are somewhat smaller than the original 

anomalies. 

5. Solution of the Stokes boundary-value problem for the residual (high-frequency) 

Helmert gravity field (by using the modified spheroidal Stokes kernel) and 

whereby the residual Helmert geoid, called Helmert residual co-geoid is thus 

referred to the reference spheroid (obtained from satellite geopotential model) of a 

degree L. The complete Helmert co-geoid is obtained by adding together the 

Helmert reference spheroid and the Helmert residual co-geoid. 

6. Transformation of the complete Helmert co-geoid from Helmert space into the 

real space. This is done by adding the Primary Indirect Topographic Effect (PITE) 

to complete Helmert’s co-geoid. 

 

3.2 Formulation of geodetic boundary-value problem in real space 

 



 

 

This problem is formulated as determining the geoid by transforming the Stokes 

boundary value problem into Helmert space where the Stokes boundary value problem 

represents the standard free boundary value problem of geodesy. The formulation closely 

follows that of Vaníček and Martinec, [1994].There are an infinite number of 

equipotential surfaces of the of the earth’s gravity field on which of course the potential 

is constant. Among them, there is only one surface which approximates the mean sea 

level most closely and it is given a special significance. This surface is denoted by 

    .constWW o                                                                   (3.1) 

and is called the geoid.  

Similarly, there are an infinite number of equipotential surfaces of the normal gravity 

field. Among these, there is only one such surface which coincides with the reference 

ellipsoid and is denoted by 

gWU                                                                                     (3.2)   

This normal gravity field is selected such that it satisfies the Poisson equation outside the 

generating ellipsoid:  

 
22 2 U                                                                                (3.3)    

where  is the gradient operator. The normal gravity denoted by  is the gradient of U. 

The difference between the Earth’s gravity potential, ),,( rW  and normal gravity 

potentials, ),,( rU  is called the disturbing potential denoted by ),,( rT  and reckoned 

anywhere is written as 

),(),(),(  rUrWrT                                                     (3.4)                                        

where r is the geocentric distance (radius),   is the geocentric angle denoting the pair

),(  — the spherical co-latitude and longitude. In this sequel, the arguments ( ,r ) is 



 

 

the position in three dimensions. In solving the geoid and related corrections, the 

mathematical operations often needs to be taken over a total solid angle

]2,0,2,2[0   . 

The disturbing potential satisfies the Laplace equation outside the earth and its 

atmosphere. In the absence of topographic masses and the earth’s atmosphere, the 

disturbing potential will be harmonic above the geoid so that  

0),(2  rT                                                                      (3.5) 

where  denotes the gradient operator. 

If the values of the disturbing potentials are known of the geoid, the geoid ellipsoid 

separation can be computed using Bruns’s formula 
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where )(0  is the normal gravity on the reference ellipsoid. Since the disturbing 

potential cannot be measured directly, then a boundary value problem of the third kind 

has to be formulated and solved. In geoid determination some type of gravity anomalies, 

referred to the geoid level serve as the boundary values of this problem [Martinec et al., 

1993]. To find the relation between the disturbing potential and the gravity anomalies, the 

radial derivative of the disturbing potential is introduced: 
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Equation 3.7 evaluated at the surface of the Earth can be approximated according to 

[Vaníček and Novák, 1999] by 
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where the difference between the actual gravity, ),,( trg and normal gravity, ),,( tr is 

the gravity disturbance, ),,( trg and ),( tg r is the ellipsoidal correction (due to the 

replacing of the derivative with respect to ellipsoidal normal n by a more convenient 

derivative with respect to r) to the gravity disturbance. The geocentric radius is obtained 

by adding the orthometric height, ),(oH to the )(gr ,i.e., )()()(  o

gt Hrr . The 

approximation is due to )(oH being measured along the plumb-line between the geoid 

and the surface of the Earth, which is somewhat curved. 

3.3 Gravity anomaly 

 

In the pre-GNSS era, geodetic height was not available and gravity anomalies rather than 

gravity disturbances had to be used. The world data bases are full of gravity anomalies 

and there are few gravity disturbances.  The reason is that normal gravity cannot be 

evaluated on the surface of the earth, as this requires the knowledge of the geodetic 

height h of the point. Hence, the gravity anomalies have to be transformed into gravity 

disturbance [Vaníček and Novák, 1999].  

In general, gravity is measured on the surface of the earth. Before these measurements 

can be used for geodetic or geophysical purposes, they must be converted into gravity 

anomalies. Geophysics use gravity anomalies to deduce variations in the mass within the 

earth. This helps in interpretation of the underlining subsurface structure. For geodesist, 

gravity anomalies are used to define the figure of the Earth, the geoid [Hackney and 

Featherstone, 2003]. Furthermore, Gravity anomalies are differentiated according to the 

way in which the observed or normalous gravity was deduced. Surface gravity anomaly 



 

 

does not require the knowledge of the vertical gradient of the actual gravity within the 

earth. 

The exact value of the normal gravity on the telluroid needed for surface gravity anomaly 

is obtained from normal height NH . Normal height is computed by upward continuation 

of normal gravity from the geocentric reference ellipsoid [Vaníček and Krakiwsky, 

1986]. Gravity anomalies are calculated from gravity measurements on the surface of the 

earth as 

),(),(),( tTtttt rrgrg                                          (3.9) 

where ),( ttrg  is the observed gravity on the surface of the earth and ),( tTr  is the 

normal gravity evaluated on the telluroid. Normal gravity is a theoretical value 

representing the acceleration of gravity that is generated by the reference ellipsoid 

according to Somigliana-Pizzetti theory. Normal gravity on the ellipsoid is evaluated by 

the use of Somigliana formula due to Somigliana. The formula from Vaníček and 

Krakiwsky [1986] reads 






2222

22

sincos

sincos

ba

ba ba




                         (3.10) 

where a, b are the major and minor semis-axes of the ellipsoid, and ba  ,  are normal 

gravity at the equator and the pole of the ellipsoid respectively.  

Since the Somigliana’s formula determines the normal gravity on the reference ellipsoid, 

a height correction is needed to account for a change in theoretical gravity due to the 

location of the telluroid above or below the ellipsoid. Historically, this height correction 

has been incorrectly associated with the orthometric height H, not the geodetic height h 

[Li and Götze, 2001]. As a second approximation using a Taylor series expansion for the 



 

 

theoretical gravity above the ellipsoid with a positive direction downward along the 

geodetic normal to the reference ellipsoid according to [Heiskanen and Moritz, 1967] is 

given by 
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The difference  h  is the correction for height above the reference ellipsoid. 

According to [Moritz, 1980] this height correction is given by  
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Substituting the values for the GRS80 ellipsoid into Eq. (3.12) gives 

                    (3.12)             

282 102125.7)sin0004398.03087691.0( hhh

                        (3.14)         

The transformation of gravity disturbance to gravity anomaly is achieved by adding a 

term to the gravity disturbance that accounts for the change in normal gravity due to the 

difference between the geodetic height h and the orthometric height 
oH [Vaníček and 

Novák, 1999]. The gravity anomaly is thus related to the gravity disturbance, ),( trg  

by the following formula: 

)]()([),(),(),( 0  N

ttt Hrrrgrg                                           (3.15) 

where 
NH is normal height and )(0 r is the geocentric radius (a function of latitude) of 

the reference ellipsoid. 

Using Molodensky’s approach, the difference of the normal gravity ),( tr  on the 

Earth’s surface: ),()()()()(  hrHrr o

o

gt  and normal gravity ))(( NH  

on the telluroid in Eq. (3.15) can be evaluated as:  
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where n is the derivative of normal gravity taken with respect to the normal n to the 

reference ellipsoid and )(  is the Molodenskij height anomaly. Using Bruns’s spherical 

formula, the expression on the right-hand side of Eq. (3.16) according to [Vaníček and 

Novák, 1999] can be rewritten as  
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Substituting Eq. (3.17) into Eq. (3.16) leads to  
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Applying spherical approximation  
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where ),,( tn r  the ellipsoidal correction for the spherical approximation allows to 

replace the ―ellipsoidal‖ term by a more simple term: ),())(2(  rTr . Substituting Eq. 

(3.8) and Eq. (3.19) into Eq. (3.18), the fundamental formula of physical geodesy takes 

the following form [Ellmann and Vaníček, 2007] 
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The above equation formulated in real space can be applied in Helmert space for the 

purpose of the computation of Helmet’s (and any other) gravity anomaly: ),(  t

h rg  

 



 

 

3.4 Transformation of gravity anomalies from the real space to Helmert space 

 

On the continents the geoid is mostly located inside the topographical masses. To 

compute the geoid by Stokes’ formula requires reduction of the disturbing potential, or 

the gravity anomalies to the geoid. This reduction process is called downward 

continuation [Sun and Vaníček, 1996]. An important requirement for the existence of the 

downward continuation is that the function has be harmonic. The presence of topographic 

masses and the atmosphere violate this harmonicity condition. To establish the 

harmonicity of the disturbing potential everywhere above the geoid implies that the 

atmosphere and the topographic masses have to be eliminated [Ellmann and Vaníček, 

2007].  

One way of eliminating topography and atmosphere is by estimating the effect of the 

topographic masses and the atmospheric effect by means of the Helmert’s second 

condensation technique, which condenses the topographical masses onto the geoid. This 

technique causes relatively small indirect topographic effect–see later. For this reason, 

UNB favors this approach in computation of the geoid [Ellmann and Vaníček, 2007].  

The gravity field of the Helmert Earth is different from the real Earth and is given by  

),(),(),(),(  rVrVrWrW ath                          (3.21)    

where the superscript h denotes the quantities referring to Helmert’s Earth or given in 

Helmert’s space, ),( rV t is the residual topographical potential, i.e., the difference 

between the potential of the topographical masses and the potential of the condensation 

layer as shown below: 

),(),(),(  rVrVrV ctt                                             (3.22)    



 

 

Similarly, the residual atmospheric potential ),( rV a  is the difference between the 

potential of the atmospheric masses and the potential of the atmospheric condensation 

layer on the geoid as shown below 

),(),(),(  rVrVrV caaa                                                       (3.23)    

Using the analogy with the real Earth, Helmert disturbing potential is defined as 

),(),(),(),(),(),(  rVrVrTrUrWrT athh                                                

(3.24) 

Helmert disturbing potential is harmonic outside the geoid, i.e., 

02  hT                                                                              (3.25) 

Helmert gravity ),( t

h rg is the negative radial derivative of the Helmert gravity 

potential, which is parallel to the definition of gravity in the real space [Ellmann and 

Vaníček, 2007]. Helmert gravity on the surface of the earth is obtained from observed 

gravity on the surface of the earth by adding to the observed gravity ),( trg  the direct 

topographical effect ),( t

t rA and direct atmospheric effect :),( t

a rA  
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Application of the relation rWg  utilized in Eq. (3.26) is only an approximation 

since the radial derivative is taken over the complete potential rather than over the 

disturbing quantity. This is the reason for using the  symbol in Eq. (3.26). The 

importance of this relation is that it makes the link between actual gravity (and 

corresponding gravity anomaly) and Helmert’s gravity anomaly more transparent. 

Further, the derivative in Eq. (3.26) should be taken along the plumbline instead of r. As 



 

 

a result, there is the need to introduce an ellipsoidal correction due to this approximation 

[Ellmann and Vaníček, 2007]. 

Helmert’s gravity disturbance ),( t

h rg is defined as the negative gradient of the 

Helmert disturbing potential and can be described as a sum of the negative radial 

derivative of the Helmert disturbing gravity potential ),( t

H rT  and the ellipsoidal 

correction ),( tg r  to the gravity disturbance: 
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The relation between the gravity disturbance ),( t

h rg  and the gravity anomaly 

),(  t

h rg  in Helmert’s space can be obtained from the fundamental gravimetric 

equation of physical geodesy Eq. (3.20) as [Tenzer et al., 2003]  
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Helmert gravity anomalies can be expressed via free-air anomalies ),(  rg as [Vaníček 

and Novák, 1999] 
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The second and third terms on the right-hand side of Eq. (3.31) are direct and secondary 

indirect topographic effects on the gravitational attraction. The fourth and five terms of 



 

 

Eq. (3.31) are the direct and secondary indirect atmospheric effects on the gravitational 

attraction. The non-topographical corrections to the Helmert gravity anomaly are then as 

follows: direct atmospheric effect, secondary indirect atmospheric effect, ellipsoidal 

correction for the gravity disturbance, and ellipsoidal correction for the spherical 

approximation.  

Importantly, the product of corresponding Helmert anomaly and geocentric radius, 

,rg h   is a harmonic function above the geoid and, therefore, such a field can be 

continued downwards to the geoid level [Vaníček and Novák, 1999]. Normal heights are 

used for estimating the normal gravity in Eq. (3.31) and Eq. (3.15). If orthometric heights 

are used rather than normal heights, then a geoid-quasigeoid correction has to be applied 

to Eq. (3.31) [Ellmann and Vaníček, 2007]. 

 

3.5 Effect of topographical masses on gravitational attraction 

 

Evaluation of Helmert’s gravity anomaly on the surface of the earth according to Eq. 

(3.31) will require a computation of the direct effect of attraction of the topography. The 

topographical effect on gravitational attraction reckoned on the surface of the earth is 

represented by direct and secondary indirect topographical effect, DTE and SITE 

respectively [Tenzer et al., 2003]. The effects of topographical masses are formulated in 

spherical form, instead of planar approximation. Based on a conclusion by Vaníček et al., 

[2001] the spherical model should be used whenever higher accuracy is required. The 

spherical model is closer to reality as the planar model does not allow the formulation of 

any physically meaningful condensation models [Ellmann and Vaníček, 2007]. 



 

 

The gravitational attraction of the real topography is evaluated using the Newton integral 

over the volume of topography. Additionally, the Newton integral can be split into the 

Bouguer shell attraction and spherical roughness term for the computation. This splitting 

has been introduced to eliminate the singularity of Newton’s integral which occurs at the 

at the computation points. According to Martinec, [1993] the potential of topographic 

masses, the condensation of which obeys the law of conservation of masses, can be 

estimated as 
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where G is the gravitational constant, ]),,(),([ rrl t
  and ),(   are the spatial 

distance and geocentric angle between the computational and integration points, d is 

the area of the integration element. The first term on the right-hand side of Eq. (3.32) is 

the gravitational potential of the spherical Bouguer shell (of mean density o  and the 

thickness equal to the orthometric height )(0 H  of the computation point). The second 

term stands for the gravitational potential of the spherical topographical roughness term 

and the third term represents the effect of the anomalous topographical density )(  

distribution on the gravitational potential. 

Similarly Martinec [1993] states that the potential of the condensation masses can be 

written as 
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where the first term on the right-hand side of Eq. (3.33) is the gravitational potential of 

the condensed spherical material of single layer (spherical Bouguer shell), the second 

term stands for the gravitational potential of the spherical roughness term of the 

condensed topographical masses, and the third term represents the effect of the 

anomalous condensed topographical density distribution on the gravitational potential. 

The secondary indirect topographic effect on gravitational attraction (third term on the 

right-hand side of Eq. (3.31)), which refers to the earth’s surface is computed by 

subtracting Eq. (3.33) from Eq. (3.32), i.e.  
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3.6 Direct Topographic Effect (DTE) 

 

The direct topographic effect is obtained by taking the difference of the radial derivatives 

of Eq. (3.32) and Eq. (3.33). The attraction of the topographical masses according to 

[Martinec, 1993] reads 
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where the first term on the right-hand side is the negative gravitational attraction of the 

spherical Bouguer shell. The second term is the gravitational attraction of the spherical 

roughness term, i.e., the spherical terrain correction and the third term represents the 

effects of the anomalous topographical density )(  on the gravitational attraction. 

The attraction of the condensed masses can be expressed as 






 trr

t

ct

r

rV ),(
 






















 








2
00

0

2

2 )(

3

1)(
1)(

)(
4

R

H

R

H
H

r

R
G

t

o  

   










O

t

d
r

Rrlrr
G

rr

ttt
o

)(

133 ]),,(,[

3

)()( 
  

      










O

t

d
r

RrlRr
G

rr

tt

)(

133 ]),,(,[

3

)(
)(


            (3.36) 

where the first term on the right-hand side is the gravitational attraction of the condensed 

spherical Bouguer shell, the second term is the gravitational attraction of the spherical 

roughness term of the condensed topographical masses, and the third term represents the 

effect of the anomalous condensed topographical density distribution on the gravitational 

attraction. 

It should be noted that the first terms of Eq. (3.35) and Eq. (3.36) are equal. Therefore, 

the Bouguer shell contributions cancel each other out when Eq. (3.35) is subtracted from 

Eq. (3.36). The final expression for the direct topographic effect in Helmert’s space then 

becomes 
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The first term on the right-hand side of Eq. (3.37) is the spherical terrain correction, the 

second term is the spherical condensed terrain correction, and the third and fourth terms 

represent together the contribution of the lateral varying density to the direct topographic 

effect. 

3.7 Direct Atmospheric Effect (DAE) 

 

The requirement there should no masses outside the geoid surface indicates that the 

atmosphere must also be condensed onto the geoid surface. This condensing of the 

atmosphere on the surface of the geoid is carried out as Direct Atmospheric Effect (DAE) 

on the free-air gravity anomalies, and is computed as 
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where ),( gg

a

c rA  is the gravitational attraction of the condense atmosphere and 

),( pp

a rA    is the gravitational attraction of the real atmosphere. A digital elevation 

model provides topographical heights information for the computation points in 

computing the DAE. 



 

 

3.8 Secondary Indirect topographical Effect (SITE) 

 

The effect of condensation of topography on normal gravity is called secondary indirect 

topographical effect (SITE) and that of the atmosphere is called secondary indirect 

atmospheric effect (SIAE). SIAE is so small that it is rarely calculated whiles SITE is 

calculated according to [Vaníček and Novák, 1999] by  
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3.9 Downward continuation of gravity anomalies 

 

Gravity anomalies on the geoid are needed as input for the computation of the geoid. 

After transformation of the gravity anomalies at the topographic surface, from real space 

to Helmert space, they must be continued down to the geoid in Helmert’s space. The 

upward continuation is described by Poisson integral [Heiskanen and Moritz, 1967]. This 

is a formula for upward continuation of harmonic functions from a sphere of radius R. 

The Poisson integral for gravity anomalies is given by [Kellogg, 1929]: 
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where ]),(),([ RrK t    is the spherical Poisson integral kernel. 

When a downward continuation is sought, Eq. (3.40) is inverted, yielding an integral of 

Fredholm of the first kind. It can be re-written as an integral equation whose solution is 

sought through discretization that leads to a system of linear equations. In the matrix-

vector form, it can be presented as follows: 
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where ),(  t

h rg  is the vector of the gravity anomalies referred to the surface of the 

earth, ),(  g

h rg  the vector of the gravity anomalies referred to the geoid surface, and 

]),(),([ Rrt  K  is the matrix of the values of the Poisson integral kernel multiplied 

by the remaining elements on the right-hand side of Eq. (3.40). 

Equation (3.40) yields the gravity anomalies on the surface of the earth given the gravity 

anomalies on the geoid. Thus downward continuation an inverse of Eq. (3.40), i.e., 

provides values of the gravity anomalies on the geoid given the gravity anomalies on the 

topography. As a result, of the inverse operation, the Poisson downward continuation is 

known to be numerically unstable. Due to the instability, existing errors in ),(  t

h rg  

may appear magnified in the solution. However, when mean Helmert’s gravity anomaly 

values are used instead of point values, this problem is somewhat alleviated [Ellmann and 

Vaníček, 2007]. 

3.10 Reference Field 

 

The Earth Gravity Model (EGM) is a global representation of the Earth gravitational field 

(potential, geoid heights, gravity anomalies, gravity disturbances and deflection of the 

vertical) in terms of spherical harmonic expansion [Hackney and Featherstone, 2003]. 

These models are classified into two types: satellite-only EGMs –derived from tracking 

artificial Earth satellites for example CHAMP and GRACE, and combined EGMs. These 

latter models are derived from combination of terrestrial gravity, satellite altimetry, 

gravity data in marine areas and satellite-only model [Rodríguez-Caderot et al., 2006]. 



 

 

The EGMs provide long wavelength information of the earth’s gravity field and 

contribute to the UNB Stokes-Helmert geoid determination as a Reference field of a 

selected degree and order, nowadays typically 90 by 90 taken only from pure satellite 

solution. The use of a combined EGM would result in the terrestrial information being 

used twice in the final result. The Reference Field in the form of low frequency (90 by 90 

or so) Helmert’s anomalies is subtracted from the Helmert anomalies on the geoid before 

the Stokes integral is applied [Vaníček et al., 1995].  

The Stokes integration of these residual gravity anomalies results in the residual co-

geoid. The residual co-geoid can be viewed as a co-geoid referred to a Reference 

Spheroid of degree and order 90 by 90 so that the final co-geoid would consist of the sum 

of these two. Thus in computing the co-geoid this way, global or large-scale features of 

the geoid are expressed by spherical harmonic expansion of the gravitational potential 

while higher terms are contributed by terrestrial gravity data [Vaníček et al., 1995]  

 The EGM potential coefficients are converted to disturbing potential coefficients and 

then to EGM gravity anomaly in Helmert space. The reference field plays the role of 

reducing the magnitude of the computed quantities and also serves as a linearization tool 

[Vaníček et al., 1995]. 

3.11 Solution of Stokes’s boundary value problem 

 

After transforming the (Helmert) gravity anomalies from the surface of the earth to the 

geoid, the gravity anomalies are converted into the (Helmert) disturbing potential T. 

Helmert disturbing potential is the difference between the Helmert gravity potential on 

the co-geoid and the normal potential on the Reference Ellipsoid. Gravity anomalies are 



 

 

transformed into the disturbing potentials through the fundamental equation of 

gravimetry as shown by Eq. (3.20). This disturbing potential is transformed into geoidal 

height via Bruns’s formula shown in Eq. (3.6).This approximation by Bruns’s formula 

indicates that N can be computed if an expression for T can be found. An accurate 

spherical solution is found by using Green functions for a sphere, which is substituted 

into Stokes’s integral. [Heiskanen and Moritz, 1967] give transforming gravity anomalies 

on the geoid into disturbing potential using Stokes’s integral as 
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where )(S is the restricted Green function, known as Stokes’s function given by 
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The use of the Stokes integral (with Stokes function) on a sphere results in some errors. 

These errors are greatly diminished in the UNB Stokes-Helmert’s technique by use of a 

higher degree reference Field as described above. Thus, the Stokes integration of residual 

Helmert’s anomalies rather than the complete anomalies complemented by the addition 

of the Reference Spheroid results in a much more accurate co-geoid.  

There yet is another reason for having introduced the Reference Field/Reference 

Spheroid of degree and order M in the UNB Stokes-Helmert’s technique. The use of the 

original Stokes’s formula requires gravity anomalies to be known all over the surface of 

the earth. In practice, the gravity anomalies are available only in and around the area of 

interest. When Vaníček and Kleusberg [(1987)] introduced the Stokes-Helmert technique 

they realized that the Stokes function, MS for computing the residual co-geoid by means 



 

 

of residual gravity anomalies resembles more closely the Dirac distribution as its dies out 

with growing angle  much more quickly than the original Stokes’s function S does. The 

low-frequency part of the co- geoid is described by the EGM, as a spheroid of degree M. 

The residual co-geoid is computed as 
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where the appropriate Stokes’s  function )),(,(  o

MS  can be computed according 

to Vaníček and Kleusberg ([1987]), ),(  g

h

res rg is the Helmert residual gravity anomaly 

on the geoid and h

FZN  is the far zone contribution i.e. the contribution of the anomalies 

from the rest of the world. Equation (3.44) uses the high-degree residual Helmert gravity 

anomalies obtained by subtracting the long-wavelength RF contribution from the 

complete gravity on the geoid. The far zone contribution or truncation error h

FZN  is 

evaluated in a spectral form using an EGM to a higher degree and order than M. 

 

3.12 Transformation from Helmert’s space to real space 

 

Evaluation of the Stokes’ boundary value problem in Helmert space results in an 

equipotential surface called Helmert co-geoid. To find the geoid in real space will require 

an evaluation of the primary indirect topographic effect (PITE) and primary indirect 

atmospheric effect (PIAE). The transformation is achieve by adding PITE and PIAE to 

the Helmet co-geoid as: 
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where N is the geoid separation, 
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  is PITE and )( g

aN   is PIAE.  

The applications of these two effects are shown in sections 3.13 and 3.14. 

3.13 Primary Indirect Topographic Effect (PITE) 

 

Even though the direct and secondary indirect topographic effects are evaluated at the 

surface of the earth, there is an important topographic effect that needs to be accounted 

for at the geoid level. As a result of the condensation of the topographic and atmospheric 

masses, the Helmert potential becomes slightly different from the actual potential. 

Consequently, the Helmert co-geoid does not coincide exactly with the geoid in real 

space. The effect causing this is known as Primary Indirect Topographical Effect (PITE). 

One of the important advantages of using Helmert second condensation is that PITE is 

nowhere larger than 2 m worldwide. Similarly, the Primary Indirect Atmospheric Effect 

is less than 1 cm, globally. PITE is accounted for separately as a correction to the 

Helmert co-geoid. More explicitly, PITE is the transformation term added to the co-geoid 

in Helmert space to obtain the geoid in the real space. PITE is computed from the 

gravitational potentials of the topographical and condensed masses, both of which refer to 

the geoid level. The final expression for the PITE according to [Martinec, 1993] is as 

follows: 
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3.14 Primary Indirect Atmospheric Effect (PIAE) 

 

Similar to PITE, the primary indirect atmospheric (PIAE) effect is calculated according 

to [Novák, 2000] as 
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where ))(,( pgg

a

c rV   is the gravitational potential induced by the condensed 

atmospheric masses at the geoid, and ))(,( pgp

a rV   is the gravitational potential 

induced by the real atmospheric masses at the geoid. This value must be subtracted from 

the computed co-geoid. 

This concludes the theory behind the Stokes-Helmert method of geoid computation 

developed at the University of New Brunswick. 

  



 

 

Gravity is a mystery of the body invented to conceal the defects of the mind 

LaRochefoucauld 

Chapter 4. Data acquisition 

4.1 Introduction 

  

All terrestrial gravity measurements consist of point measurements of the Earth’s gravity 

on the Earth’s physical surface. Acquiring terrestrial gravity data is an expensive 

undertaking which takes time, effort and requires access to the place of observation. As 

results, most of the gravity observations in Ghana were carried out along the major and 

minor roads in the country (see Figure 4.1). The main agency responsible for acquiring 

and maintaining gravity data in Ghana is the Geological Survey Department. Most of the 

terrestrial gravity data gathered by the Geological Survey Department are concentrated at 

the south-western, the middle and the north-eastern parts of Ghana. These areas coincide 

with the main mining areas of Ghana.  

The Geological Survey Department also has airborne gravity data set in their repository. 

However, for this geoid computation, only terrestrial gravity data were used. This is 

because the airborne gravity data requires special treatment before the data can be used 

and time constraints did not allow me to do it properly. Efforts were made to ask the 

Bureau of Gravimetrique International (BGI) and the University of Leads to provide 

additional gravity data in their possession for the use in this geoid computation. However, 

all effort to secure the data failed. 



 

 

 The terrestrial gravity data set of the Geological Survey Department also includes 

horizontal coordinates, i.e. latitude and longitude, orthometric height, the free-air gravity 

anomalies and the Bouguer gravity anomalies. The normal gravity used in computing the 

gravity anomalies in the data set were determined from the International Gravity formula 

of 1930, which is no longer valid. Hence, these anomalies were not used. The normal 

gravity used in the computation of geoid models nowadays are all based on Geodetic 

Reference System 1980 (GRS80). Since there are areas within the scattered terrestrial 

gravity data that lack any gravity data coverage, gravity anomalies computed using 

EGMs were used in padding the areas in Ghana that lack gravity data. This chapter 

describes all the terrestrial gravity data that were used in computing the geoid model for 

Ghana. The source material for the history of gravity survey in Ghana is that due to Davis 

[1958]. 

   



 

 

 

Figure 4-1 Gravity observations in Ghana 1957-58 Source: [Davis, 1958 



 

 

4.2 Terrestrial gravity data in Ghana 

 

The British Government in collaboration with Ghana Government carried out the first 

gravity survey in Ghana between 1957 and 1958. This gravity survey work was part of 

Ghana’s contribution to the international Geophysical Year program in 1957-58. This 

program aimed to establish a worldwide network of known gravity values. Gravity 

observations were made at 128 sites. The network of gravity observations was linked to 

the Office de la Recherche Scientific et Technique Outre-Mer (ORSTOM) network of the 

neighboring countries. Three sites in the (ORSTOM) network outside Ghana were used: 

Abidjan (Ivory Coast), Lome (Togo) and Ouagadougou (Burkina Faso). The ORSTOM 

network includes several pendulum stations such as Paris (France) and establishing a link 

with these base stations will ensure that the Ghana network would be compatible with 

local data. The value of gravity for each site was determined with an uncertainty of less 

than 0.2 mGal. The Ghana network was also linked with the well-established gravity 

network of the United Kingdom.    

The standard deviations of the connection were all below 0.27 mGal and 70% of them 

were below 0.05 mGal. The network is made up of 20 internal loops involving only the 

connections and three other loops at the edge of the network involving the base stations 

as well. The smallest miss closure is 0.01 mGal and the largest 0.34 mGal. Half of the 

miss closure is less than 0.10 mgal. Ideally, the loops should be triangles or quadrilaterals 

but owing to the lack of navigable roads, half the loops are many-sided polygons, some 

with over 20 sides. The network was adjusted using least squares adjustment .method.  



 

 

Since it was necessary to link the Ghanaian gravity network to the gravity network of the 

neighboring countries, the calibration factor of the gravimeter used for the gravity survey 

work was treated as unknown in the adjustment. A weight was assigned to each leg as a 

measure of its reliability. The normal practice is to regard each leg as having equal 

weight and thus, after the usual principle of combining standard deviations, each leg is 

assigned a weight inversely proportional to the square root of the number of connections 

constituting it, in manner similar to topographical survey. However due to the wide 

spread of the individual standard deviation from nearly 0.00 to 0.27 mGal, it was felt the 

leg containing many connections would be abnormally heavily weighted. The 

compromise adopted was all connections having standard deviation from nearly 0.00 

mGal or 0.01mGal are treated as if they had a standard deviation of 0.02 mGal. A 

Pegasus computer made by Ferranti Ltd was used for the computation. The tripod height 

allowance, i.e., the height of the gravimeter above ground was accounted for.  

The ORSTOM network is based on the Potsdam system. However, a decision was made 

to establish an independent link to the new network in Ghana. The sites occupied during 

the linking from London Heathrow Airport were Rome Airport in Italy, Tripoli Airport in 

Libya, Kano Airport in Nigeria and finally Accra Airport. The Geological Survey and 

Museum (GSM), London supplied gravity values for the London Airport. Wollard 

supplied the gravity values for Rome, Tripoli and Kano airports. The connections 

between the stations are as follows: 

1. London–Rome–London 

2. Rome–Tripoli–Rome 

3. Tripoli–Kano–Tripoli 



 

 

4. Kano–Accra–Kano 

 

To carry out the drift-rate determinations before and after each section of the link, it was 

necessary to travel by a series of flights on successive days. The measurements were 

made between 12
th

 and 15
th

 December 1957. After the 1957-58 gravity data collection 

campaign, there were further gravity surveys done in Ghana, carried out by the Ghana 

Geological Survey Department. Most of those surveys were carried out in collaboration 

with the Development Partners mostly from the European Union.  

Figure 4-2 shows the map of the observed terrestrial gravity data in Ghana used for this 

computation of the geoid model. In total there are over10081 terrestrial gravity data 

covering the entire country. However, the gravity data are not uniformly distributed 

within the country. They are concentrated at the southern and eastern parts of the country, 

with the eastern half covered mainly by airborne gravity survey. The western part of the 

country that borders Cote D’Ivoire is only sparsely covered with gravity data. These areas 

were padded with EGM data. It is our hope that airborne gravity survey could be 

extended to cover those areas in the near future. Such gravity data coverage will improve 

the geoid model for that part of the country. However, the sparse gravity coverage will 

not be much of a problem since about 80 percent of Ghana is not hilly with the highest 

mountain Afajato about 800m above sea level.  

 



 

 

 

Figure 4-2 Distribution of observed terrestrial gravity coverage Source of map: Google 

 

 



 

 

4.3 Computing the gravity anomalies and residual gravity anomalies 

 

Equation 3.9 was used to compute gravity anomalies on the telluroid for all the 10081 

gravity points in Ghana. Because of the sparse gravity data coverage of Ghana, a decision 

was made to pad the areas in Ghana that lacked gravity data with data generated from 

EGM08. The padding was carried out as follows:  

1. A file containing list of latitude, longitude and orthometric height of the scattered 

gravity data points from Ghana terrestrial gravity survey data were used as input 

data to compute the gravity anomalies from the EGM. GrafLab a MATLAB 

program was used to compute of the gravity anomalies [Bucha and Janák, 2013].  

2. This was followed by a computation of residual gravity anomalies, which are the 

difference between the terrestrial gravity anomalies and gravity anomalies from 

the EGM08 i.e. 

08EGMobservRES ggg   

 

                                    (4.1) 

where RESg  is the residual gravity anomaly, observg  is the terrestrial surface 

gravity anomaly, and 08EGMg is the gravity anomaly computed from the EGM08.  

3. A plot of the residual anomalies (shown in Fig. 4.3) indicates that the residual anomalies 

are normally distributed but not randomly distributed around the mean of zero and there 

are outliers. Hence statistical test were computed and outliers were eliminated  

4. The residual gravity anomalies were gridded. The SURFER Software with inverse 

distance squared interpolation method was used for was used for gridding. The 

residual anomalies were gridded at 5'5' intervals. 



 

 

5. Three columns of the output file of the DTE computation, i.e. the latitude, 

longitude, and heights (the DTE grid) were used as input data into the GrafLab 

program to compute free-air gravity anomalies from EGM08. This DTE grid is 

bounded by latitude 2ºS and 18ºN, and longitudes 10ºW and 8ºE 

6. The free-air anomalies computed from the EGM08 were added to the residual 

anomalies to obtain free-air gravity anomalies.  

4.4 Statistical test for outliers 

 

The accuracy of a computed geoid model depends on the quality of gravity data used in 

the computation process. To ensure that the terrestrial gravity data used for computing the 

geoid model is free of gross and systematic errors as much as possible, statistical test was 

carried out on the residual gravity anomalies computed in Section 4.3. The aim of this 

statistical test is for the detection of outliers. The assumption made was the residual 

gravity values should be zero mean. The computation resulted in a mean of 1.947 mGal 

and standard deviation of 5.706 mGal. A plot of the histogram of the residual is shown in 

Fig 4.3. A 99.99% confidence interval for a two tail test was selected, and a normal test 

of a single observation carried out. This resulted in a critical region of -12.774mGal<  < 

+16.668mGal. Thus, residual gravity anomalies below -12.774mGal and those above 

+16.668mGal were rejected as outliers. Of the 10081 points terrestrial gravity data points, 

117 terrestrial gravity points were rejected as outliers probably due to blunders.  

 



 

 

 

Figure 4-3 Histogram of residual gravity anomaly data 

 

4.5 Transformation from real space to Helmert’s space 

 

Free-air gravity anomaly observed on the Earth surface once transformed into Helmert’s 

space is called Helmert’s anomaly (on the Earth surface) [Vaníček et al., 2012]. In 

transforming the gravity anomalies into Helmert’s space, the crux of the operation is the 

assessment of topographic and atmospheric effect on the real gravity and thus on the 

anomalies. The removal of topography and the addition of the condensed topography 

layer on the geoid cause the topographic effect called direct topographic effect (DTE) and 

that of the atmosphere is called direct atmospheric effect (DAE). The computation of the 

direct topographic effect and direct atmospheric effect was carried out using downloaded 



 

 

data from STRM and ACE2 websites. The 3   3 arc-secs, 30   30 arc-secs, 5   5 arc-

min and global topography data sets were used in computing the DTE and DAE. Each 

data set is required in a particular data format for computation using SHGeo Software. 

The final Helmert gravity anomalies at the Earth’s surface were computed by adding the 

DTE and SITE, and subtracting the DAE from the gridded free-air anomalies. The 

inclusion of SITE is to ensure that Helmert anomalies satisfy the definition of a gravity 

anomaly. 

 

4.6 Gridding of the residual gravity anomalies 

 

Surfer software from Golden Software was used to grid the residual gravity anomalies. 

An Inverse Distance Square method was used to predict the anomalies on a 5'5' grid. 

The grid nodes of the residual gravity anomalies were made to coincide with the grid 

nodes of the Direct Topographic Effect. The reason for the coincidence of the grid nodes 

is to simplify the computation of Helmert anomalies as shown in section 4.9. Figure 4-4 

shows the gravity anomalies. The maximum value (300mGal) is located on the islands of 

Sao Tome and Principe and Malabo near Cameron in the Atlantic Ocean. For most part of 

the computation boundary and in Ghana, the free-air anomalies are between plus 50mGal 

and minus 100mGal. 



 

 

 

Figure 4-4 Free-air anomalies mGal 

                            

4.7 Digital Elevation Model (DEM) 

 

Very accurate and detailed resolution information about the topography is required, for 

the reduction of gravity measurements from the surface of the earth to the geoid, in order 

to satisfy the conditions of the boundary values problem of geodesy. These height data 

are available as Digital Elevation Model (DEM). Additionally the presence of topography 

indicates that the gravity observations are not on a level surface and this contradicts the 

basic requirements for the Stokes’s theory in geoid computations [Sansò and Sideris, 



 

 

2013]. The largest effect on the gravity measurement comes from the mass anomalies in 

the mantle and the core and it is of long wavelength character [Martinec et al., 1993, 

Bajracharya, 2003]. Even though DEM’s are important input data in calculating the effect 

of the topography on the gravity signal, another important part especially for precise 

computation of the geoid model is additional information about the topo-density to 

evaluate the topographical effects [Vaníček, 1990].  

Four Digital Elevation Models (DEM) were used for the computation of the direct 

topographic effect. The SHGeo software for computing DTE requires these four different 

data sets. This is because to the DTE_Helmert_global.c module of the SHGeo software, 

used for computing the DTE requires DEM in these four different resolutions. The first is 

the gridded topography with block size of 3"3" from the Shuttle Radar Topography 

Mission (SRTM). The other two are the 30"30" and 5'5' blocks size grid from this 

ACE2 website, and finally a global 1º1º data. The SRTM was a collaborative effort 

between National Aeronautics and Space Administration (NASA), the National 

Geospatial-Intelligence Agency (NGA) the German and Italian space agencies to 

generate a near-global Digital Elevation Model (DEM). The SRTM data as stated is 

sampled at 3 arc-seconds which is 1/1200th of a degree of latitude and longitude or about 

90 meters in latitude and 90 cos(phi) m in longitude. The 30 arc-second grid roughly 

translates to 1 kilometer in latitude.  However, on September 23, 2014 the White House 

announced that the highest resolution topographic data generated from NASA’s SRTM in 

2000 will be released globally over the next year. The new data have a 1 arc-second or 

about 30 meter resolution, sampling that reveals the full resolution of the original 



 

 

measurement [NASA, 2015].  However, this 1 arc second data was not used in this 

computation of the DTE. 

4.8 Computation of Direct Topographic Effect (DTE) 

 

Computation of the Direct Topographical Effect was carried out using the program 

DTE_Helmert_global.c module of the SHGeo software. Fig 4-5 shows the DTE 

computation results.  

 

Figure 4-5 Direct Topographic Effect (DTE) in mGal 

 



 

 

4.9 Direct Atmospheric Effect (DAE) 

 

The module DAE_H_and_NT.cc of the SHGeo software was used for the computation of 

the atmospheric effect on gravity.  The effect of the atmosphere on gravity anomalies for 

the computation area is shown in Fig 4-6. 

 

Figure 4-6 Direct Atmospheric Effect (DTE) in mGal 

 



 

 

4.10 Secondary Indirect Topographic Effect (SITE) 

 

The SITE.cc module of SHGeo program was used for the computation of the secondary 

indirect topographic effect, referred to the surface of the earth. Fig. 4-7 shows the effect 

of secondary indirect effect of topography on the gravity anomaly.  

 

Figure 4-7 Secondary Indirect Topographic Effect (SITE) in mGal 

 

 

4.11 Helmert anomalies on the topography 

 



 

 

Helmert gravity anomalies on the surface of the earth were computed by combining the 

results of the free-air gravity anomalies and DTE, DAE and SITE computations. The 

computation of Helmert gravity anomalies are as follows: 

Helmert anomalies = free-air anomalies + DTE + SITE – DAE   (4.2) 

Fig. 4-8 shows the computation of Helmert anomalies on the topography. The results 

from the above computation can now be downward continued to the geoid. 

 

Figure 4-8 Helmert anomalies in mGal 

4.12 Downward continuation 

 



 

 

Downward continuation according to Poisson is a mathematical process involving surface 

integration to calculate what the gravity anomalies measurement would be if they were 

computed on the geoid [Heiskanen and Moritz, 1967]. Gravity anomalies can be 

downward continued to the geoid if there are no disturbing masses within the range of the 

continuation [Nettleton, 1976]. In computing the downward continuation of gravity 

anomalies to the geoid surface, the module Downward_continuation.c [Kingdon and 

Vaníček, 2011] of the SHGeo software suite was used. The program requires an option 

file with the following: 

1. An input file of Helmert gravity anomalies that refer to the surface of the earth  

2. Another input file containing the corresponding heights of these Helmert gravity 

anomalies. 

3. An output file of the computation process, which is the gravity anomalies that 

refers to the geoid together with their corresponding latitudes and longitudes. 

4. The borders (in latitude and longitude) of the downward continuation area.   

5. The spacing of the grids within the computation boundary. For this research, a 

computation grid spacing of 11   arc-minute was selected.  

6. An iteration tolerance of 0.05, i.e., the value below which the iteration process 

should be terminated. 

Fig. 4-9 shows the difference between the Helmert anomalies on the topography and that 

on the geoid.  



 

 

 

Figure 4-9 Differences between Helmert anomalies on topography and downward continuation in 

mGal 

 

 

 

 



 

 

4.13 Reference Field 

 

The long-wavelength part of the gravity signal predicted from the EGM08 up to degree 

90 is removed from the Helmert gravity anomalies on the geoid. This removes the 

unreliable low-frequency part of the terrestrial gravity data and indicates the limits of the 

integration i.e. the o20   of integration cap around the computation points. The degree 

and order 90 of EGM08 was tested and found to give relatively reliable results. 

Computation of the reference field was carried out using the program 

Reference_field_2001_HighDegree.f in the SHGeo package. The reference field is shown 

Fig 4-10. 



 

 

 

Figure 4-10 Reference field in mGal 

 

4.14 Ellipsoidal corrections 

 

As explained earlier the ellipsoidal corrections are two: gravity disturbance correction 

and spherical approximation correction. These corrections arise from the fact that the 

boundary for which the BVP is formulated is the geoid. It is in practice approximated by 

an ellipsoid which, in turn is further approximated by the sphere. The program 

Ellips_corrections_masPreserve.for program of SHGeo was used to calculate the gravity 

disturbance correction and spherical approximation correction. The results of the 



 

 

ellipsoid corrections for gravity disturbance and spherical approximation are shown in 

Fig 4-11 and Fig 4-12. 

 

Figure 4-11 Ellipsoidal correction for gravity in mGal 

 



 

 

 

Figure 4-12 Ellipsoidal correction for sphere in mGal 

 

4.15 Computation of the residual co-geoidal heights 

 

The program Stokes_integral was used to compute the Stokes integration using a 

modified Stokes’s kernel [Vaníček and Sjöberg, 1990]. This modification was brought 

about by Molodenskuj and first used in Canada by Vaníček and Kluesberg (1987) as 

indicated earlier. Residual Helmert gravity anomalies on the geoid to which the 

ellipsoidal corrections have been applied were used as input data into the Stokes formula 



 

 

for the computation of the residual Helmert’s co-geoidal heights. A two-degree spherical 

cap was used for this computation in spatial form and the far zone contribution i.e. the 

contribution of the anomalies from the rest of the world is computed in spectral form. By 

use of this technique, UNB’s Stokes-Helmert method of geoid computation avoids the 

truncation errors, which most of the geoid computation software are unable to account 

for. The theoretical basis for this technique was explained in section 3.11. Fig 4-13 shows 

the result Stokes integration computation. 

 



 

 

 

Figure 4-13 Helmert co-geoidal heights in meters 

 

4.16 Reference Spheroid 

 

Since the reference field of degree and order 90 of EGM 08 was subtracted from 

Helmert’s anomalies on the geoid prior to Stokes’ integration, the reference spheroid up 



 

 

to degree and order 90 of EGM08 was added back to the Helmert residual cogeoid after 

the Stokes integration. The program Reference_spheroid_2011_HighDegree.f of the 

SHGeo package was used for the computation of the reference spheroid. Fig. 4-14 shows 

the results of this computation. 

 

Figure 4-14 Reference spheroid in meters 

 

 



 

 

4.17 Transformation from Helmert’s space to real space 

 

The addition of primary indirect topographic effect (PITE)  and primary indirect 

atmospheric effect (PIAE) transforms the co-geoidal heights in Helmert space back to 

geoidal height real space [Martinec and Vaníček, 1994]. The details of the PITE and 

PIAE computations are shown below. 

4.18 Primary Indirect Topographic Effect (PITE) 

This indirect effect of topography is computed using the pite_rio.cc program module of 

the SHGeo software. The result of the PITE computation is shown in Fig 4-15. 



 

 

 

Figure 4-15 Primary Indirect Topographic Effect (PITE) in meters 

 

4.19 Primary Indirect Atmospheric Effect (PIAE) 

 

Similar to the PITE, the PIAE on the computed geoid has to be accounted for. This 

computation was carried out using piae_h.cc module of the SHGeo Software. Figure 4-16 

shows the computation of the effect of primary indirect atmospheric effect. The PIAE is 



 

 

quite small as shown in the color bar. UNB’s SHGeo software suite accounts for this 

effect and this makes SHGeo geoid computation really robust. 

 

Figure 4-16 Secondary Indirect Atmospheric Effect (SIAE) in meters 

 

 

  



 

 

4.20 Geoid-Ellipsoid separation 

 

The resulting geoid for Ghana is shown in Fig 4-17. A contour plot of the geoid is also 

shown in Fig. 4-18. 

 

Figure 4-17 Geoid-ellipsoid separation in meters 



 

 

 

Figure 4-18 Contour plot of the geoid-ellipsoid separation in meters 

 



 

 

4.21 GNSS/trigonometric-levelling data 

 

Measurements from GNSS receivers provide geodetic heights, which are heights referred 

from the surface of referenced ellipsoid to the points of interest and measured along the 

normal of the ellipsoid. Orthometric height is referenced from the geoid to the point of 

interest and is measured along the plumbline. Orthometric heights are obtained mainly by 

spirit levelling and to a less degree of accuracy by trigonometric levelling. Equation 4.3 

below shows the relationship between the geoidal height, geodetic height and orthometric 

as: 

HhN            (4.3) 

where N is the geoidal height, h is the geodetic height and H is the orthometric height. 

GNSS/trigonometric-leveling is a technique based on the use of the above equation, i.e., 

N =  h–H. If the geodetic height h is obtained from GNSS measurements, and the 

orthometric height H is available from levelling, their differences can be compared 

against the computed N. 

 GNSS/trigonometric-levelling technique can be used to assess the accuracy of the 

computed gravimetric geoid model and vise-versa. Unfortunately, orthometric heights 

obtained from spirit levelling, together with its GNSS data, are not readily available in 

Ghana as at the time of testing this geoid model. However, less accurate trigonometric 

heights can be extracted from the old triangulation network established by the British 

from 1924 to 1926 [Clendinning, 1926]. These trigonometric heights were provided by 

the examination section of the Survey and Mapping Division of the Lands Commission. 

These orthometric heights were computed from trigonometric levelling data during the 



 

 

triangulation of the then Gold Coast and are thought to have generally a standard 

deviation of about 25cm [Clark and Clendinning, 1923].  

The total number of such points that can be used for the assessment of the Ghanaian 

gravimetric geoid model is 13. The 13 points covers mainly the southern portions of the 

country usually referred to as the ―golden triangle‖. There may be inconsistencies in the 

computation of the trigonometrical heights since the computations were not adjusted 

homogeneously. GNSS determined geodetic heights were observed on these 

trigonometric points during the first phase of the Land Administration project in 2007. 

Each point was observed for a minimum of 12 hours.   

 

As shown in the table below, the differences between GNSS/trigonometric-levelling 

determined geoidal heights and those determined in our computation ranges from -0.958 

m to 0.973 m. These relatively large differences are due to the errors in the elevation 

values from the trigonometric levelling network, since the network has not been adjusted 

homogenously and additionally only has thirteen points. These points are located on high 

mountains, see Figs. 4.19 and 4.20.  As a result, these trigonometrically determine 

heights are not good enough to use in evaluating geoid model accuracy. Height 

determined from precise levelling will be a better measure of assessing the accuracy of 

the geoid model. Again trigonometrically determined heights suffer from refraction 

correction errors, which are very significant (see later).  From table 1 and table 2, it can 

be seen that the points with higher elevations have relatively higher differences. It is 

worth mentioning that the computation of the geoid model (if carried out using a criterion 

that made residual anomalies less than -10 mgal and that greater than +10 mgal as 



 

 

outliers) produces only slightly better relatively to GNSS/trigonometric-levelling 

differences. This indicates that the large differences in the assessment of the accuracy of 

the computed geoid model are due to the errors in the trigonometric levelling and not in 

the gravity data. Table 2 shows the results of this computation. Figure 4-19 shows the 

locations of the trigonometric points used for assessing the geoid model. An enlarged 

form of these locations is in figure 4-20. One may also check the accuracy of the 

computed geoid model by using GOCE TIM5 EGM up to degree and order (d/o) 200 

combined by EGM2008 from d/o 201 to d/o 2190. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Name Trigonometric 

height (m) 

)(/ mN LevellingricTrigonometGNSS   )(mNGeoid  Difference (m) 

CFP 145R 476.616 26.375 26.787 -0.412 

CFP 150R 333.451 25.303 25.160 0.143 

CFP 155 500.360 24.206 25.179 0.973 

CFP 178 590.398 25.630 26.588 -0.958 

CFP 179 410.391 26.959 26.442 0.517 

CFP 185 615.666 26.916 26.966 -0.050 

CFP 200 279.715 25.292 24.485 0.807 

CFP 207 374.187 26.565 26.416 0.149 

CFP 217 285.720 25.462 25.766 -0.302 

CFP 225 249.784 25.451 25.523 -0.072 

GCS 102 60.320 23.127 23.288 -0.161 

GCS 125 73.152 24.459 24.543 0.084 

GCS 213 301.325 25.913 26.028 -0.115 

st dev     0.497 

Table 1 Agreement of geoid model heights and GNSS/Trigonometric-levelling 

 

 

 

 

 



 

 

Name Trigonometric 

height (m) 

)(/ mN LevellingricTrigonometGNSS   )(mNGeoid  Difference (m) 

CFP 145R 476.616 26.375 26.741 -0.366 

CFP 150R 333.451 25.303 24.981 0.322 

CFP 155 500.360 24.206 24.917 0.711 

CFP 178 590.398 25.630 26.566 -0.936 

CFP 179 410.391 26.959 26.425 0.534 

CFP 185 615.666 26.916 26.958 -0.042 

CFP 200 279.715 25.292 24.458 0.834 

CFP 207 374.187 26.565 26.408 0.157 

CFP 217 285.720 25.462 25.750 -0.288 

CFP 225 249.784 25.451 25.518 -0.067 

GCS 102 60.320 23.127 23.255 -0.128 

GCS 125 73.152 24.459 24.440 0.019 

GCS 213 301.325 25.913 26.005 -0.092 

st dev     0.474 

Table 2 Agreement of geoid model heights using ±10 mGal criterion and GNSS/Trigonometric-

levelling 

 



 

 

 

Figure 4-19 Location of trigonometric levelling stations Source of map: Google 

 

 

Figure 4-20 Enlargement of the location of the trigonometric stations Source of map: Google 



 

 

I think I did pretty well, considering I started out with nothing but a bunch of blank 

paper. 

 

Steve Martin 

Chapter 5. Conclusions and recommendation 

5.1 Conclusion 

 

This thesis aims to compute gravimetric geoid of Ghana using terrestrial gravity data 

covering the entire country. Such an undertaking is very difficult since Ghana is a 

developing country with sparse gravity data coverage and a lack of information regarding 

the quality of the gravity data. Additionally, this is the first time a geoid model has been 

computed in Ghana. It is worth mentioning that even though it has been the aim of 

geodesists in Africa to compute a geoid model for the entire continent, this has remained 

on the drawing board for quite some time now [Combrinck et al., 2003].  

The Stokes-Helmert approach in geoid computation has been used to compute the geoid 

model of Ghana. This method was selected because it does not suffer from truncation 

errors when computing the Stokes integration- a problem which most of the geoid 

computation software are unable to handle effectively. This geoid model of Ghana is 

available on a regular 11  grid over an area bounded by latitudes 4ºN and 12ºN and 

longitudes 4ºW and 2ºE.  

An important contribution of this research is the conversion of all the terrestrial gravity 

data held by the Geological Survey Department to Geodetic Reference System 1980 



 

 

(GRS80) and the elimination of duplicate gravity data from the database.  The original 

gravity anomalies were computed using the 1930 International gravity formula, which is 

no longer valid. An attempt was made to contact BGI and GETECH for any additional 

gravity data to improve the accuracy of the geoid model.  These attempts met failures. 

This research used the publicly available 3" STRM DEM since there is lack of high 

resolution photogrammetric based DEM covering the entire country. In addition, EGM08 

was selected and used among the wide range of EGMs because it were tested and prove 

satisfactory accurate. EGM08 and STRM-DEM have been used to fill the gaps in sparse 

gravity data coverage and the absence of a national DEM.  

Statistical techniques were used for detection of outliers in the gravity data set prior to 

gridding. This check on the gravity data led to the exclusion of 117 gravity 

measurements. GPS/trigonometric levelling data was used to access the accuracy of the 

computed geoid model. The standard deviation of the differences between the computed 

geoid model and 13 GPS/trigonometric levelling data is estimated to 0.497m. Due to the 

presence of systematic errors in the observation and adjustment of the GPS/trigonometric 

levelling and gravity data, this assessment will not yield a true reflection of the accuracy 

of the geoid model. Furthermore, a better way to assess the accuracy of the computed 

geoid model is to use GPS/levelling data. The precise level data in Ghana have not been 

computed and adjusted homogenously. Furthermore, if any precise level data is available, 

there is the need to carry out GNSS observations on these bench marks before they can be 

used to assess this computed geoid model. Absence of such data made it impossible to 

really assess the accuracy of the first computed Ghanaian gravimetric geoid model. 



 

 

5.2 Limitations of this research 

 

1. As is characteristic of almost all geoid computation software that uses gridded data, 

they are unable to compute the standard deviation of the positions outside the grid 

points. This results in difficulties when comparing heights estimated from geoid 

models with heights from bench marks since the bench marks are not located at the 

gridded points used in the geoid computation. 

2. There were issues with the quality of the gravity data used in the modelling of the 

geoid. As can be found in most countries in the world, the main application of gravity 

data is for mineral prospecting and not for geodetic purposes. Accordingly, Meta data 

about the gravity data, such as the gravimeter used in acquiring, the accuracy of the 

gravity measurement, positional accuracy and field procedures adopted during data 

acquisition are usually missing. The quality of such Meta data will definitely affect 

geoid model computed. 

3.  Use of a single density model value of 2.67g/cm
3
 will introduce biases in the 

computed model. An accurate geoid model should account for the density variation 

within the topography. Currently Ghana does not have a topographic laterally varying 

density model. However, these biases will not be significant since the terrain in 

Ghana is relatively low lying.  

4. The lack of a national DEM also had an impact on the accuracy of topographic 

reduction. Additionally, the sparse gravity data coverage especially at the western 

part of Ghana will most likely affect the accuracy of the geoid model in that part of 

Ghana since those areas were padded with EGM08 gravity data.  



 

 

5. The absence of leveled height data reduced significantly the ability to test the 

accuracy of the computed geoid model.  

6. The lack of uniformly distributed gravity data which covers the entire country also 

impose a limit on the accuracy which could be achieve in computing the geoid model. 

5.3 Recommendation 

 

In computing the gravimetric geoid model of Ghana, a major constraint is the lack of 

gravity data from western part of Ghana, the neighboring countries and in the sea. As 

pointed out in the theory of geoid computations, there is the need for gravity anomaly 

data to at least a 3º distance from the country borders. Since there are no gravity data for 

the areas surrounding Ghana’s borders, those empty blocks were padded with data 

generated from EGM08. This 3º requirement in geoid computation implies all the 

neighboring countries will also require data from Ghana in order to compute their geoids. 

It is recommended that geodesists in the sub-region should combine their efforts by 

making available terrestrial gravity data sets from their respective countries to compute a 

geoid models for the entire West Africa sub-region.  

 

With gravity data distribution of one gravity data per 23 sq. km, it is evident that 

centimeter geoid accuracy is currently not reachable. There are large areas especially in 

the northwestern part of the Ghana that do not have gravity data coverage. Lack of funds 

and logistics are some of the drawbacks for the lack of gravity measurements in those 

areas. It is recommended that the government should carry out airborne gravity survey in 

those areas in order to increase the quality and quantity of gravity data. 



 

 

Since the central to the eastern portion of the country right into the Republic of Togo 

have been covered with airborne gravity data, it is recommended that future computation 

of the geoid should include these gravity data. Combining terrestrial and airborne gravity 

data will require specialized software since downward continuation of airborne gravity 

requires different processing.  This inclusion should lead to an improve accuracy of the 

modelled geoid. 

  

To evaluate the gravimetric geoid model will require a dense network of high quality 

GPS/levelling points well distributed throughout the country. As an interim measure, 

assessment of this computed geoid model should continue throughout the country using 

levelling/benchmark information available. This will increase user confidence in this 

computed geoid model. This will ultimately lead to the identification of regions within 

the geoid model where there is the need for further improvement. 

 

To assess the accuracy of a geoid model and EGM requires well distributed 

GPS/Levelling data. Such data must cover the entire area of the geoid model. Impartial 

results in this assessment will require a network of Fundamental Bench Marks (FBM), 

which have been correctly reduced. These FBMs together with the other bench marks 

should be adjusted homogenously and their quality (standard deviations) stated. The 

situation in Ghana is quite different. The FBMs are mostly located in the Regional 

Capitals. Furthermore, the entire spirit levelling network has not been adjusted 

homogenously. It is also worth mentioning that quite a few of the bench marks are 

located at trigonometric points. These trigonometric points are the vertices of 



 

 

triangulation network carried out by the British in the early 1920s. As a result, their 

standard deviations are unknown making it difficult to assess the quality of the geoid 

model. It is therefore important that the Geodetic Survey Section of the Survey and 

Mapping Division of the Lands Commission should be adequately resourced to carry out 

all these tasks. This will enable the Geodetic Survey section to adjust the levelling 

network data homogenously. Additionally there is the need for densification of levelling 

network throughout the country.  

Very accurate geodetic height should be observed on all the FBMs and all the bench 

marks using a GNSS. The standard deviations of such observations should be computed 

and recorded. Even though the FBMs are in place, one cannot confidently say that for the 

bench marks. Most of the bench marks are located along the road corridors and are liable 

to destruction during road construction. If one undertakes a GNSS campaign on all the 

existing bench marks, the above mentioned limitation of absence of a homogenous 

adjustment of the network will still persist, making the assessment of the geoid model 

accuracy difficult. 

 

Use of photogrammetric generated DEM will provide better accuracy than original 

STRM DEM used in computing geoid model of Ghana. The original STRM DEM had 

voids and spikes and these will ultimately affect the accuracy of the computed geoid. 

Thus, a very accurate DEM will improve the computed geoid. It is in this light that the 

new initiative by the United States Government to release a new accurate DEM covering 

Africa is very laudable. Ghana has aerial photographs covering the entire country. Some 

of these photographs were taken in the early 1970s. Additionally there are recent aerial 



 

 

photographs covering a few areas of the country. A digital elevation model made from 

these photos will increase the accuracy of geoid model. The current situation necessitates 

the use of global DTM. 
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