
T REPORTECHNICAL
NO. 296

February 2015

SABARISH SENTHILNATHAN MUTHU

VISUALIZATION, STATISTICAL
ANALYSIS, AND MINING OF
HISTORICAL VESSEL DATA

VISUALIZATION, STATISTICAL

ANALYSIS, AND MINING OF HISTORICAL

VESSEL DATA

Sabarish Senthilnathan Muthu

Department of Geodesy and Geomatics Engineering

University of New Brunswick

P.O. Box 4400

Fredericton, N.B.

Canada

E3B 5A3

February 2015

© Sabarish Senthilnathan Muthu, 2015

PREFACE

 This technical report is a reproduction of a thesis submitted in partial fulfillment of

the requirements for the degree of Master of Science in Engineering in the Department of

Geodesy and Geomatics Engineering, February 2015. The research was supervised by

Dr. Emmanuel Stefanakis, and funding was provided by the Natural Sciences and

Engineering Research Council ‒ Canada Research Chair Program.

 As with any copyrighted material, permission to reprint or quote extensively from this

report must be received from the author. The citation to this work should appear as

follows:

Senthilnathan Muthu, Sabarish (2015). Visualization, Statistical Analysis, and Mining of

Historical Vessel Data. M.Sc.E. thesis, Department of Geodesy and Geomatics
Engineering, Technical Report No. 296, University of New Brunswick,
Fredericton, New Brunswick, Canada, 150 pp.

ii

ABSTRACT

An important area of research in marine information systems is the management

and analysis of the large and increasing amount maritime spatio-temporal datasets. There

are a lack of systems that may provide visualization and clustering techniques for large

spatiotemporal datasets (Oliveira, 2012). This thesis describes the design and

implementation of a prototype web-based system for visualizing, computing statistics,

and detecting outliers of moving vessels over a massive set of historic AIS data from the

Aegean Sea in the Mediterranean. This historic AIS data was acquired from the Marine

Traffic project (MarineTraffic, 2014) which collects the raw location points of the

vessels. The web-based system provides the following functionalities: (i) user interface

to upload the location points of vessels into a database, (ii) detailed and simplified

trajectory construction of the uploaded location points of vessels, (iii) distance, speed,

direction, and turn angle computation of the constructed trajectories, (iv) identify vessels

that intersect the European Union’s Natura 2000 protected areas, (v) identify spatio-

temporal outliers in the location points of vessels using DBSCAN algorithm, and (vi)

heat map visualization to show the traffic load and highlight sea zones of high risk.

 The architecture of the web-based system employed is based on open standards,

and allows for interoperable data access. The system was implemented using PHP as the

server-side scripting language, and Google Maps API as the client-side scripting

language. Furthermore, improved system responsiveness, and server performance was

iii

achieved by asynchronous interaction between client and server by utilizing AJAX to

send and receive requests. In addition, data transfer between client and server was

achieved using the platform-independent and light weight JSON format.

iv

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my supervisor, Dr.

Emmanuel Stefanakis for all the help, guidance, and support he has provided me during

my Master’s at the University of New Brunswick. I am very grateful for the time he took

to give me valuable suggestions, and feedback. I would like to thank the rest of my thesis

committee members, Dr. David Coleman, and Dr. Paul Peters for kindly accepting at the

last moment to be the members of my thesis committee, and for their suggestions. I

would also like to thank Sylvia Whitaker for all the administrative help.

 Also, I would like to thank Dr. Dimitrios Lekkas for providing the historical

vessel dataset. I would also like to thank my friends at Fredericton for their support, and

friendship. Last but not least, I would like to thank my mother, and father for their

unconditional love, and support all throughout my life.

v

Table of Contents

ABSTRACT.………………...……………………………………………………..……..ii

ACKNOWLEDGEMENTS..……………………………………………………..……...iii

List of Tables ...viii

List of Figures ..ix

List of Symbols, Nomenclature or Abbreviations ...xiii

CHAPTER 1 INTRODUCTION .. 1

1.1 Related Work and Motivation .. 5

1.2 Thesis Objectives ... 9

1.2.1 Tasks .. 10

1.3 Thesis Outline ... 12

CHAPTER 2 SYSTEM ARCHITECTURE ... 14

2.1 Introduction ... 14

2.2 Presentation Tier ... 16

2.2.1 OpenLayers .. 16

2.2.2 Google Maps API .. 17

2.2.3 AJAX .. 18

2.3 Application Tier .. 20

2.3.1 Web Server ... 20

2.3.2 PHP .. 21

2.4 Data Tier ... 22

2.4.1 PostgreSQL .. 23

2.4.2 PostGIS .. 25

vi

2.4.2.1 Data Types .. 25

2.4.3 GeoServer .. 26

2.4.4 PyWPS .. 27

2.5 Summary ... 28

CHAPTER 3 DATABASE DESIGN .. 29

3.1 Introduction ... 29

3.2 Conceptual Design .. 30

3.2.1 Unified Modeling Language (UML).. 31

3.3 Logical Database Design .. 37

3.3.1 Transformation from Conceptual Model to Logical Model 37

3.4 Physical Database Design .. 39

3.4.1 Database Schema Implementation .. 40

3.4.2 Populating the Database ... 44

3.5 Summary ... 51

CHAPTER 4 STATISTICAL ANALYSIS AND MINING .. 52

4.1 Introduction ... 52

4.2 Detailed Trajectory Construction .. 52

4.3 Simplified Trajectory Construction .. 55

4.3.1 PostGIS Data to ESRI Shapefile .. 57

4.3.2 Simplification of the Constructed ESRI Shapefile using GRASS 59

4.3.3 Loading the Simplified Shapefile into a PostgreSQL Table 62

4.4 Calculating Distance, Speed, and Direction of Trajectories 64

4.5 Identifying Sharp Turns in the Trajectory .. 68

4.6 Identifying Vessels That Intersect the Protected Areas 70

vii

4.7 Identifying Vessels That Are in the Vicinity of a Vessel 72

4. 8 Outlier Detection ... 74

4. 9 Experimental Results .. 78

4.10 Summary ... 83

CHAPTER 5 VISUALIZATION ... 85

5.1 Introduction ... 85

5.2 User Interface .. 86

5.3 AJAX Calls through jQuery Library .. 88

5.4 Dynamic Web Visualization Using Google Maps API 90

5.4.1 Visualizing Detailed and Simplified Trajectory .. 91

5.4.2 Visualizing Distance, Direction, Speed, and Turn Angle 94

5.4.3 Visualizing Ships around the Vicinity of a Ship .. 97

5.4.4 Visualizing Vessels Intersecting Protected Areas .. 99

5.4.5 Visualizing Outliers ... 100

5.4.6 Visualizing heat maps .. 102

5.5 Summary ... 105

CHAPTER 6 CONCLUSIONS ... 107

6.1 Summary ... 107

6.2 Thesis Contributions ... 108

6.3 Limitations .. 109

6.4 Recommendations for Future Research .. 110

REFERENCES ... 112

Appendix A Database Design Scripts ... 119

A.1 Creation of a Spatial Database in PostgreSQL .. 119

viii

A.2 Creation of a Foreign Key Constraint in PostgreSQL ... 119

A.3 Creation of an Index on a Column in PostgreSQL .. 119

A.4 PHP Script for File Uploading ... 120

A.5 PHP Script for Reading and Inserting Data into LOCATION_SHIPS Schema 120

A.6 PHP Script to Read Data from a KML File and Populate PROTECTED_AREAS

 .. 121

Appendix B Data Mining Scripts ... 123

B.1 PHP Function for Creating a Trajectory as a Linestring 123

B.2 PHP Script for Creating Trajectories for All Ships and Storing It in

ROUTE_SHIPS Table .. 124

B.3 OGR2OGR Command to Import a PostGIS Query into a Shapefile 124

B.4 PHP Script for the Creation of a Shapefile Based on PostGIS Query 125

B.5 PHP Script to Copy a Folder to the GRASS GIS Location 126

B.6 Trajectory Simplification Using v.generalize Module ... 127

B.7 A PyWPS Process to Generalize a Line Geometry .. 127

B.8 OGR2OGR Command to Import a Shapefile into a PostgreSQL Table 128

B.9 SELECT Query to Determine a Trajectory Length ... 128

B.10 CREATE VIEW Query to Store the Results of the Route Traversed by a Vessel

 .. 129

B.11 A Stored Function DistanceAndSpeedCalc for Distance and Speed

Calculation given a MMSI Identifier and a Time Interval ... 129

B.12 A Stored Function DirectionCalc for Direction Calculation given a MMSI

Identifier and a Time Interval ... 132

B.13 A Stored Function Turnanglecalc for Turn Angle Calculation given a MMSI

Identifier and a Time Interval ... 135

ix

B.14 SQL Query to Determine the Vessels That Intersect the Protected Areas 140

B.15 SQL Query to Determine the Protected Areas That the Vessel with MMSI

Identifier 237001000 Passes Through .. 141

B.16 SQL Query to Identify Vessels That Are in the Vicinity of a Vessel 141

B.17 DBSCAN Algorithm Implementation (a) DBSCAN() Function, and (B)

ExpandCluster() Function Using PHP .. 142

Appendix C Visualization Scripts ... 146

C.1 Including jQuery Library in HTML ... 146

C.2 AJAX Function in jQuery That Loads a Remote Page Using HTTP Request 146

C.3 PHP Script to Extract the Coordinates for the Detailed and Simplified Trajectory

as a JSON Encoded Array to Be Sent to the Client .. 147

C.4 JavaScript Code Fragment to Displaying the Direction through Google Maps Info

Window ... 148

C.5 Adding a OGC WMS Layer Using OpenLayers JavaScript API 149

Curriculum Vitae

x

List of Tables

Table 1.1: Attributes of AIS data .. 3

Table 2.1: Types of web services available in Google Map API...................................... 18

Table 2.2: Geometric types in PostgreSQL .. 24

Table 3.1: Database elements and their appropriate icons in an UML Data Model Profile

... 33

Table 4.1: Parameters available in v.generalize module ... 60

Table 5.1: Parameters required for making AJAX calls through jQuery 89

xi

List of Figures

Figure 1.1: Historical AIS data ... 4

Figure 1.2: Marine Traffic AIS interface .. 4

Figure 1.3: Web interface of MoveMine .. 7

Figure 1.4: Sites of Community Importance (SCI) as defined by the European Union

(Natura 2000) for Cyclades ... 12

Figure 2.1: System architecture .. 15

Figure 3.1: An example of a UML diagram ... 34

Figure 3.2: UML Data Model Profile that represents the database schema 36

Figure 3.3: Mapping a conceptual multivalued attribute to a logical model 39

Figure 3.4: Populated LOCATION_SHIPS schema .. 48

Figure 3.5: A KML file ... 49

Figure 3.6: KML file used to populate PROTECTED_AREAS table 50

Figure 3.7: Populated PROTECTED_AREAS schema .. 51

Figure 4.1: A snapshot of the constructed trajectories in the ROUTE_SHIPS table....... 54

Figure 4.2: Line simplification using Douglas–Peucker algorithm 56

Figure 4.3: Flow diagram to construct a simplified trajectory using Douglas– Peucker

algorithm ... 57

Figure 4.4: Snapshot of the simplified trajectory for MMSI 21567600 63

Figure 4.5: Snapshot of the detailed trajectory for MMSI 21567600 64

xii

Figure 4.6: Snapshot of the calculated distance and speed given a MMSI and time

interval .. 66

Figure 4.7: Snapshot of the calculated direction given a MMSI and time interval 68

Figure 4.8: Snapshot of the calculated turn angles along a trajectory given a MMSI and

a time interval ... 70

Figure 4.9: Vessels intersecting protected areas generated using ST_Intersects()

function ... 71

Figure 4.10: Areas that the vessel with MMSI identifier 237001000 passes through 72

Figure 4.11: Vessels that are located within 50 nautical miles of the MMSI identifier

237001000 at '2012-08-21 06:05:00' .. 74

Figure 4.12: The outlier points from DBSCAN algorithm for the MMSI identifier

205572000... 78

Figure 4.13: A bar graph showing the number of trajectories reconstructed in August

2012, and August 2013 ... 79

Figure 4.14: A bar graph showing the respective number of detailed and simplified

location points for the months of August 2012, and August 2013 80

Figure 4.15: A bar graph showing the total distance and average speed of trajectories

during August 2012, and August 2013 ... 81

Figure 4.16: A bar graph showing the number of trajectories passing through the

protected areas during August 2012, and August 2013 .. 82

Figure 4.17: A bar graph showing the number of sharp turns during August 2012, and

August 2013 .. 83

Figure 5.1: Trajectory visualization user interface ... 88

xiii

Figure 5.2: Flow diagram of a typical AJAX call ... 91

Figure 5.3: Detailed and simplified trajectory visualization using Google Maps API. The

red line indicates the detailed trajectory, and the yellow line indicates the simplified

trajectory ... 94

Figure 5.4: Markers displaying (a) the distance and speed, (b) the direction and major

direction, and (c) turn angle of each of each intermediate point of MMSI identifier

215234000 between 24-Aug-2014 and 25-Aug-2014 .. 97

Figure 5.5: Ships around the vicinity of 50 nautical miles of MMSI identifier 237001000

... 98

Figure 5.6: Vessels passing through EU Natura 2000 protected areas using Polygon, and

InfoWindow objects .. 100

Figure 5.7: Outlier visualization using Google Maps API ... 101

Figure 5.8: Heat map of high risk zones using (a) OpenLayers and GRASS, and (b)

JavaScript and Google Maps API ... 105

xiv

List of Symbols, Nomenclature or Abbreviations

AIS Automatic Identification System

AJAX Asynchronous JavaScript and XML

API Application Programming Interfaces

CSS Cascading Style Sheets

CSV Comma-Separated Values

DBMS Database Management System

DBSCAN Density-Based Spatial Clustering of Applications with Noise

ECQL Extended Common Query Language

EPSG European Petroleum Survey Group

GeoRSS Geographically Encoded Objects for RSS feeds

GIS Geographic Information System

GiST Generalized Search Tree

GPS Global Positioning System

GML Geography Markup Language

GRASS Geographic Resources Analysis Support System

GUI Graphical User Interface

HTML HyperText Markup Language

xv

HTTP HyperText Transfer Protocol

JSON JavaScript Object Notation

KDD Knowledge Discovery from Databases

KML Keyhole Markup Language

MMSI Maritime Mobile Service Identity

OGC Open Geospatial Consortium

PHP HyperText Preprocessor

PyWPS Python Web Processing Service)

RFID Radio-Frequency Identification

SQL Structured Query Language

TIGER Topologically Integrated Geographic Encoding and Referencing

UML Unified Modeling Language

URL Uniform Resource Locator

WCS Web Coverage Service

WFS Web Feature Service

WKT Well-Known Text

WMS Web Map Service

WPS Web Processing Service

xvi

XML Extensible Markup Language

1

 CHAPTER 1 INTRODUCTION

 The recent, rapid advancements in capturing the location of moving objects

through, for example, GPS sensors and RFID tags have increased the possibility of

locating moving objects with improved accuracy. These mobile positioning technologies

have combined to produce vast amounts of spatiotemporal data. This has also developed

a need to provide an interface through which these data could be stored, viewed, and

analyzed. Knowledge Discovery from Databases (KDD) is a response to the enormous

volumes of data being collected and stored in operational and scientific databases (Miller

and Han, 2008). Mobility data typically includes large amount of trajectory data of

concrete objects. Analysis of trajectory data is the key to a growing number of

applications aiming at global understanding and management of complex phenomena that

involve moving objects (e.g. worldwide courier distribution, city traffic management,

bird migration monitoring) (Spaccapietra et al., 2008). A trajectory is described as a

series of individual time-stamped positions, representing geographical coordinates at a

certain time.

 The effects caused by major sea collisions and oil spills have direct impacts on the

environment and human lives. Such damages greatly affect the maritime ecosystem and

causes serious problem to the marine protected species and protected areas. This greatly

affects the economic sector. This has developed a need to develop functionality to

determine the potential environmental impact of ship-based sea collisions and oil spills.

2

For purposes of this research, the location information of the ships has been acquired

from the real historic Automatic Identification System (AIS) data posted between the

time period ’01-Aug-2012’ and ‘01-Aug-2014’ across a region in the Aegean Sea.

 An AIS is a low cost system that can range in price between $500 and $4,000

(USCG Navigation Center, 2014) and provides information - including the ship's identity,

type, position, course, speed, navigational status and other safety-related information -

automatically to appropriately equipped shore stations, other ships and aircraft (IMO,

2015). The primary purpose of an AIS system is to allow ships to identify the locations of

other ships that are in the vicinity. The base stations are equipped with an AIS receiver, a

PC, and an Internet connection (MarineTraffic, 2014). The AIS unit in each ship

processes the received data and sends these information into a central database from

which ships will be able identify the identity, type, position, course, speed, navigational

status and other safety-related information of ships that are in the vicinity.

 The real, historic, and raw AIS dataset in Comma-Separated Values (CSV)

format comes from the Marine Traffic project (MarineTraffic, 2014), an academic, open,

community-based research project which provides the position of ship movements. The

dataset is acquired for an area in the Aegean Sea extending between 35° 0' 0.0396" - 37°

59' 59.9598" East longitude and 24° 0' 0.0684" - 26° 59' 59.964" North longitude. The

data representing ship movements is an example of trajectory data. The following are the

details that were acquired from the Marine Traffic project dataset:

3

Table 1.1: Attributes of AIS data

Attribute Description

LON and LAT The position of the ships in WGS 84 coordinate reference

system

TIMESTAMP The time at which position of the ship was recorded in

Coordinated Universal Time (UTC)

MMSI The Maritime Mobile Service Identity (MMSI) is the

unique identification number of ships

STATUS The status of the ships, whether it is anchored or moving

STATION The station providing the signal

HEADING The azimuth of the ship bow

COURSE The ship course direction (azimuth) 0-360 deg

Figure 1.1 illustrates a snapshot of the properties such as the MMSI identifier,

spatio-temporal location, type, heading, etc. of moving vessels in the Aegean Sea

acquired from the MarineTraffic project. Figure 1.2 shows MarineTraffic user interface

that displays the various ships’ current position in the Aegean Sea.

4

Figure 0.1: Historical AIS data

Figure 0.2: Marine Traffic AIS interface

5

1.1 Related Work and Motivation

Other web-based data visualization tools using complex spatio-temporal data have

been developed for other purposes. First, Lu et al. (2006) developed a web-based data

visualization tool for traffic information in Washington D.C. The data visualization is

only by means of 2D plots, and scatter plots. However, the web application lacked

integration with any mapping and data mining component as will be developed for this

thesis.

Second, Yawen et al. (2010) implemented a web-based spatio-temporal data

visualization tool for visualizing Argo float data, sea surface temperatures, sea current

fields, salinity, and in-situ investigation data. The floats’ paths are represented as

trajectories, and the sea flow field data are represented by arrows with size and direction.

The tool does not enable users to perform temporal queries and the time visualization is

static.

Third, Zheng (2013) implemented a desktop tool that display the characteristics of

spatio-temporal trajectories (turn angles, length, duration) of marine mammals and boats,

and the identification of high risk zones as density maps. The desktop application lacks

effective presentation and visualization of the spatio-temporal datasets as the integration

with web mapping APIs is not provided. Further, the tool does not implement

sophisticated data mining and KDD algorithms.

6

The work done in this thesis is closely related to MoveMine (Li et al., 2010).

MoveMine is a web-based system developed for processing, mining, and visualizing

animal movement based on the raw location data of animals captured using GPS tracking

system which was acquired from MoveBank.org. The web application provides an

interface for visualizing movement data of various animals such as bald eagles, white

pelicans, and artic terns in Google Maps and Google Earth. Along with the visualization

of the movement data, Euclidean distance between selected objects is presented to users.

Further, various data mining functions -- such as finding clustered movements using

clustering algorithms, finding periodic movements, identifying density distribution of

data points, and identifying relationships among animal movements by identifying groups

of objects that move together -- are integrated into the web application. Figure 1.3 shows

the web interface of MoveMine where a user has selected the path of ten Bald Eagles.

Unlike MoveMine, the work done as part of this thesis focuses on mining historical AIS

data based on PostGIS (Refractions Research Inc., 2012), extended with several custom

functions to manipulate trajectories. Furthermore, the web application enables users to

upload massive AIS data that can be mined and visualized.

7

Figure 0.3: Web interface of MoveMine

In the context of marine traffic management, several web-based visualization

applications such as MarineTraffic (MarineTraffic, 2014), ShipFinder (Pinkfroot, 2014),

and MyShipTracking (MyShipTracking, 2014) that track vessels based on AIS data and

provide an interface for visualizing the real-time position of vessels exist. However, these

applications are not capable of management, processing, analysis and visualizing of large

maritime spatio-temporal datasets.

There is a lack of systems that may provide visualization and clustering

techniques for large spatiotemporal datasets (Oliveira, 2012). Furthermore, one of the

interesting research area opened for development of marine information systems relies in

the management and analysis of the large and increasing amount maritime spatio-

temporal datasets. The web application was developed as part of this thesis in order to

8

address the problem of the lack of systems that provide visualization and clustering

techniques for large maritime spatiotemporal datasets.

MarineTraffic (Lekkas et al. 2008) is an interactive and open web application that

provides real-time geospatial information about vessel movement and port traffic based

on Google Maps. This application exploits AIS data to map the location of vessels in

real-time. In addition to the map visualization, it presents a list of ships that have recently

arrived and of those that are expected to arrive for any given port. However, this

application does not provide an interface to process past ship routes stored in the database

and acquire critical information. However, a cost-effective processing and storage

database, in order to preserve the history of vessels traffic for long periods is provided.

This thesis exploits the massive collection of vessel position data acquired from

MarineTraffic to develop a framework and data model for building an information system

that will process and reconstruct trajectories, extract geometric properties from the

reconstructed trajectories, compute turn angles, develop and disseminate heat maps, and

visualize the trajectories, geometric properties, turn angles, and heat map on a web

interface.

An additional tools is ShipFinder (Pinkfroot, 2014), which is a web mapping

application similar to MarineTraffic that enables visualization of real-time ship locations,

port arrivals and departures. Unlike MarineTraffic, in ShipFinder the coverage area is

less, does not differentiate the vessels based on its type, and the history of vessel location

data is not preserved. Similarly, MyShipTracking (MyShipTracking, 2014) is a web

9

interface that provides real-time ship locations, port arrivals and departures. However,

unlike MarineTraffic the history of vessel location data is not preserved.

1.2 Thesis Objectives

 The purpose of this Master’s thesis is to propose and develop an innovative

method to store, analyze, mine, and disseminate useful information from trajectories,

focusing on moving ships. Visualization is a powerful strategy for integrating high-level

human intelligence and knowledge into the KDD process (Miller and Han, 2008). The

objective of this project is to develop a visualization tool for the interactive presentation

and interpretation of vessel movements from large spatio-temporal datasets generated by

AIS. The other main objective research is to incorporate visualization techniques that

support extraction of a portion of trajectories that intersect with the EU Natura 2000

protected areas. Natura 2000 is the centrepiece of EU nature and biodiversity policy

(Natura 2000 network, 2014). It is an EU wide network of nature protection areas

established under the 1992 Habitats Directive. The aim of the network is to assure the

long-term survival of Europe's most valuable and threatened species and habitats. The

detailed objectives are given below.

10

 The following are objectives of the research project:

1. To develop a framework and data model for storing, analysing, mining, and

visualizing massive collection of historical AIS data.

2. To implement data mining functions that exploits the historical AIS data.

3. To develop a web application that integrates the data mining functions and

enables the results to be visualized in Google Maps.

4. Determine the potential negative environmental impact through spatio-

temporal thematic maps.

1.2.1 Tasks

The following are the tasks that need to carried out to achieve the objectives:

1. Develop a web user interface to upload the raw AIS dataset in CSV format into a

object-relational database with spatio-temporal capabilities.

2. Provide a methodology to process and reconstruct the raw records into vessel

trajectories. Two types of trajectory reconstruction was incorporated, namely,

detailed, and simplified using the Douglas-Puecker algorithm.

3. Extract geometric properties from trajectories, namely, travelled time, travelled

distance, speed, and azimuth.

4. Develop a methodology to determine the locations where a ship has made sharp

changes in direction by computing the turn angles at each time point. The

11

travelled time, travelled distance, speed, azimuth, and turn angle are presented for

visualization as they represent the sailing habit/characteristics of vessels (Zheng,

2013).

5. Extract the information of ships that are in the vicinity of a ship. Identifying ships

are in the vicinity of a ship at a given time point is important for analyzing risk

and near-collision situations.

6. Identify ships that go through protected areas in the Aegean Sea, by comparing

the trajectories and their patterns against EU Natura2000 protected areas (Figure

1.4).

7. Determine the outliers in the ships’ position using an outlier detection algorithm.

8. Develop a web based user interface to facilitate disseminating the results of (b) to

(h) through standard OGC web services (e.g, WMS, WFS, etc.) (Open Geospatial

Consortium, 2014) and other web mapping libraries.

12

Figure 0.4: Sites of Community Importance (SCI) as defined by the European Union

(Natura 2000) for Cyclades

1.3 Thesis Outline

This thesis is organized into six chapters. This chapter provides an introduction to

the thesis and discusses topics such as the objectives, and the methodology used for the

thesis. Further, this chapter discusses the web-based tools that exist in marine traffic

13

management and how this thesis improves upon them. Finally, this section provides an

outline of the thesis. Chapter 2 discusses the system architecture. More specifically, the

tools and the underlying technologies employed in the server-side, and the client-side to

achieve the objectives will be discussed. Chapter 3 discusses the process involved in

designing, implementing, and populating the database. Further, the chapter discusses

framework in terms of the data model used for the development of the web application.

Chapter 4 discusses the methodology employed in order to accomplish the objectives of

the thesis. The development process for the statistical analysis, and mining from the

uploaded raw location data will also be discussed. More specifically, Chapter 4 covers

topics such as the trajectory reconstruction, extraction of geometric properties from

reconstructed trajectories, turn angle computation, and outlier detection. The results

acquired as a result of the development process serves as the back-end data for the web

application. Chapter 5 discusses in detail the design, and implementation of the web

interface to visualize the results of the methodology used for the statistical analysis, and

mining. This chapter will discuss the components of the Google Maps APIs and how it

forms the basis for visualization. Further, the chapter discusses the advantages of

integrating AJAX into the web application. Chapter 6 discusses the thesis outcomes and

limitations. Recommendations for future research on this topic are also discussed.

14

 CHAPTER 2 SYSTEM ARCHITECTURE

2.1 Introduction

This chapter discusses the system architecture employed to achieve the objectives.

Furthermore, the underlying technologies are discussed in detail to illustrate the

capabilities of the technologies for organizing and managing various types of spatial data.

The system architecture used is a typical three-tier architecture proposed by Eckerson

(Eckerson, 1995). The three-tier architecture is a client-server architecture that consists of

the top most "Presentation Tier", the middle "Application Tier", and the bottom "Data

Tier". The presentation tier consists of the user interface where the user services such as

session management, text input, and display management reside and work together to

disseminate the output from a client request. The user interface is typically accessed

through a web browser using the HTTP protocol. In the system prototype proposed, the

presentation tier is composed of HTML, CSS, JavaScript, AJAX, OpenLayers and

Google Maps API. The application tier performs the business logic, executes queries,

processes commands, and performs calculations. It also transfers requests from the

browser to the data tier to read or write data. In the system prototype proposed, the

components of the application tier are a web server, a web scripting language and a

geoprocessing tool. The web server used is the Apache HTTP server and the scripting

language used is PHP. The geoprocessing tool used is PyWPS, that facilitates access to

GRASS modules via the web interface. The data tier is used for data management. The

15

data management should support data storage, data retrieval, and concurrent access by

multiple application tier processes, data backup, security and integrity of data. These

functions are supported by a typical Database Management System (DBMS). In the

system prototype proposed, the components comprising the data tier include a spatial

DBMS, comprising of PostgreSQL, PostGIS and a Geographic Information System (GIS)

server, GeoServer. Figure 2.1 illustrates the system architecture employed for this thesis.

Figure 0.1: System architecture

16

2.2 Presentation Tier

The presentation tier is the top level of the application and contains the Graphical-

User Interface (GUI) through which the dynamic nature of web applications is made

possible. The presentation tier is used to disseminate the results of the knowledge

discovery process of the trajectory data to the web browser running on the client system.

2.2.1 OpenLayers

 OpenLayers (OpenLayers Dev Team, 2014) is a fast, high-performance, open-

source JavaScript API used in web mapping applications. OpenLayers was initially

developed by MetaCarta to provide an open-source alternative to Google Maps. Now

OpenLayers is developed by the Open Source Geospatial Foundation under the 2-clause

BSD license.

OpenLayers has no server-side dependencies and can render maps in web

browsers. Without server-side dependencies, OpenLayers is capable of connecting to a

wide variety of OGC web services such as WMS, WFS and WCS. OpenLayers is well

integrated with GeoServer, and is capable of requesting and rendering the services

implemented in GeoServer. The main advantage of using OpenLayers is that it can

embed other publicly available web mapping applications such as Google and Bing

Maps.

17

2.2.2 Google Maps API

 Google Maps JavaScript Application Programming Interfaces, or APIs (Google,

2014), are a suite of tools that enable developers to use the functions available in Google

Maps components to create custom mapping application using Google Maps as the base

map. They are one of the most sophisticated AJAX-based web applications. These APIs

contains classes, and objects that allow developers to create maps, provide map controls

such as zoom control, pan control, scale control, street view control, rotate control, and

overview control. Further, the APIs provides support to display several types of layers on

top of the base map. Layers are one or more separate objects on the map, and are

manipulated as a single unit. The types of layers include, KML layer, GeoJSON layer,

heatmap layer (renders geographic data as a density map), and fusion tables layer. Each

Map object contains a number of named events such as mouseout, mouseover, drag,

mouseup, and mousedown. Based on the user events triggered, functions listening to

these events are called and an action is executed. Google Map API provides support to

display overlays to the map to demarcate points using markers, lines, polygon, and

collections of objects. In addition to these features, Google Maps API provides web

Services using the HTTP GET requests to Google services. The HTTP GET requests are

made to specific URLs by passing parameters as arguments to these services. Table 2.1

shows the different types of web services that Google Maps API provide.

18

Table 2.1: Types of web services available in Google Map API

Service Description

Directions API Service that calculates routing directions

between two different locations

Distance Matrix API Service that computes the travel distance

and time for a matrix of origins and

destinations

Elevation API Service that provides the elevation for a

location (Latitude/Longitude pair) on the

earth surface

Geocoding API Service that provides the geographic

coordinates from an address

Time Zone API Service that provides the time offset data

for a location (Latitude/Longitude pair) on

the earth surface

2.2.3 AJAX

AJAX (Garrett, 2005) is Asynchronous JavaScript and XML. It encompasses several

technologies that facilitate enhanced user experience. AJAX comprises of the following

five technologies:

19

(a) front-end UI using XHTML and CSS

(b) dynamic web pages using the Document Object Model (DOM)

(c) data transport using XML or JSON

(d) asynchronous data retrieval using XMLHTTPRequest

(e) scripts using JavaScript that binds all components together

In traditional web applications, based on the HTTP request sent by the user, data is

retrieved from the server, and processed on the server. The result is sent back to the user

as an HTML page. However, in an AJAX model, there is an intermediate AJAX engine

between the client and the server. A HTTP request that does not require data retrieval

from the database, such as data validation, editing data in memory, and page navigation,

is handled by the AJAX engine. If the AJAX engine requires data from the database such

as retrieving new data, and data processing, the engine sends the request to the server

asynchronously, using XML or JSON. This is done without halting the user interaction

with the web application. This prevents having to reload an entire web page when a user

request is made, and only the portion of the page when data is required from the server is

updated. This enhances the dynamic nature and user experience of the web pages. Some

of the applications that use AJAX include, Google Maps, Gmail, Facebook, and Flickr.

20

2.3 Application Tier

The application tier contains the business logic to construct trajectories from the

raw AIS dataset, extract geometric properties from the trajectories, and for other

analytical methods that were applied to these trajectories. It acts as an interface between

the presentation tier and the data tier, and contains the data access logic that queries the

data stored in the data tier. The requested results are returned to the client.

2.3.1 Web Server

A web server is a software application that provides the capability for storing,

processing and delivering web pages to clients. The basic function of a web server is to

receive requests from the web browsers and respond with a document from the server to

the web browser (Peng & Tsuo, 2003). A web server, therefore, is the communication

between client and server and this communication takes places through the Hypertext

Transfer Protocol (HTTP) protocol. A typical web server needs to facilitate processing of

various operations such as allowing users to submit data to the server through web forms,

providing server-side scripting capabilities, uploading files to the server, data processing

to retrieve information from a query, and building documents to the client.

Apache HTTP Server (Apache Software Foundation, 2014) is the web server used

in the prototype. Apache HTTP Server is the product of the Apache Software Foundation,

21

a community of developers developing open-source software applications. The Apache

HTTP Server Project is a collaborative effort aimed at developing a free-available

implementation of the HTTP web server. It is a flexible, highly configurable, extensible

web server that can run on a wide variety of operating systems such as UNIX, Linux,

Solaris, OS X, and Microsoft Windows. It provides modules for various operations such

as authenticating users, supporting a wide variety of server-side scripting, including, Perl,

Python, and PHP, compression methods, password authentication, and digital certificate

authentication.

Compression methods help reduce the size of web pages when server over HTTP.

Another important feature in Apache HTTP server is virtual hosting. Virtual hosting

enables a single Apache HTTP Server installation to host multiple web sites.

2.3.2 PHP

 PHP (PHP Group, 2013) is an open-source, server-side scripting language that

allows rapid application development of dynamic web pages. It was originally developed

by Rasmus Lerdorf in 1994. In typical three-tier architecture, PHP acts as the application

tier. PHP can either be embedded in HTML pages or it can be used with web

frameworks. Using web frameworks for development allows the developer to produce

fast, reliable, secure, and customizable web pages at a reduced development time and

cost. When a client makes a request, a PHP-based website can quickly connect to the

22

backend database, run a function, process the result, and return the result back to the

client. One important feature in PHP is the built-in flexibility that enables developers to

execute an external program from within PHP and inject the result back into the web

application. For example, a Python Web Processing Service (PyWPS) script could be

executed using PHP and the resulting output could be sent back to the client.

 The ease of development, availability of object-oriented features and integration

with Apache web server made PHP a natural choice as the server-side scripting language.

Functions responsible for communication between server and client side components,

providing file upload feature for end-users, retrieving information from the database as a

result of spatial operations were written using PHP and deployed on the web server.

2.4 Data Tier

 The data tier is used to store the raw AIS dataset in an object-relational data

structure. The data tier receives the retrieval and data processing requests using a query

language from the middle or business tier. The query is executed, and data pertaining to

the query is returned back to the middle tier. The data tier in web-GIS has capabilities to

store, and process spatio-temporal data.

23

2.4.1 PostgreSQL

To effectively store, analyze and manipulate spatial data such as the location and

heading of the vessels, a spatial database is needed. Traditional relational database

management systems in the form currently present are not very well suited for handling

large spatio-temporal data. This is because of the inherent nature of spatio-temporal data.

Traditional relational databases support basic data types such as strings and integers,

whereas spatial databases must handle complex data types such as points, lines and

polygons. Although several spatial database implementations exist, some are open-source

such as MySQL, others are proprietary such as Oracle Spatial and Microsoft SQL Server,

only Free and Open Source Software (FOSS) was considered to develop the web

application. PostgreSQL was chosen to serve as the back-end database for the web

application.

PostgreSQL (PostgreSQL Global Development Group, 2013) is an object-

relational database management system that was developed from the Ingres project at the

University of California, Berkley during the early 1980’s. PostgreSQL is the most

advanced open source database system available and its speed and functionality competes

with any proprietary enterprise database system. It uses the Spaghetti Model (Rigaux et

al., 2001) for modeling spatial data objects. It includes several geometric data types to

represent two-dimensional spatial objects. Apart from the standard SQL functions,

PostgreSQL provides functions for producing XML (Extensible Markup Language) and

JSON (JavaScript Object Notation) from SQL data. XML and JSON are the most used

24

format for transporting data between different systems. Table 2.2 shows the geometry

data types supported in PostgreSQL.

Table 2.2: Geometric types in PostgreSQL

Geometric Type Representation Description

Point Point on a plane (x,y)

Line Infinite line ((x1,y1),(x2,y2))

Box Rectangular box ((x1,y1),(x2,y2))

Path Closed path ((x1,y1),...)

Path Open path [(x1,y1),...]

Polygon Similar to closed path ((x1,y1),...)

Circle Circle <(x,y),r> (center point)

and radius)

One advantage of PostgresSQL is that it uses a balanced, tree structure for

indexing called GiST (Generalized Search Tree) that allows users to develop custom data

types in addition to the data types provided. One example of this is PostGIS, the

PostgreSQL spatial extension that consists of extensive spatial data types. GiST is used to

speed up the search queries on different types of data. A table containing all the entries

for a typical data type would consist of several thousand rows, and building an index on

the table would speed up the spatial queries of the data. Although PostgreSQL has

25

geometric data types, these types are very limited for storing and analyzing complex GIS

data.

2.4.2 PostGIS

PostGIS (Refractions Research Inc, 2012) is a spatial extension of PostgreSQL

object-relational database that facilitates spatial objects to be stored, queried and analyzed

in the database. It is an open-source project developed as an extension for PostgreSQL by

Refractions Research under the GNU General public license. PostGIS follows the

specifications from the Open Geospatial Consortium (OGC) called Simple Features for

SQL (SFSQL). SFSQL provide the specifications for the SQL routines that could be

performed on Simple Features such as point, line, polygon, and multi-point.

2.4.2.1 Data Types

 There are two main data types by which spatial objects are stored in PostGIS –

Geometry and Geography. The "geometry" type is the most widely used, as this can store

spatial data in any projection and Coordinate Reference Systems (CRS). The "geography"

data type was recently introduced in version 1.5. In the geography data type, all

coordinates are stored in WGS84 CRS (longitude/latitude coordinates) and only a few

functions are available for it. For data covering a small region, choosing the right

projection and storing the data in geometry type is the ideal solution as it offers better

26

performance and a greater number of available spatial functions. For global or data

covering large areas, storing the data as a geography type without specifying the

projection system would be an ideal solution. Here, all data are stored in

latitude/longitude coordinates.

2.4.3 GeoServer

 GeoServer (OpenPlans, 2014) is an open-source Java based GIS server used to

publish geospatial content. GeoServer is analogous to the Apache HTTP Server Project.

With Apache HTTP Server, one can publish HTML web pages. With GeoServer, one can

publish geospatial information. The Open Planning Project (TOPP) conceived

GeoServer in 2001 to facilitate citizen participation in government planning and decision

making, thereby helping make the government more transparent. GeoServer is built on

top of GeoTools (GeoTools, 2014), a set of Java APIs for analyzing, querying and

manipulating geospatial content. GeoServer facilitates users to insert, update and delete

geographic data. Using desktop and web-based client side tools like Quantum GIS, uDig

and OpenLayers, GeoServer allows users to serve maps and data to these client tools.

 GeoServer implements the main OGC’s web services – Web Map Service (WMS)

version 1.1.1 and 1.3.0, Web Feature Service (WFS) version 1.0.0, 1.1.0 and 2.0, Web

Coverage Service (WCS) version 1.0.0 and 1.1.1 and Web Processing Service (WPS)

version 1.0.0. It supports various output formats such as PNG, JPEG, TIFF, SVG,

27

GeoTIFF, PDF, KML GML, GeoJSON, GeoRSS and shapefiles. Mainly designed for

interoperability, GeoServer is capable of publishing data from various sources such as

raster (e.g., GeoTIFF, WorldImage, GTOPO30, ArcGRID, Oracle Georaster, PostGIS

raster, and GDAL image formats), vector (e.g., ESRI Shapefile, and GML) and database

(e.g., PostGIS, MySQL, Oracle, and Microsoft SQL Server). GeoServer provides a

REST (REpresentational State Transfer) API by which users can read, insert, update and

delete through HTTP methods – GET (to read data), POST (to insert data), PUT (to

update data) and DELETE (to delete data).

2.4.4 PyWPS

 Python Web Processing Service (HS-RS, 2014) is an open-source Python based

implementation of the OGC’s Web Processing Service (WPS) developed in 2006.

PyWPS was originally developed to be used on Linux based environments. However,

recent versions can be used in the Windows environment as well. PyWPS is a translator-

proxy application between client (web browser, desktop GIS, command line tool, etc.)

and working tool installed on the server (Cepicky, 2009). PyWPS provides support for

executing GRASS GIS operations. So, PyWPS enables access to all GRASS modules via

the Web. By executing PyWPS scripts via PHP, users can have access to WPS

geoprocessing operations through a web browser. In addition to offering support for

running GRASS GIS scripts, PyWPS also supports other libraries such as R, GDAL, and

Proj4.

28

2.5 Summary

 This chapter overviewed the system architecture to perform statistical analysis

and mining of raw location points of vessels. The architecture consists of three major

parts; namely, the presentation, application, and data tiers. Statistical analysis and mining

functions utilize the spatial data stored in PostgreSQL / PostGIS database. GeoServer was

used to publish WMS documents as services on the Web. The Google Maps JavaScript

API was used to develop the web application for visualization of the knowledge

discovery process elaborated in this thesis. The architecture is completely open-source,

and thus facilitates flexibility and reusability. In addition, this architecture provides a

framework for further research and development.

29

 CHAPTER 3 DATABASE DESIGN

3.1 Introduction

 Database design consists of the following: (i) defining the database structure that

is used to store end-user data by determining the entities, the relationships among the

entities, and the constraints on the entities; (ii) transforming the database structure into a

database schema by creating tables, columns, primary keys, foreign keys, and constraints;

and (iii) populating the database schema with real-world data. Navethe (Navethe, 1992)

describes the structure of a database as the data types, relationships, and constraints that

define the "template" of that database. A data model should provide operations on the

database that allow retrievals and updates including insertions, deletions, and

modifications (Navethe, 1992). A data model represents an abstraction of complex real-

world data. The data models are partitioned into three levels of abstraction, namely:

conceptual, logical, and physical (Elmashri, 1989). This chapter will describe the

conceptual, logical, and physical database design to build a GIS database for

representing, storing, and querying historical AIS data. Each phase taken together creates

the corresponding data model.

30

3.2 Conceptual Design

The conceptual design of the database is the first phase in the database design

process and it involves creating the conceptual data model. The first step in conceptual

database design is data analysis and requirements gathering. Based on the application

needs, a conceptual data model, which represents the entities, the attributes for each

entity, the relationships among these entities, and the integrity constraints (rules) that are

required for the application is constructed. A conceptual data model can be described

using a natural language, such as the English language, or an advance data modeling

language such as an entity-relationship model (Chen, 1976) and Unified Modeling

Language (Booch et al., 1996). The goal of the conceptual database design is to develop a

model which is independent of any physical system such as software, programming

language, application program, and system hardware. A well designed conceptual data

model is important for the design of the subsequent models – logical and physical. An

abstract data model that represents the real world details is created in this stage. The

database implementation details are not governed in this stage.

The first aspect in the conceptual data model deals with entities. The geospatial

data entity types could be any of the geometric data types such as point, line, polygon,

multipoint, multiline, etc. These entities could have spatial relationships (topology) and

these relationships must be computed. The second aspect of the conceptual data model

deals with the relationships between the entities. The relationships are a set of rules that

31

govern how spatial data objects are stored in the database, and these rules help create data

with greater integrity. The third aspect of the conceptual data model deals with the

integrity constraints (rules). The integrity constraints provide a mechanism to prevent loss

in data consistency when changes are made to the database. The most common types of

constraints include UNIQUE constraints (ensures that a given column is unique), NOT

NULL constraints (ensures that no null values are allowed), FOREIGN KEY constraints

(ensures that two keys share a primary key to foreign key relationship). These constraints

prevent introduction of redundant data and are useful in query optimization.

3.2.1 Unified Modeling Language (UML)

The conceptual data model is built using UML. UML was designed as a standard,

unifying modeling language that uses object-oriented techniques for documenting the

components in software applications (Marcos et al., 2003). UML was originally

developed for modeling classes in object-oriented applications. Being an extensible

language, UML is the best choice in GIS applications which deal with complex spatial

objects. The Data Model Profile is an UML extension that supports modeling databases

in UML. The purpose of the Data Model Profile is to show the entities being modeled in

the system. Modeling the database helps to understand how the tables are structured and

how the tables are related in a particular schema. Using the Data Model Profile, the

tables, columns, data base schema, table keys, triggers, constraints, indexes, stored

procedures, stored functions and relationships are modeled effectively.

32

 Table 3.1 shows how the database elements are translated into an UML Data

Model Profile. A table in an UML data model is modeled as a class with a table icon on

the top right hand corner. The database columns are modeled as attributes of the table

class. The data type associated with the column is also indicated. A column can be a key

or a non-key column. A key column can be a primary, foreign, or a combination of both

primary and foreign. The key associated with a column should be indicated. A primary

key uniquely identifies each record in a table and a foreign key is a column wherein it is a

primary key in a parent table and indicates the relationship between the parent and child

table. The relationship among the entities should be indicated. The relationship can be

identifying or non-identifying. The relationship is termed identifying if the child foreign

key includes all the values of the parent primary key and non-identifying if only some

values of the primary key are included.

33

Table 3.1: Database elements and their appropriate icons in an UML Data Model

Profile

Database Element UML icon

Table

Primary Key PK

Foreign Key FK

Primary/Foreign Key

Identifying Relationship

Non-identifying Relationship

The behavior associated with columns such as indexes, keys, triggers and

procedures should also be described. Behavior is represented as stereotyped operations.

Figure 3.1 shows an example of a UML diagram where a Customer entity having the

attributes, namely, "OID, "Name", and "Address" is modeled. Here, the PK flag on the

OID column indicates OID is a primary key, while the stereotyped operation «PK»

idx_customer00 defines the behavior of the primary key, i.e., the idx_customer00 is the

name of the primary key definition in the database. Similarly, additional behavior such as

triggers, unique constraints and stored procedures are indicated below the attributes.

0..*

1

1..*

1

34

PK OID: int

 Name: VARCHAR2

 Address: VARCHAR2

+ «PK» idx_customer00

+ «Trigger» trg_customer00

+ «Unique» uni_customer00

+ «Check» che_customer00

Figure 3.1: An example of a UML diagram

Figure 3.2 shows the UML Data Model Profile developed for storing the

following: (i) the raw AIS dataset acquired from the Marine Traffic project, (ii) the EU

Natura2000 protected areas, (iii) the ship types (e.g, tanker, passenger, etc.), and (iv)

other extracted data from the raw AIS dataset. The LOCATION_SHIPS class represents a

record in the AIS dataset. It is characterized by having the following attributes, namely,

MMSI identifier, status, station, the geographical coordinates (latitude-longitude), course,

heading, ship type (foreign key that references the ship_type_id in ship_type class),

and the time at which the position was recorded. Further, LOCATION_SHIPS class

encapsulates all the methods needed for the knowledge discovery process such as

DistanceAndSpeedCalc, DirectionCalc, TurnAngleCalc, and

Customer

mter

35

ProtectedAreasIntersection. The ship_type class contains the attributes needed

to store the id of the type of ship and its description. The PROTECTED_AREAS class

represents stores the names and the polygon geometries of the EU Natura 2000 protected

areas. The route_ships class diagram to represents the extracted detailed ship

trajectories. It is characterized by having the MMSI identifier, the start time of the

trajectory, the end time of the trajectory, and the geometry of the trajectory

typically represented as a PostGIS LineString. Similarly, the route_simplified class

diagram represents the extracted simplified ship trajectories.

 The extracted geometric properties from trajectories, namely travelled time,

travelled distance, speed, and azimuth are represented through distanceandspeed and

direction classes respectively. The distanceandspeed class is characterized by

having information about the MMSI identifier, the latitude-longitude coordinates, the

time when the position was recorded, the distance between two time points, the total

distance, the speed calculated between two time points, the average speed along the entire

trajectory. The direction class is characterized by having information about the

MMSI identifier, the latitude- longitude coordinates, the time when the position was

recorded, the direction of travel, and the major direction along the entire trajectory. The

turnangle class contains information about the turn angles made the ship at each turn.

The protected_area_intersection class contains information about the MMSI

identifier, and its trajectory that intersect the protected areas in the Aegean Sea. The

outlier class encapsulates the attributes that are needed to detect outliers in the

trajectory dataset. Applying an outlier detection algorithm, the result is stored in the

36

cluster attribute. If a recorded position is an outlier, the value of the cluster attribute

is noise, else the value of the cluster attribute is the cluster group that to which the

recorded position belongs.

Figure 0.2: UML Data Model Profile that represents the database schema

37

3.3 Logical Database Design

The logical database design is the second step in the database design process.

Once the structure of the conceptual data model is identified, the logical data model is

built from this structure. The conceptual data model identifies the data contents of the

database, whereas the logical data model helps define the logical structure of the data that

is stored in the database. The goal of the logical design is to develop an enterprise level

mode independent of the physical details. It closely models the structure of the data that a

specific database displays to the user. The logical data model represents the tables,

columns, relationships, primary keys, foreign keys, constraints, etc. as available of the

DBMS used in the application. These form a relational data model, where the basic unit

of this data model is the table.

3.3.1 Transformation from Conceptual Model to Logical Model

The transformation from conceptual model to logical done is done by using as

input the UML diagram, which is the result of the conceptual database design phase. This

transformation produces another UML diagram which represents the relational model of

the database used. The following are the steps used to transform a conceptual model to a

logical model:

38

1. Each class in the UML diagram is transformed into a table.

2. For each table generated as result of Step 1, a column is created and assigned as

the primary key. Each element in this primary key column will be assigned a

unique number in order to uniquely identify each record in the table.

3. Each attribute in a class is transformed into a column. For simple valued

attributes, the attribute is transformed into one column, and the data type for the

column is assigned to be that of the data type of the class attribute. However, if

the exact data type is not available in the implementation of the DBMS used in

the application, an appropriate data type available in the implementation is

chosen. For multivalued attributes, a new table is created with a foreign key, the

primary key of the table containing this attribute. Figure 3.3 shows how to

represent multivalued attributes. Here, to represent the multivalued attribute

"purpose", a new table is created and joined via the same "id" primary key.

4. The relationships among classes are transformed into tables using a primary-

foreign key pair. For classes having a one-to-one relationship, the attributes

corresponding to both classes are placed in a single table, hence creating a single

table out of two classes. For classes having a one-to-many relationship, a

relationship is created with a foreign key set on the table in the "many" side of the

relationship and the primary key set on the table in the "one" side of the

relationship. For classes having a many-to-many relationship, a separate table

having a composite primary key composed of the primary key of the two tables is

created. The newly created table is linked to the other two tables by making the

primary keys as foreign keys to the other two tables.

39

Figure 0.3: Mapping a conceptual multivalued attribute to a logical model

 In addition to the tables, columns and relationships, the logical model needs to

contain details about the indexes, stored procedures, triggers, unique constraints and

check constraints that will be created in the database.

3.4 Physical Database Design

 In the physical database design, the logical data model created during the logical

database design phase is implemented in the database using Structured Query Language

(SQL) statements such as Data Definition Language (DDL) statements, which are used to

40

define the database schema, and Data Manipulation Language (DML) statements, which

are used to read and write data into the database. Further, to ensure better performance

and enhance storage space, fine tuning the logical data model is performed during this

stage. For example, by creating indexes on a database the speed of the search queries are

improved. Physical database design largely depends on the hardware and software such

as the DBMS used to build the system. The decisions made during the physical database

design stage affect the speed of the database, the accessibility of the database, the security

implemented on the database and the user-friendliness of the database (McKearney,

2003).

 Physical database design consists of the following steps:

i) Database schema implementation

ii) Populating the database

3.4.1 Database Schema Implementation

 Database schema implementation consists of loading the schema into the database

management system. This includes creating a spatial database, the tables and columns

necessary for the application. The database management system (DBMS) used for this

visualization application is PostgreSQL 9.1 with the PostGIS 2.1 extension.

41

PostgreSQL stores both spatial and non-spatial data in the same schema. This

allows interaction between spatial and non-spatial data. PostgreSQL allows spatial data to

be stored in columns of type GEOMETRY. To be able to use PostGIS in PostgreSQL, a

spatial database has to be created using “template_postgis” template. This template

allows the database created to load the PostGIS spatial datatypes and functions. pgAdmin

(pgAdmin Development Team, 2013) was used for the schema implementation.

pgAdmin is a open-source Graphical User Interface (GUI) used for administration,

management and development of the PostgreSQL database for Unix and Windows

systems. It is freely available under the terms of the PostgreSQL license and is managed

by the pgAdmin Development Team. pgAdmin is used to connect to the PostgreSQL

hosted on gaia.gge.unb.ca at port 5432. Appendix A.1 shows the SQL command for

creating a spatial database in PostgreSQL. Here, a database schema called

MovingObjectDB is created. The template used here is called

template_postgis_20, which is the template available in 2.1 the extension. The

tablespace used is the default called pg_default. Tablespace is the physical location in

the disk where the database schema and values are stored.

Once the MovingObjectDB database is created, a new schema called

"Topology" is created. The Topology schema was introduced in version 2.0 and it

contains tables and functions necessary to manage and process topological features such

as faces, edges and nodes. Topology is needed to support topological integrity, reduce the

storage space, define explicit spatial relationships and have a normalized data structure.

In addition to the creation of topology schema, two tables called spatial_ref_sys and

42

geometry_columns are created in the public schema. The spatial_ref_sys table

consists of details of over 3000 spatial reference systems that can be used in the database.

Custom projections can also be added into this table using PROJ.4 constructs (Evenden &

Warmerdam, 1999). PROJ.4 is a cartographic projections library which is used for

transformation of geographic coordinates from one projection to another. The

geometry_columns consists of details of the tables that hold geometries, and columns

that hold the type of geometries such as point, line, polygon, etc.

After creating the database, the tables in the UML class diagram that were

developed during the logical database design phase must be transformed to the database

schema in PostgreSQL. Three such database schema called LOCATION_SHIPS,

SHIP_TYPE and PROTECTED_AREAS were created to store the details of the vessel

locations, vessel type, and the protected areas respectively. Each table’s primary key is of

SERIAL data type. SERIAL data type provides an automatically increasing or decreasing

unique identifier by creating a sequence. So, when each record is created in the database,

the primary key value need not be set explicitly and PostgreSQL will assign a new unique

sequence number.

After the schema creation, the relationship between LOCATION_SHIPS and

SHIP_TYPE is physically enforced by creating a FOREIGN KEY constraint. Again, a

foreign key is a column that creates a link between data in two tables (one-to-many

relationship). Appendix A.2 shows the creation of a foreign key constraint between

43

LOCATION_SHIPS and SHIP_TYPE table. Here, the SHIP_TYPE column in the

LOCATION_SHIPS table references the SHIP_TYPE_ID column in the SHIP_TYPE table.

After the relationships are established, the final step in the creation of the database

schema is to create indexes on the columns. By default, the primary key column is

indexed. Indexes are mainly created to increase database performance by increasing the

speed of database operations. The main advantage of creating indexes is that the speed of

the search operations on the database is vastly increased. Without using indexes, search

queries would require a sequential scan of every record in the table. Using indexes, the

data in a table gets organized into a search tree: traversing in a tree data structure is faster,

and hence indexes improve the performance of search queries. However, the major

drawback in using indexes is that write operations such as insert, update and delete are

slowed down. However, the advantages for this application far outweigh the drawbacks

and indexes are used extensively for performance improvement in a database.

Indexes are typically created on columns that will the used for most selection

queries. Most often, a number of columns will often be used together in search queries. In

that scenario, creating indexes on multiple columns is the best approach. Appendix A.3

shows the SQL command to create an index on a column. Here, an index on mmsi and

geom columns are created on the table LOCATION_SHIPS. The reason for choosing to

index on multiple columns is that the majority of the searches and spatial queries will be

specific to the unique identification number of a vessel (mmsi) and its location (geom).

Data types that are sorted along one axis -- such as integers, strings and dates -- are

44

indexed using B-trees and GiST indexes break up data into "things to one side", "things

which overlap", "things which are inside", and is used to index geometric data types.

Apart from creating an index on columns most frequently used in search queries, creating

an index on foreign keys improves the speed of joins between relations.

Once the schema is created, the spatial component as a geometric column has to

be added to the LOCATION_SHIPS and PROTECTED_AREAS table as these are normal

non-spatial tables. The position of the vessels has to be added as a point data in

LOCATION_SHIPS schema as no geometric column has been included. For this, PostGIS

provides a function called AddGeometryColumn. This function adds a spatial column of

geometry datatype to a table. This function takes as parameters the name of the table into

which the geometric column has to be added, the European Petroleum Survey Group

(EPSG) ID of the spatial reference system, the type of geometry, and the number of

dimensions in the geometry data type.

3.4.2 Populating the Database

The last step in the physical design is to load the data into the database schema.

The location of the vessels is loaded into the LOCATION_SHIPS database schema. The

web application facilitates the end-user to populate the vessels’ location by uploading a

Comma-Separated Values (CSV) file containing details about the vessels’ MMSI,

45

location, heading, etc. Figure 3.4 shows the screenshot of the tool which allows

uploading CSV files and populating the LOCATION_SHIPS schema.

 Facilitating the uploading of files from the browser to the server requires that

three attributes in the HTML <form> tag have to be set, namely: (1) enctype attribute,

which is set to multipart/form-data; (2) method attribute, which is set to POST, as

the data has to be summited to the server to be processes; and (3) action attribute, which

is set to the PHP script that will process the form. The enctype attribute determines the

way in which the form data is encoded by the browser. For files, the enctype is set to

multipart/form-data. In addition to the three attributes, the form’s input type has to

be set to file. Clicking this input type would let the browser to enter into a file selection

mode and user’s local directory is displayed, letting the user to select the file from the

different directories.

Once the file has been selected and submitted to the server, the information about

the uploaded file information is stored in $_FILES array in PHP. $_FILES is a two-

dimensional array that contains the form’s input name as the first index and the file’s

attribute such as name type, size, temporary filename and error code as the second index.

Once the file is sent to the server, only a temporary copy of the uploaded file would exist

on the server and the file would be deleted once the script ends. So it is moved and stored

in a permanent location for further processing and for populating the database using the

move_uploaded_file() function, which takes two parameters, namely, the temporary

filename of the file uploaded and the original name of the file on the client machine. An

46

important feature of this function is that it will ensure that the file passed in the input

parameter is the actual file uploaded via PHP’s HTTP POST method. To prevent the

server from being filled and for security purposes, the application is designed to accept

only CSV files. The PHP script restricts only files of CSV format to be uploaded.

Appendix A.4 shows the PHP script for a file upload that checks whether the uploaded

file is in CSV format and moves it to a permanent location.

Once the file has been uploaded, the file is opened for reading and a filehandle is

returned that will allow to access the file using PHP’s fopen() function. Once the CSV

file is read its data is accessed using the fgetcsv() function in PHP by passing in two

parameters, namely, the filehandle that is returned from the fopen() function, total

number of lines to be read, and a delimiter. This function splits up the lines of the file by

a delimiting character. The CSV file has a comma (,) as a delimiting character and hence

this is used as the delimiter in the fgetcsv() function. Each line will return an array as

the result. The elements of the array are passed into the SQL INSERT DDL statement

and this INSERT statement is executed using the PHP’s pg_query() function. The

pg_query function is used to execute SQL statements on the database connected. The

algorithm for populating the LOCATION_SHIPS schema from the CSV file having the

location information of the vessels is given below.

 - Read the CSV file

- While the End of File (EOF) is not found, parse the CSV file by calling the

function fgetcsv using the delimiter ‘,’ and set it to a line array variable

47

 If line is empty

Break

 Else

- Call the Insert DML statement by passing the elements of the line

 array and set it to query string variable.

- Call the pg_query function by passing the query string variable

 End

 End

The ST_GeomFromText() PostGIS function is used to convert a Well Known

Text (WKT) version of a geometry into a PostGIS geometry. This function is used to

populate the geometry column while inserting the data from each line of the CSV into the

database. Appendix A.5 shows the PHP script for reading and inserting data into

LOCATION_SHIPS schema. Here, the file is opened, read and inserted into the

LOCATION_SHIPS schema. A WKT representation of a point in WGS 84 format is

inserted into a PostGIS geometry field using ST_GeomFromText() function.

 Figure 3.4 shows the snapshot of the populated LOCATION_SHIPS schema from

the CSV file as a result of uploading the CSV file into the PostgreSQL database.

48

Figure 0.4: Populated LOCATION_SHIPS schema

After populating the LOCATION_SHIPS schema, the PROTECTED_AREAS schema

is populated. The input for populating PROTECTED_AREAS is expressed in Keyhole

Markup Language (KML) format acquired from the European Union’s Natura 2000

network. KML (Google, 2013) was originally developed by Keyhole Incorporated and

acquired by Google in 2004. KML is an XML variant that describes elements for storing

geodata. It is primarily used to display geographic data in applications such as Google

Earth and Google Maps. KML is based on an object structure and each object may

contain several elements. Figure 3.5 shows a simple KML file. Here, placemark is an

object and the elements for this placemark object are name, description and point.

49

Figure 0.5: A KML file

Figure 3.6 shows a snapshot of the KML file that is uploaded and processed to

populate the PROTECTED_AREAS schema. First, the KML file is read and processed by

creating a SimpleXML object using the simplexml_load_file() function, which

takes the filename as the parameter. The SimpleXML object is populated with the XML

elements from the file and this object is used to populate the PROTECTED_AREAS table.

We extracted the name and the coordinates from the SimpleXML object and populated

the table. To get the values of the name and coordinates attribute from the Placemark

object, the children() method is used on the object. The name attribute is the first

child of Placemark, whereas the coordinate attribute is nested deep within the

MultiGeometry attribute. Hence, iteration through several child nodes is necessary.

Appendix A.6 shows the PHP script used to read data from the KML file and populate

the PROTECTED_AREAS table. The name attribute is the first child of Placemark, whereas

the coordinate attribute is nested deep within the MultiGeometry attribute. Hence,

iteration through several child nodes using foreach method is performed. The coordinates

50

is got as string and to be stored in PostgreSQL, the commas are replaced with spaces and

the spaces are replaced with commas using the strtr() function. This is because the

format of the of the WKT representation that is given as a parameter to the

ST_GeomFromText() function.

Figure 0.6: KML file used to populate PROTECTED_AREAS table

Figure 3.7 shows the snapshot of the populated PROTECTED_AREAS schema from

the CSV file as a result of uploading the CSV file into the PostgreSQL database.

51

Figure 0.7: Populated PROTECTED_AREAS schema

3.5 Summary

This chapter has explored in detail the design and implementation of the spatial

database using PostgreSQL / PostGIS. The three main stages in database design, namely,

conceptual, logical, and physical design have been explained. Data were acquired from a

number of different sources. The historical AIS data were acquired the marine traffic

project, and the European network of protected areas from the European Environment

agency. The quality of the statistical analysis and mining ultimately depends on the

quality of the database design. A well designed database improves the performance of the

SQL queries. Further, the spatial relationship between entities has been defined. These

kind of relationships help perform analysis on different data objects.

52

 CHAPTER 4 STATISTICAL ANALYSIS AND MINING

4.1 Introduction

In this chapter, the methodology employed for the trajectory reconstruction will

be discussed. These trajectories are of two types, namely "Detailed" and "Simplified".

The simplified trajectory reconstruction implemented using the Douglas-Peucker

algorithm will be explained in detail. Further, the methodology employed for computing

distance, speed, direction, and turn angle at each intermediate location point of

trajectories will be discussed and implemented. This chapter will also discuss the

implementation of processes for identifying vessels that pass through EU Natura 2000

protected areas, determining vessels around a vessel at a particular instant in time, and

detecting outliers using the DBSCAN algorithm.

4.2 Detailed Trajectory Construction

 Once the LOCATION_SHIPS database has been populated, as discussed in Chapter

3, the next step is to construct the trajectory for each ship based on its unique MMSI. The

series of location points for each MMSI are ordered by the time at which the location was

captured, as the location points might not be in order. To construct the detailed

trajectories of each individual ship, a new database table called ROUTE_SHIPS is created

53

automatically when the file upload process is completed. This table contains the

trajectory traversed by each ship between its start and end time. This is implemented

using the ST_Makeline(geometry) function in PostGIS. This function is an aggregate

function that takes a sequence of point geometries of the same MMSI identifier and is

transformed to make a linestring and returns the geometry of the linestring created. The

algorithm for creating a single trajectory for a given MMSI identifier (ship_id) is

shown below.

- Select the all point geometries from the LOCATION_SHIPS table where

MMSI = ship_id by ordering by time

- Loop

Store the point geometries into an array

- End loop

- If array length is greater than 1

 trajectory ST_MakeLine(array)

- End If

- Return trajectory

The algorithm described above was implemented as a function in PHP. The

function that creates a trajectory for a given MMSI identifier is given in Appendix B.1.

Here, the function createTrajectory takes in a MMSI identifier as parameter and

returns the geometry of the linestring that is created from the point geometries.

54

For constructing the trajectories for all vessels, the ROUTE_SHIPS table is created

automatically when the file upload process is completed as described earlier in this

section. The PHP script that transforms a sequence of point geometries into trajectories

for each MMSI in the LOCATION_SHIPS table is shown in Appendix B.2. First, SELECT

query is used to fetch the MMSI, the starting time (min(time_stamp)), the ending

time (max(time_stamp)), and the line geometry which is the detailed trajectory

constructed through the ST_MakeLine()function, after ordering the timestamp values

ascending. For each record fetched from this SELECT statement, the INSERT statement

is executed to store the MMSI identifier, the starting time, the ending time and the line

geometry into ROUTE_SHIPS table (Figure 4.1).

Figure 0.1: A snapshot of the constructed trajectories in the ROUTE_SHIPS table

55

4.3 Simplified Trajectory Construction

The AIS records a far denser collection of points than necessary. The raw

trajectory data is therefore usually very large, becomes expensive to store, and decreases

the performance of the web application significantly. This may cause the web browser to

crash when the trajectories are analyzed and mined. This creates a need to employ

trajectory simplification algorithms to reduce the number of data points defining each

trajectory while still maintaining the shape information that trajectory.

The simplified trajectories are constructed using the Douglas–Peucker algorithm

(Douglas & Peucker, 1973). The reason for choosing this algorithm is because it is one

of the most commonly available algorithms in GIS to simplify lines (Joao, 1988). The

Douglas–Peucker algorithm is a generalization algorithm that is used to reduce the

number of points in a curve that is approximated by a series of points. Given a set of

points and a threshold, this algorithm generates a simplified line connecting these set of

points. The start and end points will remain in the simplified line. First, a straight line

segment connecting the start and end points is constructed. Second, the perpendicular

distances between each point on the constructed line segment and the line connecting the

set of points is calculated. The maximum distance among them is compared with the

threshold value and, if it is greater than the threshold value, the corresponding point

remains in the simplified line and the line is split into two parts. These steps are

recursively run to each part of the line segment. The stopping criteria is when the there is

no maximum perpendicular distance greater than the threshold value. The result consists

56

of only a subset of the original set of points. Figure 4.2 shows how a line segment has

been simplified using the Douglas–Peucker algorithm.

The threshold value determines the level of simplification. The smaller the

threshold value, the greater will be the number of points retained in the simplified line

and the better will be the approximation. Selecting an appropriate threshold value is an

important criterion in line generalization using the Douglas–Peucker algorithm. The

proposed system will have an option for selecting different threshold values, and users

can experiment to get the output desired. Figure 4.3 illustrates the steps involved for the

simplified trajectory construction for each vessel in the LOCATION_SHIPS table.

Figure 0.2: Line simplification using Douglas–Peucker algorithm

Original

Simplified

57

Figure 0.3: Flow diagram to construct a simplified trajectory using Douglas–

Peucker algorithm

4.3.1 PostGIS Data to ESRI Shapefile

 The first step to construct the simplified trajectories is to connect directly to the

PostgreSQL database and convert a SQL query into an ESRI shapefile using the

OGR2OGR command-line component of the GDAL library. OGR2OGR (Open Source

Geospatial Foundation, 2010) is a component which is part of the GDAL used for

reading, writing and, processing of vector data formats, including ESRI shapefile, spatial

databases like PostGIS and Oracle Spatial, MapInfo file, GML, KML, and TIGER. It is

powerful and also free, licensed under the MIT-style open source license. It is widely

used in the commercial GIS community due to its widespread use and comprehensive set

of functionalities (Neteler & Raghavan, 2006).

Appendix B.3 illustrates the creation of a shapefile called route.shp based on a

SQL query that retrieves the route traversed by MMSI identifier 23700000 between

58

2012-08-25 08:17:00 and 2013-01-15 12:25:00. To import data from PostgreSQL to an

ESRI shapefile, the output file format is set as "ESRI Shapefile". The location to store the

created shapefile is set as a full path setting. The contents of the SQL query set in –sql

flag is imported into a shapefile route.shp at location C:\Users\Desktop\ro

ute.

PHP executes external commands which are normally executed in the command

line from the script using the proc_open()function (PHP Group, 2013) function. It

basically creates a process and has pipes for the following: (i) reading the command from

the standard input, (ii) returning the output of the command through the standard output,

and (iii) handling any errors that the command may cause. The parameters for

proc_open() function include: (1) the string representing the command to execute; (2)

an array of descriptors; (3) an empty array variable called $pipes; and (4) the

absolute directory path of the initial working directory for the command. The array of

descriptors should consist of three elements and it includes: (1) an array describing the

pipe that represents the standard input from which the process writes; (2) an array

describing the pipe that represents the standard output to which the process writes; and

(3) name and location of a file to which the process logs error statements if any. The

result of the proc_open() function is a resource that populates the $pipes array. The

command that is to be piped is written to the first element of the $pipes array,

$pipes[0]. The result of the command written is read from the second element of the

$pipes array, $pipes[1].

59

 Appendix B.4 illustrates the PHP script that executes the creation of the shapefile

based on a PostGIS spatial query using the org2ogr command given in Appendix B.3.

Based on the MMSI identifier, and the time range selected by the user, the PHP function

convertPostGISToShapefile() generates a shapefile of the route traversed by the

selected MMSI between the time range called route.shp stored in location

C:\Users\Desktop\route\. PHP’s proc_open() function is called by passing the

org2ogr command and the client supplied arguments in a single string. In addition, the

$descriptors property, the empty $pipes array, and the location of the directory that has

the org2ogr application is also passed. No other command needs to be piped to the

org2ogr command and so, an empty string is passed to $pipes[0]. The process is

closed using the proc_close() function. If the command is successfully executed,

proc_close() function returns 0; else, it returns -1.

4.3.2 Simplification of the Constructed ESRI Shapefile using GRASS

The second step in the trajectory generalization is to create a PyWPS process that

is capable of executing GRASS GIS modules. The generalization module

v.generalize offers a generalization service that facilitates simplification and

smoothing of linear geometries using the Douglas-Peucker and several other algorithms.

A PyWPS process that is capable of executing the v.generalize GRASS GIS module

was created. In turn, this PyWPS process is executed by PHP. Table 4.1 shows the

parameters used in the v.generalize module.

60

Table 4.1: Parameters available in v.generalize module

Parameter Description

input Name of input shapefile in the GRASS GIS location

output Name of output shapefile that is to be created

type Type of the shapefile geometry. E.g., line, boundary, and area.

method The algorithm that is to be used for generalization. Several line

simplification algorithms, such as, Douglas-Peucker

Algorithm, Douglas-Peucker Reduction Algorithm, Lang

Algorithm, Vertex Reduction, Reumann-Witkam Algorithm,

Remove Small Lines/Areas are available.

threshold The maximum tolerance value

where A SQL query using the WHERE without 'where' keyword

The route shapefile was copied within the GRASS location at C:\Users\

\Desktop\route_simplified to enable the v.generalize to be executed. A PHP

function using exec() method was created to execute the xcopy command that copies the

route folder created from the previous step to the GRASS location. Appendix B.5 shows

the PHP script that was used copy the folder to the GRASS location using the xcopy

command.

61

 Appendix B.6 illustrates the way to apply the Douglas-Puecker algorithm using

the v.generalize module to the route shapefile that was created based on parameters

set by the user during the previous step and copied to the GRASS GIS location. Here, the

threshold is given in map unit degrees. The result of this command is the creation of a

generalized shapefile called route_simplified at C:\Users\Sabarish\Desktop

\route_simplified\newLocation\Sabarish\vector.

To facilitate access to the v.generalize GRASS module via web interface, a

PyWPS process was created. This process would execute the command in Appendix B.4

and subsequently this process is invoked as a service through PHP. In PyWPS, a process

is defined in a single Python file. The processes can be executed within a temporary

GRASS Location or within an existing GRASS Location, within temporary created

Mapset. The PyWPS process was executed in the location C:\Users\

\Desktop\route_simplified that was created during GRASS GIS installation. This

location and mapset were created during GRASS GIS installation. A process is defined in

a Python file by creating a class or instance that implements two methods, namely, the

__init__(), and execute() method. The __init__() method initializes the

process and describes the main attributes of the process such as the title, abstract, version,

identifier (name of the Python file), and grassLocation. The grassLocation is the name of

the GRASS Location within the configured grassdbase. This property was set to

C:\Users\Sabarish\Desktop\route_simplified. The execute() method is

called once PyWPS accepts execute request type. This method retrieves the information

in the input data and executes the process algorithm. Appendix B.7 shows a PyWPS

62

process called generalize.py that creates a generalized geometry using the

v.generalize GRASS module. Here, self.cmd() inside the execute method is a

WPSProcess method used to execute GRASS GIS commands. Each parameter-value pair

is enclosed in " " and separated by ‘,’.

The PyWPS process consisting of a single Python file is saved in the server and

executed by passing the string "http://localhost/cgi-

bin/generalize.py?Service=WPS&request=execute&version=1.0.0&ident

ifier=generalize" into PHP’s file_get_contents() method. The result of

this execution is the creation of an ESRI shapefile called route_simplified that

contains the generalized geometry of the trajectory.

4.3.3 Loading the Simplified Shapefile into a PostgreSQL Table

Once the line simplification process is completed using PyWPS and the resulting

geometry stored as an ESRI shapefile spatial data format in the server, the third step is to

load the shapefile into a PostgreSQL table for visualization through Google Maps API.

The shapefile that was created in the previous was imported into PostgreSQL. Again,

OGR2OGR, the command-line component of the GDAL is used to import the shapefile

into a PostGIS table. Appendix B.8 illustrates the command to import data from a

shapefile into PostgreSQL. Here, the output format is stated as "PostgreSQL" and the

destination is specified through the connection string of the target PostgreSQL database.

63

By default, a new table in the destination database having the same file name as that of

the source data is created. If data needs to be inserted into a specific table, the –nln flag

is used. This flag will insert data into a named table in the destination database and

default behavior is ignored. Data can either be appended as new records into an existing

table using the –append flag or data can be inserted into a table by deleting and re-

creating it using the –overwrite flag. In Appendix B.8, the contents of the simplified

geometry route_simplified.shp are loaded into the route_simplified table at

host gaia.gge.unb.ca PostgreSQL instance (Figure 4.4).

The external ogr2ogr command in Appendix B.8 imports the simplified trajectory

shapefile into a PostgreSQL table with a PHP script via proc_open() function. The

PHP function convertShapefileToPostgreSQL()is called after the execution of the

Python script that is used to generalize the trajectories. Figure 4.4 shows the

route_simplified table that contains the simplified trajectory for the MMSI

identifier 215672000. Here, the number of points has been reduced to 3, whereas the

original detailed trajectory consisted of several points (figure 4.5).

Figure 0.4: Snapshot of the simplified trajectory for MMSI 21567600

64

Figure 0.5: Snapshot of the detailed trajectory for MMSI 21567600

4.4 Calculating Distance, Speed, and Direction of Trajectories

 The distance travelled by a vessel is calculated as Euclidean distance between all

points traversed by it. The function to compute this measure in implemented by using

PostGIS’s ST_Length() function, which returns the Cartesian 2D length of the

geometry. Since this function returns the result in units of spatial reference with which

the geometry is stored, the trajectory polylines were transformed into a meter-based

projection. Hence, WGS84 curvilinear coordinates were transformed into plane

coordinates using the spherical Mercator projection (EPSG: 3857), which is a common

projection in web mapping and visualization applications using the

ST_Transform(geometry, SRID) PostGIS function. Appendix B.9 illustrates a

query used to determine the distance travelled by a vessel (here the MMSI identifier is

equal to a value X). Here, route_ships1 is a temporary view created to store the

results of the user query that retrieves the route traversed by a single vessel between a

start and end provided by the user. Appendix B.10 illustrates the way in which a

65

temporary view was created to store the results of the route traversed by a single vessel.

Here, X, Y, and Z are the MMSI identifier, start, and end time respectively provided by

the user through the web interface.

Based on the travelled distance and travelled time, the speed is calculated. The

speed can be calculated as the speed between two time periods, and the average speed

along the entire trajectory. For calculating the average speed, the total distance travelled

between these time periods is divided by the total travelled time along the trajectory. A

stored function that calculates the travelled distance along the trajectory, and between

two consecutive time points was created and stored in the table distanceandspeed. In

addition, the average speed along the trajectory and the speed between two consecutive

timepoints are calculated. This stored procedure takes in the MMSI identifier and the

time intervals for which the distance and speed are to be calculated as input parameters,

which is given by the user. Appendix B.11 illustrates the code snippet of the function

DistanceAndSpeedCalc that shows how the distance and speed are calculated given a

MMSI identifier and a time interval.

In the code given in Appendix B.11, a cursor variable location_ships_cur is

created, which is associated with a SQL SELECT statement and can hold different values

at run time. The records that are associated with location_ships_cur contain the

position and the time at which the position was recorded for the vessels. The inputs are

the MMSI identifier and the time period. These records are iterated over, and the distance

between two consecutive time points, the speed between two consecutive time points, the

66

total distance of the entire trajectory, and average speed of the entire trajectory are

computed using the ST_Distance() function. The values are stored in the

distanceandspeed table. Figure 4.6 shows the snapshot of the computed total distance

travelled along a trajectory, average speed along the trajectory, distance between two

consecutive time points, and speed between two consecutive time points of the MMSI

identifier 205572000 between the time interval ‘2012-08-22 19:05:00’ and ‘2016-08-22

19:05:00’. Here the distance is in nautical miles and speed is in nautical miles per hour.

Figure 0.6: Snapshot of the calculated distance and speed given a MMSI and time

interval

Similarly, the direction of the trajectory can either be calculated as a major

direction of the trajectory between the starting time and ending time or between two

consecutive intermediate time points. PostGIS’s built-in ST_Azimuth() function was

used to calculate the direction in radians. The ST_Azimuth() function takes two

geometries as input parameters and Returns the north-based azimuth. The radian measure

is converted to degree units by multiplying the radian measure by 180/π. A stored

67

function that calculates the direction of the trajectory between the starting time and

ending time, and between two consecutive time points was created and the result stored

in the table azimuthcalc. This stored function takes in the MMSI identifier and the

time intervals for which the direction are to be calculated as input parameters, which is

given by the user. Appendix B.12 illustrates the code snippet of the function

DirectionCalc that shows how the major direction of a trajectory between the initial

and final time point and between two consecutive intermediate time points are calculated

given a MMSI identifier and a time interval.

In the code given in Appendix B.12, a cursor variable location_ships_cur is

created, which is associated with a SQL SELECT statement and can hold different values

at run time. The records that are associated with location_ships_cur contain the

position and the time at which the position was recorded for the vessels. The inputs are

the MMSI identifier and the time period. These records are iterated over, and the

direction between two consecutive time points, and the major direction of the trajectory

are computed using the ST_Azimuth() function. The values are stored in the

direction table. Figure 4.7 shows the snapshot of the computed direction between

intermediate time points, and the major direction of the trajectory between the first and

the last time point of the MMSI identifier 205572000 between the time interval ‘2012-

08-22 19:05:00’ and ‘2016-08-22 19:05:00’.

68

Figure 0.7: Snapshot of the calculated direction given a MMSI and time interval

4.5 Identifying Sharp Turns in the Trajectory

To determine the locations where a vessel has made sharp turns, the turn angle

between successive locations along the trajectory of the vessel is computed and the

values which exceed a user specified threshold are determined. The turn angles are

calculated and presented to analysts as it a very good indicator of maritime risk and it is

one of the important factors which contribute to a shipping accident. The coordinates at

these angles are where the vessel has made a sharp turn. The turn angle is computed

using the cosine formula, which relates the length of the sides a triangle and the angles

formed by this triangle. Knowing the length of the three sides of a triangle a, b, and c, the

angle ϒ of the triangle can be computed using the equation given below. Due to the result

of a periodic lost in transmission, some turn angles computed would have very large

values. To prevent such a scenario, the time difference between consecutive points were

69

considered and the turn angles are computed for location points only when the difference

is less than that of the sampling interval.

ϒ = arccos 






 

ab

cba

2

222

c

Appendix B.13 given below illustrates the code snippet of the function

turnanglecalc that shows how turn angles at each location a vessel has traversed are

calculated given a MMSI identifier and a time interval. At each intermediate location, the

previous and the next position of the vessel are determined from the LOCATION_SHIPS

table. These three points form a triangle and distances between the points are determined

using the ST_Distance() function. The turn angle at the intermediate point is

computed only if the time difference between the successive points is less than the

sampling interval using the law of cosines, and the values are inserted into the

turn_angle table. The angle computed is in radian measure and is converted into

degrees. From the turn angles computed, the locations where a vessel has made sharp

turns can be determined if the turn angles at the location exceeds a user-specified

threshold.

ϒ a b

70

Figure 4.8 shows the snapshot of the computed turn angles along the trajectory

between the first and the last time point of the MMSI identifier 205572000 between the

time interval ‘2012-08-22 19:05:00’ and ‘2012-08-23 19:05:00’. Since the trajectory is

nearly a straight line, the turn angles are nearly 0.

Figure 0.8: Snapshot of the calculated turn angles along a trajectory given a MMSI

and a time interval

4.6 Identifying Vessels That Intersect the Protected Areas

The vessels that pass through the protected areas are determined using PostGIS’s

ST_Intersects() function. The ST_Intersects() function takes as input two

geometry objects, and returns true if one geometry spatially intersect the another

71

geometry and false it the geometries do not intersect. Appendix B.14 illustrates the SQL

query used to determine the vessels that intersect each of the protected areas using the

ST_Intersects() function between a given time period, and the trajectory of each

vessel in each protected area is created using the ST_MakeLine() function. The query

statement illustrates an SQL inner join operation that combines the records of the

LOCATION_SHIPS and PROTECTED_AREAS table and is filtered using the

ST_Intersects(geometry A, geometry B) function that returns true if the

geometry A is intersecting geometry B completely. Here, geometry A is the collection of

LOCATION_SHIPS points that are intersecting the PROTECTED_AREAS as defined by

geometry B.

Figure 4.9 illustrates the result from the query in Appendix B.14. Here, the route

traversed by the vessels in each of the protected area is determined. In addition, the time

period in which the vessel traverses a protected area is also determined.

Figure 0.9: Vessels intersecting protected areas generated using ST_Intersects()

function

72

The query in Appendix B.14 could be modified to determine the protected areas a

vessel goes through. Appendix B.15 illustrates the query which determines the protected

areas that the vessel with MMSI identifier 237001000 passes through during the month of

August in 2012. Figure 4.10 illustrates the result of this query. Here, it is identified that

there are three protected areas that the vessel with MMSI identifier 237001000 passes

through.

Figure 0.10: Areas that the vessel with MMSI identifier 237001000 passes through

4.7 Identifying Vessels That Are in the Vicinity of a Vessel

Identifying vessels that are in the vicinity of a vessel is essential as it indicates a

shipping risk and a near-collision condition. Based on the chosen MMSI identifier and a

time stamp, the vessels that are in the vicinity of a vessel defined by the chosen MMSI

identifier and a time stamp can be determined. First, a simple search is performed to find

the location of the vessel based on the user inputted MMSI identifier and a time stamp.

Second, a buffer is defined based on a user-specified range around the location obtained

73

in the first step within which vessels that are within this buffer are to be searched. A

buffer is defined using the ST_Buffer(geometry A, float radius_of_buffer)

function which returns a geometry that represents the geometry of the polygon whose

boundary is defined by all points whose distance from this geometry A fall within the

distance defined by the radius_of_buffer parameter. Third, points from

LOCATION_SHIPS are filtered to identify the vessels that are within the buffer defined

using the ST_Within(geometry A, geometry B) function which returns true if the

geometry defined in A is completely inside that of geometry B. In this case, A is the

geometry of the collection of points in the LOCATION_SHIPS table and B is the geometry

of the buffer defined around the vessel within which other vessels are to be determined.

 The spatial SQL query that is used to determine the vessels that are in the vicinity

of a vessel is given in Appendix B.16. Here, the vessels around 50 nautical miles of the

MMSI identifier 237001000 at '2012-08-21 06:05:00' is determined. The query uses an

inner join operation that joins two SQL SELECT statements. First, the geometry of the

vessel with MMSI identifier 237001000 at '2012-08-21 06:05:00' is determined using

ST_Buffer() function. Second, the geometries of the vessels at '2012-08-21 06:05:00'

from LOCATION_SHIPS table is extracted. These two SELECT statements are joined,

and the MMSI identifier along with its geometry are filtered using the

ST_Within(geometry A, geometry B) function that returns true if the geometry

A is completely inside of geometry B.

74

The result of the SQL query in Appendix B.16 is shown in Figure 4.11. The result

returned five vessels that are around 50 nautical miles of the MMSI identifier 237001000

at '2012-08-21 06:05:00'.

Figure 0.11: Vessels that are located within 50 nautical miles of the MMSI identifier

237001000 at '2012-08-21 06:05:00'

4. 8 Outlier Detection

Outliers are erroneous location points of a trajectory that exist because of data

entry errors, and errors in data recorded by the AIS. These data errors are typically

identified if the distance travelled by a vessel is large within a short interval of time. The

vessels are associated with spatio-temporal points, where the location of the vessel is

monitored over time. In this scenario, spatio-temporal "outliers" are defined to be

anomalous points which are at a large distance from other points in a given trajectory.

This creates a need to perform outlier detection on the spatial data to determine whether

75

there were any outliers which do not conform to general behavior. Density based outlier

detection using DBSCAN algorithm was considered in this thesis.

Density Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et

al., 1996) is a density based clustering algorithm that is used to cluster points based on

the similarities with respect to distance. DBSCAN is well suited for large spatial

databases. One of the main advantages of DBSCAN is that it is robust to outliers, and

hence can detect outliers in large spatial data sets. DBSCAN is employed to identify

geographical outliers in the vessels data.

DBSCAN classifies each point as (a) core point, (b) border point, and (c) noise. A

core point is point which is inside a cluster. A border point is a point which is on the

border of a cluster. A point which is neither a core nor a border is noise. Two input

parameters are: (i) ε-neighborhood, which is the radius of a cluster, and (ii) MinPts,

which is minimum number of points required to form a cluster.

Key concepts

 The following are the key concepts that define the DBSCAN algorithm:

1) The ε-neighborhood of a point P, denoted by Nε(p), is defined by Nε(p) = {q ∈

D | dist(p,q) ≤ ε }, i.e, the ε-neighborhood of a point p consists of all points

around it where the distance between the point p and all other points is less

76

than or equal to ε. A point is a core point if the number of points around its ε-

neighborhood is more than MinPts. A border point has less than MinPts

around its ε-neighborhood, but it is within the ε-neighborhood of the core

point. A noise point is a point which is neither a core point nor a border point.

2) A point p is directly-density reachable from a point q if p is within the ε-

neighborhood of q and the number of points within the ε-neighborhood of q is

greater than or equal to MinPts.

3) A point p is density reachable from a point q if there is a series of points p1,

p2,.. pn, p1 = p, pn = q such that pi+1 is directly density-reachable from pi.

4)) A point p is density-connected to a point q if there is a point r such that both

p and q are density-reachable from r with respect to ε and MinPts.

 DBSCAN starts from an arbitrary point p and determines all points density-

reachable from p with respect to ε and MinPts. If the number of points around point p is

greater than or equal to MinPts, then point p is a core point, and a cluster is started. All

density-reachable points along with the core-point are assigned to this cluster. Else, the

point p is labeled as noise, and the next point which is unvisited is determined and the

process of determining the density-reachable points, and assigning the points to a cluster,

or labeling the point as noise is repeated. A point can belong to a cluster, and still be

labeled as noise, as the point may have been initially labeled as noise and in the

subsequent iteration be classified into a cluster. Thus, the points which are not in any

cluster are considered as outliers.

77

The DBSCAN algorithm was implemented using PHP. This implementation is

capable of reading the data from the LOCATION_SHIPS table and determines the outliers.

This implementation, like the original algorithm, takes in two input parameters, namely

MinPts, the minimum number of points within a cluster, and ε, neighborhood radius of a

cluster. The PHP implementation consists of two functions, namely DBSCAN() and

ExpandCluster(). The DBSCAN() function takes as input, the geometry (latitude /

longitude) of the vessels for which the outliers has to be detected as an array, MinPts as

an integer, and ε as an integer. This function iterates over each geometry and determines

all points within its ε-neighborhood using PostGIS’s ST_Buffer() and ST_Within()

functions. If the number of these points including the geometry point is less than MinPts,

then the geometry point is labelled as noise, else ExpandCluster()function is called,

and a cluster is started. The ExpandCluster()function takes as input four parameters,

namely, a geometry point, the ε-neighborhood points of the geometry point as an array,

the number of the cluster as an integer, the ε-neighborhood, and MinPts. First, the

inputted geometry point is added to the cluster. Next, all points within the ε-

neighborhood of each of the inputted neighborhood point are determined and if this

number is greater than or equal to MinPts, then these points are added to the inputted

neighborhood points, and if the point is not in any cluster it is added to the cluster. This

process is repeated until every unvisited point processed, and classified into a cluster or

labelled as noise. As described earlier, a point can be in a cluster, and it can be a noise.

So, all points which are stored as noise points and not belonging to any cluster are the

outliers. The points along with information whether it belongs to cluster or noise is stored

in a new table. Appendix B.17 illustrates the DBSCAN algorithm implementation using

78

PHP. The results are stored in the outliers table. Figure 4.12 shows the snapshot of the

results of executing the DBSCAN algorithm for identifying outliers for MMSI identifier

205572000.

Figure 0.12: The outlier points from DBSCAN algorithm for the MMSI identifier

205572000

4. 9 Experimental Results

 The proposed methods for detailed trajectory construction, simplified trajectory

construction, distance calculation, speed calculation, direction calculation, sharp turn

determination, and outlier detection were evaluated with two datasets, the raw location

points from August 2012, and the raw location points from August 2013. First, the

trajectory reconstruction algorithm was applied to these two datasets. Figure 4.13

illustrates the number of trajectories reconstructed in August 2012, and August 2013 as a

bar graph. A total of 2,952 trajectories were reconstructed in August 2012 for a set of

79

1,709,308 points, and 7,910 trajectories were reconstructed in August 2013 for a set of

5,322,687 points.

Figure 0.13: A bar graph showing the number of trajectories reconstructed in

August 2012, and August 2013

The trajectory simplification algorithm was applied to two subsets of trajectories,

namely, trajectories reconstructed for the months of August 2012, and August 2013.

Figure 4.14 illustrates the result of the trajectory simplification process as a bar graph. In

August 2012, 1,709,308 location points were simplified to 297,930, and in August 2013,

5,322,687 location points were simplified to 2,124,060.

80

Figure 0.14: A bar graph showing the respective number of detailed and simplified

location points for the months of August 2012, and August 2013

The total distance and the average speed of the trajectories were computed at

different time periods, during August 2012, and August 2013. The total distance covered

in an area indicates how busy the area is, and is a measure of shipping risk. Figure 4.15

illustrates the total distance, and the average speed of the trajectories computed during

August 2012, and August 2013 as a bar graph. Here, 1,051,358.17 nautical miles of

distance at an average speed of 8.2 nautical miles per hour was covered during August

2012, and 6,249,364.06 nautical miles of distance at an average speed of 4.9 nautical

miles per hour was covered during August 2013.

81

Figure 0.15: A bar graph showing the total distance and average speed of

trajectories during August 2012, and August 2013

The trajectories that intersect the protected areas with two datasets with different

time periods, August 2012, and August 2013 were computed. Among the 2,952

trajectories that were reconstructed in August 2012, 689 passed through the protected

areas during August 2012, and among the 7,910 trajectories that were reconstructed

during August 2013, 1,798 passed through the protected areas. Figure 4.16 illustrates the

number of reconstructed trajectories that passed through the protected areas during

August 2012, and August 2013 as a bar graph.

82

Figure 0.16: A bar graph showing the number of trajectories passing through the

protected areas during August 2012, and August 2013

The number of sharp turns (turn angles greater than 10 and 20 degrees) was

determined using the turn angle computation algorithm explained in section 4.5 for two

datasets with different time periods, August 2012, and August 2013. In August 2012,

52,784 location points had turn angles greater than 10 degrees, and 27,913 location points

had turn angles greater than 20 degrees. In August 2017, 102,586 location points had turn

angles greater than 10 degrees, and 61,294 location points had turn angles greater than 20

degrees. These results are presented as a bar graph in Figure 4.17.

83

Figure 0.17: A bar graph showing the number of sharp turns during August 2012,

and August 2013

4.10 Summary

This chapter discussed the procedure and implementation methodology employed

for detailed and simplified trajectory construction, extracting statistics from the

constructed trajectories, and detecting spatio-temporal outliers. In order to get the

quantitative measures for evaluation, the algorithm for the statistical analysis and mining

of the raw location points was applied on two different subsets of data at different time

periods. Further, the results derived from applying the algorithms on the different data

sets have been presented. The functionality for spatially enabled SQL queries were

84

provided by PostGIS that utilized data that was stored in a PostgreSQL database. The

resulting web application that was developed for the visualization of the results of the

methodology is presented in the next chapter.

85

CHAPTER 5 VISUALIZATION

5.1 Introduction

 This chapter describes the web application developed for visualization of the

results of the statistical analysis methodology. The first section discusses the design and

implementation of the web user interface. The second section discusses how AJAX was

incorporated into the application, and its advantage in how it helps to improve

usability, and add dynamic nature to the web application. The third section describes the

various components of Google Maps API that was used for visualization. The fourth

section discusses the implementation of the client-side scripts that use Google Maps API

to visualize the following: (i) detailed, and simplified trajectories, (ii) distance, speed,

direction, and turn angle of each intermediate point of the trajectories, (iii) vessels around

the vicinity of a vessel at a particular instant in time, (iv) outlier, (v) vessels passing

through protected areas, and (v) heat maps.

86

5.2 User Interface

The standard web technologies such as HTML, CSS, and JavaScript were used to

develop the client side user interface. In addition, jQuery JavaScript API (The jQuery

Foundation, 2013) was used to develop certain user interface elements and add AJAX

capabilities to the application. jQuery JavaScript API is a cross-platform JavaScript API

that has functions and methods that simplifies client-side scripting of HTML documents.

jQuery provides the following: (i) a simplified syntax for Document Object Model

(DOM) element selection and manipulation, (ii) capabilities for event handling, (iii)

animations and effects, (iv) AJAX, and (v) multi-browser support. Some of the

advantages of using jQuery over JavaScript include simplified syntax structure, small size

of the jQuery JavaScript files, extensive extensions such as jQuery UI, excellent

documentation, and great online support. The jQuery library is a single JavaScript (.js)

file that is embedded in HTML pages. Appendix C.1 illustrates the way to include jQuery

directly from the source.

The client side user interface allows users to select the various parameters, such as

the MMSI identifier, and time period. Figure 5.1 shows the HTML form which allows

users to select the MMSI identifier through a drop down menu that is populated from the

data stored in the PostgreSQL database, the time period that uses the jQuery datepicker

widget to display the calendar as a drop down for the visualization of the detailed, and

simplified trajectories using the Douglas-Peucker algorithm. The form elements are

87

constructed using HTML and Cascading Style Sheets (CSS3). Cascading Style Sheets

(CSS) are a simple mechanism for adding style (e.g., fonts, colors, spacing) to web

documents (W3C, 2014). CSS3 provides several new design elements which were used to

design the form. These elements are (i) border-radius property, which was used to

add rounded borders to the input HTML elements, (ii) opacity property, which is

used to control the transparency of the background. The values submitted in this form are

captured and sent as a GET request using jQuery’s AJAX capability to the PHP file that

processes the request to generate the trajectories, and sends back the data as a JSON

encoded array.

jQuery UI is a curated set of user interface interactions, effects, widgets, and

themes built on top of the jQuery JavaScript Library (The jQuery Foundation, 2014).

jQuery UI simplifies client-side scripting and facilitates client-side user interface to

include complex widgets such as date picker, slider bar, etc. These widgets enhance the

interactivity of the web application. The date picker widget used in the application

facilitates users to select the required data from the calendar, thus eliminating the need

for the user to enter the date manually.

88

Figure 0.1: Trajectory visualization user interface

5.3 AJAX Calls through jQuery Library

The jQuery library provides methods and functions for AJAX capabilities using

the jquery.ajax() method, thereby facilitating the client to make calls to the server

asynchronously. Thus, the request is handled in the background and user interaction is

not hampered. This is the backbone for visualizing geometry objects using Google Maps.

Table 5.1 illustrates the parameters required for making AJAX calls through the jQuery

library. Appendix C.2 shows an example of the $.ajax() function to communicate with

the server using the POST HTTP method by sending the following: (i) data to the server

89

as a JSON object, (ii) the specific URL to hit, (iii) a success callback wherein the data

would be processed and manipulated.

Table 5.1: Parameters required for making AJAX calls through jQuery

Parameter Description

type The string of the type of the HTTP request

(GET / POST).

url The string of the URL to which the request

has to be sent, usually a PHP script.

data The data that is to be sent to the server. The

data can be sent contain either a query string

of the form key1=value1&key2=value2

if the request is a GET, or an object of the

form {key1: 'value1', key2:

'value2'} if the request is a POST.

datatype The string of the type of data that is received

from the server (e.g., xml, json, html, text,

etc.).

cache A Boolean to indicate whether to cache the

results by the browser.

success The function to be called if the request is

successful.

90

5.4 Dynamic Web Visualization Using Google Maps API

The visualization and exploration platform for the historic vessel data is created

using JavaScript, AJAX and the Google Maps API. AJAX is leveraged in this application

to handle the transaction between client and the server to be asynchronous, and thereby

client interaction is not limited during processing by the server. This allows updating of a

portion of the web page without reloading the entire page. Figure 5.2 illustrates the flow

diagram of a typical AJAX call made by passing data from the client to the server and

back. On the client-side, an XMLHTTPRequest object is created using JavaScript and

data sent to the server through GET or POST requests. The server-side gets the request

with the user-entered parameters as a JSON object and generates a JSON encoded array

which contains the data from a SQL query in response to the request using PHP.

91

Figure 0.2: Flow diagram of a typical AJAX call

5.4.1 Visualizing Detailed and Simplified Trajectory

 The user defines the parameters such as the MMSI identifier, start date, end date,

and the tolerance value by which the Douglas-Peucker algorithm computes the simplified

trajectories through the trajectory visualization user interface. The client jQuery function

concatenates the parameter’s names and values into a data string and passes it as a POST

request through an AJAX call into the PHP script illustrated in Appendix C.3. The PHP

script gets the query parameters, and connects to the PostgreSQL database using the

pg_connect()function by passing in the names of the PostgreSQL host, database, user

92

and password. The points data from the LOCATION_SHIPS table are extracted which is

used to construct the detailed trajectory. The simplified trajectory constructed using the

Douglas-Peucker algorithm is stored in the route_simplified table is extracted. The

extracted values containing details about latitude / longitude coordinates of the simplified

and the detailed trajectory is sent to client as a JSON encoded array. Appendix C.3 shows

the jQuery function that performs the AJAX call. The JSON encoded array containing the

latitude / longitude coordinates of the simplified and the detailed trajectory received from

the PHP script is iterated over and the latitude / longitude coordinates is converted into an

array of Google Maps points using the google.maps.LatLng() function. The points

array for the detailed and simplified trajectory extracted is passed into the path property

of the google.maps.Polyline()function to construct the trajectories and the DOM

element that defines the Google Maps container is updated, and thereby page reloading is

prevented. In addition to setting the path property, other properties for the

PolylineObject such as the strokeColor, strokeOpacity and strokeWeight is

set. To differentiate between the simplified and detailed trajectory, different colors were

used. In addition to creating the trajectory, markers for the individual points comprising

the detailed and simplified trajectory are created to differentiate between the detailed and

simplified trajectory using the google.maps.Marker()function.

Figure 5.3 illustrates the simplified and the detailed trajectory for MMSI identifier

215676000 on 29-August-2012 with the tolerance set to 0.01. The red line with the black

markers indicates the detailed trajectory, and the yellow line with yellow markers

93

indicates the simplified trajectory. With tolerance set to 0.01 the Douglas-Peucker

algorithm has simplified the number of points to three.

(a)

(b)

94

(c)

Figure 0.3: Detailed and simplified trajectory visualization using Google Maps API.

The red line indicates the detailed trajectory, and the yellow line indicates the

simplified trajectory

5.4.2 Visualizing Distance, Direction, Speed, and Turn Angle

 Figure 5.4 illustrates an example of visualizing distance, direction, speed, and turn

angle at each intermediate point of a trajectory through Google Maps InfoWindow object.

The functions that determine the distance and speed, direction, and turn angle are

distanceandspeed, direction, and turn_angle respectively. These functions are

executed through SQL queries by PHP and the result of these queries are returned as a

JSON-encoded array. The client, through JavaScript, processes the result, and displays

95

the distance, direction, speed, and turn angle as within Google Maps infowindows.

Appendix C.4 illustrates the JavaScript code fragment that creates the markers and info

windows displaying the direction, major direction, and time for each intermediate point in

a trajectory. Here, darray is a multi-dimensional array that contains details about the

latitude / longitude coordinates, time, direction, and major direction that is parsed from

the JSON-encoded array. This array is iterated over and markers created at each latitude /

longitude coordinate using the google.maps.LatLng() function. The icon used for

these markers are defined in the icon property (google.maps.SymbolPath.CIRCLE).

The title is the property that sets the text to be displayed when the mouse is hovered

over the marker. This title property is set to the latitude / longitude coordinate. A click

event is created using the google.maps.event.addListener() function which

displays a info window displaying the direction, major direction, and time at which the

coordinate was recorded. Figure 5.4 (a) shows the distance, and speed, 5.4 (b) shows the

direction, and major direction, and 5.4 (c) shows the turn angle of each intermediate point

of MMSI identifier 215234000 between 24-Aug-2014 and 25-Aug-2014.

96

(a)

(b)

97

(c)

Figure 0.4: Markers displaying (a) the distance and speed, (b) the direction and

major direction, and (c) turn angle of each of each intermediate point of MMSI

identifier 215234000 between 24-Aug-2014 and 25-Aug-2014

5.4.3 Visualizing Ships around the Vicinity of a Ship

 Figure 5.5 gives an example for visualizing ships around the vicinity of a

ship. Here, ships around the vicinity of 50 nautical miles of MMSI identifier 237001000

are identified and displayed as markers on Google Maps. Two steps were required to

achieve this as described in section 4.7. First, a buffer is defined according to the user-

inputted radius using the ST_Buffer(geometry A, float radius_of_buffer)

function. The resulting buffer is of type polygon geometry and is retrieved from a PHP

98

script after an AJAX call (with all the necessary user-defined parameters set) is made.

This geometry is rendered on Google Maps using the google.maps.Polygon function.

Second, the specific vessels that were identified to be located around the user-inputted

MMSI identifier is computed through PostGIS query as described in section 4.6 and the

resulting latitude / longitude coordinates of these vessels are sent as a JSON-encoded

array to the client. In addition, the ship type is also sent to the client. A marker will be

shown on the map based on the coordinates of each vessel using the

google.maps.Marker function along with its type through the InfoWindow object.

Figure 0.5: Ships around the vicinity of 50 nautical miles of MMSI identifier

237001000

99

5.4.4 Visualizing Vessels Intersecting Protected Areas

 Section 4.6 explained how to determine the vessels that pass through EU Natura

2000 protected areas. Each resulting record consists of the name of the protected area, the

geometry of the protected area, the vessels, and the time each vessel passes through the

protected area as a comma-seperated string. Figure 5.6 shows the vessels that pass

through a particular protected area between the time period 01-Aug-2012 and 30-Aug-

2012. Here, on clicking a polygon the MMSI identifiers that pass through that polygon

are listed as a table. Two steps were employed to achieve this visualization. First, the

geometry of the protected areas were fetched as a JSON-encoded array from a PHP script

that queries the geometry from the PROTECTED_AREAS schema. This JSON-encoded

array containing the geometry of each proctected area is parsed and the OGC latitude /

longitude coordinate is converted to Google Maps coordinate using the

google.maps.LatLng() function using JavaScript. Each polygon representing the

protected area thus would contain an array of google.maps.LatLng()points. An array

of polygons is created to store the geometries of the polygons. This array is iterated over,

and using the google.maps.Polygon() function, the polygons representing the

protected areas were constructed as overlays on the map instance. Second, the comma-

seperated vessel MMSI identifier and the time is parsed using the split() function and

displayed as a table through info windows on the map instance.

100

Figure 0.6: Vessels passing through EU Natura 2000 protected areas using Polygon,

and InfoWindow objects

5.4.5 Visualizing Outliers

 Section 4.8 explained the DBSCAN algorithm for outlier detection. Based on the

user-inputted MMSI identifier, the epsilon, and minimum points, which are the input

parameters for DBCAN algorithm, the cluster id / outlier to which the points comprising

the trajectory of the MMSI identifier are computed and stored in the outliers database.

The on change event which is called when the user has inputted all the required inputs --

namely, the MMSI identifier, the epsilon, and minimum points -- triggers an AJAX call

that retrieves a JSON-encoded array from a PHP script that queries the geometry, and the

cluster / outlier from the outliers schema .

101

 The client JavaScript iterates over the JSON-encoded array, and converts the

OGC geometry to a Google Maps geometry using the google.maps.LatLng()

function. The cluster_id column in outlier table indicates whether a geometry is a

noise or whether it belongs to a cluster. Based on this value, a multidimensional array

was created to store the geometries belonging to different cluster and the geometries that

are noise. The geometries identified as noise are indicated using a different marker using

the icon property in the MarkerOptions object. Figure 5.7 illustrates an example to

visualize the outlier points for the MMSI identifier 20557200 with the epsilon set to 2.5

nautical miles and minimum points set to 3.

Figure 0.7: Outlier visualization using Google Maps API

102

5.4.6 Visualizing heat maps

 A heat map is a visualization technique that allows decision makers to identify

key areas of environmental risk zones and where most interaction has taken place. The

users can produce heat maps for different time periods and compare the results. The heat

map is rendered as an overlay on top of the base map, the Google Maps. The areas of

higher intensity will be colored red, and areas of lower intensity will appear green. The

users can zoom in and out to visualize the relative changes at different map scales.

Various technologies provide capabilities to process the vessel position data to generate

the heatmap either through the client-side, or through the server-side. Inverse distance

weighting is the simplest interpolation technique that defines a neighborhood as weighted

average of the observation values within this neighborhood. This interpolation technique

is used to create the heat maps.

OpenLayers was used to render the heat map through the server-side. OpenLayers

supports OGC WMS specification and can display and manipulate geospatial data

without server-side dependencies. In conjunction with GRASS GIS, a PyWPS script that

generates the heat map is disseminated as a WMS through GeoServer. OpenLayers

provide the capability to serve the WMS as an overlay on top of Google Maps. Using the

v.surf.idw command, the environmental risk zones were determined. The point

snapshot data containing the location of the vessels were passed to the v.surf.idw

GRASS command. The resulting raster in GeoTIFF is served as a WMS layer in

103

GeoServer and visualized using OpenLayers JavaScript API (Figure 5.8 (a)). Here, the

users would be able to adjust the transparency of the layer, thereby facilitating

comparison with different base maps. In addition, the opacity of the base layer could also

adjusted using the opacity tool developed through jquery UI.

Google Maps API provides the capability to process geographical points and

render the heat map client-side by on-the-fly calculation through the Heatmap Layer. The

API provides several customization options to change the color gradient, radius of the

points, and intensity of the points. The Heatmap Layer is part of the

google.maps.visualization library that contains various methods for data

visualization. This library is loaded through JavaScript. To initiate the Heatmap Layer,

the HeatMapLayer object has to be initiated by passing in to this object an array of

google.maps.LatLng objects, which contains the geographical points for which the

heat map has to rendered. The rendered is georeferenced on-the-fly and rendered as an

overlay on top on Google Maps. Figure 5.8 (b) illustrates the client-side rendering of a

heat map between ’25-Aug-2012’ and ’30-Aug-2012’.

Appendix C.5 illustrates how to add a OGC WMS layer using OpenLayers

JavaScript API. Any number of layers could be overlayed. This example shows a single

WMS layer overlayed on top of Google Maps satellite image. Here, the variable map

object defines the layers that need to be added to the map div element. The variable wms

creates a new WMS layer object of name 'heat map' using the

OpenLayers.Layer.WMS() function. The location of the WMS layer on GeoServer is

104

defined by the URL of the host. In addition, the width, height, the spatial reference

system, the layer name on GeoServer, format, the transparency, and the background color

of the layer is defined. It should be noted that the spatial reference system that facilitates

map overlaying through OpenLayers and other web mapping APIs such as Google and

Bing Maps is the Spherical Mercator and this is defined by setting the srs property using

the EPSG code 900913. Setting the transparent property to be "True" allows jQuery

to adjust the transparency of the WMS layer. The maxExtent property defines the

extent of the WMS layer that is extracted and sent to the client. The unit in which the

maxExtent property is defined corresponds to the units of the coordinate system. The

format property specifies the WMS layers overlayed on top of Google Maps is of PNG

format. The isBaseLayer property specifies whether the layer is a baselayer or an

overlay layer on top of baselayer. The addLayers method takes an array of map layers

that are to be superimposed.

(a)

105

(b)

Figure 0.8: Heat map of high risk zones using (a) OpenLayers and GRASS, and (b)

JavaScript and Google Maps API

5.5 Summary

This chapter presented the design and implementation of the web application for

visualization. The web application contains a wide array of features presented with a

simple user interface. The architecture was created using open standards to achieve

interoperability. The web application uses Google Maps API for visualizing the results of

the statistical analysis discussed in Chapter 4, and OpenLayers API for disseminating

WMS layers. However, other web mapping APIs such as ArcGIS JavaScript API could

be used for visualization. Further, by incorporating AJAX into the web application for

106

client-server communication, the application runs faster and has responsiveness closer to

that of desktop applications (Puder, 2006).

107

 CHAPTER 6 CONCLUSIONS

6.1 Summary

 This thesis presents an efficient framework and data model for representing,

storing, and querying historical AIS data. The data model developed for this thesis is

flexible and can represent complex spatial data types. The data model was designed by

taking into consideration the application usage of the data (i.e., queries, updates, and

processing of the data).

A web-based GIS application was developed for the visualization of the vessel

trajectories and the results of the statistical information processing. This is achieved by

developing a methodology for (i) the storage of historical AIS data by developing a

parsing software for converting raw coordinates from a CSV file to database records and

(ii) querying the historical AIS data to extract useful statistical information.

Administrators of the system can upload CSV files containing the coordinate details of

vessels. The vessel trajectories are created automatically after the file upload and by

means of stored procedures written in PostgreSQL and Google Maps API. The following

were made available for visualization: (i) distance, speed, direction, and turn angle; (ii)

trajectories passing through EU Natura 2000 protected areas; (iii) vessels in the vicinity

of the vessel; and (iv) heat maps for the extraction and analysis of interesting patterns.

108

6.2 Thesis Contributions

 Web applications such as MarineTraffic (MarineTraffic, 2014), ShipFinder

(Pinkfroot, 2014), and MyShipTracking (MyShipTracking, 2014) that track vessels based

on AIS data and displays real time ship positions has no capability for visualizing and

mining of historical AIS data. However, historical AIS data since 2009 is available in

MarineTraffic (MarineTraffic, 2014) and can be ordered for a price. This thesis

contributes by describing a framework and data model for the organization, storage,

visualization, and data mining of past historical AIS datasets. Further, a web-based GIS

application to analyse and visualize historical AIS datasets has been implemented that

facilitates the exploration of the spatial and temporal dimensions. Further, data mining

algorithms have been integrated into the visualization.

 The components and protocols of a client-server based architecture used in the

implementation of the web application have been presented. The architecture makes the

application secure and scalable since it reduces the overhead caused by placing the

components on the client-side alone. By creating a standard client-server architecture

which consists of nine main components with unique roles, the time to develop new

features is decreased as integrators can focus on the specific requirements of the new

features.

The web-based GIS application developed follows the standards of Web 2.0. In

Web 2.0, acquiring data from users, following open standards, and enhancing user

109

interaction are the main characteristics. The web-based GIS application allows spatial

data to be uploaded by users and compatibility in terms of data format and data type has

been addressed. In addition, open standards and data protocols were used to develop the

application to ensure interoperability between the components of the architecture.

Further, by incorporating AJAX into the web application, an efficient mechanism to

disseminate large digital spatial data with fast response time and enhanced user

interaction has been developed. The network traffic cost is reduced and displays the

trajectories and results of the statistical analysis faster by applying AJAX techniques.

6.3 Limitations

Several limitations of this research are noted.

(i) Due to difficulties in collecting ground truth data, validating the results

with ground truth data has not been performed in this research.

(ii) The data acquisition and conversion of the CSV format consisting of the

raw coordinates of the vessels into a spatial database is a very time

consuming process. This could be prevented by feeding the real time data

acquired in web based real time AIS services such as MarineTraffic

(MarineTraffic, 2014), ShipFinder (Pinkfroot, 2014), and MyShipTracking

(MyShipTracking, 2014) directly into a spatial database.

110

(iii) Due to the fact that none of the major web browsers, including Google

Chrome, Mozilla Firefox, and Microsoft Internet Explorer, support all

features of CSS, the user interface of the web application developed in this

thesis is not rendered consistently across the major browsers. Testing the

web application in different web browsers was not performed.

(iv) A major problem of large spatial data sets is the uncertainty in the

geographic data. As a result, the credibility of the data analysis and

processing remains questionable. This thesis does not provide a

framework to quantify and visualize uncertainty in the geographic data.

(v) The web application developed focuses on historical AIS data, and real

time visualization and statistical analysis of trajectories has not been

implemented in this thesis.

6.4 Recommendations for Future Research

 The thesis describes a framework and a web application prototype for storing,

querying, and mining historical AIS data. The following areas are identified for future

research by which efficient spatial data mining and processing of the large spatial data

could be addressed:

(i) Integrate spatial databases such as PostgreSQL / PostGIS with Hermes

Moving Object Database (MOD) engine (Pelekis et al., 2011). The

111

Hermes MOD engine is designed to efficiently process and mine moving

object trajectories. Hermes MOD engine support several data types that

allow spatial, temporal, and spatio-temporal queries. One of the major

advantages of MODs over spatial databases is the efficient processing of

topological queries. Topological queries answer questions such as: "Which

are the vessels that entered a particular port?", "Which vessels crossed a

particular canal?", and "Which vessels started at a particular port and

ended at a particular port?".

(ii) Integrate Hadoop (Apache Software Foundation, 2014) with PostgreSQL.

Hadoop File System (HDFS) stores large data sets by partitioning the file

systems into data blocks and then replicates these blocks into several data

nodes. Hadoop allows SQL queries to be executed on the HDFS data. By

setting up multiple nodes within Hadoop clusters the processing time of

SQL queries is drastically reduced. Thus, by leveraging Hadoop with

PostgreSQL, processing of large spatial data sets within minutes could be

achieved by distributing to several clusters.

(iii) Implement within the web application hierarchical clustering algorithms

for mining periodic behaviors, and identifying periodic patterns in the

vessel trajectories.

(iv) Incorporate within the web application clustering algorithms to identify

congested routes in the seas.

(v) Incorporate within the web application mechanisms for updating of the

trajectories of moving objects in real-time.

112

REFERENCES

Apache Software Foundation (2014). Apache HTTP Server Version 2.2 Documentation.

Retrieved 02/10, 2014, from http://httpd.apache.org/docs/2.2.

Apache Software Foundation (2014). Apache Hadoop 2.6.0.. Retrieved 06/01, 2015, from

http://hadoop.apache.org/docs/current/.

Arctur, D., & Zeiler, M. (2004). Designing Geodatabases: case studies in GIS data

modeling (Vol. 380). Redlands, CA: Esri Press.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language user

guide. Pearson Education India.

Chen, P. P. S. (1976). The entity-relationship model—toward a unified view of

data. ACM Transactions on Database Systems (TODS), 1(1), 9-36.

Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of the number of

points required to represent a digitized line or its caricature. Cartographica: The

International Journal for Geographic Information and Geovisualization, 10(2),

112-122.

113

Eckerson, W. W. (1995). Three tier client/server architectures: achieving scalability,

performance, and efficiency in client/server applications. Open Information

Systems, 3(20), 46-50.

Evenden, G., & Warmerdam, F (1990). Proj. 4–Cartographic Projections Library.

Retrieved 10/05, 2014, from http://www. trac.osgeo.org/proj.

European Environment Agency (2013). Natura 2000 European protected areas.

Retrieved 11/05, 2013, from http://ec.europa.eu/environment/nature/natura2000/in

dex_ htm#.

Garrett, J.J (2005). Ajax: A New Approach to Web Applications. University of

Washington, Seattle. Retrieved 09/12, 2014, from https://courses.cs.washington.e

du/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf.

Google (2013). KML Reference – Keyhole Markup Language – Google Developers.

Retrieved 10/05, 2014, from https://developers.google.com/kml/documentation/k

mlreference.

Google (2014), Getting Started – Google Map JavaScript API v3 - Google Developers.

Retrieved 02/10, 2014, from https://developers.google.com/maps/documentation/j

avascript/tutorial.

114

HS-RS (2014). PyWPS Documentation. Retrieved 10/02, 2014, from http://pywps.wald.

intevation.org/documentation/index.html.

IMO (2015). Automatic Identification Systems (AIS). Retrieved 05/01, 2015, from http:/

/www.imo.org/OurWork/Safety/Navigation/Pages/AIS.aspx.

Joao, E. (1998). Causes and consequences of map generalization. CRC Press.

jQuery Foundation (2013). jQuery: The write less, do more, JavaScript library.

Retrieved 04/01, 2013, from https://jquery.com.

jQuery Foundation (2014). jQuery UI API Documentation. Retrieved 10/05, 2014, from

http://api.jqueryui.com.

Lekkas, D., Vosinakis, S., Alifieris, C., & Darzentas, J. (2008). MarineTraffic: Designing

a Collaborative Interactive Vessel Traffic Information System. In Proceedings of

the 2008 International Workshop on Harbour, Maritime & Multimodal Logistics

Modelling and Simulation. HMS.

Li, Z., Ji, M., Lee, J. G., Tang, L. A., Yu, Y., Han, J., & Kays, R. (2010). MoveMine:

mining moving object databases. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data (pp. 1203-1206). ACM.

115

Lu, C. T., Boedihardjo, A. P., Zheng, J., & Transportation Research Board. (2006).

Towards an Advanced Spatio-Temporal Visualization System for the

Metropolitan Washington DC. In 5th International Visualization in

Transportation Symposium and Workshop.

MarineTraffic (2014). Live Ship Map - AIS - Vessel Traffic and Positions. Retrieved

09/05, 2014, from https://www.marinetraffic.com.

MarineTraffic (2014). Frequently Asked Question about AIS and Marine Traffic

Features. Retrieved 09/05, 2014, from http://www.marinetraffic.com/en/p/faq.

Mckearney, S (2000). Physical Database Design - Overview. Bournemouth University,

Bournemouth, UK. Retrieved 10/05, 2014, from http://www.smckearney.com/hn

 cdb/notes/lec.physicaldesign.2up.pdf.

Miller, H. J., & Han, J. (Eds.). (2009). Geographic data mining and knowledge

discovery. CRC Press.

Muthu, S.S., Stefanakis, E., & Lekkas, D. (2014). Discovery of Environmental Risk from

Historical Vessel Trajectories. In the Proceedings of the Joint International

Conference on Geospatial Theory, Processing, Modelling and Applications.

Toronto, Canada.

116

MyShipTracking (2014). Shiptracking. Retrieved 09/05, 2014, from http://www.myshiptr

acking.com/.

Neteler, M., & Raghavan, V. (2006). Advances in free software geographic information

systems. Journal of Informatics, 3(2).

Oliveira, M., Baptista, C., & Falcão, A. (2012). A Web-based Environment for Analysis

and Visualization of Spatio-temporal Data provided by OGC Services.

In GEOProcessing 2012, The Fourth International Conference on Advanced

Geographic Information Systems, Applications, and Services (pp. 183-189).

Open Geospatial Consortium (2014). OGC Standards and Supporting Documents.

Retrieved 09/05, 2014, from http://www.opengeospatial.org/standards.

OpenLayers Dev Team (2013). OpenLayers Documentation. Retrieved 09/18, 2013, from

http://docs.openlayers.org/#openlayers-documentation.

OpenPlans (2013). GeoServer User Manual. Retrieved 04/17, 2014, from http://docs.geo

server.org/stable/en/user.

Open Source Geospatial Foundation (2010). GDAL: ogr2ogr. Retrieved 10/05, 2014,

from http://www.gdal.ogr2ogr.html.

117

Pelekis, N., Frentzos, E., Giatrakos, N., & Theodoridis, Y. (2011). HERMES: A

trajectory DB engine for mobility-centric applications. International Journal of

Knowledge-based Organizations.

Peng, Z. R., & Tsou, M. H. (2003). Internet GIS: distributed geographic information

services for the internet and wireless networks. John Wiley & Sons.

Pinkfroot (2014). Ship Finder - The Live Marine Traffic Tracking App. Retrieved 09/05,

2014, from http://shipfinder.co/.

PostgreSQL Global Development Group (2013). Retrieved 02/10, 2013, from http://www

.postgresql.org/files/documentation/pdf/9.1/postgresql-9.1-A4.pdf.

Puder, A. (2006). A code migration framework for ajax applications. In Distributed

Applications and Interoperable Systems (pp. 138-151). Springer Berlin

Heidelberg.

Rigaux, P., Scholl, M., & Voisard, A. (2001). Spatial databases: with application to GIS.

Morgan Kaufmann.

Refractions Research Inc (2012). PostGIS 2.1.5dev Manual. Retrieved 02/11, 2013, from

http://postgis.net/stuff/postgis-2.1.pdf.

118

Spaccapietra, S., Parent, C., Damiani, M. L., de Macedo, J. A., Porto, F., & Vangenot, C.

(2008). A conceptual view on trajectories. Data & knowledge engineering, 65(1),

126-146.

USCG Navigation Center. (2015). AIS Frequently Asked Questions. Retrieved 05/01,

2015, from http://www.navcen.uscg.gov/?pageName=AISFAQ#1.

W3C (2013). World Wide Web consortium. Retrieved 02/10, 2013, from http://www.w3.

org/.

Yawen, H., Fenzhen, S., Yunyan, D., & Rulin, X. (2010, June). Web-based visualization

of marine environment data. In Geoinformatics, 2010 18th International

Conference on (pp. 1-6). IEEE.

Zheng, B. (2013). Interactive Visualization to Reveal Activity Patterns of Marine

Mammals and Boat Traffic in the St. Lawrence Estuary in Quebec, Canada

(Master’s thesis, University of Calgary, Calgary, Canada). Retrieved December

18, 2013, from http://theses.ucalgary.ca//handle/11023/718

119

Appendix A Database Design Scripts

A.1 Creation of a Spatial Database in PostgreSQL

CREATE DATABASE MovingObjectDB

WITH ENCODING = 'UTF8'

TABLESPACE = pg_default

TEMPLATE = template_postgis_20

A.2 Creation of a Foreign Key Constraint in PostgreSQL

ALTER TABLE LOCATION_SHIPS ADD CONSTRAINT ship_type_fk

FOREIGN KEY(ship_type) REFERENCES SHIP_TYPE (ship_type_id)

MATCH FULL;

A.3 Creation of an Index on a Column in PostgreSQL

CREATE INDEX location_ships_index on

LOCATION_SHIPS(mmsi,geom);

120

A.4 PHP Script for File Uploading

<?php

 $filename = basename($_FILES['file']['name']);

 if (($_FILES['file'][type] != "application/vnd.ms-excel")

 {

 echo "<div class='content-center'> <p>File should be

in CSV format.</p>
</div> ";

 }

 else {

 move_uploaded_file($_FILES["file"]["tmp_name"],

 $_FILES["file"]["name"]);

 }

 ?>

A.5 PHP Script for Reading and Inserting Data into LOCATION_SHIPS

Schema

$filein=fopen($filename,"r");

while (($line = fgetcsv($filein, 1000, ",")) !== FALSE) {

 if(empty($line[0])){

 break;

 }

121

$query = "INSERT INTO location_ships VALUES ('". $

line[0] ."','". $line[1] ."','". $ line[2] ."','". $

line[3] ."','". $ line[4] ."','". $ line[5] ."','". $

line[6] ."','". $ line[7] ."','". $ line[8] ."','".

$data[9] ."' ,ST_GeomFromText('POINT(". $line[5] ."

". $line[6] .")',4326) ,'". $line[10] ."')";

 $result = pg_query($query);

}

A.6 PHP Script to Read Data from a KML File and Populate

PROTECTED_AREAS

 $xml = simplexml_load_file($filename) or die("Error: Cannot

create object");

 foreach($xml->children() as $nameAttribute){

 foreach($nameAttribute->children() as $style){

 foreach($style ->children() as $extendeddata){

foreach($extendeddata->children() as $multigeometry){

 foreach($multigeometry->children() as $polygon){

 foreach($polygon->children() as $outerb){

 foreach($outerb ->children() as $ring){

foreach($ring ->children() as

$coordinates){

 $name = $ nameAttribute->name;

122

 $trans = array("," => " ", " " =>

",");

$polygon = strtr($coordinates,

$trans);

 $query = "INSERT INTO protected_areas

 VALUES ('". $name ."' ,

ST_GeomFromText

 ('POLYGON((". $polygon ."))',4326))";

 $result = pg_query($query);

 }

 }

 }

 }

 }

 }

}

123

Appendix B Data Mining Scripts

B.1 PHP Function for Creating a Trajectory as a Linestring

 <?php

function createTrajectory($ship_id) {

$query = "SELECT loc.the_geom FROM location_ships As loc

WHERE 4 loc.mmsi = $ship_id ORDER BY loc.time_stamp";

$result = pg_query($query);

$pointArray = array();

while ($row = pg_fetch_row($result)) {

 $pointArray[] = $row[0];

}

if(count($pointArray) > 1) {

 $trajectory = SELECT ST_Makeline(rtrim(implode(',',

$arr),

 ','));

}

return $trajectory;

}

?>

124

B.2 PHP Script for Creating Trajectories for All Ships and Storing It in

ROUTE_SHIPS Table

<?php

$query = "SELECT loc.mmsi, min(loc.time_stamp),

max(loc.time_stamp), ST_MakeLine(loc.the_geom ORDER BY

loc.time_stamp) FROM location_ships As loc GROUP BY

loc.mmsi;";

 $result = pg_query($query);

 while ($row = pg_fetch_row($result)) {

 $query_insert = "INSERT INTO route_ships VALUES

 ('". $row[0} ."','". $row[1] ."','". $row[2]

 ."','".$row[3] ."')";

 $result1 = pg_query($query1);

 }

?>

B.3 OGR2OGR Command to Import a PostGIS Query into a Shapefile

ogr2ogr -f "ESRI Shapefile"

"C:\Users\sabarish\Desktop\route\rout e.shp"

PG:"host=gaia.gge.unb.ca user=sabarish dbname=sabarish

sabarish password=xxxxx" -sql "SELECT loc.mmsi , min(loc.

125

time_stamp) as start_time,max(loc.time_stamp) as end_time,

ST_MakeLine(loc.the_geom ORDER BY loc.time_stamp) as geom

FROM location_ships As loc WHERE loc.mmsi = 23700000 and

loc.time_stamp >='2012-08-25 08:17:00' and loc.time_stamp

<= '2013-01-15 12:25:00' GROUP BY loc.mmsi"

B.4 PHP Script for the Creation of a Shapefile Based on PostGIS Query

<?php

function convertPostGISToShapefile($mmsi, $startdate,

$enddate){

$path="C:\Program Files\PostgreSQL\9.3\bin";

chdir($path);

exec('rd "C:\Users\sabarish\Desktop\route" /S /Q');

exec('mkdir "C:\Users\sabarish\Desktop\route" ');

$descriptorspec = array(

 0 => array("pipe", "r"),

 1 => array("pipe", "w"),

 2 => array("file", "error-output.txt", "a")

);

$env = array('some_option' => 'aeiou');

$cwd = "C:\OSGeo4W64\bin";

$process = proc_open('ogr2ogr -f "ESRI Shapefile"

"C:\Users\sabarish\Desktop\route\route.shp"

126

PG:"host=gaia.gge.unb.ca user=sabarish dbname=sabarish

password= xxxxx" -sql "SELECT loc.mmsi ,

min(loc.time_stamp) as start_time,max(loc.time_stamp) as

end_time, ST_MakeLine(loc.the_geom ORDER BY loc.time_stamp)

as geom FROM location_ships As loc WHERE loc.mmsi = ' .

$mmsi .' and loc.time_stamp >=\'' . $startdate. ' \' and

loc.time_stamp <= \'' . $enddate. '\' GROUP BY loc.mmsi"',

$descriptorspec, $pipes, $cwd);

if (is_resource($process)) {

 fwrite($pipes[0], '');

 fclose($pipes[0]);

 echo stream_get_contents($pipes[1]);

 fclose($pipes[1]);

 $return_value = proc_close($process);

 echo "command returned $return_value\n";

}

}

?>

B.5 PHP Script to Copy a Folder to the GRASS GIS Location

<?php

function copyToGrassLocation(){

 echo exec('xcopy "C:\Users\Sabarish\Desktop\route"

127

"C:\Users\Sabarish\Desktop\route_simplified\newLocatio

n\Sabarish\vector\route' /i /r /y); } ?>

B.6 Trajectory Simplification Using v.generalize Module

v.generalize input=route output=route_simplified

method=douglas threshold=0.01

B.7 A PyWPS Process to Generalize a Line Geometry

from pywps.Process.Process import WPSProcess

from types import *

class Process(WPSProcess):

 def __init__(self):

 WPSProcess.__init__(self,

 identifier = " generalize ",

 title="TRAJECTORY SIMPLIFICATION",

 version = "0.1",

 storeSupported = "true",

 statusSupported = "true",

 abstract="PyWPS process for geometry simplification",

 grassLocation = "")

 def execute(self):

128

 self.cmd(["v.generalize", "input=route", "output=

 route_simplified", "method=douglas", ,"threshold=

 0.01"])

B.8 OGR2OGR Command to Import a Shapefile into a PostgreSQL

Table

ogr2ogr –overwrite –f "PostgreSQL"

PG:"host=gaia.gge.unb.ca user=sabarish dbname=sabarish

password=xxxxx" "C:\Users\Sabarish\

Desktop\route_simplified\route_simplified.shp" –nln

route_simplified

B.9 SELECT Query to Determine a Trajectory Length

SELECT mmsi, ST_AsText(geom), ST_ Length(ST_Transform(geom,

3857)), start_time, end_time FROM temp_route

WHERE mmsi = ‘X’;

129

B.10 CREATE VIEW Query to Store the Results of the Route

Traversed by a Vessel

CREATE VIEW temp_route as

SELECT loc.mmsi, min(loc.time_stamp), max(loc.time_stamp),

ST_MakeLine(loc.the_geom ORDER BY loc.time_stamp)

FROM location_ships As loc

WHERE loc.mmsi='X' AND loc.time_stamp BETWEEN 'Y' AND

'Z' GROUP BY loc.mmsi

B.11 A Stored Function DistanceAndSpeedCalc for Distance and Speed

Calculation given a MMSI Identifier and a Time Interval

CREATE OR REPLACE FUNCTION DistanceAndSpeedCalc(mmsiint

integer, starttime timestamp with time zone , endtime

timestamp with time zone) RETURNS DECIMAL AS $BODY$

DECLARE

 location_ships_cur CURSOR FOR

 SELECT loc.mmsi, loc.time_stamp, loc.the_geom

 FROM location_ships As loc WHERE loc.mmsi= mmsiint

AND loc.time_stamp >= starttime and loc.time_stamp <=

endtime GROUP BY loc.mmsi,loc.time_stamp,loc.the_geom;

location_ships_rec location_ships%ROWTYPE;

130

 temp_count integer := 0;

 temp_dist decimal (8,4):=0;

 temp_timediff decimal(8,4);

 temp_time timestamp;

 start_time timestamp;

 end_time timestamp;

 total_time_diff decimal(8,4);

 total_distance_covered decimal(8,4):= 0.0;

 avg_speed_trajectory decimal(8,4) := 0.0;

 temp_geom geometry(POINT,4326);

BEGIN

 DELETE FROM distanceandspeed;

 FOR location_ships_rec in location_ships_cur

 LOOP

 IF (temp_count = 0) THEN

INSERT INTO distanceandspeed (mmsi,

time_stamp,the_geom, distance, speed)

values(location_ships_rec.mmsi,location_shi

ps_rec.time_stamp,ST_GeomFromText(ST_AsText

(location_ships_rec.the_geom)), 0.0,0.0);

 start_time:=

location_ships_rec.time_stamp;

 ELSE

temp_dist:= (SELECT ST_Distance(

ST_Transform(location_ships_rec.the_geom,38

131

57),ST_Transform(temp_geom, 3857))) /1000 *

0.6214;temp_timediff:= (SELECT ((extract

(epoch from (location_ships_rec.time_stamp

::timestamp - temp_time::timestamp)))

)::decimal)/(60 * 60);

 INSERT INTO

distanceandspeed (

mmsi, time_stamp,the_geom, distance, speed)

values (location_ships_rec.mmsi,

location_ships_rec.time_stamp,

ST_GeomFromText(ST_AsText(location_ships_re

c.the_geom)),temp_dist,temp_dist/temp_timed

iff); end_time:=

location_ships_rec.time_stamp;

END IF;

temp_count:=temp_count + 1;

 temp_geom:= location_ships_rec.the_geom;

 temp_time:= location_ships_rec.time_stamp;

total_distance_covered:= total_distance_covered +

temp_dist;

 END LOOP;

total_time_diff:= (SELECT ((extract (epoch from

(end_time::timestamp - start_time::timestamp)))

)::decimal)/(60 * 60);

avg_speed_trajectory:=total_distance_covered

132

/total_time_diff;

UPDATE distanceandspeed set total_distance =

total_distance_covered;

UPDATE distanceandspeed set avg_speed =

avg_speed_trajectory;

return avg_speed_trajectory;

END;$BODY$

LANGUAGE plpgsql

B.12 A Stored Function DirectionCalc for Direction Calculation given

a MMSI Identifier and a Time Interval

CREATE OR REPLACE FUNCTION DirectionCalc(mmsiint integer,

starttime timestamp with time zone , endtime timestamp with

time zone) RETURNS DECIMAL AS $BODY$

DECLARE

 location_ships_cur CURSOR FOR

 SELECT loc.mmsi, loc.time_stamp, loc.the_geom

 FROM location_ships As loc WHERE loc.mmsi= mmsiint

AND loc.time_stamp >= starttime and loc.time_stamp <=

endtime GROUP BY loc.mmsi,loc.time_stamp,loc.the_geom;

 location_ships_rec location_ships%ROWTYPE;

 temp_count integer := 0;

 temp_dir decimal (8,4):=0;

133

 temp_timediff decimal(8,4);

 temp_time timestamp;

 first_loc geometry(POINT,4326);

 last_loc geometry(POINT,4326);

 total_time_diff decimal(8,4);

 avg_speed_trajectory decimal(8,4) := 0.0;

 temp_geom geometry(POINT,4326);

BEGIN

 DELETE FROM direction;

 FOR location_ships_rec in location_ships_cur

 LOOP

 IF (temp_count = 0) THEN

INSERT INTO direction (mmsi, time_stamp,

the_geom , direction) values

(location_ships_rec.mmsi,

location_ships_rec.

time_stamp,ST_GeomFromText(ST_AsText(locati

on_ships_rec.the_geom),4326), 0.0);

 first_loc:= location_ships_rec.the_geom;

 ELSE

temp_dir:= (SELECT ST_Azimuth(

ST_Transform(location_ships_rec.the_geom,38

57),ST_Transform(temp_geom, 3857))) *

(180/pi());

134

temp_timediff:= (SELECT ((extract (epoch

from

(location_ships_rec.time_stamp::timestamp -

temp_time::timestamp))))::decimal)/(60 *

60);

 INSERT INTO direction (

mmsi, time_stamp,the_geom, direction)

values (location_ships_rec.mmsi,

location_ships_rec.time_stamp,

ST_GeomFromText(ST_AsText(location_ships_re

c.the_geom),4326), temp_dir);

 last_loc:= location_ships_rec.the_geom;

 END IF;

 temp_count:=temp_count + 1;

 temp_geom:= location_ships_rec.the_geom;

 temp_time:= location_ships_rec.time_stamp;

 END LOOP;

 temp_dir:= SELECT ST_Azimuth(

 ST_Transform(first_loc,3857),

 ST_Transform(last_loc, 3857))) * (180/pi());

UPDATE direction set major_direction = temp_dir;

return temp_dir;

END;$BODY$

LANGUAGE plpgsql

135

B.13 A Stored Function Turnanglecalc for Turn Angle Calculation

given a MMSI Identifier and a Time Interval

CREATE OR REPLACE FUNCTION turnanglecalc (mmsiint integer,

starttime timestamp, endtime timestamp)

RETURNS integer AS

$BODY$

DECLARE

 location_ships_cur SCROLL CURSOR FOR

 SELECT loc.time_stamp, loc.the_geom

 FROM location_ships As loc

 WHERE loc.mmsi= mmsiint

AND loc.time_stamp >= starttime and loc.time_stamp <=

endtime

 GROUP BY loc.mmsi,loc.time_stamp,loc.the_geom;

 location_ships_rec location_ships%ROWTYPE;

 location_ships_rec2 location_ships%ROWTYPE;

 temp_count integer := 0;

 row_count integer := 0;

 temp_dist decimal (16,9):=0;

 temp_distA decimal (16,9):=0;

 temp_distB decimal (16,9):=0;

 temp_distC decimal (16,5):=0;

 cosi double precision:=0;

136

 deg decimal (8,4):=0;

 temp_timediff decimal(8,4);

 temp_time timestamp;

 temp_time1 timestamp;

 temp_time2 timestamp;

 start_time timestamp;

 end_time timestamp;

 total_time_diff decimal(8,4);

 total_distance_covered decimal(8,4):= 0.0;

 avg_speed_trajectory decimal(8,4) := 0.0;

 temp_geom geometry(POINT,4326);

 temp_geom1 geometry(POINT,4326);

 temp_geom2 geometry(POINT,4326);

BEGIN

 DELETE FROM angle;

 row_count:= (SELECT count(*)

 FROM location_ships As loc

 WHERE loc.mmsi= mmsiint

AND loc.time_stamp >= starttime and loc.time_stamp <=

endtime

);

 FOR location_ships_rec IN location_ships_cur

 LOOP

 IF (temp_count = 0) THEN

137

INSERT INTO turn_angle (mmsi, time_stamp,

geom, angle) values

(mmsiint,location_ships_rec.time_stamp,ST_G

eomFromText(ST_AsText(location_ships_rec.th

e_geom),4326), 0.0);

 END IF;

 IF (temp_count <= (row_count-3)) THEN

FETCH NEXT FROM location_ships_cur into

temp_time,temp_geom;

FETCH NEXT FROM location_ships_cur into

temp_time1,temp_geom1;

temp_distA:= (SELECT

ST_Distance(ST_Transform(location_ships_rec

.the_geom,3857),

ST_Transform(temp_geom, 3857))) /1000 *

0.6214 ;

temp_distB:= (SELECT ST_Distance(

 ST_Transform(temp_geom,3857),

ST_Transform(temp_geom1, 3857))) /1000 *

0.6214;

 temp_distC:= (SELECT ST_Distance(

ST_Transform(location_ships_rec.the_geom,38

57),ST_Transform(temp_geom1, 3857))) /1000

*0.6214;

138

cosi = ((temp_distA * temp_distA) +

(temp_distB * temp_distB) - (temp_distC *

temp_distC)) / (2 * temp_distA * temp_distB

) ;

deg = 180 - (acos(cosi) * (180 / pi()));

temp_timediff:= (SELECT ((extract (epoch

from (location_ships_rec.time_stamp

::timestamp -

temp_time1::timestamp))))::decimal);

temp_timediff2:= (SELECT ((extract (epoch

from (temp_time::timestamp-

location_ships_rec.time_stamp::timestamp

))))::integer);

temp_timediff3:= (SELECT ((extract (epoch

from (temp_time1::timestamp -

temp_time::timestamp))))::integer);

IF((temp_timediff2/60) < 15 and

(temp_timediff3/60) < 15) THEN

INSERT INTO turn_angle (mmsi,

time_stamp,

geom,angle)values(mmsiint,temp_time,ST

_GeomFromText(ST_AsText(temp_geom),432

6),deg);

139

IF (temp_count = (row_count-3)) THEN

INSERT INTO turn_angle (mmsi,

time_stamp, geom, angle) values

(mmsiint,temp_time1,ST_GeomFromText(ST

_AsText(temp_geom1),4326), 0.0);

END IF;

ELSE

INSERT INTO turn_angle (mmsi,

time_stamp,

geom,angle)values(mmsiint,temp_time,ST

_GeomFromText(ST_AsText(temp_geom),432

6),0.0000);

 IF (temp_count = (row_count-3)) THEN

INSERT INTO turn_angle (mmsi,

time_stamp, geom, angle) values

(mmsiint,temp_time1,ST_GeomFromT

ext(ST_AsText(temp_geom1),4326),

0.0);

 END IF;

END IF;

FETCH PRIOR FROM location_ships_cur into

temp_time,temp_geom;

FETCH PRIOR FROM location_ships_cur into

temp_time1,temp_geom1;

140

 END IF;

 temp_count:= temp_count +1;

END LOOP;

temp_time:= temp_time1;

return row_count ;

END;$BODY$

LANGUAGE plpgsql

B.14 SQL Query to Determine the Vessels That Intersect the Protected

Areas

SELECT p.name as name, p.mmsi as mmsi,

ST_ASTEXT(ST_MAKELINE(p.point)) as geom , max(p.time) as

start_time, min(p.time) as end_time

FROM

(SELECT pro.name as name, loc.mmsi as mmsi,

loc.time_stamp as time, loc.the_geom as point

FROM location_ships loc, protected_areas pro

WHERE ST_INTERSECTS (loc.the_geom, pro.geom)

and loc.time_stamp >= '2012-08-05 17:51:00' and

loc.time_stamp <= '2012-08-06 17:51:00') p

GROUP BY p.name, p.mmsi

141

B.15 SQL Query to Determine the Protected Areas That the Vessel with

MMSI Identifier 237001000 Passes Through

SELECT p.name as name, p.mmsi as mmsi,

ST_ASTEXT(ST_MAKELINE(p.point)) as geom , max(p.time) as

start_time, min(p.time) as end_time

FROM

(SELECT pro.name as name, loc.mmsi as mmsi,

loc.time_stamp as time, loc.the_geom as point

FROM location_ships loc, protected_areas pro

WHERE ST_INTERSECTS (loc.the_geom, pro.geom)

and loc.mmsi = 237001000 and loc.time_stamp >= '2012-

08-01 00:00:00' and loc.time_stamp <= '2012-08-30

12:59:59') p

GROUP BY p.name, p.mmsi

B.16 SQL Query to Identify Vessels That Are in the Vicinity of a Vessel

 SELECT b.mmsi, ST_AsText(b.geom) from

(SELECT ST_transform(ST_Buffer(

ST_Transform(loc.the_geom,

142

3857), 1852*50),4326) as geom FROM location_ships As

loc WHERE loc.mmsi=237001000 AND loc.time_stamp =

'2012-08-21 06:05:00') a,

(SELECT loc.mmsi as mmsi, loc.the_geom as geom,

loc.time_stamp FROM location_ships As loc

WHERE loc.time_stamp = '2012-08-21 06:05:00') b

WHERE ST_Within(b.geom , a.geom)

B.17 DBSCAN Algorithm Implementation (a) DBSCAN() Function, and

(B) ExpandCluster() Function Using PHP

function DBSCAN($a, $eps, $minpts){

 $result = count($a);

 $c = 0;

 $GLOBALS["clusters"][$c] = array();

 $GLOBALS["unvisited"] = $a;

 foreach($a as $i => $geom){

if (in_asso_array2($geom,

$GLOBALS["unvisited"])) {

 unset($GLOBALS["unvisited"][$i]);

 $GLOBALS["visited"] = $i;

 $mmsi = $GLOBALS["id"];

 $st = $GLOBALS["start"];

 $end = $GLOBALS["end"];

143

 $query = "SELECT b.geom from (SELECT

ST_transform(ST_Buffer(ST_Transform(ST

_GeomFromText(st_astext('$geom')

,4326),3857), 1500),4326) as geom) a,

(SELECT loc.mmsi as mmsi, loc.the_geom

as geom FROM location_ships As loc

where loc.mmsi='$mmsi' AND

loc.time_stamp between '$st' and

'$end')b

 where ST_Within(b.geom , a.geom)";

 $result = pg_query($query);

 $count = 0;

 $neighborpts = array();

 while ($row = pg_fetch_row($result)) {

 $neighborpts[$count] = $row[0];

 $count++;

 }

 if (count($neighborpts) < $minpts){

 $GLOBALS["noise_points"][] = $i;

 }

 else{

ExpandCluster($geom, $neighborpts, $c,

$minpts);

 $c = $c + 1;

 $GLOBALS["clusters"][$c] = array();

144

 }

 }

}

}

(a)

function ExpandCluster($point, $ne_pts, $ct, $min){

 $GLOBALS["clusters"][$ct][] = $point;

 $GLOBALS["in_cluster"][] = $point;

 $neighbor_point = reset($ne_pts);

 $mmsi = $GLOBALS["id"];

 $st = $GLOBALS["start"];

 $end = $GLOBALS["end"];

 while ($neighbor_point){

if (in_asso_array2($neighbor_point,

$GLOBALS["unvisited"])) {

$k = retkey($neighbor_point,

$GLOBALS["unvisited"]);

 unset($GLOBALS["unvisited"][$k]);

$query = "SELECT b.geom from (SELECT

ST_transform(ST_Buffer(ST_Transform(ST_GeomFromTe

xt(st_astext('$neighbor_point') ,4326),3857),

1500),4326) as geom) a,(SELECT loc.mmsi as mmsi,

loc.the_geom as geom FROM location_ships As loc

where loc.mmsi='$mmsi' AND loc.time_stamp

145

between '$st' and '$end')b where

ST_Within(b.geom , a.geom)";

 $result = pg_query($query);

 $count = 0;

 $neighborpts1 = array();

 while ($row = pg_fetch_row($result)) {

 $neighborpts1[$count] = $row[0];

 $count++;

 }

 if (count($neighborpts1) >= $min){

$ne_pts = array_merge($ne_pts,

$neighborpts1);

 }

 }

if(!in_array($neighbor_point, GLOBALS["in_cluster"])){

$GLOBALS["clusters"][$ct][] = $neighbor_point;

$GLOBALS["in_cluster"][] = $neighbor_point;

 }

 $neighbor_point = next($ne_pts);

}

}

(b)

146

Appendix C Visualization Scripts

C.1 Including jQuery Library in HTML

<script type="text/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jque

ry.min.js">

</script>

C.2 AJAX Function in jQuery That Loads a Remote Page Using HTTP

Request

$.ajax

({

type: "POST",

url: "XXXX.php",

data: {id: 1},

dataType: 'json',

cache: false,success: function(html)

{

. . .

}});

147

C.3 PHP Script to Extract the Coordinates for the Detailed and

Simplified Trajectory as a JSON Encoded Array to Be Sent to the

Client

$conn_string = "host=localhost port=5432 dbname=mod

user=postgres password=etentis";

$db_conn = pg_connect($conn_string);

$query = "SELECT loc.mmsi , loc.time_stamp ,

st_astext(loc.the_geom) FROM location_ships As loc WHERE

loc.mmsi = $mmsi and loc.time_stamp >= '$startdate' and

loc.time_stamp <= '$enddate' ";

$result = pg_query($query);

$query_simplified = " select st_astext(wkb_geometry) from

route_simplified ";

$simplifiedtrac = pg_query($query_simplified);

 $straj = pg_fetch_row($simplifiedtrac, 0);

$points = array();

while ($row = pg_fetch_row($result)) {

 $points[] = array(

 'mmsi' => $row[0] ,

 'time' => $row[1],

 'geom' => $row[2],

 'simp' => $straj,

);

 }

148

echo json_encode($points);

C.4 JavaScript Code Fragment to Displaying the Direction through

Google Maps Info Window

for (tys = 0; tys < darray.length; tys++) {

 var marker1 = new google.maps.Marker({

position: new

google.maps.LatLng(darray[tys][0],darray[tys][1]),

 map: map,

 icon: {

 path: google.maps.SymbolPath.CIRCLE,

 strokeColor : ‘#FAEF1E’,

 fillColor : ‘#FAEF1E’,

 fillOpacity : 0.6,

 scale: 5

 },

 title: darray[tys][0] +” “+ darray[tys][1]

});

(function(marker1, tys) {

// add click event

google.maps.event.addListener(marker1, ‘click’, function()

{

149

 infowindow = new google.maps.InfoWindow({

content: ‘<div style=”width:300px;margin:0 0 20px

20px;height:90px;”><h3>Direction: ‘+

darray[tys][2] +’</h3> <h3>Major Direction: ‘+

darray[tys][4] + ‘</h3><h3>Time: ‘ +

darray[tys][3] + ‘</h3></div>’

 });

 infowindow.open(map, marker1);

 });

 })(marker1, tys);

}

C.5 Adding a OGC WMS Layer Using OpenLayers JavaScript API

var map = new OpenLayers.Map('map',options);

var wms = new OpenLayers.Layer.WMS('heat map',

'http://gaia.gge.unb.ca:8080/geoserver/wms',

{

width: '600', height: '400',

 srs: 'EPSG:900913',

 layers: 'gn:rs6565',format: 'image/png',

 bgcolor: '0x80BDE3',transparent:true

},{

singleTile: true, ratio: 1,

150

maxExtent: [2674366,4166515,3002844,4576045],

isBaseLayer: false}

);

map.addLayers([gsat,wms]);

Curriculum Vitae

Candidate’s full name: Sabarish Senthilnathan Muthu

Universities attended:

2012 - present, MScE. University of New Brunswick, NB, Canada

2010, B.E. Geoinformatics. College of Engineering, Guindy, Anna University, India

Publications:

Muthu, S.S., Gkadolou, E., and Stefanakis, E. (2013). Historical Map Collections on

Geospatial Web. Geomatica Journal, Vol. 67, No. 3, pp. 279-290.

Muthu, S.S., Stefanakis, E., & Lekkas, D. (2014). Discovery of Environmental Risk

from Historical Vessel Trajectories. In the Proceedings of the Joint International

Conference on Geospatial Theory, Processing, Modelling and Applications. Toronto,

Canada.

