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Abstract 

In order to have physical meaning, a height system must have some relation to the 

Earth’s gravity field. Of the height systems that do, orthometric heights match best with 

our intuitive understanding of height. The orthometric height of a point is the distance 

travelled along a plumbline from that point to the geoid, and can be arrived at either 

directly from leveling and gravity observations or indirectly by converting geodetic 

heights to orthometric heights using a geoid model. This dissertation investigates recent 

advances in orthometric height determination, to find out whether orthometric height 

determinations can meet modern centimetre-level accuracy requirements. Persistent 

barriers to improving orthometric height accuracy have been the impossibility of fully 

modeling topographical density effects, the lack of suitable numerical methods, and the 

lack of sufficient data. 

The problem is addressed in six articles. The first two deal with direct calculation of 

orthometric heights, providing a practical implementation of a rigorous theory of 

orthometric heights able to deliver sub-centimetre accuracy in most cases, and showing 

that numerical errors in this process can be kept below the one centimetre level. The next 

two articles address the problem of the unknown density distribution in geoid 

determination, describing a framework for including the full three-dimensional effect of 

topographical density, and demonstrating that existing laterally-varying density models 

can provide sub-centimetre results in most areas. Vertical density variations neglected in 

such models are only expected to reduce accuracy to a few centimetres in mountainous 

areas. The fifth article demonstrates a new method for downward continuation of gravity 
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anomalies, one of the largest numerical barriers to accurate geoid determination. The 

final article evaluates satellite altimetry as a source of gravity data over lakes, finding it 

promising but in need of further refinement. 

The ultimate conclusion is that the physically meaningful system of orthometric 

heights can be now realized to about a centimetre in most areas, given suitable data, 

although in some especially challenging areas (e.g. mountain ranges) errors of several 

centimetres must be accepted.
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Chapter 1: Introduction 

1.1 Definition of objectives 

This dissertation seeks to answer the question: can a physically meaningful height 

system be precisely realized? A physically meaningful height system must be related to 

the Earth’s gravity field. The most intuitive such system is orthometric heights, which 

takes the geoid as its datum, and defines the height of a point as the length of the 

plumbline extending from that point to the geoid (e.g., Heiskanen and Moritz [1967, 

chapter 4]). The goal for precise heights for the past 20 years has been an accuracy of 1 

cm or better (e.g., Vaníček and Martinec [1994]; Sansò and Rummel [1997]; Roman and 

Smith [2002]; Ellmann and Vaníček [2007]). 

A plumbline is a line always tangent to the direction of Earth’s gravity, or in other 

words, always perpendicular to the equipotential surfaces of Earth’s gravity field 

[Heiskenan and Mortiz, 1967], as shown in Figure 1.1. 
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Figure 1.1: The plumbline and the geoid. 

 

For any point in space, only one plumbline exists. The orthometric height of the point is 

the distance along the plumbline from the point to the geoid, as indicated by the bold 

line between P and Q in Figure 1.1. While systems other than orthometric heights may 

be useful for specific computational purposes, as is the case with geodetic or dynamic 

heights (e.g., Heiskanen and Moritz [1967, chapter 4]), only orthometric heights are 

defined in this intuitive manner. 

The term “geoid” was introduced by Listing [1873] to refer to the “mathematical 

figure of the Earth” first described by Gauss in [1828]. It is defined as the equipotential 

surface of the Earth’s gravity field that fits best to the global mean sea level (e.g., 

Heiskanen and Moritz [1967, chapter 2-2]; Vaníček and Krakiwsky [1986, chapter 6.4]). 
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The geoid is physically meaningful because it is tied to the Earth’s gravity field, like the 

plumbline, but also because it represents the level at which seawaters would stabilize if 

they were at rest. The real sea surface deviates from the geoid by up to 1.5 m [Knudsen 

et al., 2011], because of ocean currents and atmospheric effects [Wunsch, 1993]. 

Although heights in the similarly popular normal height system (e.g., Heiskanen and 

Moritz [1967, chapter 4-6]) evaluated at the geoid will all equal zero, they are otherwise 

not distances from a point to the geoid, and the geoid serves as a datum only for 

orthometric heights, dynamic heights, and geopotential numbers (e.g., Vaníček and 

Krakiwsky [1986, section 16.4]). Normal heights [Molodensky, 1945] measured at the 

topographical surface give distance from the point of interest to the quasigeoid 

[Molodensky et al., 1962], a surface similar to the geoid and having a geometrical 

meaning, but not an equipotential surface of the Earth’s real gravity field, and without 

any physical meaning [Heiskanen and Moritz, 1967, section 8-3]. Normal heights may 

differ from orthometric heights by up to several decimetres for very mountainous areas 

(e.g., Sjöberg [1995]; Flury [2009]). Dynamic heights, first proposed by Helmert [1884], 

have no geometrical meaning [Heiskanen and Moritz, 1967, section 4-6], and are only 

used in specific applications dealing with water flow [Vaníček and Krakiwsky, 1986, 

section 16.4]. Geopotential numbers, while arguably more physically meaningful than 

orthometric heights, are not given as linear distances [Vanicek and Krakiwsky, 1986, 

section 16.4] and so are not heights as we normally conceive them. Of all the height 

systems orthometric heights describe heights as they are usually conceived and used, i.e. 

above the geoid and in standard linear units. Thus, they are the heights most useful in 

engineering practice (e.g., Vaníček and Krakiwsky [1986, section 16.4]; Featherstone et 
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al. [1998]). By contrast, for normal heights of points not on the topographical surface, 

and dynamic heights, the linear units used to state the height of such points will vary in 

length depending on the point’s height. 

 

1.2 Background to orthometric height determination 

1.2.1 Determination of orthometric heights from leveling and gravity observations 

Orthometric heights are determined from: (1) geodetic leveling and gravity observations 

(e.g., Heiskanen and Moritz [1967, Chapter 4]), or (2) geodetic heights above a 

reference ellipsoid. In the latter case, geodetic heights are converted to orthometric 

heights using a model of the geoid-ellipsoid separation, a.k.a. the geoidal height 

[Featherstone et al., 1998]. In the former case, geopotential numbers of points of interest 

are calculated using observations of gravity and height differences, and these are 

converted into orthometric heights. 

For a point P at geodetic latitude, ϕP, and longitude, λP (indicated by the dummy 

variable ΩP) and geocentric radius rP, the geopotential number, C(ΩP, rP), is defined as 

the difference between the gravity potential, W0, at the geoid, and the gravity potential, 

W(ΩP, rP),  at P (Heiskanen and Moritz [1967, eq. 4-8]): 

 

C(ΩP, rP) = W0 – W(ΩP, rP). (1.1) 

 

The geopotential number at any point on the geoid, therefore, is zero. The geopotential 

number of a point of interest is determined relative to the geopotential number at another 
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nearby point, P0, by summing up the products of leveled height differences, δLi, and 

observed gravity differences, δgi, along the i segments of a leveling line running from P0 

to P (cf., Vaníček and Krakiwsky [1986, eq. 16.88]): 

 

C(!P ,rP ) "C(!P0
,rP0 )+ # Li#gi

i
$ . (1.2) 

 

Once the geopotential number is obtained, the orthometric height, HO(ΩP, rP), is found 

by dividing by the integral mean value of gravity along the plumbline [Heiskanen and 

Moritz, 1967, eq. 4-21]: 

 

HO (!P ,rP ) =
C(!P ,rP )
g(!P ,rP )

, (1.3) 

 

where [Heiskanen and Moritz, 1967, eq. 4-20]: 

 

g(!P ,rP ) =
1

HO (!P ,rP )
g(!,H )dH

H=0

HP
O

" , (1.4) 

 

where H is an integration variable representing height along the plumbline, and Ω 

represents the geodetic coordinates of the point along the plumbline at height H, so that 

eq. (1.4) is the line integral of gravity along the plumbline. In practice, the integral mean 

value of gravity is not directly observed. Its observation may be possible using borehole 
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gravimetry (e.g., Strange [1982]), but it would not be cost effective to apply this method 

for every benchmark in a leveling network. Instead, the integral mean is calculated using 

a model of Earth’s gravity field and topographical masses (e.g., Tenzer et al. [2005]). 

As an alternative to using eqs. (1.2) through (1.4), individual leveled height 

differences can be converted to orthometric height differences, by applying an 

orthometric correction. This approach is discussed in a variety of publications (e.g., 

Heiskanen and Mortiz [1967, section 4-4]; Strang van Hees [1992]; Hwang and Hsiao 

[2003]). While not pursued within this dissertation, the orthometric correction approach 

also relies on mean gravity along the plumbline, and so the present document has 

bearing on it. 

For the purpose of evaluating mean gravity along the plumbline, the Earth’s gravity 

field is divided into topographical and non-topographical effects [Santos et al., 2006]. 

The topographical effects are induced by masses between the geoid and the surface of 

the Earth (i.e. the topography), and include the Bouguer shell effect, the terrain effect, 

and the anomalous density effect. The non-topographical effects include the normal 

gravity, the geoid-generated gravity disturbance, and the atmospheric effects. 

Orthometric heights incorporating all of these gravitational effects in their calculation 

are called rigorous orthometric heights [Tenzer et al., 2005]. When we discuss these 

effects on gravity, we mean their contribution to gravity at a computation point, and not 

the horizontal components of their gravitational effect.   
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1.2.2 Effects on gravity of the topographical masses 

The Bouguer shell effect is an approximation of the whole topographical effect. It is the 

effect on gravity of a spherical shell, with thickness equal to the topographical height at 

the point of interest, which we designate P, and homogeneous density normally equal to 

the average topographical density of 2670 kg/m3 (e.g., Takin and Talwani [1966]; Karl 

[1971]; Vaníček et al. [2001]). The shell approximates topography exactly at P, and well 

in the immediate neighbourhood of P, especially for smooth topography. It is a bad 

approximation far from P, but the resulting inaccuracy in the topographical effect on 

gravity at P is relatively small, because distant masses have far less influence on the 

gravitational effect at P than nearby ones. As a result, the Bouguer shell is a good 

approximation for estimating the topographical effects on gravity. Since its second order 

and higher effects are relatively small (e.g., Takin and Talwani [1966]), the gravitational 

effect of the Bouguer shell is reasonably well approximated by using only first order 

(linear) terms to calculate its effect. The Bouguer shell representation of topography is 

shown in Figure 1.2, where the shaded area indicates the masses inducing the 

gravitational effect. The density of the masses, ρ, is considered equal to the average 

topographical density ρ0, and is usually assigned the value 2670 kg/m3. 
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Figure 1.2: Bouguer shell representation of topography. 

 

Most of the error in the Bouguer shell representation of topography can be corrected 

by adding the effects of the variations of the actual topographical surface relative to the 

upper surface of the spherical shell. These variations are called terrain, and their effects 

are calculated using a model of the actual topographical surface, nowadays taken from a 

digital elevation model, or DEM (e.g., Bott [1959]; Sünkel [1986]; Tenzer [2005]). 

Gravitational effects of the topography above the shell, which were omitted from the 

Bouguer shell approximation, are added when applying the terrain effect on gravity. 

Effects of the topography erroneously included within the Bouguer shell are removed. 

Since both of these operations decrease gravity at P, except for effects of topography 

above the shell but below the horizon, the terrain effect on gravity at P is expected to be 

mostly negative. The masses generating the terrain effect are shown in Figure 1.3. 
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Figure 1.3: Masses inducing the terrain effect. 

 

The sum of the terrain and Bouguer shell effects completely models topography of 

constant density. However, in reality the density of topography varies three-

dimensionally above and below the assumed constant value. The gravitational effect 

induced by these positive and negative density anomalies is called the anomalous 

density effect [Tenzer et al., 2005], and can be calculated by integration over density 

variations given by a digital density model, or DDM (Sünkel [1986]; Tenzer et al. [ 

2005]). Masses generating the anomalous density effect are shown in Figure 1.4, where 

δρi indicates the anomalous density of mass i, calculated using δρi = ρi – ρ0, and ρi is the 

actual density of mass i. 
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Figure 1.4: Masses inducing the anomalous density effect. 

 

In practice, the full three-dimensional distribution of topographical density is unknown, 

and so assumptions must be made in creating DDMs from existing data (e.g., Sünkel 

[1986]; Chiou [1997]; Fraser et al. [1998]; Allister and Featherstone [2001]). 

 

1.2.3 Effects on gravity of the non-topographical masses 

The normal gravity is the gravity generated by a biaxial reference ellipsoid; that is, an 

ellipsoid that best approximates the geoid, as described by Pizzetti [1894] and 

Somigliana [1930]. Normal gravity comprises over 99.9% of the Earth’s gravity, and for 

this reason normal heights, which are calculated based only on the normal gravity 

component of mean gravity, approximate orthometric heights relatively well [Flury, 

2009]. The normal gravity can be calculated exactly using a simple formula for any set 

of ellipsoidal parameters (e.g., Moritz [2000]). Also, the gradient of normal gravity 

along the normal to the ellipsoid is known exactly, and the first vertical derivative 
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provides an accurate first order estimate of differences in normal gravity with respect to 

height [Heiskanen and Moritz, 1967]. If a better estimate is required, the second and 

higher order vertical derivatives of the normal gravity may be used as well [Tenzer at al., 

2005]. 

The no-topography (NT) geoid-generated gravity disturbance [Vaníček et al., 2004] 

is the effect on gravity of the masses not modeled by the other effects. This includes the 

effect of masses contained between the geoid and the surface of the reference ellipsoid, 

and variations of mass density within the reference ellipsoid that are not symmetric 

about its primary axis (and thus not included in normal gravity formulas). The NT 

gravity disturbance is determined by subtracting the other gravitational effects from 

observed gravity at the topographical surface [Vaníček at al., 2004], and then continuing 

the result downward as required. By calculating the average value of the disturbance 

along the plumbline, its contribution to mean gravity may be determined [Tenzer et al., 

2005]. The downward continuation is an inverse operation, and requires that the NT 

gravity disturbance be known over an area surrounding the point of interest (cf., 

Martinec [1996]). If the NT gravity disturbance is already known on the geoid as the 

byproduct of geoid determination efforts, it may be upward continued to the desired 

level [Santos et al., 2006]. 

 

1.2.4 Helmert mean gravity and its improvements 

An alternative to evaluating mean gravity directly as the sum of the above effects, is to 

consider gravity observed on the topographical surface at a particular computation point 
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as a first estimate of the mean value of gravity, and to refine this estimate by adding 

corrective terms. The mean gravity computed according to this approach is given by: 

 

g(!P ,rP ) = g(!P ,rP )+ cg (!P ,rP ) , (1.5) 

 

where gP is the gravity at point P, and the correction, cg, is calculated using a trivial 

rearrangement of eq. (1.5) (cf., the correction to Helmert gravity in Santos et al. [2006, 

eq. (14)]): 

 

cg (!P ,rP ) = g(!P ,rP )" g(!P ,rP ) . (1.6) 

 

The original Helmert prescription for mean gravity [Helmert, 1890] follows the 

formulation in eq. (1.6). The corrective term is always very small, since the gravitational 

effects of most masses on mean and on surface gravity are similar. 

The corrective term in eq. (1.5) can be separated into the contributions of several 

gravitational effects, just as with the effects on mean gravity in sections 1.2.2 and 1.2.3 

[Santos et al., 2006]. Originally, it was evaluated using only the first order components 

of the normal gravity effect and the Bouguer shell effect (e.g., Helmert [1890]; 

Heiskanen and Moritz [1967]). Evaluated in this way, eq. (1.6) becomes a linear 

function of computation point height, and eq. (1.5) becomes the well-known formula for 

Helmert mean gravity (Heiskanen and Moritz [1967, eq. 4-24]): 
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gH (!P ,rP ) = g(!P ,rP )+ 0.0424 mgal/m " HO (!P ,rP ) . (1.7) 

   

Heights determined using the mean gravity from eq. (1.7), called Helmert heights or 

Helmert orthometric heights (e.g., Heiskanen and Moritz [1967, section 4-4]), may be 

further refined by adding some or all of the remaining corrective terms [Santos et al., 

2006]. A correction, cgH (!P, rP ) , can be applied to Helmert mean gravity (cf., Santos et 

al. [2006, eq. (14)]): 

 

g(!P ,rP ) = g
H (!P ,rP )+ cgH (!P ,rP ) , (1.8) 

 

or, the correction can be applied to already calculated Helmert heights, HH(ΩP,rP), using 

[Santos et al., 2006, eq. (15)]: 

 

HO (!P ,rP ) = H
H (!P ,rP )"

H H (!P ,rP )
gH (!P ,rP )

c
gH
(!P ,rP ) , (1.9) 

 

based on the first two terms of the Taylor series: 

 

HO (!P, rP ) = H
H (!P, rP )"

HH (!P, rP )
gH (!P, rP )

c
gH
(!P, rP )+

HH (!P, rP )
[gH (!P, rP )]

2 [cgH (!P, rP )]
2 " ...

 

 
= HH (!P, rP )

"c
gH
(!P, rP )

gH (!P, rP )
#

$%
&

'(

i

i=0

)

* . (1.10) 
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The truncation after the first order term is sufficient because the magnitude of the effects 

neglected in the Helmert approach are less than 0.05% of Helmert’s mean gravity in 

magnitude [Santos et al., 2006]. 

 

1.3 Background to geoid calculations 

1.3.1 Calculation of orthometric heights from geodetic height observations 

Three-dimensional terrestrial or satellite positioning provide heights of a point P above a 

specified ellipsoid (e.g., Vaníček and Krakiwsky [1986, part IV]). In modern 

applications, this is always a reference ellipsoid, such as the GRS80 [Moritz, 2000] or 

the almost identical WGS-84 ellipsoid [National Imaging and Mapping Agency, 2000]. 

The resulting geodetic heights, hP, are different from the heights previously discussed 

because they are geometric quantities [Vaníček and Krakiwsky, 1986, section 16.4]. If 

the geoidal height corresponding to point P, N(ΩP), is known, the orthometric height can 

be calculated from the geodetic height using the formula (e.g., Featherstone et al. [1998, 

eq. (1)]): 

 

H(ΩP, rP) ≈ h(ΩP, rP) – N(ΩP), (1.11) 

 

based on the approximate geometrical relationship shown in Figure 1.5.  
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Figure 1.5: Relationship between geodetic and orthometric heights (after 

Heiskanen and Moritz [1967, Figure 4-7]). 
 

Eq. (1.11) is approximate because the orthometric height, geoidal height and 

geodetic height are all measured along different paths; however, the approximation is 

good to better than 1 mm anywhere on Earth, and is considered negligible in practice 

(e.g., Zilkoski and Hothem [1989]; Henning et al. [1998]; Meyer et al. [2006]). Eq. 

(1.11) is valuable because it allows heights to be determined using global navigation 

satellite systems (GNSS), which can now produce height observations far more quickly 

than traditional leveling methods, and with similar accuracies so long as an accurate 

geoid model is used [Featherstone, 2008]. In practice GNSS is especially accurate when 

determining geodetic height differences along a baseline. The geodetic height difference 

between two points, P and Q may be converted into an orthometric height difference 

according to (e.g., Engelis et al. [1984, eq. (2)]): 
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[H(ΩP, rP) – H(ΩQ, rQ)] ≈ [h(ΩP, rP) – h(ΩQ, rQ)] – [N(ΩP) – N(ΩQ)]. (1.12) 

 

1.3.2 Methods of geoid determination 

The above method of determining orthometric heights relies heavily on accurate geoid 

determination. Methods of determining the geoid use gravimetric or geometric data sets, 

or a mixture of both. Common gravimetric data include measurements of Earth’s gravity 

or spherical harmonic representations of the Earth’s gravity potential (e.g., Sjöberg 

[2003]; Véronneau et al. [2006]; Ellmann and Vaníček [2007]). Geometric data includes 

measures of the geometry of Earth’s gravity field, such as sea surface heights or 

gradients, or geoidal heights from GPS observations at orthometric height benchmarks 

(e.g. Völgyesi [2005]). Deflections of the vertical (e.g. Vaníček and Merry [1973]) may 

be seen as either gravimetric or geometric data sets. These data sources may be 

combined through statistical methods such as least squares collocation (e.g., Roman et 

al. [2004]; Featherstone and Sproule [2006]), though this is a complex and sometimes 

unreliable procedure. While recent statistical approaches show promise (e.g., 

Featherstone and Sproule [2006]), gravimetric methods, and especially the Stokes-

Helmert method (e.g., Vaníček and Krakiwsky [1987]; Vaníček and Martinec [1994]), 

promise centimetre-level accuracy, if adequate data are available [Ellmann and Vaníček, 

2007]. This accuracy is expected to improve as new gravity data become available. 

Promising new missions such as the European Space Agency’s Gravity Field and 

Steady-state Ocean Circulation Explorer (GOCE) [Rummel et al., 2009], the Jason-2 

Ocean Surface Topography Mission (OSTM) [Lambin et al., 2010], and new airborne 
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gravity campaigns, such as the National Geodetic Survey’s GRAV-D project 

[NOAA/NGS, 2007], provide gravity anomalies of progressively higher accuracy and 

resolution. 

There are several common approaches to calculating gravimetric geoids, all of which 

address the problem by the same four general steps, which are (cf., Martinec et al. 

[1993]; Huang et al. [2001]): 

1. transforming gravity data into a suitable computation space (e.g., the Helmert 

space), 

2. reducing transformed anomalies to the cogeoid level, 

3. converting the anomalies on the cogeoid into cogeoidal heights, and 

4. transforming the cogeoidal heights into geoidal heights. 

The cogeoid is the equipotential surface in the computation space corresponding to the 

geoid in the real space. The following discussion will describe how these steps are 

performed in the Stokes-Helmert method (e.g., Vaníček and Martinec [1994]; Vaníček et 

al. [1999]), a common and accurate implementation, in which the computation space is 

called the Helmert space. 

 

1.3.3 Gravity anomalies in the Stokes-Helmert method 

The Stokes-Helmert method takes gravity anomalies, Δg(ΩP, rP), as its input. The 

gravity anomaly is calculated from observed gravity according to (e.g., Vaníček et al. 

[2004, eq. (8)]): 
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Δg(ΩP, rP) = g(ΩP, rP) – γ(ΩP, rT), (1.13) 

 

where g(ΩP, rP) is the observed gravity at point P, and γ(ΩP, rT) is the normal gravity 

evaluated at the point on the telluroid corresponding to P. The telluroid is the surface 

whose normal height above the reference ellipsoid is equal to the orthometric height of 

topography above the geoid [e.g. Vaníček and Krakiwsky, 1986, section 7.4]. Since eq. 

(1.13) uses evaluations of gravity at particular surfaces, and is blind to its three-

dimensional variation, it is called the surface gravity anomaly [Vaníček et al., 2004]. 

Historically, eq. (1.13) has sometimes been evaluated using normal gravity on the 

ellipsoid rather than on the telluroid; however such a formulation is only valid when the 

computation point is on the geoid. 

The similar Hotine method of geoid computation [Hotine, 1969], instead of the 

gravity anomaly, uses the gravity disturbance, δg(ΩP, rP) (e.g., Heiskanen and Moritz 

[1967, eq. 2-141]), which is the difference between the observed and normal gravity at 

P. The values of the gravity disturbance are becoming more readily available with the 

widespread use of satellite positioning systems (e.g., Hackney and Featherstone [2003]). 

However, since most gravity data are associated with orthometric heights, the gravity 

anomaly is still especially useful [Vaníček et al., 2004]. 

Gravity anomalies are transformed into a computation space so the usual methods of 

solving boundary-value problems (e.g., Kellogg [1929]) for potential fields can be 

applied (e.g., Vaníček and Martinec [1994]). These methods require the gravity potential 

to be harmonic outside of the boundary, which in our application will be the geoid. 
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Thus, the computation must be performed in a space where all masses above the geoid 

have been displaced on or below it, and several such spaces have been proposed (e.g., 

Helmert [1884]; Bjerhammer [1964]; Heck [2003]). Computing the transformation of 

gravity anomalies to such a space is strictly impossible, because the distribution of rock-

densities within the topography is not known and their effects cannot be exactly modeled 

[Vaníček and Martinec, 1994]. However, approximate modeling of these effects is 

feasible (e.g., Huang et al. [2001]; Kuhn [2003]), and choosing a computation space that 

displaces the masses as little as possible minimizes the approximation errors. Such a 

space is the Helmert space, formed according to Helmert’s second condensation method, 

in which all topographical masses are compressed in an infinitesimally thin layer on the 

geoid called the condensation layer [Helmert, 1884]. The gravity anomalies once 

converted to the Helmert space are called Helmert anomalies. 

 

1.3.4 Transformation to and from the Helmert space 

The most significant component of the transformation into the Helmert space is the 

direct topographical effect (DTE), δAt(ΩP, rP), and is given by [Martinec, 1993, eq. 

(4.12)]: 

 

!At ("P ,rP ) = Ac
t ("P ,rP ) – At ("P ,rP ) , (1.14) 

 

where Ac
t (!P ,rP )  is the gravitational attraction of the condensed topography, and At(ΩP, 

rP) is the gravitational attraction of the real topography. The second term on the right 
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hand side of eq. (1.14) is evaluated by Newton integration over the volume of 

topography, exactly as with the gravimetric effects in orthometric height determination. 

The first term is evaluated by integration over the two-dimensional condensed 

topographical masses [Vaníček and Martinec, 1994b]. As with all of the topographical 

and atmospheric terms in the transformation, the effect of the real masses is removed, 

and replaced with the effect of the condensed masses. 

For computational purposes, topographical effects in the transformations to and from 

Helmert space are often decomposed in the same way as the effect on the mean gravity 

in section 1.2, into a Bouguer shell effect, a terrain effect, and an anomalous density 

effect (e.g., Martinec [1993]). While calculating the Bouguer shell effect requires only 

that the height of computation point P be known, calculating the terrain effect 

additionally requires topographical heights from a DEM (e.g., Martinec et al. [1996]), 

and the anomalous density effect requires a DDM [Huang et al., 2001]. 

Since all mass exterior to the geoid must be condensed onto its surface, a direct 

atmospheric effect (DAE), δAa(ΩP, rP), must also be applied. This is done analogously to 

the DTE (e.g., Novák [2000, eq. (4.120)]): 

 

!Aa ("P ,rP ) = Ac
a ("P ,rP ) – Aa ("P ,rP ) , (1.15) 

 

where Ac
a (!P ,rP )  is the gravitational attraction of the condensed atmospheric masses 

and Aa(ΩP, rP) is the gravitational attraction of the real atmospheric masses. For 

calculating the atmospheric effect, a DEM provides topographical heights while an 
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atmospheric density model (e.g., ISO [1972]; Picone et al. [2002]) gives the atmospheric 

density variation. 

When the topographical and atmospheric masses are displaced, the Earth’s gravity 

potential field changes, affecting the shape and location of both the geoid and the 

telluroid, as well as the normal gravity evaluated on the telluroid [Vaníček et al., 1999]. 

The difference in geoidal height between the Helmert and real spaces arising from the 

difference in the topographical gravity potential is called the primary indirect 

topographical effect (PITE), δNt(ΩP). The PITE on geoidal height is given by (cf., 

Martinec [1993, eqs. (1.5) and (1.16)]): 

 

!Nt ("P ) =
Vc

t ("P ,rg["P ]) –V t ("P ,rg["P ])
# 0 ("P )

,  (1.16) 

 

where Vc
t (!P ,rg[!P ])  is the gravitational potential induced by the condensed 

topographical masses at the point on the geoid with horizontal coordinates ΩP, which are 

the same horizontal coordinates as P, and radial coordinate rg[ΩP], and Vt(ΩP, rg[ΩP]) is 

the gravitational potential induced by the real topographic masses at that point. Since the 

PITE on geoidal height reflects a transformation of potential from the real to the Helmert 

space, it can be subtracted from cogeoidal heights to convert them back to geoidal 

heights in the real space [Martinec and Vaníček, 1994a]. It is thus the main component 

of the transformation of the cogeoid into the geoid. As with the DTE, the PITE requires 
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a DEM to evaluate the terrain component, and a DDM to calculate the anomalous 

density component. 

The atmospheric effect corresponding to the PITE is the primary indirect 

atmospheric effect (PIAE), δNa(ΩP). It is calculated according to (cf., Novák [2000, eq. 

(4.110)]): 

 

!Na ("P ) =
Vc

a ("P ,rg["P ]) –V a ("P ,rg["P ])
# 0 ("P )

,  (1.17) 

 

where Vc
a (!P ,rg[!P ])  is the gravitational potential induced by the condensed 

atmospheric masses at the geoid, and Va(ΩP, rg[ΩP]) is the gravitational potential 

induced by the real atmospheric masses at the geoid. Like the PITE, this must be 

subtracted to convert the calculated cogeoid back to the geoid in the real space (e.g., 

Ellmann and Vaníček [2007]). 

The effect of condensation on normal gravity at the telluroid is very small, and the 

resulting effect on the geoid is on the order of a few millimetres [Vaníček et al., 1999]. 

This topographical effect on the normal gravity is called the secondary indirect 

topographical effect (SITE), δγt(ΩP, rP), and the atmospheric effect is called the 

secondary indirect atmospheric effect (SIAE), δγa(ΩP, rP). The latter is so small that it is 

rarely calculated, while the first is calculated by (cf., Vaníček et al. [1999, eq. (36)]): 
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!" t (#P ,rP ) = 2
rg (#P )

Vc
t (#P ,rP ) –V t (#P ,rP )$% &' . (1.18) 

 

Some additional terms are required for accurate transformation to the Helmert space, 

to account for errors introduced by the formulation of the problem in spherical 

coordinates (εδg) and for the use of orthometric rather than normal heights in calculating 

the normal gravity at the telluroid (εg-qg). For a test area in the Canadian Rockies, the 

magnitudes of these corrections are up to 1.4 cm and 3 cm in magnitude respectively 

[Vaníček et al., 1999]. The transformation into Helmert gravity anomalies, ΔgH(ΩP, rP), 

is given by (e.g., Huang [2001, eq. (1)]): 

 

ΔgH(ΩP, rP) = Δg(ΩP, rP) +δAt(ΩP, rP) + δAa(ΩP, rP) + 

 + δγt(ΩP, rP) + δγa(ΩP, rP) + εδg(ΩP, rP)  + εg-qg(ΩP, rP). (1.19) 

 

Once the Helmert cogeoid has been computed from Stokes’s integration, it must be 

converted back to the real space. The transformation of the cogeoidal height, NH(ΩP), 

into the geoidal height is given by subtraction of the PITE and PIAE on height from the 

cogeoidal height (cf., Ellmann and Vaníček [2007, eq. (12)]): 

 

N(ΩP) = NH(ΩP) – δNt(ΩP) – δNa(ΩP). (1.20) 
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1.3.5 Downward continuation of gravity anomalies 

Once the gravity anomalies at the topographical surface have been transformed into the 

Helmert space, they must be reduced to the geoid level. Determining gravity anomalies 

above the geoid from those on the geoid is relatively straightforward. The field given by 

r ⋅  Δg(ΩP, r) is harmonic outside the geoid, so that if the values of rg(ΩP)  ⋅  Δg(ΩP, 

rg[ΩP]) are known on the geoid, the values of r ⋅  Δg(ΩP, r) external to the geoid can be 

found by solving Dirichlet’s problem [Heiskanen and Moritz, 1967, section 1-16]. This 

is an instance of the first boundary value problem of potential theory (e.g., Kellogg 

[1929, section IX.4]), and is solved by a Fredholm integral of the first kind [Fredholm, 

1900] called Poisson’s integral (e.g., Heiskanen and Moritz [1967, eq. (6-74)]): 

 

 
!g("P ,rP ) =

(rg[ #" ])2 (rP
2 $ [rg ( #" )]2 )
4%rP

!g( #" ,rg[ #" ])
!3("P ,rP; #" ,rg[ #" ])

d #"
#"
&& , (1.21) 

 

where: 

 

 !(!,r; "! , "r ) = r2 + "r 2 # 2r "r cos$ [!, "! ] , (1.22) 

 

or the straight line (Euclidean) distance between P and the running integration point, and 

ψ(Ω, Ω') is the spherical angular distance between positions Ω and Ω'. To downward 

continue gravity anomalies to the geoid, we must solve the inverse problem: given 
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gravity anomalies on the topographical surface, determine the values on the geoid (e.g., 

Vaníček and Martinec [1994]). 

While the downward continuation problem is well posed in the Hadamard sense 

[Hadamard, 1923, section 1.1], no continuous solution can be formulated 

mathematically, and so only a discrete solution is possible [Wong, 2002]. Written in a 

discrete form, in matrix-vector notation, the direct problem is (cf., Vaníček et al. [1996, 

eq. (12)]): 

 

Δgs = B Δgg, (1.23) 

 

where Δgs is the vector of gravity anomalies at the topographical surface, Δgg is the 

vector of gravity anomalies on the geoid, and B is the matrix composed of integral 

kernels relating the two. The inverse operation, which provides values of gravity on the 

geoid given those on the topographical surface, is then given by: 

 

Δgg = B–1 Δgs. (1.24) 

 

Although a solution to eq. (1.24) always exists, finding the solution presents a 

significant numerical challenge due to frequent ill-conditioning, and some regularization 

is necessary to solve it [Martinec, 1996]. 
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1.3.6 Determination of cogeoidal heights by Stokes’s integration 

Once Helmert gravity anomalies have been determined on the surface of the geoid, they 

are converted to disturbing potentials in the Helmert space, TH(ΩP,rg[ΩP]). The 

disturbing potential is the difference between the actual gravity potential on the geoid in 

the Helmert space, WH(ΩP,rg[ΩP]), and the normal potential, U(ΩP,rg[ΩP]) (e.g., 

Heiskanen and Moritz [1967, section 2-13]). It can be converted into the cogeoidal 

height, NH(ΩP) using an approximation to Bruns’s formula (Heiskanen and Moritz 

[1967, eq. (2-144)]; cf., Bruns [1878, p. 20]): 

 

NH (!P ) "
T H (!P ,rg[!P ])

# 0 (!P )
. (1.25) 

 

The error in the approximation in eq. (1.25) is never more than 1.5 mm, and so it is 

negligible [Vaníček and Martinec, 1994]. 

The computation of disturbing potentials from gravity anomalies is an example of the 

third boundary-value problem of potential theory, in this case called the geodetic 

boundary value problem (e.g., Heiskanen and Moritz [1967, section 1-17]), expressed in 

the fundamental equation of physical geodesy [Heiskanen and Moritz, 1967, eq. (2-

148)]: 

 

!T H (r,")
!n r=rg (")

# 1
$ 0 (")

!$
!n
T H (",rg["]) = #%gH (",rg["]) , (1.26) 
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where n is the normal to the ellipsoidal surface. A highly accurate solution is found by 

applying the appropriate Green’s function for a sphere, resulting in Stokes’s integral 

[Stokes, 1849]. While this spherical formulation can cause errors that are significant by 

modern standards [Martinec and Grafarend, 1997], these errors are avoided if a higher-

degree reference field is used for computing the low-frequency constituents of the 

disturbing potential, as is often the case in practice [Vaníček and Featherstone, 1998; 

Ardestani and Martinec 2002]. Stokes’s integral for determining disturbing potential on 

the geoid from gravity anomalies on the geoid is given by (e.g., Heiskanen and Moritz 

[1967, eq. (2-161)]): 

 

T H (!P ,rg[!P ]) =
R
4"

#gH ( $! ,rg[ $! ])S(% [!P , $! ])d $!
$!
&& , (1.27) 

 

where (e.g., Heiskanen and Moritz, 1967, eq. (2-164)): 

 

S(! ) = 1
sin(! / 2)

! 6sin!
2
+1! 5cos! ! 3cos! ln sin!

2
+ sin2!

2
"
#$

%
&' , (1.28) 

 

where the variable ψ is a shorthand for ψ (ΩP, Ω'). Eq. (1.27) may be substituted into eq. 

(1.25) to calculate the Helmert cogeoidal height directly (e.g., Heiskanen and Moritz 

[1967, eq. (2-165)]): 
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NH (!P ) =
R

4"# 0 (!P )
$gH ( %! ,rg[ %! ])S(& [!P , %! ])d %!

%!
'' . (1.29) 

 

Practical evaluation of eq. (1.29) is not simple because it strictly requires global 

integration, but reduced terrestrial Helmertized gravity anomalies are not available 

globally, and may only be available or available with sufficient quality locally [Vaníček 

and Sjöberg, 1991]. To overcome this problem, it is useful to replace the usual Stokes’s 

kernel in eq. (1.28) with a kernel modified to reduce the weight of the contribution of 

distant gravity anomalies in the computation (e.g., Wong and Gore [1969]; Sjöberg 

[1984]; Vaníček and Kleusberg [1987]). Even using such a modified kernel, limiting the 

integration to a small “near zone” around the computation point causes considerable 

error. For this reason, precise geoid determination also uses a global geopotential model 

(GGM) to evaluate in spectral form the portion of the integral outside of the near zone, 

called the far zone contribution or the truncation error (e.g., Hernandez et al. [2002]). 

The Stokes’s kernel may also be written in a “spheroidal” form that omits certain 

spherical harmonic bands from the Stokes’s integration [Vaníček and Sjöberg, 1991]. 

Using this formulation, the low-frequency components of the geoid are not evaluated 

from terrestrial data during Stokes’s integration, and can be computed separately using 

spherical harmonic synthesis based on a GGM (e.g., Vaníček and Sjöberg [1991]). Thus, 

the long-wavelenth accuracy of GGMs from satellite gravity potential observations can 

be exploited, while retaining the high accuracy of terrestrial observations at short 

wavelengths. 

 



 

 29 

1.4 Review of developments in orthometric height and Stokes–Helmert 

geoid determination 

1.4.1 Developments in determining orthometric heights from leveling 

The original prescription for orthometric heights was formulated by Helmert [1890] 

based on the Poincaré-Prey gradient, and contains the first order approximation of the 

Bouguer shell effect and the first order effect of normal gravity. It is accurate to within a 

few decimetres in mountainous areas [Santos et al., 2006]. Strange [1982] has shown by 

a comparison with mean gravity from borehole gravimetry that Helmert’s method 

models the real mean gravity along the plumbline very well, and suggests that in most 

areas it is accurate to about 3 cm. Because it is straightforward and requires only the data 

already available from leveling operations, Helmert’s method remains useful for 

approximate heighting. 

Due mainly to the unknown density distribution within topography, topographical 

modeling has been persistent barrier to improving the accuracy of orthometric heights 

(e.g., Rapp [1961]; Heiskanen and Moritz [1967]; Strange [1982]; Allister and 

Featherstone [2001]; Tenzer et al. [2005]). Methods for modeling the constant density 

effect of topography, including terrain effects, have been in place since the early 1900’s 

(e.g., Hayford and Bowie [1912]). Since the 1930’s, inclusion of terrain effects on 

gravity in orthometric height calculation (e.g., Niethammer [1932]; Mader [1954]; 

Krakiwsky [1965]; Sünkel [1986]) has increased orthometric height accuracy by several 

decimetres, or an order of magnitude, in mountainous areas. Although terrain effects 

relative to a Bouguer shell (as opposed to a plate) had been used for some time in 
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geophysical applications (e.g., Takin and Talwani [1966]), they were not used in 

orthometric height calculations until relatively recently (e.g., Featherstone et al. [2001]; 

Tenzer et al. [2005]; Santos et al. [2006]), and the plate model is still sometimes applied 

(e.g., Hwang and Hsiao [2003]). 

Since Helmert [1890], the necessity of including density variation effects on height 

has been suggested by authors writing on orthometric heights (e.g., Rapp [1961]; Sünkel 

[1986]). Geophysical methods for inferring density models from surface data, and for 

forward modelling gravitational effects of density models, exist (e.g., Parasnis [1997]) 

and have been refined during the past century [Mooney, 2007]. Although Heiskanen and 

Moritz [1967, section 4-4] suggested that the anomalous density effects on orthometric 

height would not be larger than about 2.5 cm for heights of 1000 m, which was a very 

small error by the standards of their time, Strange [1982] pointed out that errors in 

orthometric heights do not just increase linearly with height and that the error might be 

as large as 22 cm for an elevation of 3000 m. Strange [1982] and Sünkel [1986] both 

recommended applying a density correction to orthometric height, suggesting that an 

approximate DDM be constructed based on a map of Bouguer gravity anomalies. When 

the density effect was first applied to orthometric corrections by Allister and 

Featherstone [2001], they used a laterally-varying density model created by Middleton et 

al. [1993] according partly to the recommendations of Strange [1982] and Sünkel 

[1986]. Contemporary efforts at the University of New Brunswick (Tenzer et al. [1995]; 

Santos et al. [2006]) use a laterally-varying DDM created by digitizing geological maps 

and assigning appropriate rock densities [Fraser et al., 1998], comparable to a procedure 

used by [Martinec, 1993] in geoid determination. In these efforts, including the density 



 

 31 

effect improved heights by up to 7 cm in an area of the Canadian Rockies. Hwang and 

Hsiao [2003] used a similar method of DDM creation to evaluate orthometric 

corrections over Taiwan. Some of these authors mention the desirability of three-

dimensional DDMs for evaluating the density correction (e.g., Hwang and Hsiao [2003], 

Tenzer et al. [2005]), but none discuss it in any concrete way. The benefit to orthometric 

heights of accurately modeling the whole three-dimensional variation of topographical 

density is expected to be only a few centimetres, even in extreme circumstances 

[Kingdon et al., 2006]. 

The main improvement in the non-topographical effects has been the inclusion of the 

NT geoid-generated gravity disturbance [Vaníček et al., 2004]. This effect on 

orthometric height has been exclusively modeled by the University of New Brunswick 

group, and can improve orthometric heights by up to a few decimetres (Tenzer et al. 

[2005]; Santos et al. [2006]). 

A further minor improvement to Helmert heights is the inclusion of the second order 

effects of normal gravity and the Bouguer shell [Santos et al., 2006]. The result of these 

second order improvements are only 1.5 cm and –1.6 cm, respectively, for Mount 

Everest, and in most cases these corrections are negligible. 

In addition to a theory containing all of the effects on rigorous orthometric heights, 

the past century has brought significant improvements in the numerical methods of 

evaluating these effects. Unlike the Bouguer shell effect, the integral mean of the terrain 

and density effects cannot be represented as a simple function of computation point 

height. Historically, various numerical methods have been applied for evaluating the 

terrain effect on mean gravity. Until recently the most accurate method was that of 



 

 32 

Neithammer [1932], who calculated the effect as the average of terrain effects on gravity 

sampled at discrete intervals along the plumbline. Assuming the terrain effect to vary in 

a roughly linear fashion, Mader [1954] suggested using only the average of the effects at 

both ends of the plumbline [Mader, 1954]. Later studies verified that these two methods 

were similar (Heiskanen and Mortiz [1967, section 4-4]; Rapp [1961]), but that the 

Niethammer method was superior in terms of accuracy [Dennis and Featherstone, 2003]. 

The point became moot, however, with the realization that the integral mean gravity 

could be evaluated exactly by simply evaluating the difference in the terrain effect on 

gravity potential at both ends of the plumbline and dividing by height (e.g., Tenzer et al. 

[2005]; Santos et al. [2006]), which was more accurate than Neithammer’s method and 

more quickly evaluated than Mader’s method [Kingdon, 2005a]. 

There have been numerous developments in modeling the mass bodies generating the 

terrain and density effects, which are pertinent to both orthometric height and to geoid 

determination. Early analog efforts used Hammer charts [Hammer, 1939] to discretize 

terrain masses, following a method already used to evaluate the terrain effect for 

geophysical purposes [Hayford and Bowie, 1912]. Digital computing later made more 

complex models practical (e.g., Bott [1959]; Talwani and Ewing [1960]; Takin and 

Talwani [1966]; Paul [1974]), and some of these advances eventually found their way 

into geoid (e.g., Anderson [1976]; Vaníček et al. [1987]) and orthometric height (e.g., 

Sünkel [1986]) calculations. Advanced methods of topographical modeling used in 

geodesy include modeling topographical masses as discrete mass columns [Martinec, 

1993], rectangular prisms (e.g., Mollweide [1813]; Bessel [1813]; Nagy [2000, 2002]), 

prisms with inclined (e.g., Smith [2000]) or bilinear (e.g., Tsoulis et al. [2003]) surfaces, 



 

 33 

or tesseroids (e.g., Anderson [1976]; Seitz and Heck [2001]). A thorough listing of these 

methods is given by Heck and Seitz [2007]. The accuracy improvements from the most 

precise methods, while necessary for calculating the whole gravitational effect in 

geophysics, are not required to calculate topographical corrections to Helmert heights, 

nor to calculate the conversions to and from the Helmert space in Stokes-Helmert geoid 

modeling. The modeling errors will be very similar in the topographical effects on mean 

and surface gravity, so that when their difference is calculated according to eq. (1.6), 

these errors mostly cancel each other. The modeling errors in effects of real and 

condensed topography are likewise similar, and so cancelation likewise occurs when 

evaluating the DTE, PITE, etc. 

 

1.4.2 Developments in the Stokes-Helmert method of geoid modeling 

As with orthometric heights, the greatest unresolved challenge in geoid determination is 

accurately accounting for topographical effects without complete knowledge of the 

topographical density distribution. Within the Stokes-Helmert context, the 

transformation according to a constant density model comprised of a Bouguer shell and 

terrain has been investigated considerably (e.g., Martinec [1993]; Vaníček et al. [2001]; 

Novák et al. [2001b]). Borraß [1911] applied the earliest transformation of gravity 

observations to the Helmert space using a constant density model, and Lambert and 

Darling [1936] applied it along with Stokes’s integration for geoid computations 

[Lambert, 1930]. The latter computations applied the DTE, considered as a specific form 

of isostatic reduction (e.g., Heiskanen and Moritz [1967, section 3-7]), but applied no 

other components of the transformation to Helmert space, nor the conversion of the 
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cogeoid to the geoid. This approximate form was suitable for the accuracies of the time. 

For example, Lambert suggests that the DTE is often negligible because it is less than 1 

m in most areas [Lambert, 1930]. The magnitude of the DTE may reach several metres 

in rugged mountains (e.g., Martinec [1993]; Novák [2000]). 

Wichiencharoen [1982] first included the PITE in a geoid computation by the 

Stokes–Helmert method, and was followed by Vaníček et al. [1987]. The PITE can 

reach about a metre in magnitude in sufficiently rough topography, and so must be 

included for decimetre level accuracy (e.g., Martinec [1993]; Novák [2000]). The SITE 

is also included by Martinec [1993], and later by others (e.g., Novák [2000]; Ellmann 

and Vaníček [2007]). 

The second most significant theoretical advance in DTE evaluation since Lambert’s 

[1930] application has been the evaluation in spherical coordinates, described precisely 

in Vajda et al. [2004]. This was applied by Wichiencharoen [1982] when many other 

methods were still using planar coordinates (e.g., Vaníček et al. [1987]), and later 

became common for all topographical effect evaluations (e.g., Martinec [1993]; Vaníček 

and Martinec [1994]; Huang et al. [2001]; Ellmann and Vaníček [2007]). 

The most significant theoretical advance in determining the topographical effects has 

been the inclusion of anomalous density effects in DTE evaluation. This began with 

Martinec [1993], who proposed a mathematical framework for including anomalous 

density effects in the DTE, PITE and SITE, using a laterally-varying DDM, ideally a 

DDM representing the mean density along each topographical column. An experiment to 

practically realize these corrections was performed in Martinec’s 1993 report, and then 

in a more refined version by Martinec et al. [1995], in which a DDM was created for 
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Lake Superior in Canada by using the lake bathymetry to evaluate the average density in 

discrete topographical columns. This model assumes the lake water density to be 1000 

kg/m3 while the topographical density remains constant at 2670 kg/m3. The results 

showed that the total anomalous density effect ranged from –1.1 to 1.3 cm. 

Additional efforts to calculate the anomalous density effects used a laterally-varying 

DDM created from surface geology maps (e.g., Fraser et al. [1998]). The first such 

computation was by Martinec [1993], who was followed by Pagiatakis et al. [1999], 

Tziavos and Featherstone [2001], Huang et al. [2001] and Kuhn [2003], all of whom 

found that including anomalous density affected solutions by at most one or two 

decimetres, in especially challenging test areas. The most accurate DDMs were those 

used by Martinec [1993, section 7.1] for part of Canada and Kuhn [2003] for a 

mountainous region of Europe, both of whom used a laterally-varying DDM constructed 

from sedimentary basin data as well as bedrock geology maps, providing a more 

accurate determination than other efforts of the average rock densities in topographical 

columns. The resulting anomalous density effects were below 1 decimetre, a magnitude 

comparable to other efforts. Notably, Kuhn discusses the superiority of a three-

dimensionally varying DDM for geoid modeling, and provides some basic guidelines for 

how one might be obtained by geophysical methods, though he admits that such models 

do not exist and would be difficult to create. 

Atmospheric effects have been included in geoid modeling generally since the 

1970’s (e.g., Anderson [1976]). In the Stokes-Helmert context, Vaníček et al. [1987] 

include the DAE, but not the PIAE, following the prescription of the International 

Association of Geodesy [1971]. Later efforts included both the DAE and the PIAE 
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(e.g.Vaníček and Martinec [1994]), and use updated atmospheric models (e.g., Sjöberg 

and Nahavandchi [2000]; Novák [2000]; Ellmann and Vaníček [2007]). The magnitude 

of the DAE is normally of the order of a few decimetres (Novák [2000]; Sjöberg and 

Nahavandchi [2000]), while the PIAE is no more than about a centimetre globally (e.g., 

Ellmann and Vaníček [2007]). 

In addition to those involved in the transformations to and from the Helmert space, 

the Stokes–Helmert approach has other numerical difficulties. There is an open question 

of what parameters are suitable for Stokes’s integration in a given circumstance 

[Ellmann and Vaníček, 2007], although the numerical techniques of evaluating Stokes’s 

integration are fast and accurate (e.g., Huang et al. [2000]; Novák et al. [2001a]; Hirt et 

al. [2011]), as are the methods of spherical harmonic synthesis necessary for working 

with the reference field [Vaníček and Sjöberg, 1991]. 

The most challenging numerical problem in the Stokes-Helmert solution is the 

downward continuation of gravity anomalies to the geoid (e.g., Sun and Vaníček 

[1998]). This is especially a problem when using Helmert’s second condensation method 

that, while it minimizes the PITE and the problems with an unknown density 

distribution, results in a very rough gravity anomaly field [Heck, 2003] that must be 

carefully continued downward to the geoid. While more finely spaced gravity data can 

provide more accurate geoidal heights, as the resolution of gravity data increases the 

conditioning of the downward continuation problem becomes worse, especially for 

regions with large topographical heights [Martinec, 1996]. Ongoing efforts have sought 

to address these stability problems by regularization (e.g., Schwarz [1979]; Martinec et 

al. [1996]; Huang [2002]). Some recent investigations have also examined the behaviour 
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of the downward continuation using point vs. mean gravity anomalies (e.g., Huang 

[2002]; Sun [2005]; Goli [2010]; Vaníček and Santos [2010]). 

 

1.4.3 Data sources for determination of orthometric heights and the geoid 

Regarding the data used for determining orthometric heights, steady improvements in 

the accuracy of GNSS positioning have made it a feasible source of precise orthometric 

heights, provided that a suitable geoid model exists (Meyer et al. [2006]; Featherstone 

[2008]). This especially emphasizes the geodetic importance of an accurate geoid model, 

beyond its continuing importance to scientific studies (e.g., Vaníček and Christou 

[1993]; Vaníček et al. [2004]; Tapley et al. [2003]; Ellmann et al. [2005]). 

In addition to improvements in GNSS observations, the sources of gravity and 

auxiliary data for gravimetric geoid determination have developed considerably in the 

past twenty years. Although terrestrial gravity measurement has seen little significant 

improvement, airborne gravity observation has become more accurate, allowing rapid 

acquisition of data over large areas [Olesen and Forsberg, 2007]. As a result, airborne 

data is extensively applied in geoid determination (e.g., NOAA/NGS [2007]). 

Meanwhile, satellite missions have measured the gravitational potential field of the 

Earth to a high accuracy at higher resolutions than before, especially with the GRACE 

[Tapley et al., 2005] and GOCE [Rummel et al., 2009] projects. Satellite altimetry, 

which once provided relatively coarse gravity anomalies over oceans [Sandwell and 

Smith, 1997], is now capable of delivering gravity anomalies of much higher resolution 

and accuracy [Sandwell and Smith, 2009; Andersen et al., 2010], and has extended its 

reach to inland water bodies and coastal areas (e.g., Hwang and Hsu [2003]). This 
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promises to provide valuable data for lake waters, where large density contrasts exist 

and dense sampling of the gravity field is required, although the accuracy and resolution 

of satellite altimetry are ultimately limited by the difficulty in extracting the rough 

gravity anomaly field from smooth observations of a surface (the sea or a lake surface) 

approximately parallel to the geoid. Finally, spherical harmonic GGMs of improved 

accuracy have been developed using a combination of terrestrial data and new satellite 

gravity fields. Examples of these are EGM2008 [Pavlis et al., 2008] and EIGENGL04C 

[Förste et al., 2008].  

DEM data has long been available, even to relatively high accuracy, in the form of 

topographical maps. However, these are now available over wider areas and at higher 

resolutions and precisions than before. This is especially important in geoid modeling, 

which requires consistent regional data sets with high local accuracy. Notable recent 

DEMs have been the SRTM data set [Werner, 2001] that covers much of the globe and 

the ASTER GDEM [Abrams et al., 2010] that covers almost the whole globe. Both of 

these, developed by NASA from radar interferometry observations, claim vertical 

accuracies of about 20 m and useful horizontal resolutions of about 3 arc-seconds, or 

100 m. The ACE2 GDEM, based on SRTM data corrected by comparison to satellite 

altimetry heights for e.g., false returns due to forest cover, claims similar levels of 

accuracy, but with biases in some areas removed [Berry et al., 2010]. Also relevant to 

geoid determination are spherical harmonic models of squared heights, the most recent 

being the DEM2006.0 model used as a complement to EGM2008 [Pavlis et al., 2007], 

which are useful for performing topographical effect calculations in the spectral form. 
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Most of the laterally-varying DDMs already mentioned have not really satisfied the 

recommendation of Martinec for a DDM that represents the average value of gravity in a 

topographical column. In particular, the DDMs of Fraser et al. [1998] and Chiou [1997], 

which are based on geological maps of surface rock densities, are likely to be 

sufficiently accurate in most areas but inaccurate in areas of large elevation or in 

sedimentary basins. In such regions, the actual density may change significantly 

throughout the vertical profile. The DDM of Middleton et al. [1993] avoids this problem 

somewhat because it is based on geophysical data and thus representative of more than 

just the surface rock type. However, the results from geophysical data are likely to 

reflect densities of larger portions of the crust than just the relatively thin topography. 

The same problem limits the usefulness of global density models derived from 

geophysical operations, such as the CRUST 2.0 model [Bassin et al., 2000]. Because 

such models also delineate major density interfaces they may be useful for modeling 

effects of large sedimentary basins, and may also find use in modeling far zone density 

effects. Local investigations are able to provide relatively high resolution DDMs from 

geophysical data (e.g., Yen and Hsieh [2010]), but their vertical resolution is still rarely 

sufficient for geoid or orthometric height calculations. The most suitable DDMs to date 

have been those used by Martinec [1993] and Kuhn [2003], created from a geological 

bedrock map, but also modeling local sedimentary structures, which were likely to 

present the largest vertical deviations from the geological map values. 
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1.5 Significance of included articles 

1.5.1 General comments on included articles 

The six included articles are presented in almost their published form, except for minor 

grammar and typographical corrections. They are prefaced with explanatory notes where 

necessary, addressing deficiencies or points of contention in the articles. 

While some effort has been made in this chapter sections to make the included 

articles accessible to readers in other disciplines, some esoteric content remains. For 

example, this dissertation commonly uses the Gal (1 Gal = 1 centimetre per second 

squared) as a unit of measurement, although SI units are now preferred in most fields. 

Also, we have chosen to specify position as an argument of terms depending on it, e.g. 

using H(ΩP,rP) to represent the height corresponding to the point P. This makes some 

expressions more cumbersome, especially for readers not already familiar with them, but 

we have preferred it because it is more transparent than the common alternative notation 

that uses the point name as a subscript (e.g. HP). 

Also along these lines, the significance of the included articles may be difficult to 

appreciate for those outside the discipline of geodesy. Why are we concerned with 

accuracies of better than one centimetre on top of a mountain? The main reason is 

because the techniques described would normally be applied to height control points, 

upon which other observations will be based. As a rule, control points must be 

significantly more accurate than the desired accuracy of observations based to them. For 

example, if a series of leveling observations is meant to have an accuracy of +/– 10 cm, 
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the height control points upon which these are based should have accuracies of +/– 5 cm 

or better. 

There are a number of engineering applications common in mountainous regions for 

which very accurate heights are important. Two prominent examples are tunnel drilling 

and bridge building. Accurate height control minimizes the potential breakthrough errors 

in tunneling. It is an expensive mistake to correct if the machines drilling a tunnel from 

both ends of a mountain are offset from each other by a decimetre when they meet up in 

the middle. It is likewise expensive to repair a bridge when the two halves do not meet 

up correctly in the middle. Also, even though the effects described in the following 

articles are smaller at lower elevations, they may still be significant for some 

engineering tasks, e.g. ground deformation and subsidence monitoring, which require 

very precise height measurements. 

 

1.5.2 Articles dealing with corrections to Helmert orthometric heights 

The first two articles concern corrections to Helmert orthometric heights. The Chapter 2 

article uses the test area in the Canadian Rocky Mountains, as shown in Figure 1.6, 

while the article in Chapter 3 uses a portion of this area. 
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Figure 1.6. Base map of the test area for Chapters 2 and 3, with 1 km contours. 

 

Chapter 2, “Toward an improved orthometric height system for Canada” [Kingdon et 

al., 2005b] is an article demonstrating, for an especially challenging area in the Canadian 

Rocky Mountains, an evaluation of the three main corrections needed to upgrade 

Helmert heights to rigorous orthometric heights. While Canada officially uses a normal-

orthometric height system (the cited article erroneously claims otherwise), Helmert 

orthometric heights are commonly used in mountainous areas where high accuracy is 

needed, e.g. for using GPS and leveled heights to evaluate geoid models. Helmert 

235˚ 236˚ 237˚ 238˚ 239˚ 240˚ 241˚ 242˚ 243˚
49˚

50˚

51˚

52˚

53˚

54˚



 

 43 

heights are also common elsewhere in the world, and so the article’s findings are 

relevant to numerous other height systems. 

The article shows results for the terrain correction, computed using publicly available 

DEMs; the anomalous density correction, using a DDM providing two-dimensionally 

varying anomalous densities drawn from geological maps; and the correction for the NT 

geoid-generated gravity disturbance, based on NT gravity anomalies on the geoid that 

were a byproduct of geoid determination. It demonstrates the feasibility of applying 

corrections to Helmert heights, and also shows that the magnitudes of the corrective 

terms are large enough that they should be taken seriously. It also shows that the density 

correction is quite small, even in an area of very large elevations, and that it tends to be 

smaller for lower elevations. This suggests that in most areas, the anomalous density 

effect will not prevent determination of heights with 1 cm accuracy. 

Chapter 3, “Computationally efficient correction to Helmert orthometric heights for 

terrain and density effects” [Kingdon et al., 2012], an article currently in preparation, 

investigates more thoroughly the numerical methods required to evaluate the terrain and 

density corrections. Directed at a more general audience than the first article, it provides 

an accurate method for calculating the terrain and anomalous density corrections by 

discretizing the topography as a series of columns, rather than using a more complex 

approach, and also evaluating effects on mean gravity based on effects on potential at 

both ends of the plumbline. It further demonstrates that by this method Helmert heights 

can be corrected to rigorous orthometric heights efficiently and to better than 1 cm 

numerical accuracy, using only basic methods of topographical modeling and numerical 

integration. 



 

 44 

 

1.5.3 Articles on errors in laterally-varying density models for geoid determination 

The next two articles also deal with topographical effects, but in the context of the 

transformations to and from the Helmert space in geoid determination. Since the 

Bouguer shell and terrain contributions to the DTE, PITE and SITE have been addressed 

by other researchers, as has the anomalous density effect for laterally-varying densities, 

these articles deal with the remaining effect of the vertical variations of anomalous 

density, by investigating the difference between using a DDM that allows three-

dimensional density variations, and one that uses only two-dimensional variations. 

The article “Modeling topographical density for geoid determination” [Kingdon et 

al., 2009], comprising Chapter 4, first provides a thorough review of data sets and 

methodologies that might be useful for constructing three dimensional DDMs. Next, a 

mathematical framework is suggested for calculating the DTE, PITE and SITE on 

geoidal height for three-dimensional bodies of anomalous density. Methods are proposed 

for bodies bounded by simple surfaces (e.g. discs, which are bounded by two planes and 

a cylinder), and for bodies bounded by irregular surfaces (e.g. lake waters, which are 

bounded at the bottom by the lake bed and at the top by the lake surface). These methods 

are tested by comparison of the numerical result for a disc with the result from an 

analytical calculation, and they are found to be coarse methods but sufficient for their 

task. The numerical methods are applied in a series of simulations attempting to find the 

worst-case error in geoidal height that might result from neglecting vertical density 

variations in a DDM of the topographical masses. It is found that even in a very extreme 
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scenario, laterally-varying density models are able to provide a geoid accurate to within 

several centimetres. 

To demonstrate the capability of the proposed methodology on real data, a 

calculation is carried out for Lake Superior in Canada. The lake is an example of an 

extreme density contrast delineated by an irregular surface, i.e. the lake bed, and has 

been used previously in studying anomalous density effects [Martinec et al., 1995]. The 

error in the geoid from omitting the three-dimensional density variations of the lake is 

found to be less than one centimetre, confirming that in most real world applications, 

laterally-varying DDMs can produce precise geoid results. 

This article not only provides for the first time a complete methodology for 

calculating three-dimensional density effects within the Stokes-Helmert model, but also 

uses these methods to demonstrate that even existing DDMs can provide a geoid 

accurate to a few centimetres. 

Chapter 5, “Effects of hypothetical complex mass-density distributions on geoidal 

height” [Kingdon et al., 2011a] briefly examines the extent to which adjacent bodies of 

anomalous density might cancel each other’s effects. In simulations for two arrays of 

discs, the DTE is reduced significantly by the presence of adjacent masses of lower 

density contrast, but not the PITE. This suggests that in some complex density 

distributions, the overall density effect may be smaller than what the simple examples of 

the previous article suggest. 
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1.5.4 Articles dealing with numerical and data issues 

Next, an attempt is made to address the numerical problems of downward continuation 

in Chapter 6, “Poisson downward continuation by the relaxed Jacobi method” [Kingdon 

and Vaníček, 2011b]. The Jacobi iterative method is commonly applied to solve the 

downward continuation problem. It is conventionally applied with convergence 

tolerances based on a desired accuracy. In attempting to meet these requirements when 

the downward continuation problem is especially ill-conditioned, significant noise is 

added to the results. Instead of solving this problem by conventional regularization 

methods, this article suggests regularizing the downward continuation by relaxing the 

tolerance for the Jacobi method to a value reflecting the ill-conditioning of the problem, 

based on the condition number. The method is validated by testing in an area where the 

downward continuation problem is especially ill-conditioned, and it is found to work 

very well. This article provides a new, simple and efficient solution to one of the most 

challenging numerical problems of geoid determination. 

The final article is provided in Chapter 7. Titled “Gravity Anomalies from retracked 

ERS and Geosat Altimetry over the Great Lakes: Accuracy Assessment and Problems” 

[Kingdon et al., 2007], it is the only article dealing with advances in data collection. This 

article presents a case study in the relatively new application of satellite altimetry to 

providing gravity anomalies over lake waters, made possible by the recent advances in 

accuracy and resolution of satellite altimetry missions. The altimetry result is able to 

resolve features of the gravity field that the GRACE satellite mission cannot, and 

provides accuracies comparable with some terrestrial methods, but is also sometimes 

subject to unknown errors and requires further refinement. The study is valuable as a 
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first assessment of the potential of satellite altimetry to provide cheap and readily 

available gravity anomalies over an area (over lakes) where they are often lacking. The 

study is also unique in its analysis of the ability of satellite altimetry to resolve 

gravitational effects of bathymetric features. When such features exist between the geoid 

and the lake surface, they contribute to topographical density effects in orthometric 

height determination. 
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Chapter 2: Toward an improved orthometric height 

system for Canada 

 

This article was published in Geomatica, a journal published by the Canadian Institute 

of Geomatics, in 2005. I developed the software and methods used in this article, 

performed the computations, and wrote the article. My coauthors provided guidance in 

the computation process, and in revising the manuscript for submission. The full citation 

for the article is: 

 

Kingdon, R., P. Vaníček, A. Ellmann, M. Santos, and R. Tenzer (2005b). “Toward an 
improved orthometric height system for Canada.” Geomatica, Vol. 59, No. 3, pp. 
241–249. 

 
 

Note: The DTM data used in this publication is drawn from the Canadian Digital 

Elevation Database (CDED) data set. The reference is: 

Canada, Natural Resources (2007). Canadian Digital Elevation Data, Level 1 Product 
Specifications. Edition 3.0, Centre for Topographic Information, Natural Resources 
Canada, Customer Support Group, Sherbrooke, Québec, Canada. 

 
At the time of this article’s publication, I understood the DDM used in this article to 

have been produced by the Geological Survey of Canada. Since then I have learned that 

it was actually generated at UNB. The relevant reference is: 

Fraser, D., S. Pagiatakis, and A. Goodacre (1998). “In-situ rock density and terrain 
corrections to gravity observations.” Proceedings of the 12th Annual Symposium on 
Geographic Information Systems, 6–9 April, 1998, Toronto, Ontario, Canada, 1998. 
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The NT gravity disturbances used here were also created at UNB, as a byproduct of 

geoid calculations. Though reasonably accurate, they were not final results, and were not 

otherwise published. 

In sections 2.2 and 2.6, reference is made to the NT geoid-generated gravity 

disturbance being a result of the “geoid’s mass”. This expression refers to the masses 

contained within the geoid surface, excluding those whose effects are accounted for by 

the normal ellipsoid. Really, the NT gravity disturbance also includes the effects of 

masses exterior to the geoid (where it lies below the ellipsoid), which are counted both 

in the normal gravity effect and in the topographical effects. The redundant effects of 

these masses are removed when applying the NT disturbance, analogous to the 

accounting for absent topographical mass by the terrain effect. Thus, saying that the NT 

gravity disturbance results from the geoid’s mass in this paper is slightly misleading. 

 

Chapter 2 Abstract 

Heights in Canada are defined in the system of orthometric heights, according to a 

method proposed by Helmert in 1890. However, much development in the theory of 

heights has been done since then, leading to a more rigorous approach to orthometric 

heights. The new approach takes into account the effects of terrain roughness, laterally 

varying anomalous topographical density, and the NT geoid-generated gravity 

disturbance, which are not considered in the Helmert method. 

This paper presents a calculation of corrections to Helmert orthometric heights, to 

update them to the more rigorous definition. The corrections for each effect, as well as a 
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total correction comprising all three effects, are evaluated for a Canadian test area 

comprising several types of terrain. The correction is found to reach decimetres in some 

mountainous areas. 

 

2.1 Introduction 

An understanding of heights is essential to the study of any field of geomatics, and the 

Canadian height system – called Helmert Orthometric Heights – is directly related to 

Earth’s gravity field as well. This paper deals with the improvement of the Canadian 

height system, as a result of variations in Earth’s gravity field; and in particular, with the 

determination of corrections to Helmert orthometric heights to account for these 

variations. Other errors, such as those involved in leveling operations for height 

determination, or inaccuracies in definition of the height datum, are not considered. 

Orthometric height, geometrically, is the length of a (curved) plumbline intersecting 

the geoid – an equipotential surface having the same potential as mean sea level – at a 

right angle, and the corresponding point on the surface of the Earth. The heights in 

Canada were estimated by the 1928 adjustment of leveling networks, resulting in the 

Canadian Geodetic Vertical Datum 1928 (CGVD28). This readjustment used Helmert 

orthometric heights in its calculations, as did later incarnations such as the North 

American Vertical Datum 1988 (NAVD88) [Zilkoski et al., 1992]. 

Mathematically, the orthometric height, )(ΩOH  of a point is defined as its 

geopotential number divided by the mean gravity along the plumbline between that point 

and the geoid. The geopotential number, defined as the difference between the potential 
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on the geoid and the potential at a surface point, is determined from observed gravity 

and height differences between that point and mean sea level, realized at the surface of 

the Earth. The mean value of gravity along the plumbline, here shortened to mean 

gravity, is not so easily determined since the factors contributing to this value are 

difficult to quantify and require more complex mathematics for their evaluation. 

Traditionally, mean gravity has only been approximately calculated according to 

Helmert’s method, which accounts for gravity generated by the ellipsoid, and 

approximates topography with a plate extending to infinity, known as a Bouguer plate. 

Since Helmert’s method was introduced, however, the attempt to calculate mean gravity 

has undergone significant evolution. As pointed out in Tenzer et al. [2005], relevant 

developments are the inclusion of local terrain effects in the calculation (e.g., 

Niethammer [1932]; Mader [1954]), the introduction of effect of lateral anomalous 

density variations [Vaníček et al., 1995; Allister and Featherstone, 2001] and an 

examination of the effect of the geoid-generated gravity disturbance [Martin et al., 

2003]. This paper presents an evaluation of corrections to Helmert orthometric heights 

required to account for these effects. Corrections calculated in a Canadian context are 

presented here, and an assessment of their behavior is carried out. The theoretical 

background is presented in Santos et al. [2006]. 
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2.2 Corrections to Helmert orthometric heights 

The Helmert method requires mean gravity along a plumbline as [Heiskanen and Moritz, 

1967, eq. (4-24)]: 

 

  g
H (!) = g(rt ,!)+ 0.0424H (!) , (2.1) 

 

where   g(rt ,!)  is the value of gravity at the point at the surface of the Earth with 

spherical coordinates Ω and geocentric radius rt, and H(Ω) is the orthometric height of 

the surface at the same point. This is based upon application of the Poincaré-Prey 

reduction to surface gravity, assuming a linear gravity gradient along the plumbline. It 

takes into account both normal gravity and the effect of a Bouguer plate having a 

constant density of 2670 kg/m3. However, as Santos et al. [2006] explain, these effects 

alone do not provide a sufficiently accurate calculation of mean gravity in all parts of 

Canada. 

Mean gravity may be defined more rigorously as a sum of calculable effects. Those 

related to topography are shown in Figure 2.1, where the black hills and valleys 

represent the contribution of terrain roughness, and the columns of varying shades of 

grey represent lateral density variations, and their contribution. Vertical density 

variations and effects of atmospheric masses are not shown, since they are not 

considered herein. 
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Figure 2.1: Components of gravity related to topography. 

 

In addition to the contributions shown in Figure 2.1, gravity includes contributions not 

generated by topography. These are the gravity generated by the reference ellipsoid 

being used, and that generated by masses within the geoid. The latter exist in the no-

topography (NT) space, a space where the topography of Earth has been removed, which 

is convenient  for some calculations. It was introduced in Vaníček et al. [2004], which 

may be referred to for further explanation. 

Mathematically, the total gravity may be written: 

 

  g(r,!) " # (r,!)+$ g NT (r,!)+ gB
T (r,!)+ gR

T (r,!)+ g$% (r,!) , (2.2) 

 

where γ(r,Ω) represents normal gravity (generated by mass within the geodetic reference 

ellipsoid, e.g., GRS-80 (e.g., Moritz [2000])); δgNT(r,Ω) represents the geoid-generated 
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gravity disturbance (generated by the anomalous mass within the geoid);   gB
T (r,!)  

represents the effect on gravity of mass within a Bouguer shell of thickness HO(Ω), 

assuming all mass has constant average crustal density;   gR
T (r,!)  represents the effect on 

gravity of terrain variations, or roughness, above and below the Bouguer shell (i.e., hills 

and valleys) of constant average density; and gδρ(r,Ω) represents the effect on gravity of 

lateral density variations from constant average crustal density, within the topography. 

Note that effects of atmospheric masses and of radial density variations are neglected 

throughout this paper. The effect of atmospheric masses is negligible because it is very 

small [Tenzer et al., 2005]. The density of air is around 1.25 kg/m3, which is less than 

0.05% of average crustal density, resulting in a minimal effect of atmospheric masses on 

gravity. The effect of radial density variations has been neglected because it is difficult 

to quantify due to insufficient data on the radial distribution of density within the crust. 

It follows from eq. (2.2) that gravity at a point on the surface, g(rt,Ω) is rigorously 

defined as, 

 

  g(rt ,!) " # (rt ,!)+$ g NT (rt ,!)+ gB
T (rt ,!)+ gR

T (rt ,!)+ g$% (rt ,!) , (2.3) 

 

and mean gravity,   g(r,!) , given by the integral mean of   g(r,!) , as, 

 

g (r,!) " ! (!) +! g
NT
(!) + gB

T (!) + gR
T (!) + g !" (!) ; (2.4) 
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where the bars over the terms represent integral mean quantities. 

By substituting eq. (2.3) into the expression for mean gravity according to Helmert’s 

method, eq. (2.1), for a constant crustal density of 2670 kg/m3, we obtain the following 

expanded expression for Helmert mean gravity: 

 

  g
H (!) " # (rt ,!)+$ g NT (rt ,!)+ gB

T (rt ,!)+ gR
T (rt ,!)+ g$% (rt ,!)+  

   +0.0424H (!) . (2.5) 

 

The correction to Helmert’s mean gravity is then given by finding the difference 

between eq. (2.5) and the rigorous mean gravity given by eq. (2.4). In this operation, the 

contributions of normal gravity and gravity generated by mass within the Bouguer shell, 

along with the last term on the right-hand side of eq. (2.5), effectively cancel each other 

out [Santos et al., 2006]. Thus, 

 

  
! g (") = g(")# g H (")  

   = ! g
NT

(")#! g NT (rt ,")+  

    +gR
T (!)" gR

T (rt ,!)+  

    +g !" (#)$ g!" (rt ,#) , (2.6) 

 

and the only terms of the correction which must be calculated are those resulting from 

the mean and surface effects on gravity of terrain roughness, the laterally varying 
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density distribution, and the geoid-generated gravity disturbance. Once these terms have 

been calculated, the corresponding correction to Helmert orthometric heights may be 

determined using (cf., Heiskanen and Moritz [1967, chap 4]): 

 

  
!

H O (") = # H O (")
g(")

! g . (2.7) 

 

Corrections thus calculated may then be applied to leveling benchmarks, or any 

orthometric heights defined in the Canadian height system.  

 

2.3 The test area 

Software has been written to calculate the corrections to Helmert orthometric heights for 

the three effects shown in eq. (2.6), and the source code is available from the primary 

author upon request. These calculations were performed using a regular grid of points 5’ 

apart, to provide suitable resolution for plots of the area, within a test area stretching 

from 49° to 54° in latitude, and 235° to 243° east in longitude. This area was chosen 

because its characteristics produce extreme results for each of the three effects 

calculated. Although it only represents a small segment of Canada’s land mass, it 

contains both rugged and flat terrain, and seashore; so that the nature of the effects in 

many other areas may be judged from the results. 

Heights in the test area range from 0 m to 3227 m, and laterally varying densities, 

based on surface geology, range from 2490 kg/m3 to 2980 kg/m3. Since the average 

crustal density is 2670 kg/m3, assumed constant, this corresponds to laterally varying 
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anomalous densities between –180 kg/m3 and 310 kg/m3. Geoid-generated gravity 

disturbances ranged from –266 mGal to –16 mGal. The distributions of height, 

anomalous density, and gravity anomalies are shown in Figures 2.2, 2.3 and 2.4, below.  

 

 
Figure 2.2: Orthometric heights within the test area, 500 m contours. 
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Figure 2.3: Laterally-varying anomalous densities within the test area, anomalous 

density indicated by tone. Data from the Geological Survey of Canada. 
 

 
Figure 2.4: NT Geoid-generated gravity disturbances within the test area, 50 mGal 

contours. 
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2.4 The effect of terrain roughness 

The effect of terrain roughness, sometimes called just “the terrain effect” on gravity may 

be evaluated by integration of effects of surplus mass above the Bouguer shell, and mass 

deficit below the Bouguer shell, indicated by the black shaded area in Figure 2.1.  

The terrain effect on Helmert mean gravity may be evaluated either as a simple 

average of the effect on gravity at the Earth’s surface and on the geoid, according to the 

method of Mader [1954], or using an integral mean. If the integral mean approach is 

applied, it may be done using the Niethammer approach [1932], in which the integral 

mean is approximated by calculating the effects on gravity at a series of points along the 

plumbline and averaging these results. Alternatively, according to a recent method 

developed at the University of New Brunswick (U.N.B.), the contribution of terrain 

roughness to gravitational potential at the surface and on the geoid may be calculated, 

and divided by orthometric height, to determine an exact value of the effect on Helmert 

mean gravity (e.g., Tenzer et al. [2005, eq. (21)]). Although results from all three 

methods are similar, the present study confirms that the U.N.B. method for calculating 

effects on mean gravity is the most effective due to its speed and accuracy. 

For the calculation of both effects, integration of mass surpluses and deficits is 

performed within a spherical cap of 3°, using an analytical solution for the radially 

integrated negative radial derivative of the Newton’s integral kernel, with the 

assumption that any masses outside of this area may be neglected in this calculation. The 

integral kernel is (e.g., Martinec [1998]): 
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N (r,! [", #" ], #r ) = #r cos(! [", #" ])$ r

!3(r,! [", #" ], #r )
, (2.8)

 

 

where r is the geocentric radius of the computation point, r' is the geocentric radius of 

the integration point, ψ[Ω,Ω'] is the spherical angle between the computation point and 

the integration point, and    !(r,! [", #" ], #r )  is the distance between the computation and 

integration points. The assumption that the effect of terrain beyond 3° is negligible is 

based on test computations with varying sizes of spherical cap over a test area. DEM 

data in three integration zones provides a basis for numerical integration. In the 

innermost zone, a 15’ by 15’ square centered on the computation point, 3” data is used. 

In the inner zone, a 200’ square, 30” data is used. Within the rest of the spherical cap, 5’ 

data are used. These parameters were all determined, like the radius of the spherical cap, 

by variation of each parameter for a test area. Furthermore, interpolation is performed to 

divide the central 3” cell into four 1.5” cells to make the integration more accurate. 

Integration is performed to determine both the effect on Helmert mean gravity, and the 

effect on surface gravity. Once these are found, they are subtracted according to eq. (2.6) 

to determine a correction to Helmert’s mean gravity for terrain roughness. Note that the 

total effect on Helmert’s mean gravity would have the opposite sign of this correction. 

Values of this correction within the test area ranged from 106 mGal to –25 mGal, 

while the corresponding corrections to Helmert orthometric height, calculated according 

to eq. (2.9), ranged from 4.6 cm to –31.0 cm, and may be seen in Figures 2.5 and 2.6. 
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Figure 2.5: Correction to Helmert mean gravity for terrain roughness within the 

test area, 40 mGal contours. 

 
Figure 2.6: Correction to Helmert orthometric heights for terrain roughness within 

the test area, 10 cm contours. 
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Effects related to roughness should be expected to peak where the terrain does, and 

this behaviour is seen in Figures 2.5 and 2.6. While it may appear at first glance as 

though the correction follows the height of terrain almost exactly, Figure 2.6 shows that 

this is not the case. For example, notice that the valleys which are distinctly defined in 

the topographic map of Figure 2.1 are not easily distinguished in the corrections given in 

Figures 2.5 and 2.6. This behavior is expected, since the terrain effect on gravity is a 

function of roughness, rather than of height of the computation point. Also, notice that 

the terrain in the middle of the map, having a more gradual slope, produces lower 

correction values; while the values peak sharply in rough terrain. While greater heights 

may amplify the correction, rough terrain is also necessary for it to be significant. 

 

2.5 The effect of laterally-varying anomalous density 

The effects of the Bouguer shell and of terrain are both evaluated assuming constant 

topographical density, and thus do not include the effect of density variations. While 

sufficient data are not available to calculate the effect of radial density variations, the 

effect of lateral variations may be calculated, thus accounting to some extent for the 

influence of density variations. 

The effect of lateral density variations on gravity is calculated by first obtaining a 

series of density values for polygons within the area, and then subtracting from these the 

average crustal density of 2670 kg/m3. This results in a series of density differences for 

the polygons, which may be thought of as columns of positive or negative density 
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anomalies, extending from the surface of the geoid to the Earth’s surface, as indicated in 

Figure 2.1. For a more detailed description, see Huang et al. [2001]. 

To calculate exactly the effect of these anomalous density columns on gravity 

requires integration over the mass surpluses and deficits within these columns, using the 

same Newton kernel as for the terrain effect. Practically, however, the variations in 

height of these columns above and below the Bouguer shell – i.e., their influence on the 

terrain effect – may be neglected. 

Integration was performed over two integration zones, the inner zone and the middle 

zone. Within the inner zone, which was 5’ square, integration points were spaced 3” 

apart, and density anomaly values were interpolated to these points. Within the middle 

zone, which was 10’ square, integration points were spaced 30” apart and were located 

in the center of cells of the input density data. As with the terrain effect calculations, 

these values were determined by varying one parameter while holding the others fixed. 

Calculation of the effect on Helmert mean gravity may be performed using the same 

three methods as for calculation of the terrain roughness effect. However, the difference 

in results using these three methods is less than half a centimetre within the test area. 

Still, the U.N.B. method is preferred and was used for calculations, for the same reasons 

as with the terrain effect: speed, and accuracy. 

The correction to Helmert mean gravity for laterally-varying anomalous density over 

the test area varied from 14 mGal to –24 mGal. Corresponding corrections to height, 

computed in a regular grid, varied from 6.5 cm to –4.5 cm, with both corrections 

correlated to both density and height. These results are also similar to those presented in 

Tenzer et al. [2003], whose corrections, calculated for Canadian leveling points, ranged 
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from 3.4 cm to –1.9 cm. Because the actual density in the test area was generally greater 

than average topographic density, the effect of the laterally-varying density distributions 

on height was positive. It is also noteworthy that the effect on mean gravity is very 

small, and might normally be negligible, the magnitude of the correction coming mainly 

from the effect on surface gravity. Results for the test area are shown in Figures 2.7 and 

2.8. 

 

 
Figure 2.7: Correction to Helmert mean gravity for laterally-varying anomalous 

density within the test area, 10 mGal contours. 
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Figure 2.8: Correction to Helmert orthometric heights for laterally-varying 

anomalous density within the test area, 2 cm contours. 
 

 

Figures 2.7 and 2.8 show a tendency for both the mean gravity and height corrections 

to peak where the terrain does, as with the terrain roughness effect; though the tendency 

is not so pronounced here. This is to be expected, since while the effect of lateral density 

variations within a Bouguer shell is a function of height, the lateral density variations 

amount to no more than about 10% of the average crustal density, so that their influence 

on gravity is relatively small. Also, the magnitude of this effect is generally small, in 

part because anomalous densities are significantly smaller than average topographical 

density. 
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2.6 The geoid-generated gravity disturbance 

The geoid-generated gravity disturbance represents the effect of the geoid’s mass on 

gravity. The effect on gravity at the surface may be found by upward continuation of the 

disturbance, referred to the geoid’s surface, to the Earth’s surface. This is done using 

Poisson’s integral [Kellogg, 1929]. Radial integration, using this kernel, is performed 

over a spherical cap with radius of 7° from the computation point. Disturbances referred 

to the geoid may be found by removing the secondary indirect topographical effect from 

the NT gravity anomaly referred to the geoid [Tenzer et al., 2005]. Note, however, that 

this effect may also be calculated directly using downward continuation of gravity 

disturbances referred to the Earth’s surface. 

The upward continuation calculation used gravity disturbance data given in a regular 

grid with 5’ spacing. Integration was done in two zones, with integration in a 10’ square 

inner zone performed separately from that over the rest of the 7° spherical cap. In the 

inner zone, a planar approximation of distance was applied in evaluation of the Poisson 

kernel, and the 5’ input data was interpolated to create a regular 30” grid. The size of 

each zone was determined by varying its radius while holding that of the other zone 

constant. The 5’ spacing simply reflects the available data, while the 30” interpolation of 

data was determined by varying interpolation intervals until the effect on results from 

any finer interpolation was negligible. 

The mean effect on gravity may either be approximated by upward continuation of 

the disturbance to a point halfway along the plumbline, or directly evaluated using an 

integral mean. In the latter case, a formula for the indefinite integral of the Poisson 
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kernel has been provided by Tenzer et al. [2005, eq. (9)], which is employed, slightly 

adapted to use a planar approximation of spherical distance in the inner zone, in 

calculation of the mean geoid-generated gravity disturbance. Both techniques produced 

results no more than 5 mm apart, but the results from the integral mean approach were 

accepted as more accurate [Martin et al., 2003]. 

Results for the correction to Helmert mean gravity over the test area vary from –66.1 

mGal to 8.9 mGal, and for the correction to Helmert orthometric heights from –0.1 cm 

to 21.0 cm. As expected, the differences between gravity disturbances on the geoid, and 

mean or surface gravity disturbances, vary according to the height of the computation 

point. It also follows that the magnitude of corrections is correlated with height of the 

computation point, though it is also correlated with the magnitude of the geoid-generated 

gravity disturbances. Distribution of the results is shown in Figures 2.9 and 2.10, below. 
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Figure 2.9: Correction to Helmert mean gravity for the geoid-generated gravity 

disturbance within the test area, 10 mGal contours. 

 
Figure 2.10: Correction to Helmert orthometric heights for the geoid-generated 

gravity disturbance within the test area, 5 cm contours. 
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2.7 Total corrections to Helmert orthometric height 

These three corrections must be added together to determine a final correction to 

Helmert orthometric heights. The final correction to mean gravity ranges from –70.3 

mGal to 58.4 mGal. These correspond to corrections to Helmert’s orthometric height 

from –17.1 cm to 14.2 cm. In the final summation, the geoid-generated gravity 

disturbance effect and the terrain roughness effect often cancel each other within the test 

area, where the geoid-generated gravity disturbances are often negative. While the 

correction resulting from anomalous density occasionally works in the opposite direction 

to the terrain effect, in the highest parts of the test area – where the influence of the 

density correction is amplified – it works in the same direction as the terrain effect, 

making the overall correction larger. The corrections to gravity over the test area are 

given in Figure 2.11, below; and the corrections to height in Figure 2.12. 
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Figure 2.11: Total corrections to Helmert mean gravity for the spherical terrain 
effect, the effect of laterally-varying anomalous density, and the geoid-generated 

gravity disturbance, within the test area. 30 mGal contours. 
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Figure 2.12: Total corrections to Helmert orthometric height for the spherical 
terrain effect, the effect of laterally-varying anomalous density, and the geoid-

generated gravity disturbance within the test area. 5 cm contours. 
 

 

Figure 2.11 shows that the correction to gravity has a tendency to peak in areas of 

rough terrain, where the main factor in these corrections – the terrain roughness effect – 

is at its greatest, and where the influences of height on the other two corrections is also 

at a maximum. While these gravity corrections may be the most effective means of 

seeing which effects have the greatest contribution to the final height corrections, it is 

the height corrections themselves that this paper sets out to describe. They are generally 

small, with a tendency to peak in rough terrain at high elevations. In most low-lying 

areas, the total correction is under 5 cm; while in more rugged areas it is as high as 17 

cm in magnitude. 
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A summary of all contributions and total effects is provided in Table 2.1, below. 

 

Table 2.1: Corrections to Helmert orthometric height for the spherical terrain 
effect, the effect of laterally-varying anomalous density, and the geoid-generated 

gravity disturbance within the test area. 
Correction  Minimum   Maximum  Mean  

Terrain roughness –31.0 cm 4.6 cm –1.3 cm 
Laterally-varying anomalous density –4.5 cm 6.5 cm –0.1 cm 
Geoid-generated gravity disturbance –0.1 cm 21.0 cm 4.0 cm 
Total correction –17.1 cm 14.2 cm 3.7 cm 

 
 

2.8 Summary and conclusions 

Helmert’s standard method for determining orthometric height is not adequate to 

determine heights having accuracy less than 1 cm in all areas of Canada. In a test area in 

the Rocky Mountains, corrections for three effects were calculated: the effect of terrain 

roughness, the effect of laterally-varying anomalous density, and the geoid-generated 

gravity disturbance. The total correction reached a maximum of 17 centimetres in 

magnitude. If Canadian heights are to be considered rigorous, these effects must be 

taken into consideration – especially in mountainous areas, like the Rockies. 
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Helmert orthometric heights for terrain and density 

effects 
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Chapter 3 Abstract 

The system of orthometric heights is the official height system in many countries, and 

thus it is the system used on maps and in engineering applications. It provides “heights 

above mean sea level”, based on the mean value of gravity between a computation point 

and the geoid. The original method of evaluating the mean gravity, attributed to Helmert 

[1890], has been progressively refined. Here we describe an implementation of the 

terrain and density corrections to Helmert heights, based on the rigorous theory 
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described by Santos et al. [2006]. The computation requires evaluation of a 3-

dimensional volume integral for each effect. We efficiently evaluate these integrals by 

using effects on potential to evaluate effects on mean gravity, reducing the 

dimensionality of the integration to 2, using simplified integration kernels, and by 

choosing optimal cell spacing for each of 5 integration zones. By applying this 

methodology, we are able to evaluate the terrain and density corrections for 3,721 points 

in the Canadian Rocky Mountains in only 33 minutes. We find that the speed of our 

computation is improved mostly by the use of potentials to evaluate effects on mean 

gravity, and by reduction of the integration dimensionality to 2. Omitting the former 

approach increases computation time by 116%, and omitting the latter approach by 59%. 

Also, we find that choice of integration zone sizes and resolutions has a significant effect 

on computational efficiency.  

Conforming to our expectations, the terrain correction in the test area reaches 31.0 

cm in magnitude, is predominantly negative, and is largest for high elevations. The 

density correction reaches only 6.2 cm in magnitude, has alternating signs depending on 

local density anomalies, and is also correlated with topography. The terrain correction is 

found to cancel up to 50% of the Bouguer shell effect for points at high elevations, 

which could be attributed to isostasy. 

 

3.1 Introduction 

For precise heighting in North America, two height systems are commonly used: 

geodetic (also incorrectly called ellipsoidal) heights, which measure heights 
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geometrically from some reference ellipsoid (e.g., GRS-80 [Moritz, 2000]) up and 

orthometric heights (e.g., NAVD88 [Zilkowski et al., 1992]). Orthometric heights are 

intimately related to the Earth’s gravity field. The orthometric height of a point is the 

distance along the (slightly curved) plumbline between a point of interest and the geoid, 

the equipotential surface that approximates mean sea level [Heiskanen and Mortiz, 1967, 

chapter 4]. These are the heights used on maps and in engineering practice, while 

geodetic heights, which are easily determined by satellite systems such as the GPS, are 

used as an intermediate quantity. The realization of an orthometric height system within 

a country consists of national benchmarks with orthometric heights determined through 

a series of precise leveling and gravity observations. As a result, precise orthometric 

heights have to be evaluated at benchmark points located irregularly along leveling lines, 

rather than, e.g., on a regular grid. 

Mathematically, the orthometric height HO(xP) at a point P with three-dimensional 

coordinates indicated by coordinate triplet xP is given by [Heiskanen and Moritz, 1967, 

eq. (4-21)]: 

 

   
H O (x P ) =

C(x P )
g(x P )

, (3.1) 

 

where C(xP) is the geopotential number at P, and g(xP )  is the mean value of gravity 

along the plumbline from P to the geoid. The geopotential number of the point of 

interest is the difference in gravity potential between the geoid and the point of interest, 

and is computed by geodetic leveling in conjunction with surface gravity observation 
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[Heiskanen and Moritz, 1967, section 4-1]. The mean gravity, , is defined as the 

integral mean of gravity along the plumbline, given by the following formula 

[Heiskanen and Moritz, 1967, Eq. 4-22]: 

 

   
g(x P ) = 1

H O (x P )
g( !x )dz

z=0

H O (xP )

" , (3.2) 

 

where x' is the coordinate triplet of an integration point lying on the plumbline, and dz 

represents a portion of the distance along the plumbline, from the geoid. Although 

values of gravity along the plumbline can be measured directly using borehole 

gravimetry (e.g., Strange [1982]), allowing a more direct determination of the mean 

gravity, this is not a practicable solution in the context of orthometric heights. Therefore, 

the mean gravity is instead calculated based on some model of the Earth’s gravity field 

(e.g., Helmert [1890]; Niethammer [1932]; Allister and Featherstone [2003]). 

Mean gravity may be considered as the sum of effects induced by masses above the 

geoid surface, and those induced by other masses [Tenzer et al., 2005]. Masses above 

the geoid comprise those contained between the geoid and the surface of the Earth, 

known as topographical masses, and the atmospheric masses above the surface of the 

Earth. The contributions of topographical and atmospheric masses to the mean gravity 

may be directly evaluated through Newton integration, based on some models of their 

mass density. The atmospheric effects are very small and can be considered negligible 

g(P)
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[Tenzer et al., 2005], while the topographical effects are significant and will be the focus 

of this paper. 

Non-topographical masses generate the normal (ellipsoid generated) gravity, and the 

deviations from normal gravity called the NT geoid–generated gravity disturbance (cf., 

Vaníček et al. [2004]). The contributions of normal gravity can be evaluated to a high 

precision in a straightforward manner, and much of their effect is already accounted for 

in historical models. As a matter of fact, if we decide to consider the normal gravity 

alone, we would be dealing with mean normal gravity along the normal plumbline. 

Heights defined in such a manner are the normal heights (e.g., Heiskanen and Moritz 

[1967, section 4-4]). The calculations for the geoid–generated gravity disturbance are 

more involved. The curious reader is directed to Tenzer et al. [2005] for further 

discussion of these effects, or to Santos et al. [2006] for discussion of the corresponding 

corrections to orthometric heights. Note that the corrections to orthometric heights 

referred to in Santos et al. [2006], and in this document, are not to be confused with the 

“orthometric correction” that can be applied to levelled height differences to convert 

them into orthometric height differences. 

The model most widely used to calculate mean gravity is attributed to Helmert 

[1890], and is usually formulated as (Heiskanen and Mortiz [1967, eq. (4-24)]): 

 

   g
H (x P ) = g(x P )+ 0.0424H O (x P ) , (3.3) 

 

where the resulting mean gravity value is given in mGal for HO(xP) in metres. 
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In this prescription, that uses the Poincaré-Prey gravity gradient, a linear function of 

height is added to the observed surface gravity to find the mean gravity. Since the value 

of gravity varies by at most several hundred milligals between the Earth’s surface and 

the geoid, the additional term is much smaller than the observed gravity, and the 

observed gravity is a good initial approximation of the mean gravity. Viewed in this 

way, the rightmost term in eq. (3.3) may be considered a first order correction to bring 

the mean gravity estimated by surface gravity nearer to the actual mean gravity value. 

For large heights, using this correction improves accuracy by several metres. In the case 

of Mount Everest, with a height of approximately 8.8 km, adding Helmert’s first order 

correction to mean gravity improves the height determination by about 3.3 m, or about 

0.04% of the total height. Although orthometric height is not yet available when 

applying eq. (3.3), using the leveled height instead introduces an error of at most 1.5 

mm; thus using the leveled height instead of orthometric height in eq. (3.3) is an 

acceptable alternative. 

While the first order correction given in eq. (3.3) accounts for most of the difference 

between mean gravity and surface gravity, it has not proven adequate to meet increasing 

requirements for precise orthometric heights. Consequently, repeated attempts have been 

made since the early 1900’s to improve upon Helmert’s recommendations by adding 

further corrective terms to account for higher than first order gravitational effects 

[Niethammer, 1932; Mader, 1954; Allister and Featherstone, 2001; Hwang and Hsiao, 

2003; Tenzer et al., 2005; Kingdon et al., 2006]. These efforts have mainly dealt with 

improving modelling of topographical effects, whose precise calculation is the topic of 

this paper. We will show how to efficiently and accurately implement the rigorous 
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second order topographical corrections for the terrain and density effects discussed by 

Santos et al. [2006]. Furthermore, to make as practical an evaluation as possible, we will 

show an efficient way to evaluate these corrections at arbitrary points, so that it can be 

applied directly to benchmark heights. 

 

 

3.2 Framework for calculating topographical corrections 

3.2.1 General form of second order corrections to mean gravity 

We have said that the prescription in eq. (3.3) is attributed to Helmert. In its original 

version, it is represented by the following formula (Heiskanen and Mortiz [1967, eq. (4-

26)]): 

 

   
g H (x P ) = g(x P )! 1

2
"#
"h

+ 2$G%0

&
'(

)
*+

H O (x P ) , (3.4) 

 

where γ is the normal gravity, h is the geodetic height; ρ0 is the mean topographical 

density of 2670 kg m–3; and G is Newton’s gravitational constant, equal to 6.67×10–11 

m3 kg–1 s–2. In eq. (3.4), the first order correction to mean gravity has been separated into 

the two bracketed terms. The first bracketed term represents the first order effect of 

normal gravity based on the normal gravity gradient, a non-topographical correction that 

will not be dealt with here. The second term accounts for the first order effect of the 

topographical masses on gravity along the plumbline. The correction is first order in that 
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is considers the linear components of the gravitational effects, and so it corresponds to 

the first order terms in the power series expansions for surface and mean gravity. Thus, 

Helmert’s correction may be seen as a linearized version of the rigorous correction. 

While these first order corrections provide accuracies of a metre or better in most 

circumstances (the correction for an elevation of 1000 m is only 4.3 cm), modern 

applications require centimetre-level accuracy. 

The corrective terms in eq. (3.4), and the higher order corrective terms we will 

discuss, are derived in the same general way. For a given effect E, on gravity at point P, 

gE(xP), with corresponding effect on mean gravity along the plumbline below P, gE (xP )

, the corrective term (to be added to a less accurate approximation of mean gravity) is: 

 

   
cg

E (x P ) = g E (x P )! g E (x P ) . (3.5) 

 

The correction to height corresponding to eq. (3.5) is based on the Taylor series 

expansion for orthometric height, expanded about a less accurate orthometric height. For 

a correction to Helmert orthometric height, the Taylor series is: 

 

    
H O (x P ) = H H (x P )!

H H (x P )
g H (x P )

c
g H
E (x P )+

H H (x P )
[g H (x P )]2 [c

g H
E (x P )]2 !… , (3.6) 
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which leads to the correction to Helmert orthometric height 

 

c
HH
E (xP ) = H

O (xP ) ! H
H (xP ) = !

HH (xP )
g H (xP )

cg
E (xP ) +

HH (xP )
[g H (xP )]

2 [cg
E (xP )]

2 !…  

 ! "
HH (xP )
g H (xP )

cg
E (xP ) . (3.7) 

 

which can be evaluated to an accuracy of up to 6 mm or 0.2% of the total height using 

normal gravity and leveled height instead of mean gravity and orthometric height.  

Three second-order corrections are not included in the topographical part of 

Helmert’s approach. These are the corrections for the second and higher order effects of 

the Bouguer shell, the effect of variations in height of topography relative to the 

Bouguer shell (called terrain), and the effect of density variations relative to the assumed 

constant density of ρ0. The first of these is directly evaluated according to Santos et al. 

[2006, eq. (27)]. The evaluation of the other two will be discussed in the next section. 

 

3.2.2 Evaluation of terrain and topographical density corrections using Newton 

integrals 

In order to evaluate the terrain and topographical density corrections to mean gravity, we 

must determine the effect of the terrain and the mass density variations on both surface 
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gravity and on mean gravity. Both effects can be determined by Newton integration over 

the volumes of topographical mass. For a given effect E induced by volume of mass vE, 

the effect on gravity is given by: 

 

   
g E (x P ) = !G "(x #P )

$N (x P;x #P )
$z

dv
v%vE
&&& , (3.8) 

 

where N(P;P') is the Newton kernel given by (e.g., Martinec [1993, eq. (2.2)]): 

 

N(xP,xP') = L(xP,xP')–1, (3.9) 

 

L is the straight line distance between the computation point xP and the integration point 

xP', ρ(xP') is the density at point P' of the mass inducing E, and dv is the volume element. 

The effect E on mean gravity, based on eq. (3.2), is given by (cf., Tenzer et al. [2005, eq. 

(2)]): 

 

   
g E (x P ) = 1

H O (x P )
g E ( !x )dz

z=0

H O (xP )

" . (3.10) 

 

Considering the relationship between gravitational potential and gravity, eq. (3.10) 

can also be written [Tenzer et al. 2005, eq. (18)]: 
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g E (x P ) =

V E (x P0
)!V E (x P )

H O (x P )
, (3.11) 

 

where VE is the effect of the masses in vE on gravitational potential, and P0 is the point 

on the geoid along the plumbline below P. VE(xP) can be calculated by the volume 

integral: 

 

   
V E (x P ) = G !(x "P )N (x P;x "P )dv

v#vE
$$$ . (3.12) 

 

The application of eq. (3.11) to calculate the effect on mean gravity is unique to the 

UNB approach to rigorous orthometric heights as introduced by Tenzer et al. [2005]. 

Previously, the effects on mean gravity were calculated either as the average of 

gravitational effects at both ends of the plumbline [Mader, 1954], or as the average of 

the gravitational effects at discreet intervals along the plumbline [Niethammer, 1932]. 

Mader and Niethammer originaly employed these methods to calculate terrain effects, 

using eq. (3.8). Because it more closely approximated the integral mean, Niethammer’s 

method is considered more accurate than Mader’s [Dennis and Featherstone, 2003]. The 

method used in eq. (3.11), however is faster and more exact than Niethammer’s method, 

and about as fast and much more accurate than Mader’s [Kingdon et al., 2006]. 

We substitute eqs. (3.8) and (3.10) to (3.12) into eq. (3.5) to write a single expression 

for the correction to mean gravity: 
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cg

E (x P ) = G !(x "P )
N (x P0

;x "P )# N (x P;x "P )

H O (x P )
+
$N (x P;x "P )

$z
%

&
'
'

(

)
*
*

dv
v+vE
,,, . (3.13) 

 

We may further directly evaluate the correction to height by substituting eq. (3.13) into 

eq. (3.7), providing the general formula for a correction to height for any effect E: 

 

   
cH

E (x P ) = G
g(x P )

!(x "P ) N (x P;x "P )# N (x P0
;x "P )# H O (x P )

$N (x P;x "P )
$z

%

&
'

(

)
*dv

v+vE
,,, . (3.14) 

 

 

3.2.3 Application for terrain and density effects 

We will evaluate the integral in eq. (3.14) using the spherical approximation of the 

geocentric geodetic coordinate system [Moritz, 1980, p. 349]. Horizontal positions in 

this system are indicated by the direction Ω consisting of geodetic latitude, ϕ, and 

longitude, λ; however, the eccentricity of the ellipsoid is removed so that these are 

treated as spherical coordinates for distance calculations [Vajda et al., 2004]. We have 

deviated from the usual spherical approximation in which the major semi-axis of the 

ellipsoid is replaced by the mean radius of the ellipsoid. Instead, following Tenzer et al. 

[2005] and Santos et al. [2006], we have replaced the geocentric radius of the geoid at 

every point with the mean radius of the ellipsoid, which for the GRS-80 ellipsoid, is R = 

6371008.7714 m. Since the major semi-axis of the GRS-80 ellipsoid deviates from the 

mean radius by about 7 km, and the geoid only deviates from the ellipsoid by up to a few 
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hundred metres [Vaníček and Krakiwsky, 1986, chapter 7], this implementation is 

admissible. The error in the topographical corrections induced by using this form of the 

spherical approximation is expected to be less than 1 mm [Santos et al., 2006]. Under 

the spherical approximation, the distance between two points is given by: 

 

   L(x P;x !P ) = (r 2 + !r 2 " 2r !r cos# [$, !$ ])1/2 , (3.15) 

 

where r = R + HO(P), r' = R + HO(P'), Ω and Ω' represent the horizontal positions of P 

and P', and ψ[Ω,Ω'] is the spherical geocentric angle between P and P', given by (e.g. 

Heiskanen and Moritz [1967, eq. 1-72]): 

 

cosψ[Ω,Ω'] = cosϕ cosϕ' + sinϕ sinϕ' cos(λ – λ'). (3.16) 

 

We first apply the general formula in eq. (3.14) for the case of the terrain correction, 

which we will indicate by the superscript T. The shaded region in Figure 3.1 indicates 

the mass deficiencies and excesses with respect to the Bouguer shell that cause the 

terrain effect. 
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Figure 3.1: Masses causing the terrain effect on gravity. 

 

The density of the terrain is considered equal to ρ0, the density assigned to the 

Bouguer shell. Equation (3.14) applied for the terrain correction, using spherical 

coordinates, is given by (cf., Santos et al. [2006, eqs. (43), (51) and (52)]): 

 

  cH
T (r,!) =  

 
  
=

G!0

g(r,")
K(r,"; #r , #" ) #r 2 d #r sin($ )d #$ d #%

#r =R

#r =R+H O ( Pt [ #" ])

&
#$ ='( 2

(
2

&
#% =0

2(

& , (3.17) 

 

where Pt(Ω) is the point where the direction Ω intersects the topographical surface, 

Pt(Ω') is the corresponding point for Ω', and K(r, Ω ;r', Ω') is the integration kernel from 

eq. (3.13), written in spherical coordinates: 
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K(r,!; "r , "! ) = N (r,!; "r , "! )# N (R,!; "r , "! )# H O (r,!) $N (r,!; "r , "! )

$r
. (3.18) 

 

The density effect integral is over the variations in topographical density relative to 

ρ0. Because high-resolution knowledge of three dimensional topographical density 

variations is extremely limited except in specific areas [Kuhn, 2003; Kingdon et al., 

2009], a simplified model of topographical density consisting of only horizontal density 

variations is adopted. Realization of such a model, with a suitable accuracy, is more 

achievable than that of a three-dimensional model. Furthermore, influence of the third 

dimension of density variations ignored in the two-dimensional model is expected to be 

at most several centimetres, and usually significantly less than that [Kingdon et al., 

2006], so it may be considered a third order effect. The anomalous two dimensional 

(horizontally-varying) mass density model that causes the density effect, is shown in 

Figure 3.2. 
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Figure 3.2: Masses inducing the density effect on gravity modeled as horizontally 

varying only. 
 

 

Under this model, the anomalous density at the horizontal coordinate Ω is given by: 

 

δρ(Ω) = ρ(Ω) – ρ0. (3.19) 

 

The effects of the density variations will be indicated by the superscript D. Applying 

the density model given by eq. (3.19) in eq. (3.14), and integrating over all anomalous 

topographical density yields (cf., Santos et al. [2006, eqs. (53) to (55)]): 

 

  cH
D (r,!) =  

 
  
= G

g(r,!)
"#( $! ) K(r,!; $r , $! ) $r 2 d $r sin(% )d $% d $&

$r =R

$r =R+H O ( Pt [ $! ])

'
$% =() 2

)
2

'
$& =0

2)

' . (3.20) 
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Because of limitations on density data coverage, the integral in eq. (3.20) cannot be 

evaluated over the whole globe and is only carried out over a spherical cap of limited 

extent, represented here by Ω0. For some circumstances, or if the highest accuracy is not 

required, the same limitation may be applied to the integration region of the terrain 

effect. 

 

3.3 Approach to numerical integration 

3.3.1 Reduction of integral dimensionality 

Much has been written on evaluating gravitational effects of rock masses, usually by 

division of those masses into cells whose individual effects can be calculated 

analytically and then summed (e.g., Talwani and Ewing [1960]; Smith [2000]; Tsoulis et 

al. [2003]). Most of these methods are awkward to apply in our situation, because they 

do not use spherical approximations of topography and are usually designed with local 

integration in mind. Also, while very accurate, they are time consuming to compute. 

We need a method that will work for global integration in the spherical 

approximation, and we do not require high accuracy since we are calculating second 

order corrections. Two methods are especially suitable for our situation: a method used 

by Martinec [1993] that performs analytical integration in the vertical direction prior to 

using standard two dimensional integration techniques for the horizontal integration; and 

one described by e.g., Heck [2007], who uses analytical integration over tesseroids (a 

spherical analog to prisms, described by Anderson [1976]). The former method requires 
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less computation time than the tesseroid method, for only slightly less accuracy, and is 

our method of choice. 

Martinec [1993] provides exact formulas for the analytical integral with respect to r' 

of the Newton kernel and its vertical derivative. We apply his results here to reduce the 

dimensionality of our integrals to two. For the “vertical” integral of the Newton kernel, 

we have written Martinec’s result as the integral between two surfaces a and b, defined 

by radii ra(Ω') and rb(Ω') (cf., Martinec [1993, eq. (2.20)], citing a more general form 

from Gradshteyn and Ryzhik [1980, paragraphs 2.261 and 2.264]),: 

 

!N(r,!;ra, rb, "! ) = N(r,!; "r , "! ) "r 2 d "r
"r =ra ( "! )

rb ( "! )

# = (rb + 3rcos! )L(r,!;rb, "! )
2

$  

 
! (ra + 3rcos! )L(r,";ra, #" )

2
+

 

 
+ r

2 (3cos2! !1)
2

ln rb ! rcos! + L(r,";rb, #" )
ra ! rcos! + L(r,";ra, #" )

. (3.21) 

 

For the integral of the radial derivative of the Newton kernel, he gives [1993, eq. (2.22)]: 

 

! !N(r,";ra, rb, #" )
!r

= !N(r,"; #r , #" )
!r

#r 2 d #r
#r =ra ( #" )

rb ( #" )

$ = (rb
2 + 3r2 )cos! + rbr(1% 6cos

2! )
L(r,";rb, #" )

%  

 
! (ra

2 + 3r2 )cos! + rar(1! 6cos
2! )

L(r,";ra, #" )
+  
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+r(3cos2! !1)ln rb ! rcos! + L(r,";rb, #" )

ra ! rcos! + L(r,";ra, #" )
. (3.22) 

 

Based on eqs. (3.21) and (3.22), we can write the radial integral of the integration 

kernel in eq. (3.18): 

 

!K(r,!;ra, rb, "! ) = K(r,!; "r , "! ) "r 2 d "r
"r =ra ( "! )

rb ( "! )

# =
 

 

!N(r,!;ra, rb, "! )# !N(R,!;ra, rb, "! )#HO (r,!) $
!N(r,!;ra, rb, "! )

$r
. (3.23) 

 

Considering that eq. (3.23) will be evaluated using height data on a two-dimensional 

grid, it is not convenient to reduce the dimensionality of the integration any further than 

we have above. Reduction to one dimensional integrals has been used for topographical 

effects in the past [Jiang and Duquenne, 1997; Hwang and Hsiao, 2003], but it has been 

applied with an integration kernel in planar form, or as a locally symmetrical 

approximation of the spherical kernel, whereas we are interested in an integration with a 

spherical kernel and beyond the region where a planar approximation is appropriate. 

According to eq. (3.23), for each effect we calculate we must evaluate eq. (3.21) 

twice and eq. (3.22) once for each integration point. Even considering only a global 

integration with cells spaced 1º apart, this entails 64,800 kernel evaluations for each 

computation point. Since our cells will be spaced more closely than 1º, the number of 

evaluations will be significantly higher. Equations (3.21) and (3.22) can be evaluated in 
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a more compact way, as described in Appendix I, which we have followed in our 

numerical evaluations. 

Equation (3.23) contains a weak (removable) singularity, occurring when ψ → 0 

(i.e., when Ω' → Ω) and when either ra = r or rb = r [Martinec, 1993]. The singularity is 

easily resolved in the case of the terrain correction, using the same methods employed 

by Martinec [1993] and others in geoid determinations, but the removal for the density 

effect is more involved. Our treatment of the singularity is described in Appendix II, and 

results in treating the central cell contributions for both effects separately from the rest 

of the numerical integration. 

 

3.3.2 Approach to numerical integration 

We are constrained in our numerical integration to evaluate integrands on the regular 

grid where digital elevation model heights are given, preventing us from using Monte 

Carlo or adaptive mesh methods. Because our digital elevation model (DEM) and digital 

density model (DDM) data refer to cell centers, the values of the integrand are not 

known at the boundaries of our integration domain, and an open Newton-Cotes formula 

is required. The Newton-Cotes formulas prescribe ways of representing the integrand 

between sampling points in numerical integration, and are well explained in Press et al. 

[2007] and many other textbooks dealing with numerical integration. In our case, our 

data spacing confines us to a specific Newton-Cotes formula called the extended 

midpoint rule [Press et al., 2007, section 4.1], which is analogous to the Riemann 

concept of the integral, and allows us to sample the integrand at cell centers. Since we 
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have removed the singularities in eq. (3.23) from the domain of numerical integration, 

we need not worry about the mesh selection for the Newton-Cotes formulas. The error 

that might be incurred by using the extended midpoint rule, which is a very simple 

approximation of the behavior of the integrand, is minimized by using mean heights and 

average rock densities in our evaluation, since these both represent relatively smoothly 

varying fields.  

The extended midpoint rule for a two-dimensional integral in a grid of N by N points, 

written for our particular kernel function, is (cf., Press et al. [2007, eq. (4.1.19)]): 

 

f ( !" )d !"
!" #"
$$ = f ("ij )%"ij

j=0

n&1

'
i=0

n&1

' +O 1
n2

(
)*

+
,-

, (3.24) 

 

where f(Ωij) is the value of the integrand at the ith latitude, ϕi, and jth longitude, λj, in 

the grid; and ΔΩij is the area of the cell centered at this point. In geocentric spherical 

coordinates ΔΩij = cos(ϕi)ΔϕΔλ. For the terrain correction: 

 

f (!ij ) = !K(r,!;R + HO (Pt[!]),R + HO (Pt[ "! ]), "! ) , (3.25) 

 

and for the density correction: 

 

f (!ij ) = !"( "! ) !K(r,!;R + HO (Pt[!]),R + HO (Pt[ "! ]), "! ) . (3.26) 
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The error in eq. (3.23) could be improved upon using techniques such as Romberg 

integration [Press et al., 2007], but the accuracy improvement is unnecessary and so the 

additional computational expense is unwarranted. 

While values of the integrand must be sampled on a regular grid following the format 

of our DEM data, we can use horizontal averaging of DEM heights to reduce the 

resolution of this grid far from the computation point and improve the speed of our 

computation. A more substantial problem occurs near to the computation point, where 

the integration kernel must be sampled at a higher resolution than the DEM points allow. 

In this case, we interpolate the DEM as necessary to evaluate the integrands at a suitable 

spacing. 

In the subsequent computations, we will use a DEM containing 3” mean heights 

given by version 2 of the NASA Shuttle Radar Topography Mission (SRTM) 

topographical data [Farr et al., 2007]. To provide for higher resolution near to the 

computation point and lower resolution far from it, we divide the integration region into 

5 integration zones, as shown in Figure 3.3.  
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Figure 3.3: Arrangement of integration zones about a computation point. 

 

In the inner zone, we use the 3” DEM heights directly, and we use interpolated 

heights in the innermost zone. In the middle zone, a 30” spacing is used, with heights 

determined by averaging the 3” DEM over each 30” cell. Beyond that is the outer zone, 

where a similar averaging process provides heights sampled at 300”. Integration over the 

rest of the globe is carried out using 30’ heights taken from NASA’s global JGP95E 

height model [Lemoine et al., 1998], since the SRTM data set does not cover the whole 

globe. The 30”, 300” and 30’ DEMs are created before the calculation of the height 

corrections, and stored as data files to be read when needed. Boundaries of integration 

zones and the spacing of points in the innermost zone are chosen such that the 

calculation can be performed as quickly as possible with no significant loss of accuracy. 
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These parameters are determined empirically, as described in Section 3.4, and are 

expected to be less stringent for the density effect than for the terrain effect since the 

relatively small masses of anomalous density are expected to have less overall effect 

than the terrain masses. Also, in some circumstances the global integration may not be 

applied even for the terrain effect, although the spacing of integration points in the 

global zone is so sparse that omitting it makes little difference to computational 

efficiency. 

For evaluating density effects, we use a Canadian digital density model (DDM) 

created by digitizing geological maps (e.g., Kingdon et al. [2005]; cf. the work of Huang 

et al. [2001] in geoid determination) that models horizontal rock densities. Our DDM 

has a 30” resolution, with cell centers corresponding to the 30” DEM, and covers all of 

Canada and the northern part of the United States. For integration in the innermost and 

inner zones the density data is interpolated, and it is averaged for integration in the outer 

zone. 

Since the DDM is not global, we cannot integrate over the whole globe when 

calculating the density effect. Fortunately, the density variations distant from the 

computation point are similar in effect to homogeneous masses of mean crustal density, 

and the anomalous density effect of distant masses tends toward zero. Because of this we 

are able to capture the density effect sufficiently by integrating over a relatively small 

cap. The method of determining what size of integration cap is necessary to adequately 

capture the density effect is described in Section 3.4. 

Apart from the outer zone cap used for evaluating density effects, the integration 

zones in Figure 3.3 extend beyond the indicated integration radii. To ensure seamless 
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transitions between the 5 integration zones, the zone boundaries for each zone are 

defined so they correspond with cell boundaries, given by straight line segments, of the 

outlying zone. Thus, they usually extend beyond the defined zone radius. This is 

especially the case since the computation points are not defined on a grid, as they might 

be for, e.g., geoid calculations. Leveling benchmarks, where orthometric height 

corrections are required, are not expected to correspond with cell boundaries. 

Where DEM interpolation is necessary, we use bilinear interpolation. The 

interpolation need not be very rigorous since the requirement for higher resolution 

heights in the innermost zone is only such that the Newton kernel can be sampled at a 

sufficient horizontal resolution. Also, we are using mean heights which vary more 

smoothly than point heights. For interpolation of the density model, we use an inverse 

distance squared interpolation, since the density values are not expected to vary linearly 

between DDM points. 

 

3.3.3 Computation overview 

Because we need results at leveling points rather than over a grid, the calculation is 

performed for one computation point at a time. First, an ASCII file containing point 

name, latitude, longitude and height (Helmert or levelled) for each computation point is 

read to determine the spatial extent of the points. Next, data sufficient to cover the 

computation area is loaded from the 30’, 300”, 30” DEMs, as well as the 30” DDM. 

Even for large leveling campaigns data at these resolutions consume little memory, so 

they can be held in RAM for the duration of the computation. 
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Once the lower resolution DEM files are loaded, the algorithm runs through the file 

of leveling points, in each case reading the record for a computation point, loading the 

required 3” DEM data, performing the numerical integration to determine the terrain and 

density corrections, and appending the result to an output file. An overview of the 

process is given in the flow chart in Figure 3.4. 

 

 
Figure 3.4: Flow chart of computation. 
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The required 3” DEM files, each by default covering a 1º × 1º area, are read 

separately for each point, first because storing such high resolution data over the whole 

extent of a leveling network might consume a great deal of RAM, and second because, 

especially with conventional (not solid state) hard disks, reading data covering the whole 

area from disk would significantly increase running time. 

The numerical integration is performed in 5 separate loops, one for each integration 

zone, the density effect being omitted from the global integration loop and only 

evaluated for points within a spherical cap in the outer zone integration loop. When the 

calculation for a computation point finishes, the point name, latitude, longitude, terrain 

correction and density correction are written to an output file. 

 

 

3.4 Results 

3.4.1 Testing integration zone parameters using a “tower” scenario 

We now determine the zone boundaries and innermost zone resolution necessary to 

accurately evaluate the topographical corrections to Helmert heights. To do this, we use 

an artificial “tower” scenario, in which the computation point is 9000 m high, while all 

other topography is at sea level. The terrain correction in this scenario is equal to the 

correction induced by a spherical Bouguer shell (cf., Vaníček et al. [2001]). By 

performing the integration in a tower scenario numerically, and comparing it to the exact 

result, we can estimate the error in our numerical evaluation of the terrain correction for 

any set of zone radii and innermost zone spacing. 
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Since the density of the masses causing the terrain correction is over 3 times larger 

than the largest anomalous densities (~–800 kg/m3 for unconsolidated sediments, which 

have densities of ~1900 kg/m3, e.g., Parasnis [1997]), we expect that any kernel 

sampling providing suitable accuracy for the terrain correction will also provide suitable 

accuracy for the density correction.  

We begin determining zone parameters by setting larger initial zone sizes and finer 

innermost zone resolution than we expect are necessary. The initial zone resolutions and 

initial radii and are shown in Table 3.1. 

 

Table 3.1: Integration parameters before refinement. 
Zone Resolution Initial Radius 

innermost 0.03 arc-seconds 30 arc-seconds 
inner 3 arc-seconds 30 arc-minutes 

middle 30 arc-seconds 2º 
outer 5 arc-minutes 6º 
global 30 arc-minutes 180º 

 
 

Applying these parameters in the tower scenario, with the computation point height 

set to 8800 m and all DEM heights set to zero, reveals a difference of only 8.5 mm, or 

0.096%, between the numerical integration result and the exact result. This is very 

reasonable, considering the extreme scenario we are simulating. 

We next begin increasing the spacing in the innermost integration zone, until the 

numerical result changes by 0.5 mm. After that, we reduce each zone radius, one at a 

time, ensuring that the result does not change by more than 0.5 mm. Thus, we seek 

integration parameters that will provide an accuracy within 2.5 mm of the initial result. 
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By following this procedure, we have determined the new integration limits and 

resolutions shown in Table 3.2. 

 

Table 3.2: Integration parameters sufficient to accurately sample the integration 
kernel for the terrain effect. 

Zone Resolution Final Radius 
innermost 0.12 arc-seconds 6 arc-seconds 

inner 3 arc-seconds 25 arc-minutes 
middle 30 arc-seconds 1º 
outer 5 arc-minutes 3º 
global 30 arc-minutes 180º 

 

Using these parameters, the final accuracy for the tower scenario is 9.3 mm, or 

0.106%, indicating that we have not lost significant accuracy by our choice of 

integration parameters. In real world cases, which are not as extreme as this simulation, 

it is likely possible to decrease the zone radii to retain accuracy while improving 

efficiency; i.e., the presented parameters are erring on the side of caution. We have not 

investigated the possibility of using smaller zone radii here. 

 

3.4.2 Canadian test area 

For the next stage in our evaluation, we will be using a test area in the Canadian 

Rockies, from 50º to 51º north latitude, and 237º to 238º east longitude. The heights in 

this area range from 194 m to 2875 m, and are shown in Figure 3.5a. The rock densities 

range from 2490 kg/m3 to 2980 kg/m3, which is almost the full range of densities within 

the entire DDM. These are shown in Figure 3.5b. 
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(a) 

 
(b) 

Figure 3.5: Heights (a) and rock densities (b) in the test area. Computation point at 
50º43’00’ N and 237º29’30” E indicated by black circle. 
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We will first use this test area to determine a suitable boundary of the outer zone for 

the density correction calculations. The outer zone must be large enough to include all 

density anomalies that may have a significant influence (more than 1mm) on the density 

effect at the computation point. 

We begin by selecting a point in the test area having large elevation and located near 

to significant density contrasts – in this case, we have selected the point at 50º43’00’ N 

and 237º29’30” E, which has a height of 2875 m, the highest in the test area. The point 

is indicated by the dark circles if Figures 3.5a and 3.5b. The density at this point is 2690 

kg/m3, though within a 5 arc-minutes radius there are densities spanning the whole range 

present in the test area. For our computation point, we calculate the density correction 

using outer zone radii from 1º to 30º. Figure 3.6 shows the percent difference in the 

density effect for each choice of outer zone radius. 
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Figure 3.6: Density correction for values of outer zone radius incremented by 1º. 

 

The largest possible topographical correction on Earth is close to 8.83 m (based on 

the Bouguer shell correction for Mount Everest), and the maximum density contrasts are 

about 800 kg/m3, or 30% of the assumed representative density value. Therefore, we 

expect the density correction will never exceed 2.65 m. In this case, a relative error of 

0.05 % in the density correction calculation will result in at most a 1.3 mm error in the 

result. Figure 3.6 shows that even in the most extreme case in our region, an outer zone 

radius of 3º is sufficient to guarantee less than a 0.05% error, and so a 3º radius is 

expected to be suitable for our task. 

The single point computation also gives some indication of the contribution of each 

integration zone to the final terrain and density corrections. The zonal contributions for 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

ch
an

ge
 in

 d
en

si
ty

 c
or

re
ct

io
n 

to
 h

ei
gh

t 
(%

) 

outer zone radius (degrees) 



 

 122 

this case are shown in Table 3.3. The total terrain correction is 30.0 cm, and the total 

density correction is –0.3 cm, a ratio of two orders of magnitude. 

 

Table 3.3: Zonal contributions to the terrain and density effects, for 6” innermost 
zone radius, 25’ inner zone radius, 1º middle zone radius, and 3º outer zone radius. 

zone contribution to terrain correction contribution to density correction 
 cm % cm % 

innermost –1.06 3.46 0.05 –18.07 
inner –27.81 90.50 –0.27 98.50 

middle –1.00 3.26 0.01 –2.28 
outer –0.57 1.86 –0.06 21.81 
global –0.28 0.91 n/a n/a 

 
 

The overall density correction is very small because of the placement of the computation 

point on the boundary between two anomalous density bodies of opposite sign. We see 

that the inner zone contains by far the greatest contribution to the terrain correction. This 

is because on one hand the innermost zone is small and the Bouguer shell approximation 

is very good near to the computation point; and on the other hand because masses 

outside the inner zone are distant enough that their effects are small. The largest 

contributions to the density correction are also in the inner zone, again because the 

innermost zone is relatively small, but also because the innermost zone is dominated by 

two contrasting density anomalies whose effects somewhat cancel each other. Even so, 

the contribution of the innermost zone is proportionally larger than that for the terrain 

correction, since these anomalies do not cancel each other completely. The variations in 

zonal contributions for the density correction depend heavily on the size of density 



 

 123 

anomalies in each zone, and whether these anomalies are such that this kind of 

cancellation occurs. 

 

3.4.3 Magnitude of the corrective terms 

Having validated our method and determined suitable parameters for the integration 

zones, we now provide results for the terrain and density corrections on a grid over our 

test area. Figure 3.7a shows the terrain correction and 3.7b the density correction 

evaluated at a grid of points, with 30” x 30” spacing, covering our test area. 
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(a) 

 
(b) 

Figure 3.7: Density (a) and terrain (b) corrections to orthometric height. 
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The statistics of the terrain and density correction are given in Table 3.4. 

 

Table 3.4: Statistics of the terrain and density corrections to orthometric height. 
statistic terrain correction 

[cm] 
density correction 

[cm] 
minimum –30.96 –2.63 
maximum 2.90 6.19 

mean –2.77 –0.03 
standard deviation 4.06 1.07 

R.M.S. 4.92 1.07 
range 33.86 8.82 

 
 

In our test area the terrain correction ranges from –2.90 cm to –30.96 cm, and has its 

largest magnitudes in mountainous areas, as we might expect. By contrast, the density 

effect never exceeds 6.2 cm. The density effect is largest at large elevations and in the 

presence of large density anomalies, also as expected. The magnitudes and behaviors of 

the terrain and density corrections are consistent with our preliminary evaluations 

[Santos et al., 2006; Kingdon et al. 2005]. 

 

3.4.4 Improvements in computation time 

Two features improve the speed of our approach relative to other methods of orthometric 

height correction. First, the use of gravity potential, according to eq. (3.10), to calculate 

effects on mean gravity, rather than the Niethammer method. Second, reduction of the 

dimensionality of integration to 2, using eqs. (3.20) and (3.21). Our optimal choice of 
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integration parameters is also important, although it does not distinguish our approach 

from others. 

To examine what improvement these give, we have run the computation for our test 

area excluding each improvement, now using a cell spacing of 1’. This results in 3,721 

evaluation points, more than we would expect in a leveling network. For comparisons 

with the Niethammer method and with numerical integration in the radial direction, we 

use a discretization step of 250m, which allows comparable accuracy to the exact results. 

Also, to show what effect the choice of optimal integration parameters has, we run the 

computation with both the initial and final set of integration parameters. The 

computation time for each segment of the program under these variations is shown in 

Table 3.5. 

 

Table 3.5: Computation time with and without various modifications. 
method total time 

[mm:ss] 
all improvements 33:32 

Niethammer instead of gravity potential 105:59 
3D instead of 2D numerical integration 53:24 

initial rather than final integration parameters 138:26 
 
 

All of these computations were run on a 2.3 GHz quad core Intel i7 processor with 8 

GB of 1333 MHz RAM, and with a solid state hard disk that makes the file loading 

times as quick as possible. The computation speed could be improved further by parallel 

processing. Also, note that with a conventional hard disk, the time required for file 

loading might be significantly higher. 
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The results show that for a realistic number of evaluation points (~3700), the terrain 

and density corrections can be evaluated accurately by most methods in less than 1 hour. 

Only the Niethammer method takes longer than this. Thus, the use of effects on potential 

to evaluate mean gravity effects is the most significant improvement in our approach. 

Reduction of the dimensionality of the integral to 2 also has a significant effect on the 

computation time. Like the Niethammer method, radial numerical integration requires 

several kernel evaluations for each computation point. However, it consumes less time 

than the Niethammer method, since the kernels being evaluated are more simple. 

Using the Niethammer method requires 116% more computation time, and using 

numerical integration in the radial direction requires 59% more time. If we run the 

computation using our intial set of parameters, it requires 213% more time, indicating 

the importance of properly choosing these parameters, and the benefit of dividing the 

integration area into multiple zones. 

 

3.5 Conclusions 

Effects on mean gravity may be efficiently calculated based on the difference in effects 

on gravity potential at both ends of the plumbline, according to eq. (3.10). Using the 

traditional Niethammer method with 250 m spacing, sufficient to achieve similar 

accuracy to our method, requires 116% more computation time than using effects on 

gravity potential. The calculation is further accelerated by reducing the dimensionality 

of the volume integration to 2, and using the radial integrals of the relevant kernels 

supplied by Martinec [1993] in eqs. (3.20) and (3.21), without which the computation 
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would require 59% more time. With these two improvements, the computation for over 

3,500 input points may be completed in well under an hour, a reasonable computation 

time for any practical applications. 

By our choice of integration zone parameters, we were able to achieve a numerical 

integration accuracy of 0.113% determined using a tower scenario. To achieve this 

accuracy, we used 30’ data for global integration, 300” data within 3º of the computation 

point, 30” data within 1º of the computation point, 3” data within 25’ of the computation 

point, and 0.12” data within 6” of the computation point. There parameters were 

determined by starting with zone sizes somewhat larger, and resolutions somewhat 

higher than required, and then progressively reducing these while ensuring that the error 

in our tower scenario was increased by less than 5 mm. Using our inital testing 

parameters would have required 213% more computation time, illustrating the 

importance choice of these parameters in computation efficiency. During our testing, we 

found that with the final choice of integration parameters, the inner zone, containing 3” 

data, contributes 91% of the magnitude of the terrain effect for a rigorous sample point, 

and 99% to the density effect. 

To demonstrate our method, we generated results over an area in the Canadian 

Rocky Mountains spanning from 50º to 51º latitude and 237º to 238º longitude, with 

heights up to 2875 m and density anomalies from –180 kg/m3 to 310 kg/m3. In this 

region, the topographical correction ranged from –31.0 cm to 2.9 cm, with a mean value 

of –2.77 cm. The largest values coincided with the highest computation points, which 

should be expected. The density correction ranged from –2.6 cm to 6.2 cm, with a mean 
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value of 0.0 cm. The signs corresponded with the signs of the density anomalies, and 

magnitudes were determined mainly by topographical heights. 
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Chapter 3 Appendix I: Simplified integration kernels 

To evaluate eq. (3.23) in an efficient manner, we calculate the following eight values 

for each integration point: 

 

(p1)a
r = ra ( !" ) / r , (3.A1) 

(p2 )b
r = rb( !" ) / r , (3.A2) 

(p3)a
r = 1+ (p1)a

r [(p1)a
r ! 2(p5 )] , (3.A3) 

(p4 )b
r = 1+ (p2 )b

r [(p2 )b
r ! 2(p5 )] , (3.A4) 

(p5 ) = cos(! [!, "! ]) , (3.A5) 

(p6 ) = 3(p5 ) , (3.A6) 

(p7 ) = (p5 )(p6 )!1 , (3.A7) 

(p8 )a,b
r = ln (p2 )b

r ! (p5 )+ (p4 )b
r

(p1)a
r ! (p5 )+ (p3)a

r . (3.A8) 
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Substituting these into eq. (3.22) yields: 
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r + (p6 )]+ (p7 )(p8 )a,b
r ]#  

 !0.5R2[(p4 )b
R[(p2 )b

R + (p6 )]! (p3)a
R[(p1)a

R + (p6 )]+ (p7 )(p8 )a,b
R ]+  

 
(r ! R)r (p5 )[3+ (p2 )b

r [(p2 )b
r ! 6(p5 )]]+ (p2 )b

r

(p4 )b
r !

"

#
$

 

 
! (p5 )[3+ (p1)a

r [(p1)a
r ! 6(p5 )]]+ (p1)a

r

(p3)a
r + (p7 )(p8 )a,b

r "

#
$ . (3.A9) 

 

Notice that the first and third term on the right hand side of eq. (3.A9) both have the 

same values for p1 to p8. Thus, these only need to be computed once and used to evaluate 

both terms. Also, p5 to p7 only need to be calculated once per integration point. 

In the case of the terrain correction, ra = R+HO(Pt[Ω]) and rb = R+HO(Pt[Ω']). In the 

case of the density correction, ra = R, and rb is the same as for the terrain correction. 

Because both corrections share the same value for rb, it is beneficial to evaluate the 

terrain and density corrections simultaneously, so that (p2), (p4), and the terms in Eq. 

(A9) involving these parameters need only be calculated once for both corrections. 

If we use eqs. (3.21) to (3.23) to evaluate the terrain and density corrections, for each 

integration point we must evaluate 144 multiplications, 22 divisions, 12 square roots and 

6 logarithms. Using eqs. (3.A8) and (3.A9), we evaluate only 52 multiplications, 14 

divisions, 6 square roots, and 4 logarithms. 

 



 

 136 

Chapter 3 Appendix II: Removal of Newton kernel singularities 

The kernel in eq. (3.25) is plotted in Figure A1 for r = R + Hmax, ra = R and rb = r, 

and Hmax = 8,800 m. The plot shows kernel value with respect to ψ, the solid spherical 

angle between the computation and integration points. 

 

 
Figure 3.A1: Radially integrated integration kernel with respect to distance from 

the computation point, for r = R + Hmax, ra = R and rb = r, and Hmax = 8,800 m. Note 
the logarithmic vertical axis. 

 
 

The value of the kernel decreases rapidly near to the computation point, but more 

gradually as distance from the computation point increases. It is symmetrical for 

constant height, and increases rapidly to a singularity at the computation point. 

The singularity is a weak singularity [Martinec, 1993], occurring when ψ → 0 (i.e., 

when Ω' → Ω) and when either ra = r or rb = r. The singularity is easily avoided in the 

evaluation of the terrain correction, since the height of terrain equals to 0 at the point Ω' 

= Ω. Thus the contribution of the point Ω' = Ω to the terrain correction is equal to zero 

and the point may simply be omitted from the integration domain [Martinec, 1993]. The 
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treatment for the density correction is more complicated, since the contribution at Ω' = 

Ω is not equal to zero. 

For the density correction, numerical integration is performed in the usual way over 

most of the integration region, excluding the cell containing the computation point, 

where the singularity occurs. Over the central cell, the integration is performed 

analytically. Since the Newton kernel and its derivative are only weakly singular, their 

surface integral is bounded [Martinec, 1993, eq. (2.10)], and thus the integral of our 

kernel over the central cell is also bounded. However, attempting to integrate the 

Newton kernel in spherical coordinates over a tesseroidal region (such as our central 

cell) requires evaluation of elliptic integrals. Although approximate methods exist to 

solve these integrals, they are inaccurate near to the computation point [Heck, 2007]. To 

overcome this problem, we reformulate the kernel using planar coordinates, meaning 

that in the neighbourhood of the point of singularity we calculate distances according to 

the planar formula: 

 

Lp(P; !P ) = ([R! ]2 + H 2 )1/2 = ([x " !x ]2 + [y " !y ]2 + H 2 )1/2 , (3.A10) 

 

where the superscript p indicates a quantity in the Cartesian coordinate system, P = 

<x,y,z>, x = Rλcos(ϕ), y = Rϕ, z = HO(P), x' = Rλ'cos(ϕ'), y' = Rϕ', and z' = HO(P').  
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Based on eq. (3.A10), we can formulate our kernel from eq. (3.18) in planar coordinates, 

which evaluates to: 

 

K p(P; !P ) = 1
[R! ]2 + [HO (P)"HO ( !P )]2

" 1
[R! ]2 + [HO ( !P )]2

"
 

 
! [HO (P)]2

[R! ]2 + [HO (P)!HO ( "P )]2( )32
. (3.A11) 

 

Integrating over a prismoidal region corresponding closely to the central cell yields the 

central cell contribution: 

 

CH
D (x, y, z = HO[P]) = G!"(!)

g
(HO[P])2 K p(P, "P )d "x d "y d "z

"x =xw

xe

#
"y =ys

yn

#
"z =0

HO (P )

# , (3.A12) 

 

where xw and xe are the western and eastern boundaries of the central cell, and ys and yn 

are the southern and northern boundaries. 

 

 

 

 

 

 



 

 139 

The prismoidal region of integration shown in eq. (3.A12) does not correspond 

exactly to the tesseroidal shape of the central cell in spherical coordinates, but 

considering the small size of the central cell (at most about 100m wide), we consider this 

a reasonable approximation. The analytical integrals of the Newton kernel and its radial 

derivative have been calculated exactly by Nagy [2000, eq. (8)], and can be used to 

evaluate eq. (3.A12). After evaluating the vertical component of the integral, the result 

is: 

 

CH
D (x, y, z = HO[P]) = G

g
( !x " x)( !y " y)ln Lp(P0, !P )2

[Lp(P, !P )"H ][Lp(P, !P )+ H ]
#
$%

&
'(
"  

 !HO (P) ( "y ! y)ln "x ! x + LP[P0; "P ]
"x ! x + LP[P; "P ]

#
$%

&
'(
+ ( "x ! x)ln "y ! y + LP[P0; "P ]

"y ! y + LP[P; "P ]
#
$%

&
'(

)

*
+ +

 

 
+HO[P]arctan [ !x " x][ !y " y]

HO[P]LP[P; !P ]
#
$%

&
'(
)

*
+
y=ys

yn

x=xw

xe

. (3.A13) 

 

The values of xw, xe, ys and yn will vary with each computation point, and since the 

computation points are not spaced at even grid intervals they will not be placed 

symmetrically around the computation point. By evaluating the central cell contribution 

to the density correction using eq. (3.A13), we avoid the kernel singularity. 
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Chapter 4: Modeling topographical density for geoid 

determination 

 

This article was published in the Canadian Journal of Earth Sciences, a journal of the 

National Research Council Research Press, in a 2009 special issue on Geodesy. I did the 

mathematical developments, background research, software development and 

computations, and wrote the full text of the article. My coauthors provided guidance in 

the computation process, and in revising the manuscript for submission. The full citation 

for the article is: 

 

Kingdon, R., P. Vaníček, and M. Santos (2009). “Modeling topographical density for 
geoid determination.” Canadian Journal of Earth Sciences, Vol. 46, No. 8, pp. 571–
585, doi: 10.1139/E09-018. 

 
 

Note: The title of the article, “Modeling topographical density for geoid determination”, 

may mislead readers to believe we have created a model of an actual topographical 

density distribution. While we have done so in a very limited way (for Lake Superior), 

the intent is really to introduce a new type of topodensity model (three dimensional), and 

compare it to the most accurate current model type (two dimensional), in terms of geoid 

determination accuracy. 
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Also, in the introduction to the article, section 4.1 of the current document, Vaníček 

et al. [1999] is cited as an example of geoid determination that uses topographical 

density models. This is the incorrect citation; the citation should be Huang et al. [2001].  

 

 

Chapter 4 Abstract 

In geoid computation, effects of real three-dimensional topographic masses on the 

Earth’s gravity field must be accurately quantified and, in the Stokes–Helmert scheme, 

replaced with effects of those masses condensed on the geoid. The most comprehensive 

modern schemes for evaluation of topographical effects account for terrain effects, use a 

spherical model of topography, and incorporate two-dimensionally varying models of 

topographical mass density. In this contribution, we employ a three-dimensionally 

varying model of topographical density. We use Newton’s integration to determine the 

direct topographical effect (DTE) on gravity and primary indirect topographical effect 

(PITE) on gravity potential. Lastly, we apply Stokes’s integration to calculate the DTE, 

PITE, and secondary indirect topographical effect (SITE) on geoidal height. We focus 

here on validation of our results and demonstration of our software’s capabilities. We 

present results for the simple geometrical shape of a disc under various rotations and for 

the anomalous density of lake waters. Effects on geoidal height for these simulations 

reach centimetre level, up to 2.2 cm in magnitude. For a simulation of the effects of 

neglected mass anomalies of the lakes, we find results reaching 0.8 cm in magnitude. 

We examine the behavior of our results as calculated using various step sizes for 
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numerical integration and by comparing numerical results with analytical results for the 

specific case of a disc. These results show that the maximum percent error of our results 

is about 23.5% for the DTE on gravity and 7.6% for the PITE on gravity potential. 

 

4.1 Introduction 

The geoid, an equipotential surface approximating mean sea level, is a common 

reference surface for height systems. It is given by its vertical separation from a 

reference geocentric biaxial ellipsoid that best fits to the figure of the Earth, such as the 

GRS-80 ellipsoid [Moritz, 1984]. This separation can be determined by gravimetric, 

geometric, or other means; here, we discuss one specific gravimetric approach: the 

Stokes–Helmert technique (e.g., Vaníček and Martinec [1994]). This method applies the 

theorem of Stokes [1849] for estimation of the geoid based on gravity observations at 

the geoid level but assumes no masses are present above the geoid, where gravity 

observations are made. To achieve this condition, the Stokes technique is applied after 

replacing the topographical masses (between the geoid and the Earth’s surface) by an 

infinitesimally thin layer of horizontally varying density at or below the geoid surface. 

This method was originally proposed by Helmert [1884]. In the Stokes–Helmert 

technique, this condensation layer is located at the geoid surface, which is known as 

Helmert’s second condensation method. The effect of this change in mass distribution on 

gravity is called a direct topographical effect (DTE). Note that there is also a 

corresponding direct atmospheric effect (DAE), which we do not deal with here. 

Application of the Stokes technique to gravity anomalies that reflect this new mass 



 

 143 

distribution produces a surface that is very close to the geoid and is called the co-geoid. 

A corrective term, which is called the primary indirect topographical effect (PITE), must 

be applied to the co-geoid to get the final geoid. 

Any topographical effect can be calculated by finding the difference between the 

effect of condensed masses and the effect of real masses. Determination of the 

topographical effects thus requires an accurate knowledge of the mass–density 

distribution within topography. The most comprehensive current evaluations of 

topographical effects on the geoidal height account for terrain effects, use a spherical 

(rather than planar) approximation of topography to determine distances, and incorporate 

two-dimensionally (2-D; laterally) varying models of topographical mass–density (e.g., 

Vaníček et al. [1999]). A laterally varying mass–density model is often used to 

approximate the Earth’s real three-dimensional (3-D) density anomalies because it is 

difficult and expensive to determine the distribution of density within topography in a 

given area; and even where information about the distribution is known, it is not precise 

[Martinec 1993; Kuhn 2003]. 

For this investigation, we are interested only in the density structure of topographical 

masses, since effects of any masses deeper than the geoid are already accounted for in 

the Stokes–Helmert geoid solution. We are thus interested in knowledge of the density 

distribution in at most the upper 10 km of the Earth’s crust and normally <1 km. 

Investigations into the structure of the Earth’s crust have been ongoing over the past 

century using various methods [Mooney, 2007]. Seismic reflection among these 

methods is the most relevant active seismic method of locating density interfaces in the 

upper crust, including the topography. Currently, seismic reflection provides horizontal 
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and vertical accuracies as good as 50 m, though interfaces determined to this precision 

are not available globally [Mooney 2007]. Seismic wide-angle reflection and refraction 

are less precise, usually applying forward modeling (e.g., Zelt [1999]) and occasionally 

inverse methods (e.g., Zelt and Smith [1992]) to determine crustal structures. Among the 

passive seismic methods, local seismic tomography allows construction of a 3-D image 

of the upper crust (e.g., Salah and Zhao [2003]), with horizontal resolutions of up to 25 

km and vertical resolutions of several kilometres. Seismic methods are especially 

valuable in conjunction with deep (3–12 km) borehole sampling, which provides in situ 

measurements of seismic velocity and density and can act as a control for density or 

seismic modeling (e.g., Smithson et al. [2000]). Gravity studies (e.g., Tiberi et al. 

[2003]) complement seismic investigations for determination of crustal density 

structures, although they do not provide sufficient accuracy for our methods. Geological 

mapping is a further useful source of information on the near-surface crustal density 

structure [Mooney, 2007]. 

There have been some applications of these techniques to constructing regional and 

global crustal geology models, usually with a focus on the whole crust and even the 

upper mantle (e.g., Mooney et al. [1998]; Bassin et al. [2000]; Pasyanos et al. [2004]). 

These applications consist of a series of geological boundaries between layers having 

different geological characteristics but are usually directed at an understanding of the 

whole crust and below. The earliest global model was the 3SMAC model invented by 

Soller et al. [1982] that provided 2º × 2º cells, giving density and seismic information. 

More recently, the CRUST 2.0 global model has been produced [Bassin et al. 2000], 

which represents crustal structure according to a series of seven layers with thicknesses 
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given in a 2º × 2º grid. Although this model is not specifically a model of topographical 

density, it may be useful for calculation of topographical density effects, since it 

includes layers describing sediment thickness, and sediment represents one of the key 

density anomalies within topography. Kuhn [2003] has outlined a method for 

determining a 3-D density model specifically for geodetic purposes by interpretation of 

results of seismic surveys, borehole data, and geological maps, but such a model has not 

yet been implemented. Instead, for geodetic calculations, a laterally varying model based 

on surface topographical densities derived from geology maps is normally used (e.g., 

Huang et al. [2001]). 

We set aside for the time being the problem of determining exactly the real 

topographical mass–density distribution and, instead, try to estimate the potential loss in 

accuracy of geoidal heights by using a 2-dimensionally varying, rather than 3-

dimensionally varying model of topographical density (hereafter called a 2-D model and 

a 3-D model). Through this investigation, we hoped to determine whether evaluation of 

effects of 3-D density models is worthwhile. We did this by creating hypothetical but 

realistic density distributions and calculating their effects on geoidal height. In these 

calculations, we followed roughly the approach of Martinec [1998], with some 

generalization, where necessary, to determine effects of the topographical density 

accounted for in a 3-D model but unaccounted for in a 2-D model. In terms of the 

Stokes–Helmert scheme, we evaluated the contribution of anomalous density 

unaccounted for in 2-D models on the DTE on gravity and the PITE on gravity potential. 

From these, the corresponding DTE, PITE, and secondary indirect topographical effect 



 

 146 

(SITE) on geoidal height can be determined by applying Stokes’ integration to the 

individual effects (e.g., Heiskanen and Moritz [1967]; Vaníček and Kleusberg [1987]). 

In this contribution, we focus mainly on validating our application of the Newton 

integral for calculating effects of 3-D anomalous density on gravity and gravity 

potential. We limit ourselves to two families of simulations: density distributions 

defined by simple geometrical figures and those defined by a single density contrast. We 

primarily discuss results for the former application, only demonstrating our capacity to 

generate results with the latter, as we are attempting as a first step to understand the 

behaviour and potential order of magnitude of neglected 3-D density effects on a simple 

level before turning to more complex distributions. Also, applying distributions based on 

simple shapes allows us to easily compare some results with an analytical determination 

in spherical coordinates. Once our software has effectively met this first benchmark, we 

can rely more heavily on its results for more complex distributions. 

This paper first describes the key points of our methodology. We begin by describing 

the key mathematical aspects of our approach to indicate its relation to and distinction 

from other density effect calculations. We conclude our discussion of methodology by 

describing how the technique has been implemented in our numerical calculation 

software, Rad_Eff_Geoid.c. Thereafter, we present some preliminary results to 

demonstrate the capability of the software, followed by results of our validation 

attempts. 
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4.2 Methodology 

4.2.1 Modeling of topographical density 

Our 3-D model of topographical density represents density variation within topography 

by a series of surfaces, each representing a particular density contrast. For example, if 

we wish to model the topographical density of a region including a lake, our model 

consists of a horizontal surface at a height of zero (corresponding to the geoid), a surface 

given by the height of the lakebed, and a surface given by the height of the topography 

(or the lake surface, over the lake). The densities of the volumes between the layers are 

then specified. In the case of a lake, the density in the region above the geoid surface but 

below the topographical and lakebed surfaces might be assigned the commonly assumed 

average crustal density ( ! ) of 2670 kg/m3. The density in the region above the lakebed 

and geoid surfaces but below the topographical surface, i.e., the lake waters, would have 

a density of about 1000 kg/m3. Thus, the anomalous density in the latter region would be 

–1670 kg/m3. 

More intricate arrangements of surfaces are also possible, though distributions based 

on more than two input surfaces have not been implemented in the current version of our 

software. We have implemented density distributions defined by simple geometrical 

figures. For example, we may define a disc as a body of anomalous density bounded by 

a cylinder and two planes. We assign the disc a large anomalous density, e.g., 660 

kg/m3, typical of a density contrast between basalt and sandstone [Parasnis 1997]. 

Density distributions thus defined provide the region over which our Newton integration 

is carried out. 
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4.2.2 The Newton kernel and its radial derivative for calculation of effects on gravity 

and gravity potential 

The following derivations are performed in a spherical coordinate system, considered to 

have its origin at the geocentre, and illustrated in Figure 4.1 with C indicating the 

coordinate system origin.  

 

 
 

Figure 4.1: Spherical coordinate system for evaluation of Newton integrals. See text 
for definition of parameters. 
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We use the coordinates (r,Ω = (ϕ,λ)) to represent the geocentric radius, latitude, and 

longitude of a point of interest P, also called the computation point. The coordinates 

(r',Ω' = (ϕ',λ')) represent the coordinates of the running point in integration, P’. The 

term ψ(Ω,Ω') represents the spherical solid angle between these two points given by: 

 

 

cos!(", # " ) = cos$ cos # $ + sin$ sin # $ cos(% & # % ). (4.1) 

 

We normally refer to it simply as ψ for the sake of conciseness. 

We also introduce L(r',r,ψ), the straight line (Euclidian) distance between the point 

of interest and the integration point: 

 

  L( !r ,r," ) = !r 2 + r 2 # 2 !r r cos" . (4.2) 

 

The gravitational potential V(r, Ω) resulting from a density distribution ρ(r', Ω') over a 

region 
   
( !r "[rg ( !# ),rt ( !# )]! !# "#0 ) , is given by integration of the Newton kernel, 

L–1(r',r, ψ), over that region (e.g., Martinec [1998, eq. (1.5)]): 

 

  
V (r,!) = G L"1(r, #r ,$ )%( #r , #! ) #r 2 d #r

#r =rg ( #! )

rt ( #! )

& d #!
#! '!0

&& , (4.3) 

 



 

 150 

where G is the Newton’s gravitational constant; rg(Ω') and rt(Ω') represent the 

geocentric radii of the geoid and topographical surfaces at the integration point, 

respectively; and rt(Ω') = rg(Ω') + Ht(Ω'), where rg(Ω') may be given by a geoid model 

and Ht(Ω') from a terrain model. For all applications described here, Ω0 is defined by a 

spherical cap of constant radius centered on the computation point. 

The gravity, A(r, Ω), resulting from a mass distribution is then given by the integral 

over the radial derivative of the inverse of eq. (4.2) multiplied by the density, which 

follows Martinec [eq. (3.6), 1998]: 

 

  
A(r,!) = G " L#1(r, $r ,% )

" r
&( $r , $! ) $r 2 d $r d $!

$r =rg ( $! )

rt ( $! )

'
$! (!0

'' . (4.4) 

 

Equations (4.1) to (4.4) are applied for a density distribution representing anomalous 

density as well. In that case, we replace ρ(r', Ω') with: 

 

  !"( #r , #$ ) = "( #r , #$ )% " , (4.5) 

 

where we deal with anomalies relative to some prescribed constant density !  or: 

 

  !"( #r , #$ ) = "( #r , #$ )% "( #$ ) , (4.6) 

 

where we deal with anomalies relative to a laterally varying density distribution  !( "# ) . 
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In the case of eq. (4.5), the reference density value, ρ0, is defined such that the sum 

of anomalous densities (usually globally) is expected to be zero. In the case of eq. (4.6), 

although ideally the sum of anomalous density values along any topographical column 

should equal to zero, e.g., by assigning to  !( "# ) , the mean density value along the 

column, there is usually not sufficient information to meet this condition. Instead, the 

density value of rock at the topographical surface is often assigned to the whole column. 

We consider anomalies defined according to eq. (4.6) hereafter. 

 

4.2.3 Mathematical representation of 3-D density and condensed density models 

For any integration point, with horizontal coordinate Ω', we can represent the radial 

distribution of density as a piecewise function. Let us take the simple example of a lake, 

as in the section “Modeling of topographical density”. Let the density of topography 

outside the lake be ρ0 and the density of the lake water be ρ1. We deal with three 

surfaces here: the geoid surface; the lower bound of the region we are concerned with, 

defined by rg(Ω'); the surface of the topography and the surface of the lake, defined by 

rt(Ω'), and the lake bed with geocentric radius rb(Ω'). In this case, for any point Ω', we 

write: 

 

!( !r , !" ) =

!0 , !r #[rg ( !" ),rt ( !" )]$ !" %"b

!0 , !r #[rg ( !" ),rt ( !" )]$ !r & rb( !" )$ !" #"b

!1, !r #[rg ( !" ),rt ( !" )]$ !r > rb( !" )$ !" #"b

0, elsewhere

'

(

)
))

*

)
)
)

,  (4.7) 
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where Ωb represents the region covered by the lake, over which rb(Ω') is defined. In 

some cases, we may have more complicated parameters. For example, if we deal with a 

model defined by a rectangular prism under some rotations, we have six planes to deal 

with in addition to rg(Ω') and rt(Ω'). 

When we are dealing with anomalous densities, we must change somewhat the 

formulation of eq. (4.7). If the prescription in eq. (4.5) is used, then instead of eq. (4.7), 

we represent the anomalous density distribution within Ωb by: 

 

  

!"( #r , #$ ) =

"0 % ", #r &[rg ( #$ ),rt ( #$ )]' #r ( rb( #$ )

"1 % ", #r &[rg ( #$ ),rt ( #$ )]' #r > rb( #$ )

0, elsewhere

)

*
++

,
+
+

. (4.8) 

 

If density differences are used and ρ(Ω') is the laterally varying density (computed 

from surface horizontal density variations, as is often the practice, e.g., Tziavos and 

Featherstone [2000]; Huang et al. [2001]), then it reads: 

 

  

!"( #r , #$ ) =
"0 % "1, #r &[rg ( #$ ),rt ( #$ )]' #r ( rb( #$ )

0, elsewhere

)
*
+

,+
. (4.9)

 

 

 

 



 

 153 

 

Since we can determine the radial distribution of anomalous density at any 

integration point, we can also determine the resulting anomalous condensation density at 

any integration point. We do this by applying the general formula (e.g., Martinec [1998, 

eq. (2.3)]): 

 

  
!" ( #$ ) = 1

rg
2( #$ )

!%( #r , #$ ) #r 2 d #r
#r =rg ( #$ )

rt ( #$ )

& . (4.10) 

 

where δσ(Ω') is the condensation density at coordinate Ω'. Since for any value of Ω' the 

density can be written as a piecewise constant function, the integral in eq. (4.10) can be 

written in a more general form for any series of surfaces: 

 

  
!" ( #$ ) = 1

rg
2( #$ )

!%i,i+1 #r 2 d #r
#r =ri ( #$ )

ri+1( #$ )

&
i=0

n'1

( = 1
rg

2( #$ )
!%i,i+1

[ri+1
3 ( #$ )' ri

3( #$ )]
3i=0

n'1

( , (4.11) 

 

where ri(Ω') is a radius vector of any surface contained within the topography at Ω', δρi,j 

is the anomalous density between surfaces i and j, n is the number of surfaces present in 

the topography including the geoid and topographical surface, r0(Ω') = rg(Ω'), and rn(Ω') 

= rt(Ω'). In our situation, where at most four surfaces are concerned, evaluating δσ(Ω')  

using eq. (4.11) is trivial. 
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4.2.4 Calculations of 3-D anomalous density effects on geoid and gravity 

Prescriptions for the evaluation of the DTE, PITE, and SITE are given in a variety of 

sources (e.g., Martinec and Vaníček [1994a, 1994b]; Sjöberg and Nahavandchi [1999]); 

most notably in Martinec [1998] whom we follow closely here. 

The DTE is simply the difference between the effect of the anomalous density of real 

topography and that of the condensed topography on surface gravity: 

 

 

!A!" (#) = A!"
t (#) $ A!"

c (#) , (4.12) 

 

where δρ indicates that we are dealing with 3-D anomalous density effects (not to be 

confused with the δρ subscript sometimes used to denote effects of laterally varying 

anomalous density).   
A!"

t (#)  is the effect of real topography on gravity and can be found 

using eq. (4.4): 

 

  
A!"

t (#) = A!" (rt (#),#) = G $ L%1(r, &r ,' )
$ r

r=rt (#)

!"( &r , &# ) &r 2 d &r d &#
&r =rg ( &# )

rt ( &# )

(
&# )#0

(( , (4.13) 
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while the effect of the condensed layer,   
A!"

c (#) , is found by taking the limit of eq. (4.4) 

as rt(Ω')→rg(Ω'), which yields: 

 

  
A!"

c (#) = lim
rt ( $# )%rg ( $# )

A!" (rt (#),#) =  

 
=G

!L!1(r,rg ( "# ),! )
!r

r=rt (#)

!" ( "# )rg
2 ( "# )d "#

"# $#0
%% . (4.14)  

 

The values of δAδρ(Ω) can be determined, depending on the information available 

about anomalous density structures, by numerical integration, analytical integration, or 

some combination of both. In the context of this study, we have performed all 

integration numerically in the horizontal direction but analytically in the vertical 

direction along a given column of topography. Having calculated δAδρ(Ω), we may 

determine the corresponding DTE on geoidal height through the Stokes’s integration. 

The Stokes’ integration, in conjunction with Bruns’s formula, may be used to convert a 

field of effects on gravity into their effect on geoidal height. The formulation for Stokes’ 

integration to determine the DTE on geoidal height as a result of a topographical effect 

is given by [Martinec, 1993, eq. (4.5)]: 

 

  
! N DTE ,!" (#) = R

4$%
S(& )! A!" ( '# )d '#

'# (#0

)) , (4.15) 
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where R is the mean radius of the Earth, γ  is the normal gravity at the point Ω, and S(ψ) 

is the Stokes kernel given by (e.g., Vaníček  and Krakiwsky [1986]): 

 

  
S(! ) = 1+ 1

sin[! / 2]
" 6sin[! / 2]"5cos! " 3cos! ln(sin[! / 2]+ sin2[! / 2]) . (4.16) 

 

The PITE is the difference between the effects of mass anomalies of real and condensed 

topography on gravity potential at the geoid: 

 

 

!V!" (#) =V!"
t (#) $V!"

c (#); (4.17) 

 

Here, we use eq. (4.3) to evaluate the term   
V!"

t (#) : 

 

  
V!"

t (#) =V!" (rg (#),#) = G L$1(rg (#), %r ,& )!"( %r , %# ) %r 2 d %r d %#
%r =rg ( %# )

rt ( %# )

'
%# (#0

'' . (4.18) 

 

and the limit of eq. (4.17) as rt(Ω')→rg(Ω') to find   
V!"

c (#) : 

 

  
V!"

c (#) = lim
rt ( $# )%rg ( $# )

V!" (rt (#),#) = G L&1(rg (#),rg ( $# ),' )( ( $# )rg
2( $# )d $#

$# )#0

** . (4.19) 
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For each point where the PITE on gravity potential is evaluated, the PITE on geoidal 

height may also be evaluated according to Bruns’s formula [Martinec, 1993, eq. (4.6)]: 

 

  
! N PITE ,!" (#) =

!V!" (#)
$

. (4.20) 

 

The PITE on gravity is further given by: 

 

  
! APITE ,!" (#) = 2

R
!V!" (#) , (4.21) 

 

By Stokes’s integration of the PITE on gravity over a large area, we may determine the 

SITE on geoidal height [Martinec, 1993, eq. (4.7)]: 

 

  
! NSITE ,!" (#) = 1

2$%
S(& )!V!" ( '# )d '#

'# (#0

)) . (4.22) 

 

4.2.5 Numerical evaluation of the DTE, PITE, and SITE 

Throughout our numerical evaluations, we consider that rg(Ω') = rg(Ω) = R, i.e., we 

employ a spherical approximation. This is common in similar calculations, e.g., of 

laterally varying anomalous density effects on geoidal height (e.g., Martinec [1993]; 

Huang et al. [2001]). Although we have not rigorously tested its validity, here we 

consider the approximation still appropriate as we only perform a first estimation of 3-D 
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anomalous density effects. 

Horizontal numerical integration is required for eqs. (4.13), (4.14), (4.18), and (4.20). 

All numerical integration is performed using spherical coordinates ϕ' and λ', with the 

areal element dΩ' = sinϕ'dϕ'dλ'. Testing has shown that the local density bodies we are 

modeling (most <100 km wide and <1 km thick, i.e. thicker than most topography) do 

not have a significant effect beyond 3º from the computation point, so integration is 

limited to a 3º cap. The cap is divided into four circular zones centered on the 

computation point: the middle zone, inner zone, innermost zone, and a zone comprising 

only the near vicinity of the computation point. The sizes and resolutions of these zones 

may be modified in the option file of our software. Through testing, we have determined 

suitable resolutions and sizes for each of these zones, as indicated in Table 4.1. 

 

Table 4.1: Integration zone sizes and resolutions. 
Zone Radius (arcseconds) Resolution (arcseconds) 
Middle 7200 300 
Inner 3600 30 
Innermost 1080 3 
Central 1.5 1 

 
 

These radii were determined by increasing each until the change in the results was 

negligible. So, for example, starting with a middle zone radius of 3600 arcseconds, we 

then increased it by intervals of 1800 arcseconds until the difference in results after a 

particular increase was negligible (less than 1 cm). We determined that the difference in 

results was negligible when increasing the radius from 5400 to 7200 arcseconds, so we 

considered 7200 arcseconds a sufficient radius. 
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Equations (4.13) and (4.18), which appear to require a 3-D numerical integration, can 

be reduced to only 2-D integrations by taking advantage of the aforementioned behavior 

of δρ(r', Ω') as a piecewise constant function of argument Ω'. Analogous to the 

development of eq. (4.11), we can write, e.g., eq. (4.13) as: 

 

   

! L"1(r, #r ,$ )
! r

r=rt (%)

&'( #r , #% ) #r 2 d #r
#r =R

rt ( #% )

( = &'i,i+1

! L"1!(r, #r ,$ )
! r

#r =ri
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r=rt (%)
i=0

n"1

) , (4.23) 

 

where, as provided by Martinec [1993, eq. (2.22)]: 
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! r

= ( #r 2 + 3r 2 )cos$ + (1" 6cos2$ )r #r
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Similarly, for eq. (4.17) we can write: 
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and according to Martinec [1993, eq. (2.20)]: 

 

L!1!(r, "r ,! ) =  

    
= ( !r + 3r cos" )

2
!(r, !r ," )+ r 2(3cos2" +1)

2
ln !r # r cos" + !(r, !r ," ) . (4.26) 

 

Thus, numerical integration is only necessary to carry out horizontally. 

In cases where the topographical density distribution is given by a surface or series 

of surfaces, the accuracy of determination of eqs. (4.13) and (4.18) could theoretically be 

further improved by representing the surface as a polyhedral body. The integration over 

a polyhedral body of constant density can be carried out analytically in all three 

dimensions in a Cartesian coordinate system (e.g., Paul [1974]) and even over a 

polyhedral body of linearly varying density [Pohánka, 1998]. Previous studies have 

shown that the polyhedral representation provides an improvement in the case of terrain 

effect calculations (e.g., Tsoulis [2001]) when applied in a local planar coordinate 

system. Unfortunately, this analytical integration over polyhedrons has not yet been 

developed in spherical coordinates; and, since the development cannot be done over 

relatively simple prismoidal bodies [Heck and Seitz 2007], it may be impossible. We 

have not investigated the possibility of using the analytical integration in, e.g., a global 

Cartesian coordinate system. While the existing developments could be applied for 

calculating effects of real topography using polyhedral models and may be useful for 

validation in the future, we are aware of no formulation for corresponding effects of 

condensed topography. Since this is only our first attempt at modeling 3-D density 
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effects, we have not attempted these developments. We also were unable to apply an 

analytical integration over each (prismoidal) cell in the 3-D integration of eqs. (4.13) and 

(4.18). While Nagy et al. [2000] provided formulas for this approach in a rectangular 

coordinate system, the horizontal integration over a cell cannot be carried out 

analytically in a spherical coordinate system, so numerical integration is necessary 

[Heck and Seitz 2007]. 

Determination of the geocentric radii of density interfaces for each cell was done 

differently for both types of simulations our software is capable of. Where a single 

density interface is used, depths to the interface are read from an input file, e.g., a 

bathymetric model. The geocentric radius of the interface at any integration point is 

determined by rb(Ω') = rt(Ω') – Db(Ω'), where Db(Ω') is the lake depth at the integration 

point, derived by bilinear interpolation of depths from the input file. The values of the 

densities above and below the interface are given in an option file, and these values are 

assigned to different segments according to the conditions from eqs. (4.8) or (4.9). 

Where a geometrical figure is used to delineate a region of anomalous density, the 

determination of densities and density interfaces is more complicated. 

The last but not least problem with numerical implementation is the behavior of the 

Newton kernel and its integrals and derivatives when the integration point is near to the 

computation point. We deal here with four different kernels: (1) the Newton kernel used 

in eq. (4.19), (2) its radial derivative used in eq. (4.14), (3) the integral of the Newton 

kernel with respect to the radius of the integration point used in eq. (4.26), and (4) the 

integral of the radial derivative of the Newton kernel with respect to the radius of the 
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integration point used in eq. (4.24). All these kernels have a point of singularity where ψ 

= 0 and r = r'. For our application, this condition is easily resolved for the kernel in (2), 

since the computation point and integration point are always on the topographical 

surface and geoid, respectively, so that this condition is only met when the height of the 

computation point is zero. In such situations, there can be no anomalous density at that 

point anyway (there is no topography), so the value of the kernel at the point of 

singularity is exactly zero. For kernel (1), the singularity always occurs. Since r is 

always equal to r' over the region of integration, the singularity occurs where ψ = 0, a 

point that must be included in any integration, since it represents the value at the center 

of the spherical integration cap. For (3), the singularity only occurs when ψ = 0 and the 

top of the anomalous density body coincides with the topographical surface, since this is 

the only situation where r may equal r'. This singularity is easily removed in the case 

where anomalous density is considered relative to laterally varying surface density, since 

in the case of the density anomaly, whenever the body representing the density structure 

intersects the topographical surface its density is the surface density, and the anomalous 

density of the body itself is zero. Likewise, (4) can only be singular where ψ = 0 and the 

density body intersects the geoid. 

These singularities are easily removed in terrain and 2-D anomalous density effect 

calculations. When used to calculate terrain effects, for example, it is clear that the 

terrain has the same height as the Bouguer shell does at the computation point (i.e., the 

central cell has zero contribution to the terrain effect). Therefore, regardless of the 

singularity of the Newton kernel, the central cell contains no terrain, so the contribution 
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of the central cell to the integration is zero [Martinec, 1998]. When dealing with laterally 

varying anomalous density, the contribution of a Bouguer shell of density equal to the 

anomalous density in the central cell can be added to the Newton integral to account for 

the contribution of the singularity point and take the integral without that differential 

neighbourhood of that point. Thus, at the central point, the anomalous density relative to 

this shell is zero and, again, the singularity is removed [Martinec, 1998]. 

Although a similar approach could be applied for 3-D density effects, we have 

simply arranged our integration points for this work so that they do not correspond 

exactly with the computation point and the singularity does not occur. We recognize that 

this is not a rigorous way of dealing with the immediate neighbourhood of the 

singularity, but we consider our approach sufficient for a first effort. 

Numerical Stokes’ integration is required to evaluate eqs. (4.15) and (4.22). The 

integration is performed over a spherical cap of 4º radius with cell size of 3 arcseconds 

(3600 arcseconds = 1º), following the general procedure given in Heiskanen and Moritz 

(1967). The singularity of the Stokes kernel in the central cell is removed, as suggested 

by Vaníček  and Krakiwsky [1986]. 

 

4.2.6 Criteria for verification of results 

For the purposes of this investigation, we tested our results for effects on gravity and 

gravity potential only. Our Stokes’ integration contains no novel adaptations whereas 

our Newton integration does and is thus the focus of verifications. 

We propose three methods to validate the results of our computations: (1) examine 

the sequence of our results while the cell size used in numerical integration decreases, 
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(2) compare with entirely analytical results for specific cases where such results can be 

found, and (3) compare with other similar efforts. Here, we apply only (1) and (2), since 

we know no other efforts which use directly a 3-D model of topographical density, while 

previous efforts similar to some of our simulations exist. The work of Martinec et al. 

(1995) on lake water effects, for example, does not use a 3-D model directly but, instead, 

uses a 3-D model based on bathymetry to create a 2-D laterally varying density model 

by averaging densities along the plumbline in each topographical column. The resulting 

2-D model is then used in later calculations. 

The testing in method (1) is done by first increasing the size of the innermost 

integration zone to approximately 3º in radius, normally the size of the middle zone. 

This is much larger than it really needs to be. Then, the radii of other integration zones 

are also made equal to 3º so that they are skipped in the numerical evaluation. Thus, all 

cells used in integration have the same size, and the whole 3º spherical cap is covered. 

Next, the resolution of the innermost zone is varied from coarse to fine. As the 

resolution increases, we expect to see the results converge toward some particular value. 

If they do, then the results are at least consistent with each other. 

Testing by method (2) provides a comparison with exact results in specific cases. 

The test we apply here is a comparison with an exact result for the DTE on gravity and 

PITE on gravity potential at a computation point on the axis of a spherical disc. The 

spherical disc is defined by the intersection of a cone, and a spherical shell with its 

center at the apex of the cone. We examined the effect of a disc of a given size, oriented 

with its axis vertical but with its mass center at various heights above the geoid. 
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To calculate exactly the PITE of the disc, we integrated eqs. (4.18) and (4.19) setting 

r = R over the region of a disc with a given density. We integrated in a geocentric 

spherical coordinate system to simplify the integration – the primary axis is made 

coincident with the axis of the disc – so that when the dummy point of integration is at 

the computation point, ψ = 0. This provides the effect of real topography on gravity 

potential at the geoid: 
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where rl is the geocentric radius of the lower boundary of the disc, ru is the geocentric 

radius of the upper boundary, ψD is the solid angle from the center of the disc to the 

edge, δρD is the anomalous density of the disc, and Ωc is the spherical coordinates of the 

axis of symmetry of the disc. For conciseness, we have written straight-line distances 

using the convention Lp,q = L(rp,rq,ψD). Where the term rg is required to evaluate a 

distance, it is set to rg = R. 

For the effect of condensed topography on gravity potential at the geoid: 
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where δσD is the condensation density resulting from the anomalous density of the disc. 

By taking the derivatives of eq. (4.27), we can also find the effect of real topography on 

gravity at the topographical surface: 
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where rt = rt(Ωc). By taking the derivative of eq. (4.26), we find the effect of condensed 

topography on gravity at the topographical surface: 
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From these results, we find the DTE and PITE for Ωc using eqs. (4.12) and (4.17), 

respectively. 

We evaluate the differences between the results from these analytical formulas and 

numerical determinations for the particular case of Ωc to find an absolute determination 

of the error of our numerical approach in these particular cases, which we take as an 
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indicator of how well our approach might behave in other situations. Since this only 

provides absolute errors for one set of situations, the resulting error estimates are not 

applicable for other simulations as anything more than an indicator of what we might 

expect the errors in those cases to be. 

 

4.3 Results and discussion 

4.3.1 Results demonstrating the capability of simulation software 

We present here two sets of results. First, as an example of a simulation of the effect of a 

simple density distribution, we present the effect on geoidal height of a disc, 

representing a realistic density contrast, in topography of uniform height. From these 

results, we are able to observe some characteristics of the behavior of anomalous density 

effects. We finally provide an example of the 3-D anomalous density effect of a lake, 

again in smooth topography, as an example of the effect of a density distribution given 

by a single density interface. 

For the first simulation, we consider a density distribution given by a disc embedded 

in topography uniformly 2000 m thick. The disc itself is 40 km in diameter and 500 m 

thick. We have assigned it a density of 660 kg/m3, a typical anomalous density for, e.g., 

a disc of basalt embedded in sandstone (e.g., Parasnis [1997]). If the center of the disc is 

500 m deep, it produces the DTE and PITE shown in Figure 4.2, both of which show 

results over a 1º by 1º area. 
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Figure 4.2: DTE on gravity and PITE on gravity potential, resulting from a disc 

500 m thick, 40 km in diameter, with anomalous density of 660 kg/m3, with center 
500 m deep, and embedded in 2000 m thick topography. 
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Notice that, with the DTE, the minimum of ~–4 mGal (1 Gal = 1 cm⋅s–2) is not at 

the center of the disc but in a ring around the center. This is because the DTE is the 

difference between a contribution of real topography to surface gravity and a slightly 

smoother contribution of condensed topography to surface gravity. The difference is 

almost constant near the projected center of the disc; but within the disc, moving away 

from its center, the contribution of real topography decreases more slowly than that of 

condensed topography so that the difference between the two grows. However, around 

the edge of the disc the contribution of real topography diminishes rapidly, whereas the 

contribution of condensed topography diminishes more slowly. Thus, the difference 

between the two grows smaller and eventually changes sign, resulting in a ring of 

positive values surrounding the disc. The maximum result of 1.8 mGal occurs in this 

ring. 

The same trend is not visible for the PITE, which has a minimum of ~–19000 

m⋅mGal at the disc center. Unlike the DTE, the magnitude of the PITE always 

decreases with distance from the disc center, since in the contribution of real topography 

decreases more rapidly than the contribution of condensed topography but is never less 

in magnitude than the contribution of condensed topography. For the same reason, the 

difference between the two contributions converges to zero, which is then the maximum 

value of the PITE. 

Next, we examine the effects resulting from this disc if it is rotated by certain angles 

around its west–east axis. In this case, we present results from discs rotated by 0.5º, 1º, 

and 5º. Here, we give the DTE and PITE on geoidal height. Also, the center of the disc is 

now situated at a depth of 1000 m. The SITE in these and all of our simulations so far is 
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negligible. We further show the net effect on geoidal height resulting from both DTE 

and PITE. Results for the DTE, PITE, and total effect are given in Figure 4.3, all of 

which show results over a 1º by 1º area. 
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Figure 4.3: DTE, PITE, and the total effect of anomalous density on geoidal height 
for discs 500 m thick, 40 km in diameter, with anomalous density of 660 kg/m3, 

with centers 1000 m deep, embedded in 2000 m thick topography, and rotated to 
0.5º, 1º, and 5º from horizontal. 
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First, notice that, when the disc is nearly horizontal, the maximum value of the DTE 

on height is over the center of the disc. This is in contrast to the case with the DTE on 

gravity and is a result of the smoothing effect of Stokes’ integration used to determine 

the DTE on height. Also, the DTE and PITE tend to be larger where mass anomalies are 

distributed closer to the topographical surface. This is because both the DTE and PITE 

represent a difference between contributions of mass on the geoid and at the 

topographical surface, and these contributions are most different when the mass in real 

topography is distributed farther from the geoid. For this reason, the maximum values 

correspond to the part of the disc tilted toward the surface and the minimum to the part 

tilted toward the geoid. In terms of magnitude, in the case where magnitudes are largest 

– where the disc is rotated to 5º from the horizontal – the DTE ranges from –0.2 to 1.0 

cm whereas the PITE ranges from 0 to 1.2 cm. However, due to the rotation of the discs, 

the DTE and PITE do not cancel each other where the positive effects are greatest. Thus, 

the total effect ranges from –0.2 to 2.2 cm, which indicates that such a density body 

would have a significant effect on precise geoid determinations. These values are 

smaller in magnitude for other simulations. For comparison, Huang et al. [2001], using a 

2-D density model in the Canadian Rocky Mountains, calculated anomalous density 

effects on the DTE ranging from –5.1 to 2.6 cm, the PITE ranging from –2.5 to 1.7 cm, 

and a total effect ranging from –7.0 to 2.8 cm. Huang et al. find that these effects are 

<10% of the effects calculated using a heterogeneous model of topographical density. 

For our second simulation, we examine the 3-D anomalous density effects generated 

by Lake Superior. We make some simple assumptions in this simulation. First, we 

consider all topography to have a thickness (height) of 183 m, about the average height 
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of the surface of Lake Superior. We also assume that the density of all topography in the 

area is 2670 kg/m3, a common value for the average crustal density. The depths of the 

lake bed are given by a bathymetric dataset prepared by Schwab and Sellers [1996]. 

We consider here the anomalous density relative to a laterally varying distribution, 

with densities equal to the density at the topographical surface. This is coherent with 

laterally varying density distributions based on densities from geology maps. Thus, the 

laterally varying anomalous density is situated between the bed of the lake and the geoid 

(where the lake bed is above the geoid). The results of the simulation are given in Figure 

4.4. 
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Figure 4.4: Effects of 3-D anomalous density of Lake Superior on geoidal height. 

 
 

We present only results for the DTE and PITE on geoidal height, because the SITE is 

negligible. We also present the total effect of the DTE plus the PITE. The results are 

distributed from latitudes of 46ºN to 50ºN and from longitudes of 264ºE to 274ºE. 

We notice especially here that the DTE on height is smoother than the PITE on 

height owing to smoothing of the DTE in Stokes’ integration. We also notice that, 

though there are some peaks in the PITE, the PITE is generally about an order of 
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magnitude smaller than the DTE, so the effects of the DTE are still dominant in the total 

effect. The DTE ranges from –8 to 9 mm whereas the PITE is always positive and has a 

maximum magnitude of only 0.9 mm. Due to the small size of the PITE, the net effect is 

almost identical to the DTE. 

 

4.3.2 Verification of results 

Here, we apply the first of our suggested tests of our results. Since all vertical integration 

is analytical, only the horizontal integration in eqs. (4.13), (4.14), (4.18), and (4.19) is 

performed numerically. Thus, as the horizontal integration step is decreased, the results 

should approach an exact result. If the results do not converge, there is some problem 

with our approach. Note that while the analytical results provide a more accurate 

estimation in this particular case, the analytical result cannot yet be extended to any 

figure in spherical coordinates. 

To visualize this test, we calculate the DTE on gravity and PITE on gravity potential 

for the projection of the center of a disc on the topographical surface and geoid, 

respectively, as the depth of the disc is varied. We model a disc similar to the one used 

previously in the text but only 200 m thick. The height of the center of the disc is varied 

from a height of 100 to 1900 m. Note that, at 1900 m, the top of the disc would actually 

be coincident with the surface of topography, a situation that cannot possibly occur 

when considering anomalous density relative to a laterally varying distributions based on 

surface geology. Here, we allow this situation to occur, so we can more fully examine 

the behavior of our results. Plots of the DTE and PITE against the height of the disc 

center for various horizontal integration step sizes are given in Figure 4.5. 
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Figure 4.5: DTE and PITE against height to disc center for discs 200 m thick, 40 
km in diameter, with anomalous density of 660 kg/m3, embedded in 2000 m thick 

topography, with varying heights to disc center, and with varying horizontal 
integration intervals. 
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We see that the results in both cases do converge as the integration step is decreased. 

In the case of the DTE, the 3 and 1 arcsecond lines are almost coincident except for a 

disc lying just under the surface. At that point, the DTE shows a slight increase for both. 

The same increase is much more noticeable for larger integration steps, and so is also 

apparently an artifact of the numerical integration. In the case of the PITE, the results 

converge very nicely to almost coincident lines. This indicates that our results are at 

least consistent with each other – at a given height, they converge to a single value. 

However, we must verify that they are approaching the correct result. 

As an exact standard by which we may test our results, we apply eqs. (4.27) to (4.30) 

to determine exactly the DTE on gravity and the PITE on gravity potential generated by 

the disc discussed in this section. A comparison of the best 1 arcsecond numerical 

integration results with the fully analytical result available for the particular case of a 

disc is shown in Figure 4.6. 
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Figure 4.6: DTE and PITE against height to disc center for discs 200 m thick, 40 
km in diameter, with anomalous density of 660 kg/m3, embedded in 2000 m thick 

topography, and with varying heights to disc center, from both analytical and 
numerical integration with 1 arcsecond step. 
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We see that the DTE from both results are nearly linear, but the numerical result 

decreases more quickly than the analytical result. Thus, the errors in the DTE grow as 

the depth of the density anomaly decreases. Although the sharp increase in the numerical 

result here makes it nearly coincident with the analytical result for a disc just below the 

topographical surface, we know from our previous comparison that this increase is an 

artifact of the numerical integration, so the coincidence of the two results at that point is 

only a fortunate canceling of errors, which does not usually occur. 

For analysis of these results, we mainly discuss the percent differences between 

analytical and numerical results. This is expedient because it represents differences 

between the results in a way easily extrapolated to a crude estimate of errors for results 

in general or of errors in effects on geoidal height. For example, if we know the 

difference between the numerical and analytical results in this particular case, where an 

analytical result is available for comparison and reaches a maximum of 20%, we might 

guess that, e.g., our aforementioned lake simulation result has an error of 20% of the 

maximum effect of 9 mm, or about 2 mm. Of course, this is a crude way of estimating 

errors, since results of other simulations may behave very differently from those for a 

disc. However, it is currently our only indication of absolute error in the results. 

Considering only the situations where the disc does not touch the topographical 

surface, the maximum percentage error in the DTE is 19% for a 1 arcsecond integration 

step. In other simulations, we have been able to achieve errors as large as 24%; but we 

are not especially concerned about these, since the error is proportionally larger for 
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thinner discs. For example, if we perform a simulation as shown in Figure 4.6a, but with 

a 400 m thick disc, we find the maximum percent error in the simulation is only 16%, 

whereas the maximum magnitude of results is 0.9 mGal. We find the greatest percent 

error (23.5%) for a disc 200 m thick and 30 km wide, and also in 2000 m thick 

topography. Thus, the formations with greatest influence on the DTE are also those 

whose effects, determined numerically, have the smallest relative error. This is also the 

width of disc that results in the smallest magnitude of DTE. 

In the case of the PITE, both results are again nearly linear, but the numerical result 

here decreases more slowly than the analytical result with height of the disc center. 

Thus, again, the error in the PITE grows as depth to the disc decreases. 

The percent error in the PITE is consistently much smaller than that in the DTE, 

reaching a maximum in this simulation of 4% for a disc near to the geoid. Note that the 

percent error in the PITE is smallest for narrower discs and when the bottom of the disc 

is near to the geoid. Unlike the DTE, the PITE is greatest for thicker discs. The largest 

percent error we have found for the PITE is for a disc 5 km wide and 1900 m thick, with 

its bottom at the geoid, and in 2000 m thick topography, which yields an error of 7.6%. 

We summarize in Table 4.2 the worst errors we have been able to find in our results 

by comparison with an analytical result for a disc. For all of these situations, the 

simulations take place in 2000 m thick topography. 
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Table 4.2: Worst case errors to date for DTE and PITE, determined by comparison 
with an analytical result for a disc having density contrast of 660 kg/m3 in 2000 m 

thick topography. 
Quantity DTE PITE 
Analytical result –0.67 mGal –38239 m⋅mGal 
Numerical result –0.82 mGal –35317 m⋅mGal 
Difference –0.16 mGal 2922 m⋅mGal 
% error 23.5 7.6 
Disc width (km) 30 5 
Disc thickness (m) 200 1900 
Depth to disc center (m) 200 1050 

 
 

These results suggest maxima for our DTE and PITE results for the disc simulation 

and also some general principles for the sort of distributions where our numerical results 

might have lower accuracy. Considering that the maximum error for the DTE is just over 

20%, which decreases with an increase in DTE, we consider this sufficient validation of 

our approach for initial estimates of the order of magnitude of 3-D anomalous density 

effects. 

 

4.4 Conclusions 

Previous attempts to account for topographical density effects on geoidal height have 

modeled topographical density using a 2-D laterally varying model. Since in reality 

topographical density also varies vertically, the 2-D model cannot account for all 

topographical density effects on geoidal height. We attempt to remedy this problem by 

modeling topographical density instead using surfaces representing topographical 
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density interfaces. We calculate the DTE on gravity and PITE on gravity potential for 

any distribution by using Newton integration over a topographical density distribution 

defined by one or more interfaces within a spherical cap. In the Newton integration, we 

use the analytical radially integrated Newton kernel and its radial derivative to determine 

effects of density between interfaces, where it is piecewise constant. We then apply 

Stokes’ integration to determine the DTE, PITE, and SITE on geoidal height. 

In this paper, we present results for the effects of a horizontal disc, for a disc rotated 

by various degrees along its longitudinal axis, and for the vertical density anomalies of 

Lake Superior. In all cases, we assume smooth topography and reasonable density 

contrasts and consider anomalous density relative to a laterally varying density 

distribution. Total density effects of the disc on geoidal height reach 2.2 cm in 

magnitude when it is rotated by 5º while those for the lake reach 0.9 cm in magnitude. 

We observe that the DTE and PITE both have their greatest magnitude for masses near 

to the topographical surface and add rather than cancel each other for any of our disc 

simulations. In the case of the lake, the effects are generally opposite but do not 

significantly cancel each other out, since the PITE is considerably smaller than the DTE. 

We also attempt to validate our results by examining the behavior of the DTE on 

gravity and PITE on gravity potential for the point at the center of a disc at various 

depths in topography. We found that as we decrease the horizontal integration step, the 

results in both cases converge but do not converge exactly to a purely analytical result 

for the effect of the disc at these points. In our simulations, we found that the numerical 

DTE result is greater in magnitude than the analytical result, with a maximum error of 

23.5%. However, the greatest percent errors for this effect occur where the magnitudes 
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of the effect are smallest; and, in the worst case, we have found the error is only 0.16 

mGal in magnitude. Greater DTE errors occur where the mass is concentrated near the 

topographical surface but in a small volume. The numerical PITE result is consistently 

of lower magnitude than the analytical result, with maximum percent error of 7.6%. In 

the case of the PITE, the greatest errors occur for discs near the geoid when mass is 

great and the discs are small. Thus, for distributions having large effects, we expect the 

error in our calculation of those effects is considerably smaller than the magnitudes 

suggested here. 

Future efforts will include more thorough treatment of the singularity of the Newton 

kernel as applied in a 3-D density modeling context and investigation and mitigation of 

the errors we have detected in our numerical results. However, with our efforts so far, 

we can suggest that 3-D anomalous topographical density may have centimetre-level 

contributions to the geoidal height in some situations. Whether those situations are 

common is yet to be seen. 
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Chapter 5 Abstract 

Geoid computation according to the Stokes-Helmert scheme requires accurate modelling 

of the variations of mass-density within topography. Current topographical models used 

in this scheme consider only horizontal density variations, although in reality density 

varies three-dimensionally. Insufficient knowledge of regional three-dimensional density 

distributions prevents evaluation from real data. In light of this deficiency, we attempt to 

estimate the order of magnitude of the error in geoidal heights caused by neglecting the 
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depth variations by calculating, for artificial but realistic mass-density distributions, the 

difference between results from 2D and 3D models. 

Our previous work has shown that for simulations involving simple mass-density 

distributions in the form of planes, discs or wedges, the effect of mass-density variation 

unaccounted for in 2D models can reach centimetre-level magnitude in areas of high 

elevation, or where large mass-density contrasts exist. However, real mass-density 

distributions are more complicated than those we have modeled so far, and involve 

multiple structures whose effects might mitigate each other. We form a more complex 

structure by creating an array of discs that individually we expect to have a very 

significant effect, and show that while the contribution of such an array to the direct 

topographical effect on geoidal height is sub centimetre (0.85 cm for our simulation), the 

resulting primary indirect topographical effect may reach several centimetres or more (5 

cm for our simulation). 

 

5.1 Introduction 

Forward modeling of gravitational effects of three-dimensionally varying density 

distributions has a long history. Evaluation of the Newton kernel over three-

dimensionally varying mass distributions is an important task in geophysics and 

geodesy. Early attempts decompose crustal masses into prisms, over which the Newton 

integral is evaluated analytically, to determine either the effect of the masses on gravity 

[Mollweide, 1813] or gravity potential [Bessel, 1813]. More complex representations of 

crustal density bodies model crustal masses as polyhedrons [Paul, 1974] or tesseroids 
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[Seitz and Heck, 2001], and may allow vertical density variation within the bodies (e.g., 

Pohánka [1998]). In terms of geodesy, recent efforts have relied heavily on forward 

modeling of crustal mass effects, most prominently in creating synthetic gravity models 

(e.g., Baran et al. [2006]) useful for testing geoid computation techniques. However, 

three dimensional crustal density effects have not yet been incorporated in Stokes-

Helmert geoid modeling. 

The Stokes-Helmert method of geoid modeling requires determination of effects of 

all topographical masses, i.e. crustal masses above the geoid. These calculations have 

traditionally used a constant value of topographical density (e.g., Vaníček and Kleusberg 

[1987]), but numerous investigations have shown that to obtain a precise geoid the 

effects of density variations within topography must also be calculated (e.g., Martinec 

[1993]; Pagiatakis et al. [1999]; Huang et al. [2001]). These efforts have almost 

exclusively focused on horizontal density variations. Since the actual topographical 

density varies with depth, two dimensional topographical density models (2D DDMs) 

cannot exactly model the real density distribution. Martinec [1993] suggests a method of 

dealing with three-dimensionally varying density by averaging density in each 

topographic column to derive a laterally-varying density distribution, and this approach 

is applied by Martinec et al. [1995] to find effects of lake waters on the geoid. However, 

in most situations the information required to construct a 2D DDM using averaged data 

along columns of topography is not available, and so some other method is used, such as 

assigning surface density values to a whole column of topographical density [Huang et 

al., 2001], or applying Monte Carlo methods [Tziavos and Featherstone, 2001]. 
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Investigation into effects of three-dimensionally varying density has been limited, 

because a three dimensional topographical density model (3D DDM) has not yet been 

developed with a high enough resolution and over a large enough area to be suitable for 

geoid modeling [Kuhn, 2003]. This is because the 3D density structure of the 

topography is known to a high resolution only over small areas (for local geophysical 

studies or prospecting), or to very coarse resolutions over large areas (e.g., the CRUST 

2.0 model developed by Bassin et al. [2000]). A more complete discussion on the 

difficulties of creating a 3D density model for geodetic purposes is given in Kingdon et 

al. [2009]. 

Despite the lack of suitable 3D DDMs for geoid modeling, we can still guess some 

things about the shortcomings of 2D DDMs. Kingdon et al. [2009] recently showed that 

in the presence of a single body of topographical density not accounted for in the 2D 

DDM, using only a 2D DDM might introduce errors of up to several centimetres in areas 

of high topography. In reality, topography does not contain only a single body of 

anomalous density, but is a complex arrangement of bodies of varying densities. Thus, 

effects of a single body might be mitigated by the effects of the bodies around it. 

In this effort, we try to discover whether in extreme cases adjacent density bodies 

mitigate each other's effects on the geoid. If effects of adjacent masses cancel each other 

even in a hypothetical situation created so that they are unlikely to do so, it is unlikely 

that the less extreme situations existing in reality will be of any concern. However, if the 

effects of the adjacent masses remain significant then more work is necessary to define 

situations where 3D DDMs are needed. Once we know what constitutes a distribution 
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where 3D DDMs are needed, will we be ready to choose some real data sets where these 

situations exist, for further testing. 

Our investigation is done within the framework of the Stokes-Helmert scheme of 

geoid modeling, following the methodology discussed in section 5.2. Section 5.3 will 

show and discuss our results using this methodology, and finally we will present the 

conclusions derived from our results and make recommendations for future work in 

section 5.4. 

 

5.2 Methodology 

5.2.1 3D density modeling in the Stokes-Helmert context 

Stokes-Helmert geoid computation requires a model of topographical density both for 

calculating the transformation of gravity anomalies to the Helmert space (called the 

Direct Topographical Effect or DTE), and for calculating the transformation of the 

Helmert co-geoid back to the real space (the Primary Indirect Topographical Effect or 

PITE) after the Stokes integration [Martinec et al., 1994a, 1994b]. Existing models 

normally consider topography of constant density, ρ0 (usually 2670 kg m–3), and may 

additionally include lateral variations of density, !"  with respect to ρ0. For our 

modeling, we will consider the variation of topographical density from the laterally 

varying values, in a three dimensional sense. We label this anomalous topographical 

density δρ. It can be considered as a residual density term, such that:  
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  !(r,") = !0 +#!(")+#!(r,") , (5.1) 

 

where r is the geocentric radius of a point where density is being represented, and Ω is a 

geocentric direction, representing the point's geocentric latitude and longitude 

Each of the transformations required in the Stokes-Helmert method comprise an 

evaluation of the difference between the effect of real and of condensed anomalous 

topographical density at the location of each gravity anomaly. Here, we follow the 

approach outlined in Kingdon et al. (2009), which is a generalization of the approach 

given by Martinec (1998), and uses Helmert's second condensation method (Martinec 

and Vaníček 1994a,b). The DTE on gravity is calculated by the integral formula: 

 

  !DTE
"# (r,$) =

  

!
!r

"#( $r , $% )K(r,%; $r , $% ) $r 2 d $r &
$r =rg ( $% )

rt ( $% )

'
(

)
*
*$% +%0

''  

 
  

!"# ( $% )K(r,%;rg[ $% ], $% )rg
2( $% )

&

'
(d $% , (5.2) 

 

where !DTE"#  is the DTE on gravity at a point, and δρ is the anomalous density given by a 

3D DDM for the integration point at coordinates r', Ω'. rt(Ω') and rg(Ω') are the surface 

of the topography and the geoid, respectively. The function K(r,Ω;r',Ω') is the Newton 

kernel, equal to the inverse distance between the computation and integration points. 

 



 

 194 

 

 

 

The PITE on gravitational potential, !PITE"# (rg ($),$) , is calculated by the formula: 
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Notice that the DTE for a particular computation point is evaluated at the topographical 

surface, since it is applied to gravity anomalies at the topographical surface. The PITE is 

evaluated for a point on the geoid surface, which we approximate for the evaluation of 

the Newton kernels as a sphere of radius R = 6 371 km, the mean radius of the Earth. 

The condensation density referred to in these formulas is calculated for a 3D DDM 

according to: 
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For our investigation, we convert the effects in eqs. (5.2) and (5.3) into effects on 

geoidal heights. In the case of the DTE, the effect can be computed by applying Stokes 

integration to the DTE on gravity: 
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where   ! N DTE
!" (#)  is the DTE on geoidal height, γ (Ω) is the normal gravity on the 

surface of the reference ellipsoid, and S(ψ[Ω,Ω']) is the Stokes kernel. 

In the case of the PITE, the effect on geoidal height is found by applying Bruns’s 

formula: 

 

  
! N PITE
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. (5.6) 

 

These effects on geoidal height allow us to compare the effects of masses to some 

meaningful tolerance to determine whether they are significant. In this case, where we 

are looking for a 1 cm geoid, we will consider any effect over 0.5 cm significant. 
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5.2.2  Numerical considerations 

The Newton kernel and its integrals and derivatives in eqs. (5.2) and (5.3) can be 

computed numerically in various ways. For our computation, we use the prismoidal 

method as summarized by Nagy et al. [2000, 2002] for integration near to the 

computation point, and 2D numerical integration  [Martinec, 1998] farther from the 

computation point. 

Applying the prismoidal method to a 3D DDM, the anomalous topographical masses 

are divided into blocks, and the integral of the Newton kernel in planar coordinates is 

evaluated over each block analytically. The same procedure was applied in a slightly 

different context by Kuhn [2003]. This formulation captures very well the behavior of 

the Newton kernel near to the computation point, and in that region is superior to 2D 

numerical integration [Heck and Seitz 2007], even though the 2D integration normally 

uses the more accurate spherical expression of the Newton kernel. The accuracy 

improvement from evaluating the kernel analytically near to the computation points 

outweighs the accuracy benefit of using a spherical formulation [Nagy, 2000]. The 

prismoidal formula is inherently faster than other analytical methods such as the 

polyhedral method, and is also faster than the tesseroidal method near to the 

computation point. The tesseroidal method is very fast when only the zero-order and 

second-order terms of its Taylor series representation are used, but these do not provide 

sufficient accuracy near to the computation point [Heck and Seitz 2007]. 

Comparison of the planar Newton kernels used in the prismoidal approach and the 

spherical Newton kernels shows that the kernels used to evaluate the DTE are more than 

1 % different beyond 5 arc-minutes from the computation point, and that those used to 
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evaluate the PITE are more that 1 % different beyond 15 º from the computation point. 

Fortunately, even for integration points within these ranges of the computation point, the 

2D numerical integration provides identical results to the slower prismoidal approach, 

and so these differences are moot. 

The 2D integration employs the radial integrals of the Newton kernel developed by 

Martinec [1998] to perform the radial integration of the Newton kernel over the vertical 

anomalous density variations in a given topographical column, discretized as segments 

of the column, thus evaluating the radial component of the 3D integral analytically. The 

horizontal integration is performed by summing the radial integral over each particular 

column, and then summing the products of the values of the integrands of eqs. (5.2) and 

(5.3) at the cell centers with the cell areas. The 2D horizontal integration is suitable 

beyond about 5 arc-minutes of the computation point for the DTE, and beyond 1 º of the 

computation point for the PITE. For our evaluations of the PITE, we use the prismoidal 

formula within 5 º of the computation point, to take greater advantage of its superior 

accuracy near the computation point. For the DTE, we use the prismoidal formula only 

within 5 arc-minutes of the computation point. Beyond these limits, 2D integration is 

used. 

With both of the methods we have chosen above, a discretization error is present 

since the actual mass distribution of the topography is represented as a series of 

rectangular prisms of varying height. Such discretization errors will be present unless the 

topographical density model exactly reflects the topographical density distribution, and 

are difficult to quantify since their behavior changes for different mass distributions. For 

example, discs of different size will have different discretization errors. We can decrease 
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the error by using a smaller cell or prism size in our integration procedures. By testing 

we have found that for the discs used here a resolution of 1 x 1 arc-second is sufficient. 

Using a higher resolution than 1 x 1 arc-second did not significantly change the results 

(<0.01 mGal), while going from 1 x 1 arc-second to 3 x 3 arc-second step affected the 

results by up to 0.21 mGal. 

To validate our computational procedures in this investigation, we have tested our 

numerical integration for the case of a single disc of anomalous density, against results 

from analytical formulas for the DTE on gravity and PITE on gravity potential at the 

center of the disc, similar to the approach of Heck and Seitz [2007]. This is the point 

where the PITE caused by the disc is greatest, and a point where the DTE is very large. 

In the test, we find errors of up to 18 % in the numerical integration for the DTE and 

5  % for the PITE in extreme cases, but normally less than 5 % for the DTE and 1 % for 

the PITE. The larger errors occur when the disc is very small, and consequently do not 

indicate a large magnitude of overall error. In terms of magnitude, the largest errors in 

the DTE are only 0.4 mGal, and in PITE on geoidal height only 0.5 mm. Errors in DTE 

and PITE were usually less than 0.15 mGal and 0.3 mm in magnitude respectively. We 

consider such errors admissible for determining the order of magnitude of differences 

between results from 3D DDMs and 2D DDMs. 

 

5.2.3  Proposed tests 

Our question is: can the effect on geoidal height of an anomalous density body, 

unaccounted for by a 2D DDM, be mitigated by the presence of adjacent bodies of 

different anomalous density? To investigate this, we take two extreme cases, each 
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involving an array of anomalous masses. In case A, we choose masses that individually 

are known to have a particularly large DTE, and investigate the effect of the 

conglomerate of these masses on geoidal height. In case B, we choose masses known to 

have a large PITE. In each case, we integrate three dimensionally over the masses 

considered unaccounted for in a 2D DDM, so that the results of the integration will give 

us the deficiency of the 2D DDM. If the effects mitigate each other significantly, it is an 

indicator that we can expect the same in any less extreme case. 

In both cases A and B, we use an array of vertical cylinders as our density model. 

The upper part of the cylinders are assigned alternating density contrasts of positive or 

negative 600 kg m–3, considered anomalous relative to a laterally-varying density model. 

The anomalous density outside the cylinders is zero; i.e., the 2D DDM is considered 

accurate outside of the cylinders. 

Our past work on individual mass bodies has shown that the DTE and PITE are 

greatest when: 

1. the topography involved is thick, 

2. anomalous density is distributed away from the geoid, and 

3. there is a large density contrast. 

Regarding the horizontal size of the bodies, for the PITE the larger the body the greater 

its effect will be, although the rate at which the effect increases becomes very low for 

bodies beyond about 110 000 m wide. Therefore, we use a width of 110 000 m for the 

discs in case B. Of course, the largest PITE would be for a spherical shell, but such a 

model would not allow us to test whether adjacent masses mitigate each other, and so we 

have instead used a disc that induces much of the effect that a spherical shell of the same 
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thickness would, but whose effect still might be mitigated by adjacent discs of opposite 

anomalous density. 

For the DTE, by contrast, there is a range of disc widths of about 3300 m where the 

effect is greatest. This is because the DTE is the difference between the effect of a real 

anomalous mass on gravity at a computation point, and the effect of the anomalous mass 

condensed onto the geoid. At about 3300 m from the computation point, for the case of a 

disc as tested here, these effects become similar, and thereafter the condensed density of 

a given mass has a greater effect on gravity at the computation point than its real density, 

so that the overall DTE becomes smaller. Thus, we use 3300 m as the disc diameter for 

case A. 

In order to accommodate items 1 and 2 in the list above, we choose flat topography 

2000 m thick, and use discs extending from the surface of the topography to 500 m 

depth. These can be thought of as anomalous masses relative to a 2D DDM that 

accurately portrays the density below the masses. An illustration of our model, including 

possible cylinder densities that might result in the +/– 600 kg m–3 anomalous densities 

used in our experiment, is given in Figure 5.1.  
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2200 kg m-3 
(-600 kg m-3) 

3300 kg m-3 
(+600 kg m-3) 

2800 kg m-3 

2700 kg m-3  

w 

500 m 

1500 m 

 
Figure 5.1: Topographical density distribution used for testing. w = 3300 m for 

DTE tests, and w = 110 000 m for PITE tests. 
 

 

We calculate results over a 1 º by 1 º area for our case A simulation, and a 2 º by 2 º 

area for our case B simulation, both described in section 5.3 below. We use a radius of 

2 º for Stokes integration, and so our array of cylinders in case A extended over a 5 º by 

5 º area to capture most of their effect. 
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5.3  Results 

5.3.1  Case A 

The DTE on gravity for case A, as described in section 5.2.3, is given in Figure 5.2. 

 
Figure 5.2: DTE on gravity for case A. 

 
 

The adjacent density anomalies do not significantly mitigate each other's effects on 

the DTE, which reaches +/– 16 mGal. This is not surprising, since the derivative of the 

Newton kernel, used to calculate these effects, decreases very rapidly with distance from 
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the source masses. However, we are ultimately interested in the DTE on geoidal height, 

resulting from the Stokes integration (given by eq. (5.5)) over the DTEs on gravity, and 

shown in Figure 5.3. 

 
Figure 5.3: DTE on geoidal height for case A. 

 
 

Under the smoothing influence of the Stokes kernel, the adjacent masses attenuate 

each other's contributions to the DTE on the geoidal height, which reaches about +/–

 0.85 cm. This may not be the case for density anomalies with greater horizontal extent, 

since in such cases the Stokes integral would do less to mitigate the effects of the 
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anomaly on gravity at its center, where the effect is largest. It thus remains to find the 

maximum effect that masses can have in a simulation like our own. 

 

5.3.2  Case B 

The PITE on gravity for case B, as described in section 5.2.3, is given in Figure 5.4. 

 
Figure 5.4: PITE on geoidal height for case B. 

 
 

We see that for such large cylinders, the effect of adjacent cylinders of opposite 

anomalous density is minimal. Here the effects reach +/– 5 cm, but for larger discs the 
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magnitude would be somewhat greater and the attenuation even less significant, since it 

is hardly significant even for the discs tested here. It is thus likely that the PITE will 

only increase for wider cylinders. 

 

5.4 Conclusions 

The DTE on gravity and the PITE on geoidal height for the anomalous masses (not 

modeled in 2D DDM) in our simulations are not significantly diminished by the 

presence of adjacent anomalous masses, even when there is an extreme density contrast. 

The PITE still reaches about 5 cm, and the DTE reaches about 16 mGal. This 

demonstrates that the error in the PITE resulting from only using a 2D DDM may be 

large even in the presence of adjacent mass anomalies. 

The DTE on geoidal height resulting from using a 2D DDM is significantly 

diminished by the presence of adjacent masses, though it still approaches the 1 cm level. 

However, this is entirely a result of Stokes integration, which was not considered in the 

development of our extreme case scenarios. With this in mind, larger bodies of 

anomalous density that still have a significant impact on the DTE on gravity may 

produce significantly larger effects on geoidal heights. 
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Chapter 6: Poisson downward continuation solution by 

the Jacobi method 

 

This article was published in the first issue of the Journal of Geodetic Science, an open 

access journal created by Lars Sjöberg of the Royal Institute of Technology in Sweden. I 

developed the central concept of the journal, with advice from my coauthors, performed 

the computations and wrote the article. My coauthors provided further guidance in 

revising the manuscript for submission. The full citation for the article is: 

 

Kingdon, R., and P. Vaníček (2011b). “Poisson downward continuation solution by the 
Jacobi method.” Journal of Geodetic Science, Vol. 1, No. 1, pp. 74–81, doi: 
10.2478/v10156-010-0009-0. 

 
 

 

Chapter 6 Abstract 

Downward continuation is a continuing problem in geodesy and geophysics. Inversion 

of the discrete form of the Poisson integration process provides a numerical solution to 

the problem, but because the B matrix that defines the discrete Poisson integration is not 

always well conditioned the solution may be noisy in situations where the discretization 

step is small and in areas containing large heights. We provide two remedies, both in the 

context of the Jacobi iterative solution to the Poisson downward continuation problem. 

First, we suggest testing according to the upward continued result from each solution, 
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rather then testing between successive solutions on the geoid, so that choice of a 

tolerance for the convergence of the iterative method is more meaningful and intuitive. 

Second, we show how a tolerance that reflects the conditioning of the B matrix can 

regularize the solution, and suggest an approximate way of choosing such a tolerance. 

Using these methods, we are able to calculate a solution that appears regular in an area 

of Papua New Guinea having heights over 3200 m, over a grid with 1 arc-minute 

spacing, based on a very poorly conditioned B matrix. 

 

6.1 Introduction 

A continuous plague in geodesy and geophysics is the problem of downward 

continuation of gravity. That is, the determination of the values of the field below the 

surface of the Earth from observations of gravity field on one surface. While various 

methods may be used for this process, we will discuss only the theoretically exact 

solution by the inversion of Poisson integration. 

Downward continuation can be considered the inverse operation of Poisson 

integration, which itself is a solution to the first boundary problem of potential theory: 

given values of a potential field on a sphere, that is harmonic outside the sphere, Poisson 

integration provides values of the field anywhere outside the sphere  [MacMillan, 1930]. 

In our case, the field will be the anomalous gravity field in the Helmert space, as 

described by Vaníček et al. [1996], multiplied by the geocentric radius. Considering the 

geoid as a spherical surface allows us to apply Poisson integration, valid for computation  
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points external to the geoid, according to the formula [Heiskanen and Moritz, 1967]: 
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where Δgh(r,ϕ,λ) is the Helmert gravity anomaly at a point with geocentric spherical 

latitude ϕ, longitude λ and radius r. The symbol R stands for the mean radius of the 

Earth, used here to approximate the radius of the geoid in the geocentric spherical 

coordinate system where the calculation is performed. We assume the value to be 

R=6371008.7714 m, i.e., equal to the mean radius of the GRS-80 ellipsoid (Moritz, 

1980). Δgh(R,ϕ,λ) is the Helmert gravity anomaly at an integration point on the geoid 

with geocentric spherical latitude ϕ and longitude λ. Finally, ( , , ; , , )r R! " ! "# #! is the 

distance between the computation and integration points, also calculated in a geocentric 

spherical coordinate system. 

The integral in eq. (6.1) is a Fredholm integral of the 1st kind [Fredholm, 1900]. It 

can be evaluated numerically in a discrete form for a set of N points, each point Pi  

having coordinates (ri,ϕi,λι), by: 
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where M is the number of points used for discrete representation of the gravity 

anomalies on the geoid, !gj
h (R," j ,# j )  is the gravity anomaly for the point Pj  on the 

geoid having latitude ϕj and longitude λj, Δϕ is the step size in the latitudinal direction 

and Δλ is the step size in the longitudinal direction. In matrix-vector notation, eq. (6.2) 

can be written as [Vaníček et al., 1996]: 

 

Δgt = B Δgg, (6.3) 

 

where Δgt is a vector of gravity anomalies of length N, containing all point anomalies

!gi
h  on the terrain; Δgg is a vector of gravity anomalies of length M, containing all point 

anomalies!gj
h  on the geoid, and the N by M matrix B is composed of elements bij given 

by (cf., Vaníček et al. [1996]): 

 

 
bij =

R2 (ri
2 ! R2 )
4"ri

1
!3(ri ,# i ,$i;R,# j ,$ j )

cos# j%#%$ . (6.4) 

 

Usually, N = M, and the horizontal coordinates of the locations of the Δgg vector 

correspond to the locations of the Δgt vector. This results in a square B matrix with the 

maximum value in each row and column being along the main diagonal, an arrangement 

which will be assumed in the following developments. 
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Note that the discretization given by eq. (6.2), which relates point values on the 

geoid to point values on the Earth surface, is not the only possible way to discretize the 

Poisson integration. In addition to the "point-point" approach given by eq. (6.2), there 

are the "point-mean", "mean-mean", and "mean-point" discretizations, according to what 

representation of the field is used on each surface where it is considered – the meaning 

of these descriptors should be self-evident. These alternative approaches result in 

different formulations of the elements of the B matrix and a different interpretation of 

the elements of Δgt and Δgg. Eq. (6.3) and the developments presented here are valid for 

any of the four formulations, and for the calculations in this paper a point-mean scheme 

will be used, where the output is mean Helmert gravity anomalies, averaged over each 

cell on the geoid, and the elements of the B matrix are given by (cf., Vaníček et al. 

[1996]): 

 

 
bij =

R2 (ri
2 ! R2 )
4"ri

1
n

1
!3(ri ,# i ,$i;R,# j ,k ,$ j ,k )

cos# j ,k
k=1

n

% &#&$ , (6.5) 

 

which represents an average of n kernel values calculated at each point Pk  with 

coordinates ϕj,k, λj,k. The averaging points are usually given on a regular grid within each 

cell, and the cell dimensions are equal to Δϕ and Δλ. The other 3 formulations for the B 

matrix are discussed in [Vaníček and Santos, 2012]. 
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While eq. (6.3) allows us to calculate Δgt given Δgg, we really want to perform the 

inverse operation. We want gravity anomalies on the geoid based on values at the Earth's 

surface, i.e., we want to use the following equation: 

 

Δgg = B–1 Δgt. (6.6) 

 

Fredholm’s integral equations of first kind, such as eq. (6.1), are inherently unstable. 

Even though the problem of downward continuation is “well posed” in the Hadamard 

sense [Wong, 2002], the system of linear equations formed as a numerical equivalent to 

the Fredholm integral may be ill-conditioned (see, e.g., Martinec, 1996). Under some 

circumstances, the system may be almost singular, meaning that the inverse B–1 may be 

very difficult to obtain, a situation that some people solve by adopting one regularization 

scheme or another (e.g., Schwartz [1978]; Goli et al. [2010]). Under these 

circumstances, no exact iterative solution can be found but a non-iterative solution can. 

The LU decomposition is the most efficient non-iterative numerical method for 

calculating B–1 Δgt exactly, since it does not require a complete inversion of the B 

matrix [Press et al., 2002]. However, it is still very time consuming because it goes 

through the decomposition of a potentially very large B matrix. For a typical example, 

using gravity anomalies given at 5 arc-minute spacing over a 2º by 2º region requires an 

B matrix with 576 rows and 576 columns (one for each integration/computation point). 
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6.2 The theory 

An approximate iterative solution seems to be the direction to choose. The most 

intuitively attractive iterative approach is the Jacobi iterative method (e.g., Young 

[1971]), which may be formulated as [Vaníček et al., 1996]: 

 

Δgg(k) = Δgt + (I–B) Δgg(k–1), (6.7) 

 

where Δgg(k) is the k-th iteration of Δgg, Δgg(k–1) is the previous, (k –1)-st iteration, and 

the usual initial estimate of Δgg is Δgg(0) = Δgt. Our formulation here is slightly different 

from the standard formulation by Jacobi which uses the diagonal elements of the B 

matrix instead of I and therefore has a slightly faster rate of convergence [Press, 2002]. 

We have chosen the above form (eq. (6.7)) since it is conducive to testing the 

convergence of the solution using the methods we prescribe. 

The ill-conditioning of B increases with the maximum height of the evaluation points 

in the area of interest, and with decreasing the step size of the grid of integration points 

on the geoid. An upper bound, κmax , of the condition number of the B matrix is given, 

according to Martinec [1996], by: 

  

max max max
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where Hmax is the maximum value of  height for i = 1,2,…,N, and ΔΩ is the step size of 

the grid of input gravity anomalies, considered equal in both the latitudinal and 

longitudinal directions. Thus, for the area with heights over 3200 m in Papua-New 

Guinea (used for our computations here) and input Helmert anomalies on the topography 

spaced 1 arc-minute apart, the upper bound on the condition number is over 227. The 

practical result of such a high condition number is that the numerical precision of the 

solution is worse than that of the input. Note also that the condition number may be 

higher than that predicted by eq. (6.8), which relies on a definition of the condition 

number that uses the eigenvalues of the B matrix rather than its singular values. The 

definition that uses eigenvalues is only valid when the B matrix is a normal matrix, 

which is rarely the case. 

As an approximate rule, the loss of precision is equivalent to the base 10 logarithm of 

the condition number (e.g., Cheney and Kincaid [2008]), so that for a condition number 

of 1 there is no loss of precision, while for a condition number of 227 the loss of 

precision is up to 2 or 3 digits. So for gravity anomalies on the topography known with a 

precision of 0.01 mGal, the output gravity anomalies on the geoid may have a precision 

as low as 10 mGal, and any attempt to increase the precision of the output, for example 

by further iterations in the Jacobi method, will only add spurious noise to the result. 

Thus, it is reasonable to terminate the iterative process as soon as the best attainable 

result is reached. 
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A traditional approach to test whether an iterative solution has converged is to test 

the difference between the solutions from two successive iterations (e.g., Young [1971]). 

So, indicating the k-th difference being tested by the vector δg(k), we would have: 

 

δg(k)  =  Δgg(k) - Δgg(k–1). (6.9) 

 

Since the process generating Δgg(k) is convergent in the L1 norm [Vaníček et al., 1996], 

we know that the accuracy improvement from any subsequent iterations will be less than 

δg(k),  and the process can be considered to have converged in L1 when ||δg(k)||L1  is 

smaller than some prescribed tolerance. If the L1 norm is used, a statement like “the 

errors will not exceed 0.1 mGal” can be substantiated. If the maximum value in δg(k) has 

a magnitude less than 0.1 mGal, it is presumed that including additional iterations would 

not change any  value in Δgg by more than 0.1 mGal. 

The difficulty in applying eq. (6.9) is with choosing an adequate tolerance. We might 

assign a tolerance prescribing the desired accuracy for our Δgg(k) determination. 

However, we may choose a desired accuracy higher than what the numerical apparatus 

is able to deliver. Also, even if the tolerance we set can be achieved by the numerical 

apparatus, there is no guarantee that our result will achieve the desired accuracy. In an 

ill-conditioned system, an exact solution will be very noisy, and as such will be very 

difficult to interpret. 
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An alternative to using eq. (6.9) is, at each step, to compare iterations of gravity 

anomalies on the topography, Δgt(k), using the already calculated B matrix: 

 

Δgt(k) =  B Δgg(k). (6.10) 

 

The testing is then done on the difference between the gravity anomalies on the 

topographical surface determined from the k-th solution (Δgt(k)), and the input anomalies 

on the topographical surface (Δgt): 

 

δ t(k) =  Δgt(k) – Δgt. (6.11) 

 

If we use δ t(k) as defined by eq. (6.11), then we are no longer testing for convergence 

based on the desired accuracy of the result. Instead, we are testing whether the gravity 

anomalies arising from the k-th solution are distinguishable from those used as input. 

Assuming the system is well conditioned, this is done by comparing the L1 norm of δ t(k) 

to a tolerance reflecting the precision of the input data. Thus, if the input data has a 

precision of 0.01 mGal, we might suppose that we have derived results of the best 

possible quality when they produce input values less than 0.005 mGal different from the 

originals. In an ill conditioned system, where Δgt(k) is imprecise because of imprecise 

values of Δgg(k), it may be impossible to reproduce the input gravity anomalies to such a 

precision [Wong, 2002]. However, the choice of half the precision of the input data as a 

tolerance will still produce a result compatible with an exact solution of eq. (6.6), since 
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exact solution methods are likewise blind to the effect of the ill-conditioned B matrix 

(e.g., Young [1971]). 

This change in approach is important mainly because it gives a context for choosing 

tolerances. It is only expected to have a significant effect on results in cases where the 

convergence is very rapid. In fact: 

 

δg(k)  =  δ t(k–1), (6.12) 

 

so that, for any given tolerance, testing using the geoid gravity anomalies always 

requires one additional iteration. 

If we use a δ t(k) calculated by eq. (6.11) or (6.12), and a tolerance consistent with the 

precision of our input data, we will be able to produce an iterative solution as close to 

the exact solution of the system of equations as the precision of our input data allows. 

However, if the system of equations is especially ill-conditioned then we will still 

produce noisy results. This can be avoided by taking the possible error in Δgg(k) into 

account in choosing our tolerance for δ t(k). 

If the tolerance chosen is consistent with the conditioning of the system of equations, 

the best possible solution under the circumstances may be reached. Thus, the choice of 

tolerance may be regarded as a regularization of the solution. If the result seems 

unwarrantedly rough, the tolerance applied may be too stringent, and can be varied until 

a reasonably smooth result is obtained. This refinement of the tolerance choice is 
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equivalent to tuning the tolerance so that it properly reflects what the system of 

equations and input data are actually able to deliver. 

As a rough attempt at defining a suitable tolerance a-priori, we can apply the rule 

described above, which says that the order of magnitude of the loss of precision due to 

ill conditioning is roughly equal to the logarithm of the condition number. If we take p 

as the L1 norm of the vector of precision of the input data (e.g., 0.01 mGal), we can 

choose an approximate tolerance, T, based on: 

 

T = pκ, (6.13) 

 

where κ is the condition number of the system of equations. If the system is well 

conditioned, then eq. (6.13) provides a tolerance close to the precision of the input, 

suitable for testing ||δ t(k)||L1. If the conditioning is poor, eq. (6.13) scales the tolerance 

according to the expected loss of precision in the result. 

In the following, we will test the methods discussed above on “real data” from an 

area of high mountains in Indonesia, based on a portion of the AusSEGM synthetic 

gravity field [Baran et al., 2006]. The next section will describe these results. 

 

6.3 Results and discussion 

6.3.1 Test area and data sets 

We have performed three experiments to illustrate the points above. All cover the same 

area, from 147.5º to 148.5º longitude and –9º to –10º degrees latitude, using data from 
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147º to 149º longitude and –8.5º to –10.5º latitude, to avoid any edge effects (as 

described by Sun and Vaníček [1996]). This involves 14,400 input data points on a grid 

with1 arc-minute spacing. The large number of data points magnifies the differences in 

computation time for different solution methods. The maximum point height in the test 

area, which includes some large mountains in Indonesia, is above 3,200 metres. This 

corresponds, according to eq. (6.8) to an upper bound for the condition number of the B 

matrix of about 227, although we have estimated the actual condition number of the B 

matrix, based on the L1 norms of B and B–1, to be 1347. We therefore expect significant 

numerical instability in the downward continuation process, allowing us to assess how 

well different solutions deal with the numerical instability. 

The input gravity data for the tests will be Helmertized gravity anomalies based on 

the AusSEGM synthetic data set [Baran et al., 2006]. The input Helmert anomalies are 

given in Figure 6.1.  
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Figure 6.1: Helmert gravity anomalies over the study area. 

 

While Figure 6.1 shows gravity anomaly data over the whole input area, the white 

square indicates the computation area. All input gravity anomalies are given in mGal to 

two decimal places, and lacking other information about their accuracy we assume they 

have a precision of 0.005 mGal. The values in this area range from –54.0 mGal to 290.0 

mGal. 

Heights are taken from the digital elevation model (DEM) accompanying the 

AusSEGM data set, and are shown in Figure 6.2. They range from 0 m to over 3200 m. 
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Figure 6.2: Heights of topography over the study area. 

 

By using synthetic data, we will ensure that the comparisons of solution methods are 

affected as little as possible by errors in the input data. The influence of data errors on 

downward continuation is not a focus of this study. 

 

6.3.2 Comparison of three methods for solving the downward continuation 

First, we test whether our use of the δ t(k) vector, given by eq. (6.11), allows us to 

properly assess convergence of the Jacobi iterative process, so as to obtain a result 

congruous with an exact solution. To do this, we have performed downward 

continuation over our test area using LU decomposition, which provides an algebraically 
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exact solution, and the Jacobi iterative method with convergence testing based on 

||δ t(k)||L1, and also ||δg(k)||L1. 

In this test, the ||δ t(k)||L1 will be required to meet a tolerance of 0.005 mGal, 

equivalent to half the nominal precision of the input values. In other words, the iterative 

process will cease when the downward continued anomalies generate surface gravity 

anomalies indistinguishable in the L1 norm from the input data on the level of one half of 

the maximum data error. In this case, the result should be very close to the solution by 

LU decomposition. 

The ||δg(k)||L1 will be required to meet the same tolerance, allowing us to verify eq. 

(6.12), and examine the additional computational cost of using δ t(k) instead of δg(k), 

which requires an extra multiplication by the B matrix for each iteration. If eq. (6.12) is 

correct, the extra multiplication need not be carried out in normal calculations, since δ t(k) 

can just be calculated based on δg(k+1) – and thus the computational cost of each method 

would be almost the same. 

The result for the calculation using the Jacobi method and testing ||δ t(k)||L1 is given in 

Figure 6.3. The results from LU decomposition and from testing ||δg(k)||L1 are almost 

identical to Figure 6.3, and so they are not plotted. Additionally, Table 6.1 provides 

statistics and computation times for each result. All computation times indicated below 

are for running computations on the ACENet parallel grid computing system. 
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Figure 6.3: Result for Δgg from Jacobi iterative approach based on norm of the δ t 

vector. 
 

 

Table 6.1: Statistics of results from three computation methods. 
Method LU 

decomposition 
Jacobi testing δg Jacobi testing δ t 

Minimum [mGal] –291.65 –291.54 –291.54 
Maximum [mGal] 1331.33 1331.23 1331.23 
Mean [mGal] 127.24 127.42 127.42 
Std. deviation [mGal] 79.26 79.01 79.01 
No. of iterations n/a 4684 4683 
Processing time 
[mm:ss] 

208:08 36:11 52:09 

 

The similarity of all three results indicates that the tolerance of 0.005 mGal does lead 

to an iterative result commensurate with the exact result. Furthermore eq. (6.12) is 

verified since the method using δg(k) required exactly one more iteration than that using 
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δ t(k), to meet the same tolerance. The time required per iteration was about 0.46 seconds 

for the δg(k) method and 0.67 seconds for the δ t(k) method. Thus the δ t(k) method, 

implemented as it was here, is relatively slow, and values of δ t(k) should be calculated by 

eq. (6.12) in normal practice. 

As expected, all three results are very spiky. This does not mean the iterative 

solutions were unsuccessful – they achieved their purpose by converging to a result very 

close to the LU decomposition result. However, because of the ill conditioning of the B 

matrix , we have tried to achieve a better agreement between the generated surface 

anomalies and the input surface anomalies than we possibly can. 

 

6.3.3 Comparison of Jacobi results using varying tolerances 

Next, we show how by varying the tolerances for the L1 norm, both when testing the 

surface gravity anomalies and geoid gravity anomalies, the computational noise in the 

downward continuation solution can be reduced. The results given are for the 

"downward continuation effect", or the difference between the surface (as shown in 

Figure 6.1) and downward continued gravity anomalies, given by: 

 

ε (k) = Δgg(k) −  Δgt, (6.14) 

 

This presentation is used to best indicate the noisiness of the different results and their 

characteristic features. Figure 6.4 and Table 6.2 give four results based on tolerances of  
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0.05 mGal, 0.5 mGal, 5 mGal and 50 mGal, as well as the statistics of the surface 

gravity anomalies in the area for comparison. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 6.4: Downward continuation effect from the Jacobi iterative method with 
testing of  the δ t vector with (a) 0.05 mGal, (b) 0.5 mGal, (c) 5 mGal and (d) 50 

mGal tolerances. 
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Table 6.2: Statistics of the downward continuation effect for the Jacobi iterative 
method with testing of  the δ t vector using various tolerances. 

 Jacobi results for anomalies on geoid Surface 
anomalies 

Tolerance [mGal] 0.05 0.5 5 50 n/a 
Minimum [mGal] –291.18 –268.91 15.52 15.52 15.52 
Maximum [mGal] 1330.82 1303.08 558.79 332.55 261.43 
Range [mGal] 1662.00 1571.99 543.27 317.03 245.91 
Std. deviation 
[mGal] 

78.99 78.27 68.77 66.40 57.21 

No. of iterations 4683 1066 47 3 n/a 
Processing time 
[mm:ss] 

32:35 15:37 5:19 4:56 n/a 

 

In all cases we have used the method of testing based on the L1 norm of the δ t vector. 

The figures and statistics confirm the smoothing effect of choosing a less stringent 

tolerance. The spikes evident in the solution for a 0.05 mGal tolerance, which has a 

standard deviation of 78.99 mGal and range of 1662.00 mGal, are diminished in the 

solutions that use a 0.5 mGal and 5 mGal tolerance. They are absent in the solution 

using the 50 mGal tolerance, where the standard deviation has dropped to 66.40 mGal 

and the range to 317.03 mGal. Since the extreme positive and negative spikes are surely 

spurious, this suggests that a suitable tolerance will be somewhere between 5 mGal and 

50 mGal – since the 5 mGal solution shows questionable spikes, which disappear in the 

50 mGal solution. 

As expected, the number of iterations and time consumed drop significantly as the 

tolerance is relaxed, although the drop is less pronounced once the tolerance exceeds 

about 1 mGal. The relationship between the choice of the tolerance and the number of 

iterations, for our computation area, is shown in a semi-logarithmic graph in Figure 6.5. 
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Figure 6.5: Number of iterations of the Jacobi method vs. tolerance chosen for 

convergence testing. 
 

 

The impressive decrease in computation time with the relaxation of the Jacobi 

tolerance shows that in addition to regularizing the solution and producing a better 

result, using a suitable tolerance will also significantly improve computation speed. 

 

6.3.4 Testing the choice of tolerance based on the condition number 

Finally, we have applied Eq. (13) to our situation, using our estimate of the condition 

number based on the L1 norms of 1347, and an assumed precision of the input data of 

0.005 mGal, and come up with a tolerance of 6.7 mGal. This number is in the range we 
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might guess for the best tolerance, based on the results in section 6.3.3. If we use this 

tolerance in our calculations, we find the result shown in Figure 6.6. 

 

 
Figure 6.6: Downward continuation effect of Jacobi method using a tolerance of 6.7 

mGal. 
 

As with any attempt at regularization, we can do little to verify this result, apart from 

saying that it appears to behave as we expect it to. The gravity anomalies on the geoid 

are rougher than those at the topographical surface, but do not have any significant 

spikes, and do not have extreme ranges such as we have seen when using tolerances of 

0.5 mGal or less. Thus, the tolerance chosen according to eq. (6.13) at least produces a 

reasonable result. There are still some smaller spikes in the solution, and so eq. (6.13) 

may provide too stringent of a tolerance, at least when based on the L1 norm when 
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estimating of the condition number. If the condition number is estimated according to 

the L2 or L∞ norm, or determined exactly by singular value decomposition, it will be 

higher and the tolerance provided by eq. (6.13) will be less stringent. Also, eq. (6.13) 

would be slow to implement in practical computations due to the time consumption 

involved in finding the condition number, or even one of the more specific estimates of 

it. Thus, a better method of finding the most suitable tolerance would help in practical 

applications. 

 

6.4 Conclusions 

The results have shown first that testing downward continuation according to the L1 

norm of gravity anomalies (the largest absolute value in the vector of values) at the 

topographical surface, rather than on the geoid, provides a solution commensurate with 

the theoretically exact LU decomposition solution and also with the traditional method 

of testing gravity anomalies on the geoid. Testing of anomalies on the surface should be 

preferred because it allows a more meaningful choice of tolerance criteria and because in 

cases where convergence is rapid, testing the fit of anomalies at the geoid level leads to 

truncating the iterations one iteration too soon and this may result in a significant 

difference in the results. The vector of differences for testing, however, should be 

determined by eq. (6.12), to provide a faster calculation than eq. (6.11). 

We have also shown that by relaxing the L1  tolerances in the Jacobi method from 

those required to get the exact solution, we can regularize the downward continuation 

solution and significantly decrease computation time. While a better prescription can 
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probably be found, our proposal for the choice of a relaxed tolerance based on the 

condition number of the B matrix, according to eq. (6.13), yields a reasonable result. It 

certainly provides a better result than the solution with a higher tolerance or the “exact” 

solution by LU decomposition. 

It seems to us, that the described approach to downward continuation of gravity 

anomalies from the Earth surface to the geoid makes good physical sense. It also 

produces results that appear more transparent from the mathematical point of view, and 

that would be evaluated faster than by using some regularization methods. 
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Chapter 7: Gravity anomalies from retracked ERS and 

Geosat altimetry over the Great Lakes: accuracy 

assessment and problems 

 

This article was published in the journal Terrestrial, Atmospheric and Ocean Sciences, a 

publication of the Chinese Geoscience Union. The concept for the paper was developed 

with Dr. Chienway Hwang, in preparation for a conference in Beijing, and the paper is a 

result of some further research. The computations were performed by myself with some 

assistance from the third author, Dr. Yu–Shen Hsiao. I wrote the manuscript, while my 

coauthors provided helpful comments and especially clarifications in the section on 

calculation of gravity anomalies from satellite altimetry. The full citation for the article 

is: 

 

Kingdon, R., C. Hwang, Y-S. Hsiao, and M. Santos (2007). “Gravity Anomalies from 
retracked ERS and GeoSat Altimetry over the Great Lakes: Accuracy Assessment 
and Problems.” Terrestrial, Atmospheric and Ocean Sciences, Vol. 19, No. 1–2, pp. 
93–102, doi: 10.3319/TAO.2008.19.1-2.93(SA). 

 
 

Note: The standard deviation in comparisons with the EIGEN-GL04C model is treated 

as an RMS error in the article, though not in the interpretation of its results elsewhere in 

this dissertation. The treatment in this chapter is incorrect, since the RMS error is a 

different quantity from the standard deviation. 
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We have not described in depth the way that the covariance matrices used in this 

article were calculated. This has been omitted, apart from a brief description following 

eq. (7.4), because it is an involved procedure and secondary to the main point of the 

article. As indicated in the discussion following eq. (7.4), additional details can be found 

in Tscherning and Rapp [1974]. 

 

 

Chapter 7 Abstract 

Lake waters are a useful area for investigating the response of the Earth gravity field to 

topographical density variations, since lake beds represent large density contrasts 

between water and rock. However, our ability to investigate relations between lake 

bathymetry and the gravity field is limited because of relatively sparse gravity data 

coverage over most lake surfaces, and the inability of satellite-derived gravity fields to 

capture the high frequency response to density effects. Satellite altimetry may provide an 

alternate method to determine a dense gravity field at surfaces of large inland lakes. We 

calculate satellite altimetry derived free-air (FA) anomalies over the Great Lakes in 

Canada, and evaluate them in terms of resolution and accuracy. The anomalies are 

compared to those calculated from the EIGEN-GL04C gravity field, derived from 

terrestrial and GRACE satellite data, to test for bias; and to those from shipborne or 

airborne observations (where available) to test the accuracy of their determination of the 

high frequency component of the gravity field. Our results show that accuracies may 

reach less than 10 mGal, both in terms of bias and higher frequency effects, but are often 
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tens of milligals. Furthermore, we find that altimetry does provide a higher resolution 

gravity field than satellite-derived gravity fields, and so if the accuracy can be improved 

in later efforts it will be a useful tool for investigations of topographical density effects 

of lake waters. 

 

7.1 Introduction 

The study of Earth’s gravity field, and the response of the gravity field to topographical 

density variations, has important implications in physical geodesy. One of these areas, 

and one not yet well explored, is the effect of topographical density variations on 

geodetic methods of height determination. Both geoid determination and orthometric 

heights depend directly on the behavior of Earth’s gravity field, which in turn depends to 

a significant extent on the variations in crustal density near to the surface. While these 

effects have been approximated using a model of laterally-varying density (e.g., Huang 

et al. [2001]; Hwang et al. [2003]; Kingdon et al. [2006]), the effects of density viewed 

as a three-dimensionally varying quantity are not well known. However, any study of the 

effect of these variations requires sufficient knowledge of the gravity field in a study 

area. One of the key study areas for investigations of three-dimensional topographical 

density effects is the pronounced density contrasts existing at the bed of lakes. 

Bathymetry can readily provide a three-dimensional model of these interfaces where 

available, but this is only useful if the gravity field around and over lakes is known to a 

sufficiently high resolution. While gravity anomalies can be computed from shipborne 

or airborne gravity data, in many areas these data are sparse. Also, while satellite gravity 
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data, e.g., from GRACE, may furnish a long-wavelength field over lakes, high frequency 

density affects are indistinguishable in this signal, and so a higher resolution field is 

preferred if available.  

Procedures for calculating gravity anomalies using satellite altimetry results and least 

squares collocation over oceans are well established (e.g., Sandwell and Smith [1997]; 

Hwang et al. [2003]; Sandwell and Smith [2005]). These same procedures have been 

extended to inland water bodies (e.g., Hwang et al. [1998]). Errors in either case result 

from (1) corruption of waveforms by land interference and multi-returns from lake 

bottom for points in shallow waters near to shore, (2) errors in wet tropospheric 

corrections resulting from bad radiometer data, (3) error due to tidal effects, and (4) sea 

state bias. Over lakes, however, we expect (1) to have more influence than over oceans 

because lake waters are overall more shallow. (2) and (4) should be similar for both, 

while (3) should be slightly less in lakes since even in large lakes tidal influences are 

less than in oceans. Fortunately, the errors resulting from (1) are slightly diminished in 

the case of larger lakes, which are also the lakes most likely to have a significant effect 

on the gravity field. Furthermore, they can be mitigated in deep lakes by omitting 

satellite altimetry results near to shore (where waveforms are more erratic), and by 

including onshore gravity observations as part of the input to a least squares collocation 

procedure used to determine gravity anomalies (cf. Hwang et al. [2003]). In some cases, 

altimetry data have been extended to extrapolate information about density distributions 

over larger water bodies for some time now, in determinations of bathymetry from 

satellite altimetry results. Examples of such work are Smith and Sandwell [1994], 

Hwang [1999] and Vergos and Sideris [2002]. Thus, the relationship between density 
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distributions and gravity, determined from satellite altimetry, is well established. What 

we hope to discover is whether such relationships can be investigated using satellite 

altimetry data for the topographical density distribution represented by lake waters. 

In this study, we attempt to calculate free-air gravity anomalies at a 1′ × 1′ 

resolution, better than that currently attainable from GRACE results alone, over the 

Great Lakes in Canada, with a view to finding sufficiently dense gravity anomalies for 

density investigations. The gravity anomalies are calculated using both Topex/Poiseidon 

and ERS-1/Geosat derived height anomalies, in combination with free-air anomalies 

from terrestrial gravity data gathered from the United States Geological Survey’s 

database, and the Geological Survey of Canada’s database. These are used as input to a 

least squares collocation, using the program colloc.f written by Prof. Chienway Hwang, 

and the output is examined by comparison with the GRACE-derived gravity field 

EIGEN-GL04C [Flechtner, 2006] and shipborne/airborne results to assess the accuracy 

of the gravity field determined from satellite altimetry. 

 

7.2 Methodology 

7.2.1 Preparation of terrestrial gravity data 

Terrestrial gravity data for Canada and the United States are freely downloadable from 

the Geological Survey of Canada and the National Geological Survey. Each agency 

provides files containing gravity point names, coordinates, dates and times of collection, 

raw gravity values, and standard deviations. Once complete data sets of raw gravity 

observations were downloaded, data beyond 0.5 degrees of latitude and longitude from 
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the Great Lakes were removed using MATLAB software, as were those assigned 

standard deviations greater than 3 mGal. A visual inspection was used to verify that the 

data at least appeared to represent a continuous surface. 

The remaining data points were converted into free air anomalies according to 

Hofmann-Wellenhof and Moritz [2005, eq. 3-100]. Thereafter, the data set was exported 

from MATLAB and separated into free-air anomalies over lakes, to be used for later 

comparison with results; and terrestrial free-air anomalies, to be used as input for least 

squares collocation. 

Finally, the terrestrial free-air anomalies were filtered using the box median filter 

included with the Generic Mapping Tools (GMT) [Wessel and Smith, 1999] to decimate 

it to a 1 arc-minute resolution. This filter divides input data into cells of user specified 

size, and removes from each cell all but the median data point. It was applied because 

our terrestrial gravity data was too dense, resulting in unnecessarily slow calculations 

and erratic behavior of our least squares collocation algorithm. Final data set coverage is 

shown in Figure 7.1. 
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(a) 

 
(b) 

Figure 7.1: Terrestrial (a) and shipborne/airborne (b) gravity coverage around the 
Great Lakes. 
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7.2.2 Preparation of ERS-1/GM and Geosat/GM data 

ERS-1/GM and Geosat/GM data at a 5 Hz (1.4 km) sampling rate were retracked 

following the method of Sandwell and Smith [2005], to minimize the error in surface 

slope and to decouple it from wave height error. This is especially important because we 

use height gradients to derive gravity anomalies. Furthermore, Sandwell and Smith’s 

method has proven useful in coastal areas, which are analogous to lake waters. 

Because we expect altimetry results over lakes to contain some anomalous results not 

related to the mean lake surface, the retracked altimetry data was filtered for outliers by 

comparison of the observed heights with geoidal heights derived from the EIGEN-

GL04C gravity field. Outlier testing was carried out using the sample standard deviation 

and sample mean for these differences, allowing for a bias between the altimetry results 

and the EIGEN-GL04C field. Pope’s tau test was applied to create a confidence interval 

around the sample mean, and points where the difference fell outside of this interval 

were considered outliers. This filtering assumes that the surface of the lake follows a 

geopotential surface. Figure 7.2 shows data coverage before filtering, and Figure 7.3 

shows the outliers found. 
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(a) 

 
(b) 

Figure 7.2: ERS-1/GM (a) and Geosat/GM (b) data coverage for the Great Lakes. 
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(a) 

 
(b) 

Figure 7.3: ERS-1/GM (a) and Geosat/GM (b) outliers for the Great Lakes. 
 

 

It is evident from Figure 7.2 that ERS-1/GM data alone do not offer better coverage 

than airborne or shipborne data. Geosat/GM data are necessary to improve upon the 
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coverage from shipborne or airborne data. Also, a relatively small number of altimetry 

observations are removed as outliers, justifying our assumption that the lake surface 

coincides with a geopotential surface. 

While many outliers are near to the shore, some occur near the middle of the lakes. 

Comparison of these with bathymetry reveals that they are often associated with 

formations on the lakebeds. These formations could influence the lake surface either by 

their interaction with water currents (which can be quite strong in the Great Lakes), or 

by the way they affect the gravity field. In the latter case they may represent interesting 

phenomena for topographic density effect investigations, although without shipborne or 

airborne data – which are relatively sparse over the Great Lakes, as Figure 7.1b shows – 

it is difficult to distinguish between these effects. 

We can say that any local bathymetric formation would have to be quite large to 

have a noticeable effect on altimeter-derived gravity. For example, suppose a very 

optimistic sensitivity of altimeter results to gravity field variations of 3 mGal. This is 

suggested in Hwang and Hsu [2003] as the current best possible accuracy of altimetry-

based gravity anomalies, based on results of e.g., Sandwell and Smith [1997], Andersen 

et al. [2001] and Hwang et al. [2002]. In order to cause an effect on the gravity field of 

this magnitude, a bathymetric formation would have to be very large. One possibility of 

many would be a 50m high, 460 m wide, hemi-ellipsoidal formation of average crustal 

density (2670 kg m–3) at a depth of 100m below the lake. Such a formation would be too 

small to have a distinguishable effect on a satellite-derived gravity field, such as the 

EIGEN-GL04C field used for outlier testing. However, it could affect the lake surface 
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heights at up to two along track points, which might according to our testing be 

mistakenly considered outliers. 

Finally, along track height gradients are calculated from the satellite altimetry-

derived heights. Again assuming the lake surface to be an equipotential surface, these 

are considered to be the same as the geoid gradients, 

 

e . They are calculated according 

to: 

 

 

e = !h
!d

, (7.1) 

 

where 

 

!h  is the height difference between two along-track points, and 

 

!d  is the 

distance between the points. 

 

7.2.3 Calculation of gravity anomalies from terrestrial and satellite altimetry data 

A remove-compute-restore technique is applied to calculate gravity anomalies. In this 

procedure, effects of a global geopotential model are removed from both the geoid 

gradients 

 

e  and the terrestrial gravity anomalies 

 

!g . This is done according to 

 

 

eres = e ! eref , and (7.2) 

 

 

!gres
land = !g "!gref . (7.3) 
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In eq. (2), for geoid gradients, 

 

eref  represents the gradients derived from a geopotential 

model – in our case, EIGEN-GL04C expanded to degree 360 – and 

 

eres represents the 

residual geoid gradient. Likewise with eq. (3), 

 

!gref  represents the EIGEN-GL04C 

gravity anomaly, and 

 

!gres
land  the residual gravity anomaly. These residual quantities are 

then used as input for least squares collocation to calculate residual gravity anomalies 

over the lakes. The collocation is formulated thus: 

 

 

!g
res

= Cge C
gg( ) Cee + De Ceg

Cge C
gg

+ Dg

" 

# 
$ $ 

% 

& 
' ' 

(1
eres

!gres
land

" 

# 
$ 

% 

& 
' , (7.4) 

 

where 

 

Cge  is the covariance matrix relating gravity to geoid gradients, 

 

Cgg  is the 

gravity-gravity covariance matrix, and 

 

Cee  is the geoid gradient-geoid gradient 

covariance matrix. The terms 

 

Dg  and 

 

De  represent noise in the gravity and geoid 

gradient observations. The output of the collocation could be at any suitable resolution, 

but in our case a resolution of 1’ x 1’ was chosen. 

The covariance functions needed in the least squares collocation computations are 

expanded into series of Legendre polynomials [Moritz, 1980]. The coefficients of the 

polynomials are derived from the error degree variances of the reference geopotential 

models for degrees 2 to 360, and from Tscherning and Rapp [1974] Model 4 degree 

variances for degree 361 to infinity. The details are given in Tscherning and Rapp 

[1974]. The actual computations of covariance functions used a modified version of a 

program in the computer package “GRAVSOFT”. 
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After least squares collocation, the reference gravity anomaly values are restored to 

the final free-air anomaly values, to calculate final free-air anomalies: 

 

 

!g = !gref + !gres, (7.5) 

 

where 

 

!gref  is the EIGEN-GL04C-derived gravity anomaly, and the other quantities are 

as defined above. 

 

7.2.4 Assessment of results 

The accuracy of the results was assessed by comparison with two global geopotential 

models, and with shipborne/airborne gravity data. The shipborne and airborne data was 

converted into free-air anomalies using the same procedure as with the terrestrial data. 

Comparison with the global models EIGNE-GL04C was performed to search for biases 

in our results, and comparison with shipborne or airborne data was used to estimate 

errors in the high-frequency component of our results. Differences between the data sets 

were calculated, with the expectation that these differences would fall within the 

uncertainties of altimetry-derived gravity anomalies suggested by Hwang et al. [2003], 

in which case we could verify that the results are indistinguishable from each other. 

Also, the comparison with both high and low frequency data can give some idea where 

our data fits in the spectrum of resolutions of gravity data available over lakes. 
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7.3 Results 

7.3.1 Comparison of area results 

The entire results of our gravity anomaly calculations are shown by the color plot in 

Figure 7.4. For comparison, Great Lakes bathymetry retrieved from NOAA/GLERL 

[Schwab and Sellers, 1996] is shown in Figure 7.5. 

 

 
Figure 7.4: Results of free-air anomaly calculation for the Great Lakes. 
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Figure 7.5: Bathymetry of the Great Lakes. 

 

At first glance, the results show a significant correlation with lake depths. The free-

air anomalies over lakes range from –80 to 20 mGal, with the lowest values in shallow 

waters and the noisiest results in bumpy areas. This is an encouraging sign of the 

usefulness of these results for density investigations, because the effects of these density 

contrasts (between the lake bed and the water) are not otherwise available in these areas. 

Gravity anomalies based on satellite observations (other than from satellite altimetry), 

while they cover this area, are observed too far from the density contrasts to register 
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their effects. The lack of response to high-frequency density contrasts is visible in the 

EIGEN-GL04C gravity field over the same area, expanded to degree 360, shown in 

Figure 7.6. 

 

 
Figure 7.6: EIGEN-GL04C free-air anomalies over the Great Lakes. 

 

Although Figures 7.4 and 7.6 show similar trends, the EIGEN-GL04C field is much 

smoother than the satellite altimetry results. Also, while the EIGEN-GL04C model does 

show some response to bathymetry, high-frequency bathymetric phenomena are not 
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distinguishable in the field. Thus satellite altimetry results provide additional high 

frequency information on topographic density formations neither available from low-

resolution global geopotential fields, nor from low-frequency satellite gravimetry results. 

 

7.3.2 Comparisons along test profiles 

Our results were next compared to free-air anomalies from shipborne or airborne gravity 

observations over the lakes. In this way, the high-frequency component of our results 

could be tested. Figure 7.7 shows the results for comparisons with all shipborne and 

airborne data over the lakes. The profiles are labeled P1 to P13, in the order in which 

they were tested. Profiles P2, P9, P10 and P5 are drawn from airborne gravity surveys, 

while the other profiles come from shipborne surveys. 
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Figure 7.7: Results of comparisons with terrestrial gravity results. 

 

Although as can be seen above many of the airborne and shipborne results used for 

comparisons were within at most twenty mGal of the altimetry results, in some cases 

there were significant differences. These are usually in the case of shipborne results, 

resulting from a large bias in shipborne data as compared to both results from satellite 

altimetry and from geopotential models. Typical examples are profiles P1 for Lake 

Superior, and P4 for Lake Ontario, shown in Figure 7.8. Gravity values given by 

EIGEN-GL04C are included in the plots (dotted line) alongside those from satellite 
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altimetry (thick line) and shipborne/airborne results (narrow line). This convention is 

continued in later profile plots. 
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(a) 

 
(b) 

Figure 7.8: Profiles showing gravity for P1 (a) and P4 (b) from EIGEN-GL04C, 
shipborne, and satellite altimetry results. 
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These profiles show a distinct bias in the shipborne observations. Furthermore, P4 

shows quite clearly the high frequency field visible from the satellite altimetry results. 

The wide dip near the right side of the graph is particularly telling, as it corresponds 

exactly with a dip in the bed of Lake Ontario. These results introduce an unexpected 

reason why satellite altimetry data is useful in studies of gravity over lakes: publicly 

available shipborne data are not all reliable. 

In other areas, the shipborne/airborne data agreed well (within +/– ~10 mGal, 

without bias) with satellite altimetry results. This was usually the case with airborne 

data, such as along P2 and P9 in Lake Huron. In other cases, while airborne and 

altimetry results agreed very well with each other, they were different from EIGEN-

GL04C results. This is the case for P10 over Lake Michigan. Both P9 and P10 are 

shown in Figure 7.9 as illustrations of agreement between satellite altimetry and airborne 

results. 
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(a) 

 
(b) 

Figure 7.9: Profiles showing gravity for P9 (a) and P10 (b) from EIGEN-GL04C, 
airborne, and satellite altimetry results. 
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Note that the divergence between EIGEN-GL04C and airborne/altimetry results at 

the left side of Figure 7.9b is likely the result of a long narrow dip in the bed of Lake 

Michigan which runs along the first half of the profile. Because of the narrowness of this 

formation, it does not appear in the EIGEN-GL04C field at only degree 360, although it 

has a noticeable effect on the other two sets of results. It is noteworthy that satellite 

altimetry and airborne results register this effect with similar accuracy to each other. 

This implies a strong response to underwater density formations in satellite altimetry 

results. 

Finally, there are some situations where the satellite altimetry results are simply 

inadequate, as revealed by large differences from both the EIGEN-GL04C and 

shipborne gravity. Two such situations occur for profiles P6 and P13, shown in Figure 

7.10 below. 
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(a) 

 
(b) 

Figure 7.10: Profiles showing gravity for P6 (a) and P13 (b) from EIGEN-GL04C, 
shipborne, and satellite altimetry results. 
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Sometimes there are clear physical explanations for these differences, as with P6 in 

Lake Erie, which shows a difference of about 30 mGal between satellite altimetry results 

and shipborne/EIGEN-GL04C results at its west side. In that case, the difference grows 

as the shallow lake (maximum depth of 64m) becomes more shallow near to the shore. 

The difference is presumably a result of the effect of this shallowness on satellite 

altimetry results. Perhaps in the case of lakes – especially those with relatively shallow 

areas extending far from shore – it is better to decide which satellite altimetry data to use 

based on water depth, and not just proximity to a shoreline. 

In occasional situations, however, satellite altimetry data shows deviations from 

EIGEN-GL04C and shipborne results for no apparent reason. While this was rare among 

the profiles we tested, it is the case for P13, where the altimetry results differ by up to 22 

mGal from the shipborne results and show a bias from EIGEN-GL04C results of about 

15 mGal along most of the profile. For other profiles, all differences between sources of 

gravity data have been explicable for one of the reasons above: a bias in the 

airborne/shipborne data, the inability of the EIGEN-GL04C field expanded to degree 

360 to register local density contrasts (those having high-frequency signals), and the 

errors in satellite altimetry results over shallow waters. None of these effects is clearly 

responsible for the differences between results visible along P13. The left half of the 

profile at least is over deep water, and so errors in altimetry results over shallow waters 

cannot have caused the discrepancy. Comparison with bathymetry does not reveal any 

correlation with bathymetric formations, and even if it did we would expect to see these 

formations in shipborne results as well. And finally, the shipborne results agree well 

with EIGEN-GL04C, showing that the difference is in the altimetry results. 



 

 260 

 

7.3.3 Statistical examination of results 

Although our results were not rigorously tested, some comments can be made about 

their statistical behavior. In particular, the maximum, minimum and average differences 

between our satellite-altimetry derived gravity field and both the EIGEN-GL04C and 

shipborne/airborne gravity results, and their standard deviations, can be examined. These 

statistics are provided in Table 7.1. 

 

Table 7.1: Statistics of differences in free-air anomalies between altimetry, EIGEN-
GL04C and shipborne/airborne results (all values in mGal). 

Profile Altimetry –  
EIGEN-GL04C 

Altimetry – 
Air/Shipborne 

 Max Min Avg SD Max Min Avg SD 
P1 7 –13 –2 5 –15 –58 –40 13 
P2 2 –13 –4 4 9 –11 –2 4 
P3 10 –16 –3 7 12 –20 –4 8 
P4 10 –29 –9 12 –20 –48 –34 8 
P5 8 –19 –13 6 –12 –43 –29 7 
P6 1 –23 –9 8 3 –30 13 12 
P7 21 –34 –9 17 –8 –48 –31 12 
P8 2 –12 –4 6 –5 –29 –18 8 
P9 5 –15 –5 5 10 –10 0 5 
P10 5 –25 –10 8 15 –17 0 7 
P11 1 –22 –9 9 –21 –77 –48 23 
P12 17 –43 –16 19 –9 –50 –29 17 
P13 6 –16 –10 7 1 –22 –16 7 

 

Notice first that the altimetry results are consistently lower than the EIGEN-GL04C 

gravity. This is anticipated, since the global geopotential model represents a smoothing 

of the gravity field, and thus is less affected by the density anomalies represented by the 

lakes. Because the water in a lake has a lower density than surrounding topography, it 
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will reduce the value of gravity at the lake surface. However, while gravity at points on 

the lake’s surface will be sensitive to these effects, a smoothed gravity field will be more 

strongly influenced by the more distant topographical masses surrounding lakes. Thus 

we expect the smooth EIGEN-GL04C field to be slightly stronger than one derived by 

satellite altimetry, seaborne or airborne observations. 

If we follow the assumption that the EIGEN-GL04C field represents well the low-

frequency gravity field over the lakes, we can consider the standard deviation of the 

differences between this and the altimetry results like an RMS error. If we do so, we can 

see an error in the differences of less than 13 mGal for most profiles, which is 

acceptable. However, the maximum and minimum values show that for most profiles 

there are some points which lie well outside of this range. 

In constrast to differences with EIGEN-GL04C, differences with shipborne/airborne 

results do not show a variety of standard deviations. In some cases (profiles 4, 7 and 12), 

standard deviations of the differences are lower than for EIGEN-GL04C, suggesting that 

in these cases the shipborne/airborne data and the altimetry results both are modeling the 

high frequency component of the gravity field better than the EIGEN-GL04C model. In 

others (profiles 2, 3, 5, 8, 9, 10 and 13) the standard deviations are similar to those for 

the differences with the EIGEN-GL04C model. This is often the case for profiles based 

on airborne results (profiles 9, 10 and possibly 5), in which the airborne results tend to 

be smoother than the altimetry results. Finally, in some cases (profiles 1, 6 and 11) the 

standard deviations are much higher than those with the EIGEN-GL04C field. In these 

cases, it is often large peaks in the shipborne/airborne results which cause the difference. 

Note also that while some profiles show high magnitude minima for differences with 
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EIGEN-GL04C, this is somewhat deceiving since most of these are the result of high 

frequency bathymetric variations rather than errors in the altimetry results. 

Also, in general the altimetry results agree better with the EIGEN-GL04C model 

than with the shipborne and airborne results. This implies that there is little bias in the 

altimetry results (no more than 16 mGal in magnitude, for these profiles), while there is 

certainly a larger bias in some of the airborne/shipborne results (as much as 48 mGal). 

Profiles where bias is especially present in shipborne results are 1, 4, 5, 7, 8 and 11. 

However, for some profiles (2, 3, 9 and 10), there is a very good agreement with 

shipborne/airborne results. For these profiles, the maximum and minimum differences 

are relatively small (they never exceed 20 mGal), while the standard deviation of the 

differences is even smaller (never exceeding 8 mGal) and the bias ranges from small 

(4mGal) to nonexistent. 

 

7.4 Conclusion 

Satellite altimetry data provide a higher frequency gravity field over lake areas than 

satellite-derived geopotential models, and is sometimes better than publicly available 

shipborne gravity data in the same areas. Altimetry results are mostly unbiased with 

respect to satellite-derived global geopotential fields such as EIGEN-GL04C. Where a 

bias between the two is present, it is usual explicable by reference to bathymetry 

formations which are captured by the altimetry-derived gravity field, but not by the low 

frequency geopotential fields. Furthermore, the altimetry results agree often with 

airborne and sometimes with shipborne gravity results, showing that they are able to 
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accurately model the high frequency component of the gravity field. In many cases 

where they do not agree with shipborne results, it appears that it is the shipborne data 

which is flawed, often having a constant bias from the EIGEN-GL04C field. However, 

the accuracy of altimetry results over lakes is on the order of tens of milligals, which is 

insufficient to distinguish many density formations. Noise of this order might easily be 

mistaken for lake density effects in the absence of data to validate the altimetry results. 

Furthermore, in some cases deviations of altimetry results from other data sources occur. 

Most of these are explicable due to shallow waters adversely affecting altimetry results, 

but in rare cases no explanation is apparent. Thus while altimetry promises to model 

well the high frequency gravity field in areas of sparse data over lakes, they still need to 

be refined before they can provide a reliable gravity field of high accuracy. 
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Chapter 8: Conclusion 

8.1 Summary of findings from the 6 articles 

This dissertation set out to investigate whether orthometric heights, determined either 

directly or from geodetic height observations in conjunction with accurate geoid 

modeling, could be determined to one centimetre accuracy using existing theory, 

numerical methods, and data sets. The problem has been addressed in six articles, 

covering new developments in all three areas. 

 

8.1.1 Articles dealing with corrections to Helmert orthometric heights 

The article “Toward an improved orthometric height system for Canada” demonstrates 

the practical evaluation of the terrain, density and NT geoid-generated gravity 

disturbance corrections to upgrade from Helmert to rigorous orthometric height. It also 

provides results showing the size and characteristics of these corrections. For a test area 

in the Canadian Rocky Mountains, the terrain correction is found to reach 31 cm in 

magnitude and to be predominantly negative, as expected. Negative gravity disturbances 

in the region, perhaps due to isostatic compensation, result in a predominantly positive 

NT geoid-generated gravity disturbance correction, reaching 21 cm in magnitude. The 

anomalous density correction is much smaller, with signs alternating according to 

density anomalies and magnitudes up to 7 cm, and is comparable to results from other 

studies. In the total correction to Helmert heights, the terrain and NT gravity disturbance 

corrections cancel each other significantly, so that the magnitude is at most 17 cm. The 
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large values of the corrections to Helmert heights indicate that, at least in some areas, 

these corrections must be applied to obtain accurate orthometric heights. The small 

values of the density correction, here computed from a laterally-varying DDM, show 

that even in a test area having very large heights and high density contrasts the 

anomalous density corrections are only a few centimetres. The remaining error from not 

applying a three-dimensional DDM is presumably less than that. Thus, even using two-

dimensional DDMs, orthometric heights can be evaluated to an accuracy of a few 

centimetres – so long as that the input data is of sufficient quality and accurate numerical 

methods are applied. 

“Computationally efficient correction to Helmert orthometric heights for terrain and 

density effects”, describes a method for calculating the terrain and anomalous density 

corrections that is accurate numerically to within about 1%, or up to 1 cm, according to 

testing in a “tower scenario”. The method also reduces computation time by at least 50% 

compared to alternative methods, demonstrating that rigorous orthometric heights can be 

calculated efficiently with little numerical error. Although the method used in this article 

was more refined than that of the preceding article, both produced similar results for 

similar test areas, thereby validating each other. 

 

8.1.2 Articles on errors in laterally-varying density models for geoid determination 

In “Modeling topographical density for geoid determination”, current methodologies for 

constructing three-dimensional DDMs and some existing DDMs are reviewed, with the 

conclusion that three dimensional DDMs that guarantee a centimetre-level geoid result 
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do not exist and cannot be practically realized. Next, a mathematical framework for 

calculating the DTE, PITE and SITE on geoidal height for three-dimensional bodies of 

anomalous density is proposed. This framework is applied using somewhat coarse 

numerical methods, that provide in the worst case numerical errors of 25% for the DTE 

(for small values of the DTE), but usually errors of 20% or below. The PITE and SITE 

results have less than 8% error in all cases. 

Using the proposed methodology, simulations are performed using hypothetical 

density models designed to find a worst-case estimate of the errors in the laterally-

varying model. For each simulation, Stokes’s integration is performed on the DTE and 

SITE to convert them into effects on geoidal height, and the PITE is subtracted from 

these to find the total error in the geoid from all masses neglected in the laterally-varying 

model. The DTE and PITE are similar in magnitude, with both reaching about 1 cm for 

the most extreme test case, while the SITE is negligible. The DTE and PITE do not 

cancel each other in the worst-case, and the error discovered in this case has an effect on 

the geoid of 2.2 cm, for a shallow, slightly rotated disc, with density contrast of 660 

kg/m3. Considering that this is the expected worst-case error, shortcomings in geoids 

computed from laterally-varying DDMs are expected to be smaller than about 2 cm in 

most cases. 

The methodology is further demonstrated by evaluating the shortcomings of using a 

laterally-varying DDM to model the effects of the waters of Lake Superior in Canada. 

The lake waters are assigned a density of 1000 kg/m3, a density contrast of –1670 kg/m3 

relative to surrounding rock, which is assumed to have a density of 2670 kg/m3. Lake 
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Superior bathymetry provides the interface between the two densities for creating a 

three-dimensional DDM, and a two-dimensional DDM for comparison. The geoid error 

resulting from using the laterally-varying DDM only is calculated, and even for this 

large density contrast, only reaches 9 mm. If a laterally-varying DDM provides 

centimetre level accuracy for such an extreme density contrast, then in most areas, 

laterally-varying DDMs should be sufficient to produce precise geoid results. 

“Effects of hypothetical complex mass-density distributions on geoidal height” adds 

to the previous result by examining the extent to which adjacent anomalous density 

masses cancel each other’s effects. This is done by creating two arrays of discs of 

anomalous density with high density contrasts, one array designed to maximize the DTE 

of the discs, and the other to maximize the PITE. Following publication of the previous 

paper, more extreme worst-case simulations for the DTE and PITE had been developed, 

that produced laterally-varying DDM errors twice as large as those in the previous 

article, or about 5 cm in magnitude. The principles used to develop these are listed in 

this article, and form a useful guide for what sort of density distributions are not well 

represented by a DDM that varies only laterally. These principles are, in order of 

importance: (1) the topographical elevation is large, (2) the anomalous density is 

distributed far from the geoid, and (3), there is a large density contrast. It is found that 

the DTEs of adjacent discs mitigate each other significantly, while the PITE’s do not. 

Although the DTEs of individual discs were four times larger than in the previous 

article, after Stokes’s integration, the DTE of the array of discs was under 1 cm in 

magnitude. The PITE, by contrast, is 5 cm in magnitude – the same magnitude as if there 
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were no other discs nearby. This article applies a slightly more refined numerical 

computation than the previous one, with errors in the DTE reduced to 18%, and in the 

PITE reduced to 5%. Considering that the worst-case scenario for the DTE, without 

adjacent discs, had an effect of 5 cm, this suggests that the numerical methods used to 

evaluate density effects can obtain about 1 cm accuracy. 

 

8.1.3 Articles dealing with numerical and data issues 

The article “Poisson downward continuation by the relaxed Jacobi method” proposes a 

regularization of the downward continuation by choosing a tolerance for the popular 

Jacobi iterative method in a way that accounts for the ill-conditioning of the problem. 

The suggested method is applied for an area in Papua New Guinea with heights of about 

3300 m, using the AusSEGM synthetic gravity field [Baran et al., 2006] to provide data 

at a 1’ spacing, such that conditioning of the downward continuation problem is very 

bad. For a B matrix with condition number of about 1347, as estimated by the L1 norm, 

the regularization by relaxing the Jacobi tolerance provides a solution of reasonable 

smoothness as compared to the result using a conventional choice of tolerance. The 

maximum difference between the gravity anomalies on the topographical surface and on 

the geoid using conventional methods is 1330 mGal, while after using the new 

regularization method it is less than 150 mGal. 

Finally, in “Gravity Anomalies from retracked ERS and Geosat Altimetry over the 

Great Lakes: Accuracy Assessment and Problems”, gravity anomalies from satellite 

altimetry over the Great Lakes in North America are compared with those deduced from 
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the GRACE-based EIGEN-GL04C geopotential model and with airborne and shipborne 

gravity data along similar profiles. The results identify altimetry over lakes as a data 

source still in need of refinement. While in most cases, the altimetry results agree with 

the EIGEN-GL04C field to about 10 mGal RMS, and in many cases they agree this well 

with airborne/shipborne observations, in others there are discrepancies of up to 50 mGal 

between satellite altimetry and other data sources. Some of the EIGEN-GL04C 

discrepancies are explicable as the result of bathymetric features too small to be resolved 

in the EIGEN-GL04C field, and the discrepancies with much of the airborne/shipborne 

data seem to result from biases in the terrestrial data sources rather than the altimetry. 

However, there is no obvious source for some biases and discrepancies, and even where 

there is good agreement the range of discrepancies is often on the order of 30 or 40 

mGal. The conclusion must be that while the altimetry results are approximately correct, 

and many of their large discrepancies with EIGEN-GL04C would be removed in 

averaging them over 5’ or 1’ cells as is common in geoid determination, further accuracy 

improvement is necessary. The biases between altimetry and other results are especially 

troubling, because these would not be removed by averaging. 

8.1.4 Summary of Contributions 

Taken together, these articles address a cross-section of the most important problems in 

orthometric height determination. They show that current theoretical developments in 

topographical density modeling can provide orthometric heights accurate to several 

centimetres in the worst case, and one centimetre or better in most cases, even using 

models of topographical density that only include lateral density variations. They 
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provide a description of what type of density distributions might reduce the accuracy of 

the lateral-density model, and show that orthometric heights must be calculated using the 

rigorous method, rather than Helmert’s, to provide centimetre level accuracies in 

mountainous regions. Numerical methods are proposed for applying three-dimensional 

topographical density models, should they become available, to a numerical accuracy of 

about a centimetre; for calculating effects of terrain and laterally-varying density also to 

centimetre level accuracy; and for regularizing the downward continuation problem in a 

simple but effective way. Finally, satellite altimetry is assessed as a data source for 

geoid modeling over lakes, and found, while still in need of refinement, to hold some 

promise. 

The question asked at the start of this dissertation is whether a physically meaningful 

height system can be practically realized. The answer is that the theoretical and 

numerical apparatus exist to realize such a system at the centimetre level in most areas, 

and to several centimetres in challenging areas. While existing gravity and topographical 

density data sets do not support this accuracy everywhere, new data sources, such as 

satellite altimetry over lakes, promise to fill some gaps in the current data. 

 

8.2 Recommendations for further study 

In future studies, it would be beneficial to investigate the numerical methods of 

topographical effect calculation for geoid determination as thoroughly as for the 

topographical corrections to orthometric height in Chapter 3. Likewise, errors in using 

laterally-varying DDMs for orthometric height corrections should be estimated, 
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following the procedure applied for geoid determination in Chapters 4 and 5. 

For both orthometric heights and geoid determinations, an attempt to collect three-

dimensional density information of sufficient quality over a sufficiently large and 

challenging area for validation purposes would be ideal. Some areas already have the 

extensive geophysical observations, including Bouguer anomaly maps, surficial and 

bedrock geology maps of high resolution, borehole data and seismic data, that can be 

used to create density models of relatively high resolution. The island of Taiwan is one 

such study area, as multiple three-dimensional DDMs with relatively high resolution (2 

km cubes) have already been created covering the island, as well as a DEM at 40 m 

resolution, with supposed 1 m vertical accuracy [Yen and Hsieh, 2010]. Even the 

existing model, with 2 km cubes, would provide an interesting case study, although a 

model of higher resolution would be preferable. 

Validation using borehole gravimetry would do much to support the theory of 

rigorous orthometric heights. An approach such as that of Strange [1982] could be 

replicated, using modern advances in borehole gravimetry, preferably in an area with 

large elevations and strong density contrasts. 

The downward continuation method proposed in Chapter 6 could be improved by 

developing a fast and sufficiently accurate means of estimating the condition number of 

the B matrix. It should also be validated by comparison to other regularization methods 

already used in downward continuation, like the Tikhonov regularization [Tikhonov, 

1977]. It would further be useful also to test the downward continuation procedure on 

gravity anomalies determined at the topographical surface by spherical harmonic 
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synthesis using a GGM (e.g., the EGM2008 [Pavlis et al., 2008]), and comparing the 

downward continued result to anomalies on the geoid determined from the same GGM. 

This method would provide an assessment of the accuracy of the downward continuation 

more substantial than just examining the apparent roughness of the solution. 

The vertical errors in GNSS are currently the most important data source to 

investigate for improvement of orthometric height determination from geodetic height 

observations. However, any improvement to gravity data that might provide gravity 

anomalies at higher resolutions is likely to improve geoid calculation results. As 

indicated by Chapter 7, further analysis of the errors in altimetry-derived gravity over 

lakes, and improved processing methods to mitigate these errors, are required for 

satellite altimetry to provide a useful source of gravity data over inland waters. This 

application may also be helped by new altimetry missions such as Jason-2/OSTM 

[Lambin et al., 2010]. 
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