
T REPORTECHNICAL
NO. 288

December 2013

SAMYAR SEPEHR

DEVELOPMENT OF A
GEOSPATIAL REFERENCE

FRAMEWORK – A CASE STUDY
FOR THE UNB-GGE SURVEY

CAMP

DEVELOPMENT OF A GEOSPATIAL

REFERENCE FRAMEWORK – A CASE

STUDY FOR THE UNB-GGE SURVEY

CAMP

Samyar Sepehr

Department of Geodesy and Geomatics Engineering

University of New Brunswick

P.O. Box 4400

Fredericton, N.B.

Canada

E3B 5A3

December 2013

© Samyar Sepehr, 2013

PREFACE

 This technical report is a reproduction of a thesis submitted in partial fulfillment of

the requirements for the degree of Master of Science in Engineering in the Department of

Geodesy and Geomatics Engineering, December 2013. The research was supervised by

Dr. Emmanuel Stefanakis.

 As with any copyrighted material, permission to reprint or quote extensively from this

report must be received from the author. The citation to this work should appear as

follows:

Sepehr, Samyar (2013). Development of a Geospatial Reference Framework ‒ A Case

Study for the UNB-GGE Survey Camp. M.Sc.E. thesis, Department of Geodesy

and Geomatics Engineering, Technical Report No. 288, University of New

Brunswick, Fredericton, New Brunswick, Canada, 156 pp.

ABSTRACT

This thesis describes the development of a geospatial reference framework for

categorizing, organizing, validating, browsing, and representing survey camp

topographic data. This topographic data is collected annually by the Geodesy and

Geomatics Engineering (GGE) students at the University of New Brunswick (UNB) as

part of the requirements for a UNB course. ESRI ArcGIS 10 was used to build the

information products associated with the geospatial framework. The information

products were employed for analyzing, organizing, and managing the past and future

topographic map collections. In order to make the geospatial reference framework easily

accessible, a Web-GIS application was developed using ArcGIS Server on the server

side and ArcGIS JavaScript API on the client side.

This thesis represents the establishment of an appropriate geodatabase model that has

been designed and built to satisfy the requirements and characteristics defined by the

spatial reference framework. The project contributed in designing and producing

geospatial information products including a geographical repository of UNB campus,

geospatial data validation tools, repository maintenance methods, and the Web-GIS

service. These geospatial information products constitute a geospatial reference

framework. This framework allows for organization, storage, and representation of past

survey camp data collections and provides the specifications and standards for the future

collections.

ii

Acknowledgment

I gratefully acknowledge the following people for assessing and encouraging me to

complete this research project.

 Dr. Emmanuel Stefanakis, my supervisor, for his support, guidance, and

encouragement. I am very thankful for the time and patience he took to give me

the valuable comments and feedbacks.

 Dr. Susan E. Nichols, for her helpful advices and guidance towards my Master’s

program.

 Mr. David Fraser for answering countless questions and giving great advice.

 Sylvia Whitaker who has always assisted me with all administrative issues.

 My dear family, my parents, for their endless support and encouragement.

 My dear friends for their assistance and encouragement.

iii

Table of Contents

Abstract...ii

Acknowledgment ..iii

Table of Contents..iv

List of Tables..vii

List of Figures...viii

Chapter 1 Introduction..1

1.1 Thesis Background..2

1.2 Thesis Agenda and Objectives...5

1.2.1 Objective..6

1.3 Contribution...6

1.4 Thesis Outline..7

Chapter 2 System and Methodology... 8

2.1 Introduction...8

2.2 Background..9

2.3 Development Workflow..10

2.3.1 Data Assessment..13

2.3.2 Framework Characteristics..14

2.3.3 Building Geodatabase..15

2.3.3.1 ESRI Local Government Geodatabase Model....................17

2.3.4 Data Validation and Geodatabase Maintenance..................21

2.3.5 Web-GIS Service...22

2.4 Summary..24

Chapter 3 Survey Camp Data Assessment and Framework

Characteristics 25

3.1 Introduction... 25

3.2 Survey Camp Data Assessment.. 26

3.2.1 Lack of Consistency in Features Coding System................27

3.2.2 Inappropriate Feature Encoding...29

3.2.3 Incorrect Feature Attributes Coding....................................31

3.2.4 Undefined Shared Geometries……………………...……..32

3.2.5 Unenclosed Areal Features………………………...……...33

3.2.6 Inconsistent Survey of Treed Areas and Green Fields...….34
3.2.7 Inconsistent spatial location of features………………..... .36

3.3 Framework Characteristics... 37

3.3.1 Consistence Feature Surveying..38

3.3.2 Feature Coding Schema...39

iv

3.3.3 Spatial Representation Forms..44

3.3.4 Shared Feature Types..45

3.3.5 Spatial Reference System..46

3.4 Summary..46

Chapter 4 Geodatabase.. 47

4.1 Introduction..47

4.2 Geodatabase Design Phases...48

4.3 Conceptual Design...50

4.3.1 Information Products........................50

4.3.2 Thematic Layers Specifications...51

4.3.3 Datasets Specifications..53

4.4 Logical Design...55

4.4.1 Define the Tabular Structure and Behavior.........................55

4.4.2 Define the Spatial Properties of the Datasets.......................57

4.4.3 Propose a Geodatabase Design..58

4.5 Physical Design..59

4.5.1 Implement and Prototype Geodatabase Design...................59

4.5.1.1 Creating Geodatabase and Loading Data........................61

4.5.1.2 Building the Topologies and Testing the Model.............63

4.5.2 Design workflows for Maintenance.....................................67

4.5.2.1 GIS models for Geodatabase Maintenance......................71

4.5.3 Design Documentation..75

4.6 Lessons Learned..77

Chapter 5 Web-GIS Service Development..78

5.1 Introduction..78

5.2 Web-GIS System...79

5.2.1 GIS Server..81

5.2.2 Client Side..83

5.3 Web-GIS Programming Structure and Properties...................84

5.3.1 Input Data and Data Type..86

5.3.2 Functionalities..88

5.3.3 Calling the Functions...92

5.3.4 Output Data and Data Type...94

5.4 Examining the Map Service Performance...............................96

5.5 Summary..99

Chapter 6 Conclusions...100

6.1 Research Outcomes and Issues Encountered.........................101

v

6.2 Recommendations for Future Research.................................104

Bibliography...106

Appendix I Geodatabase Maintenance..109

I.1 Validating the Features’ Codes..109

I.2 Validating the Features’ Data Type.......................................112

I.3 Applying GIS models..113

I.4 Glossary of GIS Terms..118

Appendix II Geodatabase Schema Documentation............................121

Appendix III Web Service User Guide and Code................................126

III.1 User Guide...126

III.2 ArcCatalog Manager..129

III.3 HTML and JavaScript Codes...130

Vita

vi

List of Tables

Table 2.1: Comparison of the Local Government feature classes with the survey camp’s

data.. 18

Table 2.2: Specifications and advantages of the survey camp geodatabase.....................20

Table 3.1: Summary of the students’ feature codes of the map sets of years 2012 and

2011……………………………………………………………………………………..41

Table 3.2: Summary of the campus features attribute codes.……………………...……43

Table 3.3: Spatial representation forms of the campus features……………………..….44

Tale 3.4: Examples of the features with shared geometry………………………………45

Table 4.1: Phases and steps of designing a geodatabase (Arctur and Zeiler, 2004).........49

Table 4.2: Specifications of the campus key thematic layers.. 51

Table 4.3: Specifications of the campus key thematic layers.. 52

Table 4.4: Datasets and feature classes... 54

Table 4.5: Geodatabase coded value domains... 56

Table 4.6: Topology rules.. 58

Table 5.1: ArcGIS JavaScript API classes and properties utilized for input data............88

Table 5.2: List of the ArcGIS JavaScript API classes for the visibility controller..........89

Table 5.3: The JavaScript classes utilized in the QueryTask execution function............91

Table 5.4: List of the layers and attributes published by the map service........................95

vii

List of Figures

Figure 2.1: Methodology workflow for the spatial framework development..................12

Figure 3.1: Example of a building feature coded as “B” …..…………………………...27

Figure 3.2: Example of a building feature with no specific code ………………...…….28

Figure 3.3: Example of the features encoded with polylines…………………………...30

Figure 3.4: Example of the center lines coded incorrectly as buildings ………………..31

Figure 3.5: Example of incorrect coding for the shared geometries between the buildings

and parking lots ...………….…...………………………………………………………32

Figure 3.6: Comparison of the parking lot polygons with the CAD polylines………….33

Figure 3.7: Example of the trees’ points and the enclosed lines of the wooded area35

Figure 3.8: Map sets of the survey camp of years 2012, 2011 …..…………………….40

Figure 4.1: Implementation work flow for building and populating the geodatabase60

Figure 4.2: Example of tree points specified by query expression.................................. 61

Figure 4.3: Example of parking lots and green fields before the editing........................ 62

Figure 4.4: Example of parking lots and green fields after the editing 63

Figure 4.5: Reports of the topological errors of each dataset ... 64

Figure 4.6: Structure of the geodatabase created in the ArcCatalog 65

Figure 4.7: 1:6000 survey camp base map.. 66

Figure 4.8: Example of 1:2500 survey camp base map..67

Figure 4.9: Geodatabase maintenance workfellow... 71

Figure 4.10: Shows the tools and processes performed in the GIS models....................74

Figure 4.11: Example of dataset documentation..76

viii

Figure 5.1: General illustration of the Web-GIS system and architecture.......................80

Figure 5.2: ArcGIS server system archtecture.. 82

Figure 5.3: Shows the programming framework and libraries.. 83

Figure 5.4: General aspects of the Web-GIS service code and performance...................85

Figure 5.5: Visibility controller function of the map service.. 89

Figure 5.6: Workfellow of the QueryTask execution function....................................... 91

Figure 5.7: Layers’ IDs in the REST service API... 93

Figure 5.8: Example of the map service with no selected features 96

Figure 5.9: Example of representing features selected in the checklist 97

Figure 5.10: Example of querying the features on the map service 98

Figure I.1: Summarization of the attributes codes in the Layer field........................... 109

Figure I.2: Domain table.. 110

Figure I.3: Example of the invalid codes... 111

Figure I.4: Example of the wrong feature coding.. 112

Figure I.5: Example of the validated attributes... 113

Figure I.6: Example of the GIS model creating feature classes.................................... 114

Figure I.7: Example of old and new building polygons.. 115

Figure I.8: Example of the GIS model performs the updating process......................... 116

Figure I.9: Examples of the results for the geoprocessing steps of the GIS model.......117

Figure II.1: Overview of UNB campus geodatabase structure...................................... 121

Figure II.2: Route dataset.. 122

Figure II.3: Building-Wall-Contoure-Parking Dataset.. 123

ix

Figure II.4: GreenArea-Infrastructure Dataset.. 124

Figure II.5: Domain table.. 125

Figure III.1: Example of map service representing the background base map.............126

Figure III.2: Example of selected layers to display on the map service........................127

Figure III.3: Example of pop-up window indicating features attribute data.................128

Figure III.4: Example of the map service preview in ArcCatalog.................................129

x

Chapter 1 Introduction

Geographical information system (GIS) as a combination of information and

geospatial technologies is a tool that results in better representing, organizing, and

managing of spatial and non-spatial data. GIS allows improving the progress of

information accessing in terms of providing the tools for analysing, processing, and then

producing informative spatial data with reliable quality and consistency. The purpose of

a GIS is to provide a spatial framework to support decisions for the intelligent use of

earth’s resources and to manage the man-made environment (Zeiler, 1999). GIS is used

for integrated management of spatial and attribute data for various types of facilities and

to provide users with information models illustrating the data structure with regard to the

spatial and tabular behaviors.

Many organizations that manage geospatial information use GIS technologies to

develop information models of their holdings. According to the previous researches and

projects regarding campus GIS, universities are organizations which significantly

demanding information technologies such as GIS to build management and

representation systems for their geospatial holdings. Different applications built in order

to organize and represent the campus geospatial data such as campus Web-GIS (Fangli

et al, 2010), campus information navigation system based on GIS (Huang et al, 2010),

and campus spatial information service (Yang, 2009).

1

In this thesis, a set of geospatial information products were developed according to

the requirements of the GIS group in Geodesy and Geomatics Engineering (GGE)

department of University of New Brunswick (UNB) to manage students surveyed

topographic data. This data was collected as part of the requirements for GGE 2013 -

course often referred to as “Survey Camp II”. The applications and the information

products built in this thesis can be viewed as a geospatial reference framework for this

GGE survey camp. This is because the framework provides students with surveying

specifications that they need to consider (i.e. the topographic features that need to survey,

the procedures that need to follow when collecting and then creating the map products,

etc.) and various tools, methods and services for validating the student surveyed work

outcomes. Thus, the overall goal of developing the geospatial reference framework is to

improve and facilitate the processes of analyzing, validating, categorizing, storing,

retrieving and representing GGE survey camp geospatial data. The development of the

geospatial reference framework will be explained in terms of the information systems

that have been produced including the geodatabase model, validation and maintenance

processes, and the Web-GIS service.

1.1 Thesis Background

 According to Delliska et al, 2008, GIS and information models or products that are

utilized for managing geospatial data of the universities’ campus commonly provide and

perform the followings items:

2

 Analysing the existing maps and plans of university facilities and features;

 Visualizing of maps and plans of university regions and features such as

buildings, road networks, parks, sport centers, infrastructure objects etc.; and

 Identifying and generating of campus key thematic layers.

In this thesis, the information model comprised the core of the campus GIS system.

The information model is an ESRI geodatabase. A geodatabase (GIS or -geographical

database) has been designed and implemented focusing on the GGE survey camp

geospatial holdings, with respect to the standard procedures of building geodatabases;

including conceptual, logical, and physical design phases (Arctur and Zeiler, 2004).

Designing a geodatabase involves defining the thematic layers in terms of the usage,

content, and representation of each thematic layer or defining how geographic features

are to be represented (for example, as points, lines, polygons, or tabular attributes).

Furthermore, geodatabase design is to specify how data is organized into feature classes

and attributes and also specifying the GIS behaviours by establishing the spatial

relationships in datasets using topology rules (Arctur and Zeiler, 2004). After

accomplishing the design and building phases, the geodatabase was populated with the

survey camp geospatial data originally obtained from the CAD files of the UNB campus

topographic maps as surveyed and created by the GGE undergraduate students.

3

Prior to designing the geodatabase, the original CAD files were validated and

analyzed using ArcGIS 10 in order to address the issues and difficulties in terms of the

data consistency and variety. The geospatial reference framework requirements were

specified with respect to the results obtained from CAD files assessment in order to

solve, manage, and minimize the issues and difficulties. Furthermore, the validation

methods were introduced and defined with respect to the requirements first to improve

the data quality and consistency and then to support and facilitate the geodatabase

maintenance processes and workflow.

The maintenance workflow of the geodatabase consists of specifying, converting,

validating, editing, and finally updating the data in the repository. First, the CAD data

(map layers) must be converted to GIS data and then analyzed and validated based on

the features’ category, representation form, and the attribute coding system defined as

the information model conceptual and logical specifications. Moreover, a Web-GIS

service was developed to publish an interactive base-map which consists of the feature

layers and associating attribute codes of UNB campus to help the users understand the

geodatabase structure in terms of the features’ spatial and non-spatial properties. The

Web-GIS service built using ArcGIS server and ArcGIS JavaScript API to visualize the

campus’ feature layers along with performing a set of identification and query functions.

4

1.2 Thesis Agenda and Objectives

The purpose of this Master’s Thesis is to develop and propose a geospatial reference

framework to manage and organize the student surveyed topographic data. The

geospatial framework consists of a set of specifications and information products which

improve and facilitate the processes of categorizing, arranging, storing, identifying, and

representing the survey camp data including:

Specifications:

 Defining the key feature layers (thematic layers) of the campus.

 Establishing a feature coding schema for the key features.

 Specifying the spatial data types (geometry types) of the key features.

 Defining the spatial relationships between the features.

Information Products:

 A geodatabase model to store and then to control the survey camp data spatial

and non-spatial behaviours according to the specifications mentioned above.

 A Web-GIS application to allow the users to visually explore and interpret the

campus’ features layers and also to query the tabular coded value, and therefore

facilitate the process of representing the framework specifications.

5

 1.2.1 Objectives

1. To define the spatial and non-spatial characteristics of the geospatial reference

framework; this will allow for establishing the validation methods as well as defining

specifications to be used during the survey camp operation.

2. To create surveying specifications (e.g. what features to survey, which feature codes

to assign to feature) to be used by students during topographic survey. These

specifications will improve data consistency and facilitate repository maintenance

process.

3. To design and build a geographical repository, a geodatabase, in order to categorize,

store, and manage the GGE survey camp geospatial data.

4. To develop a Web-GIS service to publish an interactive base map of the UNB campus

in order to represent the spatial framework characteristics and specifications.

1.3 Contributions

The overall goal of this project's objectives is to create a GIS system to analyse and

manage GGE survey camp data. The GIS approaches and solutions, information

products, and applications built in this project will be employed in the training purposes.

Respectively, students will have a different and new interpretation of the survey camp

geospatial data. Moreover, by using the GIS applications and information products, the

survey data quality and consistency will be improved.

6

1.4 Thesis Outline

This thesis is organized into six chapters. This chapter introduces the thesis

backgrounds, objectives, and contributions. Chapter 2 discusses the methodology carried

out to achieve the objectives as well as reviewing the technologies and terms employed

to produce the project’s major outcomes. Chapter 3 includes the data examination and

validation procedure as well as defining the systems and methods of establishing the

geospatial reference framework’s characteristics. Chapter 4 explains the process of

designing and implementing the geodatabase along with illustrating the maintenance

workflow and documentation of the database. Chapter 5 discusses the Web-GIS service

development procedure along with showing the results and highlights the advantages of

the service. Chapter 6 discusses the thesis outcomes and issues encountered.

Recommendations for the future research are provided as well.

7

Chapter 2 System and Methodology

2.1 Introduction

In this chapter a background of the survey camp will be given to illustrate its

outcomes and regulations as well as the issues and inconsistencies occurred in surveying

camp data, due to the differences in specifications, usage, and standards of CAD and

GIS systems. The methodology of the spatial reference framework development will be

introduced and illustrated. The methodology procedure consists of three phases and each

phase will be discussed in terms of the applying technology as well as the information

systems and services produced.

In the first phase, the importance of survey camp data validation will be discussed in

order to specify the causes of the issues existed in the CAD files. In the second and the

third phase, the information system and Web-GIS service developed in this project will

be discussed to illustrate their usage, advantages, and the capabilities in managing and

organizing the survey camp data. Furthermore, the information products that were

utilized in other research work, have been described briefly to illustrate the methods

applied for organizing and managing various types of spatial data. Besides, the spatial

data management methods, information products, and GIS approaches that were applied

in others’ research work have been reviewed. Also, a comparison performed to evaluate

the suitability of a geodatabase model which is similar to the one that was developed in

this thesis.

8

2.2 Background

Each year, GGE students conduct a topographic survey of part of the UNB campus

as part of the course requirements for GGE2013, this course is often referred to as

Survey Camp II. Students work in groups and each group is assigned a specific area of

UNB campus. Each survey area typically contains several types of features such as

buildings, sidewalks, streets, parking lots, green areas, trees, lamp posts, etc. Each group

is responsible for creating a digital CAD file and a topographic map of their survey area

and these two products are typically created using CAD software. In comparison with

Orthophotos (acquired in 2008, resolution is approx 15 cm), the student’s survey data

generally indicate the following specifications:

 The collected data tends to correctly depict the location of features on the UNB

campus.

 The data is complete, that is, contains the topographic features that students were

supposed to survey.

However, after examining the students’ surveyed data, there are many issues with the

digital datasets that need to be resolved before incorporating the data into a campus GIS.

The issues will be discussed in detail in chapter 3. Most of the issues occurred due to the

requirements and specifications of the GIS system, which were not met in the students’

maps generated in CAD environment. These specifications and requirements mostly

influence the data identification, categorization, validation, and storage processes in the

GIS system.

9

In a GIS system, the spatial and non-spatial properties of the data must be defined to

improve data storage, visualization and retrieval. Therefore, to build a GIS for the GGE

survey camp, first the existing issues of the students’ CAD files were analyzed and

outlined and then the spatial framework was developed according to the specifications

and requirements defined against the existing issues.

2.3 Development Workflow

As mentioned, the methodology consists of three phases; each phase includes the

following steps:

 Phase one:

1- To assess and examine the CAD files of survey camp topographic maps.

2- To specify the spatial reference framework’s characteristics.

 Phase two:

3- To design and implement the GIS repository (geodatabase).

4- To introduce the methods and workflow of validating the data and maintaining

the repository.

 Phase three:

5- To develop the Web-GIS service.

10

The first phase will be briefly described in this chapter to outline the procedures and

purposes of the data validation. Later in the chapter 3, the whole assessment process will

be explained along with the examples to highlight the issues. The second and the third

phases consist of the development and implementation of the main information products

including the geodatabase, data validation methods, geodatabase maintenance workflow,

and the Web-GIS service.

The details of the information product development will be explained separately in

the later chapters. Figure 2.1 shows a flowchart including the developing approaches and

processes implemented in the spatial framework development procedure.

11

Figure 2.1: Methodology workflow for the spatial framework development

12

CAD datasets containing

the survey camp data

from years 2007 to 2012

2- Defining requirements

and characteristics of the

spatial framework against

the inconsistency issues

1- Assessing Survey camp

datasets in ArcGIS system in

order to identify

inconsistency issues

3- Designing a geodatabase

model based on the spatial

framework characteristics

5- Populating the

geodatabase with the best

survey data in terms of the

completeness, correctness,

and year of collection

4- Defining the data

validation methods

and creating GIS

models to maintain the

repository

6- Developing a Web-GIS

service in order to publish the

framework characteristics via

an interactive map service for

survey camp feature layers

New survey camp

data collected based

on published

framework

characteristics by the

web service

Phase one

Phase two

Phase three

2.3.1 Data Assessment

By implementing the data assessment, the problems and issues with the data were

identified. The survey camp data issues caused the major difficulties in building the GIS

system. Moreover, identifying the issues was necessary prior to developing a spatial

framework which could facilitate the survey camp data management; specifically,

identifying the issues helped in establishment of the framework specifications. The steps

mentioned below were performed in order to assess the data:

1. Creating an initial geodatabase and then establishing the datasets according to the

years of survey data collection.

2. Importing the CAD files as feature classes into the corresponding datasets

according to the year of collection.

3. Adding the data into ArcMap and then analyzing the attributes of the “Layer”

field and the spatial data types of each feature. For example, building features

were analysed in various years and the issue identified regarding the attribute

codes associated with the features. Additionally, data type of the features in the

CAD maps could not meet the logical requirements of the GIS system. For

instance, features must be stored and represented as polygons, lines, and points;

however, features in the CAD files were mostly represented with polylines. The

issues identified in the CAD files cause the identification and classification of

survey camp data to be hard and time consuming. The geospatial reference

framework specifications were introduced considering the issues. The

information products were developed to implement the specifications.

13

2.3.2 Framework Characteristics

The framework characteristics were defined in a way to support the information

products to fulfill the goal of organizing the survey camp data. The following items were

supported in the framework characteristics:

1. Specifying the classes and layers of the features which must be surveyed and

then represented in the CAD maps. Therefore, the surveying groups will know

that what features are expected to be surveyed. Accordingly, the CAD files that

containing the new survey data, would be appropriate in terms of data

consistency and particularly ready to be stored and used in the GIS repository.

2. Providing an attribute coding schema in order to improve and facilitate the

process of identifying, validating and then organizing the survey camp data. This

item specifically allowed the GIS system to control the tabular behavior of the

geospatial data.

3. Specifying the data spatial type for the various features existing on the campus.

This item significantly improved the mapping and cartography purposes.

Additionally, the new survey camp data will be mapped according to the spatial

data type that defined by the framework.

4. Establishing the topology rules to control the spatial consistency of the key

features.

The characteristics mentioned above will be explained with the examples in section

3.5. The characteristics were specifically considered in designing and building the

geodatabase, validation and maintenance methods, and developing the Web-GIS service.

14

2.3.3 Building the Geodatabase

Relational Database Management System such as the ESRI geodatabase has been

used extensively in the last decade for the compilation of data as well as ArcGIS for

visualizing the spatial data (Chesnaux .R et al, 2011). There are various research projects

regarding establishing geodatabase models for different types of spatial data. Some of

those researches will be mentioned in this section first to demonstrate the usage of

geodatabase and then to compare other projects with this research project. Furthermore,

a geodatabase model that generated by ESRI to manage campus facilities will be

addressed and then analysed in ArcCatalog to show the similarities and differences with

the geodatabase model created in this project for organizing the survey camp data.

 Mapping hydrogeological features: In this research project a spatial database

implemented utilizing ESRI personal geodatabase as a repository of hydrological

spatial data (Chesnaux .R et al, 2011). The geographical information organized

into datasets created from Microsoft Access which is a relational database.

Various spatial data such as, topography, wetlands, land use, administrative,

transportation, and hydrogeological content were added and organized as feature

classes in the geodatabase.

 Storm-water management: A campus GIS developed in this project to provide a

spatial and tabular framework for storm-water system management on North

Carolina State University (NCSU) (Smith and Devine, 2006). Moreover, the GIS

system is an evaluation tool to measure the performance in the storm-water

management plan. The data layers stored in the geodatabase datasets as polygons,

15

polylines, and points to generate the NCSU campus basemap. Storm-water data

developed utilizing editing session in ArcGIS and then stored in the geodatabase.

 Urban information system: A geodatabase designed for urban thematic layers of

Hanoi city including basemap layer, administrative area, cadastre layer,

inhabitant area, transport layer, Environment layer, society – economis layer, and

infrastructure layer (Binh et al, 2008). The entities were stored and organized as

feature classes in the geodatabase. For example land parcels and houses specified

with polygons or streets and trees specified as lines and points respectively.

Moreover, the topology rules established for the feature classes to maintain the

data integrity and consistency in the geodatabase.

 Urban road network environmental quality: The research placed in the city of

Chania (GR) and the goal was to develop a geodatabase model in order to

evaluate the environmental quality of the urban roads (Tsouchlaraki A. et al,

2010). Geodatabase design consisted of four stages as: defining the geodatabase,

conceptual design, logical design, and physical design of the geodatabase. Eight

main categories defined to address the tabular behaviour of the road features as

urban planning and architectural, construction materials, road equipments, road

traffic, land uses, pollution, climatic, and economic indices. The street lines

generated by digitizing the axe of road network in the study area.

 Web-GIS for Wetlands: The objective of this project was to develop a web-GIS

and a geodatabase for Florida’s wetland providing map and data services

(Mathiyalagan V. et al, 2005). The geodatabase utilized as a repository to

16

respond the queries implementing in the Web-GIS regarding the wetland’s data

such as geographic location, map projection, vegetation type, and soil property.

2.3.3.1 ESRI Local Government Geodatabase Model

The Local Government geodatabase model supports the following:

1. Local government basemap

2. Infrastructure maps and apps

3. Election maps and apps

4. Public safety maps and apps

5. Planning and developing maps and apps

6. Facilities and campus maps and apps

7. Address maps and apps

8. Public works maps and apps

(http://www.arcgis.com/home/item.html?id=b8905e21104342afbe830da28d11b2

b9)

The model was downloaded from the URL mentioned above in order to analyse the

geodatabase structure in terms of its datasets and feature classes. The Local Government

geodatabase was opened in ArcCatalog and then the datasets and feature classes were

compared with the survey camp data. The “FacilitiesStreets”, “SewerStormwater”, and

“waterDestribution” datasets were determined to most closely resemble the contents in

the survey camp CAD files. Table 2.1 shows examples of how the feature classes in

these datasets compared with the survey camp data content.

17

Table 2.1: Comparison of the Local Government feature classes with the survey

camp’s data.

Feature classes of

FacilitiesStreets Dataset

If supports the survey

camp data content

Matching data in the

survey camp

BridgePoint No -

Building Yes Building polylines

BuildingFloor No -

BuildingFloorPlanLine No -

BuildingFloorSection No -

BuildingInteriorSpace No -

BuildingPhotoLocation No -

CurbRamp Yes Curb polylines

Gurdrail Yes Fence polylines

LandscapeArea Yes Green areas

ParkingSpace Yes Parking areas polylines

PavementMarkingLine No -

PavementMarkingPoint No -

PavementSchedule No -

Pole No -

RRCrossing No -

Sidewalk Yes Sidewalk polylines

SiteAmenityLine No -

Street Yes Street polylines

StreetFurniture No -

StreetIntersection No -

StreetPavement Yes Asphalt areas polylines

Tree Yes Tree points

SewerStormwater Dataset

Stormwater_Net_Junction No -

ssCleanOut No -

ssDetention No -

ssFitting No -

ssManhole Yes Manhole points

ssOpendrain Yes Drain storm points

ssSystemValve No -

ssTap No -

ssTestStation No -

WaterDistribution Dataset

wHydrant Yes Hydrant points

wPump No -

wSystemValve No -

wTestStation No -

18

According to the comparison illustrated above, there are three reasons to not use the

Local Government geodatabase as an information model for the survey camp data:

1. There are various features on the UNB campus that surveyed and represented in

the CAD files such as Green area, route, and infrastructure features which not

matched with the feature classes mentioned above in the table. In Chapter 3, all

the feature types on the campus that were represented on the CAD files

belonging to the survey collections in years 2011 and 2012 will be discussed.

2. The data type of the feature classes do not meet the framework requirements

defined for the survey camp in terms of data spatial representation and tabular

behaviour. For example, the ParkingSpace mentioned in the table 2.1 is a point

feature class, whereas the parking areas encoded as polylines in the CAD files.

3. The Local Government geodatabase has a large number of datasets and feature

classes which mostly are not proper to use for the survey camp data; as a result,

in case of using the Local Government geodatabase the management and

maintenance processes will be hard and time consuming for the both existing and

new survey data.

According to the reasons mentioned above, a geodatabase model produced

specifically for the UNB survey camp to support the existing and future surveying data

as well as the framework characteristics in order to facilitate the management and

maintenance processes. The progress of the geodatabase design and implementation will

be discussed with details in the chapter 4 based on the standard design phases and steps

mentioned in Designing Geodatabases (Arctur and Zeiler, 2004). Table 2.2 illustrates the

specifications and advantages of the information model produced in this research project.

19

Table 2.2: Specifications and advantages of the survey camp geodatabase

Geodatabase

aspects

Specifications and advantages

Datasets
 The datasets defined and established including: Route,

Building_Wall_Countor_Parking,and GreenArea_Infrastracture

to organize the survey camp map data in the datasets based on

the topological relationships between campus features.

Feature

classes

 Feature classes were defined in each dataset according to the

variety of campus feature represented in the survey camp CAD

files. Feature classes are the geodatabase components which

store a number of features of a similar type as a single layer

(e.g. building, street, tree, or parking lot feature classes).

 Additional feature classes created in order to store and manage

the data which were not specified in the CAD files such as

green field, wooded area, and walkway feature classes.

 The spatial data type (point, line, and polygon) of feature

classes were determined according to the data content that they

should store in the geodatabase. Therefore, feature classes will

indicate the variety, content, and type of the campus features.

 Feature classes were utilized to create a GIS basemap for the

campus. That will help to improve the survey camp data quality

in terms of the consistency and validity.

Tabular data
 The tabular data represent the features’ attribute coding system

for the campus features. It supports the survey camp

improvement in terms of data consistency as well as data

validation and maintenance processes.

Topological

rules
 The topological rules established between the campus features

in order to improve the data consistency and facilitate the data

validation process.

Spatial

reference

system

 New Brunswick Double Stereographic (CSRS NAD83)

projection is specified as the spatial reference system for the

geodatabase feature layers.

Data source

 All the spatial data stored in the geodatabase obtained from the

CAD files containing survey data of different collection years.

 According to the data type and content, the polyline and point

layers of the CAD files employed in order to either import or

create the spatial data in the geodatabase.

20

2.3.4 Data Validation and Geodatabase Maintenance

It is critical to validate the data before storing it in the repository. As mentioned, the

data tabular behaviour, spatial data type, and the topological relationships between the

campus features considered and implemented in building the geodatabase. Accordingly,

validation methods are proposed and applied in order to examine the data consistency

and correctness with respect to the attribute coding schema and spatial data type of the

feature classes. The topology rules are specified and applied as well. The validation

methods and topology rules will be explained in the Chapter 4. GIS models were created

using the ESRI Model-Builder to maintain the geodatabase. A set of GIS (geoprocessing)

tools were utilized to build the GIS models. Each GIS model performs specific GIS tasks

to keep the geodatabase updated with new survey camp data. The validation procedure is

demonstrated using a sample data in Appendix I. The validation process described below:

1. Identifying the features with incorrect feature codes.

2. Applying the correct feature coding with respect to the proposing coding schema.

3. Converting the CAD files into GIS data, and save them as new feature classes in

the geodatabase, and updating the geodatabase with the new feature classes. All of

the mentioned processes are performed by the GIS models consisting of a set of

GIS tools (geoprocessing tools). The GIS tools were set to perform specific

processes from converting the CAD files to GIS data, and updating the layers

based on the standard geoprocessing functions (e.g. spatial joins).

4. Applying the topological rules to the feature classes to make sure the features are

categorized and stored in the geodatabase correctly.

21

2.3.5 Web-GIS Service

The Web-GIS service developed in order to publish the spatial and non-spatial

content of the survey camp on the web. Moreover, it represents the framework

specifications and characteristics with respect to the information system spatial and non-

spatial properties and structure. The ArcGIS server was used along with the windows

Internet Information Services (IIS) as the GIS server. The actual web GIS service

content and functionalities were implemented using ArcGIS JavaScript API. The design

and specification of the service will be explained in details in the chapter 5. In bellow,

some representative servers are briefly described to demonstrate the research projects

that produced web GIS systems using the similar technologies.

 Web GIS application with ArcGIS server: In this research project the ArcGIS

server defined as a sharing objects library of the GIS software. The services

published with ArcGIS server contain map, geodata, and geoprocessing. Basic

map operations including zooming and panning provided over the forestry data

in Linkou Forestry Bureau in China. Furthermore, measurement and query

functions established for measuring the distance, showing the XY coordinates,

and showing the attribute data such as forest id, name, shape, and area. (Lu H. et

al., 2010).

22

 Real state Web GIS application based on ArcGIS server: First, a database

constructed with attribute and geospatial real state data. Real estate early warning

information release platform based on ArcGIS server focuses on sharing and

searching information in a distributed environment with multi-user concurrent

access (Zhao J. et al., 2010).

 Web GIS for Apollo Analyst's Notebook: A web GIS developed based on

ArcGIS server and ArcGIS JavaScript API to represent the Apollo data. Most of

the data was acquired four decades ago during the Apollo mission. Cached map

was used and the map was designed to 13 levels of scales to be cached. Data

represented as basemap consisting of raster data and feature layers of vector data

stored in a file geodatabase. Basic mapping and GIS functions of this WebGIS

system include map display, pan, zoom in/out, navigation, and identification.

Advanced GIS functions such as special queries can also be submitted to the

system to acquire the corresponding results in the map. (Wang J. et al., 2010).

 Campus Web-GIS Based on ArcGIS Server: Architecture for campus Web-GIS

proposed based on ArcGIS server in southern campus of Xidian University. This

architecture includes functions of distributing, managing and serving spatial

information through internet. The campus information system consists of the

ground spatial data including building, road, and green land etc. Distance

measuring and layer controlling provided as the major functionalities (Fangli et

al, 2010).

23

The Web-GIS service application publishes the UNB survey camp framework

representing the feature layers defined and established in the geodatabase on top of the

ESRI World Topographic map as a background basemap. The advanced GIS

functionalities established for the service. The functions and tools allow users to explore

the map layers and request the features properties using the query function. Furthermore,

basic map tools are provided by the service to allow users pan and zoom over the map

layers. Feature layers are represented in different zooming levels, and according to their

spatial data type. For example, point features such as the trees and manholes are

represented in lower zooming levels whereas, the polygonal features such as the

buildings.

2.4 Summary

The development process started from examining the CAD files of topographic data

and accordingly the framework characteristics defined to establish the systems for

minimizing the present and future issues and difficulties. The geodatabase created to

categorize, organize, and store the geospatial information based on the conceptual and

logical design parameters which in this project particularly tried to meet and satisfy the

goal pertaining to the framework characteristics. Data validating methods specified

along with the workflow of the geodatabase maintenance. The Web-GIS service

developed to represent the framework in terms of visualizing the feature layers and

providing the attribute coding system related to each feature type.

24

Chapter 3 Survey Camp Data Assessment and Framework

Characteristics

3.1 Introduction

Before including survey camp data into a GIS campus database, the suitability of

including these datasets was assessed. This chapter describes the results of this

assessment and identifies the inconsistencies (i.e. issues) in the survey camp datasets

that need to be addressed before including this data in a GIS Campus database.

Examples of inconsistencies are shown and an explanation of how these inconsistencies

affect the creation and usability of a GIS Campus database is provided. For each issue,

this chapter presents a solution as to how a particular issue can be resolved.

These solutions constitute some of the characteristics of the spatial framework. In

many cases, these solutions also define a new approach for data collection and

identification (topographic surveying), categorization, storage and representation.

25

3.2 Survey Camp Data Assessment

Prior to developing the framework, survey camp data were analysed and assessed in

ArcGIS 10. This assessment of data could help to identify the existing issues regarding

data inconsistency. Inconsistency in the data causes the process of storing data in a GIS

repository to be hard and time consuming. For this reason, all the present issues were

outlined in order to be considered in providing a data validation system. The issues listed

below were identified after survey camp data were analysed in ArcGIS 10.

1. Lack of consistency in features’ attributes coding system.

2. Inappropriate features encoding with polylines.

3. Incorrect feature attribute coding during either survey camp operation or the

mapping process carried out in CAD environment.

4. Undefined shared geometries between the features.

5. Some areal features were not surveyed and mapped as enclosed features.

6. Inconsistent survey of treed and green areas.

7. Inconsistent spatial location of features.

All the issues mentioned above must be considered in the data validation before the

survey data could be stored in the GIS repository. Issues will be discussed in details

regarding their effects along with examples indicating the problems in different cases.

26

3.2.1 Lack of Consistency in Features Attributes Coding System

Attributes are critical factors in developing an efficient and appropriate GIS system.

They allow faster and easier data identification and retrieving. In survey camp data,

there is no consistent feature attribute coding system. This problem causes the process of

data storing and retrieving to be highly dependent on manual editing. For example, one

group may code buildings as “B” whereas another group may not use any specific

attribute code. Figure 3.1 and 3.2 show examples of this issue.

Figure 3.1: Example of a building feature coded as “B”

27

Figure 3.2: Example of a building feature with no specific code

28

3.2.2 Inappropriate Feature Encoding

Polylines were used in the CAD environment to generate the campus topographic

maps from survey points. Survey points contain coordinates of different types of features

on the campus. However, all those different features were mapped only with polylines.

Whereas, in the GIS environment point, line, and polygon data types employed to map

and store the features with regard to their spatial characteristics. Having features

encoded with different spatial representation types (point, line and polygon) is an

advantage of a GIS system. This advantage helps the users to provide advanced

cartographic products.

Figure 3.3 shows a section of campus in ArcMap. There are various spatial objects in

this section such as buildings, parking lots, sidewalks and streets which all spatially

represented with polylines. In a GIS environment, these features would be interpreted

better if they had been represented with a combination of lines and polygons instead of

only polylines. Better interpretation of map objects highly facilitates the process of

managing the objects in the GIS repository.

29

Figure 3.3: Example of the features encoded with polylines

30

3.2.3 Incorrect Feature Attribute Coding

Different features were often incorrectly coded during the survey camps. It is shown

in figure 3.4 that objects with “Buildings” attribute codes were selected but other types

of features (street center lines) were selected as well. As mentioned, these coding issues

have large effect on the time required to manage, validate, and finally store the data due

to the incorrect interpretation and identification of maps’ objects.

Figure 3.4: Example of center lines coded incorrectly as buildings

31

3.2.4 Undefined Shared Geometries

Shared geometries between different features were not defined in the original CAD

maps. For example, edges (or boundaries) between the buildings on the university

campus and the parking lots are not defined as being shared. Figure 3.5 shows an

example in which the shared boundary between a building and a parking lot is coded as

building.

Figure 3.5: Example of incorrect coding for the shared geometries between the

buildings and parking lots

32

3.2.5 Unenclosed Areal Features

Some areal features such as parking lots and green areas were not surveyed and

mapped as enclosed features. That is, there is a gap between the starting and ending

points of these features. Figure 3.6 shows two gray polygonal features which represent

parking lot areas. These two polygons are examples of the expecting results of mapping

parking lot features after storing in the GIS repository. In contrast, the highlighted lines

show the parking lot polylines of the original survey camp CAD files were not surveyed

and mapped as enclosed features.

Figure 3.6: Comparison of the parking lot polygons with the CAD parking lot

polylines

33

3.2.6 Inconsistent Survey of Treed Areas and Green Fields

Some groups delineated treed areas whereas other groups did not. There are various

areas in the campus which are generally identified as green areas. However, some of

these areas are treed areas as well and not just the green areas. In survey camp, trees are

surveyed and represented in the CAD maps mostly with the symbols including the

shapes that formed with lines. The symbols; in spite of being appropriate for mapping,

do not signify the exact locations of the trees. On the other hand, the point layers of

some CAD files do not provide enough data and the source of the tree features (symbols)

on the maps were not available.

Although, only in few CAD maps, there are areas that contain a sufficient number of

trees and are mapped as treed or wooded areas. On the other hand, there are some green

areas which contain few tree points. These areas are rather to survey as a green field

along with the tree points within the fields. Two maps of two different survey camp

groups are shown in figure 3.7. In those maps there are selected points and lines which

respectively represent trees’ points in one map and a wooded area in another group’s

map. In this case, like the wooded area, it is rather the areas which contain the trees’

points to be surveyed and mapped as enclosed green fields. However, surveying the

green fields as enclosed objects doesn’t imply that trees’ points must not be surveyed

within those areas.

34

Figure 3.7: Example of the trees’ points and the enclosed lines of the wooded area

35

3.2.7 Inconsistent Spatial Location of Features

Inconsistency occurred in spatial location of features. Different surveys often show

the same feature in different spatial location. The survey points are collected initially

based on local coordinate systems. After completion of surveying, the collected points

are transferred to New Brunswick Double Stereographic (NAD83 CSRS) projection.

The transformation is implemented based on the control points which are established

using GPS observations.

In some cases, the features in the CAD maps have different spatial location in

comparison with the corresponding features from another year of survey. This issue

could occur due to the inappropriate GPS observation and respectively inaccurate

transformation of coordinate systems. However, distance measurements between the

corresponding features of survey datasets of various years indicate that survey data are

relatively accurate. This relative accuracy indicates that features were surveyed

appropriately.

Assessing the survey data accuracy is outside the scope of this project, that, therefore

no method was defined to validate the data in terms of accuracy. However, in order to

partially solve this issue and maximize the consistency, the most recent survey data were

used to create and populate the datasets in the repository.

36

3.3 Framework Characteristics

A set of characteristics have been proposed below in order to solve the inconsistency

problems outlined as the results of the data assessment. The survey camp data storage

and validation processes in the GIS repository will be facilitated applying the framework

characteristics to:

1- Provide consistency in the feature surveying

2- Establish common feature attribute coding schema

3- Define the spatial data type of the features

4- Identify the shared geometries

5- Define the spatial reference system for the features

Each of the characteristics mentioned above will be described in details. It will be

described how each of these characteristics will solve the problems and minimize the

inconsistency issues. As a matter of fact, these factors are to be considered during the

land survey operations and mapping procedures. Based on these characteristics, we can

support the survey data in terms of consistency and validation to be used and organized

in a GIS system. By following these, we can assure the GIS repository will be correctly

and easily maintained. Furthermore, the characteristics must be published via the Web-

GIS service to apply in the survey camp by students.

37

3.3.1 Consistent Feature Surveying

Features to be surveyed must be constant and consistent for all areas on the

university campus. There are many different types of features and areas all around the

campus and students’ CAD maps represent many of those features. Therefore, one of the

critical framework characteristics is to establish a consistent feature surveying system by

defining the key spatial features and areas of the campus. This system or characteristic

will support the survey camp in terms of data completeness and consistency. For

example, all survey groups must survey a treed area as a treed area and a green field as a

green field. In this case, the web service will allow the users to interpret the key map

layers and accordingly the users will identify the key areas and features of the campus.

In other word, based on the published map layers on the web service, students will know

what types of features must be surveyed on the campus.

Prior to produce a system to support the consistency in feature surveying, it is

essential to establish a system for feature coding as well. The feature coding system will

fulfill the goals of identifying the key spatial features. Along with the feature coding

system, the various features which are expected to be surveyed will be specify and

discussed in section 3.3.2 .

38

3.3.2 Feature Coding System

A common feature coding system will be used to identify the features; For example,

all buildings will be coded as “BL”. 2012 and 2011 CAD data were studied in order to

provide a common coding system which can cover majority of the features in the

campus. As a result, feature codes used in 2012 and 2011 data were summarized in the

table 3.1 and then used in a reclassification process. The reclassification process resulted

in establishing a new system of feature attribute coding. The new coding system is to be

used in the survey operation as IDs for the surveying points of the objects and features.

Moreover, the point IDs must be applied in the mapping processes implemented in

CAD software to indicate the names of the feature layers. Therefore, it is easier in the

GIS repository to convert, edit, and finally store the data obtained from the CAD maps

containing the feature layers that coded according to the framework coding system. Like

the feature layers, the feature codes will be represented in the web service. Collected

survey data in years 2011 and 2012 covers a sufficient area of the campus that can be

seen in the figure 3.8 as six different sets of survey maps. Moreover, in terms of the data

completeness and having up-to-date data these years are more reliable than the others.

39

Figure 3.8: Map sets of the survey camp of years 2012 and 2011

40

Table 3.1: Summary of the feature codes of the map sets of years 2012 and 2011

 Map Set 1 Map Set 2 Map Set 3 Map Set 4 Map Set 5 Map Set 6

1 Asphalt Building Buildings Benches&

Bikerack

BLD Asphalt

2 Buildings contours Contour Buildings Electrical

box

Block

3 Contours Fence Road Contours Hydrant Building

4 Curb Hydrant Tree Curbs&wal

kways&sid

ewalk

Parking lot Contours

5 Lamp Post Light VPORT Manholes

&Firehydr

&sign

Sidewalks Fence

6 Parking

Lot

Retaining

Wall

- Tree&Post Signs RWALL

7 Sidewalk Road&Sid

ewalk

- - Telephone

poles

Sidewalk

8 Sign Storm

Drain

- - Tree Line Top of

curb

9 Tree Vegetation - - VPORT Tree

10 VPORT - - - - -

11 Walkway - - - - -

12 Woods - - - - -

In the table 3.1, some map sets such as the map set 1 have an appropriate number of

classes of the feature codes. In contrast, the other map sets such as map set 4 and 3, have

only few number of code classes.

41

Additionally, there are some codes such as those mentioned in row 4 of the map set 4

which indicate to three different types of features; whereas, those features are incorrectly

identified as one in a GIS system due to the wrong identification attribute code. Now,

according to the all the records in table 3.1 we must establish a common feature coding

system. The new attribute coding system employed to:

1- Provide appropriate number of code classes which are to cover all the classes

listed in table 3.1.

2- Provide feature codes with only two letters to use more conveniently during the

surveying and mapping procedures. There is an exception for contour lines. Contour

lines are generated from elevation points and are stored in contour layers by default in

CAD software. As a result, all the contour lines are available in the CAD maps as

contours. However, elevation points can be collected and coded with any appropriate

coding system.

Table 3.2 shows the new proposed coding system. Additionally, the codes obtained

from summarization of the six map sets are listed in the table 3.2 to show how new

codes were generated by reclassifying the students’ codes. The number of new code

classes also specifies the number of different feature types which students should

consider in the surveying collections.

42

Table 3.2: Summary of the campus features attribute codes

New feature coding

system

Feature type

Students’ feature codes

BL Buildings  Buildings

 BLD

BN Benches  Benches

BR Bike racks  Benches&Bikerack

Contours Contour lines  Contours

CB Curbs  Curb

 Top of curb

 Curbs&walkways&sidewalk

EB Electrical boxes  Electrical box

FN Fences  Fence

GF Green fields  Vegetation

HD Hydrants  Hydrant

 Manholes&Firehydr&sign

LI Lights  Light

LP Lamp posts  Lamp Post

 Tree&Post

MH Manholes  Manholes&Firehydr&sign

PG Play grounds -

PL Parking areas  Parking Lot

SI Signs  Sign

 Signs

ST Streets  Asphalt

 Road

 Road&Sidewalk

SD Storm drains  Storm Drain

SW Sidewalks or any

type of walkways
 Sidewalk

 Road&Sidewalk

 Curbs&walkways&sidewalk

WA Treed or wooded

areas
 Woods

 Tree Line

TR Trees  Vegetation

 Tree

 Tree&Post

RW Retaining Walls  Retaining Wall

 RWALL

TP Telephone poles  Telephone poles

43

3.3.3 Spatial Representation Forms

All the features of the same type must have a consistent spatial representation form.

For example, the parking lots must be surveyed as enclosed features as opposed to some

being surveyed as enclosed features and others not. This factor will highly support the

advanced visualizing, identification, and cartographic results. As the outcomes of the

survey camp are the vector data including the topographic maps; thus, these data must be

represented with points, lines, and polygons considering the feature types indicating by

the data. Table 3.3 shows the preferred spatial representation regarding the various

features on the campus with respect to the listed feature types in table 2.

Table 3.3: Geometry types of the campus features

Point features Line features Polygonal features

 Electrical boxes

 Hydrants

 Lights

 Lamp posts

 Manholes

 Signs

 Storm drains

 Trees

 Telephone poles

 Contour lines

 Curbs

 Fences

 Streets

 Sidewalks

 Walkways

 Retaining walls

 Buildings

 Benches

 Green fields

 Parking areas

 Playgrounds

 Wooded areas

44

3.3.4 Shared Feature Types

Shared feature types must be indicated in the surveyed data. The coding system can

be useful in this part as well. For example, buildings and parking lots, streets and

parking lots, or streets and sidewalks can have shared geometry. Therefore, shared

geometry must be coded in a way to indicate the boundaries shared between some

different types of features. Additionally, specifying the shared geometry will allow some

specific features to be surveyed as enclosed features such as parking lots, which have

shared geometry with most of the other features. Table 5 shows some cases for the

shared geometry from 2012 CAD files.

Tale 3.4: Examples of the features with shared geometry

Features with shared geometry Coding system for shared geometry

 Buildings-Parking areas

 Buildings-Green fields

 Buildings-Streets

 BL-PL/PL-BL

 BL-GF/GF-BL

 BL-ST/ST-BL

 Green fields-Parking areas

 Green fields-Streets

 Green fields-Sidewalk/Walkways

 GF-PL/PL-GF

 GF-ST/ST-GF

 GF-SW/SW-GF

 Parking areas-Sidewalks

 Parking areas-Streets

 PL-SW/SW-PL

 PL-ST/ST-PL

45

3.3.5 Spatial Reference System

Since the survey camp data was transferred from a local coordinate system to New

Brunswick Double Stereographic (NAD83 CSRS) projection, this spatial reference

system is used for the GIS system.

3.4 Summary

In order to develop the spatial framework by designing a GIS system first, the survey

data and maps were analyzed to identify the inconsistency and incompatibilities

problems. After identifying the existing inconsistencies in the topographic maps, the

framework requirements and solutions were specified and proposed first to minimize the

difficulties and issues and then to optimize the time and processes required to manage

the geospatial information in the GIS repository. Applying the solutions will

significantly reduce the data inconsistencies; thus, a faster and easier data validation,

storage, and usage will be experienced in the system. As a fact, identifying the problems

and outlining the possible solutions were the most important aspects to mention in this

chapter prior to designing the repository. All the requirements mentioned here

considered in developing the web service as well. In fact, the web service designed with

respect to the framework requirements in order to represent a model of the framework to

the students.

46

Chapter 4 Geodatabase

4.1 Introduction

This chapter outlines the procedure of designing and building a geodatabase for

managing student surveyed topographic data of UNB Campus. After building the

geodatabase, the process of loading the data will be described. The geodatabase will be

evaluated, and feature layers will be represented on the maps with scales of 1:6000 and

1:2500. These scales can show the campus area in a full extent, as well as the point

features around the campus respectively. Along with representing the final results, the

methods and workflow of maintaining the geodatabase will be explained. Furthermore,

method of documenting the geodatabase is illustrated and then the geodatabase schema

will be documented. An example is given to partially illustrate the schema

documentation. The full geodatabase schema documentation has been shown in

Appendix II as well.

The chapter continues with explaining the data validation methods and building the

GIS models. The GIS models are illustrated in terms of the functionalities and analyzing

tools. Besides, appropriate methods for validating the data are outlined.

47

4.2 Geodatabase Design Phases

This section describes the procedure of designing a geodatabase in order to organize

and store the survey camp topographic data. As mentioned in Designing Geodatabases

[Arctur and Zeiler, 2004], three key sections including conceptual, logical, and physical

design phases provide guidance to create a dynamic GIS data model. The design phases

consist of the 10 steps including modeling the users’ view, defining the objects and

relationships, selecting geographic representation, matching geodatabase elements, and

organizing the geodatabase structure. In the conceptual design, the thematic layers

identified and characterized with respect to the framework requirements and applications.

It is essential to specify the spatial representation, usage, scale, symbol, and the data

source while identifying the thematic layers [Arctur and Zeiler, 2004]. Characterizing

the thematic layers resulted in initial specification of the geodatabase design elements. In

this project, those elements comprised the datasets, feature classes, topologies, and the

features’ attribute codes and domains.

In the logical design phase, the spatial and non spatial specifications and properties

of the data in the GIS repository specified and the final design proposed. The final

phase is the physical design in which the actual geodatabase created with respect to the

spatial and non spatial specifications defined in the first two phases. In the physical

design, data loaded into the feature classes and organized in the feature datasets.

Topological rules applied to the datasets and tabular data arranged.

48

Finally, the design documented to illustrate the GIS data model and the

specifications of the geodatabase. Table 3.2.1 illustrates the 10 steps included in the

design phases mentioned above.

Table 4.1: Phases and steps of designing a geodatabase (Arctur and Zeiler, 2004)

Design Phases Steps

Conceptual Design 1. Identify the information products produced with the GIS

system

2. Identify the key thematic layers

3. Specify the scale range and spatial representation for each

thematic layers

4. Group representations into datasets

Logical Design 5. Define the tabular structure and behavior of descriptive

attributes

6. Define the spatial properties of the datasets

7. Propose a geodatabase design

Physical Design 8. Implement the design

9. Design workflows for building and maintaining each layer

10. Design Documentation

Each phase will be explained individually in later sections along with the steps

mentioned in the table above. However, steps 2 and 3 of conceptual design will be

combined and explained in section 4.3.2 to outline the thematic layers specifications.

49

4.3 Conceptual Design

The main purpose of the conceptual design phase is to characterizing the survey

camp key thematic layers. Thus, the results of the survey camp CAD files assessment

and the framework characteristics, as described in Chapter 3, are significantly helpful in

this phase. For example, all the mentioned inconsistency issues regarding feature

attribute coding, feature encoding, shared geometry, etc. must be considered in the

design. Furthermore, the outlined spatial framework characteristics particularly those

that indicate the features coding system and features spatial representation, significantly

facilitate the process of identifying the thematic layers, specifying layers’ spatial

properties, and organizing the datasets.

4.3.1 Information Products

As mentioned in the workfellow and solution and illustrated in figure 2.1 the

information products outlined in below are produced for the GIS system and with

respect to the survey camp and spatial framework requirements.

1. A GIS repository for UNB Campus which contains survey camp data. The

repository contains the best survey camp data in terms of the year of data

collection as well as the data completeness.

2. A Web-GIS service which represents the information in the GIS repository.

3. The Documentation that illustrates the key design and verifies the specifications

of the designed geodatabase regarding the created datasets, domains, and defined

rules.

50

4.3.2 Thematic Layers Specifications

In this step the thematic layers identified according to the feature types listed in

tables 4.2 and 4.3. Each thematic layer will be identified in terms of the map use, data

source, representation, spatial relationship, map scale, and symbology. Tables 4.2 and

4.3 show the specifications of each thematic layer.

Table 4.2: Specifications of the campus key thematic layers

Layer Specifications Description

Building

Map use Shows buildings footprints

Data source Building polylines on the CAD maps

Representation Polygons

Spatial Relations Buildings polygons must not overlap

Map scale Visible at all scales

Symbology Polygons with fill color and outlines

Contours

Map use Shows contours lines

Data source Contour layers on the CAD maps

Representation Lines

Spatial Relations Must not cross, must not intersect with buildings

Map scale Visible at 1:3000 and larger

Symbology Contour line symbol

Electrical

facilities

Map use Represents all types of electrical features

Data source Points of the electrical features on the CAD maps

Representation Points

Spatial Relations Must be inside the green fields polygons

Map scale Visible at 1:3000 and larger

Symbology Each type of electrical features symbolized with

different points symbols

Green Areas

Map use Represent all types of green and wooded areas

Data source Wooded areas and green fields polylines on the

CAD maps

Representation Polygons for the green fields and wooded areas

Spatial Relations Trees and electrical facility points must be inside

the green field polygons

Map scale Visible at all scales

Symbology Point symbols and fill colored polygons

51

Table 4.3: Specifications of the campus key thematic layers

Layer Specifications Description

Parking

Areas

Map use Shows all types parking lots and Bike racks

Data source Parking lots and bike rack polylines

Representation Polygons

Spatial Relations Must not overlap with buildings and bike racks

Map Scale Visible in all scales

Symbology Fill colored polygons

Signs

Map use Shows the signs on the campus

Data source Point features indicating signs in CAD files

Representation Points

Spatial Relations Must be inside the green fields polygons

Map Scale Visible at 1:3000 and larger

Symbology Point symbols

Streets

Map use Represents the streets and curbs on the campus

Data source Street polylines on the CAD files

Representation Lines

Spatial Relations Streets must not intersect other lines of similar

layer. Streets must not intersect walkways.

Map scale Visible in all scales

Symbology Different lines symbology

Hydrants&

Storm water

facilities

Map use Shows the hydrants and storm water facilities

Data source Manholes, hydrants, and drain storms points on

CAD files

Representation Points

Spatial Relations Must be inside the green fields

Map scale Visible at 1:3000

Symbology Different point symbols

Walking

route

Map use Shows all types of walking routs on campus

Data source Walk way, Sidewalk, and cross walk polylines on

the CAD maps

Representation Lines

Spatial Relations Walkways must not intersect with streets

Map scale Visible in all scales

Symbology Line symbols

Walls

Map use Shows walls and fences on the campus

Data source Walls and fence polylines on the CAD maps

Representation Lines

Spatial Relations Must not intersect other lines with similar layer

Map Scale Visible in all scales

Symbology Line symbols

52

4.3.3 Datasets Specifications

Generally “dataset” is a generic term that refers to a collection of data (e.g. survey

camp 2011 dataset of Head Hall area). In this chapter, dataset refers to a group of feature

classes (refer to Appendix I.4 Glossary of GIS terms). Datasets are utilized to group the

feature classes that share spatial reference, spatial relationships and topologies.

Feature class refers to a set of features that have a common geometry type (point,

line, and polygon). A feature class in a geodatabase typically contains geographical

objects of the same type in terms of geometry and content (e.g. building feature class

contains buildings, street feature class contains roads, etc.).

Each feature class indicates a specific feature on the campus that was used to define

and create the thematic layers. However, because the survey camp data are collected

every year; thus, the feature classes should contain the best available data in terms of

providing the most recent year of collection as well as the most complete data. Table 4.4

shows the datasets along with the feature classes and topologies included in each dataset.

53

Table 4.4: Datasets and feature classes

Buildings_ Wall_Contours_Parking feature dataset

Buildings Polygon feature class Fence Line feature class

Bick racks Line feature class Guardrails Line feature class

Contours Line feature class Retaining

walls

Line feature class

Building_Wall_Contour Geodatabase topology Parking lots Polygon feature

class

Green Area_ Infrastructure feature dataset Route feature dataset

Benches Polygon feature class Crosswalks Line feature class

Electrical boxes Point feature class Curbs Line feature class

Green fields Polygon feature class Sidewalks Line feature class

Hydrants Point feature class Streets Line feature class

Lamp posts Point feature class Walkways Line feature class

Manholes Point feature class Route Geodatabase

topology

Playground Polygon feature class - -

Signs Point feature class - -

Storm drains Point feature class - -

Telephone poles Point feature class - -

Trees Point feature class - -

Wooded areas Polygon feature class - -

GreenArea_Infrastructure Geodatabase topology

54

4.4 Logical Design

In the logical design phase, the non spatial and spatial behaviour of the feature

classes were defined. Valid codes were specified for the features as the coded value

domain and the topological rules were established in each dataset with respect to the

spatial relationships between the feature classes. The codes and rules specified for the

features will allow for validating. Student surveyed data during the data loading. This

validation will both identify inconsistencies in the data (and thus allow for correction)

and ensure that the data in the geodatabase adheres to appropriate specifications.

4.4.1 Define the Tabular Structure and Behavior

In this step of the logical design the domains specified for the geodatabase and the

valid codes as defined for each individual feature identified in the earlier steps is noted.

The coded value domain prepared in order to establish a system to validate the survey

camp feature attributes. The valid codes obtained from the feature coding system that

mentioned as one of the framework characteristics. Moreover, the coding system

produced regarding the shared geometry considered and added in the domain as well.

Thus, the domain will allow confirming the input geospatial data in terms of the

consistency and validity of the attributes. The domain’s coded value listed in table 4.5

along with the descriptions with respect to the type and class of each feature.

55

Table 4.5: Geodatabase coded value domains

Code Description Code Description

BL Building TP Telephone pole

BS Building stair VP Vport

BN Bench WA Wooded area

Contours Contours WW Walk way

CB Curb GFST Green field-Street

CW Cross walk GFWW Green field-Walkway

EB Electrical Box PLST Parking lot-Street

FN Fence PLSW Parking lot-Sidewalk

GF Green Field BLPL Building-Parking lot

GD Guardrail BLGF Building-Green field

HD Hydrant GFPL Green field-Parking lot

LI Light GFSW Green field-Sidewalk

LP Lamp post STGF Street- Green field

MH Manhole WWGF Walkway- Green field

PL Parking lot STPL Street- Parking lot

RW Retaining wall PLBL Parking lot- Building

SI Sign GFBL Green field- Building

SR Stairs STBL Street- Building

ST Street PLGF Parking lot- Green field

SD Storm drain SWGF Sidewalk- Green field

SW Sidewalk

TR Tree

After establishing the domain for the geodatabase, it is essential to determine that

which attribute field of the feature classes must be associated with the domain. Since all

the CAD files have an attribute field as Layer which contains the features’ codes of

interest, the Layer attribute field should be associated with the domain established for

the geodatabase.

56

4.4.2 Define the Spatial Properties of the Datasets

Since the survey camp data is in New Brunswick Double Stereographic projection

(NAD83, CSRS), this spatial reference system was set for all the feature datasets. The

spatial reference defined for the datasets is assigned to each feature class that created in

the datasets. This datasets advantage prevents storing a feature class with a different

spatial reference in the geodatabase.

Topological rules are the next spatial properties to set for the datasets. The

topological rules established according to the logical spatial relationships between the

features of similar or different classes. For example; logically, contour lines must not

intersect or overlap with each other or with the retaining walls. Moreover, there are

various types of features specifically expecting to be spatially related with each others in

the real world. For example signs, electrical facilities, and some water facilities are

always located in the green fields; as a result, it is necessary to confirm if, those features

are located and identified correctly on the survey camp topographic maps in terms of the

spatial relationships. Tables 4.6, illustrates the topological rules in each dataset.

57

Table 4.6: Topology rules

Building_ Wall_ Contour_Parking dataset

Origin feature class Topological rules Comparison feature class

Building Must not overlap -

Building Must not overlap with ParkingLots

Building Must not overlap with Bick racks

Contours Must not self-intersect -

Contours Must not intersect with BuildingBoundaries

Contours Must not intersect with RetainingWall

Contours Must not intersect -

ParkingLots Must not overlap -

ParkingLots Must not overlap with BickRacks

GreenAreas_ Infrastructure dataset

GreenFields Must not overlap -

WoodedAreas Must not overlap -

Hydrants Must be properly inside GreenFields

Signs Must be properly inside GreenFields

Trees Must be properly inside GreenFields

Benches Must be covered by feature

class of

GreenFields

TelephnePoles Must be properly inside GreenFields

4.4.3 Propose a geodatabase design

A geodatabase for UNB campus was proposed according to the mentioned

specifications in the conceptual and logical design phases and also with respect to the

survey camp requirements and the stakeholders associated with this project. After all,

the proposed designed were applied in building the geodatabase using appropriate tools

and methods which will be described in the physical design phase. Appendix II shows

the full documentation of the geodatabase schema.

58

4.5 Physical Design

In the physical design phase, the procedure of building the geodatabase will be

described in terms of applying the specifications identified in conceptual and logical

design phases. In this phase, the geodatabase was built and then the data were loaded to

the corresponding datasets and feature classes. The valid codes were associated to the

features’ attributes and the spatial rules were applied to the feature classes as well.

Furthermore, examples were given to illustrate the procedure of creating the geodatabase

and to visualizing the outcomes associated with the data stored in the geodatabase.

4.5.1 Implement and Prototype Geodatabase Design

As mentioned in Designing Geodatabases [Arctur and Zeiler, 2004] there are six

steps to create and populate a geodatabase. The first step includes the options of starting

the building procedure. Since in this project the geodatabase were specifically designed

to organize the UNB survey camp data, the option of creating an empty geodatabase in

ArcCatalog was selected as a starting point. In the second step, an empty personal

geodatabase was created in ArcCatalog by properly applying the specifications

mentioned in the logical design. The data were loaded into the geodatabase in the third

step and then the topologies were applied in the step four. The model then was tested in

terms of the performance and outcomes. Finally the model was revised and corrections

applied as needed. Figure 4.1 illustrates the steps and the workflow of implementing the

geodatabase.

59

Figure 4.1: Implementation work flow for building and populating the geodatabase

60

Use a database schema

template

Load existing data to

create the basic

schema

Create an empty

geodatabase in

ArcCatalog

Create a UML model

to represent the

geodatabase schema

Starting point options Create the design in

ArcCAtalog Load the data

into the

geodatabase

Build

topological

relationships

Test the model

for

functionality

and

performance

Revise the model

and repeat

process as

needed

Final geodatabase

4.5.1.1 Creating the Geodatabase and Loading the Data

An empty personal geodatabase was created in the ArcCatalog. The datasets were

established and the empty feature classes were added to the corresponding datasets

according to the structure mentioned in the conceptual design phase. In the procedure of

loading the data, the best data were selected in terms of the year of collection as well as

the data completeness. The best data of each feature type selected from various years to

create the layers indicating the specific feature on the campus. Specifying the data to

load into the empty feature classes were implemented applying two methods mentioned

below:

1. Query expression to select the features and then load them into the

corresponding empty feature class. For example the street, sidewalk, walkway,

tree, hydrant, and manhole features of the various collection years were specified

by SQL queries and then merged and loaded into the geodatabase. However, in

some cases manual selecting implemented due to the incorrect feature coding.

Figure 4.2 shows an example of the tree points selected by query expression.

 Figure 4.2: Example of tree points specified by query expression

61

2. Editing session in the ArcMap to either create the features which were not

represented on the CAD maps from the other features, or to edit the existing

features. Since most of the original data were provided from polylines layers on

the CAD maps, the editing sessions was mostly applied to create the polygonal

features. For example green area and parking lot polygons were created by the

editing sessions utilizing another data types such as street, sidewalk, and

walkway polylines. Figure 4.3 and 4.4 show examples of the green fields and

parking lots before and after the editing.

Figure 4.3: Example of parking lots and green fields before the editing

62

Figure 4.4: Example of parking lots and green fields after the editing

4.5.1.2 Building the Topologies and Testing the Model

The topology classes were created in each dataset and feature classes were added

into the corresponding topology classes. The rules were established and applied

according to the spatial relationships mentioned in the logical design phase. The

topological errors were identified and then corrected for all the datasets. Figure 4.5

shows the error reports indicating there is no topological error in the datasets.

63

Figure 4.5: Reports of the topological errors of each dataset

64

Topological

errors report for

the

Buildind_Wall_

Contour_Parking

dataset

Topological errors

report for the

GreenArea_

Infrastructure

dataset

Figure 4.6 shows the structure of the geodatabase created in the ArcCatalog.

Figure 4.6: Structure of the geodatabase created in the ArcCatalog

After adding the data and establishing the topological rules, the model were tested by

creating a base map of the thematic layers identified in the conceptual design along with

solving the topological issues existing in the model. Figure 4.7 shows the survey camp

base map including the campus’s thematic layers in a 1:6000 map scale. This scale was

determined for showing the campus area in a full extent in ArcMap. Furthermore, Figure

4.8 shows an example of the campus thematic map in a 1:2500 scale which shows more

details on the map (e.g. point features such as trees).

65

Figure 4.7: 1:6000 survey camp base map

The feature classes that represented in the base map in figure 4.7 are visible in all

map scales. They are the polygonal and line features as mentioned in the map legend;

whereas, the point features such as the trees and lamp posts are visible in map scale of

1:3000 and larger. Figures 4.8 shows a base map in 1:2500 scale including all the point,

line, and polygon features.

66

Figure 4.8: Example of 1:2500 survey camp base map

4.5.2 Design Workflows for Maintenance

There are several factors that need to be considered when developing an approach for

updating/maintaining the UNB campus geodatabase with newly acquired student

surveyed topographic data. Three of these are:

 How can the update process be automated;

 How does the quality of the newly acquired data (e.g. its accuracy, completeness,

etc.) compare with the existing data in the geodatabase; and

67

 How can we ensure that changes to the topography, as represented in the newly

surveyed data (e.g. new tree planted, sign removed, walkway widened, etc.), is

incorporated into the geodatabase.

An analysis of these factors, such as the three mentioned above, will help in the

development of an approach suitable for updating the campus database. The method that

was briefly introduced in Chapter 2.3.4, Data validation and geodatabase maintenance,

for maintaining the geodatabase will be described in detail in this section. This method

uses GIS models to automate the maintenance process. Input data are automatically

categorized and processed by GIS models and then saved as a new layer (feature class)

in the associating dataset of the geodatabase. Data validation is required before applying

the GIS models.

There are several difference approaches that could have been used to maintain the

geodatabase and each approach has its advantages and disadvantages. Two alternative

approaches are:

 Geodatabase maintenance must be performed once changes are occurred in the

campus area. Changes could be mostly related to new construction areas such as

new walkways, streets, or buildings. These types of changes can be easily

detected while new CAD datasets are provided after surveying. That, therefore,

the map dataset which indicates a newly built area must be considered for

updating the old layers in the geodatabase. The updating processes are applied by

editing tools in ArcMap with respect to the types of features that must be

modified or created.

68

Since the editing tools are applied manually, based on the types and number of

features, the process might be time consuming. For example, a new building

could be added to the building feature class by creating a polygon feature with

editing tools. Walkway lines could be edited and modified to show a new

pathway.

 Once new survey camp CAD datasets indicate more appropriate data in terms of

features’ details and completeness. In this case, no new feature was surveyed

however, the dataset might be more appropriate in comparison to the old layers.

Again, manual updating processes can be applied to replace the old features with

a new layer. For example, old sign features can be selected and deleted manually

in the old layer and then new features are merged with the remaining features. All

these processes must be performed by geodatabase administrator and manually.

Furthermore, all new data must be validated in terms of tabular data as well.

Therefore in all cases spatial and non spatial data must be first validated and then

changes applied manually to update the geodatabase.

GIS models were used in this thesis to update the layers of each feature type in the

geodatabase. The GIS models were created to fulfill the goal of maintaining the

geodatabase with the new survey camp data via an automatic updating process.

Automatic data categorizing, processing, and then updating are the main advantages of

using the GIS models. However, automatic updating processes are applicable if a valid

dataset (CAD file) be used as an input data. Therefore, the new data must be analyzed

and validated prior to the maintenance processes based on the factors mentioned below:

69

1. The feature codes utilized in the Layer attribute field in the CAD files must be

matched with the codes in the domain table. By joining the Layer field with the

Codes field in the domain table, the attributes that successfully join with the

codes in the domain table are identified as the valid codes. On the other hand,

those which fail to joint are the features that were not correctly coded in the

survey camp. Also, each feature code class must be examined visually to confirm

the validity of the features related with the codes. For example street and

sidewalk features could be incorrectly associated with one coded value as ST

which indeed indicates the street features.

2. The spatial data type of the features must be matched with the corresponding

feature classes in the datasets. Each feature type must be specified and then

imported as a single feature class to the datasets. Also, some features must be

converted to another data type. For example building and parking lot were

defined in the framework characteristics as enclosed features; thus, these features

must be converted to polygons data type and then use in the maintaining process.

After validating and importing the new feature classes into the datasets, the GIS

model can be used to replace the old features with the new features. In the other words,

the GIS model updates the layers using the new survey camp data. In fact, the old data

are analysed based on the common spatial relationship with the corresponding new data.

Finally the old data are specified and then replaced with the new data. Since the various

data types including points, lines, and polygons stored in the repository, each data type is

individually analysed according to the specific spatial relationship exist between the old

and new data.

70

Figure 3.5.4 illustrates the procedure of validating and maintaining the geodatabase.

Figure 4.9: Geodatabase maintenance workfellow

4.5.2.1 GIS model for Geodatabase Maintenance

Various geoprocessing tools were included in the GIS model work together to

automatically update the layers in the geodatabase. If the input data is valid in terms of

the attribute coding and data type, the result of the GIS model will be a feature class

containing the data updated in the geodatabase. The processes mentioned below are

performed by the GIS model.

71

New survey

camp CAD

files

Each feature type is

imported to the

datasets as a single

feature class

The spatial relationship

analysed between the old

and new features classes

in the datasets

The old features

corresponding to the new

features are specified and

then the old features are

deleted from the existing

layer

A new layer is

created using the

new features

The new layer is added to

the geodatabase and then

the old layer is deleted

The new data is

validated in terms

of the feature

coding and the

features’ types

1. Creating feature classes from all the different feature types in the new survey

camp CAD files which utilized as the input data in the GIS model.

2. Adding a new attribute field to the new feature class that is used in the updating

process. After a new feature class was imported into the dataset, a new attribute

field must be added to the attribute table and then the field must be populated

with a value. In this case, the “old” text value was selected to populate the field.

3. Spatially joining the new and old data to automatically specify the old features

which must be replaced with the new features. However, different type of spatial

joins was utilized with respect to the various data types. For example building

features must be joined based on the spatial intersection occurred between the old

and new building polygons. On the other hand, manhole features must be

analyzed according to the closeness occurred between the new and old manhole

points. In fact, in this step, the “old” value added in the first step is associated

with the old features which are spatially joined with the new features. Thus, the

old features can be automatically specified and then be used in the next step.

4. Extracting the features which were not specified as “old” in the spatial join

process. By using a SQL query, the features associated with “old” value are

eliminated and then a feature class produced including the remaining features.

5. Merging the new features with the features resulted from extracting process.

After the merging, a new feature class is produced and stored in the dataset and

then will be used on the campus map.

72

On the next page, figure 4.10 illustrates the tools and procedure performed in the GIS

model along with the parameters, aspects, and the outcomes of each tool. As it is shown

in the figure, once the input data are selected (point and polylines layers), the process

starts with categorizing the data into different types of feature classes.

After categorizing, data are processed for matching the old and new data. Once

corresponding old and new data are determined, with spatial join geoprocessing tool,

actual updating process is performed. The updated layer is a feature class consists of the

newly surveyed areas and the old surrounding areas.

73

Figure 4.10: Shows the tools and processes applied in the GIS models

74

1-The tools to create the feature classes

according to the SQL expressions that

select the features based on the attribute

codes in the Layer field of the input

data

Input polyline

layer

Input point layer

Specify the

datasets to store

the feature classes

in

Output feature

classes of different

feature types

2.1-Add a new text

field in the attribute

table of the new feature

class

3-Perform spatial

join to join the

attributes based on

the spatial

relationship

between the old

and new features

2.2-Calculate

field to add a

text value “Old”

to the field

Output feature

class with the

new text field

Output feature

class showing

the old data

with the ‘Old’

value

2.2-Calculate

field to add

“Old” text

value to the

new field

Output feature

class containing

the ‘Old’ value

4-Select and

extract the

features from the

old data that do

not have the

‘Old’ value

Old features

1.2-Converting

enclosed

features to the

polygons

Output feature

class of the old

data that do not

correspond

with the new

features

5-Merge

the old

and new

features

Output

feature

class of

updated

layer

4.5.3 Geodatabase Documentation

There are important elements mentioned below to consider while documenting the

geodatabase.

(http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/docume-

1980433582.htm)

1. Datasets: To show the feature classes in the dataset along with the topology

classes established for them.

2. Domains: Represents the list or range of valid values for attribute columns.

These rules control how the system maintains data integrity in certain attribute

columns.

3. Spatial relationships and spatial rules: Represents the topological rules

established between the feature classes in each datasets.

4. Map layers: The spatial representation of the map layers must be mentioned in

terms of the data content and symbolization.

Because all the elements mentioned above have been already described with details

in the steps of geodatabase design and implementation; therefore, figure 4.11 provided

to give an example of the Route dataset documentation to show the spatial and tabular

details of the feature classes in it.

75

Simple feature class
Streets Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
WalkWays Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
Crosswalk Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
SideWalk Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
Curbs Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Figure 4.11: Example of dataset documentation

76

Route Dataset

4.6 Lesson Learned

In designing a geodatabase model, it is critical to initially examine and interpret the

source, usage, and type of the data. These factors allow having a better and appropriate

understanding from the design goals. By understanding the goals, a suitable model will

be built by which useful management and organization of geospatial data is possible. A

well designed geodatabase model significantly improves the quality of outcomes and

products (e.g. the thematic and topographic maps showing the data content and

specifications).

It was found from designing the geodatabase that it is very important to consider and

define the spatial relationships between the objects. These kinds of relationships allow

improving the system reliability in terms of categorizing, interpreting, and analysing the

geospatial data. For example, when a new set of point features are added to the

repository; then, it is possible to examine if the point features have been correctly

located and specified or not (i.e. the hydrant and lamppost points must be inside the

green fields). Furthermore, providing the coded value domains allowed establishing a

particular validating system for the tabular information by which system could help to

satisfy the goal of validating the input data and respectively identifying the map data

easier and faster.

77

Chapter 5 Web-GIS Service Development

5.1 Introduction

In this chapter the development of the Web-GIS application will be described fro

visualizing and publishing the survey camp topographic map layers and tabular contents

over the web. Section 5.2 will first introduce the techniques applied in the developing of

the Web-GIS service. Then, further information and illustrations will be given in section

5.3 regarding the structure and functionality of this Web-GIS service.

The Web-GIS performance regarding the data visualization and representation of the

spatial and non-spatial characteristics of the survey camp information model will be

examined in section 5.4.

78

5.2 Web-GIS System

The web system has been set up based on ArcGIS server in the role of GIS server

and ArcGIS JavaScript API in the role of the web programming framework. The input

data for the web service is provided from the previous steps including the UNB campus’

map layers that were created from survey camp topographic data. The base map has

been published as an interactive map service. The map service provides a series of

functionalities in respect to the spatial framework design and characteristics.

Functionalities are served by the ArcGIS server and ArcGIS JavaScript API respectively

based on ArcGIS REST API specifications.

ArcGIS Server REST API stands for Representational State Transfer. REST API

provides a Web interface to services that hosted by ArcGIS Server. All GIS data and

services which are published by ArcGIS server are accessible by the REST API through

a hierarchy of endpoints or Uniform Resource Locators (URLs). Each published service

has a unique URL. The URLs are the end points to the published services such as maps,

geocode, geoprocessing, geometry, and image services. ArcGIS server has been

integrated with Windows Internet Information Server (IIS). IIS is the web server

software in Microsoft Windows. There are other available web servers such as Apache

or Apache-Tomcat which are popular and are being used by several Web-GIS

applications. However, ArcGIS server is set up with IIS by default during the installation

process. Figure 5.1 illustrates the main structure of the Web-GIS system according to

the utilizing technologies and tools.

79

Figur

e 4.1: G

Figure 5.1: General illustration of the Web-GIS system and architecture

80

Web-GIS System

Server Side

ArcGIS Server

Survey camp base map created

from Geodatabase feature classes

GIS Server
Internet Information

Services (IIS)

Manager

Client Side

Requests and Responds are

sent utilizing ArcGIS REST

Services

Internet browser represents the

survey camp feature layers utilizing

ArcGIS API for JavaScript

5.2.1 Server Side

ArcGIS server was used in the service development as the GIS server to perform the

main process of managing the server side system. ArcGIS server is designed to provide a

wide range of GIS functionality in a server machine (e.g. the computer system which

contains the map data and datasets) to the client side (e.g. computer and mobile internet

browsers) through the web. ArcGIS server helps to have a strong managing framework

for developing Web-GIS systems that can be utilized in browser-based applications.

ArcGIS server is administrated and set up by using either ArcCatalog or Manager to

publish and administer the GIS web-based services. Manager is a Web application and a

browser-based administration system which helps to provide Web-GIS services. On the

other hand, ArcCatalog can be used as a desktop application to provide and manage map

services publishing by the ArcGIS server.

Each one of the GIS services has a unique URL pointing to a directory on the server

machine. The URLs will be used in the JavaScript code to retrieve the map services

spatial and non-spatial contents and then visualize the map layers at the client side

through the internet browser. According to the service type and data hierarchy the URLs

are different. Further illustration will be given for the utilized services and their URLs.

Figure 5.2 shows the ArcGIS server system architecture in terms of the server side and

client side administration components and tools as well as the system hierarchy.

81

Figure 5.2: ArcGIS server system archtecture

82

Web-GIS

ArcGIS Server

Data, Map or Geoprocessing tools

Windows Manager

Administrator

ArcCatalog or Manager

Administrator

ArcGIS Desktop Content

Author

Web Server (IIS)

GIS Server

SOM

SOC SOC

Internet

Client: Mobile Devices, Web Browsers and

Desktop Clients

5.2.2 Client Side

The most important contribution in developing the Web GIS service in this thesis

was in programming the client side JavaScript code and producing the applications. As

mentioned in the section 5.2, the ArcGIS JavaScript API was utilized for the web service

development. ArcGIS JavaScript API is a programming framework which provides a

wide range of functionalities and capabilities in terms of map visualization and GIS

tasks implementation (e.g. visualizing feature layers, and performing query tasks).

Figure 5.3 illustrates the client side system general structure regarding programming

languages and technologies.

Figure 5.3: Shows the programming framework and libraries

83

Browser-based Client Side

Programming Framework and Libraries

HTML-CSS

ArcGIS JavaScript API Scripts

Browser

Data visualization

and Web-GIS

functionalities

Requests

and

responses

5.3 Web-GIS Programming structure and Properties

In this section, the Web GIS development procedure will be discussed in terms of the

map data, service functionalities, and code properties. As a reason, web service code will

be divided into four key sections and each section will be described in terms of technical

properties, specifications and elements. Thereby, the Web GIS service will be assessed

according to its efficiency and usability of publishing and representing the geospatial

reference framework characteristics.

There are four critical parameters mentioned bellow. These parameters are the main

factors to consider in programming and development of the main body to structure the

JavaScript and HTML code. The critical parameters are to:

1- Specify the input data and data types.

2- Define the main web mapping applications and functions.

3- Define the methods for calling the functions and presenting their results.

4- Specify the output data and data types.

 Figure 5.4 illustrates the general structure of the code programming. Figure 5.4

describes the overall procedure in developing the Web-GIS code structure. The service

performance and more details for the parameters mentioned above have been given in

the figure as well.

84

Figure 5.4: General aspects of the Web-GIS service code and performance

85

1- Input data and data

Type:

 The online ESRI World

Topographic Map as a

background base map.

 The survey camp map

document as an ArcGIS

Dynamic Map Service.

 The survey camp features’

attribute codes.

Parameters to define:

 Background base map

name

 Spatial extent and zoom

level for base map

 The survey camp map

document REST URL

and the layers’ IDs

 The layers’ REST

URLs to catch the

attribute codes

2- Functions:

 Map layers visibility controller

to determine which feature layers

to be visible on the map service.

 The query tasks function to

query and identify the features

on the map service.

 Zooming and panning.

Parameters to define:

 Spatial reference system of the

survey camp features to use by

the query task.

 Survey camp features’ attribute

fields to show by the query task

 Survey camp feature layers’ IDs

for the visibility controller

4-Output data and

data type:

 Survey camp features’

attribute codes (e.g.

coded values and

descriptions)

 The rendered images

of the layers that are

checked on the feature

layers’ checklist.

3-The methods for calling the

functions and representing their

results:

 Pup-UP Info-Window to show

the attributes of the features that

are clicked on the map service.

 Checklist for the feature layers to

control the map layers visibility

to determine the visible layers.

5.3.1 Input Data and Data Type

As illustrated in the figure 5.4, there are three various types of input data which have

been used as the Web-GIS map content. First type of input data is the ESRI World

Topographic Map, which is used as a background base map in the application. ESRI

World Topographic Map is obtained from ArcGIS online map service and there are

parameters to set regarding the spatial extension and zooming level. These parameters

allow the map service to start while showing a specific geographical area of the

background base map (e.g. UNB campus area) according to the input values that were

specified in the code as the spatial extension (e.g. the spatial extension of the survey cam

layers) and zooming level (e.g. a zooming level that shows the campus area

appropriately). The utilized values can be found in the code mentioned in Appendix II.

The second type and the main spatial input data are the survey camp layers. The

layers are overlapped with the background base map while displaying on the map

service. This ability of overlapping with background base map allows the users to have a

better interpretation from the feature layers. The Survey camp data is added to the map

service using ArcGIS Dynamic Map Service Layer JavaScript Class and via a REST

URL. The REST URL points to the map document (.MXD file) directory on the server

machine. While the data being added, each feature layer is identified with a specific

layer ID number. The ID numbers, are specified by Image Parameters JavaScript Class,

and are usable for processing each layer separately in the functions. For example, the

layer visibility controller function controls the visibility of layers based on their IDs.

86

The main reason for using the ArcGIS Dynamic Map Service Layer Class is its

capability of creating images for each individual map layer, while using only a single

REST URL pointing to a specific map document. Moreover, this JavaScript Class can

dynamically render new images from the feature layers each time users pan or zoom

over the map service. This ability made the procedure of code programming easier in

comparison with using of WMS Layer or Tiled Map Service Layer JavaScript classes.

The third type of input data is the tabular data that are known as feature attributes.

The attribute data were added to the map service by using QueryTask JavaScript Class

and via a set of REST URLs. In fact, for the attribute data, more than one single REST

URL was needed, and each URL must point specifically to an individual feature layer

directory. Therefore, based on the number of survey camp feature layers that included in

the map document, different REST URLs were utilized in the QueryTask JavaScript

Class.

There are also a set of parameters for the attribute data to set by using a JavaScript

class which is named as Query. These parameters define various factors of the feature

attribute data such as the attribute fields, feature geometry, and spatial reference system.

After setting the parameters mentioned above, the QueryTask Class will be able to

retrieve the attributes of each feature that selected on the map service. To illustrate the

programming procedure of adding the input data into the map service, table 5.1 shows

the utilizing ArcGIS JavaScript API classes and their properties.

87

Table 5.1: ArcGIS JavaScript API classes and properties utilized for input data

Input Data ArcGIS JavaScript API Class Properties and

Parameters

ESRI Word

Topographic

Map

 esri.Map

 esri.geometry.Extent

 Base map name

 Spatial extension

 Zooming level

Survey camp

feature layers
 esri.layers.ArcGISDynamicMapServiceLayer

 esri.layers.ImageParameters

 REST URL

 Feature layers

ID numbers

Survey camp

feature

attributes

 esri.tasks.QueryTask

 esri.tasks.Query

 REST URLs

 Attributes fields

of the features

 Feature geometry

 Spatial reference

system

5.3.2 Functions

The most important part in developing the map service was to provide a set of useful

functions. Map service capability is depended on its functionality in terms of data

visualizing and data retrieving. There are three sorts of functionality that have been

provided for the map service.

Two types of are to control the data visualization including the feature layers

visibility controller along with the tools of zooming and panning. The visibility

controller function allows users to select which feature layers to be displayed on the map

service. Visibility controller works based on the map layers’ IDs defined as the input

data parameters that described in the section 5.3.1 . Table 5.2 provides a list of

JavaScript classes and describes their performance in the visibility controller function.

88

Table 5.2: List of the ArcGIS JavaScript API classes for the visibility controller

ArcGIS JavaScript

API Class

Functionality Parameters

dojo.query Returns the HTML inputs that

contain the feature layer IDs to

catch the ID numbers

HTML inputs class

for-if conditional loop

function

Checks if any of HYML inputs

checked on the map service

visible.push Add the layer ID number to the

visible variable

Inputs ID

setVisibleLayers Takes the layers’ IDs and set

them to be visible

Visible variable that

contains numeric values

Additional to the JavaScript classes and their performance listed above, figure 5.5

shows a diagram illustrating how the classes work together in a loop in order to control

the layers visibility on the map service.

Figure 5.5: Loop function of the visibility controller of the map service

89

Put the Visible variable

equal to a number

different from the layers’

ID numbers

Anytime users select a layer in the checklist,

dojo.query class goes over the HTML inputs

to retrieve the variables (layer IDs)

A loop controls if any

layer checked from

the HTML checklist

The IDs of the features that

selected form the HTML

inputs will be assigned to

the Visible variable by

visible.push class

SetVisisbleLayers JavaScript

Class sets the layers to be visible

according to the IDs that

assigned to the visible variable

Set the visible variable equal to -1 by

visible.push class. When a negative

value is identified, no layer will be

displayed

Yes

No

As mentioned above, the visibility function is a combination of various JavaScript

classes. This function is connected to the ArcGIS Dynamic Map Service Layer Class,

which performs the main process of displaying the map layers, via the SetVisibleLayer

Class. Once a map document is added to the service, the displaying status of map layers

is set to visible by default; in fact, all the layers’ ID numbers of a map document are

determined as visible by default. However, once users select a set of layers via the

HTML inputs, the visibility will be limited only to the layers that their IDs have been set

to visible by SetVisibleLayer Class. Therefore, the ArcGIS Dynamic Map Service Layer

Class will only display the layers that their ID numbers have been included to the visible

variable of the SetVisibleLayer Class.

The third type of functionalities, the Query Task Execution function, allows the users

to identify the features and retrieve their attribute data. The Query Task Execution

function calls the other JavaScript classes from the other sections of code, which will be

described in section 5.3.3 including the methods of calling the functions. This function

executes the actual querying process for retrieving the attributes via running a set of

JavaScript classes. This function calls all other sections including the QueryTask classes

by which input attribute data have been defined via the URLs, and the function of result

showing as well. In other words, the Query Task Execution function connects various

parts of the code from input attribute data to the final pup-up window and finally results

in showing the attributes of the selected feature. Table 5.3 shows the JavaScript classes

utilized in the function and describes their performance.

90

Table 5.3: The JavaScript classes utilized in the Query Task Execution function

ArcGIS JavaScript API Classes Performance Description

map.infoWindow.hide Hides any pup up window remained opened from

previous selection

map.graphics.clear Clears any selected features remained from

previous selection

featureSet = null Makes the feature variable array empty from any

selected features

queryTask.execute Executes the QueryTask class to retrieve the

attribute data from input URLs and according to

the defined query parameters with the Query

class.

Each time users select a feature, the query execution function executes the mentioned

JavaScript classes in above. For better understanding of the function performance, the

figure 5.6 shows a diagram illustrating the function and describes its performance

procedure.

Figure 5.6: Work of the QueryTask execution function

91

Anytime users select a feature

(click a feature on the map) ,

QueryTask execution function

is called.

map.infoWindow.hide,

map.graphics.clear and featureSet =

null classes are executed to clear and

hide any feature selected from the

previous selection.

The queryTask.execute runs the

Qury.Task in order to read the

attribute data from the URLs and

according to the parameters

defined with the Query variable

(e.g. attribute fields, spatial

reference system, and feature

geometry)

An internal function is

executed along with the

Query.Task class to run the

pup up window containing

the attributes data and a

feature set. The feature set

returns the selected features

as a graphic and highlights

them on the map service.

5.3.3 Calling the Functions

There are two major methods for calling the layer visibility controller and the feature

attribute query functions. Each of these functions can be easily called in the map service

when users simply check the layers in a checklist and by clicking on the features on the

map service. The methods explained below along with the illustrations.

1. The feature layer checklist is connected to the visibility controller function via

HTML inputs and calls it each time users check one of the map layers. With

respect to the map service capability of rendering images for each of feature

layers, creating a checklist for the map layers determined as the best method to

control the map layers in terms of visualization and displaying. HTML inputs

utilized to construct the checkboxes indicate the map layers on the map service.

There are parameters to set in the HTML codes for specifying the layers’ IDs in

each HTML input.

The visibility function is called each time a user click on a checkbox.

Consequently, the layer ID associating with the HTML input will be obtained

and then added to the visible variable in the visibility controller function. The

REST service helps to identify the layers’ IDs in order to write the HTML codes

which construct the checkboxes. Figure 5.7 shows the REST service containing

the list of map’s feature layers and their associating IDs.

92

Figure 5.7: Layers’ IDs in the REST service API

2. The Onclick method to call the attribute query function (Quer Task Execution

function). With the Onclick method, each time users click on a feature the query

task function is called and the whole process of querying function is executed.

After clicking on the features the attributes of the features clicked on the map are

represented in a pup-up info-window.

93

5.3.4 Output data and the data type

There are two types of output data published and represented by the map service

including the survey camp layers as well as the features’ attributes data.

1. The survey camp feature layers are represented on top of the ESRI world

topographic base map in order to illustrate the framework specifications in terms

of introducing the key features on the campus. The layers correspond with the

feature classes of the geodatabase that built in the second phase of this project.

However, all the features represented on the map service are polygons. In fact,

anothr geodatabase created to store the polygonal feature layers of the map service.

2. The features’ attributes which indicate the feature coding system, feature types,

and the features’ data type. The attributes are retrieved by clicking on the map;

however, the point and line features are not detected on clicks. In order to solve

the problem, all the features were converted to polygons by which the server

could detect the features on clicks and then retrieve the associating attributes and

geometry. In spite of representing all the features with polygons, the features’

data type attributes specified according to the data type defined in the

geodatabase logical design phase. For example, the street features are shown as

polygons on the map service; although, the data type is shown as line indicating

the street features were stored as lines in the main geodatabase. It allows

fulfilling the goal of representing the framework specifications with the map

service. Table 5.4 Shows the map layers along with the associating attributes.

94

Table 5.4: List of the layers and attributes published by the map service

Feature Layer

Attribute fields

Feature code Feature Type Data type

Hydrants HD Hydrant Point

Lamp posts LP Lamp post Point

Manholes MH Manhole Point

Storm Drains SD Strom drain Point

Signs SI Sign Point

Telephone Poles TP Telephone poles Point

Trees TR Tree Point

Walkways WW Walkway Line

Sidewalks SW Sidewalk Line

Crosswalks CW Crosswalk Line

Streets ST Street Line

Fences FN Fence Line

Retaining Walls RW Retaining wall Line

Contours Contours Contour lines Line

Building BL Building Polygon

Parking Lots PL Parking lot Polygon

Bick Racks BR Bike rack Polygon

Benches BN Bench Polygon

Green Fields GF Green field Polygon

Wooded Areas WA Wooded area Polygon

Playgrounds PG Playground Polygon

95

5.4 Examining the Map Service Performance

The map service evaluated in terms of the data visualization and retrieve. The web

service functionalities were examined to illustrate the capabilities of representing the

framework specifications. Various examples mentioned below to show the map service

performance:

 The checklist examined in order to evaluate the visibility controller function.

Using the checklist, user can compare and interpret the various types of features

existing on the campus and then understand what features are expected to be

surveyed for the survey camp. Figure 5.8 shows only the base map with no layers

selected in the checklist; on the other hand, figure 5.9 shows the features selected

in the checklist along with describing the symbols utilized to represent the

features.

Figure 5.8: Example of the map service with no selected features

96

Lamp Posts Yellow points

Trees Green points

Walkways Light green polygons

Streets Light gray polygons

Sidewalks Yellow polygons

Parking lots Dark gray polygons

Bick Racks Purple polygons

Wooded Areas Dark green polygons

Figure 5.9: Example of representing features selected in the checklist

97

 The query capability was examined in figure 5.10

Figure 5.10: Example of querying the features on the map service

98

5.5 Summary

The map service developed using various ArcGIS JavaScript API classes. The

visibility controller and query task functions were added as the major capabilities to the

service in order to represent the spatial framework specifications. The JavaScript classes

utilized in scripting codes selected according to their ability of data visualizing and

retrieving. Furthermore, the factor of integration between the codes was considered to

avoid any incompatibility between the JavaScript classes utilized in the code. However,

there was an issue with implementing the query task. In order to solve the issue, all the

features were converted to polygons and then the correct data type was specified as an

attribute for the features.

 By using the map service, users understand the repository structure in terms of

interpreting the storing features as well as learning the feature coding system expected to

implement in the survey camp. Furthermore, the areas on the campus where either

surveying is not completed or might need updating with new survey data could be

identified.

99

Chapter 6 Conclusions

 The overall goal of this thesis was to design and create a campus GIS via developing

a spatial framework for managing the GGE survey camp geospatial holdings. It

represented a set of system tools including the geodatabase model and the Web-GIS

service by which the framework could manage and organize the available map data. In

addition it could define the specifications for the future survey data collections.

The general methodology was illustrated in Chapter 2 along with the characteristics

of the systems, technologies, and procedures applied first to analyze the existing map

data and then to build the information system tools. The existing map datasets were

assessed and analysed in chapter 3 to specify their issues and then to determine the

solutions and specifications by which issues could be minimized. Therefore, the existing

and future map data could be faster and easier categorized and stored in the repository.

After identifying the issues and proposing the appropriate solutions, Chapter 3 illustrated

the processes of designing and populating the geodatabase model. Chapter 4 introduced

the geodatabase model which was designed in a way which allowed controlling the

spatial and non-spatial properties of the map data; therefore, it could satisfy the

framework requirements for managing the GGE survey camp geospatial data. Finally,

Chapter 5 described the Web-GIS service developed to publish an interactive base map

of the UNB campus representing the framework characteristics in terms of the campus

key map layers and their attribute codes.

100

6.1 Research Outcomes and Issues Encountered

The original objectives, outcomes, and conclusions obtained from the thesis are

provided bellow:

Objectives and Outcomes:

1. To design and build a geographical repository in order to categorize, store, and

manage the GGE survey camp geospatial data.

 Based on what mentioned in the development workflow, after reviewing

other research work regarding developing geodatabase models it was found

that geodatabases are very appropriate and useful form of geographical

repositories. Therefore, designing and building the geodatabase model was

the first important and critical part of this project. The geodatabase was

created and then used to organize and store the existing survey camp map

data. Moreover, a base-map was generated to visually show the content of the

data stored in the repository. On the other hand, the Web-GIS was

implemented with respect to the data content and their specifications in the

repository (e.g. map layers and the associating feature codes).

 Populating the geodatabase was the most difficult part of the building

procedure. There were some feature types (e.g. green fields, parking lots,

walkways, etc.) that were not included in the source of the map data (CAD

files). Therefore, it was necessary to apply manual editing to generate the

missing features regarding to their surrounding objects.

101

 The geodatabase model was mostly created based on the available geospatial

information of the GGE survey camp; as a result, any new type of geospatial

data in the future map data may not match with the current model. Therefore,

the developed geodatabase model may partially satisfy the goal of managing

and storing the future geospatial data.

2. To define the spatial and non-spatial characteristics of the spatial reference

framework in order to establish the validation methods as well as defining new

specifications for the survey camp operation in terms of the feature surveying

and coding(which all result in facilitating the repository maintenance process).

 It was tried to define a series of characteristics for the framework to

minimize inconsistency issues. The consistency in feature surveying,

spatial representation forms, and the feature coding schema were found as

the most effective factors for satisfying this goal. Additionally, these

factors were found essential and helpful for validating the data.

Performance of the maintenance tools is depended on validity of the input

data; as a result, validation processes must be applied before applying the

maintenance tools. That, therefore, any invalid input data might cause

difficulties for the maintenance processes and tools (GIS models) in

terms of performance and results.

102

3. To develop a Web-GIS service to publish an interactive base map of the UNB

campus in order to represent the spatial framework characteristics and

specifications.

 This objective was implemented as the last outcome of this project. It

completely satisfied the goal of publishing an interactive base map of the

UNB campus on the web. The interactive base map allows visually

comparing, interpreting, and querying the geospatial content of the survey

camp. These capabilities of the service could facilitate the process of

familiarizing the users with the framework specifications. Furthermore,

this map service can be introduced as one of the major outcomes of a

campus GIS to help the users interpret the campus area.

 The difficulties in developing the Web-GIS have been successfully

resolved by providing appropriate functions for visualizing and querying

the map layers and features as well as representing the data with the

appropriate spatial forms on the map service (i.e. providing the map

layers with polygonal forms).

103

6.2 Recommendations for Future Research

1. Building a geodatabase model for a specific type of geospatial data must be

implemented with respect to the data content that are being stored in the repository.

The type of data and why they must be stored in a geodatabase must be considered

before selecting any approach for implementing the geodatabase. The geodatabase

model designed and implemented must be capable of controlling and managing the

key spatial and non-spatial behaviors and characteristics of the data.

2. It is very important to define and specify the most efficient methods for maintaining

the repository. By introducing the maintenance methods, the repository will be kept

updated and useful. Additionally, the maintaining methods must have the capability

of categorizing, and analysing the new type of data.

3. To develop a Web-GIS service, the most important factor is to choose the most

appropriate technologies and systems in terms of the server and client sides. With

respect to the purpose of using a Web-GIS service, the service functionalities must

be determined and then the suitable technologies could be utilized to obtain the best

results.

104

4. To develop a geospatial reference framework via integration of a set of information

products (e.g. geographical repository models and mapping services), it is very

important to consider the consistency factor in the framework characteristics. For

example, data types, representation forms, storage structure, and identification

methods are critically influence the development procedure. If a set of consistence

characteristics could be successfully defined for the systems; respectively, a

framework will be developed with the capabilities of providing effective and

sufficient management and retrieval methods for the geospatial data.

5. Developing a method that allows assessing data accuracy will improve the

consistency of the information model. That, therefore, will improve the reliability of

the model in terms of data validity, and respectively facilitate the data management

processes as well.

105

Bibliography

ArcGIS API for JavaScript. Retrieved from

https://developers.arcgis.com/en/javascript/jsapi/

ArcGIS resources. Retrieved from

http://resources.arcgis.com/en/help/main/10.1/index.html#//0154000002np000000

ArcGIS server REST API. Retrieved from

http://resources.arcgis.com/en/help/rest/apiref/

Arctur D. and Zeiler M. (2004). "Designing geodatabase: Case studies in GIS data

modeling". United States of America: ESRI, Inc.

Binh T. Q.,Huan N. C.,Thuy L. P. (2008). “DESIGNING A GEODATABASE MODEL

FOR URBAN INFORMATION SYSTEM AT THE BASIC LEVEL (case study ill

nguyell du ward, hai ba trllng district, hanoi city)”. (Annual Report of FY 2007,

The Core University Program between Japan Society for the Promotion of Science

(JSPS) and Vietnamese Academy of Science and Technology (VAST)).Osaka

University.

Charlynne T. Smith and Hugh A. Devine. (2006). “The personal geodatabase as a bmp

for stormwater management”. Proceedings of the 5th Southern Forestry and

Natural Resources GIS Conference, Warnell School of Forestry and Natural

Resources, University of Georgia, Athens, GA. pp.82-90.

Chen B., G. Y. (2010). "The building of network geographic information system based

on arc GIS". International Conference on Computer Application and System

Modeling, , 14 PP.90-93. doi: 10.1109/ICCASM.2010.5622400

Chesnaux R, Lambert M,Walter J,Fillastre U,Hay M,Rouleau A,. (2011).” Building a

geodatabase for mapping hydrogeological features and 3D modeling of ground

water systems: Application to the Saguenay–Lac-st.-jean region, Canada”.

Computers&geosciences, 37(11), 1870–1882. doi: 10.1016/j.cageo.2011.04.013

Deliiska B., D. M.,Milchev R. (2008). "Campus GIS functionality and interface".

International Scientific Conference Computer Science, , 1 PP.291-295.

Fangli N., Kang W.,Juan W. (2010). "Designing and realization of campus WebGIS

based on ArcGIS server". 2010 International Conference on Computer,

Mechatronics, Control and Electronic Engineering (CMCE), Changchun. , 5 PP.72-

75.

106

Gosain A. K.,Rao S.,Singh P.,Arora A. (2010). "Integration of bio-geo spatial database

for selected watersheds in himalayan region". Current Science, VOL. 98, NO. 2,

PP.183-191.

HUANG J.,Zhan Y.,CUI W.,YUAN Y.,QI P. (2010). "Development of a campus

information navigation system based on GIS". 2010 International Conference on

Computer Design and Appliations, Qinhuangdao. , 5 PP.491-494.

Kalman N. B., Hogle I. B., Viers J. H. (2004,). "Designing a geodatabase for your

project: A wetlands delineation example". Message posted to

http://escholarship.ucop.edu/uc/jmie_ice_icepubs

Lifeng Y. (2010). "Design and accomplishment of campus WebGIS based on ArcIMS

A case study on nanjing university of posts and telecommunications". International

Conference on Computer and Communication Technologies in Agriculture

Engineering, Chengdu. , 1 PP.44-46.

Local government information model (ArcGIS 10). (2013). Retrieved from

http://www.arcgis.com/home/item.html?id=b8905e21104342afbe830da28d11b2b9

Lua H.,Nihonga W.,Changb W.,Yujiaa C. (2010). "The research on the WebGIS

application based on the J2EE framework and ArcGIS server". International

Conference on Intelligent Computation Technology and Automation, Changsha. , 3

PP.942-945.

Mathiyalagana V.,Grunwaldb S.,Reddyb K. R.,Bloomb S. A. (2005). "A WebGIS and

geodatabase for Florida’s wetlands". Computers and Electronics in Agriculture, 47,

PP.69-75. doi: 10.1016/j.compag.2004.08.003

Mortada K. A., Mohamed K., Abdellah M.,Abderrahmane M. (2011). "a descriptive

model for developing a hydraulic geodatabase by using the GIS software".

International Journal of Computer Science & Information Technology (IJCSIT),

Vol 3, No 2, pp.177-189. doi: 10.5121/ijcsit.2011.3213

Silayo E. H. (2012). "Cartography in a gis environment". The International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences, , XXXIV

PP.106-112.

Tsouchlaraki A., Achilleos G.,Nikolidakis A.,Nasioula Z. (2010). Building a geo-

database for urban road network environmental quality. 3rd International

Conference on Cartography and Gis, Nessebar, Bulgaria.

107

Wang J.,Stein T. C.,Heet T.,Scholes D. M.,Arvidson R. E. (2010). "A WebGIS for

apollo analyst's notebook". Second International Conference on Advanced

Geographic Information Systems, Applications, and Services, St. Maarten. PP.88-

92. doi: 10.1109/GEOProcessing.2010.20

Yang Y.,Xu J.,Zheng J.,Lin S. (2009). "Design and implementation of campus spatial

information service based on google maps". International Conference on

Mnagement and Service Science (MASS), Wuhan. PP.1-4.

Zeiler M. (1999). "Modeling our world the ESRI guide to geodatabase design". United

States of America: Environmental Systems Research Institute, Inc.

Zhao J.,Wang Q.,Wang Y.,Yang W. (2010). "Real estate early warning information

release platform based on ArcGIS server". International Conference on E-Business

and E-Government, Guangzhou. PP.2308 - 2311.

Zhong S., B. T.,Wang Z. (2010). "Management information system for provincial

mineral resources based on ArcGIS". 2nd Conference on Environmental Science

and Information Application Technology, Wuhan. , 1 PP.325 - 328. doi:

10.1109/ESIAT.2010.5568570

108

Appendix I Geodatabase Maintenance

I.1 Validating the Feature Codes

A sample data of the survey camp was used in this section in order to demonstrate

the procedure of validating the new data. The sample data was first analyzed with

validating methods and then the issues were outlined and eliminated. After eliminating

the issues, the sample data was again examined and then the valid features were

identified. The steps mentioned below describe the validating process.

1. Summarizing the feature attribute codes to start the validating process. The

Layer field was summarized to quickly examine the feature coding structure that

utilized in the survey camp and mapping procedures. Summarizing the attribute

table provided an overview of the codes that utilized in the Layer field. Figure I.1

shows the attribute table of the sample data summarized in ArcMap.

Figure I.1: Summarization of the attributes codes in the Layer field

109

2. Examining the feature codes utilized in the Layer field. As illustrated in figure

I.1, there are six different codes included in the Layer field. The sample data

attribute table were examined against the domain table to specify the matches

according to the domain coding system proposed in the geodatabase design.

Figure I.2 shows some of the valid codes in the domain table.

Figure I.2: Domain table

110

The Layer field in the sample data was joined with the Codes field in the domain

table. The features in the sample data which their attributes in the Layer field matched

with the attributes in Codes field were specified after the join. After the join, the

matching features obtained the attributes of the Code and Description fields in the

domain table. As a result, the features which did not match obtained “Null” values and

then were specified as wrong attribute codes. To specify the invalid codes, the Layer

field in the sample data was summarized with respect to the Codes and Description

fields. The summarizing table illustrated in the figure I.3 indicating the empty rows in

the First_Codes and First_Description fields along with the corresponding invalid

attribute codes in the Layer field. As illustrated, the B, CONTOUR, and TRAVERS

attributes were determined as invalid codes in this case.

Figure I.3: Example of the invalid codes

Since the Codes in the Layer field are utilized in the maintaining process, the invalid

codes must be revised and corrected prior to starting the process. In fact, the invalid

codes must be replaced with the valid codes. The invalid codes were selected by SQL

query and then replaced with the valid codes according to the type of features selected in

the query. In this case, the B and CONTOUR codes were respectively replaced with BL

for the buildings and Contours for the contour lines.

111

I.2 Validating the Features’ Data Type

For validating the features’ data type, the sample data were analyzed, edited and then

imported as feature classes into the datasets. The process of validating the features’ data

type is demonstrated in the steps mentioned below:

1. Examining the features’ type and class with respect to the attributes’

descriptions associated with the objects. For example, the objects classified as

buildings in the sample data include other type of features which must be

classified as lampposts. Figure I.4 shows the lamppost (light) features coded as

buildings.

Figure I.4: Example of the wrong feature coding

112

Manual editing applied to reclassify the objects with the correct classes. The attribute

table was again examined against the domain table to make sure the codes are matched

with the descriptions. Figure I.5 shows the attribute table revised and corrected. The

same validation process must perform for the point layers as well.

Figure I.5: Example of the validated attributes

2. Examining the features’ spatial data type against the corresponding feature

classes specified in the design phases and created in the datasets. For example,

the lamppost features stored as a point feature class in the geodatabase; thus, the

lampposts in the sample data must be point features as well. However, because

the original point data source was not available for this sample data then the

lamppost points created with geoprocessing tools. In this case, the Feature to

Point tools utilized to generate the lamppost points; in fact, a point feature class

generated from the representative points of the lamppost polylines.

I.3 Applying GIS models

1. Adding the sample data into the datasets. Since all the codes validated in the

previous steps, a GIS model could utilize first to specify the features by the SQL

queries and then to add them as feature classes to the datasets. Moreover, the

113

editing tool in ArcMap utilized to create some of the feature types such as the

green fields and parking lots that were not specified in the original sample data.

On the other hand, if an appropriate feature coding was applied to those features

with respect to coding system mentioned in the chapter 3, it was possible to

easily import the green field and parking lot feature classes into the datasets.

Figure I.6 shows the GIS model creates the feature classes.

Figure I.6: Example of the GIS model creating feature classes

In the figure I.6, the tools for creating the manhole, tree, hydrant, and lamppost

feature classes represented along with the aspects for specifying the input point layer

data and the dataset which the output feature classes will be stored in.

114

2. Updating the old features with the corresponding new features or in fact with the

new feature classes that added to the datasets in the previous step. Another GIS

model used here to spatially join the old and new features to determine the old

features that must be replaced with the new one. In this example, the old building

layer will be updated with the new building polygons. Figure I.7 shows the old and

new layers.

Figure I.7: Example of old and new building polygons

115

The GIS model that performs the spatial join and updating process represented in

the the figure I.8 .

Figure I.8: Example of the GIS model performs the updating process

The results illustrated in the figure I.9 bellow were obtained from the geoprocessing

tools of the GIS model shown above.

116

Figure I.9: Examples of the results for the geoprocessing steps of the GIS model

117

 The new

building feature

class intersecs

with the old

building

features. A text

field (Old)

added in its

attribute table.

The old building

feature class

which spatially

joined with the

new building

features class.

The attribute

table contains

the Old text

field. The

buildings with

old attribute had

intersection

with the new

building

features. The updated building feature class

resulted from merge. After that select

tool deleted the buildings had old

attribute value, the remaining

buildings were merged with the new

features.

I.4 Glossary of GIS Terms

Attribute table: A tabular file containing information about a set of geographic features,

usually arranged so that each row represents a feature and each column represents one

feature attribute.

Attribute domain: In a geodatabase, a mechanism for enforcing data integrity.

Attribute domains define what values are allowed in a field in a feature class or non-

spatial attribute table.

Attribute data: Tabular data that describe the geographic characteristics of features.

Attribute query: A request for records of feature in a table based on their attribute

value.

CAD file: The digital equivalent of a drawing, figure, or schematic created using a CAD

system. CAD files are the data source for CAD drawing datasets, feature datasets and

feature classes.

CAD layer: A layer that references a set of CAD data. CAD data is vector data of a

mixed feature type. CAD layers may be of two types: CAD drawing dataset layers, in

which one map layer represents the entire CAD file, and CAD feature layers, in which

data is organized by geometry type.

Coded value domain: A type of attribute domain that defines a set of permissible

values for an attribute in a geodatabase. A coded value domain consists of a code and its

equivalent value.

Feature: A representation of a real-world object on a map.

118

Feature Class: In ArcGIS, a collection of geographic features with the same geometry

type (such as point, line, or polygon), the same attributes, and the same spatial reference.

Feature Dataset: In ArcGIS, a collection of feature classes stored together that share

the same spatial reference; that is, they share a coordinate system, and their features fall

within a common geographic area. Feature classes with different geometry types may be

stored in a feature dataset.

Field: A column in a table that stores the values for a single attribute.

Geodatabase: A database or file structure used primarily to store, query, and

manipulate spatial data. Geodatabases store geometry, a spatial reference system,

attributes, and behavioral rules for data. Various types of geographic datasets can be

collected within a geodatabase, including feature classes, attribute tables, raster datasets,

network datasets, topologies, and many others.

Geodatabase data model: The schema for the various geographic datasets and tables in

an instance of a geodatabase. The schema defines the GIS objects, rules, and

relationships used to add GIS behavior and integrity to the datasets in a collection.

Layer: The visual representation of a geographic dataset in any digital map environment.

Line feature: A map feature that has length but not area at a given scale, such as a river

on a world map or a street on a city map.

Point feature: A map feature that has neither length nor area at a given scale, such as a

city on a world map or a building on a city map.

119

Polygon feature: In ArcGIS software, a digital map feature that represents a place or

thing that has area at a given scale. A polygon feature may have one or more parts. For

example, a building footprint is typically a polygon feature with one part.

Polyline feature: In ArcGIS software, a digital map feature that represents a place or

thing that has length but not area at a given scale. A polyline feature may have one or

more parts. For example, a stream is typically a polyline feature with one part.

Query expression: A type of expression that evaluates to a Boolean (true or false) value,

that is typically used to select those rows in a table in which the expression evaluates to

true. Query expressions are generally part of a SQL statement.

Tabular data: Descriptive information, usually alphanumeric, that is stored in rows and

columns in a database and can be linked to spatial data.

Topology: In geodatabases, the arrangement that constrains how point, line, and

polygon features share geometry.

Topology rule: An instruction to the geodatabase defining the permissible relationships

of features within a given feature class or between features in two different feature

classes.

120

Appendix II Geodatabase Schema Documentation

In documenting a geodatabase, first an overview of the structure must be provided.

Figure II.1 shows the geodatabase model structure that was developed in this thesis.

 UNB Campus Geodatabase

Table

Domain_

Figure II.1: Overview of UNB campus geodatabase structure

121

Building_Wall_Contour_Parking Dataset

Geodatabase Topology

Building_Wall_Contour

Polygon feature class

BikeRacks

Polygon feature class

Building

Line feature class

BuildingBoundaries

Line feature class

Contours

Line feature class

Guardrail

Line feature class

Fence

Polygon feature class

ParkingLots

Line feature class

RetainingWall

Route Dataset

Line feature class

Crosswalk

Line feature class

Curbs

Line feature class

SideWalk

Line feature class

Streets

Line feature class

WalkWays

GreenArea_Infrastructure

Geodatabase Topology

GreenArea_Infrastructured

Polygon feature class

Playground

Polygon feature class

GreenFields

Point feature class

TelephonePoles

Point feature class

Manholes

Point feature class

Signs

Polygon feature class

Benches

Point feature class

StromDrains

Point feature class

Hydrants

Polygon feature class

woodedAreas

Point feature class

ElectricalBoxes

Point feature class

Trees

Point feature class

LampPosts

After showing the overview of the geodatabase structure, each dataset must be

illustrated separately. In this illustration, each feature class is documented in order to

show the tabular content importantly including: field name, data type, and domain.

Figures II.2, II.3, II.4 show the feature classes in datasets along with the tabular contents.

Simple feature class
Streets Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
WalkWays Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
Crosswalk Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
SideWalk Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
Curbs Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Figure II.2: Route dataset

122

Route Dataset

Simple feature class
BikeRacks Contains Z values

Contains M values
Geometry Polygon

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

SHAPE_Area Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
BuildingBoundaries Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

FID_Building Long integer Yes 0

FeatureCode String Yes 2

FeaturType String Yes Codes 50

SHAPE_Length Double Yes 0 0

Simple feature class
Building Contains Z values

Contains M values
Geometry Polygon

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

SHAPE_Area Double Yes 0 0

FeatureCode String Yes 2

FeaturType String Yes Codes 50

Simple feature class
Contours Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 10

FeatureType String Yes 50

Simple feature class
Guardrail Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 4

FeatureType String Yes Codes 50

Simple feature class
Fence Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
RetainingWall Contains Z values

Contains M values
Geometry Polyline

No
No

Data typeField name
Prec-
ision Scale LengthDomainDefault value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Figure II.3: Building_Wall_Contour_Parking Dataset

123

Building_Wall_Contour_Parking Dataset

GreenArea_Infrastructure Dataset

Simple feature class
GreenFields Contains Z values

Contains M values
Geometry Polygon

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

SHAPE_Area Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
Signs Contains Z values

Contains M values
Geometry Point

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
Hydrants Contains Z values

Contains M values
Geometry Point

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
ElectricalBoxes Contains Z values

Contains M values
Geometry Point

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

FeatureCode String Yes 4

FeatureType String Yes Codes 50

Simple feature class
TelephonePoles Contains Z values

Contains M values
Geometry Point

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
LampPosts Contains Z values

Contains M values
Geometry Point

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
Playground Contains Z values

Contains M values
Geometry Polygon

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

SHAPE_Area Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
woodedAreas Contains Z values

Contains M values
Geometry Polygon

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

SHAPE_Area Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
Benches Contains Z values

Contains M values
Geometry Polygon

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

SHAPE_Length Double Yes 0 0

SHAPE_Area Double Yes 0 0

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
Trees Contains Z values

Contains M values
Geometry Point

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
StromDrains Contains Z values

Contains M values
Geometry Point

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Simple feature class
Manholes Contains Z values

Contains M values
Geometry Point

No
No

Data typeField name
Prec-
ision Scale LengthDomain

Default
value

Allow
nulls

OBJECTID Object ID

SHAPE Geometry Yes

FeatureCode String Yes 2

FeatureType String Yes Codes 50

Figure II.4: GreenArea_Infrastructure Dataset

124

After documenting the datasets and feature classes, tables in geodatabase must be

illustrated. A domain table was created in the geodatabase which contains two fields, the

domain coded value and their descriptions. The coded values in the table are used for

data validation. Figure II.5 shows the domain table.

Coded value domain

Codes
Description

Field type

Split policy

Merge policy

Description

String

Default value

Default value

DescriptionCode

BL Buildings

BS Building Stairs

BN Benches

Contours Contours

CB Curbs

CW Crosswalks

EB Electrical Boxes

FN Fences

GF Green Fields

GD Guardrails

HD Hydrants

LI Lights

LP Lamp Posts

MH Manholes

PL Parking lots

SI Signs

SR stairs

ST street

SD Storm drains

SW Sidewalk

WA Wooded areas

WW Walkways

TR Tree

VP VPort

TP Telephone poles

RW Retaining walls

GFST Green fields_Streets

GFWW Green fieds_Walkways

PLST Parking lots_Streets

PLSW Parking lots_Sidewalks

BLPL Buildings_Parking lots

BLGF Buildings_ Green fields

GFPL Green fields_Parking lots

GFSW Green fields_Sidewalks

STGF Streets_Greenfields

WWGF Walkways_Green fields

STPL Streets_Parking lots

PLBL Parking lots_Buildings

GFBL Green fields_Buildings

STBL Streets_Buildings

PLGF Parking lots_Green fields

SWGF Sidewalks_Greenfields

Figure II.5: Domain table

125

Appendix III Web Service User Guide and Code

III.1 User Guide

Figure II.1 shows the ESRI World Topographic background base map. As it is

shown in the figure, the UNB campus area is represented once the map service is loaded

in the internet browser. The checkbox on the top indicate the feature layers to be

selected for display.

Figure III.1: Example of map service representing the background base map

Figure II.2 shows the map service displaying some layers that have been selected

with the checkboxes. This capability helps to interpret and explore the features

distribution of each individual layer around the campus.

126

Figure III.2: Example of selected layers to display on the map service

It is important to know that point features (e.g. trees, lampposts, hydrants, manhole,

etc.) are displayed in higher zooming levels than line and polygon features (e.g. parking

lots, streets, green fields, etc.). While displaying the layers, clicking on the features will

returns a pup-up window containing the attribute data including the feature code, type,

and spatial forms that were specified for those in the main database.

127

Examples have been given below for the features that have been selected on the map

to retrieve their attribute values. Figure II.3 shows the selected building features along

with the pup-up window showing the Code: BL, to use it for coding the survey data;

Feature Type: Building, to describe the feature; and Data Type in the Repository:

Polygon, to define the spatial form of the feature to survey and then map in the CAD file.

Figure III.3: Example of pop-up window indicating features attribute data

128

III.2 ArcCatalog Manager

The map Service was established in the ArcCatalog as mentioned in the steps below:

1. Adding a new service in the ArcCatalog. The map service was added and then

the .MXD file defined as the input data for the service. The .MXD file includes

the map layers that generated in the ArcMap and then saved as .MXD file.

2. Defining the Service Type to specify the capabilities of the service. In this case,

the map service has the capability of map and query services. Finally, the map

service established and then run in the ArcGIS server.

3. Previewing the service in the ArcCatalog to make sure if the service is active or

not. Figure II.1 shows the map service in the ArcCatalog.

Figure III.4: Example of the map service preview in ArcCatalog

129

III.3 HTML and JavaScript Code

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=7,IE=9">

 <!--The viewport meta tag is used to improve the presentation and behavior of the

samples

 on iOS devices-->

 <meta name="viewport" content="initial-scale=1, maximum-scale=1,user-

scalable=no">

 <title>SurveyCampLayer</title>

 <link rel="stylesheet"

href="http://serverapi.arcgisonline.com/jsapi/arcgis/3.3/js/dojo/dijit/themes/claro/claro.c

ss">

 <link rel="stylesheet"

href="http://serverapi.arcgisonline.com/jsapi/arcgis/3.3/js/esri/css/esri.css">

 <script>dojoConfig = { parseOnLoad:true };</script>

 <script src="http://serverapi.arcgisonline.com/jsapi/arcgis/3.3/"></script>

 <script>

 dojo.require("esri.map");

 dojo.require("esri.tasks.query");

130

//Defining the variables used in the functions and classes:

var layer, map;

var queryTask, queryTask1, queryTask2, queryTask3, queryTask4, queryTask5,

queryTask6, queryTask7, queryTask8, queryTask9, queryTask10;

var queryTask11, queryTask12, queryTask13, queryTask14, queryTask15, queryTask16,

queryTask17, queryTask18, queryTask19, queryTask20;

var query;

var visible = [];

var featureSet;

 //The main function which constructs the Basemap, map feature layer inputs, query

//inputs, and the query filters.

function init() {

map = new esri.Map("map",{

basemap: "topo",

extent: new esri.geometry.Extent(-66.649725, 45.940313, -66.636766, 45.950831),

zoom: 16

 });

 //Use the ImageParameters to set the visible layers in the map service during

//ArcGISDynamicMapServiceLayer construction.

var imageParameters = new esri.layers.ImageParameters();

imageParameters.layerIds = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20];

imageParameters.layerOption = esri.layers.ImageParameters.LAYER_OPTION_SHOW;

//can also be: LAYER_OPTION_EXCLUDE, LAYER_OPTION_HIDE,

//LAYER_OPTION_INCLUDE

131

layer = new esri.layers.ArcGISDynamicMapServiceLayer("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer",

 {"imageParameters":imageParameters

 });

map.addLayer(layer);

 //Listen for click event on the map, when the user clicks on the map call

//executeQueryTask function.

 dojo.connect(map, "onClick", executeQueryTask);

 dojo.connect(map, "onClick", executeQueryTask1);

 dojo.connect(map, "onClick", executeQueryTask2);

 dojo.connect(map, "onClick", executeQueryTask3);

 dojo.connect(map, "onClick", executeQueryTask4);

 dojo.connect(map, "onClick", executeQueryTask5);

 dojo.connect(map, "onClick", executeQueryTask6);

 dojo.connect(map, "onClick", executeQueryTask7);

 dojo.connect(map, "onClick", executeQueryTask8);

 dojo.connect(map, "onClick", executeQueryTask9);

 dojo.connect(map, "onClick", executeQueryTask10);

 dojo.connect(map, "onClick", executeQueryTask11);

 dojo.connect(map, "onClick", executeQueryTask12);

 dojo.connect(map, "onClick", executeQueryTask13);

 dojo.connect(map, "onClick", executeQueryTask14);

 dojo.connect(map, "onClick", executeQueryTask15);

 dojo.connect(map, "onClick", executeQueryTask16);

 dojo.connect(map, "onClick", executeQueryTask17);

132

dojo.connect(map, "onClick", executeQueryTask18);

 dojo.connect(map, "onClick", executeQueryTask19);

 dojo.connect(map, "onClick", executeQueryTask20);

 //Listent for infoWindow onHide event

dojo.connect(map.infoWindow, "onHide", function() {map.graphics.clear();});

 //Defining input data for the query task.

queryTask = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/0");

 queryTask1 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/1");

 queryTask2 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/2");

 queryTask3 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/3");

 queryTask4 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/4");

 queryTask5 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/5");

 queryTask6 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/6");

queryTask7 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/7");

 queryTask8 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/8");

 queryTask9 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/9");

 queryTask10 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/10");

133

 queryTask11 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/11");

 queryTask12 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/12");

 queryTask13 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/13");

 queryTask14 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/14");

 queryTask15 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/15");

 queryTask16 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/16");

 queryTask17 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/17");

 queryTask18 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/18");

 queryTask19 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/19");

 queryTask20 = new esri.tasks.QueryTask("http://samyar-

pc/arcgis/rest/services/CampLayers/MapServer/20");

//Defining the query filter

 query = new esri.tasks.Query();

 query.outSpatialReference = {"wkid":4326};

 query.returnGeometry = true;

 query.outFields = ["FeatureCode","FeatureType","DataType"];

 }

134

 //Visibility Controller Function.

 function updateLayerVisibility() {

 var inputs = dojo.query(".list_item"), input;

 //in this application layer 2 is always on.

 visible = [];

 for (var i=0, il=inputs.length; i<il; i++) {

 if (inputs[i].checked) {

 visible.push(inputs[i].id);

 }

 }

 //if there aren't any layers visible set the array value to = -1

 if(visible.length === 0){

 visible.push(-1);

 }

 layer.setVisibleLayers(visible);

 }

// Query Task Execution Function

 function executeQueryTask(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

135

//set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

// Query Task-1 Execution Function.

 function executeQueryTask1(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

//xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

136

//Execute task and call showResults on completion

 queryTask1.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

 // Query Task-2 Execution Function

 function executeQueryTask2(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask2.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

137

 }

 });

 }

// Query Task-3 Execution Function

 function executeQueryTask3(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask3.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

138

 // Query Task-4 Execution Function

 function executeQueryTask4(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask4.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

139

 // Query Task-5 Execution Function

 function executeQueryTask5(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask5.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

// Query Task-6 Execution Function

 function executeQueryTask6(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

140

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask6.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

// Query Task-7 Execution Function

 function executeQueryTask7(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

141

 //Execute task and call showResults on completion

 queryTask7.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

// Query Task-8 Execution Function

 function executeQueryTask8(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask8.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

142

 }

 });

 }

// Query Task-9 Execution Function

 function executeQueryTask9(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask9.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

143

// Query Task-10 Execution Function

 function executeQueryTask10(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask10.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

// Query Task-11 Execution Function

 function executeQueryTask11(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

144

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask11.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

// Query Task-12 Execution Function

 function executeQueryTask12(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

145

 //Execute task and call showResults on completion

 queryTask12.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

// Query Task-13 Execution Function

 function executeQueryTask13(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask13.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

146

 }

 });

 }

 // Query Task-14 Execution Function

 function executeQueryTask14(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask14.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

147

// Query Task-15 Execution Function

 function executeQueryTask15(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask15.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

// Query Task-16 Execution Function

 function executeQueryTask16(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

148

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask16.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

// Query Task-17 Execution Function

 function executeQueryTask17(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

149

 //Execute task and call showResults on completion

 queryTask17.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

// Query Task-18 Execution Function

 function executeQueryTask18(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask18.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

150

 }

 });

 }

// Query Task-19 Execution Function

 function executeQueryTask19(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask19.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

151

// Query Task-20 Execution Function

 function executeQueryTask20(evt) {

 map.infoWindow.hide();

 map.graphics.clear();

 featureSet = null;

 //onClick event returns the evt point where the user clicked on the map.

 //This is contains the mapPoint (esri.geometry.point) and the screenPoint (pixel

xy where the user clicked).

 //set query geometry = to evt.mapPoint Geometry

 query.geometry = evt.mapPoint;

 //Execute task and call showResults on completion

 queryTask20.execute(query, function(fset) {

 if (fset.features.length === 1) {

 showFeature(fset.features[0],evt);

 } else if (fset.features.length !== 0) {

 showFeatureSet(fset,evt);

 }

 });

 }

//Show Selected Features for the Query

 function showFeature(feature,evt) {

 map.graphics.clear();

152

 //Set Symbol

 var symbol = new

esri.symbol.SimpleFillSymbol(esri.symbol.SimpleFillSymbol.STYLE_SOLID, new

esri.symbol.SimpleLineSymbol(esri.symbol.SimpleLineSymbol.STYLE_SOLID, new

dojo.Color([255,0,0]), 2), new dojo.Color([255,255,0,0.5]));

 feature.setSymbol(symbol);

 //construct infowindow title and content

 var attr = feature.attributes;

 var title = attr.FIELD_NAME;

 var content = "
Feature Code: " + attr.FeatureCode

 + "
Feature Type: " + attr.FeatureType

 + "
Data

Type in the Repository: " + attr.DataType;

 map.graphics.add(feature);

 map.infoWindow.setTitle(title);

 map.infoWindow.setContent(content);

 map.infoWindow.resize(250, 110);

 (evt) ?

map.infoWindow.show(evt.screenPoint,map.getInfoWindowAnchor(evt.screenPoint)) :

null;

 }

 function showFeatureSet(fset,evt) {

 //remove all graphics on the maps graphics layer

 map.graphics.clear();

 var screenPoint = evt.screenPoint;

153

 featureSet = fset;

 var numFeatures = featureSet.features.length;

 //QueryTask returns a featureSet. Loop through features in the featureSet and

add them to the infowindow.

 var title = "You have selected " + numFeatures + " fields.";

 var content = "Please select desired field from the list below.
";

 for (var i=0; i<numFeatures; i++) {

 var graphic = featureSet.features[i];

 content = content + " Field (<A href='#'

onclick='showFeature(featureSet.features[" + i + "]);'>show)
";

 }

 map.infoWindow.setTitle(title);

 map.infoWindow.setContent(content);

map.infoWindow.show(screenPoint,map.getInfoWindowAnchor(evt.screenPoint));

 }

 dojo.ready(init);

 </script>

 </head>

154

 <body>

 This map service shows the survey camp feature layers and the feature coding

system.

 Camp Feature Layers:

 <input type='checkbox' class='list_item' id='0' value=0

onclick='updateLayerVisibility();'/>Hydrants

<input type='checkbox' class='list_item' id='1' value=1

onclick='updateLayerVisibility();'/>Lamp Posts

<input type='checkbox' class='list_item' id='2' value=2

onclick='updateLayerVisibility();'/>Manholes

<input type='checkbox' class='list_item' id='3' value=3

onclick='updateLayerVisibility();'/>Storm Drains

<input type='checkbox' class='list_item' id='4' value=4

onclick='updateLayerVisibility();'/>Signs

<input type='checkbox' class='list_item' id='5' value=5

onclick='updateLayerVisibility();'/>Telephone Poles

<input type='checkbox' class='list_item' id='6' value=6

onclick='updateLayerVisibility();'/>Trees

<input type='checkbox' class='list_item' id='7' value=7

onclick='updateLayerVisibility();'/>Walkways

<input type='checkbox' class='list_item' id='8' value=8

onclick='updateLayerVisibility();'/>Sidewalk

<input type='checkbox' class='list_item' id='9' value=9

onclick='updateLayerVisibility();'/>Crosswalk

<input type='checkbox' class='list_item' id='10' value=10

onclick='updateLayerVisibility();'/>Streets

<input type='checkbox' class='list_item' id='11' value=11

onclick='updateLayerVisibility();'/>Fence

155

<input type='checkbox' class='list_item' id='12' value=12

onclick='updateLayerVisibility();'/>Retaining Wall

<input type='checkbox' class='list_item' id='13' value=13

onclick='updateLayerVisibility();'/>Contours

<input type='checkbox' class='list_item' id='14' value=14

onclick='updateLayerVisibility();'/>Buildings

<input type='checkbox' class='list_item' id='15' value=15

onclick='updateLayerVisibility();'/>Parking lots

<input type='checkbox' class='list_item' id='16' value=16

onclick='updateLayerVisibility();'/>Bike Racks

<input type='checkbox' class='list_item' id='17' value=17

onclick='updateLayerVisibility();'/>Benches

<input type='checkbox' class='list_item' id='18' value=18

onclick='updateLayerVisibility();'/>Green Fields

<input type='checkbox' class='list_item' id='19' value=19

onclick='updateLayerVisibility();'/>Wooded Are

<input type='checkbox' class='list_item' id='20' value=20

onclick='updateLayerVisibility();'/>Playgrounds

 <div id="map" class="claro" style="width:%100; height:800px; border:1px solid

#000;"</div>

 </body>

</html>

156

VITA

Candidates’ full Name: Samyar Sepehr

University Attended: Islamic Azad University, B.E, 2009

Publication:

Sepehr, S. , D. Fraser and E. Stefanakis (2013). “A Geospatial Reference Framework for

Survey Camps”. Proceedings of the 26
th

 International Cartographic Conference, Dresden,

Germany, August

