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ABSTRACT 

Project specifications are designed and enforced to determine whether or not delivered 

data met required standards. However, rapid advancements in LiDAR data capture 

technologies have led to major challenges for end users to validate the data and processes 

for fitness for use. The developed UDTEB model uses two approaches to fill this gap – 1) 

the deterministic approach employing CMP and SBET or their equivalent files of ALS 

surveys to extract the root mean square errors of points with respect to a trajectory and an 

estimated terrain, and 2) where these files are not available, the non-deterministic 

approach employing published LiDAR system performance reports to simulate flight 

conditions and estimate errors under defined conditions. 

To validate the UDTEB model, five areas of varying topography and land cover were 

investigated. TIN differencing and a new method for point by point comparison of 

checkpoints and corresponding LiDAR points using square windows around the 

checkpoints were employed. When the obstructions of the checkpoints were further 

categorized as “clear”, “light” and “dense”, average RMSE values observed were 0.06 m, 

0.05 m and 0.10 m respectively. 

The UDTEB model proposes a method to equip end-users to perform error budgeting 

from data acquisition to the end product creation and validate the elevation accuracy of a 

LiDAR data at a given confidence interval. The method can be customized for a given 

error analysis task, allowing the user to include other error sources into the model. It can 

also be adopted for elevation error analysis of large datasets similar to LiDAR.
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Figure 1.1. Outline of Chapter 1 

1.1 PROBLEM DEFINITION 

There are no complete and simple processes and tools to provide support for airborne 

LiDAR (Light Detection And Ranging) users to budget errors at project inception and 

verify whether or not the delivered LiDAR products meet user specifications after project 

completion. A survey of users of LiDAR data and its derived products within New 

Brunswick – the project area considered for this research – showed the limitations 

LiDAR data custodians had in performing tasks involving LiDAR error budgeting. A 

further inhibition to realizing the full potential and limitations of LiDAR data and 

products is the difficulty to interpret the overall error and its effect on project specific 

applications. These abilities require expertise in LiDAR which may not be available for 

most LiDAR data users (or potential users). Additionally, as LiDAR systems are getting 

more complex, the trend now is to leave both project planning – including error 
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budgeting and quality control – in the hands of the vendor. Consequently, a gap exists 

with respect to the client being unable to independently determine whether or not a given 

spatial data quality is fit for use. This gap keeps widening as the systems employed for 

data capture become more complex. 

Considering a collection of applications employing LiDAR data in the project area, this 

research addressed key questions as to whether manufacturers' specifications meet, 

surpass or fail user-demanded error budgets for specific projects. The plan of this 

research is to estimate the errors based on systems employed and methods used in post-

processing of LiDAR data and products. If products from system specifications generally 

exceed user error budgets for intended projects, users may not need to worry about not 

meeting general requirements for accurate information derived from LiDAR data. On the 

other hand, system specifications may fail to meet users‟ intended purposes. In this case, 

how can false accuracies be identified? What will be their effects on the final information 

released to the public after creating applications or solutions employing a falsely 

specified data?  

This dissertation proposes that the answer to these questions lies in the establishment of a 

complete system that tracks and quantifies each error source contributing to the final 

LiDAR data product. Some of these sources have already been identified by previous 

authors and are discussed in Section 2.2.5. Additional sources of error that could affect 

the total accuracy of a LiDAR product have been identified and discussed in Section 

3.4.3. The total error (computed using methods in this research) is compared with the 
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initial user‟s requirements to determine whether or not delivered LiDAR products are fit 

for use. 

1.1.1 Background and Motivation 

In the summer of 2008, the government of New Brunswick (N.B.), Department of Public 

Safety (DPS), Canada, acquired LiDAR data to help study and model recurring flooding 

in the province. However, the technology, with a potential to greatly benefit the flood 

project, was new to the parties involved. There was a need to develop user capacity to 

benefit from the full potential of the data and know its limitations. The initial task of 

developing specifications to provide guidelines for departments seeking to acquire data in 

N.B. was carried out by Coleman and Adda [2010].  

LiDAR data and its derived products have become a major source for digital spatial data 

acquisition used in several terrain related applications around the globe. Several authors 

(e.g., Hodgson and Bresnahan [2004]; Sithole and Vosselman [2003]; Hodgson et al. 

[2007]) report on the rapid adoption of the technology for surveys previously done using 

traditional photogrammetry or land surveying. El-Sheimy et al. [2005] attributes the 

increase in acceptance of LiDAR data as a major spatial data source to advancements in 

LiDAR technology. 

To achieve desired accuracies, contracting companies use LiDAR equipment from 

different manufacturers and adopt different specifications towards LiDAR surveys. The 

manufacturers‟ specifications on horizontal and vertical accuracies are generalized for 

projects without regard to the terrain and specific project requirements [Ussyshkin et al., 

2006]. Additionally, very few user-side methods and technologies exist to test and 
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analyze data and products in order to verify data quality. For those that exist, aside from 

the cost of acquisition and training, an in-depth knowledge of LiDAR processing may be 

required to use them – a skill that may not necessarily be available among the user groups 

in this study. In-depth processing skills can be seen to be lacking among everyday 

LiDAR data users in most state or provincial governments. 

In New Brunswick, LiDAR products are used in various applications requiring high 

accuracy standards. A previous study by Coleman and Adda [2010] suggests that LiDAR 

data and their derived products are employed in three main areas in the province of New 

Brunswick, namely, emergency measures and response, environmental monitoring, and 

city planning (for development regulation and tourism). Furthermore, literature 

contributions from Desmet [1997], Chou et al. [1999], FEMA [2000], Kraus and Pfeifer 

[2001], Lloyd and Atkinson [2002], Lim et al. [2003], El-Sheimy et al. [2005], Hodgson 

et al. [2005], Fisher and Tate [2006], Lloyd and Atkinson [2006], and Liu [2008] mention 

these three areas as common applications that employ the use of Airborne LiDAR.  

In an attempt to close the gap between user‟s requirements on one hand and the 

manufacturers‟ specifications on the other hand, project-specific specifications are 

usually described on the client side to which the vendor is expected to comply. Assuming 

LiDAR data standards are already over specified to meet all applications, how is this 

verified as satisfactory on the client side? Have clients been given false precision for their 

project-specific applications? If yes or no, what process can prove this on a project-

specific basis?  
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To answer these questions, this research leveraged and extended the processes relating to 

the identification, quantification, and interpretation of error propagation during the 

process of creating airborne LiDAR products. After creating these processes, as a case 

study, this research analyzes the effect of uncertainties on the final information derived 

from flood inundation mapping. Flood inundation information is chosen for this test case 

because it employs the capture of both terrain and hydrographic objects. Furthermore, 

flood inundation maps are the basis for flood prediction and emergency response scenario 

simulations. The city of Fredericton considers flooding as one of its main natural 

disasters. Plans are made annually to predict and mitigate the effects of flooding. Spatial 

data plays an important role in this regard.  

Estimating differences between the demand side specifications required by users for real 

world applications and the manufactures‟ specifications for ideal conditions help to 

resolve questions on LiDAR product errors including: 

1. “How can a user determine the amounts and effects of total propagated errors on 

a project-specific basis?” 

2. “What are the causes and effects – in the possible case – when manufacturers’ 

specifications do not meet user’s specification requirements?” 

3. “How can products from poorly specified projects be adjusted to meet more 

stringent user’s specifications without reducing the spatial quality of the data 

derived products?” 

Two LiDAR projects have been undertaken prior to the inception of this research to 

strengthen product quality obtained in N.B. The first project, by Adda et al. [2009] and 
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Adda et al. [2011], was to model a flood map of downtown Fredericton using LIDAR 

data and water gauges. This involved the validation of elevation data from LiDAR points 

in downtown Fredericton by using GPS measurements. Figure 1.2 shows a graph 

produced after collecting and analyzing information on user requirements among 

participating organizations in this research. The institutions involved were the: 

 Department of Public Safety (DPS); 

 Department of Natural Resources (DNR); 

 Department of Transportation (DOT); 

 Department of Agriculture Aquaculture and Fisheries (DAA); 

 Service New Brunswick (SNB); 

 Environment Canada (ENVCan); and 

 Cities of Fredericton, Saint John and Moncton. 

 

Figure 1.2. User requirements assessment for multiple organizations employing LiDAR  
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Figure 1.2 summarizes the data and product formats that were popular among 

organizations in the project area. It also reports on the vertical accuracy in terms of the 

RMSE in elevation (labeled as RMSEz) requirements for each institution. The achievable 

vertical accuracy considering the technology to be employed as of the time is also 

provided (yellow line). This information was used to perform a user‟s requirement 

assessments for the multiple organizations that employ LiDAR products for various 

applications (from Coleman and Adda [2010]). 

The second project involved the design of common specifications for the capture and 

processing of LiDAR data in the province – keeping in mind multiple and varied user‟s 

needs as shown in Figure 1.2. 

A study of Figure 1.2 shows that accuracy requirements are different among 

organizations. The average stated manufacturer‟s specification of LiDAR data acquired 

in the province reported a vertical accuracy of ±15 cm and horizontal accuracy of 50cm 

at 2-sigma. These average vendor‟s specifications were found to be satisfactory to seven 

out of nine provincial departments. Two organizations, namely DNR and the DOT, 

required more stringent specifications. 

In both projects, it was realized that the use of LiDAR data and derived products for 

scenario prediction and simulations of a natural phenomenon require proof of the 

reliability of the information provided. The optimal way of doing this in a comprehensive 

manner is currently nonexistent. There have, however, been at least three different 

research efforts to look into the uncertainties involved in processing LiDAR [Ussyshkin 

et al. 2008]. However, client methods to estimate or validate error of LiDAR products for 
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a variety of applications are yet to be fully explored. In order to estimate possible, or even 

expected variations in the achievable data accuracy, the entire error budget of the LiDAR 

system should be considered. 

Vendors of LiDAR data will design their project requirements based on the specific 

needs of the client [Ussyshkin et al., 2008] with typical questions like: 

1. What is the coverage area?  

2. How large is it? 

3. What are the properties of the terrain (such as coverage, slope, and elevation 

above sea level)?  

4. What accuracy of the point elevations is required? 

5. What resolution/point spacing is anticipated? 

Based on these questions, vendors are able to forecast final accuracies based on the 

precision of the LiDAR system. Manufacturers of LiDAR systems typically characterize 

LiDAR performance for the most general case of targets [Ussyshkin et al., 2008].  

The challenge of translating nominal specification values to real-world achievable 

accuracy is left to the end-user and has long been a subject of different interpretations 

[Ussyshkin and Smith, 2006]. Considering the complex systems involved, the capacity of 

the user to perform these comparisons has been made more difficult. To solve this, a 

comprehensive comparison approach is required to verify whether or not vendor 

specifications on one hand meet user requirements on the other hand. 
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In summary, it is one thing to have a user‟s specification and another thing to be able to 

enforce the specification. The quest to enforce user‟s requirements and verify whether the 

delivered product met those requirements was the driving force leading to this 

investigation to create a User-Determined Total Error Budget (UDTEB) model. This 

model is created to enable everyday LiDAR users to follow a complete process to 

identify major error sources, quantify these errors and determine whether or not the 

products that contain these errors are fit for use. 

 

1.1.2 Project Area 

Fredericton and its surrounding area are considered as the project area for this research. 

Airborne LiDAR data and supporting data including ground control and water gauge data 

from the region was collected from DPS, ENVCan, SNB and Leading Edge Geomatics 

(LEG) Limited, Fredericton. LEG is a private survey company specializing in providing 

airborne LiDAR services. Field tests were performed on the data for quality assurance 

and control. The field exercise also allows for the collection of attributes relating to the 

data that may or may not be available with the data. Such attributes like terrain type, 

vegetative cover, building density and man-made structures on site are important factors 

in the final error estimation process.  

The types of terrain and ground cover over LiDAR data project areas vary from place to 

place. The shape of the terrain and the density of features to be classified are two 

examples. To ensure a universality of approach, the developed error model was tested on 
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varying density of sensed objects and terrain conditions by considering five scenarios as 

follows: 

1. flat even terrain– e.g., desert and fairly flat areas (a parking lots and sports fields 

is used to simulate this scenario); 

2. undulating terrain – a well-connected representation of shallow, average; high 

undulating terrain; 

3. vegetative areas – savannah, medium density, very dense vegetative conditions; 

4. densely built up areas – (downtown Fredericton); and  

5. sparsely built up areas – (outside the business areas of the city of Fredericton). 

Field control using GNSS surveys were carried out at these areas to validate the UDTEB 

model. 

 

1.1.3 Constraints and Challenges Encountered in this Research 

During project planning, the choice of methods to meet a specified project need and the 

task of translating the specification error projections to real-world achievable accuracy 

has long been a subject of different interpretations as stated in Section 1.1. Consequently, 

a gap exists as a result of the contradicting interpretations between the manufacturers‟ 

stated specification and what is achievable in most project-specific applications. As this 

is an estimate of errors, the challenge was in providing methods for the user to employ 

when matching system precision estimates with real measurements to determine whether 

or not the spread of errors satisfies the client‟s requirements. 
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The research will not seek to refute reported system accuracies by demanding and 

investigating all vendor processing techniques employed and the manufacturer's 

instrument acquisition parameters. Understandably, manufacturers typically want to 

protect such information as part of their competitive advantage. Rather, this research 

focuses on modeling a total propagated error as a simulation of manufacturers‟ reported 

instrument precision and processes. Following that is an investigation to determine 

whether or not the total data or product error falls within acceptable limits of 

corresponding ground points. The precision of the instrument is treated as one case of 

measuring capability. The precision indicates that the instrument carries some amount of 

errors when used in ideal laboratory scenarios. The conditions under which the system is 

used together with the processes employed to process the data into a desired product will 

produce additional errors. 

Finally, when products are being presented in an applied form, for instance flood 

modeling, certain assumptions (e.g., classifications) are made. This also carries with it 

some errors necessary to be considered in the total error modeling. Since the mechanical 

and processing capabilities of the systems and software are available, the focus will be on 

modeling other error sources that contribute to total data or product accuracy. The main 

constraint in terms of the estimated duration of this research was access to current LiDAR 

data with metadata to provide input into the model. The developed prototype application 

from the model had to wait for seven months to be tested with Fredericton data. The data 

were expected in the first week of November 2011 but was finally delivered in the second 

week of May 2012.  
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After data delivery, a quality control was made on the data and it was realized that the 

data lacked some metadata required as input into the UDTEB model. Information on 

system behavior during flight and the trajectory estimation used during the survey were 

missing in the provided metadata report. The data provider, LEG, was contacted after 

several attempts to extract the flight parameters from the LiDAR data. A conclusion was 

arrived that it was more ideal to undertake another calibration flight on June 2012 of the 

project area than try to “reverse engineer” the lost information.  

 

 

1.2 PROPOSED APPROACH 

After determining the initial user‟s requirements resulting in the formulation of LiDAR‟s 

specification for multiple users of the same dataset within the province, the next step is to 

determine a way of enforcing these specifications. Specification enforcement means 

having a system in place that will enable users to: 

i. define requirements for projects and applications; 

ii. budget or forecast the total error that will be produced from employing a system 

for collecting and processing the data; and 

iii. determine whether or not the systems will meet set user‟s standards by comparing 

the user‟s requirements with delivered products. 

This is the process termed User Determined Total Error Budgeting (UDTEB). Unlike the 

current LiDAR uncertainty budgeting process where all these decisions are made on the 

vendor‟s side, UDTEB seeks to enable users themselves to determine these errors and 
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proceed to find the errors of the points in relation to ground surveyed points measured at 

a higher accuracy. The process results in the removal of bias and promotes the 

independence of data and product accuracy verification.  

 

1.2.1 Error Modeling and Analysis 

The error modeling approach involved considering the observables in the operational 

functions of the LiDAR survey system. The statistical methods required for determining 

the accuracy and confidence intervals of the data is modeled employing a step by step 

approach discussed in detail in Section 3.4. 

 

1.2.2 Error Interpretation 

Questions answered with respect to this research include: 

1. What limits of errors are acceptable for a particular application?  

2. What are the manufacturer‟s documented project-specific error budgets for most 

LiDAR applications? Are these over-generalized, or do they cover most 

applications employing LiDAR products? 

3.  What sources of error can be identified by a user of LiDAR data? 

4. How much do identified propagated errors affect the accuracies of the final 

deliverables? 

a. Looking at (higher accuracy) base data compared with acquired LiDAR 

data; and 
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b. Looking at airborne (high altitude and close range) LiDAR and other data 

forms integration.  

5. How can these errors be treated? Can they be adjusted or should they be 

discarded? 

To answer these questions, this research: 

1. critically compared user-demanded accuracy specifications for Airborne LiDAR 

data with manufacturers‟ stated performance specifications (which are usually 

stated based on ideal conditions plus the influence or topography and ground 

cover) [Ussyshkin and Smith, 2006; Ussyshkin and Smith 2007; Ussyshkin et al., 

2008]; and, 

2.  assessed the hypothesis that variations in user-demanded specifications and 

manufacturer‟s specifications - plus the influence of topography and ground cover 

- have significant effects in the reliability of information modeled or derived from 

Airborne LiDAR data.  

Therefore, the hypothesis that was tested was whether variations in user-demanded 

specifications and manufacturer’s specification have significant effects in the confidence 

and quality of information modeled or derived from Airborne LiDAR data. In this 

context, the term significant means distorting expected values by more than 25% due to 

errors in the data and post processing-processes. This definition of what constitute a 

significant distortion of expected values of spatial accuracy was derived from a previous 

study [Coleman and Adda, 2010], where one standard deviation (or 1-σ) represented the 
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worst acceptable accuracy for most applications utilizing LiDAR data in the research 

study area. 

Confidence of information refers to the certainty that quality of information representing 

the spatial object met or exceeded one standard deviation of its true state or natural 

occurrence. The final information derived from the point cloud is of acceptable quality 

when the conditions defining acceptable accuracy and confidence levels are met or 

exceeded by the delivered spatial product. These users‟ requirements are stated at the 

beginning of the survey. Using the system precision information and ground 

measurements, the UDTEB model estimates the final accuracy of the survey data. After 

the survey has been completed, these initial requirements are also used to validate the 

survey and determine whether or not user‟s specifications have been met. Provision is 

made through the development of a Graphic User Interface (GUI) developed in this 

research to provide a platform through which this comparison can be done. Interpreting 

the result of this comparison is also provided by means of the GUI. 

Common decisions to make involve answering the questions: 

1. Have the initial user‟s specifications been met? 

a. If they have been met, were the vendor‟s quality standards over specified 

or is the data accuracy just right? 

i. if quality standards were over-specified, could lowering the 

requirement at the survey planning stage reduce over-all project 

time, cost and data storage problems? 
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ii. if the manufacturers‟ standards were just right for the survey, can 

the deliverable be considered as satisfactory? 

b. If initial user specifications have not been met, can there be evidence to 

report to manufacturers on areas where there are deficiencies in the data? 

2. Can the data be used for post processing and still meet the required final accuracy 

budget? 

3. Based on previous points, can the data be accepted at the given accuracy and 

confidence to allow for closure and final payments of the survey contract? 

 

 

1.3 MAIN CONTRIBUTION 

This research proposed to develop and test the UDTEB model to fill the gap between 

manufacturer‟s stated uncertainties/errors and user‟s requirements for application-driven 

specifications. The method considered major contributors of errors from given airborne 

LiDAR data to the product processing stage. These investigations contribute to the 

process of quality assurance and data control of data and derived products from airborne 

LiDAR by providing methods and tools to fill the gap identified above. It is possible that 

a lack of such validation may lead to misleading public information. Very sensitive 

information is derived from airborne LiDAR relating to emergency prediction, 

environmental hazard assessment and mineral resource exploration. Misleading 

information will undermine the quality of these applications. Also public information on 

scenario simulation, environmental hazard forecasting and rescue planning missions, 
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derived from airborne LiDAR sources cannot be certified as accurate at a given 

confidence without a validation process. 

This research anticipated that statistical analyses will reveal differences between the 

manufacturer‟s LiDAR specifications and real measurements. Where airborne LiDAR 

specifications are generally over-specified, lowering data acquisition specifications for 

certain terrain types may reduce cost and project processing time and still achieve desired 

accuracy. For instance in an flat and open terrain, specifying higher flying heights and 

lower points per square metres will still result in acceptable Digital Elevation Models 

(DEMs) as discussed in detail by Liu and Zhang [2008] where LiDAR points were 

reduced up to 50% but still allowed for DEM errors to ne no more than 20cm. 

It was expected that the findings will enable LiDAR product users to ascertain the limits 

to which such systems may be pushed in terms of reliability of information derived for 

project-specific applications, especially emergency measures simulation and monitoring. 

 

1.3.1 The Total Error Model 

Unlike previous models that only considered the LiDAR system uncertainties (just the 

reported instrument precision), the UDTEB model looks into estimating other identified 

major contributors to error in LiDAR data. Post-processing uncertainties from created 

products are also considered in the model. Following that, the model combines these 

uncertainties to estimate the total error. Additionally, UDTEB model gives the user room 

to customize and add other error sources and determine the overall errors in specific 
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cases. Major models that are developed in this research but were not formally considered 

are the PLanning Uncertainty Model (PLUM), Data Integration Uncertainty Model 

(DIUM) and Presentation Uncertainty Model (PUM). These are discussed in detail in 

Chapters 3 and 4. It is important to note from this research that the total error from a 

LiDAR survey is not just an additive process of the various the components discussed 

above. Chapters 2 and 3 discuss this formulation in detail. After performing field 

validation surveys, identified discrepancies between the model and field values are used 

to further refine the proposed error model.  

 

1.3.2 The Software Prototype  

This is a further contribution beyond the stated objectives (as expatiated in Section 3.4.4). 

Although the model itself provides a way to design and customize the UDTEB model for 

a given organizations, it was necessary to provide some proof of concept. Using the error 

estimates in the model for the project area, a software prototype for determining whether 

or not specifications have been met was developed using Matlab
®
. 

 

1.3.3 Data Cleaning Using TPU Values 

Another contribution that evolved indirectly from this research involved the possibility of 

using the UDTEB model results for cleaning noise from large point cloud datasets. This 

has been initially explored by Adda and Hoggarth [2011] for CARIS. CARIS, in 

partnership with MITACS and UNB, completed a research in the summer of 2011 to 
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develop methods and software to calculate Total Propagated Uncertainties (TPU) of point 

clouds for effective visualization and analysis. A test was made on a strip of LiDAR data 

with points known to be falsely classified in the Fredericton area. Errors of the point 

clouds with respect to check points in the area were calculated. Once these errors were 

expressed in the same confidence interval (in terms of the ground checkpoints and the 

point clouds), the TPU of the final product, which in this case was a topobathymetric 

surface, was determined and plotted as shown in Figure 1.3. By categorizing point clouds 

with respect to their TPU, points with values falling outside the given elevation were 

separated from the point cloud as shown in Figure 1.3. Once the points were separated as 

shown in the red points in (lined up red points at the top of Figure 1.3), they were deleted 

from the dataset to create datasets with less noise as shown in Figure 1.4. 

  

Figure 1.3. Point cloud data with noise 

with TPU values separated by range. 

Figure 1.4. Point cloud after cleaning noise 

by deleting points outside TPU range 

Further point processing and analysis can then proceed to create product within 

specifications for accuracy. For instance, in this example, all points not lying within the 

acceptable vertical error (±15cm) and horizontal error (±70cm) were cleared by 
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employing the TPU values. Further look at automating this process to perform noise 

cleaning would be an interesting research to undertake. 

 

1.4 OUTLINE OF DISSERTATION 

This dissertation is divided into five chapters with each chapter structured as follows: 

 Chapter 1, as already discussed, provides a general overview of the research. It 

provides reasons for the research and main contributions expected from the work.  

 Chapter 2 looks at previous literature that considered uncertainties/errors for 

LiDAR data and products. The key findings of importance to this research are 

noted, and the particular contribution of this research in the overall knowledge of 

LiDAR errors is presented. 

 In Chapter 3 specific research questions are asked and the problem (or gap) is 

defined. This gap relates to the inability of most LiDAR users to determine error 

budgets for project specifics and verify after delivery of data whether or not the 

data have been provided according to specifications. The methods applied to 

achieve these are presented. 

 Chapter 4 discusses the results of the modeling and prototype application 

developed in Matlab
®
. An analysis of the result after field tests is employed to 

determine whether or not the model produced realistic error budgets are made in 

this section. Interpretations of the error budgets and the effects on projects are 

discussed using flood modeling as an example. 
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 Conclusions on how the methods applied to solve the gap of the inability of 

everyday users of airborne LiDAR data to perform requisite error budgeting tasks 

to determine whether data is fit for a specific project is presented in Chapter 5. 

Recommendations for further research are also discussed. 
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CHAPTER 2. LITERATURE REVIEW AND POSITIONING OF RESEARCH 

2.1. INTRODUCTION 

2.1.1 Operational Consideration for Accurate Point Cloud Acquisition 

2.2 STATISTICAL PROCESSES AND ANALYSIS OF ERRORS 

2.2.1 Accuracy, Error and Uncertainty/Precision 

2.2.2 Confidence Interval 

2.2.3 Law of Propagation of Errors 

2.2.4 Sampling and Estimation Methods 

2.2.5 Potential Sources and magnitudes of errors in LiDAR 

2.2.6 Identifying and Removing Blunders and Errors 

2.3 MATHEMATICAL MODELS FOR ERROR DETECTION 

2.4 POSITIONING OF RESEARCH 

Figure 2.1 Outline of Chapter 2. 

2.1 INTRODUCTION 

This chapter discusses the efforts of authors whose previous research has bearing on this 

research. Most literature and efforts at determining total error budgets investigate the 

mechanical components of LiDAR systems, namely, the Inertial Measurement Unit 

(IMU), the Laser Scanning System (LSS) and the Global Positioning Systems (GPS) for 

ground and airborne systems [Hodgson et al., 2005; Ussyshkin et al., 2008]. 

Smith [2005] and Habib et al. [2005] discussed errors resulting from the post-processing 

of LiDAR and its products like Triangular Irregular Networks (TINs) and DEMs. These 

errors are not independent of each other in their contribution towards total errors [Aguilar 

et al., 2005; Guo et al., 2010]. The authors researched DEM interpolation errors and 

discuss the variations of system errors when looking at different environments and point 

densities.  
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2.1.1 Operational Consideration for Accurate Point Cloud Acquisition 

Figure 2.2 shows the integration of different systems with LiDAR systems. LiDAR is an 

active remote sensing system that records returned signals converted to digital 

representations in real-time [El-Sheimy, 2005]. 

 

Figure 2.2. System integration in ALS surveys (from Adda and Hoggarth, 2011) 

Figure 2.2 shows the major components operating in an Airborne Laser Scanning (ALS) 

survey. The LiDAR system consists of the integration of Inertial Measurement Unit 

(IMU) for orientation, remote sensing laser range finder and a scanner (Laser) for point 

cloud collection, and GPS for positioning. The IMU and the onboard GPS make up the 

Positioning and Orientation System (POS) part of the LiDAR system. These three units 

(i.e., the GPS, IMU and Laser) are time-synchronized in a process called registration, to 

achieve instantaneous 3D positioning. The airborne segment of airborne LiDAR systems 

consists of [Jie et al., 2008, pp.129-131]: 

1) airborne platform; 
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2) LiDAR observation system; and the 

3) POS, made up of GPS and IMU. 

The ground segment of the airborne LiDAR system is comprised of the: 

1) GPS reference stations which gather GPS data at known earth fixed positions for 

later computation of the airborne platform position; 

2) processing hardware; and  

3) software for post processing synchronization and registration. 

Airborne LiDAR systems are capable of detecting multiple return signals for a single 

transmitted pulse [Wehr and Lohr, 1999; Charaniya et al., 2004; Reutebuch et al., 2005], 

but others can record up to six returns for a single pulse [Lim et al., 2003; Wagner et al., 

2004]. Multiple returns occur when a laser pulse strike a target that does not completely 

block the path of the pulse. The remaining portion of the pulse continues on to a lower 

object [Reutebuch et al., 2005]. Multiple returns are particularly useful for the 

topographic mapping in forested areas [Sheng et al., 2003]. 

Spatially, LiDAR points are initially represented by latitude, longitude, and ellipsoidal 

height consistent with the reference ellipsoid of the GNSS ground station, ideally an 

Earth-Centered Earth-Fixed (ECEF) ellipsoid such as the GRS80 or the WGS84. They 

can be transformed to other coordinate systems. At the same time, elevations are 

converted from ellipsoidal heights to orthometric heights based on a national or regional 

height datum by using a geoid model [Webster and Dias, 2006]. Data collected by the 

ground stations and the onboard GPS receivers is post-processed to compute the LiDAR 
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positions [Wehr, 2008]. The integrated solution coming from the GPS and IMU data 

offers at every observation epoch: 

XECEF, YECEF, ZECEF, and the orientation parameters (roll, pitch, yaw).  (2.1) 

The position coordinates are related to the LiDAR, and the orientation angles are the 

rotations about the instantaneous local horizontal system. 

In a second step, LiDAR and POS data have to be synchronized by the procedure of 

registration. After synchronization a file with the following information for each epoch is 

generated for further processing: 

XECEF, YECEF, ZECEF roll, pitch, yaw, scan angle, slant range and intensity.  (2.2) 

Assuming a perfect inner orientation calibration, the LiDAR geocoded laser measurement 

points on the ground are calculated from Eq.(2.2), once the misalignment (between IMU 

and LiDAR) angles in roll, pitch, and yaw are known.  

After a sequence of processing steps and calibration, files containing the geocoded (also 

known as registered) laser measurements can be computed in chronological order: 

XLaser, YLaser, ZLaser, intensity .       (2.3) 

And finally, after synchronization the laser vector for each sampled ground point can be 

directly transformed into an earth fixed coordinate system (e.g., WGS84) [El-Sheimy, 

2005]. 
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2.2 STATISTICAL PROCESSES AND ANALYSIS OF ERRORS 

The RMSE statistic assumes that errors have a normal distribution with zero mean, and 

that all systematic errors have been removed. This condition is difficult to be fully 

satisfied, especially with LiDAR data. Some systematic errors or biases remain 

undetected, even after regular calibrations of LiDAR systems. However efforts are made 

to minimize the effects of these errors. 

 

2.2.1 Accuracy, Error and Uncertainty/Precision 

These terms seem to be similar in the field of statistics but they are indeed different and 

represent different characteristics of the sampled data and its relationship to the 

population. The following section provides an overview from Bell [1999] of what these 

terms represent. 

2.2.1.1 Accuracy 

Accuracy is a measure of spread indicating the closeness of a measurement to the true 

value. It is a measure of the nearness of a variation between the measured value and the 

true value towards zero. The validation and reporting of accuracy limits could be a 

mounting task in LiDAR projects. The huge size of point cloud data and the not readily 

available supporting information describing these files makes it more difficult to model 

errors per point. This is in contrast to what is practiced in the multibeam Sonar products 

where all position information for a given sounding is available. For instance, in 

multibeam echo sounding surveys, files with the “.all” file extension used by certain 
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systems contain all information pertaining to positioning and orientation of points. These 

parameters can be used to perform error analysis of the soundings. In the absence of such 

information on the ALS side, statistical methods have to be considered to estimate 

empirical measurements during the time of the survey. 

2.2.1.2 Errors 

An error is the cause (due to one or many factors) that results in the deviation (including 

bias) of a measurement (resulting from the use of a device and/or process) from the true 

value [Dare, 2013]. Error is quantified by estimating the difference between the observed 

or calculated value of a quantity and its true value [Oxford Dictionaries, 2012b]. When 

error is quantified, it represents the accuracy (i.e. the variation or spread between a 

measured value and its true value) of the measurement. Errors in measurements can be 

due to defects in the measuring device – and are called “systematic errors”. Errors can 

also be due to irregular changes in the measurement process, for instance unexpected 

changes to temperature, terrain, point density and object reflectance. These errors are 

known as “random errors”. Another reason for measurement errors are “personal errors 

or surveyor errors”. These errors occur when observers of a measurement adopt wrong 

procedures during a measurement and are technically referred to as blunders.  

In statistics the terms “null hypothesis” and “alternative hypothesis” are used to 

determine if two observations have the same or inverse trends. For instance, in the case of 

LiDAR, we can make a null hypothesis that the population mean elevation error is equal 

to the hypothesized mean elevation error of ±15 cm. In mathematical terms this is written 

as: 
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 Ho: µ = µe = ±15 cm.  

If the results do not support the null hypothesis, we can formulate that there are three 

possible alternative hypotheses Ha as follows: 

Case 1: Ha: µ ≠ µe; Population mean elevation error does not agree with sampled mean 

elevation error – may be more or less; 

Case 2: Ha: µ > µe; Population mean elevation error is greater than sample mean elevation 

error; or 

Case 3: Ha: µ< µe; Population mean elevation error is less than sample mean elevation 

error. 

This research employs these alternative hypothesis to disprove a two-tailed null 

hypothesis (Ho) that sample mean elevation errors are not equal to the population mean 

elevation errors (within a range of confidence). 

In the quest to test Ho there are two types of errors that can be made [Kothari, 1985; 

Vaníček and Krakiwsky, 1986; Wang et al., 2010] as shown in Table 2.1 (from Kothari 

[1985], p.187] :  

Table 2.1 Type I and II errors employed to accept or reject a null hypothesis 

 
Decision taken 

Accept Ho Reject Ho 

Ho is true Right decision Type I error 

Ho is false Type II error Right decision 

 

1. Type I errors (also known as the α-error): Occurs when the Ho is rejected when Ho 

is actually true and should have been accepted.  
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2. Type II errors (also known as the β-error): Occurs when the Ho is accepted when 

Ho is actually false and should have been rejected. 

 

2.2.1.3 Uncertainty and Error Budgeting 

By definition, a measurement  

…tells us about a property of something. It might tell us how heavy an 

object is, or how hot, or how long it is. A measurement gives a number to 

that property. Measurements are always made using an instrument of some 

kind. Rulers, stopwatches, weighing scales, and thermometers are all 

measuring instruments [Bell, 1999]. 

The range of how well or poorly a measurement reflects reality is referred to as 

uncertainty. In everyday language we use the phrase “more or less” or “give or take” to 

express uncertainties. There is a fundamental difference between error and uncertainty (or 

quantified precision). While the amount of error represents the difference between a 

measurement and its “true” value, uncertainty refers to the spread of the precision of the 

measurement [Bell, 1999]. Some authors confuse the term uncertainty with error. For 

instance, Hunter et al. [1995] used the term “uncertainty” in relation to spatial databases 

to refer to differences between provided information, and the corresponding information 

that is directly measureable in the real world. 

Uncertainty, when used in this dissertation, is defined as the validation of the amount of 

variation in the precision of a measurement, in the attempt of that measurement to 
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determine the true value of a subject. In the case of this study, the subject is a position 

(x,y,z) created from LiDAR points. And the true value refers to a measure that is three 

times more precise than the subject measurement to be validated [Chrzanowski, 1977].  

The Oxford Dictionaries [2012a] define a budget as: 

 “…an estimate of income and expenditure for a set period of time”.  

Similarly, but used in a spatial data context, error budgeting relates to the range of values 

estimating how accurate (within a confidence interval) a dataset can be acquired (income) 

and used (expenditure) for a specific engineering application within the life-cycle (set 

period of time) of the dataset. An error budget, as used in the project refers to two things: 

 A forecast of errors – defining what is acceptable and what is not; and   

 A validation that the errors are acceptable or not - with given reasons. 

Uncertainty budgeting quantifies a range of values within which an error budget can be 

accepted as being fit for use. 

For a known sample of measurement, the mean and variance are quantities than can be 

used to measure uncertainty and they are as calculated as follows: 
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where mi represents the consideration of each point in the LiDAR data, μ is the mean, and 

σ
2
 is the variance. The standard deviation can be found by finding the square root of the 

variance. 

 

2.2.2 Confidence Interval 

In a normal distribution (curve or table) 68.2% of values in a given sample fall between -

1 and +1 σ of the population; whereas 95.4% of values fall between -2 and +2 σ. These 

percentages (68% or 95.4%) are referred to as Confidence Intervals (CI) and the limits 

(±1 and ±2) are referred to as the Expansion Factors (EF) or the better known term, 

critical values. Confidence intervals (different from confidence levels) define the 

percentage or probability that a measurement will fall within the precision or error range 

of the instrument. They are hypothetical in nature, drawing the information from 

laboratory experiments on instrument precision. However, confidence levels, refers to the 

probability that a measurement fall within a given accuracy observed after several 

empirical (real physical) measurements of the same event.  

One way to be sure that a sample of LiDAR points represents the characteristics of other 

points is to repeat the survey hundreds of times to give us several estimates of the mean. 

After determining these estimates, we can then take the mean of these means and then 

calculate the σ.  

This σ of the means is called the Standard Error (SE) or more precisely, the Standard 

Error of the Mean (SEM). It is surely not practical (especially in times of fiscal restraints) 
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to repeat experiments several times in order to obtain the Standard Error. A theoretical 

approach can be adopted using statistics to obtain the SE. Consider that if we had a large 

set of samples (n) we will have less SE. Also, we note that the smaller the σ the more 

confident is the value of SE. Therefore we represent the SE as follows [Kothari, 1985, 

pp.165-175]: 

SE= 
n


 .         (2.6) 

Note that the denominator of Eq. (2.6) is √n because we have to initially calculate the 

“variance” and then take the square root of the variance to obtain the standard error. The 

confidence interval can now be determined following Eqn.(2.6) as follows [ibid]: 

CI = M ± (EF x SE)        (2.7) 

where M represents the mean (that can be replaced by the known true value). 

 

2.2.3 Law of Propagation of Errors 

Following discussions from Vaníček and Krakiwsky [1986], the covariance law can be 

written as: 

Cx = GClG
T
 ,         (2.8) 

where Cl is the Covariance matrix of the observables l, G is the design matrix 

transforming l to the unknown parameter, x. Any uncertainties in l, will be described in 

the covariance matrix Cl. These uncertainties can be traced into x and characterized by Cx. 
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Following Eq.(2.8), in the special case where the unknown parameter (x) has only one 

element, and the individual elements in the vector l are statistically independent, a 

function relating l to x can be written as: 

x = g(l) .         (2.9) 

Taking the partial derivatives thus expressing the variance form of Eq.(2.9) gives: 
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Equation (2.10) is called the Law of propagation of random errors [Vaníček and 

Krakiwsky, 1986]. 

If Eq.(2.9) is linear then we can write: 

x = Gl + w ,         (2.11) 

where G = [ ngggg ,...,,, 321 ]. And from this we can write the variance of x as: 
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Let the model for x be statistically independent and l be acquired with the same accuracy, 

i.e., if x= 
n

il
n 1

1
, 

then: 

22 1
lx

n
   .         (2. 13) 

Again, if the function relating x to l is linear (as in Eq.(2.9)), then from Eq.(2.13), we can 

write: 
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Equation (2.14) is known as the Law of propagation of systematic errors [Vaníček and 

Krakiwsky, 1986]. The law of error propagation is applicable in both the deterministic 

and non-deterministic approaches to determine the standard deviations of LiDAR points 

in a given footprint (window). Readers will observe in Chapters 3 and 4 that error 

propagation has been applied in determining the contribution of errors from each of the 

models and their subsequent integration into one system (that is the UDTEB model). In 

the application stage (Section 3.4.3), error correlations between the observables, l, are 

also considered as the observables cannot be assumed to be independent. 

2.2.4 Sampling and Estimation Methods 

Kothari [1985, p.152] define sampling as: 

..the selection of some part of an aggregate or totality on the basis of 

which judgment or inference about the aggregate or totality is made...it is 

the process of obtaining information about an entire population by 

examining only a part of it. 

Sampling is necessary in validating LiDAR data as it is practically impossible to validate 

each LiDAR point in a survey. Estimates such as sample mean (X ) and sample standard 

deviation (σs) are used to estimate population parameters (φ the population mean and σp, 

the population standard deviation). Using least squares, it is possible to minimize the 

variations of these estimates chosen from samples of the population. To allow this to be 

possible, certain properties of estimations need to be considered [Kothari, 1985]. These 

are the property of: 
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1. Unbiasedness – the expected value of the estimator is equal to the parameter 

being estimated; 

2. Efficiency – small in variance; 

3. Sufficiency – use as much information available for the sampling process to 

represent the population; and 

4. Consistency – as the sample size increases, the estimator should approach the 

value of the population parameter.  

Applying the four estimation properties above to the UDTEB model helps the user to 

make more complete decisions about the data accuracy on the basis of fitness for use. 

 

2.2.5 Potential Sources and Magnitudes of Errors in LiDAR 

Although there have been considerable improvements in technology to ensure accurate 

production of LiDAR point clouds, there are some main sources of error of particular 

interest to the LiDAR industry. Ussyshkin et al. [2008] reports that due to the nature of 

LiDAR data collection, various operational considerations - including variations in geo-

positioning data quality, ground conditions, and weather conditions - will significantly 

affect the achievable point accuracy in the field [Hodgson et al., 2005].  

The density of the canopy cover may also affect accuracy of the Digital Terrain Model 

(DTM) [Witte et al., 2000]. Explicitly, the accuracy of the DEM derived from the LiDAR 

points may include various errors due to data interpolation and classification [Smith et al., 

2005]. Although research has been done since 2000 to determine the overall accuracy that 

can be achieved with LiDAR and to assess achievable accuracy for various mapping 
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applications, the misinterpretation of the instrument accuracy specifications with the 

achievable accuracy of the LiDAR data is still common [Adams, 2002; Bowen, 2002; 

Hodgson et al., 2005]. For instance, as shown in Figures 2.3. Ussyshkin and Smith [2006] 

mention some important factors that affect the final operational accuracy of LiDAR data. 

 

Figure 2.3: Final accuracy factors for LiDAR data (Ussyshkin and Smith [2006, p.5] 

It makes sense for users to investigate the error budget associated with the data 

processing block as it may provide the essential pointers of error within the LiDAR 

survey. Processing uncertainties were considered in this research and discussed in detail 

in Section 3.4.4.2. 
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Habib et al. [2008] observed that - unlike photogrammetric techniques - the derivation of 

the point cloud from the LiDAR measurements is not a transparent process since the raw 

system measurements are not always made available to the system users. Furthermore 

computation of coordinate of LiDAR footprints is not based on redundant for performing 

an adjustment method employing redundant data. 

As shown in Figure 2.4, a laser may reflect off the wall of a building thus sending the 

return pulse in a direction other than the source direction of the laser instrument.  

 

Figure 2 4: Multipath in LiDAR results in spurious data points [Lohani, 2009] 

When multiple producers and collection systems are utilized to gather LiDAR data over 

the same project area, it is good that the data is tested separately for each producer or 

collection system (in terms of equipment, procedures, software) for errors and blunders 

[Flood, 2004]. 

2.2.5.1 Uncertainty in Horizontal Positioning  

In terms of horizontal accuracy, the major sources of uncertainty in LiDAR data are the 

following [Samberg, 2005]: 

1. Positioning of the carrying platform and its orientation along the trajectory 

2. Errors in the electro-optical parts of the laser sensor 

3. Wrong laser and INS/POS data processing 
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4. Careless integration and interpolation of the INS and GPS 

5. Erroneous data from the reference ground GPS base stations 

Roll, pitch, and heading effects on uncertainties are illustrated in Figure 2.5 (after 

Samberg, 2005, p.22). 

 

Figure 2.5  (a) pitch error     (b) roll error            (c) heading error. 

A misregistered laser observation is represented by the dotted lines 

The pitch error as shown in Figure 2.5(a) results in a laser slant range to be recorded as 

the nadir. A roll error also causes a slant range to be incorrectly registered. The elevation 

differences tend to increase with a larger scan angle (Figure 2.5b). The heading error 

induces a skewing in each scan line (Figure 2.5c). Table 2.2 from Samberg, [2005, p.26] 

shows that angular error is not affected by flying at higher altitudes. However, the 

positioning error is worst at higher flight altitudes.  

As shown in Table 2.2, differences in terrain slope have varying effects on accuracy. 

Table 2.2 Examples of horizontal positioning errors relating to flight altitude error at 

a given angular error 

Flight Altitude Angular Error Horizontal Positioning Error 

2000 m ±0.005 ° ±0.17 m 

4000 m ±0.005 ° ±0.35 m 

6000 m ±0.005 ° ±0.52 m 
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When the laser beam encounters sloped terrain, it results in the elongation of pulse 

footprints as shown in Figure 2.6. This leads to an increase in horizontal and vertical 

position uncertainty as further clarified in Figure 2.7 where an apparent LiDAR point and 

its relative vertical and horizontal errors are shown. 

  

Figure 2.6. Effect of slope on vertical 

accuracy (from Renslow [2010, p.251,]). 

Figure 2.7. Vertical error induced by 

horizontal errors (Hodgson and Bresnahan, 

2004, p.332 

From Figure 2.7, assuming smooth even slope we can deduce the following: 

Tan α =  
ErrorHorizontal

ErrorVertical

_

_
 ,        (2.15) 

where α is the slope angle. 

2.2.5.2 Uncertainty in Vertical Positioning 

Hodgson et al [2005] also propose, as shown in Table 2.3, that there is an increase in 

overall elevation root mean square errors (RMSE) with increasing terrain slope. 

Table 2.3: Terrain Slope vs. RMS Error [Hodgson et al., 2005] 

Slope 0-2° 2-4° 4-6° 6-8° 8-10° 

Elevation Error [cm] ±60 ±65 ±88 ±93 ±89 
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Uncertainties in vertical positioning as reported above are closely correlated to horizontal 

uncertainties. Hodgson and Bresnahan [2004] report that based on empirical 

measurements under ideal conditions the system error associated with the instrument‟s 

ability to report a specific location during the collection of points is generally reported to 

be good to the order of ±14 cm RMSE vertical. Different topography may affect the 

accuracy of the elevation surface [Hodgson and Bresnahan, 2004]. Dense vegetation can 

limit ground elevation detection – tall dense forests and even tall grass tend to cause 

greater elevation errors than unobstructed (short grass or barren) terrain [Flood, 2004]. 

 

2.2.6 Identifying and Removing Blunders and Errors 

The identification and removal of blunders plays an important role in this process. Flood 

[2004] and Hodgson and Bresnahan [2004] recommend computing the magnitudes of 

errors using datasets higher accuracies than LiDAR. The "difference" or error for each 

checkpoint is computed by subtracting the surveyed elevation of the checkpoint from the 

LiDAR dataset elevation interpolated at the (x,y) location of the checkpoint. A positive 

error will mean the evaluated dataset elevation is higher than true ground in the vicinity 

of the checkpoint, and if the difference is a negative number, the evaluated dataset 

elevation is lower [Hodgson and Bresnahan, 2004]. 

For checkpoint
[i]

, the vertical error
[i] 

= [Z
data[i] 

– Z
check[i]

] ,   (2.16) 

where Z
data[i] 

is the vertical coordinate of the i
th 

checkpoint in the dataset,  

Z
check[i] 

is the vertical coordinate of the i
th 

checkpoint in the independent source of 

higher accuracy, and 
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i is an integer from 1 to n; n is the number of points being checked . 

Dataset to be used to verify the LiDAR data should be at least three times more accurate 

than the LiDAR accuracy [Flood 2004, Chrzanowski 1977]. At least three of six known 

control points should be fixed to control scale, orientation and position (Figure 2.8). 

 

      Figure 2.8: An example of a GPS ground control network (from. Samberg [2005, p30]). 

The GPS base stations for the LiDAR data, the GPS check stations for the validation 

survey and the already known (Fixed GPS control stations) should be distributed evenly 

within the project area. 

 

 

2.3  MATHEMATICAL MODELS FOR ERROR DETECTION 

Habib et al. [2008] gives a detailed analysis of error budgets for LiDAR systems and 

quality control of the point cloud. The usual method of quality control by checking 

LiDAR data against independently surveyed points was said to be too expensive and 

unable to provide accurate horizontal verification of the point cloud. Since the horizontal 

accuracy is of inferior quality to the vertical accuracy of the LiDAR points, the authors 

criticized the approach proposed by Crombaghs and Bruegelmann [2000] for evaluating 
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overall quality by reducing discrepancies between overlapping strips. An adjustment 

procedure similar to photogrammetric strip adjustment proposed by Kilian et al. [1996] 

for improving compatibility between overlapping LiDAR strips was also flawed since the 

method relies on distinct points like building corners to relate overlapping LiDAR strips 

and surfaces. Maas [2000] method of employing least squares matching correspondence 

between discrete points on one LiDAR strip and TIN patches in another strip where 

normal distance between conjugate points were minimized was also flawed. The method 

proposed by Bretar et al. [2004] for improving the quality of LiDAR data using derived 

surfaces from photogrammetric procedures was said to have practical limitations since it 

required aerial imagery over the same area – which is an extra data acquisition process.  

Considering these lapses, Habib et al. [2008] categorize their error sources as random 

errors and systematic errors. The authors then simulated system measurements (ranges, 

mirror angles, position and orientation) of a mapping frame, IMU body frame and the 

laser unit (mirror angle and range control) as shown in Figure 2.9.  

 
Figure 2.9 Coordinate systems and quantities of the LiDAR equation (Habib et al., 

[2008, p.205]). 
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The coordinate systems and quantities of the LiDAR equation was derived from this 

simulated system. Noise is added to the system measurements and the initial surface is 

reconstructed using the LiDAR equation:  

GX


= 
0X


+ Ryaw, pitch, roll GP


 + Ryaw, pitch, roll RΔω, Δϕ, Δκ Rα,β.



















0

0

  

,  (2.17) 

where 
GX


is the position of the laser footprint; 0X


 is the vector between the origins of 

the ground and the IMU‟s coordinate systems; GP


 is the offset between the laser unit and 

the IMU‟s coordinate systems (also known as the bore-sight offset);   is the laser range 

vector (defining the distance from the laser firing point to its footprint); Ryaw, pitch, roll is the 

rotation matrix relating to the ground and the IMU coordinate systems; RΔω, Δϕ, Δκ is the 

rotation matrix relating the IMU and laser unit coordinate systems (angular bore-

sighting); and Rα,β is the rotation matrix of the laser beam and laser unit coordinate 

systems (α and β are mirror scan angles).  

In summary, it was found that in the case of random errors: 

1. Position noise leads to similar noise in the derived point cloud and has the same 

effect independent of the system flying height and scan angle.  

2. Orientation noise affects horizontal coordinates more than the vertical 

coordinates. The effect depends on the system‟s flying height and scan angle. 

3. Range noise mainly affects derived vertical coordinates. The effect is independent 

of the system‟s flying height but dependent on the system‟s scan angle. 
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In the case of systematic errors, after some bias was added (instead of noise in the 

random error analysis above) to the simulated system, it was concluded that: 

1. The discrepancies caused by the bore-sighting offset and angular biases can be 

modeled by shifts and a rotation across the flight direction.  

2. The boresight uncertainties can be used for diagnosing the nature of the 

systematic errors in the system parameters. 

The drawback of this system from the analysis of the author is that the modeled noise 

introduces bias since the difference between the modeled point clouds and the effect of 

the noise is actually the noise that was introduced initially. Also the simulation was tested 

on a fairly flat terrain which may not hold for a variable terrain. The effect, of any high-

rising built-up areas was not investigated. Also missing is the effect of post-processing, 

data integration and interpretation uncertainties [Coleman and Adda, 2010]. 

Csanyi and Toth [2007] discuss the use of targets on the ground, before flying ALS 

surveys as a way to perform quality control. Ideally, these targets should be visible at a 

given LiDAR resolution and should be uniformly spread to accommodate differences in 

both terrain morphology and obstructions to ground. However, the targets are themselves 

obstructions to ground hits, and using established targets may introduce bias and may not 

allow for independence when a choosing checkpoints within the surveyed area. 
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2.4 POSITIONING OF RESEARCH 

The position of this research is not to refute the processes and methods applied by 

manufacturers to estimate the performance of LiDAR systems. In the LiDAR market, 

manufacturers seek to protect their market share by limiting how many their processes 

and methods are available for scrutiny. The positioning of this research is to utilize 

previous knowledge to model LiDAR errors from the point when the delivered data is 

received by the user. Specifically, five important research findings were employed: 

1. Habib et al., [2008] who described the error budget of LiDAR Systems and 

quality control of the derived point cloud. The authors looked into error 

simulations if original LiDAR files do not contain error information; 

2. Hogdson and Bresnahan [2004] who discussed empirical assessment of DEMs 

derived from ALS. Also in Hogdson et al. [2005] the analysis of terrain slope 

error in leaf-off conditions when creating DEMs was analyzed; 

3. Gonsalves [2010] who, in his PhD dissertation, discussed a comprehensive 

uncertainty analysis and method of geometric calibration for a circular scanning 

airborne LiDAR; 

4. Goulden [2009] whose MSc thesis looked at the prediction of error due to terrain 

slope in LiDAR observations; and 

5. Coleman and Adda [2010] who looked at the creation of specifications for 

multiple organizations looking to share LiDAR data. 

By harmonizing the various research efforts mentioned above, a more comprehensive 

error model can be created. A field validation of the results may suggest missing error 

components that can be accounted for by including them in the UDTEB model.
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CHAPTER 3. RESEARCH QUESTIONS OBJECTIVES AND METHODOLOGY 

 3.1INTRODUCTION 

3.2 RESEARCH QUESTIONS 

3.3 RESEARCH OBJECTIVES 

3.4 METHODOLOGY 

3.4.1 Assumptions 

3.4.2 Users‟ Requirements Definition 

3.4.2.1. User Needs Research 

3.4.2.2. Common Needs 

3.4.2.3. Differences 

3.4.2.4. Main Components of Specified Minimum Requirements 

3.4.3 System Uncertainty Modeling Development 

3.4.3.1 Deterministic Uncertainty Modeling 

3.4.3.2 Non Deterministic Uncertainty Modeling 

3.4.4 User Determined Error Modeling 

3.4.4.1 Planning Uncertainty Model (PLUM) 

3.4.4.2 Processing Uncertainty Model (PRUM); 

3.4.4.3 Data Integration Uncertainty Model (DIUM) 

3.4.4.4 Presentation Uncertainty Model (PUM) 

3.4.4.5 User Determined Total Error Budget Model 

3.4.5 Data Acquisition 

3.4.6 Data Processing 

3.4.7 Ground Control Quality Assurance 

3.4.8 Point differencing for Standard Deviation/RMSE Calculation 

 

Figure 3.1 Outline of Chapter 1 

3.1 INTRODUCTION 

Spatial representations used in mapping attempt to model physical entities in as much 

detail as possible. It is currently impossible to completely replicate spatial object 

characteristics without distortions and generalizations of physical and geometric details. 

Mapping therefore respects the uncertainty principle which places limits on what we 

understand as a model of reality by identifying an epistemic limit beyond which it is 

impossible to enhance the modeling of natural phenomena. The best approach identified 
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by spatial scientists to dealing with uncertainties is to keep them to the minimum. This is 

done by designing systems and methods that would ensure results fall within a given 

error budget.  

 

 

3.2 RESEARCH QUESTIONS 

This chapter asks specific research questions relating to gaps in the LiDAR market that 

make it difficult for everyday users of LiDAR data to determine the quality of the dataset 

as fit for use or not. This gap relates to the inability of most LiDAR users to determine 

error budgets for project specifics and verify after data delivery whether or not the data 

has been provided according to specifications. These specific questions include the 

following: 

1.  How can a user determine the amount and effect of Total Propagated Errors 

(TPEs) on a project-specific basis? 

2. What are the causes and effects when manufacturers‟ specifications do not meet 

user specification requirements for a particular application? 

3. How can products produced from LiDAR data using poor specifications be 

adjusted to meet more stringent user specifications without compromising spatial 

quality of the data and derived products? 

To answer these questions, literature on existing error modeling techniques were 

reviewed and discussed in Chapter 2. During this study, it was realized that the effects of 
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terrain morphology and interpolation methods – as employed in post-processing methods 

– on system performance have been extensively studied (Section 2.1). In order not to “re-

invent the wheel”, the findings of these studies were included in this model after 

validating these arguments by employing test data provided by the Department of Public 

Safety, Fredericton, and studying LiDAR systems and acquisition procedures at Leading 

Edge Geomatics Limited – a LiDAR and geomatics engineering firm in Fredericton.  

To understand system software design, the author, through the MITACS scholarship 

program served as an intern in 2012 with the Software Development group at CARIS – a 

commercial hydrographic geographic information system software provider. Tapping into 

CARIS‟s extensive knowledge and support for processing large point cloud data, 

especially with respect to multibeam bathymetry, was pivotal to understanding how to 

deal with processing and analyzing LiDAR points since they have similar characteristics 

as point clouds. The main difference between multibeam and LiDAR point clouds is in 

the realization of the height of objects as shown in Figure 3.2. 

 

Figure 3.2 Difference between multibeam and LiDAR point clouds height realization. 

In Figure 3.2, assume that a multibeam dataset of the bottom of a water body and a 

LiDAR dataset of neighboring terrain features share a common height reference system 
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e.g. Mean Sea Level (MSL). While heights of objects in the LiDAR datasets found on the 

terrain will be assumed to be above MSL (i.e., positive), the heights of objects in the 

multibeam datasets will be below MSL (i.e., negative). Following an extensive review of 

previous works in this area and understanding LiDAR systems and processes, a holistic 

approach to errors (as opposed to only considering the precision of the LiDAR systems in 

previous studies) was necessary towards creating a more comprehensive performance 

ability of the LiDAR systems. This quest for an error budget model that includes other 

sources of error in the LiDAR survey processes led to the objectives of this research. 

 

 

3.3 RESEARCH OBJECTIVES 

The purpose of this research was to: 

1. critically compare user-demanded accuracy specifications for airborne LiDAR 

data with manufacturers‟ stated performance specifications (which are usually 

stated based on ideal conditions), and the influence of varying topography and 

ground cover [Ussyshkin and Smith 2006; Ussyshkin and Smith 2007; Ussyshkin 

et al., 2008]; 

2. analyze the respective influences of variations in user-demanded specifications, 

manufacturer‟s specifications, topography, and ground cover on the accuracy of 

information derived from Airborne LiDAR data that may be reliably modeled for 

project analysis and design purposes; and 
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3. provide a deterministic or non-deterministic method to allow users as opposed to 

vendors to independently quantify, validate or refute variations in user-demanded 

specifications and manufacturer‟s specifications with respect to the influence of 

topography and ground cover on both data and derived products within the users‟ 

error budget. 

Comparing user-demanded accuracy specifications for airborne LiDAR data with 

manufacturers‟ stated performance involved matching the manufacturers‟ error budget 

specifications for Airborne LiDAR products on one hand, and user‟s accuracy 

requirements on the other end, and determining their effects on selected project-specific 

applications. This comparison addresses the lingering questions as to whether 

manufacturers' specifications meet, surpass or fail user-demanded error budgets.  

In order to validate or refute claims of meeting or failing to meet user specifications, field 

measurements are required to compare with the accuracy specifications delivered by the 

vendor. Five test areas with varying topographic details are chosen to validate the model 

using ground truths. During LiDAR surveys, if vendor specifications generally exceed 

user‟s error budgets, there is no need to worry about not meeting general requirements for 

accurate information derived from LiDAR data. If the specifications fail, how can users 

identify false accuracies and what will be their effects on the resulting quality of the 

spatial products released to the public from creating applications employing false data 

quality? 



51 

 

3.4 METHODOLOGY 

Firstly, users‟ specification requirements for nine public organizations are compiled. The 

error budgets of the users‟ specifications are documented. The relative accuracy of the 

LiDAR data provided by the vendor must fall within the error budget of the user.  

LiDAR equipment manufacturers will typically report on the precision of their equipment 

but not the accuracy. Precision is the ability of an equipment to consistently perform a 

measure and produce same results [JCGM100 2008, p.35], up to a given confidence 

interval. In project procedures observed during this research, there were instances when 

manufacturer‟s specifications employed by a data provider met user‟s standards and there 

also instances when there were gaps between standards as shown in Figure 3.3.  

 

Figure 3.3 Relating performance standards in ALS project with varying interest in 

standards involving the system manufacturer, data provider and final user 

Gaps between manufacturer‟s specifications and user‟s standards are due to the fact that 

it is impossible for a manufacturer to discern and design equipment to meet all user 

requirements. Usually, users will have to complement LiDAR systems with other 

equipment, methods or datasets to arrive at results that meet set standards. 



52 

 

If manufacturers and LiDAR systems knew all about the standards that will be required 

by potential data providers, and if potential data providers could envision all the 

requirements of potential end users as shown in Figure 3.4, then there would be no need 

to validate or perform quality assurance and control measurements to determine whether 

requirements have been met or not.  

 
Figure 3.4 The ideal relation of ALS performance specifications 

However, this is impossible in practice as LiDAR data is already used in many different 

applications, with new opportunities for use of the data emerging [Hans et al., 2012]. To 

determine if user-demanded specifications are met, these three standards are matched to 

through field measurements. 

 

3.4.1 Assumptions 

The definitions and distinctions between accuracy, error, uncertainties/precision, 

confidence intervals, confidence level and RMSE have been discussed in Section 2.2.1.  
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Accuracy in this dissertation refers to vertical accuracy of LiDAR as the horizontal 

accuracy is calculated differently – usually as a fraction of flying height. Where 

horizontal and radial (a combination of both the vertical and horizontal) errors are 

calculated, they are clearly specified. 

Specifications will refer to the detailed requirements, including the quality of equipment 

and processes followed to achieve a requirement [Samuel and Sanders, 2007]. The 

quality control checkpoints (QCCs) used to validate the LiDAR and UDTEB model are 

assumed to be “error free”. Obviously, this is not the case. Therefore a restriction for a 

point to be used as a controlled checkpoint is for it to have been acquired at a precision 

that is at least three times superior to the precision of the points it is to validate 

[Chrzanowski, 1977]. This has been explained in detail in Section 2.2.1.3.  

All uncertainties from the various components of the LiDAR system and from post-

processing and presentation procedures are considered to be measured at the same 

confidence interval. All component uncertainties are assumed to carry equal weights 

when determining the total uncertainty budget. 

Finally, it is assumed significant error contributors have been accounted for in the default 

model. Such contributors may be: 

1. a pre-existing condition in LiDAR systems before the survey; 

2. acquired during the survey; and  

3. included during post-processing of surveyed data 
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Where this is not the case, the user can customize the model to include new error factors 

or ignore identified factors in the default error budget. 

 

3.4.2 Users’ Requirements Definition 

A user‟s requirement or specification as used in this research refers to the standards for 

data and product quality requested by the user to the vendor during LiDAR surveys. 

These standards are used to verify at project completion whether the vendor had satisfied 

the initial requirement set by the user. 

A method for determining users‟ specifications was created during a project undertaken 

by the author [Coleman and Adda, 2010] as part of provincial efforts to define standards 

for acquiring, processing and delivering LiDAR data in New Brunswick. Initial research 

was conducted to review available specifications for multiple uses of LiDAR data and 

derived products. From this initial study, four LiDAR specifications were selected as 

useful references that could be used to help set standards that meet the requirements of 

multiple N.B. provincial organizations. These were the: 

 American Society of Photogrammetry and Remote Sensing (Flood, 2004); 

 United States Geological Survey (USGS). National geospatial program base 

LiDAR Specification Version 13 (USGS, 2010); 

 Federal Emergency Measures Agency guidelines for Flood Hazard Mapping 

(FEMA, 2003), and  
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 Leading Edge Geomatics (LEG) standard specification for LiDAR data capture and 

processing. As of the time of this project, LEG was the only commercial LiDAR 

data provider in the province. 

A survey was conducted through interviews with provincial users to obtain their 

requirements. 

3.4.2.1. User Needs Research  

Initial informal discussions with selected public institutions regarding the application of 

LiDAR data to their mandate were undertaken. Table 3.1 lists these institutions and 

attempts to summarize their areas of interest.  

Table 3.1 Participating stakeholders and their areas of interest relating to LiDAR 

 

Organization/Department Area of interest relating to LiDAR 

Service New Brunswick (SNB) Provincial public administration 

Department of Public Safety (DPS) Safety advice and emergency response 

Department of Natural Resources (DNR) Protect and manage natural resources 

Department of Transportation (DOT) Safe infrastructure and travel advice 

City of Fredericton (F‟ton) Information about the city 

Department of Environment (ENV) Manage land use and waste 

City of Saint John (S J) Information about the city 

Department of Agriculture & Aquaculture 

(DAA) 

Manage agriculture & aquaculture 

industries 

Department of Wellness, Culture and Sports 

(WCS) 
Citizen‟s health and well being 

City of Moncton (Monc) Information about the city 

University of New Brunswick (UNB) Research and development 

NB Power Crown Corporation – Services 

JD Irving (JDI) Private Business – Services 

Leading Edge Geomatics (LEG) Private Business – Geomatics 

DataQC Private Business – Quality Control 

CARIS 
Private Business – Geographic 

Information 
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The list of the nine identified institutions that acquire LiDAR data is shown in Table 3.2. It 

is important to note that these tables only provide the RMSE for elevations as this was 

what was considered in defining the error budgets for the LiDAR point clouds. LiDAR 

horizontal uncertainties are determined using a later approach discussed in section 2.2.5.1.  

Key for Most Used high average low 

 

3.4.2.2. Common Needs  

Common requirements for LiDAR data and products among participating provincial 

departments included the: 

1. need for an inventory of available provincial LiDAR data and supporting 

documentation, in the form of metadata; 

2. raw LiDAR point cloud, containing hydrographic features, vegetation and 

infrastructure (including buildings, roads and utilities); 

3. filtered classified point cloud to show bare earth, vegetation, hydrographic features, 

Table 3.2. Formats and accuracies (RMSEz at 68% confidence level) of contours 

required. 

1. Contours 

 
data formats used for contouring Elevation 

Institution .DGN NTX .DWG x y z .DXF .SHP KML ±RMSE(m) 

City of Fred‟n 
       

0.20 

DPS 
       

0.15 

DNR 
       

0.20 

DOT 
       

0.02 

SNB 
       

0.20 

ENV  
       

0.15 

DAA 
       

0.20 

City of S. John 
       

0.20 

Moncton  
       

0.20 

Total 3 8 6 6 3 8 4 
 

  
RMSE: Min= 0.02 Mean=0.17 Max = 0.20 
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utilities and infrastructure layers; 

4.  intensity values, GPS and IMU data for post analysis; 

5. raster DEM of bare earth surface, generated features, including contours, lines, 

points and polygons, 3-D models and breaklines (through a separate collection 

process and post processing). 

3.4.2.3. Differences 

Departments of Transportation and Natural Resources suggested their organizations had 

exceptionally high vertical accuracy requirements for all elevation data collected (±2 cm). 

This very high accuracy fell outside that required by other departments and by the 

capability of LiDAR survey technology at the time of the research.  

3.4.2.4. Main Components of Specified Minimum Requirements 

Minimum specifications, as indicated in this document, refer to defined basic 

requirements to be considered by a provincial organization when acquiring LiDAR. The 

purpose is to make sure that the data and processed products meet the basic data 

standards required by other provincial organizations. Also, compiling common standards 

helps to maximize the use of LiDAR and related products acquired by provincial 

organizations, and support easy integration of the data and products into other datasets 

and products already in use. This specifications document presents details of required 

minimum specifications to be used as a guide by provincial departments when tendering 

LiDAR contracts and is summarized as follows (USGS 2010; Flood 2004; FEMA 2003): 

 General responsibilities of the Vendor - Provide the professional, technical and 
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material supplies necessary to complete the project as specified by the Client, and in 

conformity with the minimum specifications detailed in this document. 

NB: Clients should define Vendor responsibilities for project specific applications. 

 General responsibilities of the Client - Provide the logistics, quality control 

checks and information needed by the Vendor to understand, execute, and present 

the requested data and products. 

 Formats and sizes for data and products 

- Formats for raw LiDAR data shall be “.las”. DEMs shall be in “CARIS” or 

“.shp” formats. Contours derived from processing the LiDAR data shall be in 

ESRI .shp, CARIS, or xyz formats. Mass points shall be expressed as ASCII 

xyz or xyzi.  

- File sizes shall not exceed one gigabyte unless otherwise specified by the 

contracting company.  

 Allowable time for quality assurance - Three months after final delivery shall 

be allowed to complete quality assurance. 

 Rights of clients to delivered data and products  

There could be cost savings for the client if they are willing to allow the vendor to 

retain some ownership rights to the raw data. 

- The Client shall have unrestricted exclusive right to all data, processed products 

and any other supplementary information derived directly or indirectly from the 

LiDAR data and/or product. 

- The Client shall reach an agreement with the Vendor at the beginning of the 
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project to discuss if sharing the raw LiDAR data will mean an extra cost. 

 Recommended payment terms - 25% of the contract fee shall be paid upon 

signing the contract, 50% upon completion of flying, acquiring the data and final 

delivery, and the remaining 25% after quality assurance.  

 Datum and Reference systems – LiDAR data can be collected in Spherical 

Coordinates (Latitude and Longitude) and shall be expressed in NAD83 (CSRS) 

with heights referenced to CGVD28. These reference systems are recognized as 

the New Brunswick‟s adopted reference system and in the NB Stereographic 

Double Projection recognized as the legal map projection for the province. 

- At least three well-spaced active GPS control stations shall be occupied 

simultaneously during the survey. These shall be preferably located along a road, 

waterway or transmission line. 

- The distribution of GPS ground control shall allow for no more than ±30cm (at 

95% Confidence Level) GPS error contribution to vertical accuracy (LEG, 2013).  

 Horizontal and Vertical Accuracies – Unless otherwise specified when 

compared to surveyed check points established for quality assurance purposes, at 

least 95% of all raw collected LiDAR points shall possess absolute vertical 

accuracy of ±30 cm RMSE in areas not obscured by vegetation; 

- vertical accuracy of ±50 cm RMSE in areas obscured by ground vegetation; and 

- horizontal accuracy of “±0.04” x “the flying height above ground”, where units of 

the flying height are in metres and the resulting RMSE value is in centimetres;  
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 Processing, handling and naming  

- No more than 2% of the points in any selected 1km x 1km window of the project 

area shall be wrongly classified or labeled.  

- No raw data points are to be deleted from the swath LAS files, with the exception 

of extraneous data used to calibrate the flight. Voids caused by the removal of 

LIDAR data points on manmade structures are acceptable (FEMA, 2003). 

- Data storage and naming shall be divided into three levels, namely, individual tile 

(1 km x 1 km window), block (containing two or more tiles) and overview 

(containing two or more blocks). 

 Quality Assurance (QA) – The Vendor, Client or a contracted third party QA team 

shall perform checks on the processes involved in the survey process and products 

resulting from the process to ensure they meet or exceed the minimum standards. 

 Specifications required for metadata documentation – Created to conform to the 

North American Profile of ISO19115:2003 – Geographic information – Metadata 

version 1.0.1[NAP, 2007].  

 Specifications required for deliverables – Deliverables shall include the raw point 

cloud, classified point cloud and derived products as requested by the Client. 

 Specifications required for the acceptance or rejection of deliverables – The 

Client(s) will accept results from the LiDAR project when at a minimum; the 

Vendor has demonstrated and performed sufficient testing to ensure that each phase 

of the mapping meets minimum standards as required in the previous sections of 

this document. 



61 

 

 Projects requiring higher accuracy standards – It is acceptable for provincial 

departments to acquire data at a higher accuracy than the minimum requirement. 

 Post project assistance and organizational expertise – Where required as part of 

the delivery process, provide documents regarding the potential use and limitations 

of the delivered LiDAR products.  

The minimum specifications document should have defined life cycles. Making it a living 

document will ensure it adapts to improvements in the positioning capabilities of LiDAR 

systems due to advancements in technology. 

 

3.4.3 System Uncertainty Modeling Development 

After specifications have been established, there needs to be a way to regulate the final 

products upon delivery to determine whether or not the specifications were met. The total 

uncertainty budget for a project involves specifications for both data acquisition and post 

processing to produce products from the point cloud. Two ways of identifying 

uncertainties in LiDAR systems, namely the deterministic and non-deterministic 

uncertainty models were employed. 

3.4.3.1 Deterministic Uncertainty Modeling  

Deterministic modeling of errors expects the same trend of output results with given inputs 

under similar conditions. These models employ user specified input to capture underlying 

details of complex models represented in natural systems. The inputs for such models are 

usually determined through “trial and error in which plausible values are postulated, the 



62 

 

corresponding outputs inspected, and the inputs modified until plausible outputs are 

obtained” [Poole and Raftery, 2000].  

By modifying the Hare [2001] model for modeling uncertainties in multibeam systems, 

Goulden and Hopkinson [2006a] determined uncertainties that exist in LiDAR systems. 

The authors discussed the mathematical relations that the integration of various systems to 

form the LiDAR survey system plays. The error parameters and their relations have been 

developed from initial studies and discussed in detail in Section 2.3 of this report. In Figure 

3.5 the reference frames necessary for coordinating a LiDAR point observed from an ALS 

system as proposed by Goulden and Hopkinson [2006b]. 

 

Figure 3.5. Transformations between reference frames (modified from Goulden and 

Hopkinson, [2006b, p.6]). 
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From Figure 3.5, Goulden and Hopkinson, [2006b, p.6] categorize these three reference 

frames as the scanning mirror frame, the aircraft body frame of the aircraft and the 

topocentric mapping frame. 

Following these categories, Goulden and Hopkinson [2006b] derived the following 

relationships from Figure 3.5. 

1. Going from Mirror Frame to Body Frame 

This has only a one-directional vector in the Z –axis, hence in terms of range, 



















range

rangem 0

0

 .         (3.1) 

Rotating Eq.(3.1) at a scan angle about the Xm using the rotation matrix 
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will yield a two-dimensional (of Yb and Zb components) vector in the body frame, 

given as:  
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








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rangerangeb

)cos(

)sin(

0



  .      (3.3) 

2. Moving from Body Frame to Mapping Frame 

Employing the roll(R), pitch (P) and yaw(Y) rotation values from the IMU after 

proper flight and trajectory orientation, Latypov [2005] proposes the following 

relation for transforming the system from the body to the mapping frame: 



64 

 

























RPRPP

RPYRYRYRPYPY

RYRPYRYRPYPY

R

Maping
to
Body

coscossincossin

cossinsinsincoscoscossinsinsincossin

sinsincossincoscossinsinsincoscoscos

. 

(3.4) 

Assuming the eccentricity values have been applied between the GPS, IMU and the 

scanning mirror, the total solution from the sensor platform to the target coordinates is 

given as: 
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Following this, the target coordinates can be deduced from the equations above from 

Goulden and Hopkinson [2006b, pp.7-10] as follows: 
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  RangeRPRPzz
UTM
Mirror

UTM
etT ))(coscoscos()(sinsincosarg    ,   (3.8) 

The laws of the propagation of errors have been discussed in Section 2.2.3 from which we 

can determine the total errors of the final coordinates by summing the squared values of the 

partial derivatives of the observables, l, multiplied by the square of its corresponding error. 

The observables in this case are range, scan angle, roll, pitch, yaw and mirror coordinate 

giving the total uncertainty equation. Therefore, Goulden and Hopkinson, [2006b, p.11] 
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give an example for the X-coordinates errors (also applicable to deriving the Y and Z 

errors) as: 
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  (3.9) 

Goulden and Hopkinson [2006b] used the Optech ALTM 3100 system as a case study to 

determine system uncertainties. These findings are used to formulate the performance 

equations of the mechanical LiDAR system. In this study, it was observed that the mirror 

coordinate errors were associated with the GPS coordinates of the Smooth Best Estimation 

of Trajectory (SBET) and errors from the lever arm. The SBET is the only available RMS 

error source in a LiDAR file that is computed in real time. It is computed from data in the 

forward and backward solutions of the trajectory and is normally distributed. The errors 

from the lever arm are either computed from ground surveys or mathematical methods – 

the Kalman filtering algorithms employed in Applanix‟s POSPac system [Goulden and 

Hopkinson, 2006b, p.11]. The equivalents of SBET and lever arm error files exist in other 

LiDAR and post-processing systems.  

We can now determine the error of a mirror coordinates (Xm, Ym and Zm) – for instance 

for Xm, this will be: 

222

LeverArm
X

Xrms
SBETXm    ,      (3.10) 

where 
2

Xm  is the total error in X coordinate; 2

Xrms
SBET is the RMS error in X from the SBET; 
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and 2

LeverArm
X is the Lever arm error in X. 

Based on Goulden and Hopkinson [2006b. p.15] the accuracy from the angle α is assumed 

to be given as: 

22 ]"6.10[  ,         (3.11) 

and the errors in roll, pitch and yaw are given as: 

2

//_
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// yawpitchrollRMSYPR    .        (3.12) 

Taking partial derivatives for errors in roll, pitch and yaw with respect to the target 

coordinates in Eqs. (3.6), (3.7) and (3.8), the following can be deduced and utilized in 

Eq.(3.9) [Goulden and Hopkinson, 2006b. p.17]: 
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Y-coordinate: 
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Z-coordinate: 
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Last but not least, the range component can also be determined as follows [Goulden and 

Hopkinson, 2006b. p.18-19]: 

For a given range, R, return time of a pulse, t, and with c being the speed of light we can 

write: 
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Assuming that the counters have a resolution of 0.1 ns for the laser device and inputting the 

constant c to be equal to 299,792,458 m/s (or ~ 300,000,000 m/s), then the vertical 

resolution representing the minimum separation between objects along path (Rmin) can be 

calculated as [Baltsavias, 1999, p.203]: 

2

min
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cR    = 300,000,000 m/s x (0.1 x10

-9
) s x 0.5 = 0.015 m. Therefore, 
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 ,        (3.25) 

Finally, the partial derivatives of the range that can be input in Eq.(3.9) is given as 

[Goulden and Hopkinson, 2006b. p.19]. 
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These equations were implemented to estimate systematic errors in the UDTEB mode 

referred to as the LiDAR Uncertainty Model (LUM). 

Figure 3.6 summarizes the algorithm development and step by step methods used in the 

deterministic approach.  
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Figure 3.6. Flow diagram of algorithm development for the deterministic model 

By employing the parameters in their appropriate variables provided for from Eq.(3.1) to 

Eq.(3.28), the TPU file containing the uncertainties (TPUx, TPUy, TPUz) of ground 

coordinates. can finally be computed using the steps shown in Figure 3.6. 

3.4.3.2 Non Deterministic Uncertainty Modeling 

The non-deterministic modeling method returns estimates of systematic errors (LUM) by 

estimating parameters of ALS system during the time of survey. 

Gonsalves [2010, p.283-305] discussed a full wave uncertainty model for a circular laser 

scanner, which employed a non-deterministic approach to determine uncertainties. The 

primary principles adopted by Gonsalves was employed for development for the non-

deterministic error modeling part of the UDTEB model. 

Assume a simple scanner platform in Figure 3.7. 
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Figure 3.7. A simplified laser scanner depicting laser range ρ, azimuth angle θ, and 

elevation angle   (modified from Gonsalves [2010, p.294]) 

Gonsalves [2010 p.294] discussed a simplified uncertainty propagation model and 

proposed parameters to employ in estimating uncertainties of a LiDAR platform. The 

following discussions discuss these parameters and their associated propagated 

uncertainties. 

From Figure 3.7, given the range, the ground coordinates can be obtained by employing 

spherical-to-rectangular coordinate transformation as follows [Gonsalves 2010, p.294]:  
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Assuming there are no correlations between the parameters, we can deduce the following 

for the directional errors for x, y and z ground coordinates:  
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Eq.(3.30) represents the errors: 
2222

  g , 
i.e., the error in the ground 

coordinates as contributed by errors due to the laser range, azimuth angle and the 

elevation angle respectively.  

However, where there are correlations, the variance, co-variance expression can be given 

as:  
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Eq.(3.31) is of the form Cz=J Cx J
T
 , where J, the matrix of the first-order partial 

derivatives of x,y,z with respect to ρ, θ,   (also known as the Jacobian matrix) can be 

written as: 
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As variance, covariance has been included, Eq.(3.32) now matures to the full uncertainty 

equation [Gonsalves 2010, p.303] for ground coordinates of the LiDAR points as follows: 
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To implement this in the proposed uncertainty model, the parameters ρ, θ,   will have to 

be specified by the user. Four default performance precisions were obtained from a 

survey by GIM International [GIM, 2010] accessed online on February 08, 2010. In 

Figure 3.8, the user is asked to determine the sensor to be employed in the survey 

 

Figure 3.8. Defining sensor types in the non-deterministic model 
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Once a sensor is chosen, the twenty-eight parameters specific to that sensor [Gonsalves, 

2010] are defined to obtain the simulated errors. After defining these 28 parameters, 

sample LiDAR data are simulated that is consumed by the PRUM to produce an estimate 

of sensor conditions at the time of survey. From these sensor conditions, new attributes of 

the LiDAR data in terms of horizontal and vertical coordinates are created. A 

modification of the simulation was made by the author to allow for the simulated data to 

be replaced by a sample data of the area, for instance, data from a calibration flight of the 

area or from previously acquired LiDAR data. Once the data and the errors are simulated, 

the model outputs the simulated point cloud and the associated errors. Both the 

deterministic and non-deterministic approach of data uncertainty modeling are necessary 

for cases where: 

1. there are raw performance report files on a LiDAR survey. In which case we 

employ the deterministic approach to determine the uncertainties – or recall the 

uncertainties from their performance report; or  

2. there are no raw error report files. In which case the user may use the non-

deterministic approach to estimate these errors by employing the precision 

capabilities of the components of the LiDAR systems used in the survey.  

 

3.4.4 User Determined Error Modeling 

In addition to the system errors discussed in Section 3.4.2 for the case of the LUM, the 

UDTEB model considers other sources of uncertainty up to the point of final product 

delivery. These errors are random in nature and are shown in Figure 3.9.  
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Figure 3.9. UDTEB Model 

These uncertainties are divided into five parts, namely: 

i. Planning uncertainty model (PLUM); 

ii.  LiDAR uncertainty model (LUM); 

iii.  Processing uncertainty model (PRUM); 

iv.  Presentation uncertainty model (PUM); and the  

v. Data integration/interoperability uncertainty model (DIUM).  

While not attempting to include all possible source of errors in product creation (which 

will be impossible at this point), identified major contributors to pre- and post-data errors 

are estimated and included in the UDTEB model. 
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3.4.4.1 Planning Uncertainty Model (PLUM) 

The PLUM gives a general idea before flying as to whether the LiDAR data and its 

products will meet user standards or not. It is based on generalized uncertainty of the 

individual components precision integrated in the LiDAR system for the survey. This 

implies that PLUM will be greater or in ideal cases equal to the UDTEB.  

At the initial stages of the project, the user needs to ask questions about systems precision 

and survey processes being applied to ensure that they will satisfy requirements. It is also 

important at the planning stage to consider the performance of the various systems to be 

employed in the survey [Nayeghandi 2007, pp.60-63]. There are other several subjective 

uncertainties that could influence errors in LiDAR data and products. Some of these 

errors (or blunders) result from the confusion of terms used in technical specifications as 

shown in Table 3.3 from Ussyshkin and Smith [2006]. 

Table 3.3.Confusing specification terminology as used in the LiDAR industry 

supposing to describe the same characteristics (Ussyshkin and Smith [2006, p.2]). 

Characteristic Confusing Terminology 

Laser Pulse Frequency Pulse repetition rate Data collection rate 

Laser Beam Divergence 1/e or 1/e
2 

Full angle or Half angle 

Footprint Size on the 

Ground from Reference 

Altitude 

Footprint diameter, 1/e Ground spot diameter1/e
2
 

Maximum Scan Angle ±Half-angle Full-angle or full FOV 

Scanning Rate Scan rate Scan cycle 

Survey Altitude Operational altitude Slant range for max. scan 

angle 

Vertical Accuracy Vertical (elevation) 

accuracy for the max. scan 

angle 

Vertical (elevation) 

accuracy versus scan angle 

Horizontal (Planimetric) 

Accuracy 

Horizontal  accuracy for the 

max scan angle 

Planimetric accuracy versus 

scan angle 
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Such confusion leads to misleading interpretation of expectations based on the 

operational abilities of the ALS system. As a first step solution, it is important for both 

the vendor and user to recognize this confusion to be clear on these terms of the contract. 

3.4.4.2 Processing Uncertainty Model (PRUM) 

PRUM considers common processes on the laser data employed in product creation 

including resampling/point reduction/filtering and DEM interpolation [Desmet 1997, 

Callow et al., 2007; Liu and Zhang 2008, Guo et al. 2010]. 

Resampling/point reduction/filtering: This modeling follows similar studies from Liu 

where the effects of data density on DEM accuracy was investigated for an area of 49 

km
2
 (Figure 3.10). 

 

Figure 3.10. Data reduction and DEM accuracy (from, Liu and Zhang [2008, p.176]) 

In Liu‟s and Zhang‟s research, when the reduced datasets were used to produce 

corresponding DEMs with 5 m resolution, there appeared no significant difference in 

DEM accuracy until after more than 50% point reduction; 25% reduction produced about 



77 

 

1.01 *RMSE (worst case scenario based on field surveys); 10% reduction gave 

1.06*RMSE, while 5% of the original point spacing yielded 1.13*RMSE. One percentage 

point reduction yielded an estimate of 1.45*RMSE. UDTEB generalizes errors due to 

data reduction by employing these RMSE values using the following inputs: 

 Specify the point density (number of points per square area) of original data 

 Specify the reduction percentage (Ψ%) (i.e. the percentage resampling/filtering 

employed) and apply the corresponding error offset (Ψ). Two options exist: 

a) if 0 ≤ Ψ %≤ 50, then an error offset (or Ψ) of 0.00 is added to the model. 

In MATLAB™ code terms, this is written as: 

If Ψ% >=0 && Ψ% <=50, Ψ = 0; 

b)  if Ψ% > 50, then varying reduction factors are added as shown in the 

following syntax used in the development of the MATLAB™ code: 

elseif Ψ% >50 && Ψ %<=75, Ψ = 0.01; 

elseif Ψ% >75 && Ψ% <=90, Ψ = 0.06; 

elseif Ψ% >90 && Ψ% <=95, Ψ = 0.13; 

elseif Ψ% >95 && Ψ% <=99.99, Ψ = 0.45; 

INTERPOLATION and MORPHOLOGY (Δ) - Aguilar et al. [2005] investigated a 

theoretical empirical model for error in LiDAR-derived DEMs. After processing, the 

authors provided a relation between morphology and RMSE (cm) of the interpolated 

points as summarized in Figure 3.11. 

 
Figure 3.11. Contribution of morphology in RMSE (vertical) LiDAR DEM. From 

Aguilar et al., [2005], p.813. a,b,c,d are significant changes in RMSE for different 

terrain morphologies ( with p < 0.05 ). 

http://www.scopus.com/search/submit/author.url?author=Aguilar+F.J.&origin=resultslist&authorId=11940777200
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From this detailed research, an estimation of morphology error from interpolated DEM 

from LiDAR on UDTEB (given the symbol Δ) can be made by the user for a category of 

three significant changes as follows: 

 For the planning stage where data and checkpoints are not available, estimate as: 

a. Flat: This represents surface structures that fall under the flat, smooth hillside 

and flat-rough morphology. In this category a slope error offset of 0 cm (i.e. 

no offset) is applied to the model. In this case Δ = 0. 

b. Rolling: This represents average undulations in terrain morphology. An offset 

(or Δ) of 5 cm to 15 cm is attributed to this terrain type.  

c. Steep: This represents dry ravine, mountainous and gorge morphological 

types. An offset (or Δ) of between 15 cm to 60 cm is considered for this case. 

However, when ground controlled checkpoints are available they are used to estimate the 

type of terrain and the appropriate offset based on the difference between checkpoints 

and the estimated terrain is applied. And finally, 

PRUM
2
 = LUM

2
 + Ψ

2
 + Δ

2
.
       

(3.34) 

3.4.4.3 Data Integration Uncertainty Model (DIUM) 

The tendency is to consider errors due to data integration impossible to model as it is not 

possible to envision all potential datasets a user could integrate with LiDAR. However, 

these errors can be treated as blunders or outliers if, after the integration process, the user 

does not properly structure the datasets, or report accurately on the total uncertainty. In 

the DIUM, the contributing error per each combined dataset, “i” (named 

“Contributing_Errori”) is given as: 
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RMSETotal
CoverageTotal

Coverage
ErrorngContributi i

i _*
%_

_%
_  ,    (3.35) 

where Total RMSE is given as: 
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(3.36)

 

where Accuracyi is the accuracy of the i
th

 dataset, %_Coveragei is the percentage of data 

covered by the i
th

 contributing data out of the sum of all the percentages of the datasets 

involved in the integration process given as Total_%Coverage. 

3.4.4.4 Presentation Uncertainty Model (PUM) 

False interpretation of system performance and data leads to misleading uncertainty 

results. Errors (or blunders) can also affect data presentation if users do not understand 

the differences in elevations above different surfaces. To warn about this uncertainty, the 

UDTEB model requires the user to input all reference systems employed in data or 

datasets involved. 

Classification uncertainty - Misclassification error arises when map classes (in this case 

the LiDAR points representing different objects) are not correctly assigned to the right 

objects [Carmel et al., 2001]. Table 3.4 shows an error matrix for evaluating 

classification results using four prominent indicators suggested by Cohen [1960] and 

Fenstenmaker [1994]: 

1. The overall classification accuracy (Ω, which is a fraction between zero and one – 

one meaning points have been classified accurately by one hundred percent); 

2. Type I error (B) – represent ground classes represented as non-ground; 
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3. Type II error (C) – refers to non-ground classes wrongly classified as ground; and  

4. Kappa (κ), which is the level of agreement of the rate of occurrence of Ω. 

Table 3.4. Error matrix for evaluating the classification accuracy of LiDAR ground 

points from non-ground points. 

                  Compared 

Reference 

LiDAR Classified Points 

Ground Point Non-Ground Points Summation 

Ground Points A B H (=A +B) 

Non-ground points C D I (=C+D) 

 F (=A+C) G (=B+D) E (=F+G) 

Modified from Wang et al. [2010]. 

Here we realize that the only useful way to obtain measurements of misclassified points 

is by nominal scaling [Cohen, 1960]. 

Type I error = 
BA

B

         
(3.37) 

Type II errors are most problematic in DEM and other LiDAR product creation. 

Sometimes these can go unnoticed, especially in vegetative areas where it is easy to 

classify tree tops as ground (Wang et al. 2010). 

Type II error = 
DC

C

  .       
(3.38) 

The probability (chance of agreement rate) Pc  is given as 

 Pc = 100*
**

2E

IGHF 

 ,       
(3.39)

 

the level of agreement of the rate of occurrence, κ (or CI), of the overall accuracy (Ω) is 

given by:
 

κ =  100*
1

  

c

c

P

P





 ,        

(3.40)
 

and 
 

Ω = 
E

DA 

 .        

(3.41)
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The inputs for the PUM are as follows: 

1. The overall classification accuracy (Ω); 

2. Datum/Coordination conversion applied, if applicable. Users are required to 

indicate if datum/coordinate transformations were applied as these can have error 

effects [Vaníček and Steeves, 1996]. Following that, they are required to specify 

each reference system (both horizontal and vertical) employed. 

3. The range of values (min and max) of error limits from various datasets in the 

production line. The user may skip this step if only LiDAR data is under 

investigation; and the 

4. Confidence interval – if several datasets are employed, report CI for all data. 

The only factor that is estimated and used in the presentation model towards the 

calculation of the TPU is the error due to classification and its effects on the DEM or 

other product creation. However, the other errors will only be for information purposes in 

the final report. When Ω is calculated, the amount of error from misclassified points (Ë) 

is given as: 

Ë = 1- Ω          (3.42) 

The final accuracy of UDTEB, considering Ω can be given as: 

Final Error = ± (TUB + Ë * TUB)      (3.43) 

Eq.(3.43) can be re-written as: 

Final Error = TUB * (1+ Ë),       (3.44) 

and putting Eq.(3.42), into Eq.(3.44), gives the final error as: 

Final Error= TUB * (1 +1- Ω) = TUB * (2- Ω).    (3.45) 
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3.4.4.5 User Determined Total Error Budget (UDTEB) Model 

The propagation of errors in the UDTEB model follows the law of the propagation of 

errors. Therefore the total error is not simply the addition of the errors from the LUM, 

PRUM, DIUM and PUM models. In Section 3.4.3, the variance and covariance 

(correlations) of residuals and their propagation have been discussed towards modeling 

the final error estimate from the model. After determining the effects of the TPU using 

LUM, PRUM and DIUM, the overall classification error (Ω) is determined in PUM. The 

final error equation reduces to form shown Eq.(3.45). From worst case scenario point of 

view, the planning stage errors should relate to the following computations: 

22222

_

2

_

PUMDIUMPRUMSlopeSurveyFieldLUM

LimitUpper

RMSERMSERMSERMSERMSERMSE

PLUM




(3.46) 

where LUMRMSE , SurveyFieldRMSE _ , SlopeRMSE , PRUMRMSE , DIUMRMSE , PUMRMSE are 

root mean square errors from the ALS system, the field control survey during the ALS 

survey, the average slope of the area, the PRUM, the DIUM and the PUM respectively.  

From Hodgson and Bresnahan [2004], the RMSE of the LiDAR points can be written as: 

.22

_

22

_ SlopeSurveyFieldLUMDataLiDAR RMSERMSERMSERMSE       (3.47) 

Therefore, 

2222

__ PUMDIUMPRUMDataLiDARLimitUpper RMSERMSERMSERMSEPLUM  .  (3.48) 

The presence and amounts of errors due to the DIUM, given as DIUMRMSE , creates two 

scenarios for the final error budget. Consider the following: 

If 22

_ PRUMDataLiDARDIUM RMSERMSERMSE  ,     (3.49) 
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then, the total error, 

222

_ PUMPRUMDataLiDAR RMSERMSERMSEUDTEB  ,   (3.50) 

and considering Ω as used in Eq.(3.45), the total error can also be written as: 

.*)2( 22

_ PRUMDataLiDAR RMSERMSEUDTEB     (3.51) 

Otherwise, if 

22

_ PRUMDataLiDARDIUM RMSERMSERMSE  ,    (3.52) 

then, the total error, 

222

PUMDIUMPRUM RMSERMSERMSEUDTEB  ,    (3.53) 

or again, from Eq.(3.45), we can write 

.*)2( 22

PRUMDIUM RMSERMSEUDTEB      (3.54) 

The calculated UDTEB value can be compared with delivered data or products accuracies 

to determine if users‟ requirements have been: 

1. met – i.e. the delivered data accuracy falls within the UDTEB estimates; 

2. not met – i.e. the delivered data accuracy falls outside the UDTEB estimates; 

3. met but over-specified – i.e. users‟ requirements have been met and has been 

exceeded by twice or more of the required user accuracy; 

4. not met and underspecified – i.e. the user‟s requirements have not been met and 

the vendor‟s final accuracy is reported to be worse than at least twice the user‟s 

initial accuracy requirement. 
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3.4.5 Data Acquisition 

LiDAR data were provided by the DPS and covered the province of N.B. as shown in red 

in Figure 3.12. The data were acquired through an ALS survey by Leading Edge 

Geomatics Ltd., Fredericton, in April 2011 and delivered in July 2012.  

 
Figure 3.12. Red area shows total area covered during the LiDAR survey (obtained from 

Leading Edge Geomatics Ltd., Fredericton). Image Source: Google Inc. (C) 2012 

The trajectory that was followed by the aircraft to collect data in the project area is as 

shown in Figure 3.13.  

 
Figure 3.13. Estimated trajectory used by aircraft during the survey. 

The design was to allow each swath of data observed along the trajectory to overlap 50% 

with adjacent trajectories in this survey. Figure 3.13 shows the swath of data covered 
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while following this trajectory. The system used was the Riegl Q680i, which employs a 

rotating multi-facet scanning mirror and a stated horizontal accuracy = 1/4,000 x altitude 

at 68% CI. The average flying height (for the project area) above ground was 1400 m 

resulting in a horizontal accuracy of approximately ±0.350 m 68% CI. Vertical positional 

accuracy was ±0.134 m vertical accuracy at 95% CI with an elevation RMSE of ±0.068 

m [Kidman, 2012]. 

The initial coordinates were referenced in the planar Universal Transverse Mercator 

(UTM) grid coordinates system. At the request of the client, the data were also delivered 

in New Brunswick Double Stereographic projection on the North American Datum of 

1983 of the Canadian Spatial Reference Datum (NAD83CSRS) on the GRS-1980 

ellipsoid. The vertical orthometric heights were referenced using the Canadian Geodetic 

Vertical Datum of 1928 (CGVD28).  

The software employed for post-processing the LiDAR data was „Virtual Geomatics – 

VG4E
TM
‟. Three classes were identified in the dataset: 

1. Ground (classified as 2); 

2. Low Vegetation (classified as 3); and 

3. High Vegetation (classified as 5). 

GNSS data were initially obtained using Topcon‟s Hiper® Light+. The projection of the 

equipment was set to: UTM East, North -Zone_19N: 72W to 66W and Datum: NAD83 

(CSRS 98). In this first instance of measuring ground checkpoints, Real Time Kinematic 

(RTK) was envisioned to be used. However, due to an observed defect in the radio link of 
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the survey instrument, Post Processing Kinematic (PPK) process was used. At post-

processing, a restriction was set to only accept values that were precise to less than or 

equal to ±0.05 m at 95 % confidence interval. All other values that do not conform to this 

restriction were to be flagged and removed. During analysis, the PPK method did not 

achieve the required results as there was GNSS error in the checkpoints resulting in over 

a metre difference in some of the observed values. This instrument error was missed in 

this survey because the PPK method does not allow for the observer to determine whether 

or not there was an acceptable vertical or horizontal fix (at a given precision) when the 

checkpoint is being observed [LEG, 2013]. The experience from this survey indicates the 

effect of the surveyor’s blunders in validating LiDAR elevation errors.  

A second field survey was made February, 2013 to correct this instrument error. Two 

instruments were employed in this Survey. For the areas where GNSS RTK observation 

were possible (i.e. Windsor Street, Avondale Court, Wilmot Park and Odell Park in 

Fredericton), the TopCon Her Ga GNSS receiver (with Serial # 457-004213) employing a 

Getac controller in which the TopSurv 8 software was installed was employed. The 

receiver was set to Rover mode and by employing Topcon's TopNET live RTK reference 

stations as the Base [TopNET live, 2012], checkpoints were observed at these four areas. 

The accuracy of the field elevations was achieved to less than the required 5cm at 95% 

CI. When the RTK observations were attempted for downtown Fredericton, it was not 

possible to obtain a fixed point (only floating points could be observed). Therefore, a 

Total Station survey was adopted. The instrument employed in this case was the Nikon 

NPL 332. Temporary benchmarks were established and coordinated by traversing using 
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GNSS (RTK method) from HPN points in the area. These HPN stations were checked 

using RTK surveys for accuracy by observing them as a rover while occupying the HPN 

control monument 941007 located at the Department of Forestry building in Fredericton. 

3.4.6 Data Processing 

After extracting the bare earth points from the dataset, the UDTEB was used to estimate 

the total propagated uncertainties of simulated or observed LiDAR points by following 

the step by step employing an interactive Graphic User Interface (GUI) (Figure 3.14). 

 
Figure 3.14. GUI of the UDTEB showing step by step processing steps. 

The GUI was developed based on the equations described in Section 3.4.7. The user 

begins by estimating the errors of the LiDAR system (LUM) as shown in Figure 3.15.  

 
Figure 3.15. PUM options – deterministic and non-deterministic model. 
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The LUM allows for the estimation of uncertainties in the LiDAR system as discussed in 

Section 3.4.3. Once engaged, the user is given the chance to first specify their 

requirement under the “User Definition” section and proceed to determine the PLUM as 

shown in Figure 3.16. 

 

Figure 3.16. A user interface for input of PLUM estimates. Maximum and minimum 

range of errors is reported in the total uncertainty report only for information purposes. 

When the PRUM model is calculated, the user determines the uncertainties due to 

processing by using the PRUM interface as shown in Figure 3.17. 

 
Figure 3.17. PRUM interface. Required: the flying height, the percentage reduction of 

data and the estimation of terrain morphology. 
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In the case of simulated LiDAR data obtained from the non-deterministic model, the “Pre 

Process” approach is employed. In this method the average flying height, the reduction 

percentage of the data if it has been re-sampled and “average terrain type” are 

interactively selected by the user. Where a sample LiDAR data is used with known 

controlled checkpoints within the project area, the “Post Process” is used. 

The next entry involves an optional uncertainty processing interface for the contributions 

of errors from data integration if any. The DIUM interface is shown in Figure 3.18.  

 
Figure 3.18. DIUM entry example 

These uncertainties are only estimated when several datasets are to be integrated towards 

meeting the final accuracies of a LiDAR product as discussed in Section 3.4.4.3. Figure 

3.19 depicts the GUI that was developed to provide the user with a simple interface to 

enter classification accuracies estimated from the LiDAR data. The vertical reference 

systems employed is required to be entered. Entering the extra information on the of 

coordinates system help identify coordinate system conflicts. In the case where there are 

several datasets were integrated employing various coordinate systems, for each 
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coordinate system employed, the user is required to state the name and accuracy of each 

of the datasets. 

 

Figure 3.19. GUI of PRUM showing a user input example. GUI has three parts. The top 

part relates to Classification uncertainties employed in the UDTEB model. Second 

section records vertical references used and the third section records the datasets used. 

A sample of the report is as shown below: 

UDTEB REPORT 

============ 

Error Budget Summary (±m) Vertical accuracy (Z)  CI% (vertical) 

                                         0.718                68.2 

 

                                             Horizontal Accuracy  CI% (Horizontal) 

                                          0.86                         68.2 

 

                                             Radial Accuracy  CI% (Radial) 

                                          1.120           68.2 

 

User Accuracy Requirement (±m)  U(v)             U(h)               U(r)             U(CL) 
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                                        0.15                0.3                  0.34                68.2 

 

        Estimated LiDAR Accuracy E(v)             E(h)             E(CL) 

                                          0.07                 0.95                  0.22 

 

        Reference System  Name             Accuracy               Conf. Interval (%) 

       HTV2                      0.200                          68 

CGVD                     0.150                          95 

 

Error Budgeting: 

           Will user specification for the project in mind using the systems defined be met? 

               Vertical: User Vertical Accuracy Requirements not met 

                Quality Control Vertical: User Vertical Requirements Under Specified 

 

                Horizontal: User Horizontal Accuracy Requirements Not Met 

                Quality Control Horizontal: User Horizontal Requirements Under Specified 

 

 

Planning Uncertainty (±m) Vertical Precision of components (without correlated 

Errors) 

                       Sum Min Error  Sum Max Error   Range  

0.01                  0.4                              0.4 

 

LiDAR Uncertainty Deterministic / Non Deterministic 

                                        Same Values, See "Estimated LiDAR Accuracy"  

 

Processing Uncertainty (±m) 

                                        Reduction?         Yes 

                                        %Point Reduction    0.5 

                                        Reduction Factor      0 

                                        Uncertainty due to Interpolation and Morphology :0.142                      

                                        Consideration for PRUM at planning stage 

                                        Terrain Type Slope Error Offset 

                                                      Rolling              0.142  

                                        Consideration for Post Processing 

                                        Number of LiDAR points =   2530416  

                                        Number of Check points =   122  

                                        Standard deviation of Check points =   ±0.002  

                                        Estimated PRU       0.142  

 

Data Integration Uncertainty (±m) 

                                        Number of data sets used : 2      

                                        Data      Accuracy     %Coverage Area  Combined Accuracy 

                                        las            0.12                   30   0.239 

                                        shp             0.20                  50    0.398 
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                                        Total RMSE for Combine data: 0.6373 

 

Presentation Uncertainty (±m) 

Class Accuracy 

Class Type I Error  Type II Error %Agreement Rate  (%Agreement Level)       Ω 

Building            0.06             0.134                    86.01          92.71   

Ground              0.02             0.000                    94.12                     100        0.900 

---------------------------------------------------------------------------- 

 

3.4.7 Ground Control Quality Assurance 

With respect to empirical validation of large point clouds, the patch validation process for 

LiDAR data employed over the years by Merrett Survey Partnership in UK and US 

[Merrett, 2008] was adopted for the field validation process. The patch method employs 

conventional land surveys over a test area to validate LiDAR coordinates. In this method 

it is assumed that the conventional survey methods were of higher accuracy than the 

LiDAR data [Flood, 2004 and Chrzanowski 1977]. The method was modified to cover 

varying terrain morphologies ground cover of five randomly selected areas for testing for 

positional accuracy of the LiDAR data. A total of 157 controlled checkpoints were used 

to verify the LiDAR points on the project area. From Aguilar and Mills [2008, p.163] a 

minimum of 60 controlled and an average of 100 such checkpoints is required to obtain 

95% confidence level in LiDAR elevation control. The number of points actually used 

was chosen such that it met or surpassed this average number of checkpoints the authors 

recommended. The project summarized morphology and land cover characteristics of 

features by dividing it into five categories.  

The five areas had the following properties to help reduce bias and incorporate 

morphological differences within the project area into the final error calculation: 
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1. High obstruction: Built-up area of downtown Fredericton; 

2. Flat-open terrain: Tennis court at Wilmotpark  

3. Dense forest: Odell Park, Fredericton  

4. Steep slope terrain : Windsor Street with a slope angle of 5 degrees from the 

highest point to the lowest point; and  

5. Low obstruction – Avondale Court region in Fredericton used as example. 

The varying topography also helps ascertain the contribution of morphology on LiDAR 

elevation accuracy in the project area as discussed in Section 2.2.5. Firstly, during field 

reconnaissance, SNB‟s HPN N.B. Survey Control Network monument 941007 was 

identified within the project area. The provincial controls had an A1 classification which 

means the monuments were obtained using GPS surveys within a distance of 100 to 500 

km within the Canadian Base network (CBN). CBN monuments provide up to 

centimetre-level accuracy with respect to the Canadian Active Control System (CACS) 

which consist of a network of unmanned GPS tracking stations known as the Active 

Control Points (ACPs). The ACPs continuously measure carrier phase and pseudo-range 

values for all satellites at their location. These are processed on a daily basis [SNB, 

2002]. Their residuals fell within the error budget expected of the controlled checkpoints 

as shown in Table 3.5. 

Table 3.5. Residuals of the NB HPN checkpoint used as Base Station in the RTK. 

NB Control 

Name 

Directional Differences (linear units in metres) 
Class 

Easting Northing Vector (E & N) Elevation 

941007 0.005 0.001 0.005 0.02 A1 
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3.4.8 Point Differencing for Standard Deviation/RMSE Calculation 

It is important to compare the LiDAR points within a given window with controlled 

checkpoint stations in order to determine the RMSE in LiDAR elevations with respect to 

the corresponding checkpoint. A method to determine this window was developed by the 

author. This method intentionally deviates from the industry practice of using a radius 

approach to compare LiDAR points and ground controlled checkpoints. A square search 

window was designed and applied to calculate the difference because -- whether the user 

is considering points, lines, polygon, DEM/TIN or area differencing -- it will not only 

involve points or vector objects but will in most cases involve raster objects. These raster 

objects are defined by pixels and are in square shapes when depicting the terrain 

morphology. It therefore makes sense to use a window that better estimates the area of 

coverage when analyzing feature differences. Furthermore, to allow for choosing 

different resolutions, the square window method allows the user to choose a window that 

corresponds to the resolution of the LiDAR product to be created when calculating the 

differences between the observed LiDAR and the ground controlled checkpoints. Figure 

3.20 shows the interface that is opened after controlled checkpoints and surrounding 

LiDAR points are loaded. 

 

Figure 3.20. GUI interface created to allow users to define LIDAR around controlled 

checkpoints within a rectangular window. The value of the rectangular buffer width depends 

on the resolution of the LiDAR. The value”2” entered as above, makes a bounding box of 2 by 

2 m around the controlled checkpoint. 
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The same approach can be applied even if differencing is based on point spacing, the 

point density or point per square metre. Once this rectangular buffer width is entered, 

each of the LiDAR points that fall inside the window is compared with the elevation of 

points at the controlled checkpoint stations. The user calculates the difference using the 

GUI provided in Figure 3.21. 

 
Figure 3.21. GUI showing how elevation differences between controlled checkpoints and 

LiDAR points are selected around a defined square window in order to compute their 

elevation differences. 

Table 3.6 shows the differences in elevation between LiDAR points within a square 

window around a corresponding GNSS controlled checkpoints in Wilmot Park, 

Fredericton, NB. At least one LiDAR point was observed within a 2 by 2 m window 

around the 7 ground controlled checkpoints at the Wilmot Park tennis field area. 

Table 3.6. Square window point difference for LiDAR and checkpoints in Wilmot Park  

Tennis 
Elevation Diff.= LiDAR – 

Checkpoint 
Absolute Elevation Difference 

Error TIN 1 m
2 

window 4 m
2 

window TIN 1 m
2 

window 4 m
2 

window 

Max 0.18 0.22 0.22 0.31 0.22 0.37 

Average 0.03 0.11 0.04 0.12 0.11 0.15 

Min -0.31 0.01 -0.37 0.01 0.01 0.01 

#Points NA 6/7 7/7 NA 6/7 7/7 

Where #Point=
area in the surveyed CCPs ofNumber 

 windowsquare a within points LiDAR with CCPs ofNumber 
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Not Applicable (NA) is entered for the case of the TIN as the checkpoints are 

interpolated from the TIN surface. 

There are obstructions due to tree cover around the tennis field and also due to the wire 

fencing around the tennis court. The project investigates the effects of these errors and is 

discussed in detail in Chapter 4. APPENDIX C gives some example of results obtained 

for downtown Fredericton. In order to determine the accuracy of the LiDAR points with 

respect to GNSS points in built-up areas, downtown Fredericton was chosen for the 

controlled survey. The GNSS measurements were measured around areas in downtown 

which included the Bank of Montreal (BMO) offices on Kings Street and other high 

structures. Table 3.7 shows the point differencing between the controlled checkpoints and 

the LiDAR elevations in downtown Fredericton. 20 out of 23 surveyed ground controlled 

checkpoints had at least one LiDAR point within a 4 m 
2
 window around the checkpoints 

in downtown Fredericton. 

Table 3.7. Square window point difference for LiDAR and checkpoints in downtown 

Downtown Elevation Diff.= LiDAR – 

Checkpoint 
Absolute Elevation Difference 

Error TIN 1 m
2 

window 4 m
2 

window TIN 1 m
2 

window 4 m
2 

window 

Max 0.34 0.34 0.37 0.34 0.34 0.37 

Average 0.13 0.14 0.14 0.13 0.14 0.14 

Min 0.07 0.05 0.05 0.07 0.05 0.05 

#Points NA 14/23 20/23 NA 14/23 20/23 

The Odell Park areas used to study the errors of LiDAR derived elevations in high 

vegetation of forested areas (Table 3.8). LiDAR elevations in this area were observed to 

be generally lower than the QCCs. The reason was that under leave-off conditions (which 

was when the LiDAR flight was made) the LiDAR points really hit ground unlike in the 

other instances when it could have been hitting low grass and returning it as ground. 
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Table 3.8. Square window difference for LiDAR and checkpoints in Odell Forest 

Odell 
Elevation Diff.= LiDAR – 

Checkpoint 
Absolute Elevation Difference 

Error TIN 1 m
2 

window 4 m
2 

window TIN 1 m
2 

window 4 m 
2 

window 

Max 0.08 0.07 0.16 0.54 0.12 0.16 

Average -0.04 -0.04 -0.02 0.06 0.05 0.05 

Min -0.54 -0.12 -0.15 0.01 0.00 0.00 

#Points NA 16/32 25/32 NA 16/32 25/32 

The next step was to determine the elevation difference between the controlled 

checkpoints and areas with steep slope. Table 3.9 shows how controlled checkpoints 

distributed in the project area are used to determine elevation differences due to steep 

slopes.  

The Windsor Street in Fredericton UNB campus was used for this test with a slope angle 

of 5 degrees between highest checkpoint (200) and lowest checkpoint (227).  

Table 3.9. Square window point differencing results for Windsor Street 

Windsor 
Elevation Diff.= LiDAR – 

Checkpoint 
Absolute Elevation Difference 

Error TIN 1m
2 

window 4m
2 

window TIN 1m
2 

window 4m
2 

window 

Max 0.11 0.12 0.18 0.11 0.12 0.18 

Average 0.03 0.02 0.03 0.03 0.04 0.06 

Min -0.03 -0.07 -0.10 0.00 0.00 0.00 

#Points NA 29/29 29/29 NA 29/29 29/29 

 

All 29 of the ground controlled checkpoints in this area had LiDAR data within the 2m
2
 

window applied around each checkpoint. 

The Avondale Court area in Fredericton was used to investigate the case for areas with 

sparse obstructions to ground cover as shown in Table 3.10. 
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Table 3.10. Square  window point differencing results for Avondale Ct. 

Av_Ct. Elevation Diff.= LiDAR – 

Checkpoint 
Absolute Elevation Difference 

Error TIN 1m
2 

window 4m
2 

window TIN 1m
2 

window 4m
2 

window 

Max 0.19 0.18 0.27 0.25 0.18 0.27 

Average 0.06 0.06 0.07 0.08 0.07 0.08 

Min -0.25 -0.04 -0.06 0.01 0.01 0.00 

#Points NA 31/51 51/51 NA 31/51 51/51 

 

As there was less ground cover obstructions here, more successful ground hits than at the 

built up or forested areas were expected. All 51 ground controlled checkpoints had at 

least one LiDAR point within a 2m
2
 window around the checkpoints.  

Finally, by employing a proposed square window method by the author, point 

differencing between controlled checkpoints and LiDAR elevations lying within the 

square window is used to validate ground points. There are observed differences between 

interpolated the corresponding height of the LiDAR points for their respective 

checkpoints when using the TIN method as in LAStools and the authors square window 

method.  

The tables containing the results of all the differences discussed above for the sampled 

project areas are provided in Chapter 4. A more detailed discussion of these results is 

discussed in this chapter. A comparison of errors measured between the LiDAR and 

ground points versus the errors estimated by the UDTEB model is presented in Chapter 4 

as well. 
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CHAPTER 4. RESEARCH RESULTS AND DISCUSSION OF RESULTS  

4. RESEARCH RESULTS AND DISCUSSION OF RESULTS 

4.1 ERROR CALCULATION AND FIELD VALIDATION 
4.1.1 Point by Point Comparison 
4.1.2 Obstruction Analysis 

4.2 ERROR ANALYSIS OF PROJECT SPECIFIC APPLICATIONS 
4.2.1 What are the User Requirements? 

4.2.2 What is the Error Budget for the Flood Inundation? 
4.2.3 Users‟ Requirements Compared with Vendor Delivered Specifications 

Figure 4.1. Outline of Chapter 4 

4.1 ERROR CALCULATION AND FIELD VALIDATION 

In order to determine the differences between the users‟ defined errors based on set 

requirements and the vendor-delivered data or product error reports, the ground 

controlled checkpoints and bare earth LiDAR points were recorded in Section 3.4.7. The 

attributes that contribute to these results include: 

1. GNSS coordinates of the ground controlled checkpoints used; 

2. slope, aspect at each ground checkpoint; 

3. an estimate of the amount of obstruction at the checkpoint point as “dense”, 

“medium” or “light” after Martin et al [2001, p.7] as shown in Table 4.1. 

Table 4.1 Definition of the amount of obstructions (after Martin et al. 

[2001]) 

Point Obstruction (%) Description 

0-32 Light 

33-65 Medium 

66 - 100 Dense 

4. elevation RMSE for the ground checkpoint, LiDAR and UDTEB estimates; and 

5. confidence interval of the measurements, which was set to 95%. 
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4.1.1 Point by Point Comparison 

With respect to empirical validation of the LiDAR points, the patch validation process 

(discovered from personal communications with Merrett Survey Partnership UK) was 

employed. The method uses conventional land surveys in a defined test area to validate 

LiDAR coordinates. This was modified to cover varying terrain morphologies and ground 

cover for five randomly selected test areas. The procedure is referred to as checkpatching 

in this research. The Checkpatching process adopted for the project area was as follows: 

1. The elevations at checkpoints in the five study areas were recorded; 

2. A TIN is created for each of the study area from clipped LiDAR ground points. 

3. The ground controlled checkpoints are included on the TIN. 

4. The checkpoints are used to derive their corresponding LiDAR elevations from 

the TIN. 

5. The difference between the checkpoint elevations and their corresponding LiDAR 

elevations are determined (named ElvDiff) and used to calculate the RMSE for the 

study area. 

6. Differences between the field-observed errors and UDTEB estimated errors were 

determined (called ComDiff) 

7. Finally, RMSE are calculated from ElvDiff and the RMSE calculated from the 

UDTEB modeled errors (Err_U) is now compared for each study area. 

Another method to investigate this difference was explored using the square window 

point differencing approach developed by the author and presented in APPENDIX C. 
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4.1.1.1 Forested Areas - Odell Park Fredericton 

After filtering out all points and leaving only ground points from the LiDAR data, the 

remaining bare earth points were used to simulate the floor of the forest in Odell Park, 

Fredericton as shown in Figure 4.2. 

 
Figure 4.2. Ranges of absolute elevation differences between GNSS and LiDAR at 

the Odell Park Forest - units in metres. 

It can be observed from Figure 4.2 that the areas of thick vegetation had the least ground 

hits. This had effects on elevation and horizontal accuracy and was investigated by 

applying the developed square window differencing method discussed in Section 3.4. 

Large differences between the LiDAR-derived elevations and surveyed elevations of the 

checkpoints 623 and 624 were due to obstructions caused by vegetation affecting both the 

GNSS readings and the readings of the LiDAR point clouds. Table 4.2 summarizes the 
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differences in elevations between the LiDAR and ground checkpoints on one hand 

(named Elvdiff), and the UDTEB estimates on the other hand. 

Table 4.2. Summary of the difference in elevation (m) between ground checkpoints and 

LiDAR points in the dense vegetation area – Odell Park used as an example. 

Ground(m) LiDAR 
Lelv -

Celv Obstn. 

Abs 

Elv 

Diff 

UDTUB 

error 

Err_U - 

elvdiff Abs 
Com 
Diff QCC Easting Northing Celv Lelv ElvDiff Err_U ComDiff 

600 681071.63 5091959.17 19.61 19.62 0.02 clear 0.02 0.05 0.03 0.03 

601 681040.55 5091947.9 19.9 19.88 -0.01 clear 0.01 0.07 0.08 0.08 

602 681011.28 5091942.25 22.22 22.2 -0.02 clear 0.02 0.09 0.11 0.11 

603 680998.19 5091931.98 23.49 23.45 -0.04 clear 0.04 0.02 0.06 0.06 

604 680984.77 5091921.81 24.49 24.5 0.01 clear 0.01 0.11 0.10 0.10 

605 680971.28 5091913.61 25.12 25.11 -0.01 clear 0.01 0.08 0.09 0.09 

606 680955.3 5091906.67 25.66 25.6 -0.06 light 0.06 0.09 0.15 0.15 

607 680941.73 5091898.26 26.12 26.11 -0.01 clear 0.01 0.06 0.07 0.07 

608 680952.09 5091886.98 26.02 25.99 -0.04 clear 0.04 0.15 0.19 0.19 

609 680969.83 5091876.84 25.78 25.79 0.01 clear 0.01 0.08 0.07 0.07 

610 680983.26 5091869.16 25.59 25.58 -0.01 clear 0.01 0.06 0.07 0.07 

611 680996.96 5091861.65 25.32 25.34 0.02 clear 0.02 0.02 0.00 0.00 

612 681010.42 5091854.12 25.25 25.31 0.06 light 0.06 0.13 0.07 0.07 

613 681023.33 5091848.08 25.31 25.25 -0.06 light 0.06 0.09 0.15 0.15 

614 681036.75 5091841.23 25.4 25.43 0.03 clear 0.03 0.08 0.05 0.05 

620 681057.65 5091849.67 23.73 23.67 -0.06 light 0.06 0.09 0.15 0.15 

621 681044.59 5091860.97 23.11 23.17 0.07 light 0.07 0.09 0.02 0.02 

622 681044.43 5091868.83 22.3 22.38 0.08 light 0.08 0.01 -0.07 0.07 

623 681032.39 5091875.61 21.65 21.52 -0.13 dense 0.13 0.07 0.20 0.20 

624 681071.1 5091868.46 22.96 22.84 -0.12 dense 0.12 0.09 0.21 0.21 

626 681084.52 5091889.07 22.48 22.4 -0.08 light 0.08 0.06 0.14 0.14 

627 681083.18 5091904.87 21.67 21.61 -0.06 light 0.06 0.11 0.17 0.17 

628 681080.77 5091920.29 20.9 20.85 -0.05 clear 0.05 0.15 0.20 0.20 

629 681079.36 5091933.89 20.48 20.4 -0.07 light 0.07 0.13 0.20 0.20 

630 681080.3 5091946.93 20.03 19.98 -0.04 clear 0.04 0.15 0.19 0.19 

631 681071.6 5091959.13 19.61 19.63 0.02 clear 0.02 0.11 0.09 0.09 

  
    

RMSE   0.06 0.10   
               Diff 0.04   

 

*Celv =Checkpoint elevation and Lelv = elevation of corresponding LiDAR point. 

From Table 4.2, it can be noted that there are differences between the LiDAR elevations 

and the elevations of the surveyed checkpoints. Also, ideally, the UDTEB values and the 

elevations difference should be similar. However, due to surveyor errors, systematic 

errors not accounted for, and obstructions to actual ground hits due to vegetation cover, 

there are differences between of Elvdiff and UDTEB errors, Err_U. Points with negative 
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difference indicate places where the checkpoint elevations were higher than the LiDAR 

elevations. Large UDTEB errors are observed at some clear areas (e.g. checkpoints 604, 

608, 612, 628). These points are located at the islands of the SBET and their high errors 

are due to the interpolation of their TPU values in the LUM model. Similarly, points at 

the peripherals of the trajectory show high estimated UDTEB errors. Obstructions in this 

area affect the GNSS measurements as well. This could be a hint of blunders in the 

measurements. As can be noted from Table 4.2, most of the elevation differences 

(elvdiff) are negative, but in varying magnitudes. The small and varying magnitudes rule 

out systematic bias in the LiDAR elevation values but give an indication that due to the 

vegetative obstructions and snow cover on the ground during the GNSS survey, the QCC 

measurements did not observe the same level of ground as was observed by the LiDAR 

sensor. However ComDiff, which is the difference between the elevation errors obtained 

through the field validation surveys and the UDTEB modeled errors, was no more than 

21cm. 

4.1.1.2 Built-up Areas – Downtown Fredericton 

Figure 4.3 shows the ground points for downtown Fredericton considered for the analysis 

of errors in built-up areas. The QCCs on this area could not be observed using RTK as it 

was not possible to obtain a fix when occupying the QCCs. A conventional total station 

survey was employed to obtain the QCCs. The high buildings in the area contribute to 

errors as they obstruct the path of the laser sensor at a given scan angle along the 

trajectory as discussed in Section 3.4. The multi-storey buildings were obstructions that 

limited successful LiDAR ground hits in this particular area. 



104 

 

 
Figure 4.3. Ground points of downtown Fredericton 

However, there were spaces between the buildings that allowed the laser sensor to return 

successful ground hits in parts of this area. Elevations of the area varied from 8.38 m to 

9.42 m (orthometric heights). Assuming there are no systematic errors from the 

measurements obtained from the GNSS and the LiDAR system, then the residual errors 

not accounted for this area due to multipath will be equal to the difference in RMSE 

between UDTEB and elvdiff. Clearly, point 103 stands out as the point with the highest 

elevation difference. In this case, the LiDAR elevation values indicate that multipath 

errors were affecting the GNSS and the LiDAR measurements resulting in erroneous 

ground hits. Numerical results of the interpolation process to determine the LiDAR 

elevation for corresponding Checkpoints is given in Table 4.3. 
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Table 4.3. Comparison of errors between, UDTEB and LiDAR in built-up areas – 

downtown Fredericton. 

Ground LiDAR 
Lelv-

Celv Obstn

. 

Abs 

Elv 

Diff 

UDTUB 

error 

Err_U 

- 

elvdiff 

Abs 
Com 
Diff 

Point Easting Northing Celv Lelv ElvDiff Err_U 
Com 

Diff 

100 682843.67 5092437.61 9.22 9.29 0.07 light 0.07 0.15 0.08 0.08 

101 682825.81 5092450.41 9.25 9.33 0.08 light 0.08 0.16 0.08 0.08 

102 682868.46 5092427.17 8.97 9.04 0.07 light 0.07 0.16 0.09 0.09 

103 682819.98 5092420.29 9.01 9.35 0.34 dense 0.34 0.15 -0.19 0.19 

104 682884.75 5092413.70 9.16 9.26 0.10 light 0.10 0.14 0.04 0.04 

105 682853.57 5092472.68 9.42 9.51 0.09 light 0.09 0.16 0.07 0.07 

106 682861.59 5092485.84 9.23 9.32 0.09 light 0.09 0.17 0.08 0.08 

107 682819.34 5092409.92 9.22 9.32 0.10 dense 0.10 0.14 0.04 0.04 

108 682824.08 5092416.57 9.23 9.33 0.10 dense 0.10 0.15 0.05 0.05 

109 682808.38 5092393.39 8.81 8.94 0.13 dense 0.13 0.14 0.01 0.01 

110 682825.45 5092383.52 8.98 9.09 0.11 dense 0.11 0.15 0.04 0.04 

111 682834.87 5092377.71 9.01 9.10 0.09 light 0.09 0.15 0.06 0.06 

112 682839.58 5092375.43 8.99 9.18 0.19 dense 0.19 0.17 -0.02 0.02 

113 682786.24 5092519.08 8.58 8.71 0.13 dense 0.13 0.12 -0.01 0.01 

115 682776.67 5092502.31 8.68 8.84 0.16 dense 0.16 0.17 0.01 0.01 

117 682763.90 5092478.77 8.67 8.85 0.18 dense 0.18 0.15 -0.03 0.03 

118 682749.83 5092454.52 8.55 8.72 0.17 dense 0.17 0.15 -0.02 0.02 

119 682741.84 5092434.57 8.38 8.54 0.16 dense 0.16 0.15 -0.01 0.01 

120 682769.59 5092414.61 8.59 8.74 0.15 dense 0.15 0.14 -0.01 0.01 

121 682787.24 5092404.91 8.68 8.83 0.15 dense 0.15 0.14 -0.01 0.01 

122 682802.78 5092396.81 8.81 8.93 0.12 dense 0.12 0.17 0.05 0.05 

  
    

RMSE   0.15 0.16 0.06 
               Diff 0.01   

 

A further investigation of point 103 showed that it was located close to a tall building 

occupied by the National Bank and the AVIS car rental company. The tall buildings 

caused obstruction to GNSS and LiDAR measurements for the area. 

4.1.1.3 Open Flat Areas – Tennis courts at the Wilmot Park, Fredericton 

To study areas with flat open terrain types the tennis fields at the Wilmot Park was 

employed. GNSS controlled checkpoints were observed and the TIN of the LiDAR 

ground points was created as shown in Figure 4.4. The corresponding differences are as 

shown in Table 4.4 where it can be observed that the difference in RMSE between the 

modeled error and measured error was 0.07 m but was as low as 0.03 m in clear areas. 
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Figure 4.4. A TIN created from the sampled points in open flat areas. 

 

In this test area, the principal limitations to the model due to ground cover and slope at 

clear checkpoints are negligible. This is confirmed in Table 4.4 where the clear point, 502 

recorded a difference on 0.03m between the corresponding LiDAR-derived and surveyed 

checkpoint elevation.  

Table 4.4. Comparing errors between Checkpoints LiDAR and UDTEB estimates in 

flat open terrain conditions 

Ground LiDAR 
Lelv-

Celv Obstn. 

Abs 

Elv 

Diff 

UDTUB 

error 

Err_U - 

elvdiff 
Abs 
Com 
Diff Point Easting Northing Celv Lelv elvdiff Err_U ComDiff 

500 681460.46 5092646.74 9.91 9.60 -0.31 dense 0.31 0.06 0.37 0.37 

501 681493.75 5092641.52 9.60 9.69 0.09 light 0.09 0.13 0.04 0.04 

502 681522.11 5092636.70 9.59 9.58 -0.01 clear 0.01 0.02 0.03 0.03 

503 681556.88 5092630.94 9.53 9.62 0.09 light 0.09 0.14 0.05 0.05 

504 681558.13 5092669.28 9.91 9.97 0.06 light 0.06 0.12 0.06 0.06 

505 681516.03 5092676.41 9.81 9.94 0.13 dense 0.13 0.09 -0.04 0.04 

506 681469.11 5092683.69 9.87 10.05 0.18 dense 0.18 0.03 -0.15 0.15 

  
    

RMSE   0.17 0.10   
               Diff -0.07   
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In places where there are light obstructions for the flat open areas, i.e. checkpoints 501, 

503, 504 the elevation difference between the LiDAR elevations and the QCCs where 

under 10 cm. Figure 4.5 gives a graph of the errors with respect to the open flat areas. 

 
Figure 4.5. Differences in elevation compared with UDTEB errors in open flat areas 

The areas of dense obstruction due to trees, an office building and a wire fence in the 

tennis court area yielded elevation differences up to 37 cm. In areas clear of obstructions, 

limitations to the UDTEB model are not an issue as further correction for obstructions 

due to vegetation cover, building and slope is not required. These results points to the 

effects of obstructions due to vegetative cover, multipath and incomplete slope on the 

error estimates of the model. Any error observed in this case could be due to inaccurate 

LiDAR elevation and/or inaccurate GNSS elevations in these areas resulting in these 

obstructions. Without the densely obstructed points in the open flat areas, the RMSE of 

the difference between the LiDAR and QCCs (elvdiff) will be 0.08 m and the RMSE of 

the error estimates from UDTEB will be 0.13 m. The will yield a RMSE difference of 

0.05 m between Err_U and AbsElvDiff for the open flat areas clear of obstructions. 
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4.1.1.4 Steep Slope – Windsor Street, Fredericton 

In order to investigate the effects of slope on elevation errors the Windsor Street at UNB 

Fredericton was considered for this analysis. Conditions and properties of the Street that 

make it ideal for this study are discussed in Section 1.1.2. There are no obstructions to 

ground hits on the Windsor Street. However, the street had a steep slope angle of 5 

degrees which had an effect on the error estimates as shown in Table 4.5. 

Table 4.5. Comparison of elevations in steep slope area 

Ground LiDAR 
Lelv-

Celv Obstn. 

Abs 

Elv 

Diff 

UDTUB 

error 

Err_U - 

elvdiff 

Point Easting Northing Celv Lelv ElvDiff Err_U ComDiff 

200 682515.73 5090865.23 59.09 59.09 0.00 clear 0.00 0.05 0.05 

201 682522.43 5090879.60 57.50 57.54 0.04 clear 0.04 0.12 0.08 

202 682529.52 5090894.20 55.77 55.78 0.01 clear 0.01 0.15 0.14 

203 682536.27 5090908.54 54.12 54.13 0.02 clear 0.02 0.13 0.11 

204 682543.71 5090923.50 52.34 52.36 0.02 clear 0.02 0.11 0.09 

205 682551.17 5090938.14 50.61 50.60 -0.01 clear 0.01 0.05 0.04 

206 682558.16 5090952.68 48.93 48.94 0.01 clear 0.01 0.12 0.11 

207 682564.21 5090966.17 47.36 47.38 0.02 clear 0.02 0.14 0.12 

208 682571.89 5090979.89 45.67 45.75 0.07 clear 0.07 0.13 0.06 

209 682579.29 5090993.91 43.94 43.92 -0.03 clear 0.03 0.11 0.08 

210 682586.84 5091008.18 42.11 42.09 -0.02 clear 0.02 0.11 0.09 

211 682594.17 5091021.95 40.27 40.29 0.01 clear 0.01 0.11 0.10 

212 682601.14 5091035.36 38.68 38.67 -0.01 clear 0.01 0.09 0.08 

213 682607.93 5091048.52 37.21 37.23 0.02 clear 0.02 0.15 0.13 

214 682615.07 5091062.00 35.81 35.83 0.01 clear 0.01 0.12 0.11 

215 682622.11 5091075.31 34.49 34.51 0.01 clear 0.01 0.11 0.10 

216 682629.06 5091088.57 33.35 33.34 -0.01 clear 0.01 0.12 0.11 

217 682636.23 5091102.31 32.30 32.34 0.05 clear 0.05 0.10 0.05 

218 682643.22 5091115.62 31.39 31.39 0.01 clear 0.01 0.15 0.14 

219 682650.43 5091129.17 30.56 30.66 0.11 clear 0.11 0.13 0.02 

220 682657.48 5091142.07 29.82 29.86 0.03 clear 0.03 0.12 0.09 

221 682664.46 5091154.71 29.13 29.18 0.05 clear 0.05 0.12 0.07 

222 682671.41 5091167.30 28.42 28.51 0.09 clear 0.09 0.12 0.03 

223 682678.68 5091180.56 27.70 27.71 0.01 clear 0.01 0.13 0.12 

224 682685.77 5091193.35 27.02 27.10 0.08 clear 0.08 0.13 0.05 

225 682692.85 5091206.30 26.32 26.37 0.05 clear 0.05 0.09 0.04 

226 682700.18 5091219.62 25.61 25.65 0.04 clear 0.04 0.07 0.03 

227 682707.36 5091232.58 24.82 24.83 0.02 clear 0.02 0.11 0.09 

  
    

RMSE   0.04 0.12   

              Diff 0.08   

The minimum difference in errors between the field observations and UDTEB estimates 

was 0.02 m occurring at checkpoint 219; the maximum difference was 0.14 m occurring 
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at checkpoints 202 and 218. The RMSE of the difference between the ground controlled 

checkpoints and the LiDAR elevations (ElvDiff) was 0.04 m. The RMSE of the 

corresponding estimated errors from UDTEB model was 0.12, yielding a difference of 

0.08 m between the two RMSE, representing the biggest difference in RMSE between the 

estimated and field observed values. A further explanation for the highest difference in 

RMSE in slope areas is explained in 4.1.2 where the contribution of the direction of flight 

on error is discussed. The mean difference between the UDTEB errors and the field 

measurements was 0.08 cm while the minimum error was 0.02 cm occurring at the 

checkpoint 219 which was located in an area around a parking lot. 

4.1.1.5 Sparsely Built-up Areas – Avondale Court, Fredericton 

Avondale Court in Fredericton was employed to investigate the effects of errors in 

sparsely built-up areas as shown in Figure 4.6. 

 
       Figure 4.6 Obstruction and TIN of ground Hits. 
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It was found at point differencing between the GPS points and the ground hits at the 

sparsely dense area that the classification accuracy of points at this area was high 

compared to the downtown and Odell Park areas. When the 2m
2
 square window was 

applied around the checkpoints at this location, LiDAR ground hits were recorded for all 

the checkpoints. Obviously, the best classification accuracy was recorded in the open flat 

terrain area of the survey. The comparatively good classification at this location could be 

linked to the lower density of developments or the smaller canopy that could have 

affected the LiDAR or GNSS observation in the areas. 

Given the easy access to the observation of checkpoints in this area, 51 QCCs were 

surveyed. Most of the checkpoints were clear with few being densely obstructed by tree 

cover in the project area as shown by the red dots in Figure 4.6. After the collection of 

QCCs for the area, TIN differencing, as done for the previous project sites, was employed 

to determine the differences between the checkpoints and corresponding LiDAR points 

was made.  

Table 4.6 shows the comparison of the errors of the UDTEB and LiDAR data is made for 

the area. A difference of 0.02 m in RMSE was observed between the difference in 

elevation for the field measurements and the errors from UDTEB. Figure 4.6 shows the 

comparison of these errors values in the sparely dense area. The checkpoints 300, 302, 

311, 331, 332, 340, 344, 345, 349 and 350 were observed during the survey to have high 

obstructions due vegetation. These points were located under some big trees in the project 

area. Sky obstruction from the points was estimated to be over 65% [Martin et al. 2001, 

p.7]. 
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Table 4.6.Comparison of errors between, UDTEB and LiDAR with respect to 

Checkpoints in sparsely dense areas 

Ground LiDAR 
Lelv-

Celv Obstn. 

Abs 

Elv 

Diff 

UDTUB 

error 

Err_U - 

elvdiff 

Abs 
Com 
Diff Point Easting Northing Celv Lelv ElvDiff Err_U ComDiff 

300 683009.01 5091177.76 9.41 9.53 0.12 dense 0.12 0.09 -0.03 0.03 

301 683025.08 5091173.82 9.19 9.26 0.07 light 0.07 0.11 0.04 0.04 

302 683042.17 5091169.39 8.84 9.03 0.19 dense 0.19 0.04 -0.15 0.15 

303 683054.74 5091166.00 8.66 8.76 0.10 light 0.10 0.14 0.04 0.04 

304 683072.91 5091161.25 8.51 8.60 0.09 light 0.09 0.05 -0.04 0.04 

305 683089.02 5091156.97 8.47 8.52 0.05 clear 0.05 0.12 0.07 0.07 

306 683105.52 5091152.67 8.38 8.45 0.07 light 0.07 0.12 0.05 0.05 

307 683117.98 5091149.20 8.32 8.37 0.05 clear 0.05 0.11 0.06 0.06 

308 683135.03 5091144.87 8.23 8.30 0.07 light 0.07 0.12 0.05 0.05 

309 683150.14 5091140.92 8.15 8.21 0.06 light 0.06 0.07 0.01 0.01 

310 683165.41 5091136.97 8.05 8.12 0.07 light 0.07 0.15 0.08 0.08 

311 683181.97 5091132.65 8.02 8.13 0.11 dense 0.11 0.07 -0.04 0.04 

312 683197.45 5091128.44 7.90 8.00 0.10 light 0.10 0.08 -0.02 0.02 

313 683214.10 5091123.98 7.84 7.90 0.06 light 0.06 0.13 0.07 0.07 

314 683231.49 5091119.61 7.75 7.83 0.09 light 0.09 0.09 0.00 0 

315 683238.45 5091118.19 7.64 7.69 0.05 clear 0.05 0.15 0.10 0.1 

317 683245.70 5091124.72 7.62 7.64 0.02 clear 0.02 0.15 0.13 0.13 

318 683248.66 5091142.05 7.45 7.52 0.07 light 0.07 0.15 0.08 0.08 

319 683251.98 5091159.50 7.36 7.35 -0.01 clear 0.01 0.14 0.15 0.15 

320 683253.85 5091174.83 7.30 7.28 -0.02 clear 0.02 0.15 0.17 0.17 

321 683255.54 5091189.63 7.21 7.26 0.05 clear 0.05 0.15 0.10 0.1 

322 683258.43 5091206.95 7.11 7.10 -0.01 clear 0.01 0.15 0.16 0.16 

323 683260.78 5091222.60 7.03 7.10 0.07 light 0.07 0.13 0.06 0.06 

324 683264.21 5091244.83 7.12 7.18 0.06 light 0.06 0.15 0.09 0.09 

325 683267.18 5091263.39 7.20 7.24 0.04 clear 0.04 0.12 0.08 0.08 

326 683269.58 5091280.63 7.28 7.33 0.05 clear 0.05 0.09 0.04 0.04 

329 683245.16 5091293.67 7.43 7.45 0.01 clear 0.01 0.07 0.06 0.06 

331 683202.89 5091300.59 7.69 7.59 -0.10 dense 0.10 0.13 0.23 0.23 

332 683179.62 5091304.67 7.82 7.57 -0.25 dense 0.25 0.14 0.39 0.39 

333 683161.97 5091307.53 7.94 8.03 0.09 light 0.09 0.09 0.00 0 

334 683145.59 5091310.23 8.08 8.15 0.08 light 0.08 0.06 -0.02 0.02 

335 683128.02 5091312.78 8.21 8.27 0.06 light 0.06 0.06 0.00 0 

336 683112.04 5091315.19 8.31 8.35 0.04 clear 0.04 0.12 0.08 0.08 

337 683094.53 5091318.55 8.39 8.46 0.07 light 0.07 0.15 0.08 0.08 

338 683080.20 5091321.09 8.46 8.45 -0.01 light 0.01 0.07 0.08 0.08 

339 683073.20 5091320.91 8.49 8.53 0.05 light 0.05 0.04 -0.01 0.01 

340 683067.87 5091318.55 8.48 8.64 0.16 dense 0.16 0.11 -0.05 0.05 

341 683059.05 5091303.87 8.72 8.78 0.06 light 0.06 0.15 0.09 0.09 

342 683050.46 5091287.55 8.85 8.93 0.08 light 0.08 0.11 0.03 0.03 

343 683039.57 5091266.23 9.01 9.09 0.08 light 0.08 0.12 0.04 0.04 

344 683033.73 5091256.95 9.03 9.15 0.11 dense 0.11 0.07 -0.04 0.04 

345 683024.96 5091241.43 9.13 9.27 0.14 dense 0.14 0.07 -0.07 0.07 

346 683011.65 5091217.28 9.29 9.34 0.05 clear 0.05 0.06 0.01 0.01 

347 683003.62 5091202.95 9.42 9.48 0.07 light 0.07 0.05 -0.02 0.02 

348 682998.59 5091193.31 9.48 9.54 0.06 light 0.06 0.04 -0.02 0.02 

349 682998.77 5091184.81 9.53 9.63 0.10 dense 0.10 0.07 -0.03 0.03 

350 683008.94 5091177.78 9.41 9.53 0.12 dense 0.12 0.09 -0.03 0.03 

  
    

RMSE   0.09 0.11 
                Diff 0.02 
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During the field validation survey, for the area with dense obstructions a RMSE of 0.16m 

was found for the sparsely dense area. For the same area, a RMSE of 0.07m was found 

for areas with light obstructions while areas clear of obstructions recorded 0.04m in 

RMSE. In some places clear of obstructions or with light obstructions, UDTEB errors 

were higher due to the position of those points on SBET as explained in Section 4.1.2. 

4.1.1.6 Ground Checkpoints Randomly Set Across the Project Area 

Table 4.7 compares the UDTEB errors with the difference in elevation between existing 

checkpoints and the LiDAR elevations in the study area. 

Table 4.7. Comparing overall elevation differences in the project area 

Ground Truth UDTUB 

error =  

Err_U - 

elvdiff Ground LiDAR Z Lelv-Celv= 

Point Obst. Easting Northing Celv Lelv elvdiff Err_U ComDiff 

400 clear 682340.82 5091879.47 10.20 10.26 0.06 0.14 0.08 

401 light 682524.45 5092845.87 13.95 13.97 0.02 0.14 0.12 

402 clear 683045.73 5092560.13 6.54 6.67 0.13 0.15 0.02 

403 clear 681755.94 5092791.87 9.91 10.01 0.10 0.11 0.01 

404 light 682297.82 5092504.55 9.69 9.82 0.13 0.14 0.01 

405 clear 682672.04 5092314.66 7.67 7.82 0.15 0.15 0.00 

406 clear 683359.91 5091412.21 7.94 8.05 0.11 0.13 0.02 

407 light 682955.69 5091610.16 8.70 8.77 0.07 0.15 0.08 

408 light 682259.22 5091987.71 9.84 9.93 0.09 0.13 0.04 

409 light 681901.99 5092216.40 10.10 10.12 0.02 0.13 0.11 

410 light 681370.97 5092518.68 10.66 10.77 0.11 0.15 0.04 

411 light 681117.47 5092734.35 10.58 10.64 0.06 0.15 0.09 

412 clear 681149.87 5092101.32 13.16 13.21 0.05 0.09 0.04 

413 clear 681692.28 5091774.00 15.22 15.25 0.03 0.06 0.03 

414 light 682090.36 5091541.80 23.21 23.27 0.06 0.12 0.06 

415 clear 682771.88 5091331.53 14.40 14.46 0.06 0.11 0.05 

416 light 683240.34 5090780.19 11.13 11.18 0.05 0.10 0.05 

417 clear 682340.81 5091879.46 10.19 10.26 0.07 0.11 0.04 

418 light 683463.94 5090022.46 46.85 46.84 -0.01 0.07 0.08 

419 clear 684395.20 5090998.44 7.58 7.62 0.04 0.06 0.02 

420 clear 684613.87 5091573.19 9.19 9.19 0.00 0.04 0.04 

421 light 683584.22 5090244.38 11.81 11.82 0.01 0.10 0.09 

422 light 682608.99 5090455.33 82.86 82.88 0.02 0.09 0.07 

423 clear 682737.01 5089886.03 97.54 97.59 0.05 0.11 0.06 

424 light 682690.59 5089580.68 102.60 102.70 0.10 0.13 0.03 

425 clear 683463.95 5090022.46 46.86 46.84 -0.02 0.10 0.12 

  
    

RMSE 0.08 0.12   

            Diff 0.04   



113 

 

Table 4.7 provides a means of analyzing the variations of RMSE for the entire project 

area by employing already existing checkpoints that were used by the vendor during the 

field calibration survey. These points are evenly spaced throughout the areas with varying 

morphological differences. Ideally, the user should have access to the points used by the 

vendor for the field calibration survey and should observe these points independently as 

part of the quality control process. However, such an independent check could not be 

done during the field survey of this research as the checkpoints were temporary points 

and could not be located. As a work around, a quick comparison of the LiDAR points 

were made with a previous TIN obtained from a LiDAR ground points from a survey in 

2007 with a maximum elevation RMSE of 0.14 m. This RMSE was within the vertical 

accuracy budget of the research. However, the differences in the field observed RMSE 

for the various terrain morphologies are significant since they are distorted by more than 

25 percent from the given elevation RMSE of ±0.068 m for the entire survey discussed in 

Section 3.4.5. As mentioned in Section 1.2.2 such a change in elevation RMSE is 

significant and requires further investigation (as discussed in Section 4.2). 

 

4.1.2 Obstruction Analysis 

In most places with defined topography, it was observed in section 4.1.1 that the UDTEB 

errors were more than the real calculated differences between interpolated LiDAR 

elevations and GNSS elevations. This is expected as the UDTEB errors do not only 

reflect systematic errors (as described in the LUM model in Section 3.4.3), but also 
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include random errors (PRUM, DIUM and PUM) as discussed in Section 3.4.4. Also, for 

most areas, the elevations from the LiDAR data (Lelv) were higher than the elevations 

from the GNSS or Total Station surveys (Celv). A possible explanation could be that the 

laser was not really returning ground hits but, due to low vegetation cover, was returning 

heights a little above ground from reflections of the low grass on the ground.  

The lowest differences in errors were observed at the tennis field – which is expected for 

a flat open area. However, at the time of observation, there were obstructions observed 

around the tennis field. One of such obstruction that could influence both the GNSS and 

LiDAR observations in the tennis field area was wired fence constructed around the 

tennis field area to keep the tennis balls within the field of play. This fence can obstruct 

LiDAR ground hits resulting in the elevations of the LiDAR points being higher than 

elevations of the ground controlled checkpoints. Another factor that could affect the 

LiDAR and GNSS observations at the tennis field area were negatively influenced the 

presence of trees grown to provide some shade to players on the field. Table 4.8 

summarizes the analysis of the five project areas in terms of RMSE with respect to the 

amount of obstructions at the ground controlled checkpoints. 

Table 4.8. RMSE of surveyed and field elevations in areas clear of obstructions 

 

RMSE(m) 

Area Field UDTEB UDTEB-Field 

Steep Slope Area 0.04 0.12 0.08 

Open Flat Area 0.01 0.02 0.01 

Dense Vegetation Area 0.03 0.10 0.07 

Sparsely Dense Area 0.04 0.13 0.09 

Overall Project Area 0.08 0.11 0.03 

    Mean 0.06 
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With respect to Windsor Street which was employed for the study of the case for steep 

slope errors, it was observed that the points were all clear of obstructions.  

From Figure 3.13, the trajectory of the aircraft during the time of flight was along the 

direction of Windsor Street. In the data acquisition process, the Riegl Q680i system was 

used. The scanning method of this laser scanner employs a rotating multi-facet scanning 

mirror and from Figure 2.7, the vertical errors will increase with increase in slope 

The following graph in Figure 4.7 provides visual analysis of the RMSE for the various 

study areas in this section of the survey. The table clarifies that, for areas clear of 

obstructions, the areas with steep slope recorded the most variations between the RMSE 

of the vendor provided LiDAR points and the UDTEB estimated errors. 

 
Figure 4.7. Graph of RMSE of surveyed and measured points in clear obstruction. 

The least RMSE difference was recorded in the open flat areas. In this area, errors due to 

slope, vegetative cover and building obstructions causing multipath do not contribute 
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significantly to increase the overall error. Table 4.9 shows the RMSE of field 

measurements, UDTEB errors and their differences for areas with light obstructions. 

Table 4.9. RMSE analysis between surveyed and measured points in places with 

light obstructions 

 

RMSE(m) 

Area Field UDTEB UDTEB-Field 

Open Flat Area 0.10 0.16 0.06 

Dense Vegetation Area 0.07 0.10 0.03 

Sparsely Dense Area 0.07 0.11 0.04 

Built-up Area 0.09 0.17 0.08 

Overall Project Area 0.07 0.13 0.06 

    Mean 0.05 

 

Figure 4.8 provides a graphical detail of the differences in errors in the areas with light 

obstruction.  

 
Figure 4.8. RMSE between surveyed and measured points in light obstruction areas. 

From Figure 4.8, considering places with light obstruction, the built-up areas recorded the 

highest difference in RMSE (=0.08 m) between the UDTEB model and the field 
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measurements. The least difference in RMSE (=0.03 m) was recorded at the areas with 

dense vegetation. When the overall area is considered by employing the pre-existing 

QCCs across the project area, the difference between the RMSE of the UDTEB model 

and the field measurements was even less at ± 0.06 m. To determine the effects of dense 

obstructions on the UDTEB errors, all checkpoints and corresponding LiDAR points in 

areas with dense obstructions were investigated. Table 4.10 summarizes the RMSE 

obtained in areas with dense obstructions. 

Table 4.10. RMSE of UDTEB compared to RMSE from field measurements in area 

with dense obstructions 

 

RMSE(m) 

Area Field UDTEB UDTEB-Field 

Open Flat Area 0.27 0.08 -0.19 

Dense Vegetation Area 0.21 0.08 -0.13 

Sparsely Dense Area 0.16 0.10 -0.06 

Built-up Area 0.17 0.16 -0.02 

    Mean -0.10 

It can be seen that the dense obstructions to ground cover due to vegetation, high rising 

buildings, wire fences and slope resulted in higher RMSE than what was estimate in the 

UDTEB model. Surprisingly, the built up areas had the least difference in RMSE (which 

is equal to 0.02) for dense obstructions while the open flat areas have the highest RMSE 

difference of 0.19 m. However, in areas with dense obstructions, the difference between 

the field observations and UDTEB RMSE followed a different trend than in the case of 

the areas with light and no obstructions. A possible reason was that the error effects from 

the amount of obstructions at these places were not estimated for in the model. Another 

reason could be errors in the GNSS and LiDAR measurements due to obstructions caused 

by the high-rising buildings within this particular area.  
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4.2 ERROR ANALYSIS OF PROJECT SPECIFIC APPLICATIONS 

In order to clarify the comparison of user determined error budgets and manufacturer‟s 

uncertainty reports, an example in a flood modeling project is discussed from a project 

completed by the author in this research [Adda et al., 2011]. The purpose of the study 

was to advise the Department of Public Safety (DPS) on when it will be critical to 

intervene in an area likely to flood based in forecasted rainfall amounts. The decision to 

close an infrastructure or utility should be based on legitimate information that is not 

underestimated or overestimated. Some of the important questions to ask at the beginning 

of a flood model simulation are discussed as follows. 

 

4.2.1 What are the User Requirements? 

To achieve the set requirement for the flood mapping, the DPS will require dataset and 

processing methods capable of producing the dynamic maps at an elevation accuracy of ± 

30 cm at 95 percent confidence interval. The coordinates of the data shall be referenced 

to the Canadian Spatial Reference System of 1998 of the North American Datum 1983 

and employing the New Brunswick Double Stereographic Projection. Elevations shall be 

referenced to the geoid employing the H2_0 realization. Following the acquisition of the 

data, it shall be processed to DEM and water level polygons created from the 

hydrographic features. These hydrographic features which areas stored as polygons are 

modeled at 0.2m intervals and will be used to study flood effects at these intervals as no 

significant changes are observed beyond this interval [Adda et al., 2011]. 
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4.2.2 What is the Error Budget for the Flood Inundation?  

The following steps in Figure 4.9 summarize the flood inundation process.  

 

Figure 4.9. Proposed processing steps for the 3D flood models - from data acquisition to 

product creation. 

The error contribution at each step is determined using the uncertainty identified in the 

UDTEB model. These errors are propagated to determine the total error budget.  

How will the Accuracy of the Delivered Data be validated? 

The LUM is used to simulate the mechanical uncertainties as shown in Figure 4.10. 

 

Figure 4.10. User defined directional accuracies in metres for an envisioned flood model.  
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The parameters required to estimate the uncertainties are system dependent, and are 

discussed in Section 3.4.5. To achieve an interpolation of 0.2m flood levels, DPS 

required at least a dataset with elevation information at every 1 point per square meter 

point density. By employing the square window approach the vendor reported along track 

point spacing of 0.72m and an across track point spacing 0.72 m was confirmed.  

By engaging the LUM and employing the deterministic approach an estimate of the TPU 

for the LiDAR system is calculated as shown in Figure 4.11.  

 
Figure 4.11. Summary of LUM TPUs based on system employed. All units in metres 

A report is produced in the LUM graphic user interface summarizing the directional 

accuracy estimates of the area of survey. The TPU of each the point is stored in a file 

defined by the user on the user‟s computing system. 



121 

 

DPS can then engage the PLUM, to roughly estimate the range of uncertainties each of 

the components of the LiDAR system chosen could contribute to the overall error budget.  

The next step is to engage the PRUM model. For our area parameters we shall select 

“rolling terrain” and estimate a data reduction of 20% of the original data (i.e. we could 

be working with 80% of the original data after filtering. For the study area a slope angle 

of 4 degrees will be employed [Aguilar et al., 2005, p.813] as shown in Figure 4.12. The 

user is then asked to confirm the average flying height above ground level (AGL) which 

was set to 1200 m.  

. 

Figure 4.12. Estimating amount of slope change in area of Survey 

If the calibration survey and checkpoints of the area are available to DPS project 

personnel, we shall define the checkpoints of the TPU estimates by loading these files. In 

that case it will not be necessary to estimate the terrain changes in slope as UDTEB 

calculates the average slope to employ in the calculation of the TPU by using the ground 

checkpoints to create the base surface that estimates the terrain of the areas under 

investigation.  

From Section 3.4.4.3 we recall that for DIUM estimate to be considered in the TPU 

calculation, the condition of Eq.(3.52) will have to be met (i.e. the DIUM error has to be 

greater than the errors of both the LiDAR data and any post processing error of the data 
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where applicable). Once the DIUM is completed, the user will now estimate the PUM 

classification errors and confirmation of users reference systems and data integration 

intentions to be employed as shown in Figure 4.13. 

 
Figure 4.13. PRUM user interface 

After PUM is calculated a report of the user defined error budget is now ready and a 

report is generated with the following results: 

UDTEB REPORT 
============ 

Error Budget Summary (±m) Vertical accuracy  CI% (vertical) 
                                          0.12           68.2 
                                             Horizontal Accuracy  CI% (Horizontal) 
                                          0.30                        68.2 
                                              Radial Accuracy   CI% (Radial) 



123 

 

                                          0.29               68.2 
 
User Accuracy Requirement (±m)       U (v)             U(h)               U(r)             U(CL) % 
                                        0.14                0.3               0.34             68.2 
 
        Estimated LiDAR Accuracy (±m) E (v)             E(h)            E (v,h)  CI  
                                           0.07                0.21                 0.22  68.2% 
 
        Reference System   Name             Accuracy (±m)   Conf. Interval (%) 
                                              CSRS98      0.002             68 
                                                  CGVD28                0.005                          95 
 
Error Budgeting: 
           Will user specification for the project in mind using the systems defined be met? 
               Vertical: User Vertical Accuracy Requirements Met 
                Quality Control Vertical: User Vertical Requirements not over Specified 
 
                Horizontal: User Horizontal Accuracy Requirements have been met 
                Quality Control Horizontal: User Horizontal Requirements not over specified 
 
Planning Uncertainty (±m) Vertical Precision of components (without correlated Errors) 
                       range: Min Error (m) Max Error (m)  

         0.10                      0.335 ==> Range is within user requirements 

 
LiDAR Uncertainty Deterministic / Non Deterministic 
                                        Deterministic: Same Values as "Estimated LiDAR Accuracy"  
 
Processing Uncertainty (±m) 
                                   Reduction?         Yes 
                                   %Point Reduction: 20 
                                   Uncertainty due to Interpolation and Morphology: 0.011 m at 95% CI  
                                   Consideration for PRUM at planning stage 
                                   Terrain Type Slope Error Offset 
                                   Rolling               0.07  
                                   Consideration for Post Processing 
                                   Number of LiDAR points =   2530416  
                                   Number of Check points =   122  
                                   Standard deviation of Check points =   0.01 
                                   Estimated PRU       0.07  
 
Data Integration Uncertainty (±m) 
                                   Number of data sets added: 3      
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                                        Data            Accuracy %Coverage Combined Accuracy 
CAD 2D 0.2  30  0.01 
CAD 2.5D 0.15  70  0.02 
Shape  0.15  70  0.02 
    
Sum  0.5  170  0.05 
    
  Total RMS 0.05 

                                        Highest accuracy of integrated data = 0.20 
 
Presentation Uncertainty (±m) 
Class Accuracy 
Class Type I Error  Type II Error %Agreement Rate %Level of Agreement     Ω 
Ground     0.02                 0.013                       86.01               92.71     0.83. 
 

4.2.3 Users’ Requirements Compared with Vendor Delivered Specifications 

After users have estimated their error budget, the delivered data will now be validated 

through ground truthing surveys to ascertain the error of the data with respect to surveyed 

checkpoints (usually employ the same ground controlled checkpoints employed in the 

UDTEB PRUM model). From the RMSE values from a field validation a decision can 

me made whether or not initial the user defined error budget, which in this project was set 

to ±15 cm at 68% CI for the flood modeling was met. TIN to point differencing within 

ArcMap™ employing LAStools‟ lascontrol showed that that at 68% CI, the RMSE 

between the user determined error budget and the vendor reported uncertainty was ± 0.09 

m which falls within the user requirements set initially at ± 0.15 m. 
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CHAPTER 5. SUMMARY, CONCLUSION AND RECOMMENDATION 

FOR FUTURE RESEARCH 

CHAPTER 5.SUMMARY, CONCLUSION AND RECOMMENDATIONS 
5.1 SUMMARY 
5.2 . CONCLUSION 

4.2.4 Accomplishments – Key Contributions 
4.2.5 Limitations 

5.3 RECOMMENDATION FOR FUTURE RESEARCH 

Figure 5.1. Outline of Chapter 5. 

5.1 SUMMARY 

Rapid advancements in imaging and geospatial data capture technologies have led to 

major challenges in validating data quality. As the data and methods of acquisition 

become more complex, it is becoming increasingly difficult for end users to validate the 

data and processes for fitness for use. This is in contrast to what was done in traditional 

data capture techniques, for instance, surveying or aerial photogrammetry where photo 

identification is used to identify points on the ground which can easily be re-occupied to 

validate their spatial accuracies. 

Based on experience in determining minimum specifications for LiDAR data collection 

and sharing among multiple organizations, solving this challenge can involve adopting 

flexible Quality Assurance and Quality Control specifications and metadata standards as 

suggested by Coleman and Adda [2010]. However, after the adoption of standards for 

data quality, there were still recurring limitations among LiDAR data users in this 

research to perform independent investigations to determine “false accuracies” and 

establish whether or not data accuracies are within tolerances for project-specific 

applications. 
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In summary the research aimed at designing LiDAR data error models that would allow 

for a user‟s side analysis of project deliverables of LiDAR data and derived products 

from LiDAR surveys. Table 5.1 provides a summary of RMSE among the various terrain 

morphologies.  

Table 5.1. Summary of RMSE among the various areas with all obstructions 

 
Area Morphology 

RMSE (m) 

 

Field UDTEB UDTUB-Field  

1 Project Checkpoints various 0.08 0.12 0.04 

2 Odell Forest vegetation 0.06 0.10 0.04 

3 Wilmot Tennis Ct open flat 0.17 0.10 -0.06 

4 Windsor Street steep slope 0.04 0.12 0.08 

5 Avondale Court sparsely dense 0.09 0.11 0.02 

6 Downtown dense 0.15 0.16 0.01 

In both the UDTEB and field measurements, the steep slope area had the highest RMSE 

followed by the built-up areas. 

The reporting of estimated errors and comparisons of vendor specifications and user-

demanded specifications should be clear with respect to terminology, avoiding the 

confusion of terms in Table 3.3. In summary, an expression for error reports of LiDAR 

datasets, based on this research should have the following attributes: 

1. There should be a users‟ requirement to be met; 

2. There should be a standard for comparison, be it ground check points or estimates 

based on previous knowledge; 

3. The uncertainty should be determined for the measured data based on a superior 

dataset, at least three times more accurate than the measured data; 

4. The upper/lower limits of the error should be stated; and  
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5. The Confidence Interval for the measured quantities should be clearly determined 

and expressed – and where possible (optional) the Confidence Level can also be 

stated. 

These should be clearly defined within the validation process of determining whether or 

not the data and processes involved satisfied the conditions for fitness for use. They 

should also be clearly stated so that the user can understand and interpret correctly what it 

means. A detailed discussion on the proposed best method for relaying uncertainty 

information of spatial datasets is discussed in Chapters 3 and 4. 

 

5.2. CONCLUSION 

The key objectives of the research (Section 3.3) were to: 

1. critically compare user-demanded accuracy specifications for airborne LiDAR 

data with manufacturers‟ stated performance ;  

2. determine the influence of varying topography and ground cover on the error; 

3. analyze the respective influences of variations in user-demanded specifications, 

manufacturer‟s specifications, topography, and ground cover on the accuracy of 

information derived from Airborne LiDAR data  

4. determine the reliability of products from LiDAR by determining the error at a 

given confidence interval; and 

5. provide a deterministic or non-deterministic method to allow users independently 

quantify, validate or refute variations in user-demanded specifications and 

manufacturer‟s specifications.  
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4.2.4 Accomplishments – Key Contributions 

Most of the objectives were met, while others could not be met.  

Firstly, user‟s specifications were developed, considering the requirements of nine public 

organizations. A method for creating these user‟s specifications has been discussed in 

Section 3.4.2. Once user specifications have been clarified, a process to determine 

accuracy clarifying the strengths and limitations of the data at various terrain conditions 

at a given confidence is discussed. The accuracy and confidence of the data should be 

such that they are acceptable for a given project application within the life cycle of the 

said project. After the delivery of the data and or product, two methods were developed, 

namely the deterministic and non-deterministic methods, to allow the user to determine 

whether or not the LiDAR product was created according to specifications. The tasks to 

consider at this stage include field validation surveys to allow the user independently 

compare the users‟ requirements with the manufacturers‟ standards and determine 

whether or not the user‟s requirements have been met. 

Secondly, the effects of variations of user demanded specifications with respect to 

manufacturers‟ specification for five areas of varying topographic attributes and land 

cover was critically investigated. The accuracy of information that can be derived from 

these areas was analyzed and the accuracy of information that can be derived from each 

set of data for given terrain morphology was discussed in Section 4.1.2. By employing 

ground truthing and point by point comparison of ground truth and LiDAR points for a 
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defined area, these uncertainty variations for varying topographic conditions were 

critically discussed.  

Thirdly, the objective which was to provide a deterministic or non-deterministic method 

for estimating these errors to equip users to independently quantify, validate or refute 

variations in user-demanded specifications and manufacturer‟s specifications considering 

factors of terrain morphology on LiDAR products was also met. The deterministic 

approach, discussed in detail in Section 3.4.3.1 employed the CMP and SBET or their 

equivalent files obtained during the ALS survey, to determine LiDAR system errors (i.e., 

LUM errors). These files are used to extract the error of points with respect to the 

performances of the ALS system at the time of survey along a given trajectory. Where 

these files are not available, the non-deterministic method, discussed in 3.4.3.2 employs 

published LiDAR system parameters and performance reports to simulate the conditions 

of flight and estimate the errors of the point cloud. After determining the LiDAR system 

errors (LUM) other errors from random sources, namely, processing (PRUM), data 

integration (DIUM) and final presentation (PUM) are included. These error models are 

discussed in detail in Section 3.4.4. The overall effect of these errors is what defines the 

UDTEB model. 

Fourthly, two methods were proposed for determining point by point comparisons 

between the LiDAR-derived elevations and corresponding ground checkpoints. Firstly, a 

novel approach of using square windows to determine the difference was proposed. This 

method intentionally deviated from conventional methods which employ a radius around 

the checkpoint to determine the height difference between the LiDAR points and 
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corresponding checkpoints. The advantages of using this method over the radius method 

are discussed in Section 3.4.8. The second method involved creating a TIN from the 

LiDAR ground points and intersecting the LiDAR-derived TIN with the checkpoints. The 

corresponding LiDAR derived elevation can then be deduced from the TIN for each 

ground checkpoint horizontal location. 

Fifthly, by employing field surveys, the RMSE of elevations in the five study areas were 

discussed in Section 4.1. The error analysis in areas clear of obstructions, areas with light 

obstructions and areas with dense obstructions were discussed in Section 4.1.2. 

Finally, a software prototype was created to provide a Graphic User Interface (GUI) 

towards helping simplify the estimation of errors. The software has been applied in 

Sections 3.4.6, 3.4.7, 3.4.8, and 4.2.2 to analyse error sources and their contributions to 

the total error budget. Appendix A gives details of the software code developed during a 

one year period (with a four months intensive mentoring on software development at 

CARIS Incorporated, Fredericton) to help calculate the total propagated errors in the 

UDTEB model. 

 

4.2.5 Limitations 

The field validation survey showed an influence on elevation errors with increase in 

ground cover. However, the model could not account for the influence of ground cover 

on predicted elevation errors.  
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The overall performance on specific terrain types show that there are systematic and 

random errors not accounted for in the UDTEB errors. As a result the modelled errors 

differ from those obtained from the physical measurements. It was clear from the large 

errors obtained in densely obstructed areas (e.g. the built-up area) compared to the 

smaller errors in areas clear of obstructions that obstructions play an important role in the 

total elevation error. However, there were not sufficient sampled ground checkpoints to 

arrive at a conclusive obstruction trend on the LiDAR-derived elevations. This is due to 

the limited topography around the project area. In other words, there were not enough 

different terrain morphologies in the research area to establish well-spaced checkpoints 

for the five topographies used in this research. An average of 100 checkpoints per area 

with specific terrain topography is required to arrive at a conclusive obstruction trend 

[Aguilar and Mills, 2008, p.163]. Also, the calibration file for the flight from which the 

CMP and SBET files are derived for the UDTUB model was only available for a limited 

area in Fredericton.  

Areas with sharp slope showed created systematic bias that could not be accounted for in 

the UDTEB model. For instance in some areas in the Windsor Street where there were no 

obstructions, the difference between the modelled errors and the errors determined from 

physical measurements was 0.00 m at QCC 200. On the other hand, under the same 

conditions the difference reached 0.11 m for QCC 219 (Table 4.5). One reason identified 

was the position of these points within islands of the SBET data, meaning their errors had 

to be estimated with respect to the CMP file and the estimated terrain. There could be 

other factors not accounted for that have a bearing on this disparity and further research is 
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recommended. Although partly covered for in PUM (with respect to the quality of 

controls and references used), it can be seen in Section 4.1.2 (on obstruction analysis) 

that the total error increases when checkpoints are obstructed. To reduce this effect, only 

obstructions to bare ground points were employed in the elevation error analysis. 

Consequently, only ground classification of LiDAR points has been discussed. 

 

 

5.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

It is recommended to have a further look at estimating the trend of errors in each of the 

five areas by employing a larger dataset that has defined trajectory parameters. Once the 

differences between the LiDAR elevations and GNSS elevations for the five test areas 

have been identified for a larger dataset than used in this research, the results can be used 

to further refine the UDTEB estimates by correcting for obstructions due to vegetation 

cover, multipath, flight direction with respect to a given slope.  

Given a set of filtered points around the 2m window of controlled checkpoints, there 

were variable differences due to vegetative and ground cover obstruction of points within 

one meter radius from the checkpoints. Although the trend has been investigated for the 

project areas for the various terrain morphologies in Section 4.1.2, where a larger dataset 

is available, it will be interesting to further investigate this trend. A conclusive trend 

could not be arrived due to the limitations in size of the various terrain morphologies in 

the Fredericton area. The known trend could be used to refine the UDTEB model, 
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especially in densely obstructed areas where the RMSE of the field measurements were 

greater than the modelled RMSE. 

The knowledge of the terrain type is essential in sharpening the ability of the UDTEB to 

estimate errors. Although this could not have been exactly known beforehand, the model 

only considered an estimate of terrain morphology by employing the measured QCCS 

and existing checkpoints. The UDTEB model also provides three morphological types, 

namely, flat, rolling and steep. These may be too generalized for certain applications. 

Further research to provide more terrain choices is recommended. 

With respect to the classification of LiDAR points as discussed in Section 3.4.4, more 

research is required to statistically calculate correctly classified points from wrongly 

classified points. In the UDTEB model, manufacturers‟ classification specifications or an 

estimation of classification accuracy was made through visual inspection of random 

section of the LiDAR point cloud. However, a more empirical method could be 

developed and used for possible “fine-tuning” of the classification error estimation in the 

UDTEB model. 

Finally, in order to validate LiDAR data classes other than bare earth points (e.g. 

vegetation and building points), a method to create checkpoints and checkpatches for 

these non ground points is recommended for future research. 
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APPENDIX 

APPENDIX A. UDTEB Matlab™
 
 code  

The main function for the application is shown here. Contact author to discuss access to 

complete UDTEB models code. Parts of the over eight thousand lines of Code are 

copyright to CARIS Inc. Fredericton, CANADA and Michael Gonsalves of the National 

Oceanic and Atmospheric Administration (NOAA). Permission was granted to the author 

to use and modify these codes during the UDTEB application development. 

function  main_app 

%MAIN_APP Main Application Interface to all Models 

%   DIUM, LUM, PRUM , PUM  

  

    %globals 

    iconsCollection = struct(); 

    main_gui_data = struct(); 

     

    %main App 

    clear ; clc; close all; 

    %bootstrap the application 

    bootstrap %bootstrap: adding all folders to matlab path 

    %initialise app. 

     

     figHt       = 100; 

    figWidth    = 700; 

    UDTUB_GUI    = figure('Units','pixels','Visible','on','Position',[400,400,figWidth,figHt]); 

  

    %   init gui util variables 

        init() 

         

    set(UDTUB_GUI,'Name','USER DETERMINED UNCERTAINTY BUDGETING') 

    set(UDTUB_GUI,'MenuBar','None') % FIGURE or NONE -- file, edit, etc. 

    %set(tibo_GUI,'Toolbar','figure') % AUTO, FIGURE or NONE 

    set(UDTUB_GUI,'NumberTitle','Off') 

    set(UDTUB_GUI,'Resize','Off') 

    set(UDTUB_GUI,'ResizeFcn',{@UIResize,'figMain'}) 

    %% 

    %==============UI Controls ===========================================    

    %% Declare UI-controls 

       %toolbar end *** 

    % Create the bottom uipanel 

        main_panel = uipanel('Units','pixels','Parent',UDTUB_GUI,... 

            'BorderType','etchedin','BackgroundColor',[0.8,0.78,0.8],'Position',... 

            [0 0 690 70],'Title','UDTUB','FontWeight','bold','TitlePosition','centertop'); 

  

        main_panel_sub1 = uipanel('Units','pixels','Parent',main_panel,... 



 

            'BorderType','etchedin','BackgroundColor',[0.8,0.78,0.8],'Position',... 

            [0 0 670 50],'Title','','FontWeight','bold','TitlePosition','lefttop'); 

        %User Defined Edit Controls 

        btn_LUM = uicontrol('Parent',main_panel_sub1,'Style','pushbutton',... 

                                'String','LUM',.... 

                                'Value',0,... 

                                'Position',[0 0 100 40],... 

                                'Callback',{@btn_Callback,'lum'}); 

        btn_PLUM = uicontrol('Parent',main_panel_sub1,'Style','pushbutton',... 

                                'String','PLUM',... 

                                'Value',0,... 

                                'Position',[0 0  100 40],... 

                                'Callback',{@btn_Callback,'plum'}); 

        btn_PRUM = uicontrol('Parent',main_panel_sub1,'Style','pushbutton',... 

                                'String','PRUM',... 

                                'Value',0,... 

                                'Position',[0 0 100 40],... 

                                'Callback',{@btn_Callback,'prum'}); 

        btn_DIUM= uicontrol('Parent',main_panel_sub1,'Style','pushbutton',... 

                                'String','DIUM',... 

                                'Value',0,... 

                                'Position',[0 0 100 40],... 

                                'Callback',{@btn_Callback,'dium'}); 

        btn_PUM= uicontrol('Parent',main_panel_sub1,'Style','pushbutton',... 

                                'String','PUM',... 

                                'Value',0,... 

                                'Position',[0 0 100 40],... 

                                'Callback',{@btn_Callback,'pum'}); 

        btn_GenReport = uicontrol('Parent',UDTUB_GUI,'Style','pushbutton',... 

                                'String','Generate UDTUB Report',... 

                                'Value',0,... 

                                'FontWeight','bold',... 

                                'Position',[0 0 200 25],... 

                                'Callback',{@btn_Callback,'genreport'}); 

  

        %toolbar *** 

    UDTUB_toolbar  = uitoolbar('Parent',UDTUB_GUI); 

    btnAbout = uipushtool(UDTUB_toolbar,'CData',iconsCollection.about_icon,... 

    'TooltipString','About UDTUB','HandleVisibility','off','ClickedCallback',... 

    @about_UDTUB); 

                             

    function [childRelPos]  = getUICenterLocation(childPos,parentPos) 

        if nargin <2 

            err = MException('','Err: getUICenterLocation, nargin must be two params',''); 

            throw(err); 

        end 

        if isempty(parentPos) || isempty(childPos) 

            err_2 = MException('', 'Err: getUICenterLocation,args cannot be empty',''); 

            throw(err_2); 

        end 

        parent_W = parentPos(3); 

        parent_H = parentPos(4); 

         

        child_W = childPos(3); 

        child_H = childPos(4); 

         



 

        childRelPos_X = (parent_W* 0.5) - (0.5 * child_W); 

        childRelPos_Y = (parent_H* 0.5) - (0.5 * child_H); 

         

        childRelPos = [childRelPos_X ,childRelPos_Y,child_W,child_H]; 

    end 

    function [ui_pos]= getUIPosition(UIHandler) 

        try 

            uiObj    = get(UIHandler); 

        catch err 

             err_cause = MException('','Err: getUIPosition, Invalid Handler ',''); 

             err = addCause (err, err_cause); 

             rethrow(err); 

        end 

        if isfield(uiObj,'Position') 

            ui_pos = uiObj.Position; 

        elseif (isfield(uiObj,'ScreenSize')) 

            ui_pos = uiObj.ScreenSize; 

        else 

             err = MException('','Err: getUIPosition, child has no position field',''); 

             throw(err); 

        end        

    end 

    function setUICenterScreen(childHanler,parentHandler) 

        if nargin < 2 

             err = MException('','Err: setUICenterScreen, nargin must be two params',''); 

             throw(err); 

        end 

         set(childHanler,'Position',... 

             getUICenterLocation( ... 

                                  getUIPosition(childHanler),... 

                                  getUIPosition(parentHandler)... 

                                )... 

            ); 

    end 

    function setUIPosition(childHanler,parentHandler,xPercent,yPercent) 

        if nargin < 2 

             err = MException('','Err: setUIPosition, nargin must be two params',''); 

             throw(err); 

        end 

        child_pos       = getUIPosition(childHanler); 

        parent_pos      = getUIPosition(parentHandler); 

        child_pos_x     = xPercent * parent_pos(3); %index 3 width 

        %setting the position anchor from left,bottom to left,top: thus - child_pos(4) 

        child_pos_y     = yPercent * parent_pos(4) - child_pos(4); %index 4 height 

        set(childHanler,'Position',... 

                [child_pos_x,child_pos_y,child_pos(3),child_pos(4)]..); 

    end 

    function UIResize (hObject,~,arg1) 

        sysHandler = 0; %system handler 

        if strcmpi('figmain',arg1) 

           setUICenterScreen(hObject,sysHandler); 

           setUIPosition(main_panel,            UDTUB_GUI,     0.01,   0.99); %main panel in gui 

           setUIPosition(main_panel_sub1,       main_panel,    0.01,   0.8); %user_panel in main 

  

           %Edit controls 

            setUIPosition(btn_LUM,       main_panel_sub1,     0.01,   0.88); 



 

            setUIPosition(btn_PLUM,      main_panel_sub1,     0.2,    0.88); 

            setUIPosition(btn_PRUM,      main_panel_sub1,     0.4,    0.88); 

            setUIPosition(btn_DIUM,      main_panel_sub1,     0.6,    0.88);   

            setUIPosition(btn_PUM,       main_panel_sub1,     0.8,    0.88); 

             

            %main gui button 

            setUIPosition(btn_GenReport,       UDTUB_GUI,     0.712,    0.27); 

       end 

    end                             

    %==============UI Calback Functions================================ 

    function btn_Callback(~,~,arg1) 

        if strcmpi('lum',arg1) 

            main_lum(UDTUB_GUI); % execute lum application 

        elseif strcmpi('plum',arg1) 

            main_plum(UDTUB_GUI); % execute plum application 

        elseif strcmpi('prum',arg1) 

            main_prum(UDTUB_GUI); % execute prum application 

        elseif strcmpi('pum',arg1) 

            main_pum(UDTUB_GUI); % execute pum application 

        elseif strcmpi('dium',arg1) 

            main_dium(UDTUB_GUI); % execute dium application 

        elseif strcmpi('genreport',arg1) 

            %generate report  

            udap_report_gen(UDTUB_GUI); 

        end 

    end 

    function about_UDTUB(~,~) 

        about_fig=  figure('Units','pixels','Visible','on','Position',[550,350,378,449]); 

        set(about_fig,'Name','ABOUT UDTUB') 

        set(about_fig,'MenuBar','None') % FIGURE or NONE -- file, edit, etc. 

        %set(tibo_GUI,'Toolbar','figure') % AUTO, FIGURE or NONE 

        set(about_fig,'NumberTitle','Off') 

        set(about_fig,'Resize','Off') 

        axes('Parent',about_fig,'Units','pixels','Position',[0,0,378,449]); 

        imshow(iconsCollection.about_image); 

    end 

    %==============UI Calback Functions============UTILITY FUNCTIONS===== 

    function init 

        %toolbar icons 

        iconsCollection.('about_icon')    = imread ('misc/imgs/icons/gge.png');  

        %image paths 

        iconsCollection.('about_image')  = imread ('misc/imgs/icons/about.png');  

         

        %set main handler 0 as udab_gui handler 

        setappdata(0,'udab_gui',UDTUB_GUI) 

         

        %set app data variables 

        main_gui_data.('lum')   =struct(); 

        main_gui_data.('dium')  =struct(); 

        main_gui_data.('plum')  =struct(); 

        main_gui_data.('prum')  =struct(); 

        main_gui_data.('pum')   =struct(); 

        setappdata(UDTUB_GUI,'model',main_gui_data); 

    end 

end 

 



 

 

APPENDIX B. Matlab™ code to perform square window differencing 

function  main 

%main App 

clear ; clc; close all; 

%globals 

contTitle   ='Select Control Points '; 

control_shp = getShpData(contTitle); 

lasTitle    ='Select LAS Shapefile : LiDAR Data '; 

las_shp     = getShpData(lasTitle); 

%         las_shp_zField  = 'Z'; 

%         cont_shp_zField = 'Elevation'; 

%         rect_length     = 5; 

if isempty(las_shp) || isempty(control_shp) 

    return ; %exit if any is empty 

end 

[control_fnames ,control_cell_data] = convertShpToCell (control_shp); 

[las_fnames ,las_cell_data] = convertShpToCell (las_shp); 

           

LASContDiff_Struct = struct(); 

%globals 

LASContDiff_Struct.('cont_z_name')=control_fnames; 

LASContDiff_Struct.('las_z_name') =las_fnames; 

LASContDiff_Struct.('cont_zf') =''; 

LASContDiff_Struct.('las_zf') =''; 

 

figHt=130;figWidth=610; 

LASCont_GUI  = figure('Units','pixels','Visible','on','Position',[400,400,figWidth,figHt]); 

 

setappdata(0,'mainGui_Handler',LASCont_GUI); %setting the main gui handler  to the root app data 

 

set(LASCont_GUI, 'Name','Compute LAS Diff From Control [Rect]') 

set(LASCont_GUI, 'MenuBar','None') % FIGURE or NONE -- file, edit, etc. 

set(LASCont_GUI, 'NumberTitle','Off') 

set(LASCont_GUI, 'Resize','On') 

set(LASCont_GUI, 'ResizeFcn',{@UIResize,'figMain'}) 

 

%==============UI Controls =========================================== 

%Declare UI-controls 

 

 

 

%toolbar end *** 

% Create the bottom uipanel 

main_panel = uipanel('Units','pixels','Parent',LASCont_GUI,... 

    'BorderType','etchedin','BackgroundColor',[0.8,0.78,0.8],'Position',... 

    [0 0 600 120],'Title','Controls & LAS','FontWeight','bold','TitlePosition','centertop'); 

 

 

user_def_panel = uipanel('Units','pixels','Parent',main_panel,... 

    'BorderType','etchedin','BackgroundColor',[0.8,0.78,0.8],'Position',... 

    [0 0 580 100],'Title','-|-','FontWeight','bold','TitlePosition','lefttop'); 



 

%Buttons 

%======= 

btn_user_load_file = uicontrol('Parent',user_def_panel,'Style','pushbutton',... 

    'String','Compute Diff',... 

    'Value',0,... 

    'Position',[0 0 100 25],... 

    'Callback',{@btn_Callback,'comp_diff'}... 

    ); 

 

 

%Labels 

%======= 

label_user_algo = uicontrol('Parent',user_def_panel,'Style','text',... 

    'String','Control_______________________________LAS','Position',[0 0 400 20],... 

    'HorizontalAlignment','center','BackgroundColor',[.797 .8 .797],... 

    'FontWeight','bold'); 

 

%popups 

algo_requirements = uicontrol('Parent',user_def_panel,'units','pixels','position',[0 0 200 50 ],... 

    'style','popup','string',LASContDiff_Struct.('cont_z_name'),... 

    'value',1,'callback',{@popup_callback,'cont_z_name'}); 

 

type_requirements = uicontrol('Parent',user_def_panel,'units','pixels','position',[0 0 200 50 ],... 

    'style','popup','string',LASContDiff_Struct.('las_z_name'),... 

    'value',1,'callback',{@popup_callback,'las_z_name'}); 

 

 

 

%==============UI Calback Functions==================================== 

    function btn_Callback(~,~,arg1) 

        if strcmpi('comp_diff',arg1) 

            if isempty(LASContDiff_Struct.cont_zf) 

                errordlg('Control Z Field not Selected','Field Error'); 

                return ; 

            end 

            if isempty(LASContDiff_Struct.las_z_name) 

                errordlg('LAZ Z Field not Selected','Field Error'); 

                return ;  

            end 

            prompt = {'Enter Rectangular Buffer Width:',}; 

            dlg_title = 'Rect Window Width'; 

            num_lines = 1;def = {'5'}; 

            rect_width = inputdlg(prompt,dlg_title,num_lines,def); 

            if isempty(rect_width) 

                errordlg('Rectangular Window Not Provided','Width Error'); 

                return ; 

            end 

            %compute and save diff 

            main_calc(LASContDiff_Struct.cont_zf,... 

                LASContDiff_Struct.las_zf,... 

                str2double(rect_width{1})) 

        end 

    end 

 

    function popup_callback(hObject,~,arg1) 

        sel_index = get(hObject,'value'); 



 

        if strcmpi(arg1,'cont_z_name') 

            ref_sample =LASContDiff_Struct.cont_z_name{sel_index}; 

            LASContDiff_Struct.('cont_zf')=ref_sample; 

        elseif strcmpi(arg1,'las_z_name') 

            aux_sample =LASContDiff_Struct.las_z_name{sel_index}; 

            LASContDiff_Struct.('las_zf')=aux_sample; 

        end 

    end 

% UI control positioning Utility Functions 

    function [childRelPos]  = getUICenterLocation(childPos,parentPos) 

        if nargin <2 

            err = MException('','Err: getUICenterLocation, nargin must be two params',''); 

            throw(err); 

        end 

        if isempty(parentPos) || isempty(childPos) 

            err_2 = MException('', 'Err: getUICenterLocation,args cannot be empty',''); 

            throw(err_2); 

             

        end 

        parent_W = parentPos(3); 

        parent_H = parentPos(4); 

         

        child_W = childPos(3); 

        child_H = childPos(4); 

         

        childRelPos_X = (parent_W* 0.5) - (0.5 * child_W); 

        childRelPos_Y = (parent_H* 0.5) - (0.5 * child_H); 

         

        childRelPos = [childRelPos_X ,childRelPos_Y,child_W,child_H]; 

    end 

    function [ui_pos]= getUIPosition(UIHandler) 

        try 

            uiObj    = get(UIHandler); 

        catch err 

            err_cause = MException('','Err: getUIPosition, Invalid Handler ',''); 

            err = addCause (err, err_cause); 

            rethrow(err); 

        end 

        if isfield(uiObj,'Position') 

            ui_pos = uiObj.Position; 

        elseif (isfield(uiObj,'ScreenSize')) 

            ui_pos = uiObj.ScreenSize; 

        else 

            err = MException('','Err: getUIPosition, child has no position field',''); 

            throw(err); 

        end 

    end 

    function setUICenterScreen(childHanler,parentHandler) 

        if nargin < 2 

            err = MException('','Err: setUICenterScreen, nargin must be two params',''); 

            throw(err); 

        end 

        set(childHanler,'Position',... 

            getUICenterLocation( ... 

            getUIPosition(childHanler),... 

            getUIPosition(parentHandler)... 



 

            )... 

            ); 

    end 

    function setUIPosition(childHanler,parentHandler,xPercent,yPercent) 

        if nargin < 2 

            err = MException('','Err: setUIPosition, nargin must be two params',''); 

            throw(err); 

        end 

        child_pos       = getUIPosition(childHanler); 

        parent_pos      = getUIPosition(parentHandler); 

        child_pos_x     = xPercent * parent_pos(3); %index 3 width 

        %setting the position anchor from left,bottom to left,top: thus - child_pos(4) 

        child_pos_y     = yPercent * parent_pos(4) - child_pos(4); %index 4 height 

        set(childHanler,'Position',... 

            [child_pos_x,child_pos_y,child_pos(3),child_pos(4)]... 

            ); 

    end 

    function UIResize (hObject,~,arg1) 

        sysHandler = 0; %system handler 

        if strcmpi('figmain',arg1) 

            setUICenterScreen(hObject,sysHandler); 

            setUIPosition(main_panel,LASCont_GUI,   0.01, 0.99); %main panel in gui 

            setUIPosition(user_def_panel,main_panel,  0.01, 0.9); %user_panel in main 

            %labels 

            setUIPosition(label_user_algo, user_def_panel,   0.1, 0.8); 

            %popups 

            setUIPosition(algo_requirements,user_def_panel,  0.1, 0.5); %popups algo 

            setUIPosition(type_requirements,user_def_panel,  0.5, 0.5); %popups type 

            %button 

            setUIPosition(btn_user_load_file,user_def_panel, 0.82,0.25); %popups type 

             

        end 

    end 

 

 

%==============UI Calback Functions==================================== 

%==============UTILS ============================================== 

%% 

    function xy_data = getXYData(refFieldName,varFieldName) 

        temp_x = LASContDiff_Struct.('data_struct').(refFieldName); 

        temp_y = LASContDiff_Struct.('data_struct').(varFieldName); 

        if size(temp_x,1)<size(temp_y,1) 

            d_len = size(temp_x,1); 

        else 

            d_len = size(temp_y,1); 

        end 

        xy_data = []; 

        for i = 1: d_len 

            iX = temp_x{i}; 

            iY = temp_y{i}; 

            if isnumeric(iX) && isnumeric(iY) 

                if ~isnan(iX) && ~isnan(iY) 

                    xy_data = [xy_data;[iX, iY]]; 

                end 

            end 

        end 



 

    end 

    function [field_list,structCollection] = getFieldDataStruct() 

        %take care of heading 

        dataFields = LASContDiff_Struct.raw_Data(1,:); 

        %get data fields 

        structCollection = struct(); 

        field_list = cell(size(dataFields)); 

        for i = 1: size(dataFields,2) 

            f_name = num2str(dataFields{i}); 

            if ~isempty(f_name) && ~strcmp(f_name,'NaN') 

                f_name = strrep(f_name,'+',''); 

                f_name = strrep(f_name,'/','_'); 

                f_name = strrep(f_name,' ',''); 

            else 

                f_name = ['col_',num2str(i)]; 

            end 

            field_list{i} = f_name; 

            structCollection.(f_name) = LASContDiff_Struct.raw_Data(:,i); 

        end 

         

    end 

 

%% 

    function [FileName,PathName] = getFilePath(ext, dialogTitle,mode) 

        if strcmpi(mode , 'save') 

            [FileName,PathName] = uiputfile(ext,dialogTitle); 

        else 

            [FileName,PathName] = uigetfile(ext,dialogTitle); 

        end 

        if ischar(FileName) && ischar(PathName) % if file selected 

            return; 

        else 

            FileName = ''; PathName= ''; 

        end 

    end 

%% 

 

    function main_calc(cont_shp_zField,las_shp_zField,rect_length) 

         

        cont_index_X  = getnameidx(control_fnames,'X'); 

        cont_index_Y  = getnameidx(control_fnames,'Y'); 

        cont_index_Z  = getnameidx(control_fnames,cont_shp_zField); 

         

        las_index_X = getnameidx(las_fnames,'X'); 

        las_index_Y = getnameidx(las_fnames,'Y'); 

        las_index_Z = getnameidx(las_fnames,las_shp_zField); 

         

        control_cell_data{1,end+1} = {}; %allocate another column: BBox 

        control_fnames{end+1,1} = 'bbox'; %add one field name 

        cont_index_bbox = size(control_fnames,1); 

         

        control_cell_data{1,end+1} = {}; %allocate another column: Las in BBox 

        control_fnames{end+1,1} = 'lasInBBox'; %add one field name 

        cont_index_lasinbbox = size(control_fnames,1); 

         

        for b = 1: size(control_cell_data,1) 



 

            cont_X = control_cell_data{b,cont_index_X}; 

            cont_Y = control_cell_data{b,cont_index_Y}; 

            cont_bbox = getBBox([cont_X,cont_Y],rect_length*0.5); 

            control_cell_data{b,cont_index_bbox} = cont_bbox; 

        end 

         

        fetchDataInBBOX() 

        saveToFile() 

        disp('complete ....'); 

        %UTIL 

         

        function saveToFile() 

            dialogTitle = 'Save Las and Control Diff'; 

            [fileName,pathName] = uiputfile({'*.csv'},dialogTitle); 

            if ischar(fileName) && ischar(pathName) % if file selected 

                out_f   = fullfile(pathName,fileName); 

                fout    = fopen(out_f,'w'); 

                pnt_count = 0; 

                for i = 1:size(control_cell_data,1) 

                    cur_control_Z = control_cell_data{i,cont_index_Z}; 

                    las_inR = control_cell_data{i,cont_index_lasinbbox}; 

                    for j = 1: size(las_inR,1) 

                        las_x = las_inR(j,1); 

                        las_y = las_inR(j,2); 

                        las_z = las_inR(j,3); 

                        if pnt_count == 0 

                            fprintf(fout,'%s,%s,%s,%s\n','X', 'Y', 'Z','Diff'); 

                        end 

                        fprintf(fout,'%f,%f,%f,%f\n',... 

                            las_x,las_y,las_z,... 

                            round((cur_control_Z-las_z)*1000)/1000 ... 

                            ); 

                        pnt_count = 2;%any number from 0 

                    end 

                end 

                fclose(fout); 

            end 

             

        end 

         

        function fetchDataInBBOX() 

            x = cell2mat(las_cell_data(:,las_index_X)); 

            y = cell2mat(las_cell_data(:,las_index_Y)); 

            z = cell2mat(las_cell_data(:,las_index_Z)); 

            for i = 1: size(control_cell_data,1) 

                cur_bbox = control_cell_data{i,cont_index_bbox}; 

                xv = cur_bbox(:,1); 

                yv = cur_bbox(:,2); 

                in = inpolygon(x,y,xv,yv); 

                if i == 1 

                    figure('Name','LAS In Rectangular Window Plot','NumberTitle','off'); 

                    plot(x,y,'bo'); 

                    hold on; 

                    plot(xv,yv,x(in),y(in),'r+') ; 

                else 

                    hold on; 



 

                    plot(xv,yv,x(in),y(in),'r+') ; 

                end 

                control_cell_data{i,cont_index_lasinbbox} = [x(in),y(in),z(in)]; 

            end 

             

        end 

         

        function bbox = getBBox(pnt,offsetXY) 

            x = pnt(1);  y = pnt(2); 

            x_ll = x - offsetXY; 

            y_ll = y - offsetXY; 

            x_ur = x + offsetXY; 

            y_ur = y + offsetXY; 

            bbox =  [x_ll,y_ll;x_ur,y_ll;x_ur,y_ur;x_ll,y_ur;x_ll,y_ll]; 

        end 

         

 

    end 

    function shp =  getShape(fileName,pathName) 

        shp = []; 

        if ischar(fileName) && ischar(pathName) % if file selected 

            shp = shaperead(fullfile(pathName,fileName)); 

        end 

    end 

    function data_shp =  getShpData(dialogTitle) 

        [fileName,pathName] = uigetfile({'*.shp'},dialogTitle); 

        data_shp = getShape(fileName,pathName); 

    end 

    function [fnames,shp_cell]=  convertShpToCell(shpObj) 

        fnames = {}; 

        if size(shpObj,1) > 0 

            shp_struct = shpObj(1,1); 

            fnames = fieldnames(shp_struct); 

        end 

        if ~isempty (fnames) 

            shp_cell = cell(size(shpObj,1),size(fnames,1)); 

            for i = 1 : size(shpObj,1) 

                temp_cell = cell(1,size(fnames,1)); 

                cur_obj = shpObj(i,1); 

                for j = 1:size(fnames,1) 

                    temp_cell{1,j} = cur_obj.(fnames{j,1}); 

                end 

                shp_cell(i,:) = temp_cell; 

            end 

        end 

    end 

 

%==============UTILS=================================================== 

disp('gui initialized...'); 

end 

 

 

 



 

APPENDIX C.    Example of point differencing between LiDAR and checkpoints 

NB: 2 metre by 2 metre window around the controlled checkpoints was used to select 

LiDAR ground points around the checkpoints. 

A sample of QCC points and their attributes for downtown Fredericton 

QCC_100 Cont_X Cont_Y Cont_Z Obstruction 
  

 
682843.666 5092437.609 9.22 light 

  
LiDAR LiD_X LiD_Y LiD_Z Diff RMSE SD 

 
682844.199 5092437.304 9.27 0.05 

  

 
682842.92 5092437.224 9.27 0.05 

  

 
682844.388 5092438.227 9.33 0.11 0.09 0.03 

QCC_101 Cont_X Cont_Y Cont_Z Obstruction 
  

 
682825.814 5092450.414 9.25 light 

  
LiDAR LiD_X LiD_Y LiD_Z Diff RMSE SD 

 
682826.138 5092450.99 9.38 0.13 

  

 
682825.644 5092451.168 9.33 0.08 

  

 
682825.733 5092449.501 9.33 0.08 

  

 
682825.484 5092450.803 9.34 0.1 

  

 
682826.71 5092450.395 9.31 0.06 0.10 0.03 

QCC_102 Cont_X Cont_Y Cont_Z Obstruction 
  

 
682868.463 5092427.174 8.97 light 

  
LiDAR LiD_X LiD_Y LiD_Z Diff RMSE SD 

 
682869.041 5092427.608 9.03 0.06 

  

 
682869.141 5092426.212 9.08 0.11 

  

 
682868.293 5092427.238 9.02 0.05 
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