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ABSTRACT 

This Ph.D. dissertation reviews the current techniques and develops improved techniques 

for the analysis of very high resolution (VHR) imagery of urban areas for two important 

applications: land cover classification and moving vehicle (and velocity) extraction.   

First, a comprehensive review is conducted on the current literature in the area of urban 

land cover classification of VHR imagery. The review discusses the usefulness of two 

groups of spatial information used in both pixel-based and object-based classification 

approaches. The first group is spatial information inherent in the image such as textural, 

contextual, and morphological (e.g., shape and size) properties of neighboring pixels, and 

the second group is the spatial information derived from ancillary data such as LiDAR 

and GIS vector data. The review provides guidelines on the use of spatial information for 

urban land cover classification of VHR images.  

Second, a novel multisource object-based classification framework is developed using 

the Cognition Network Language available in the eCognition® software package. The 

framework integrates VHR images and height point data for detailed classification of 

urban environments.  The framework addresses two important limitations of the current 

literature: the transferability of the framework to different areas and different VHR 

images, and the impact of misregistration between different data layers on classification 

accuracy. The method was tested on QuickBird and IKONOS images and an overall 

classification accuracy of 92% and 86% was achieved for each of the images, 
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respectively. The method offers a practical, fast, and easy to use (within eCognition) 

framework for classifying VHR imagery of small urban areas.   

Third, a combined object- and pixel-based image analysis framework is proposed to 

overcome the limitation of object-based (lack of general applicability and automation) 

and pixel-based (ignoring the spatial information of the image) approaches. The 

framework consists of three major steps: image segmentation, feature extraction, and 

pixel-based classification. For the feature extracting part, a novel approach is proposed 

based on the wavelet transforms. The approach is unsupervised and much faster than the 

current techniques because it has a local scope and works on the basis of an image’s 

objects, not pixels. The framework was tested on WorldView-2, QuickBird, and 

IKONOS images of the same area acquired on different dates. Results show up to 17%, 

10%, and 11% improvement of classification kappa coefficients compared to when only 

the original bands of the image are used for WorldView-2, QuickBird, and IKONOS, 

respectively.  

Fourth, a novel object-based moving vehicle (and velocity) extraction method is 

developed using single WorldView-2 imagery. The method consists of three major steps: 

road extraction, moving vehicle change detection, and position and velocity estimation. 

Unlike recent studies in which vehicles are selected manually or semi-automatically 

using road ancillary data, the method automatically extract roads and moving vehicles 

using object-based image analysis frameworks. Results demonstrate a promising potential 

for automatic and accurate traffic monitoring using a single image of WorldView-2. 
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Chapter 1 : INTRODUCTION 

 

This PhD dissertation presents research on the analysis of very high spatial resolution 

(VHR) optical satellite imagery for urban land cover classification and moving vehicle 

(and its velocity) extraction. It is an article-based dissertation presented through the 

following papers. 

 

Paper 1 (Peer reviewed): 

Salehi, B., Y. Zhang, M. Zhong, and V. Dey , 2012. A review of the effectiveness of 

spatial information used in urban land cover classification of VHR imagery. 

International Journal of GeoInformatics,8(3):35-51. 

Paper 2 (Peer reviewed): 

Salehi, B., Y. Zhang, and M. Zhong, 2012. Object-based land covers classification of 

urban areas using VHR imagery and Height Points ancillary data, Remote Sensing , 

4(8):2256-2276.  

Paper 3 (Peer reviewed): 

Salehi, B., Y. Zhang, and M. Zhong, 2012. A combined pixel-and object-based image 

analysis framework for urban land cover classification of VHR imagery, 

Photogrammetric Engineering & Remote Sensing (under review). 

Paper 4 (Peer reviewed): 

Salehi, B., Y. Zhang, and M. Zhong, 2012. Automatic moving vehicle information 

extraction   from single-pass WorldView-2 imagery, IEEE Journal of Selected 

Topic in Earth Observation and Remote Sensing, 5(1): 135-145. 
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1.1 Dissertation Structure 

This research is an article-based dissertation including six chapters. Chapter 1 provides 

the introduction of the research. The next four chapters (chapter 2 to chapter 5) present 

four peer reviewed journal papers listed above, which are either published or under 

review. In each of the four papers, the first author conducted the primary research, while 

the second author provided advice on the structure and the remaining authors provided 

input and assistance. Chapter 6 provides the summary and conclusion of this research. 

Figure 1.1 illustrates the organization of this dissertation.  

 

 

 

 

 

 

 

 

 

 

 

Figure  1.1 Structure of the dissertation 

 

(Chapter 1) 

 Dissertation Structure, Selections of Topics, 

Background, Problem Statement, Research 

Objective, Overview of Each Chapter  

(Chapter 2,  

Paper # 1) 

Review of the 

spatial information  

(Chapter 3, 

 Paper # 2) 

Multisource object-

based classification  

 

(Chapter 4, 

Paper # 3) 

Combination of 

pixel- and object-

based image analysis  

(Chapter 5,  

Paper # 4) 

Object-based moving 

vehicle information 

extraction 

(Chapter 6) 

Summary and Conclusion  
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1.2 Selection of Research Topics   

This PhD research is a part of an NSERC (National Sciences and Engineering Research 

Council) Strategic Project entitled “Development of a High Fidelity Urban Information 

System for Improved Land Use and Transportation Planning.” The project is a 

collaborative research between the Departments of Geodesy and Geomatics Engineering 

(Remote Sensing group) and Civil Engineering (Transportation group) at the University 

of New Brunswick. The Remote Sensing Group is responsible for developing urban land 

cover classification/mapping techniques. The land use classification component is the 

responsibility of the Transportation Group in Civil Engineering.  

Therefore, the primary objective of this PhD research is to investigate sophisticated 

algorithms and methods for urban land cover classification using very high spatial 

resolution (VHR) optical imagery. During the course of this research we learned that the 

VHR data used (particularly WorldView-2 imagery, which became available in the 

market in 2010) has potential for mapping and classification of smaller objects than land 

cover such as vehicles. In addition, vehicle extraction is of great interest to our partner 

research group (Transportation Group). Therefore, we further extended the topics of this 

research to moving vehicle (and its velocity) extraction in urban areas using VHR 

imagery. The next three chapters (chapters 2-4) concern urban land cover classification, 

while the fifth chapter is about the extraction of moving vehicles and velocity estimation. 
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1.3 Background 

Since the launch of the first very high spatial resolution (VHR) optical satellite in 1999 

(i.e., IKONOS), the analysis of images acquired by such satellites has received attention 

within the remote sensing community. VHR imagery normally possesses the spatial 

resolution of better than 1 meter for the panchromatic band and up to four meters for the 

multispectral bands. As Table 1.1 shows, over 10 VHR optical satellites are currently 

orbiting the Earth. This number is expected to nearly double over 2010-2015 period 

[Euroconsult, 2011].  

 

Table  1.1  Very High Resolutions (VHR) Optical Satellite
1
 

1. Satellite Country Launch Pan 

Res.(m) 

MS Res. 

(m) 

 

# of MS 

Bands 

Swath (Km) 

GeoEye-1 USA 06/09/08 0.41 1.64 4 15 

WorldView-1 USA 18/09/07 0.5 N/A 0 16 

WorldView-2 USA 08/11/09 0.46 1.84 8 16 

QuickBird USA 18/10/01 0.6 2.5 4 16 

EROS B1 Israel 25/04/06 0.7 N/A 0 7 

KOMSAT-3 Korea 17/05/12 0.7 2.8 4 15 

Pleiades-1 France 16/12/11 0.5 2.0 4 20 

IRS Cartosat-2 India 10/01/07 0.8 N/A 0 10 

IKONOS USA 24/09/99 1.0 4.0 4 11 

Resurs DK-1 Russia 15/06/06 1.0 3.0 3 28 

KOMPSAT-2 Korea 28/07/06 1.0 4.0 4 15 

OrbView-3 USA 26/06/03 1.0 4.0 4 8 

Pan: Panchromatic; MS: Multispectral; Res.: Resolution 

 

Over the past decades, the majority of remote sensing work has been focused on natural 

environment [Weng and Quattorchi, 2007]. Employing remote sensing imagery for urban 

applications has gained interest within the remote sensing community in recent years due 

to the greater availability of VHR satellite imagery. On the one hand, the sub-meter 

                                                 
1 Modified from Stoney, W.E., Mitretek systems, 2008-2-12, http://www.asprs.org/Satellite-Information/  
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spatial resolution of VHR images makes them a suitable choice for detailed mapping of 

urban areas and vehicle extraction. On the other hand, the limited spectral resolution and, 

more importantly, the high spatial correlation between the adjacent pixels raise serious 

challenges for the analysis of such imagery if the conventional spectral- and pixel-based 

image analysis approaches are employed [Mohapatra and Wu, 2010; Myint et al., 2011]. 

The primary objective of this research is to explore and investigate more sophisticated 

methods for urban land cover classification and moving vehicle extraction using VHR 

imagery.  

1.3.1 Urban Land Cover Classification 

There are two terms that are frequently used in the field of remotely sensed image 

classification, namely land cover and land use. Land cover refers to the type of material 

present on the landscape (e.g., water, crops, and buildings) while land use refers to what 

people do on the land surface (e.g., agricultural, commercial, and residential) (Jensen, 

2005). Land cover is the basis of land use applications. In fact, if the land cover is 

accurately mapped and classified, the land use, which is more application-dependent, can 

be more accurately classified. For urban land use classification, additional information 

such as the zoning and spatial dependency (e.g., census information) is required. The 

concern of this research is land cover classification. 

One of the most widely used applications of VHR imagery is mapping and classification 

of land covers in urban areas. However, because of the complexity of urban landscapes, 

the failure to consider spatial characteristics of the image in traditional pixel-based 

classifiers, and inconsistencies between scale of observation (i.e., pixel size) and the 
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spatial characteristics of targets (e.g., buildings), conventional spectral-based 

classification approaches are ineffective [Weng and Quattrochi, 2007]. Therefore, 

sophisticated techniques are required to incorporate not only the spectral information of 

the image, but also the spatial information (e.g., texture, shape, and size) into the 

classification process.  

1.3.2 Moving Vehicle Information Extraction 

Vehicle monitoring is one of the important issues for modeling and planning of traffic 

and for transportation management in both terrestrial and marine areas. Traditionally, 

traffic monitoring has been conducted using ground-based equipment such as inductive 

loops, radar systems, and video cameras [Munno et al., 1993; Casstellano, 1999; Nag and 

Barnes, 2003]. These systems, however, have a very narrow coverage area and are not 

able to observe global traffic situations. The use of remote sensing data for traffic 

monitoring has emerged as an alternative in recent years.  A few studies have used 

LiDAR data for monitoring moving vehicles [e.g., Toth and Grenjer-Brzeinska, 2006; 

Yao et al., 2011).  However, LiDAR data are expensive and do not have broad coverage 

areas. An alternative is to use VHR imagery.  

One of the interesting applications of VHR imagery, which has gained attention in the 

remote sensing community in recent years, is to extract the moving vehicles together with 

their velocity information in urban areas [Xiong and Zhang, 2008; Liu et al., 2010; 

Leitloff et al., 2010]. With about half meter spatial resolution of VHR imagery (e.g., 

QuickBird and WorldView-2), small targets such as vehicles can be observed and 

detected. Further, because of the sensor configuration of VHR satellites such as 
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QuickBird and WorldView-2, a moving target and its velocity can be extracted. Most 

VHR satellites have a panchromatic and a multispectral sensor onboard (WorldView-2 

has a panchromatic and two multispectral sensors). These two sensors (three in 

WorldView-2) acquire images with a small time lag (approximately 0.15 seconds for 

QuickBird). Consequently, if the target being observed by the satellite is in motion, the 

panchromatic and multispectral sensors record two different positions of the target. By 

comparing these two positions the moving vehicle and its velocity, including speed and 

direction, can be extracted.  

1.4 Problem Statement 

1.4.1 Urban Land Cover Classification of VHR Imagery   

In a typical urban landscape there exist different impervious and pervious land cover 

classes. Impervious land covers include buildings (large buildings and small houses), 

roads (city streets and highways), and parking and paved areas. Pervious land covers are 

mainly vegetation (grass and trees), water, and soil. The classification of pervious 

surfaces using the spectral information of VHR imagery often results in high 

classification accuracies, i.e., more than 90%, due to the high spectral difference between 

such classes [Salehi et al., 2012].  However, the problem arises when the objective is to 

extract impervious land cover classes. This is because of the within-class spectral 

variation and between-classes spectral similarity of such classes, particularly in VHR 

imagery.  
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Many researchers have investigated methods to tackle this problem. These methods often 

incorporate not only the spectral information of the image but also additional spatial 

information.  

1.4.1.1 Incorporation of Spatial Information into Classification 

Spatial information beyond the spectral information (brightness values) of individual 

pixels is required for classification of impervious surfaces of urban areas using VHR 

imagery. The spatial information is extracted either from ancillary data such as existing 

GIS vector layers and LiDAR data, or from the spectral and spatial correlation between 

neighboring pixels in the image. In the latter case, the information is categorized as three 

major types: textural, morphological (e.g., shape and size), and contextual information. 

Although the spatial information has been employed in individual publications, no 

comprehensive literature review has been conducted to date on the effectiveness of each 

individual type of information in urban land cover classification of VHR imagery. 

Therefore, a comprehensive study of the usefulness of such information in urban land 

cover classification of VHR imagery is required.  

1.4.1.2 Multisource Object-Based Classification   

As mentioned, additional information can be extracted from ancillary data. When 

ancillary data are combined with the image, the classification method is generally 

referred to as multisource classification [Watanchaturaporn et al., 2008]. The ancillary 

data used are mostly GIS data layers and LiDAR height data. LiDAR data has been used 

in the literature in recent years for classification of VHR imagery of urban areas [Ye et 

al., 2010; Wurm et al., 2011; Hermosilla et al., 2011]. However, LiDAR data are 
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expensive and may not be available for many urban environments. On the other hand, 

GIS data such as height points, building and road maps are often available from archives 

for most urban areas. Despite the availability of GIS data, they have rarely been utilized 

for detailed classification of urban areas using VHR imagery [Salehi et al., 2012]. 

Among a few examples are Thomas et al., [2003] and Zhou et al., [2009]. However, 

these examples have been developed for specific applications and have not considered the 

general problems in multisource classification. While geometric misregistration between 

images and GIS vector layers poses a great challenge for integration, previous studies 

have not put much effort toward overcoming this issue.  Object-based image analysis has 

proved to be more effective for multisource classification. However, the general 

applicability and transferability of the object-based classification framework is another 

issue which has gained less attention in the current literature. Therefore, an object-based 

image analysis framework that combines the VHR image and vector data, and is 

applicable to different VHR images, for detailed urban land cover classification is 

required.  

1.4.1.3 Combination of Pixel- and Object-Based Image Analysis for Classification 

Multisource classification is effective for classifying complex urban environments 

because of the incorporation of additional information to VHR images in the 

classification process. However, the success of such classification depends on the 

availability of ancillary data. For cases in which multisource data is not available, a 

classification approach which exclusively uses the VHR imagery is desirable. Such a 

classification approach incorporates additional information extracted from the image into 
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classification. An effective way of incorporating additional information into classification 

is using object-based image analysis. The first step in object-based image classification is 

segmentation, which is the process of partitioning the image into a set of discrete, non-

overlapping regions on the basis of internal homogeneity criteria [Devereux et al., 2004]. 

In the second step, classification is performed using the objects’ properties such as 

spectral, textural, morphological, and contextual measures. 

In recent years, object-based image analysis has proved to be very effective in urban land 

cover classification of VHR imagery and many publications have benefited from that 

[Blaschke, 2010]. However, a major problem associated with the object-based 

classification approach is its subjectivity to area and application (in most cases, it first 

need to be developed using a small part of the image and then applied to the entire 

image). In fact, object-based approaches are not automatic. On the other hand, traditional 

pixel-based classification approaches are more generic but ignores the spectral and spatial 

properties of pixels surrounding the target pixel in the classification process. Therefore, a 

combined object- and pixel-based method which takes the advantage of each approach is 

desirable. 

By segmenting the image, a great number of object properties such as spectral (e.g., mean 

brightness value), textural (e.g., grey level co-occurrence matrix), and morphological 

(e.g., shape and size) features can be derived and utilized in a subsequent pixel-based 

classification. A necessary step in such a combination is to select/extract the best features 

from the huge number of derived features. This is because utilizing such an amount of 

data is computation-intensive, and more importantly, will lead to inaccurate classification 
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due to the curse of dimensionality [Bellman, 1961].  Therefore, an automatic and fast 

feature extraction algorithm is necessary for the combination of object-based and pixel-

based image analysis. 

1.4.2 Moving Vehicle Information Extraction 

A few studies have used QuickBird imagery for extracting moving vehicle information 

[Xiong and Zhang, 2008; Pesaresi et al., 2008; Liu et al., 2010; Leitloff et al., 2010]. The 

methods , however, required additional data such as road maps for identifying vehicles 

from the VHR image [Lie et al., 2010; Leitloff et al., 2010]. In some cases, the vehicles 

are selected manually followed by extracting velocity and position [Xiong and Zhang, 

2008; Pesaresi et al., 2008].  

The new sensor configuration of WorldView-2 in addition to its high spectral resolution 

(eight spectral bands) has provided additional opportunities for moving vehicle extraction 

using VHR imagery. No previous study has benefited from these features of WorldView-

2 imagery for vehicle extraction, given the very recent availability of Worldview-2 

imagery in the market (since 2010). Therefore, it is desirable to develop a method 

exploiting the special characteristics of WorldView-2 imagery for moving vehicle 

extraction. 

1.5 Research Objectives 

The objectives of this research are fourfold, in order to solve the limitation identified in 

the above areas related to urban land cover classification and moving vehicle extraction 

from VHR imagery. Therefore, the four main objectives are as follows:  
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a) Provide a comprehensive literature review for evaluating the usefulness of textural, 

contextual, and morphological information of VHR imagery, and ancillary data (e.g., 

vector and LiDAR data) for urban land cover classification (both pixel-based and 

object-based).  

b)  Develop a multisource object-based classification framework using the combination 

of VHR imagery and vector ancillary data such as Spot Height data.  

c)  Develop a combined object- and pixel-based image analysis framework exploiting the 

advantages of both approaches for urban land cover classification of VHR imagery. 

d)  Develop an object-based moving vehicle extraction and velocity estimation method by 

exploiting the characteristics of a single image of the recently launched WorldView-

2 satellite. 

1.5.1 Review of the Spatial Information  

To this author’s knowledge, there has not been a comprehensive study on using spatial 

information, extracted either from the image or from ancillary data, in urban land cover 

classification of VHR imagery. The objective of Chapter 2 is to provide such a review. 

In particular, the objective is to evaluate the usefulness of each type of spectral, textural, 

morphological, contextual, and ancillary information in pixel-based and object-based 

classification of VHR imagery over urban areas. The contribution of each type of 

information in increasing the classification accuracy is quantitatively evaluated by 

reporting accuracies achieved in some recent publications. Another objective is to 

identify which type of spatial information has not been extensively utilized in the 

literature and need further investigation. This literature review is the basis of the 
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subsequent chapters in this dissertation; it also provides guidelines for future research in 

urban land cover classification of VHR imagery. 

1.5.2 Multisource Object-Based Classification 

From the literature review [Salehi et al., 2012], it has been identified that very few 

studies have been conducted on multisource urban land cover classification of VHR 

imagery. In addition, object-based approach has proved to be more effective for 

multisource classification. The objective of Chapter 3 is to develop a multisource object-

based classification framework using height point data and VHR imagery of urban areas. 

In particular, the research assesses the general applicability and transferability of the 

developed framework to different areas and VHR images. It also evaluates the effect of 

possible misregistration between vector data and VHR images on object-based 

classification.  

1.5.3 Combination of Object- and Pixel-Based Image Analysis 

The general objective of Chapter 4 is to develop a methodology exploiting the 

advantages of object-based image analysis (the use of additional spectral and spatial 

features of objects) and pixel-based classification (being automatic and independent of 

the area, application, and imagery) approaches. Specifically, the method focuses on 

developing a novel feature extraction method to conquer the problem of curse of 

dimensionality [Bellman, 1961] resulting from the huge number of object features 

derived from segmenting the VHR image. For this, a novel wavelet-based feature 

extraction method is developed. The proposed feature extraction method works on the 

basis of objects, as oppose to current feature extraction techniques which work on the 
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basis of pixels, thus the computation is dramatically reduced compared to the 

conventional feature extraction methods such as principal component analysis. Another 

objective is to test whether the additional bands of WorldView-2, compared to the 

conventional bands available in QuickBird and IKONOS, have significant impact on 

increasing the classification accuracy of impervious land cover types. Another objective 

is to test which set of objects features (i.e., spectral, textural, and morphological features) 

contributes more to increasing the classification accuracy. Finally, the last objective is to 

evaluate the impact of object size (level of segmentation) on the classification 

performance. 

1.5.4 Automatic Moving Vehicle Information Extraction 

Vehicle extraction and velocity estimation using a single VHR image has been 

considered in some recent studies (see section 1.4.2). However, the 0.5 m spatial 

resolution, the four new multispectral bands in addition to the four standards 

multispectral bands, and the new sensor configuration (i.e., four multispectral bands on 

either side of the panchromatic sensor) in the newly launched WorldView-2 have 

increased the opportunity for automatic moving vehicle information extraction. The 

objective of Chapter 5 is, thus, investigating an automatic method for extracting the 

moving vehicles and their information including position, speed, and direction using a 

single WorldView-2 image.  
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1.6 Data and Metrics  

The data and metrics used to evaluate the methods developed in each chapter are 

summarized in Table 1.2. 

 

Table  1.2 Data and metrics used for evaluation of the proposed methods 

Source of data Data Metric description Chapter 

QuickBird, IKONOS 

and Height Point 

were provided by 

City of Fredericton 

(1) IKONOS and QuickBird images of 

Fredericton, New Brunswick, acquired in 

19 June and 31 August 2002, 

respectively. Each image contains 1 

panchromatic band and four multispectral 

bands.  

(2) a layer of height points called Spot 

Height layer collected from 2002 stereo 

aerial photography of scale of 1:10000 

from City of Fredericton 

(3)Two manually digitized maps for the 

two images. The maps used as references 

for accuracy assessment 

Confusion matrix 

(Congalton and Green 

2009) and its all elements 

including overall 

accuracy, kappa 

coefficient, user’s and 

producer’s accuracies. 

The Z statistics of  each 

matrix 

Chapter 3 

(Salehi et 

al.,  2012) 

 The WorldView-2 

image was provided 

to the author through 

“ERDAS IMAGINE-

DigitalGlobe 2012 

Geospatial 

Challenge” contest 

 

(1) IKONOS, QuickBird and 

WorldView-2 images of Fredericton 

acquired in June 19, 2002, August 31, 

2002, and July 20, 2011, respectively. 

WorldView -2 contains a panchromatic 

band with spatial resolution of 0.5 m and 

eight multispectral bands of 1.8 m 

resolution. 

(2) Three manually digitized maps for the 

three images. The maps used as 

references for accuracy assessment  

Confusion matrix 

(Congalton and Green 

2009) and its all elements 

including overall 

accuracy, kappa 

coefficient, user’s and 

producer’s accuracies. 

Chapter 4 

(Salehi et 

al.,  2012 ) 

The WorldView-2 

image was provided 

to the author through 

“DigitalGlobe 8-band 

Research Challenge” 

contest 

WorldView-2 image of Moncton, New 

Brunswick, acquired in October 5, 2010. 

The image contains a panchromatic bands 

and two sets of multispectral bands (each 

contains four bands). The image covers a 

low speed traffic zone and a high speed 

traffic zone of Moncton. 

Correctness, 

Completeness, and Quality 

measures (Agouris et al.,  

2004) 

Chapter 5 

(Salehi et 

al.,  2012) 
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1.7 Overview of Each Chapter      

Chapter 1 presents the introduction. It comprises the structure of dissertation, research 

topic selection, research background, problem statement, objectives of the research, and 

an overview of each remaining chapter. ` 

Chapters 2 to 5 contain the four journal papers representing the main contributions of this 

PhD dissertation. 

• Chapter 2 presents a comprehensive review of recent literature in the field of urban 

land cover classification using VHR imagery. It provides research direction for 

chapter 3-4. 

• Chapter 3 demonstrates a new hierarchical rule-based and object-based classification 

framework using the combination of VHR imagery of urban areas.    

• Chapter 4 introduces a combined object- and pixel-based image analysis framework 

for urban land cover classification of VHR imagery. The framework includes three 

major parts, multiresolution segmentation, wavelet-based feature extraction, and 

pixel-based classification. 

• Chapter 5 presents a novel object-based method for automatic extraction of moving 

vehicles from a single set of WorldView-2 imagery. The method contains three major 

steps, object-based road extraction, moving vehicle extraction, and velocity 

estimation.  

• Chapter 6 presents the conclusions and recommendations. It summarizes the 

achievements of this dissertation followed by the suggestions for future work.  

 



 

17 

 

REFERENCES  

Agouris, P., Doucette, P. and Stefandis, A. [2004]. Automation and digital 

photogrammetric workstations, In: McGlone, J.C., Mikhail, E.M., Bethel, J., 

Mullen, R. , Manual of Photogrammetry, fifth ed. American Society for 

Photogrammetry and Remote Sensing, Bethesda, MA, pp. 949-981. 

Bellman, R. [1961]. Adaptive Control Processes: A Guided Tour, Princeton University 

Press, Princeton, New Jersey, 255 p. 

Blaschke, T. [2010]. Object-based image analysis for remote sensing. ISPRS Journal of 

Photogrammetry and Remote Sensing, Vol. 65, No. 1, pp. 2-16. 

Castellano, G., Boyce, J.  and Sandler, M. [1999]. CDWT optical flow applied to moving 

target detection, IEE Colloquium on Motion Analysis and Tracking, pp.17/1-17/6. 

Congalton, R.G., and Green, K. [2009]. Assessing the accuracy of remotely sensed data: 

principles and practices, Second edition. Taylor & Francis Group, Boca Raton, 

Florida, 183 p. 

Devereux, B.J., Amable, G.S. and Posada, C.C. [2004]. An efficient image segmentation 

algorithm for landscape analysis. International Journal of Applied Earth 

Observation and Geoinformation, 6(1), 47-61. 

Euroconsult© [2011). “Earth Observation Industry Remains Buoyant Despite 

Challenging Economic Environment”, Euroconsult© News available online at 

ttp://www.euroconsult-ec.com/news/press-release-33-1/52.html. 

Hermosilla, T., Ruiz, L. A.Recio, J. A. and Estornell, J. [2011]. Evaluation of Automatic 

Building Detection Approaches Combining High Resolution Images and LiDAR 

Data. Remote Sensing, Vol. 3, No. 6, pp. 1188-1210. 

Jenson, R. J. [2005]. Introductory Digital Image Processing: A Remote Sensing 

Perspective. Pearson Prentice Hall, NJ, USA.  

Leitloff, J. ,Hinz, S.  and  Stilla,U. [2010]. Vehicle detection in very high resolution 

satellite  images of city areas, IEEE Trans. Geosci. Remote Sens. vol.48, no.7, 

pp.2795-2806. 

Liu, W., Yamazaki, F. and Vu, T.T. [2010]. Automated Vehicle Extraction and Speed 

Determination From QuickBird Satellite Images, IEEE J. Selected Topics in 

Applied Earth Observations and Remote Sens., vol.4, no.1, pp.75-82. 

Mohapatra, R.P. and Wu, C. [2010]. High resolution impervious surface estimation: an 

integration of Ikonos and Landsat-7 ETM+ imagery. Photogrammetric Engineering 

and Remote Sensing, 76(12), 1329-1341. 

Munno, C. J., Turk, H., Wayman, J. L. , Libert, J. M.  and Tsao, T. J.  [1993]. Automatic 

video image moving target detection for wide area surveillance," In Proc. Int. Con. 

Security Technology, pp.47-57. 



 

18 

 

Myint, S.W., Gober, P., Brazel, A., Clark, S. G. and Weng, Q. [2011]. Per-pixel vs. 

object-based classification of urban land cover extraction using high spatial 

resolution imagery. Remote Sensing of Environment, 115(5), 1145-1161. 

Nag, S.  and Barnes, M.  [2003]. A moving target detection filter for an ultra-wideband 

radar, In Proc. IEEE Radar Conference, pp. 147- 153, 2003. 

Pesaresi, M.,  Gutjahr, K.H.   and  Pagot, E.  [2008]. Estimating the velocity and direction 

of moving targets using a single optical VHR satellite sensor image, Int. J. of 

Remote Sens., vol. 29, no.4, pp. 1221-1228. 

Salehi, B., Zhang,Y., Zhong, M. and Dey, V. [2012]. A review of the effectiveness of 

spatial information used in urban land cover classification of VHR imagery. 

International Journal of GeoInformatics, 8(3):35-51. 

Thomas, N., Hendrix, C. and Congalton, R.G. [2003]. A comparison of urban mapping 

methods using high-resolution digital imagery. Photogrammetric Engineering and 

Remote Sensing, Vol. 69, No. 9, pp. 963-972. 

Toth, C. K. and Grejner-Brzezinska, D. [2006]. Extracting dynamic spatial data from 

airborne imaging sensors to support traffic flow estimation, ISPRS Journal of 

Photogram.m  Remote Sens., vol. 61, no. 3/4, pp. 137–148. 

Watanachaturaporn, P., Arora, M. K. and Varshney, P. K. [2008] Multisource 

Classification using Support Vector Machines: An Empirical Comparison with 

Decision Tree and Neural Network Classifiers. Photogrammetric Engineering and 

Remote Sensing, Vol. 74, No. 2, 239-246. 

Weng, Q. and Quattrochi, D. A. [2007]. Urban Remote Sensing,CRC Press, Taylor& 

Francis Group, Boca Raton, 412 p. 

Wurm, M.,Taubenböck, H., Schardt, M.,Esch, T., and Dech, S. [2011]. Object-based 

image information fusion using multisensor earth observation data over urban 

areas. International Journal of Image and Data Fusion, Vol. 2, No. 2, pp. 121 – 

147. 

Xiong, Z.  and Zhang, Y. [2008]. An initial study on vehicle information extraction from 

single pass of satellite QuickBird imagery,” Photogramm. Eng. Remote Sens., vol. 

74, no. 11, pp. 1401–1411 

Yao, W., Hinz, S. and Stilla,U. [2011]. Extraction and motion estimation of vehicles in 

single-pass airborne LiDAR data towards urban traffic analysis,” ISPRS J. of 

Photogramm. Remote Sens., vol. 66, no.3,pp. 260-271.  

Yu, B. Liu, H, Wu, J., Hu, Y. and Zhang, L. [2010]. Automated derivation of urban 

building density information using airborne LiDAR data and object-based method. 

Landscape and Urban Planning, Vol. 98, No. 3-4,  pp. 210–219. 

Zhou, W., Huang, G., Troy, A. and Cadenasso, M.L. [2009]. Object-based land cover 

classification of shaded areas in high spatial resolution imagery of urban areas: A 

comparison study. Remote Sensing of Environment, Vol. 113, No. 8, pp. 1769-

1777.



 

19 

 

Chapter 2 : A REVIEW OF THE EFFECTIVENESS OF SPATIAL 

INFORMATION USED IN URBAN LAND COVER 

CLASSIFICATION OF VHR IMAGERY
1
 

 

Abstract 

Land cover classification of very high resolution (VHR) imagery in urban areas is an 

extremely challenging task, because of the low intra-class (within-class) and high inter-

class (between-classes) spectral similarities of impervious land cover types (such as 

buildings and traffic areas). Over the past decade, a significant amount of research has 

been conducted on the incorporation of spatial information along with spectral 

information of VHR imagery into urban land cover classification. The spatial 

information includes textural, morphological and contextual measures extracted from 

VHR imagery, as well as LiDAR- and photogrammetrically-derived DSM and existing 

GIS data layers. In this paper, a comprehensive review of recent literature was conducted 

to evaluate the effectiveness of such measures in land cover classification of urban areas 

using VHR imagery. For each measure, a comprehensive list of papers for both pixel-

based and object-based classification is provided. In addition, the classification results of 

                                                 
1
 This paper has been published in the International Journal of Geoinformatics: 

Salehi, B., Zhang,Y., Zhong,M., Dey, V., 2012. A review of the effectiveness of spatial information used in 

urban land cover classification of VHR imagery. International Journal of GeoInformatics,8(3):35-51. 
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representative publications are reported for each measure and its advantages and 

limitations in both pixel-based and object-based approaches are discussed. It has been 

found that, in general, object-based classification performs better than pixel-based 

approaches, since it facilitates the use of spatial measures by segmenting the image. 

Moreover, utilizing spatial measures significantly improves the classification 

performance for impervious land cover types, while may have no effect or even lower 

the classification accuracy for classes of vegetation and water surfaces. Textural 

measures are more commonly utilized in pixel-based approaches, while morphological 

measures have better performance in object-based classification. The effect of contextual 

measures on classification is enhanced when these measures are used in conjunction with 

two other measures, particularly in object-based approaches. Although ancillary data 

shows a very high potential to address the problem of spectral-based classifiers in 

separating spectrally similar impervious land cover types, incorporating such data, 

particularly photogrammetrically-derived DSM, in classification is still in a very early 

stage and requires significant exploration and development.  

 

2.1 Introduction 

Land cover classification is one of the most important topics in remote sensing both for 

researchers and practitioners, because of its broad applications in almost all geo-related 

domains. Remotely sensed images are the major, and sometimes the only, input in land 

cover classification. The spatial resolution of the image is one of the most important 

factors that affect land cover classification performance [Chen et al., 2004]. Previous 
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research has explored the impact of spatial resolution on classification of remotely sensed 

data [e.g., Price, 1997; Quattrochi and Goodchild, 1997]. 

Because of the sub-meter ground resolution, VHR images unveil a very high potential for 

more detailed and accurate mapping of the urban environment [Pacifici et al., 2009]. New 

VHR digital aerial cameras provide an excellent data source for the mapping and 

classification of urban areas, but their images are expensive and not easy to collect in a 

short period of time. With the advent of very high spatial resolution (≤1m) satellite 

sensors since 1999, such as IKONOS, QuickBird, OrbView, WorldView-1, GeoEye-1 

and WorldView-2, urban land cover classification has rapidly gained interest within the 

remote sensing community. However, the increased spatial resolution of VHR imagery 

does not automatically yield improved accuracy of urban land cover classification, if 

classifiers just employ the spectral information of the image (spectral-based classifiers).  

This is mainly due to the high spectral variation within the same land cover (intra-class 

spectral variation; e.g., buildings with different roof types) and the spectral confusion 

between different land covers (inter-class spectral confusion) [Lu et al., 2010; Xu and Li, 

2010; Huang et al., 2011].  

To compensate for the limitations of spectral-based classifiers, many researchers have 

attempted to develop techniques to incorporate spatial information extracted from VHR 

imagery and/or from ancillary data into classification. For the sake of convenience, we 

categorize the spatial information into four types: textural, contextual and morphological 

measures (extracted from the VHR image), and ancillary data such as digital 
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elevation/surface model (DEM/DSM) derived from LiDAR or stereo photographs and 

existing GIS data layers (e.g., road network and buildings’ footprint).    

This paper aims to review the most recent research on urban land cover classification 

using VHR satellite imagery. Specifically, the objective is to evaluate the effectiveness of 

incorporating the four aforementioned types of spatial measures in both pixel-based and 

object-based classification approaches.  Comprehensive lists of major publications 

(including peer-reviewed journal papers) in which these four types of spatial measures 

have been utilized in both pixel-based and object-based classification approaches are 

reported. In addition, the effect of each type of measures on increasing the classification 

accuracy is quantitatively evaluated by reporting the accuracies achieved in some recent 

literature. 

To date, we have not found a comprehensive review of different spectral and spatial 

measures used in classification of VHR imagery, particularly over urban areas. Lu and 

Weng [2007] conducted a survey of image classification methods and techniques for 

improving classification performance. Their survey includes a brief description of general 

process of image classifications, with the citation of a large amount of previously 

published literature. However, it did not focus on the classification of VHR imagery in 

urban environment. Liu et al., [2006] briefly reviewed classification patterns of remotely 

sensed imagery based on object-oriented approaches. Their study, however, is limited to 

describing basic steps of object-oriented image analysis along with reviewing a few 

selected publications. Gamba et al., [2005] presented a bibliographic review of the state-

of-the-art of urban remote sensing using multiple data sets. They briefly reviewed the 
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data fusion issues in urban areas without taking into consideration the capabilities of 

VHR imagery in urban analysis.      

2.2 Spatial Information Used in Classification 

The aforementioned spatial measures are utilized in either pixel-based or object-based 

classification in order to help the classifier distinguish different land cover classes. Since 

the nature of such measures and their effects on classification are different in pixel-based 

and object-based image analysis, it is useful to give a brief review of these two generic 

types of classification before proceeding to the review of the measures. 

2.2.1 Pixel-based vs. Object-based Classification 

In general, image classification approaches can be grouped into different categories such 

as supervised or unsupervised, parametric or non-parametric, hard or soft (fuzzy) [Lu and 

Weng 2007]. In each category the basic processing unit could be pixel or object; 

accordingly approaches are described as pixel-based (or per-pixel) and object-based. 

Although pixel-based approaches are still widely used for mapping particular urban 

impervious land cover types such as large commercial parcels, the distribution and shape 

of such cover types in heterogeneous areas may be more accurately mapped by object-

based classification approaches [Hester et al., 2008]. A serious problem associated with 

pixel-based classifiers is the so-called “salt and pepper” effect or “structural clutter”[Van 

de Voorde et al.,  2007], which produces a noisy classification result due to the spectral 

heterogeneity of classes in an urban environment and the lack of topological information 

used to classify pixels [Sims and Mesev, 2007]. This effect is more significant in the 
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VHR image classification especially over complex urban environments, because of the 

high intra-class spectral heterogeneity of some surface types. To reduce this negative 

effect of pixel-based classification approaches, some studies have proposed post-

classification techniques [e.g., Van de Vorde et al., 2007; Hester et al., 2008]. For 

example, Hester et al. (2008) applied a 3x3 majority filter to eliminate the cluttered pixels 

resulted from the pixel-based classification. Van de Voorde et al. (2007) applied rules 

based on the contextual information encompass the pixel to eliminate the clutter (e.g. 

pixels that are completely surrounded by water are assigned to water).These techniques, 

however, may remove small land cover types such as single-family houses and single 

trees.  

The object-based classification approach, on the other hand, decreases variance within 

the same land cover type by averaging the pixels within the object, which prevents the 

“salt and pepper” effect of pixel-based classification approaches [Chen et al., 2009a]. 

Starting from around the year 2000, studies of object-based images analysis have sharply 

increased [Blaschke, 2010].  A comprehensive list of recent literature concerning object-

based urban land cover classification of VHR imagery is provided in Tables 2.1, 2.4, 2.6, 

and 2.8. Other sources of object-based image analysis research include three online 

archives of conference proceedings (Object-based Image Analysis [OBIA 2006], 

GEographic Object-based Image Analysis [GEOBIA 2008 and GEOBIA 2010]), a book 

published on object-based image analysis by Blaschke et al., [2008] and a literature 

review paper by Blaschke [2010]. It is noteworthy that much of the work referring object-

based image analysis originated around the “eCognition” software [Benz et al., 2004]. 
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The next section reviews the spatial measures utilized in classification of land covers in a 

typical urban environment. The measures incorporated into both pixel-based and object-

based classification are discussed and the advantages and limitations of each type of 

measure are evaluated. 

2.2.2 Spectral-based Classifiers 

 Spectral-based classifiers have promising performance when applied to the medium and 

high spatial resolution images with several spectral bands for mapping relatively large 

homogeneous areas such as vegetation, forest, water and soil [Lu and Weng, 2007; 

McMahon, 2007; Xu and Li 2010]. However, because of similarities in  the spectral 

response of land cover types in an urban scene,  along with the low spectral resolution of 

VHR imagery (the limited number of spectral bands and the wide wavelength range 

covered by them), the classification of such imagery is a challenging task [Zhang and 

Couloigner, 2006].  

Despite the fine spatial resolution of VHR imagery, its spectral resolution is limited to 

four multispectral bands (except the newly launched WorldView-2, which has eight 

multispectral bands) and a panchromatic band. Moreover, most of the bands that are 

suitable for separating urban land cover types lie outside or near the boundaries of the 

wavelength range of the multispectral bands of VHR imagery [Herold et al., 2003b] (e.g., 

at wavelength around 580 nm which lies in the boundaries of the Green band or at 

wavelengths around 740nm which lies outside of Red and NIR bands of VHR images). 

Ben-Dor [2001], Herold et al., [2004] and Warner and Nerry [2009] concluded that the 

shortwave and thermal infrared spectral regions are important for urban applications. 
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These bands, however, are not present in the VHR imagery. Thomas et al., [2003] stated 

that the lack of mid-infrared bands in VHR images hinders the ability of traditional 

spectral-based classifiers to accurately distinguish detailed land cover types. Herold et al.,  

[2003b] also concluded that some land cover classes such as asphalt road, tar roof and 

parking lot have a very similar and constant low reflectance over the whole spectral range 

such that even the AVIRIS  hyperspectral sensor has limitation in mapping these classes.  

2.2.3 Spatial Measures Extracted from the Image 

Spectral-based classifiers detect land cover classes exclusively according to spectral 

information while the large amount of valuable image spatial information is neglected. 

Moreover, in an urban landscape, impervious classes are spectrally too similar to be 

distinguished using only spectral information of the image. Hence, for the mapping of 

such classes, it is necessary to incorporate spatial information together with spectral 

information in the classification process. Two distinct types of method which utilize 

spatial information from an image are region-based and window-based methods [Gong et 

al., 1992]. The region-based method is usually used in object-based, whereas the 

window-based method is used in pixel-based approaches.  

In the following sub-sections, the performance of each type of spatial measures, i.e., 

textural, contextual and morphological measures of the image and spatial measures of 

ancillary data in both pixel-based and object-based approaches is reviewed. According to 

the results achieved in individual publications, the strengths and limitations of each group 

are discussed. The increase of classification accuracy resulting from the incorporation of 

spatial information into classification over conventional spectral-based classifiers is 
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reported. The classification accuracies reported through this review paper are all based on 

Error or Confusion matrix [Congalton, 1991; Richards and Jia, 2006] unless otherwise 

specified. For most literature, mentioned in tables, the Overall Accuracy (OA) and/or 

Kappa coefficient (KA) are used. In some cases, where available, the Producer’s 

Accuracy (PA) of the classification of land covers such as buildings and roads is reported 

as well. 

2.2.3.1 Textural Measures 

Many researchers have attempted to employ texture measures as additional spatial 

information in the urban land cover classification of VHR images to overcome the lack of 

spectral information [Carleer and Wolff, 2006; Myint, 2007] in both pixel-based and 

object-based classification approaches (Table  2.1). The result of our literature review 

indicates that texture features extracted from gray level statistics, especially those from 

co-occurrence gray level matrix (GLCM), are the most useful texture measures used in 

the classification of VHR images over urban areas, particularly when pixel-based 

approaches are utilized. 

Table  2.1 List of papers which have utilized different GLCM textural measures in urban 

land cover classification of VHR imagery 
Pixel-based classification Object-based classification 

Zhang (1999); Pesaresi (2000); Maillard (2003); Shackelford and Davis 

(2003a); Shackelford and Davis (2003b); Chen et al.,  (2004); Myint et al.,  

(2004); Walter (2004); Mena and Malpica (2005);  Myint and Lam (2005);  

Puissant et al.,  (2005); Zhang and Couloigner (2006); Alonso et al.,  (2007); 

Myint (2007); Agüera et al.,  (2008); Aksoy et al.,  (2009); Pacifici et al.,  

(2009); Luo and Mountrakis (2010); Lu et al.,  (2010); Ouma et al.,  (2010); 

Tassetti et al.,  (2010).  

Herold et al.,  (2003a); Thomas et 

al.,  (2003); Walter (2004); Song et 

al.,  (2005); Carleer and Wolf 

(2006); Su et al.,  (2008); Chan et 

al.,  (2009); Hermosilla et al.,  

(2011); Pu et al.,  (2011); Salehi et 

al.,  (2011a). 
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Several recent publications have benefited from the GLCM for the purpose of mapping 

urban areas using VHR imagery. For instance, Maillard (2003) concluded that GLCM 

gives superior results over the semivariogram and the Fourier-based texture extraction for 

the scenes where objects are distinguishable visually by their textures’ characteristics. 

Buildings and traffic areas are well-textured classes in VHR images and they can be 

easily distinguished by visual interpretation. Consequently, the GLCM works better than 

the two others in this case.  

Among the 14 GLCM texture measures, originally proposed by Haralick [1979], some of 

them are strongly correlated with each other [Cossu, 1988]. Thus, the choice of optimal 

texture measure is an important issue in GLCM texture extraction [Jensen, 2005]. 

Maillard [2003] reported that the most commonly used GLCM texture features in 

literature are, in decreasing order of popularity, the angular second moment (ASM), 

entropy (ENT), the inertia (initially contrast (CON)), the correlation (COR) and the 

inverse difference moment (IDM). Pacifici et al., [2009] believe that energy (ENR) 

(which is the square root of ASM), CON, variance (VAR), COR, ENT and IDM are the 

most relevant measures used in literature. Based on the prototype performance approach 

and its application in urban areas [Pratt 2007], Puissant et al.,  [2005] and Su et al.,  

[2008] concluded that four GLCM texture features used in mapping urban areas are 

homogeneity (HOM), ENT, dissimilarity (DIS) and the ASM. 

We conducted a broad search on the major publications (mostly peer reviewed journals) 

in the area of urban land cover classification using VHR imagery to find which GLCM 

measures have mostly been utilized. The results are summarized in Table 2.2. Based on 
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the number of papers listed in Table 2.2 for each measure, a graph was plotted and is 

shown in Figure 2.1.  ENT and ASM (or ENG) are the most frequently used measures. 

Nineteen and sixteen papers have utilized ENT and ASM respectively. HOM and CON 

ranked third (Figure 2.1). These two measures have been utilized in thirteen papers.  

 

Table  2.2 List of papers which have utilized different GLCM textural measures in urban 

land cover classification of VHR imagery 

GLCM   Paper 

HOM Zhang (1999); Herold et al.,  (2003a); Puissant et al.,  (2005); Carleer and Wolf (2006);  Agüera et al.,  

(2008); Su et al.,  (2008);  Pacifici et al.,  (2009); Lu et al.,  (2010); Luo and Mountrakis (2010); Ouma et 

al.,  (2010); Tassetti et al.,  (2010); Pu et al.,  (2011); Salehi et al.,  (2011a). 

ASM 

(ENG) 

Zhang (1999); Pesaresi (2000);  Herold et al.,  (2003a); Maillard (2003);  Myint et al.,  (2004); Puissant et 

al.,  (2005); Carleer and Wolf (2006); Myint (2007); Agüera et al.,  (2008); Su et al.,  (2008); Pacifici et 

al.,  (2009); Luo and Mountrakis (2010); Lu et al.,  (2010);  Ouma et al.,  (2010); Pu et al.,  (2011); Salehi 

et al.,  (2011a). 

ENT Zhang (1999); Pesaresi (2000);  Herold et al.,  (2003a); Maillard (2003); Shackelford and Davis (2003a); 

Shackelford and Davis (2003b); Myint et al.,  (2004); Puissant et al.,  (2005); Carleer and Wolf (2006); 

Alonso et al.,  (2007); Myint (2007);  Agüera et al.,  (2008); Su et al.,  (2008); Chan et al.,  (2009);  

Pacifici et al.,  (2009); Ouma et al.,  (2010); Tassetti et al.,  (2010); Pu et al.,  (2011);  Salehi et al.,  

(2011a). 

CON 

(Inertia) 

Zhang (1999); Pesaresi (2000); Herold et al.,  (2003a); Maillard (2003); Carleer and Wolf (2006); Myint 

(2007); Agüera et al.,  (2008); Su et al.,  (2008);Pacifici et al.,  (2009); Luo and Mountrakis (2010);  

Ouma et al.,  (2010);  Pu et al.,  (2011); Salehi et al.,  (2011a). 

COR Maillard (2003); Alonso et al.,  (2007); Myint (2007); Agüera et al.,  (2008); Pacifici et al.,  (2009); 

Ouma et al.,  (2010);  Pu et al.,  (2011); Salehi et al.,  (2011a). 

IDM Pesaresi (2000); Maillard (2003); Myint (2007). 

VAR 

(STD*) 

Herold et al.,  (2003a); Shackelford and Davis (2003b); Agüera et al.,  (2008); Chan et al.,  (2009); Ouma 

et al.,  (2010); Tassetti et al.,  (2010);  Pu et al.,  (2011); Salehi et al.,  (2011a). 

DIS Herold et al.,  (2003a); Puissant et al.,  (2005); Carleer and Wolf (2006); Agüera et al.,  (2008); Pacifici et 

al.,  (2009);   Lu et al.,  (2010); Ouma et al.,  (2010); Pu et al.,  (2011). 

MEN† De Martino et al.,  (2003); Agüera et al.,  (2008); Chan et al.,  (2009); ; Lu et al.,  (2010); Ouma et al.,  

(2010); Tassetti et al.,  (2010). 
*STD: Standard Deviation ; † MEN:Mean 
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Figure  2.1 The most used GLCM texture measures for urban land cover classification of 

VHR imagery 

 

Having determined the appropriate GLCM measure(s), four important factors including 

window size and shape, quantization level, inter-pixel distance and direction of spatial 

relationship, must be defined for each measure [Su et al.,  2008], since they influence the 

effectiveness of extracted measures in the classification process. The success of 

classification using texture features depends largely on the selected window size [Su et 

al., 2008]. The window size and shape are automatically identified in object-based 

texture extraction inasmuch as the measure is calculated for each individual object 

resulting from the segmentation stage. In pixel-based approaches, however, the optimum 

of window size and three other factors must be determined. Window size is related to 

image resolution and content. Puissant et al., [2005] believe that it would be interesting to 

choose different window sizes according to the size of features to be extracted. For the 

choice of direction, the literature proposes calculation of texture measures in four 

directions (0, 45, 90 and 135 degrees) and then taking the average of them [Haralick 

1979; Anys et al., 1994]. Several researchers suggest that it is a good idea to reduce the 
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quantization level (e.g., from 8 bits to 5 bits) of the input data so that the GLCM to be 

computed for each pixel does not become too large [Jensen, 2005]. 

Table 2.3 shows different texture measures with their corresponding texture factors used 

in some recent papers. Because of space limitations, we listed the results for the journal 

papers in which different VHR imagery, different urban land cover types, and different 

classification methods are utilized. From Table 2.1, it can be seen that the texture 

measures and their optimal factors differ from each other for different input data and 

different land cover types.  Furthermore, the improvement in OA, as the result of 

incorporating texture into classification, ranges from 2% to 11% for papers listed in this 

table.  
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Table  2.3 Examples of using textural measures (with their corresponding optimal factors) 

for improving the urban land cover classification of VHR imagery. The textural measures 

are incorporated as additional band into the classification. Accuracy improvement (Imp) 

is over the case where only spectral band(s) of the image is utilized in the classification 

process. 
Input data Land cover 

types 

Texture 

measures 

Optimal 

Texture factors 

Classificatio

n 

approach 

Accuracy Paper 

VHR – Simulated 

image (1 pan and 3 

MS bands at 1m 

Spatial res.) 

Water 

,shadow, 

tree, grass, 

road, built-up 

HOM 

of pan band 

W.S: :7x7 

Dir.: average 

of (0,45,90, 

135) 

I.P: 1 ; Q.L: 

NM 

Pixel-based 

Discriminant 

Analysis 

OA:92.2% 

Imp:4.4% 

Puissan

t et al.,  

(2005) 

VHR-QB 

(Pansharp bands) 

Shrub, 

grassland, 

water,  road, 

building, 

vacant land, 

shadow 

ASM over 

objects from 

segmented 

image 

Dir.: 45 

Q.L:NM, 

I.P:NM 

Object-based 

Maximum 

Likelihood  

OA:83.7% 

Imp:2.1% 

Su et 

al.,        

( 2008) 

CON over 

image* 
W.S:7x7 

Q.L:NM, 

I.P:NM 

 OA:87.3% 

Imp:5.7% 

VHR-IK 

(Pansharp bands) 

Road, 

building, tree, 

water, grass, 

shadow, bare 

soil 

1st order 

statistic 

(ENT) 

of Pan band 

W.S: 20x20 

Dir., I.P, Q.L: 

Not Applicable 

Pixel-based 

Hierarchical 

Fuzzy  

Road-

Buil.:73% 

Imp :1.5% 

Grass-Tree: 

97.3% 

Imp :11% 

Shackel

ford 

and 

Davis 

(2003b) 

VHR-IK 

(Pan & MS) 

Vegetation, 

soil, asphalt, 

metallic roof, 

shadow 

ENT and 

COR 

of pan band 

W.S:NM 

Dir. PC1 of  8 

PCs for 

(0, 45, 90,135) 

Q.L:NM,  

I.P:NM 

Pixel-based 

Maximum 

Likelihood  

OA: 82.7% 

Imp: 3.4% 

Alonso 

et al.,  

(2007) 

 

*First, the texture measure was calculated for four MS bands resulting four textural bands, then Principal Component 

Analysis (PCA) was applied to four textural bands and the 1st PC was chosen as the final texture measure. 
† Different combinations of W.S, Dir. and I.P for all five measures were used. For the reason of limited space it is not 

possible to present all of them in this table. The reader is referred to the cited paper for more information. 

Acronyms definition: WV1=World View-1 imagery, Pan= Panchromatic, MS= Multispectral, W.S=Window Size, 

Dir=Direction, Q.L=Quantization Level, I.P=Inter Pixel distance, NM=Not Mentioned. Other acronyms are defined 

either in the text or in Table 2.1. 

 

2.2.3.2 Contextual Measures 

Whereas texture is the spatial variation within a small group of pixels, the context of a 

pixel (or a group of pixels) refers to its spatial relationship with the local and global 

configuration of neighbouring pixels [Gurney and Townshedn, 1983; Binaghi et al., 

2003]. In VHR imagery, adjacent pixels are related or correlated [Khedama and Belhadj-

Aissaa, 2004]. The spatial correlation or dependency arises due to the fact that spatial 
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resolution of the sensor is finer than the size of objects being classified [Shekhar et al., 

2002]. Information from neighbouring pixels (contextual information) plays an important 

role in the identification and extraction of urban features from remote sensing imagery 

[Jin and Davis, 2005] by increasing the discrimination capabilities of spectral pixel-based 

measured data. Moreover, in object-based approaches, when multi-scale segmentation is 

utilized, over-segmentation occurs in the lower levels of segmentation, resulting in too 

many boundaries such that real objects such as buildings and roads are split into two or 

more smaller objects. Hence, the spectral information of the object of interest is 

correlated with that of adjacent objects in the same level or with the spectral information 

of the super objects from the upper level. This contextual information can be incorporated 

into classification compensating for the spectral confusion between spectrally similar 

objects. 

 To date, little research has been conducted on incorporating contextual information in 

classification and object extraction of VHR imagery (compared to textural and 

morphological information). Table 2.4 lists the papers which have utilized contextual 

measures in the pixel-based or object-based classification of VHR imagery of urban 

areas. 

Table  2.4 List of papers which have utilized contextual measures in pixel-based or 

object-based urban land cover classification of VHR imagery 

Pixel-based classification Object-based classification 

Gurney and Townshed (1983); Binaghi et al., (2003); Melgani and 

Sebastiano (2003); Shakelford and Davis (2003a); Shakelford and Davis 

(2003b);  Khedam and Belhadj (2004); Jin and Davis (2005); ; Bellens et 

al.,  (2008a); Miller et al.,  (2009). 

Herold et al.,  (2003a); Shakelford and 

Davis (2003a); Thomas et al.,  (2003);  

Nghi and Mai (2008) ; Chan et al.,  (2009); 

Hermosilla et al.,  (2011) ; 
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 Shadows of high-rise features such as buildings and trees are among the widely used 

contextual measures. Several studies have utilized it in the pixel-based [e.g., Jin and 

Davis 2005; Bellens et al., 2008b] or in the object-based [e.g., Shackelford and Davis 

2003a; Nghi and Mai, 2008] classification processes in order to separate buildings from 

roads and streets in urban areas. Structural measures such as the length and width of a 

connected group of spectrally similar pixels are considered as contextual measures in 

pixel-based image analysis methods, while they are categorized as morphological 

measures in object-based methods. In the former case, these measures are calculated 

based on the spatial relationship between neighbouring pixels whereas in the latter case 

they are directly related to shape and size of each individual object. For example, 

Shackelford and Davis [2003b] used the length and width of a connected group of pixels, 

calculated based on spatial relationships within that group of pixels as two additional 

contextual bands in the classification. The length and width bands have high value for 

road and building classes, respectively. 

Nghi and Mai [2008] utilized contextual relation in object-based classification. The 

contextual relation of an object is the number of objects that are adjacent with the object 

of interest. For instance, road objects have stronger relation than building objects. Thus, 

the relation can be used as additional information in the object-based classification to 

separate roads from buildings or shadows from large water bodies. In object-based 

approaches, the difference between the mean brightness value of the object of interest to 

its neighbour objects and to super objects for different bands are other types of contextual 

measures [Thomas et al., 2003].Table 2.5 presents the results of some literature that have 
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used contextual information as additional bands in the urban land cover classification 

process of VHR imagery.  

Table  2.5 Examples of using spatial measures (mainly contextual measures) for 

improving the urban land cover classification of VHR imagery. The spatial measures are 

incorporated as additional band into the classification. Accuracy improvement (Imp) is 

over the case where only spectral band(s) of the image is utilized in the classification 

process 

Input 

data 

            Land cover    

types 

                Spatial measures Classificatio

n 

approach 

Accuracy Paper 

VHR-IK 

(Pansharp 

bands) 

Road, building, tree, 

water, grass, shadow, 

bare soil 

Texture: 1st order ENT 

for grass-tree 

Pixel-based 

hierarchical 

fuzzy 

classificatio

n 

OA: 

92.7%,Imp:11% 

Road: 

PA:88%,Imp:17

% 

Building: 

PA:84%, 

Imp:11% 

Shackelfo

rd and 

Davis 

(2003b) 

Context: Length-width 

of a connected group of 

pixels  for road-building 

and water-shadow 

VHR-IK 

(Pansharp 

bands) 

Road, building, tree, 

water, grass, shadow, 

bare soil, impervious 

surf. 

Context: Shadow of the 

objects 

Pixel/Object

-based 

Fuzzy 

classificatio

n 

Building: 

PA:76%, 

Imp:3%, Road: 

PA:99%Imp:28

% 

Shackelfo

rd and 

Davis 

(2003a) 

Morphology: Skeleton 

of the objects 

VHR-QB Water, grass, tree, 

roof(dark, red, white) 

road, other man made, 

shadow 

Context: 

Shadow Proximity 

Feature(SPF), 

Shadow Distance 

Feature(SDF) 

Pixel-based 

Maximum 

Likelihood 

OA: 72% 

Imp:4% .In the 

case where only 

one context, 

either SPF or 

SDF is used 

Bellens et 

al.,  

(2008a) 

VHR-

IK(Pan 

band) 

Agricultural land, road 

networks, industrial 

plants, quarries, urban 

components (large 

buildings , small 

houses) 

Context: 

A Multi-window set  

(6x6,20x20,56x56 

pixels) of image data 

was used directly  as the 

input of contextual 

information  for MLP 

classifier 

Pixel-based 

Multi Layer 

Perceptron 

(MLP) 

Neural 

Network 

Correlation 

coefficient†:0.77 

Imp: 0.28 

Standard 

error:25.1 

Imp: 28.8 

Binaghi et 

al.,  

(2003) 

*Feature Analyst software was released by Visual Learning System (VLS) in 2001and later on was developed as an 

extension for ESRI’s Arc GIS and ERDAS Imaging (Miller et al., 2009). 
†Accuracy assessments are based on regression analysis used for soft classification. Improvement is over the case when 

only a single window of 3x3, as oppose to multi-window set, was used with the same classification strategy. 

 

2.2.3.3 Morphological Measures 

The effectiveness of the aforementioned spatial measures, particularly texture measures, 

is highly dependent on the choice of optimal window size in pixel-based approaches and 

the level of segmentation in object-based ones. The optimal window size differs for 
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different classes in an urban scene, but defining an optimal window size or segmentation 

level for extracting textural and contextual measures is not an easy task. Moreover, 

members of same class can have different spectral reflectance values, such as black and 

gray building roofs [Miller et al., 2009]. Consequently, they may have different textural 

and contextual measures. On the other hand, buildings, roads and parking lots possess 

specific morphological characteristics such as shape (smoothness and compactness) and 

size (length, width, perimeter, area, etc), especially in VHR images. A list of 

morphological measures can be found in the literature [e.g., Pratt, 2007 ; Definiens 

Developer 2007]. Incorporation of these morphological features into classification 

compensates for the lack of spectral information of VHR images and facilitates the 

discrimination process of spectrally similar classes. Subsequently, the classification 

accuracy of such classes increases. 

Incorporating morphological measures in the pixel-based classification is usually done by 

applying a morphological filter to the image. Having applied the filter to the image, the 

spatial form or structure of objects within the image is modified. This modified image, 

then, is used as an additional band to the original bands of the image in classification. 

Dilation, erosion and skeletonization are three fundamental morphological operations 

[Pratt, 2007]. However, opening and closing, which are composed by combination of 

erosion and dilation operations, are the most common morphological operators used in 

literature in order to modify the form and structure of the objects within the image 

[Shackelford and Davis, 2003b]. Morphological measures are more meaningful and 

applicable in object-based classification approaches [Bellens et al., 2008b] and many 
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researchers have benefited from their use. Table 2.6 lists the papers in which 

morphological measures have been utilized in pixel-based or object-based classification 

of VHR imagery of urban areas. 

In object-based approaches the shape and size, as morphological measures of segmented 

regions, are directly utilized in classification. Table 2.7 as well as Table 2.5 report some 

examples of the use of morphological measures along with the classification approach 

and their corresponding accuracies in the urban land cover classification of VHR 

imagery. 

Table  2.6 List of papers which have utilized morphological measures in pixel-based or 

object-based urban land cover classification of VHR imagery  

Pixel-based classification Object-based classification 

Benediktsson et al.,  (2003); Cablk and Minor (2003); Jin 

and Davis (2005); Mena and Maplica (2005); Bruzzone 

and Carlin (2006); Inglada (2007); Bellens et al.,  

(2008b); Fauvel et al.,  (2008); Tuia et al.,  (2009); Chan 

et al (2009); Lhomme et al.(2009). 

Bauer and Steinnocher (2001);Herold et al.,  (2003a); 

Shakelford and Davis (2003a); Thomas et al.,  (2003); 

Carleer and Wolf (2006); Nghi and Mai (2008); Walker 

and Blashke (2008); van der Werff and van der Meer 

(2008); Chen et al.,  (2009a); Zhou et al.,  (2009);   Xu 

and Li (2010); Hermosilla et al.,  (2011); Pu et al.,  

(2011); Salehi et al.,  (2011b); Salehi et al.,  (2011c). 
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Table  2.7 Examples of using morphological measures (with their corresponding optimal 

factors) for improving urban land cover classification of VHR imagery. The 

morphological measures are incorporated as additional band into the classification. 

Accuracy improvement (Imp) is over the case where only spectral band(s) of the image is 

utilized in the classification process. 

Input data Land cover types Morphological measures Classification 

approach 

Accuracy Paper 

VHR-QB 

(Full 

band) 

Building and 

Transportation 

area 

Length, width, length/width, 

area excluding inner regions, 

area including inner regions, 

perimeter, compactness 

 

Object-based 

Nearest 

Neighbour 

KC: 

Urban area:0.51 

Suburban area:0.71 

Carleer 

and 

Wolff 

(2006) 

 

VHR- QB 

(Pan 

band) 

Building, 

apartment blocks, 

road, railway, veg. 

,trees, bare soil, 

soil, tower 

 

Morphological operators: 

Opening, closing, 

reconstructed opening, 

reconstructed closing, with 

SE of the size of 9-25 pixels 

Pixel-based 

SVM 

 

OA:86.5%,Imp:52.5

% 

Build.:89%,Imp:62% 

Road:89%,Imp:35% 

Tuia et 

al.,  

(2009) 

VHR-QB 

(Pan and 

Pansharp) 

Gray roof, Red 

roof, Road, 

Shadow, Rural 

area , Grass, Tree 

From the 6th level of 

segmented image: 

Width/length ratio, 

Shape index, Rectangular fit 

Pixel-based 

SVM 

classification 

of segmented 

image 

OA:92.6% 

Imp:4% 

Bruzzon

e and 

Carlin 

(2006) 

 

VHR-IK 

(Full 

band) 

Water ,grass, tree,  

buildings (dark, 

red and white 

roof), road, 

shadow, other 

man-made objects 

Geometric Activity(GA) 

features 

including Ridge features 

based on facet model and 

Morphological 

features(closing) 

Pixel-based 

Multi Layer 

Perceptron 

Neural 

Network 

OA:71%,Imp*:5.4% 

Average PA of Man-

made objects:72.2%, 

Imp*:5.3% 

Chan et 

al.,  

(2009) 

      

VHR-QB 

(Full 

band) 

 

 

 

Bare soil ,grass, 

tree, roof, road 

Morphological operators: 

Eight disk shaped SEs and 

eight line shaped SEs 

morphological profiles(MP) 

with partial reconstruction 

Pixel-based 

Multilayer 

Perceptron 

Neural 

Network 

OA:89%, Imp*:9% 

Road:72%, 

Imp:18.4% 

Roof:93%, 

Imp:17.6% 

Bellens 

et al.,  

(2008b) 

 

VHR-QB  

(Pansharp 

bands) 

 

Building, road, 

tree, grass, soil, 

shadow, other 

impervious surface 

 

7 Hu’s, invariant moments  

 

10 Zernike invariant 

moments 

 

17 Wavelet invariant 

moments  

 

Object-based 

SVM 

 

OA: 80.5%, 

Imp‡:6.8%, 

Build:74.6%,Imp:6.4

% 

OA: 79.5%, 

Imp:5.8% 

Build:70.2%,Imp:2% 

OA: 80.2%, Imp: 

6.5% 

Build: 70.2%,Imp:2% 

 

Xu and 

Li 

(2010) 

 

*
Improvement is over pixel-based MLP neural network when only spectral information (i.e., 4 MS bands + Pan and 

NDVI bands) is used 
†Improvement is over the same pixel-based neural network when only 1st component of 40 principal components of the 

original data is used 
‡Improvement is over the same object-based SVM when only spectral information (four Pan-sharp bands) is used. 

 



 

39 

 

2.2.4 Spatial Measures Extracted from the Ancillary Data 

Spatial information can be derived from the image itself (e.g., texture, context and 

morphology), which was broadly discussed in previous sections and/or from other data 

sources, the so-called ancillary data. Ancillary data layers are key components of accurate 

image classification [Thomas et al., 2003]. Particularly, with the widespread availability 

of VHR imagery, digital elevation/surface model (DEM/DSM) extracted from LiDAR 

data or stereo images and existing GIS data layers, the importance of integrating these 

data for detailed mapping of urban environments becomes highly significant. Heinl et al., 

[2009] showed that the use of ancillary data improves the classification accuracy 

independent of classification method. 

When ancillary data are utilized along with the image in the classification process, 

usually the misregistration between the ancillary data and the image is a problematic 

issue. Precise geometric registration of corresponding data layers is often very difficult to 

achieve, particularly for VHR imagery. Since the basic mapping unit in object-based 

approaches is a group of connected pixels (i.e., object instead of pixel), the 

misregistration between multisource data (i.e., VHR image, LiDAR and GIS data layers) 

is not as serious as for pixel-based approaches [Justice et al., 1989; Zhou et al., 2008]. In 

fact, object-based approaches facilitate the use of ancillary data [Kim et al., 2010] and 

since they require less precise registration of the image, they are highly desirable for 

multisource image analysis [Kim et al., 2010].  

Several methods may be used to incorporate ancillary data into the classification process. 

The most common used is the stacked vector or the logical channel method [Jensen 2005, 
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Watanachaturaporn et al., 2008; Huang et al.,  2011], which considers the ancillary data 

as an extra channel (band) to the original channels of the image in pixel-based or object-

based classification . In object-based approaches, in addition to the stacked layer method, 

ancillary data are also used in a rule-based manner during segmentation [e.g., Bouziani et 

al., 2010] and classification. 

Two groups of ancillary data are frequently used: DSM produced from LiDAR (LiDAR-

derived DSM) data or from aerial or satellite stereo images (photogrammetrically-derived 

DSM) and GIS data layers such as the map of parcels, the road centreline network, etc. 

Table 2.8 lists the papers in which ancillary data have been incorporated into 

classification (both pixel-based and object-based) of VHR imagery of urban areas. As 

seen in this table, object-based approaches have utilized ancillary data significantly more 

than have pixel-based approaches. 

Table  2.8 List of papers which have utilized ancillary data in the pixel-based or object-

based urban land cover classification of VHR imagery 

 

 

Height  

(Mainly 

LiDAR 

data) 

Pixel-based classification Object-based classification 

Hodgson et al.,  (2003); 

Rottensteiner et al.,  

(2003); Rottensteiner et 

al.,  (2005); Huang et al.,  

(2011). 

Schiewe and Ehler (2005);  Brennan and Webster (2006); Zhou and 

Troy (2008); Zhou et al.,  (2008); Aubrecht et al.,  (2009); Chen et al.,  

(2009b); Zhou et al.,  (2009);  Hussain and Shan (2010); Yu et al.,  

(2010); Hermosilla et al.,  (2011); Salehi et al.,  (2011b);Wurm et al.,  

(2011). 

GIS data 

layers 

Thomas et al.,  (2003) Sims and Mesev (2007); Zhou and Troy (2008); Zhou et al., (2008); 

Aubrecht et al., (2009); Bouziani et al., (2010).  

 

 

2.2.4.1 DSM Derived from LiDAR and Stereo Photographs 

DSM generated by LiDAR data or by stereo aerial/satellite images (photogrammetrically-

derived DSM) gives information about the height of objects (e.g., buildings and trees); 

thus it is very helpful in separating spectrally similar objects with different heights (e.g., 
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buildings from streets and tree from shadows). LiDAR- and photogrammetrically-derived 

DSM represent the height of each pixel with respect to the reference datum. 

Consequently, when they are intent to be incorporated in the classification process, the 

first stage involves removal of the underlying terrain, so-called digital elevation model 

(DEM), from the DSM to produce the heights of objects above the local ground (e.g., 

building’s height) [Ma 2005].The resultant height is referred to as normalized DSM 

(nDSM) [Chen et al., 2009b]. The nDSM could then be integrated along with the spectral 

bands of the image as an additional channel in both segmentation and classification 

processes or as additional information in rule-based segmentation and classification. The 

influence of DSM on classification can be controlled by adjusting channels’ weights in 

the former method [Hofmann, 2001]. 

There is a considerable amount of research accomplished in the integration of LiDAR 

DSM with the image during classification, particularly in object-based analysis of VHR 

images over urban areas (Table 2.8). Regardless of the classification approach, results 

show a significant improvement of classification accuracy [e.g., Sohn and Dowman, 

2007; Watanachaturaporn et al., 2008; Huang et al., 2011].Very few studies, however, 

have benefited from the incorporation of the photogrammetrically-derived DSM and 

VHR imagery for classification over urban areas. This is mainly due to unavailability of 

precise DSM of urban areas and misregistration between the DSM and VHR imagery. 

However, recent development of stereo satellite and aerial VHR imagery in conjunction 

with advancements in object-based image analysis methods has facilitated the integration 

of the photogrammetrically-derived DSM and VHR data.  
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Hussain and Shan [2010] integrated photogrammetrically-derived nDSM and VHR 

imagery in a rule-based object-based classification method in order to separate buildings 

from transportation areas and the result was very satisfactory [Hussain and Shan, 2010]. 

They further employed the nDSM to separate different buildings according to their 

heights (i.e. single and double story houses and apartments). Table 2.9 presents a 

summary of some recent papers in which ancillary data (mainly LiDAR nDSM) have 

been utilized together with spectral bands of the VHR imagery for object-based and 

pixel-based classification. 

Table  2.9 Examples of using ancillary data (mainly LiDAR nDSM) in addition to VHR 

imagery for improving urban land cover classification. The ancillary measures are 

incorporated as additional band into the classification and/or segmentation. Accuracy 

improvement (Imp) is over the case where only spectral band(s) of the image is utilized 

in the classification process. 

Input data Ancillary data used Land cover types 

Classificat

ion 

approach 

Accuracy Paper 

VHR-QB 

Pansharp 

bands 

LiDAR nDSM: 

HA*=30cm, VA†=15cm 

SR=1m 

 

Water, shadow, 

grass, shrub, 

building, road, 

vacant areas 

Hierarchic

al object-

based 

OA:89.4%,Imp:20% 

Building:PA:92.5%,  

Imp:9% 

Road:PA:86%, 

Imp,47.5% 

Chen et 

al.,  

(2009b) 

VHR-Aerial 

image (0.6m 

SR in G,R, 

NIR bands) 

LiDAR nDSM: First and 

last pulse data, SR=1m, 

GIS data: Parcel 

boundary, Building 

footprints 

Building, pavement, 

coarse texture 

vegetation, fine 

texture vegetation,  

bare soil 

Hierarchic

al rule-

based 

object-

oriented 

OA: 92.3% 

Building PA:94.4% 

Pavement PA: 88.3% 

Imp: NM 

Zhou 

and 

Troy 

(2008) 

 

LiDAR 

intensity 

 

 

VHR-Aerial 

orthophoto 

(0.4 m in 

R,G,B 

bands) 

 

LiDAR 

nDSM, DSM, Echo code 

(Multiple return) 

 

LiDAR DSM 

HA: 0.5 m, VA: 0. 15 m 

A Max-Min band 

resulted from moving a 

window of 13x13 size 

over LiDAR DSM 

 

Water, low veg., 

road structure, 

deciduous, 

coniferous, 

intertidal 

 

 

Ground, grass, 

shadow, building, 

tree 

 

Hierarchic

al rule-

based 

object-

oriented 

 

Pixel-

based 

SVM 

OA: 98.1%, 

Structure PA:94.2% 

Road PA:94.5% 

Imp: NM 

 

OA: 94.7%, 

 Imp‡: 12.2%  

Build: 96.4% 

Imp: 29.6% 

 

 

Brennan 

and 

Webster 

(2006) 

 

Huang 

et al.,  

(2011) 

 

   * HA: Horizontal Accuracy; †VA: Vertical Accuracy 
‡ Improvement is over pixel-based SVM when only spectral information (3 multispectral bands) is used. 
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2.2.4.2 GIS Data Layers 

 Despite the growing attention toward use of LiDAR data for classification,few studies 

have taken the advantages of existing GIS data layers for improving urban land cover 

classification (Table 2.8). Thomas et al., [2003] developed strategies including spatial 

modelling techniques to deal with the problem of confusion between spectrally similar 

classes in VHR data. Their spatial modelling was based on the integration of GIS 

ancillary data layers with the image bands. They used the distance from road centrelines 

to differentiate buildings and parking lots from roads Zhou and Troy [2008] employed 

building footprint data in a rule-based hierarchical object-oriented classification to 

separate buildings from non-building objects. They showed that the classification 

accuracy increased when building footprint data together with LiDAR DSM are 

incorporated into the classification process.  

2.3 Discussion  

2.3.1 Spectral Measures 

The result of this literature review shows that spectral information of VHR imagery plays 

a major role in classifying vegetation (including grass and trees), water surfaces and even 

shadow areas. In particular, pixel-based approaches give superior results over object-

based classification for mapping such land cover types in a typical urban environment. 

However, impervious land cover types (e.g., buildings, roads and parking areas) are 

spectrally too similar to be separated only according to their spectral information in VHR 

imagery. Between pixel-based and object-based classification approaches, a serious 
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problem common to both approaches arises in the classification of spectrally similar and 

heterogeneous classes.  

2.3.2 Spatial Measures 

2.3.2.1 Pixel-based vs. Object-based Classification 

Figure 2.2 presents the number of papers in which spatial measures have been utilized in 

pixel-based or object-based classification approaches. This figure is a summary of Tables 

2.1, 2.4, 2.6, and 2.8. Texture features have been utilized in pixel-based approaches 

significantly more than in object-based approaches. On the other hand, ancillary data, 

especially LiDAR DEM, have been used in object-based classification more often than in 

pixel-based classification. The number of papers that have used morphological measures 

is almost equal in both pixel-based and object-based classification (with two papers more 

in object-based). Ten papers have used contextual measure in pixel-based classification 

and seven papers used them in object-based approaches. Compared to the other measures, 

GIS data have been employed in a very few papers (five object-based and one pixel-

based) indicating the very early stage of combining GIS data and VHR imagery for 

classification purposes. 
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Figure  2.2 The number of papers which have utilized spatial measures (TXT:texture, 

CXT: context, MRP:morphology, DEM, height data, and GIS:GIS data) in pixel-based 

and object-based classification of VHR imagery over urban areas. 

 

 

2.3.2.2 Textural Measures 

From the accuracies reported in the literature, texture has a significant effect on 

improving the classification accuracy of urban areas using VHR imagery. The 

improvement ranges from 2% to11% in terms of overall accuracy. Some of the major 

findings on the performance of texture measures are as follows: 

• Texture measure, in general, has better performance in pixel-based than object-

based approaches.  

• Texture does not necessarily increase the classification accuracy for all classes. It 

is desirable to incorporate texture measures in classification using a fuzzy-based 

classification with different membership for different sets of classes.   

• For urban impervious surfaces, integrating texture increases the classification 

accuracy, whereas for vegetation and water, texture does not have significant 

effect or even lowers the classification accuracy. 
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• In general larger window sizes of texture work better in classifying heterogeneous 

land cover types for VHR imagery, whereas smaller window size is preferred for 

lower resolution imagery.  

• In object-based image analysis, when multilevel segmentation is used, texture 

measures of objects at higher levels of segmentation would be more appropriate 

for classification of heterogeneous land cover types such as impervious surfaces, 

while for homogeneous classes, texture measures of objects at lower levels of 

segmentation are preferred. 

 

2.3.2.3 Contextual Measures 

The amount of literature in which contextual information is utilized in the classification 

process is relatively small compared to that using texture and morphology (Figure 2.2). 

Shadow is the most used contextual measure in classification, especially in pixel-based 

methods. The spectral and spatial relation between objects in the same or different levels 

of segmentation is the major source of contextual measures in object-based methods.  

Furthermore, contextual measures are rarely used as the only spatial measure in 

classification. In other words, contextual measures are often used in conjunction with 

textural and/or morphological measures during classification. Nevertheless, in all cases 

where contextual measures have been incorporated, classification accuracies have been 

increased.  
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2.3.2.4 Morphological Measures 

 The role of morphological information in object-based classification is more significant 

than in pixel-based. Indeed, a key advantage of object-based over pixel-based image 

analysis is that the results of segmentation in object-based approaches are sets of 

meaningful regions for which a number of morphological features can be directly 

measured and used during the classification process. Moreover, some segmentation 

algorithms are able to create objects in different scales with different sizes and shapes. 

This multi scale or multi level image segmentation allows the classifier to utilize 

morphological properties of objects in various scales, resulting in higher classification 

accuracy for classes such as roads and buildings, which present in different sizes and 

shapes. The quantitative results of some studies showed an average accuracy of around 

90% in terms of producer’s accuracy (PA) for buildings and roads in a typical urban 

environment, when both spectral and morphological measures of VHR imagery are 

utilized in object-based classification.   

 

2.3.2.5 DSM Derived from LiDAR and Stereo Photographs 

 Recent developments in object-based image analysis and increasingly available LiDAR 

data and VHR imagery have directed researchers’ attention toward their integration for 

classification purposes. Nevertheless, we learned that the use of LiDAR data along with 

VHR imagery for detailed land cover classification is still at an early stage of 

development, although they have exhibited potential in urban land cover mapping. Many 

of the published papers in recent years are conference papers and the results show that the 
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incorporation of LiDAR data into the classification of VHR imagery can significantly 

solve the problem of differentiating high-rise and low-rise objects with similar spectral 

reflectance. 

 For the case of integration of VHR imagery and photogrammetrically-derived DSM, 

very few papers have been found. With the availability of stereo VHR imagery from 

satellites such as QuickBird, GeoEye-1 and WorldView-2, the advances in object-based 

image analysis, and precise DSM generation methods, the integration of VHR imagery 

and its photogrammetrically-derived DSM for mapping of complex urban landscapes is 

more feasible than before. It is worth mentioning that it is important to avoid 

misregistration problems between DSMs and VHR images. Almost all papers avoided the 

use of off-nadir VHR images in the classification. In the real world, however, more than 

90% of VHR images are collected off nadir.  

2.3.2.6 GIS Data Layers 

Traditionally, existing GIS map layers such as road /street networks and building 

footprints have been used as reference data to evaluate the performance of classification. 

Recently, the potential of utilizing this vector data for improving classification accuracy 

has drawn increased attention from many researchers. Because GIS data layers are 

somewhat consistent with object-based classification input, i.e., object resulting from 

segmentation may share the same boundaries with GIS data, these data have been 

increasingly used to improve object-based classification. Nonetheless, the use of GIS data 

in classification, in the literature, is far less than that of other spatial measures (Figure 

2.2). Misregistration between GIS vectors and images still poses a great challenge for 
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integration. Most papers used either low resolution images or nadir VHR images in the 

classification to avoid the errors introduced by misregistration. 

 

2.4 Conclusion 

Over the past decade, there have been ever-growing numbers of researchers studying on 

detailed land cover classification of urban areas. This is partly due to the fact that the 

differentiation amongst three major impervious classes in an urban scene (roads, 

buildings and parking lots) becomes more feasible with the availability of VHR imagery. 

Due to the complex nature of urban landscapes as well as the spatial and spectral 

characteristics of VHR imagery, the classification of such landscapes requires not only 

spectral but also spatial information of the image. For this reason, the amount of literature 

using spatial information includes texture, context, morphology and information 

extracted from ancillary data such as DSM and archived GIS layers has grown since the 

launch of first VHR satellite in 1999. 

Although spatial measures have been used in both pixel-based and object-based 

classification approaches, the employment of them in the latter case is more effective 

mainly due the following reasons: First, determining the optimal window size of spatial 

measures, which is a critical issue in pixel-based classification methods, has been solved 

in object-based approaches by segmenting the image to individual objects with 

meaningful boundaries. Second, contextual and especially morphological measures are 

more meaningful in the object-based image analysis. Third, object-based approaches 

require less precise geometric registration between different data layers when ancillary 
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data are employed in the classification. However, the major drawback of object-based 

image classification is the lack of a high degree of automation. In fact, different rule-sets 

must be developed for different image and applications. 

Among the three spatial measures extracted from the images, texture has most often 

employed in classification, especially in pixel-based approaches. Multiresolution 

segmentation of object-based approaches, on the other hand, enhances the capability of 

morphological measures to improve the classification of land covers such as buildings 

and traffic areas. The classification accuracies reported in literature indicate that 

morphological measures have significantly higher effect on differentiating classes such as 

buildings and roads than textural and contextual measures. The use of contextual 

measures in classification of VHR imagery is less than the use of textural and 

morphological measures. In addition, contextual measures have rarely been used as the 

only source of spatial measure in classification. Indeed, the effectiveness of such 

measures is enhanced when they are used in conjunction with other spatial measures 

(textural and/or morphological measures). 

The employment of LiDAR- and especially photogrammetrically-derived DSM in urban 

land cover classification of VHR imagery is in the very early stages perhaps because of 

non availability of LiDAR data and the rather low precision of photogrammetrically-

derived DSM. Nonetheless, the results of our literature review reveal the very high 

potential of this type of data in conjunction with VHR imagery for land cover mapping of 

urban environments. With the widespread availability of VHR stereo aerial/satellite 

imagery and the development in object-based image analysis and precise DSM 
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generation methods, the use of photogrammetrically-derived DSM in classification of 

VHR imagery over urban areas is more feasible than before and has a very high potential 

for future research. Also despite the availability of archived GIS data layers, this type of 

ancillary data has not been well utilized for classification purposes. The development of 

spatial modelling of available GIS data layers for incorporation into the classification 

process, particularly object-based classification approaches, would be another interesting 

topic for future research.   
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Chapter 3 : OBJECT-BASED CLASSIFICATION OF URBAN AREAS 

USING VHR IMAGERY AND HEIGHT POINTS ANCILLARY 

DATA
1
 

 

Abstract 

Land cover classification of very high resolution (VHR) imagery over urban areas is an 

extremely challenging task. Impervious land covers such as buildings, roads, and parking 

lots are spectrally too similar to be separated using only the spectral information of VHR 

imagery. Additional information, therefore, is required for separating such land covers by 

the classifier. One source of additional information is the vector data, which are available 

in archives for many urban areas. Further, the object-based approach provides a more 

effective way to incorporate vector data into the classification process as the 

misregistration between different layers is less problematic in object-based compared to 

pixel-based image analysis. In this research, a hierarchical rule-based object-based 

classification framework was developed based on a small subset of QuickBird (QB) 

imagery coupled with a layer of height points called Spot Height (SH) to classify a 

complex urban environment. In the rule-set, different spectral, morphological, contextual, 

class-related, and thematic layer features were employed. To assess the general 

                                                 
1
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Salehi, B., Zhang,Y., Zhong,M., Dey, V., 2012. Object-based Classification of Urban Areas using VHR 

Imagery and Height Points Ancillary Data, Remote Sensing ,4(8): 2256-2276. 
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applicability of the rule-set, the same classification framework and similar one using 

slightly different thresholds applied to larger subsets of QB and IKONOS (IK), 

respectively. Results show an overall accuracy of 92% and 86% and a Kappa coefficient 

of 0.88 and 0.80 for the QB and IK Test image, respectively. The average producers’ 

accuracies for impervious land cover types were also 82% and 74.5% for QB and IK. 

Keywords: object-based classification; very high resolution imagery; multisource 

data; urban land cover; misregistration; transferability 

3.1 Introduction 

With the availability of VHR satellite imagery (spatial resolution ≤ 1m) since 1999, urban 

land cover classification using this type of data has become an emerging field of research 

in the remote sensing community. Because of the sub-meter spatial resolution, VHR 

imagery has a very high potential in more detailed and accurate mapping of urban areas 

[Pacifici et al., 2009]. However, the high spectral variation within the same land cover 

type (within-class) and the low spectral variation between different land cover types 

(between-class) in urban areas make the classification very challenging if the classifier 

relies solely on spectral information of the image [ Mohapatra et al.,2010; Myint et 

al.,2011; Blaschke et al., 2011].  

To differentiate impervious urban land covers such as buildings, roads, and parking and 

paved areas additional information should be incorporated into the classification process. 

Additional information could be obtained from the spatial measures extracted either from 

the image, in the forms of textural, morphological, and contextual measures, or from 
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ancillary data [Salehi et al., 2012]. Over the past decade, a significant amount of research 

has employed spatial measures extracted from the image (i.e. texture, context, and 

morphology) in the classification process of VHR imagery over urban areas [Shackelford 

et al., 2003; Binaghi et al., 2003; Puissant et al.,2005; Carleer et al., 2006; Xu et 

al.,2010; Salehi et al., 2011a; Salehi et al., 2011b]. 

The incorporation of ancillary data such as LiDAR data, digital elevation models 

extracted from stereo optical imagery, and vector data together with VHR imagery, which 

is often called multisource classification [Watanachaturaporn et al., 2008], has received 

increasing attention in the remote sensing community in recent years. A bibliographic 

review of multisource data fusion for urban remote sensing applications is presented in 

[Gamba et al., 2005]. Examples of integrating LiDAR data and VHR imagery for urban 

land cover mapping are provided in Watanachaturaporn et al., [2008], Matikainen et al., 

[2011] and Zhang [2010]. Despite the wide availability of vector data, few studies have 

benefited from these types of data in land cover classification of VHR imagery over 

urban areas. An example is the work carried out by [Thomas et al., 2003] in which some 

spatial modelling techniques of vector data (road centre lines and parcel layers) were 

developed to deal with the problem of confusion between spectrally similar classes. 

Another example is [Moskal et al., 2011], who employed road maps and building 

footprints in segmenting high resolution aerial photographs for monitoring urban tree 

cover. 

A problematic issue in multisource image analysis is the misregistration between layers 

from different sources (e.g., VHR image and vector data). A precise geometric 
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registration of corresponding data layers is often very difficult to achieve, particularly in 

VHR imagery. Because of the sub-meter pixel size of VHR imagery, a pixel-by-pixel co-

registration between vector data and VHR imagery is near to impossible. For this, pixel-

based classification approaches do not yield promising results for multisource 

classification. Object-based approaches, on the other hand, facilitate the use of ancillary 

data [Kim et al., 2010] and since they require less precise registration of data, object-

based approaches are highly desirable for multisource image analysis [Zhou et al.,2009].  

In object-based classification the basic element is a group of pixels (segments) instead of 

a single pixel. Consequently, it is not required that each pixel is exactly co-registered 

with the corresponding pixel in another layer. Indeed, if the objects of two different 

layers have reasonable overlap, a small shift between different data layers can be ignored 

during the classification process. In addition, the basic processing unit of object-based 

classification is an aggregated group of pixels forming a semantically meaningful object 

polygon which thus can effectively be integrated and analyzed with vector data [Zhang 

2010]. 

Object-based image analysis also facilitates the incorporation of spectral and spatial 

information inherent in the VHR imagery into the classification process. By segmenting 

the image, several spectral, textural, and morphological (e.g. shape and size) features of 

objects can be incorporated into the classification process. These objects’ features help 

the classifier to distinguish spectrally similar land cover types (e.g. buildings and roads). 

In addition, object-based classification reduces high spatial frequency noise present in 
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VHR images by exploiting the spectral and spatial dependency of neighbouring pixels, in 

the form of objects, and thus increasing the classification accuracy. 

The primary objective of this research was to develop an object-based classification 

framework using the integration of VHR imagery and vector data such as Spot Height 

(SH) layer to classify an urban environment comprised of large buildings, small houses, 

parking lots, roads/streets, and vegetation including grass and trees. The second objective 

was to assess the general applicability and transferability of the framework to different 

areas and different VHR imagery. Finally, the third objective was to evaluate the effect of 

possible misregistration between the vector data and VHR images of various geometric 

accuracies (e.g., IK and QB) on object-based classification.  

To do this, a hierarchical rule-based object-based classification framework was 

developed using the Cognition Network Language available in the eCognition® software 

package. The rule-set was developed using a small subset of QB imagery by combining 

different spectral, morphological (geometry and extent), contextual, and class-related 

features of objects, resulting from the segmentation step, together with the information of 

a SH layer. To assess the transferability of the developed rule-set to different areas and 

images, the same and similar rule-set was applied to a different and larger area of the QB 

and IK image, respectively. Both QB and IK image have significant and different 

misregistration (about 10 meters) with the SH layer. To evaluate the effect of 

misregistration on classification accuracy, misregistration of these images was 

deliberately left uncorrected.   
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This paper is structured as follows: Section 3.2 describes data used and the study area. 

The proposed methodology is presented in section 3.3. Section 3.4 and 3.5 present results 

and discusses, respectively. Finally, section 3.6 gives the conclusion of this study.  

3.2 Datasets and Study Areas 

3.2.1 Study Area 

Two different parts of the city of Fredericton in New Brunswick, Canada were chosen as 

the study areas in this research. These include a small part of the city on the north side 

(Figure 3.1a) that was used for developing the rule-set and a larger part of the city on the 

south side that was used for testing the proposed method (Figure 3.1b). The city contains 

a variety of urban land cover types including vegetation areas (grass and trees), water, 

large buildings, small houses, parking and paved areas (with various sizes, shapes, and 

colors), narrow streets, and highways. Classification of such areas is challenging due to 

the complexity of land cover types. There are many buildings and small houses with a 

variety of roof colors such as white, gray and black. In residential areas, small houses and 

narrow streets are partially covered by trees foliage since the images were collected in 

mid and late summer, when the trees have reached their maximum growth. Shadows cast 

by tall buildings are another source of land cover complexity. 

3.2.2 Datasets 

Two sets of data covering the same area are used in this study. These are a) subsets of QB 

and IK and b) a vector layer of height points called Spot Height (SH). 
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3.2.2.1 The QB and IK image 

The IK and QB images were acquired on June 19 and August 31, 2002 respectively. Both 

QB and IK imagery possess a panchromatic band (Pan) and four multispectral (MS) 

bands including blue (B), green (G), red(R), and near infrared (NIR). The middle 

wavelengths of QB multispectral bands are 487.5, 543, 650, and 816.5 nm for B, G, R, 

NIR bands, respectively, while those of IK are 480.5, 550, 665, and 805 nm. The spatial 

resolution of pan band is 0.65 m (QB) and 0.82 m (IK) at nadir, while for MS bands, it is 

2.62 m for QB and 3.28 m for IK [DigitalGlobe 2009; GeoEye 2009]. As the 

preprocessing step (for both VHR imagery), the four multispectral bands were fused with 

the panchromatic band introduced by [Zhang 2004] resulting in four pan-sharpened bands 

with a spatial resolution of 0.7 m and 1 m for QB and IK. Figure 3.1a shows the portion 

of the QB image used for developing the rule-set (QB Pilot), and Figure 3.1b shows the 

QB Test image. 

3.2.2.2 Spot Height Vector Data 

The SH data was a by-product of a digital elevation model (DEM) generation project 

conducted by the City of Fredericton in 2002. The spot heights were collected  by the 

City of Fredericton from 2002 stereo aerial photography in which the photo scale was 

approximately 1:10 000. The points were collected photogrammetrically as a series of 

irregularly spaced points with spacing of approximately 20 meters in both dimensions 

and vertical accuracy of +/- 0.40 meters at a confidence level of 90%. These points were 

extracted using stereo plotters in which a clear view of the ground was possible (e.g., no 

points in dense forest areas). In addition, the points mainly lie in non-built-up areas.  



 

67 

 

The geometrical shift (misregistration) between the SH layer and QB and IK poses a 

challenge when they are integrated for the subsequent image analysis (e.g., 

classification). This data was collected in 2002 and, unfortunately, we could not find the 

statistical information about the misregistration between these data layers. However, 

visual inspection reveals a slight misregistration between the SH layer and QB (Figure 

3.2a), and a significant misregistration between the SH layer and IK. A number of points 

were manually collected over both QB and IK image to determine the approximate shift 

between these two images. A misregistration shift of approximately 10 meters between 

the QB and IK image was calculated. Although this amount of shift is relatively high and 

can be mitigated by a few ground control points, no effort was made to mitigate it as one 

of the primary objectives of this study is to assess the effect of misregistration on 

classification. It should be noted that only the locations of Spot Heights were used and no 

elevation information of SH layer was used in this study.  
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(a) 

 

(b) 

Figure  3.1 (a) Pan-sharpened QB Pilot image used for developing the rule-set. (b) QB 

Test image in true color composite. 
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                               (a)                                                                      (b) 

Figure  3.2 Misregistration between the SH layer and the QB (a) and IK (b) image. 

Asterisks represent the Spot Heights. Spot Heights were collected over non built-up 

areas; however, due to misregistration, some points lie on building roofs as shown in this 

Figure. As seen, misregistration is larger in IK than in QB. 

 

3.3 Methodology 

The proposed methodology is illustrated in Figure 3.3. The rule-based expert system 

starts by segmenting the Pan-sharpened image followed by a four-step hierarchical 

classification. First, the entire image is classified to vegetation and non-vegetation. 

Second, vegetation areas are further broken down to grass and trees. Non-vegetation 

areas are also classified to shadows and non-shadow in this step. Third, non-shadows are 

divided to parking lots and non-parking lots. Finally, non-parking lots are classified to 

buildings and roads. The remainder of this section describes the details of the flowchart 

in Figure 3.3.  
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Figure  3.3 Flowchart of the developed rule-based expert system. Final classification 

results are shown in oval shape. The first and second thresholds for some features 

represent the threshold for QB and IK, respectively. When the threshold is identical for 

both images only one value is provided.     
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3.3.1 Image Segmentation 

The first step in object-based image analysis is segmentation. In general, image 

segmentation is defined as the process of partitioning an image into separated regions 

based on parameters specified [Myint et al., 2011]. These parameters often consider the 

homogeneity/heterogeneity of regions [Pal and Pal 1993].  Depending on how 

homogeneity (or heterogeneity) is evaluated, as well as how the pixels are aggregated 

(e.g., edge contour-based and region-based), there exists a large number of image 

segmentation techniques [Gonzalez and Woods 2005]. One of the widely used techniques 

is region-based, which includes both region growing and merging and splitting [Blaschke 

et al., 2006]. The region growing method starts from seed pixels, a bottom-up approach, 

and regions grow until a homogeneity/heterogeneity criterion is satisfied.  

In this study, multiresolution segmentation, a region-based technique [Benz et al., 2004] 

available in eCognition which combines both region-growing and region-merging 

techniques [eCognitiom 2010a], was used. In multiresolution segmentation, both spectral 

(color) and spatial (shape) homogeneity of objects are considered. In fact, adjacent 

regions are merged based on a weighted homogeneity criterion of object shape and color 

[Baatz and Schape 2000]. Three key parameters, namely scale, shape, and compactness 

need to be set in multiresolution segmentation [eCognitiom 2010b].  Scale, which is 

considered the most crucial parameter, controls the average size of objects and the two 

other parameters control the homogeneity of objects [Baatz and Schape 2000].  Finding 

the optimal parameters for segmentation is a trial and error process, which is very time 

consuming and directly depends on the analyst’s experience [Zhang et al., 2010]. Instead 
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of trial and error, we used the Fuzzy-based Segmentation Parameter optimizer (FbSP 

optimizer) developed by [Zhang et al., 2010; Tong et al., 2012] to get proper parameters 

in different levels of segmentation. FbSP optimizer is a supervised approach for 

automatic estimation of the three optimal segmentation parameters (scale, shape, and 

compactness) using the spectral and spatial information of training objects utilized in a 

fuzzy interface system. It is based on the idea of discrepancy evaluation to control the 

merging of sub segments to reach a target segment [Tong et al., 2012]. 

To use the FbSP optimizer, an initial segmentation is carried out by manually selecting 

the parameters (level 1). Normally the eCognition defaults are used for shape and 

compactness, and the scale parameter is set in such a way that the resulting objects are 

smaller than the real objects (small scale). After the first level of segmentation, a few 

objects (e.g. objects that represent a building) are selected as training objects (similar 

concept to selecting training pixels in traditional supervised classification). The 

information of training objects such as texture, brightness, area, and rectangular fit 

[Zhang et al., 2010] are used to train the FbSP optimizer. After the training, the FbSP 

optimizer gives the optimal parameter for the second level of segmentation. Again, 

objects in the second level are used as training objects for calculating the parameters for 

the third level, and this process is iterated until the software gives objects which are close 

to the real objects. The full description of the FbSP optimizer can be found in [Zhang et 

al., 2010] and [Tong et al., 2012]. 

3.3.2 Image Classification 

The second step in object-based image analysis is classification. Initially, five land covers 
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were defined: vegetation, shadows (excluding the shadow of trees), parking lots, roads 

(including wide and narrow roads, highways, and streets), and buildings (including large 

buildings and small houses). Vegetation was then broken down to trees and grass. Also, 

shadows were later assigned to either parking lots or buildings and thus the final 

classification map contains five land cover types including three impervious land covers, 

grass, and trees. A hierarchical rule-based classifier was developed to assign each object 

to a land cover class. The object-based approach allows the analyst to combine spectral, 

textural, morphological (geometry and extent), contextual, and class-related features of 

objects in order to assign a class membership degree (between 0 and 1) to each object 

based on a fuzzy membership function [Benz et al., 2004 ; Walker and Blaschke 2008]. 

Furthermore, it has a hierarchical capability to classify the entire scene into general 

classes (e.g., vegetation and non-vegetation areas). These general classes are called 

parent classes. Then, each parent class is divided to sub classes (child class) containing 

more detailed land cover types (e.g., buildings and roads). This hierarchical capability 

allows the developer to incorporate objects in different levels of segmentation for 

individual levels of class hierarchy.  

Table 3.1 reports image object features employed in the hierarchical rule-set for 

classifying the Pilot image into the aforementioned five classes. The criteria used for each 

class will be described in more detail in the following subsections. 
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Table  3.1 Object’s features used in the rule-set hierarchy for different classes 

Class Segmentation level  Features  

Vegetation L1 NDVI 

Shadow L1 Brightness, Area, Density, NDWI 

Grass and Trees L2 Brightness, GLCM-Homogeneity 

Parking lot L3 Number of SH points laid within the boundary of objects, 

Length/width of main axis, Existence to shadow 

Road/Street L3 Density and Ratio G  

Building/House L3 Unclassified Objects, Existence to shadow 

 

3.3.2.1 Vegetation 

The first step in the proposed hierarchical expert rule-based system is to extract 

vegetation. Active vegetation can be identified in the near infrared spectrum due to the 

rise reflectance value compared to the red spectrum. Reflectivity rises sharply at 0.75 µm, 

the so called red-edge region [Mather 1999].  The normalized difference vegetation index 

(NDVI) has been widely used in the literature to separate vegetation from non vegetation 

areas. It is calculated by: 

)/()( RNIRRNIRNDVI +−=  

Where NIR and R are the mean values of all pixels (within the boundary of each object) 

in band near infrared and red for a given object in each level of segmentation. Based on 

our experience the threshold for classifying vegetation areas was set to 0.3 in the Pilot 

image. Since the spectral properties of the original image (e.g., NDVI) are better 

preserved in smaller objects than in larger ones, the lowest level of segmentation (L1) is 

preferred for extracting vegetation.  
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3.3.2.2 Grass and Trees 

Having extracted the vegetation areas, they were further classified into grass and trees. 

These two classes are distinguishable from their textural characteristics. The grey level 

co-occurrence matrix (GLCM) introduced by Haralick [1979] is the most commonly used 

texture measure for the urban land cover classification of VHR imagery. After visually 

examining different GLCM texture measures, we found that the Homogeneity measure 

can effectively separate grass and trees. Grass is more homogenous than trees and thus 

has higher Homogeneity values.  This measure can be calculated for individual objects in 

each band. Since the spectral reflectance of vegetation is larger in NIR than in any other 

band, NIR was selected for the GLCM texture calculation. In addition, shadows of trees 

cast on grass have a texture close to that of trees. Hence, the Brightness values of objects 

were also employed in the rule-set to distinguish shaded grass from trees. The Brightness 

value is calculated as the average mean values of all bands over each object [eCognition 

2010a]: 

4/)( NIRRGBBrightness +++=  

GLCM texture measure is more meaningful for objects in level 2 than level 1 and thus 

second level of segmentation is preferred for grass and trees classification. 

3.3.2.3 Shadows 

The second step in the classification hierarchy includes separating grass from trees and 

also extracting shadow from non-vegetation. Shadows are dark features in optical 

imagery, and because the segmentation of such imagery is mainly based on the spectral 

structure of the image [Smith and Morton 2010], shadow influences the segmentation of 



 

76 

 

surrounding areas. Furthermore, shadow is an important factor that reduces the spectral 

values of the shaded objects and thus influences the land cover classification [Lu et al., 

2010]. For this, it should first be extracted and excluded from the subsequent 

segmentation and classification. Later, the area under shadow will be assigned to parking 

lots or buildings based on its adjacency to these classes. As mentioned, we only 

considered the shadow of buildings and not those from trees, since trees’ shadows were 

included in the class of either trees or grass. 

Regarding the spectral and spatial properties of shadow, two spectral (NDWI and 

Brightness) and two morphological features (Density and Area) of image objects were 

used in classifying the shadow areas.The normalized difference water index (NDWI) 

[Mcfeeters 1996] is a metric used for masking out black bodies (water and shadow) in 

VHR imagery [Chen et al., 2009] and is defined as follows [Mcfeeters 1996]: 

)/()( NIRGNIRGNDWI +−=  

Where G is the average mean value of all pixels (within the boundary of each object) in 

each level of segmentation for the band green. If only the spectral features of objects are 

utilized for extraction of shadow areas, some buildings, and especially small black roofed 

houses, are also misclassified as shadow. Thus, shadows extracted by spectral measures, 

must be refined to exclude spectrally similar non-shadow areas. This is feasible by 

employing the morphological features in the classification decision. As mentioned, 

Density and Area of objects were used as the morphological features to refine the shadow 

areas. In eCognition, the Density feature describes the distribution, in space, of the pixels 

of an object and is calculated by the Area of the object divided by the approximated 
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average of the major and minor axes of the ellipse fitted to the object [eCognition 2010a]. 

Area is the number of pixels forming an image object.  The size of shadows in optical 

imagery depends primarily on the height of objects but also on the sun elevation angle 

[Dare 2005].In our study area (a typical North American small city), majority of 

buildings are two to three stories high. Therefore,   shadows are normally small features 

compared to surrounding features such as buildings and parking lots, and thus objects in 

the first level of segmentation better represent shadow areas.  

3.3.2.4 Parking lots 

Having extracted vegetation and shadows, they are excluded from the subsequent 

processes in the rule-set hierarchy. Objects in the first level of segmentation do not 

represent the boundaries of impervious land cover types. Because of the relatively large 

size of parking lots, objects in the third level were chosen for the subsequent 

classification process. Parking lots and roads are spectrally similar because the same 

materials (e.g., asphalt, gravel, etc) are used in their construction. Parking lots and 

buildings are also similar in terms of their morphological features such as shape and 

extent. Therefore, extracting the parking lots solely based on the information of the image 

does not yield promising results. The SH layer which contains points in areas other than 

those with roads and buildings was utilized to help the classifier in distinguishing parking 

lots from roads and buildings. For classifying parking lots, the SH layer was intersected 

with the objects in level 3. A threshold of three points within each object was set (by 

visual inspection) to extract objects containing three or more height points and to classify 

them as parking lots. Furthermore, due to the misregistration between the VHR imagery 
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and SH layer, roads which are neighboring parking lots may be misclassified as parking 

lots. Therefore, another criterion was defined based on the Extent feature of objects to 

reduce the possible misclassification of roads as parking lots. The ratio between the 

length and width of the main line of each object’s skeleton [eCognition 2010a], which 

has a high value for roads and a low value for parking lots, was considered as an Extent 

feature for parking lot classification as seen in the flowchart of the method in Figure 3.3.  

3.3.2.5 Roads and Buildings 

The last step in the hierarchical rule-based classifier is to classify roads and buildings. 

Separation of these two impervious land covers is feasible with the employment of proper 

object features and level of segmentation. Visual inspection of different segmentation 

levels confirms that roads and buildings are well represented in the third level of 

segmentation (L3). Moreover, the linear structure of roads, compared to the compact 

structure of buildings, helps the classifier to distinguish between these two classes. After 

visually examining several spectral features of objects including the Brightness and 

Ratios of all four bands, we found that Ratio G, a spectral feature, together with Density, 

a shape feature, can effectively distinguish between roads and buildings. Ratio G 

describes the amount that band G contributes to the total brightness for an object and is 

calculated as follows [eCognition 2010a]: 

)/( NIRRGBGRatioG +++=  

Having classified roads, the remaining unclassified areas are assigned to the class of 

buildings. The diversity in shape and color of buildings is relatively higher than of any 
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other class in the scene. For this, we left buildings as the last class to be extracted in the 

hierarchical classification system.  

3.3.2.6 Classifying Shadows 

After extracting shadow areas, they should be assigned to the corresponding land cover 

class. Visual inspection of the image reveals that shadows cast by tall buildings belong to 

either parking lots or buildings. A few buildings have multi level roofs and the shadow of 

the top roof covers part of the lower roofs. The rest of the shadows cover part of the 

parking lots surrounding the buildings. Shadow areas can possibly cover the road, but 

since the majority of shadows in the image are cast by large and tall buildings, which are 

normally encompassed by parking lots, most of the shadow areas belong to parking lots. 

Therefore, in the rule-set shadows were assigned to either buildings or parking lots.  The 

assignment of shadows was carried out through the employment of class-related features. 

The class-related feature used in this study is the existence of neighbor objects. In other 

words, if the shadow is adjacent to parking lot object(s), it is assigned to parking lots; 

otherwise it is assigned to the class of buildings. It should be noted that this rule is hardly 

transferable to areas with different urban structure. For instance, shadows may belong to 

road as well. However, in our study area, shadow does not cover a large area and missing 

some shadow does not have a significant effect on the classification accuracy of the entire 

image. Moreover, further development of rules for shadow will lead to a more complex 

rule-set and thus affect the transferability of the entire rule-set to other areas.    
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3.4 Results  

3.4.1 Segmentation Results 

The segmentation results of the three images, using the FbSP optimizer, are reported in 

Table 3.2. The visual results of a portion of the QB and IK Test image are also depicted 

in Figure 3.4. The three segmentation parameters (i.e., scale, shape, and compactness) are 

different for QB and IK image. This is mainly because of the slight difference between 

the spatial resolution, the wavelength coverage of each multispectral band, and the 

acquisition date of QB and IK image (see section 3.2.2). 

Table  3.2 Multiresolution segmentation parameters for the three images 

 

 

 

 

 

 

Objects in the first level of segmentation are not meaningful for any of the land covers. 

However, since the original spectral properties of the image are better preserved in lower 

levels than in higher levels of segmentation, the lower levels (i.e., L1) preferred for 

classifying land covers in which the spectral features are employed (e.g., shadow and 

vegetation).  

  

 Level Scale Shape Compactness No of Objects 

QB-Pilot 

image 

1 

2 

3 

30.00 

77.83 

131.33 

0.10 

0.64 

0.50 

0.50 

0.81 

0.81 

18204 

2190 

912 

QB-Test 

image 

1 

2 

3 

30.00 

77.83 

131.33 

0.10 

0.64 

0.50 

0.50 

0.81 

0.81 

64481 

7634 

2793 

IK-Test 

image 

1 

2 

3 

40.0 

82.0 

142.0 

0.10 

0.57 

0.59 

0.50 

0.80 

0.80 

69102 

10810 

2908 
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QB-L1                                                    QB-L2                                                     QB-L3 

   

IK-L1                                                      IK-L2                                                        IK-L3 

Figure  3.4 Multiresolution segmentation results of level 1 (L1), level 2 (L2), and level 

3(L3) for a sample area of QB (top) and IK (bottom) Test images. 

 

For the classification of impervious land covers, larger objects (level 3) proved to be 

more effective than smaller objects. There are two main reasons for this First, 

morphological features such as size and shape play a more important role than spectral 

features for the classification of such land covers. Furthermore, shape and size of 

impervious land covers are better modeled in higher levels of segmentation where objects 

are more meaningful. Second, the error of misregistration between different data layers 

(e.g., vector data and the VHR image) has less impact on larger objects than for smaller 

objects. In fact, if the object of interest has a reasonable overlap in the two layers, which 

is more likely for larger objects, the misregistration can be ignored. 
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3.4.2 Classification Results 

In order to evaluate the quality of land cover classification, accuracy assessment is often 

required. The conventional pixel-based error matrix [Foody 2005; Congalton and Green 

2009] was used for accuracy assessment of the results. Different elements of the error 

matrix including overall accuracy, kappa coefficient, user’s and producer’s accuracy were 

calculated for both QB and IK Test image. Kappa coefficient is calculated based on the 

difference between the actual agreement in the error matrix (i.e. agreement between the 

reference data and classification result as indicated by the major diagonal) and the chance 

agreement that is indicated by the row and column totals (i.e. marginals) [Congalton and 

Green 2009]. For each dataset, the Z-test was also performed to test the significance of 

the error matrix. The Z-test checks whether the classification is meaningful and 

significantly better than a random classification [Congalton and Green 2009]. For each 

Test image, the result of object-based land cover classification was exported in raster and 

was compared with reference data. The reference dataset was generated through a precise 

manual digitizing of many samples (60% of the entire image) of five land cover types on 

both the QB Pilot, and the QB and IK Test image.   

    

3.4.2.1 Classification of the Pilot image 

As mentioned earlier, the QB Pilot image was used to develop the hierarchical expert 

rule-based classification system. Figure 3.5 shows the classification results of the Pilot 

image. The confusion matrix and its measures including overall accuracy, producers’ 

accuracies, users’ accuracies, and the kappa coefficient are reported in Table 3.3. For the 
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purpose of transferability and the general applicability of the rule-set to other areas and 

images, few spectral and spatial features of the objects were utilized in the classification 

of the Pilot image. The fewer number of objects’ features leads to a less complex rule-set, 

and consequently it better guarantees the transferability of the same rule-set to other 

images. Notwithstanding the low complexity of the developed rule-set, the classification 

result of the Pilot image is very promising. An overall accuracy of 95% and a Kappa 

coefficient of 0.92 were achieved for this image (Table 3.3). Trees, grass, and roads were 

classified with producers’ accuracies of more than 92%. Although there are a few 

misclassifications between buildings and parking lots, the majority of these two classes 

were correctly classified. The accuracies for buildings and parking lots were 84% and 

89%, respectively.              

 

Figure  3.5 Hierarchical object-based classification results of the QB Pilot image 
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Table  3.3 Classification results for the QB-Pilot image 

 

3.4.2.2 Classification of the Test images 

The rule-set that was used for the segmentation and classification of the QB Test image 

was identical to the one used for the Pilot image. The same workflow and object features 

were also used for the IK Test image. However, due to the difference between QB and IK 

image in terms of spatial resolution, wavelength range of multispectral bands, the date of 

acquisition, and also the segmentation results, different thresholds for object’s features 

were used in classifying the IK Test image. The confusion matrices and their measures 

are reported in Tables 3.4 and 3.5. The results are also displayed in Figure 3.6. 

At the 99.9 % confidence level, the critical value for Z statistic would be 3.3. Therefore, 

if the Z value of the classification results is greater than 3.3, the results are significant and 

better than random. The Z values for QB and IK are far greater than the critical value 

(5434 for QB and 2731 for IK) showing that the classification is significantly better than 

a random classification. The kappa coefficient of 0.88 and 0.80 for the QB and IK Test 

image represent a strong agreement between reference data and classification results. The 

overall classification accuracy of QB is 91.6%, confirming the high potential of 
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Tree 
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Road 
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778395 
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184 

225 

102 

10887 

189105 

1065 

2107 

567 

12427 

1634 

141261 

8254 

4274 

6600 

1837 

1530 

152881 

2534 

1313 

1327 

11366 

3362 

140175 

92.9 

96.1 

90.9 

91.6 

94.9 

Prod’s 

Acc.(%) 

98.7 92.8 84.2 92.4 89.0  

 Overall Accuracy: 94.53%        Kappa Coefficient : 0.92      Z Statistic: 3251 
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transferability of the developed rule-set to different areas of the same image. For IK, 

however, a lower overall accuracy of 85.6% was achieved. The comparison of error 

matrices between IK and QB shows that the big difference is between the accuracies of 

the impervious land covers, especially parking lots. This is mainly because of the large 

misregistration between the SH layer and the IK image (Figure 3.2), since this layer is the 

key feature in classifying the impervious land covers. Nevertheless, this level of accuracy 

for IK shows the efficiency of the proposed method in classifying urban areas of different 

VHR imagery.  

The highest producer’s accuracy for both images was achieved for the class of trees and 

grass with 98.8% and 93.9%for QB and 95.3% and 91.2% for IK. For these two classes 

the user’s accuracy is also highest among all classes. These indicate the very high 

potential of object-based classification of VHR imagery for extracting vegetation areas 

using the well known index of NDVI and segmentation in lower levels (L1 and L2). The 

selection of the threshold values for NDVI is critical in classifying vegetation areas. In 

this study, the thresholds of 0.30 and 0.20 were selected for QB and IK, respectively. The 

difference between NDVI values of QB and IK is mainly because of the difference 

between the acquisition dates and the objects’ sizes and shapes (Table 3.2) of the two 

images.  

The average producer’s accuracy for impervious land covers for QB is 82%, while for IK 

it is 74.5%. Among the three impervious land covers, roads achieved the highest 

producer’s accuracy in both images (90% for QB and 87% for IK). Roads are elongated 

features and they are distinguishable from buildings and parking lots using the 
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morphological features of objects. Additionally the within-class spectral heterogeneity of 

the class of road is far less than those of buildings and parking lots. The comparison of 

the original image (Figure 3.1b) with the classification results (Figure 3.6) reveals that all 

major roads and the majority of minor roads, with a few mis-classifications of road 

intersections, were properly classified in both images. Nevertheless, the relatively low 

user’s accuracy of roads (73.4% for QB and 63.5% for IK) indicates that there is 

overestimation of roads in both images. Some parking lots and buildings have been 

classified as roads. This is mainly because of the spectral similarity of roads to the other 

two impervious land covers.    

Parking lots are typically spectrally similar to roads and morphologically similar to 

building roofs. Therefore, the separation of parking lots from the two other classes is 

quite problematic. In this study, however, the key feature for extracting parking lots was 

the SH layer.  Although there is a slight misregistration between QB and the SH layer 

(Figure 3.2a), utilizing the objects instead of the individual pixels in the classification 

process effectively mitigates this negative effect of multisource classification. The 

producer’s accuracy of parking lots is 77% in QB. For IK Test image, however, the larger 

misregistration between the image and the SH layer, together with the smaller objects in 

level 3, leads to a lower producer’s accuracy of 64% for parking lots. The FbSP optimizer 

resulted in a larger number of objects in level 3 for IK than for QB (Table 3.2). This 

means that objects in level 3 are smaller in IK compared to QB. Consequently, the 

possibility of overlapping three spot heights with an object (the key criteria that is used 

for extracting parking lots) is greater for the QB than for the IK Test image. As a result, 



 

87 

 

more parking lots are missed during classification in IK than in QB Test image leading to 

lower producer’s accuracy. In addition, the relatively high user’s accuracy of parking lots 

in both images (93.3% for QB and 82.6% for IK) confirms that few roads’ and buildings’ 

pixels have been misclassified as parking lots. 

The last step in rule-set hierarchy is the classification of buildings. Almost all large 

buildings and most of the small houses in the lower left and upper part of the images 

were classified correctly in QB but not in the IK. The producer’s accuracy for buildings 

in IK is 72.6%, while for QB it is 79.4%. This difference can also be interpreted based on 

the larger misregistration and smaller objects in IK compared to QB. The user’s accuracy 

of buildings is relatively high for both images indicating that the error of commission is 

low for buildings. In other words, few roads and parking lots have been classified as 

buildings. 

Table  3.4 Classification results for the QB Test image 

 

 

Table  3.5 Classification results for the IK Test image 

 

 Reference Data (No. of Pixels) 

Class name Tree Grass Building Road Parking lot User’s 

Acc.(%) 

C
la

ss
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a
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o
n

 

R
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u
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s 

 

Tree 

Grass 

Building 

Road 

Parking lot 

2087435 

20517 

1991 

3407 

251 

56242 

1177125 

2355 

15531 

2775 

16343 

3552 

497277 

83770 

25530 

14856 

14956 

15799 

499652 

7815 

2441 

1310 

70516 

78238 

503632 

95.87 

96.69 

84.58 

73.41 

93.26 

Prod’s 

Acc.(%) 

98.76 93.87 79.38 90.34 76.76  

 Overall Accuracy: 91.58%        Kappa Coefficient : 0.88     Z Statistic: 5434 
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 Reference Data (No. of Pixels) 

Class name Tree Grass Building Road Parking lot User’s 

Acc.(%) 
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R
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u
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Tree 

Grass 

Building 

Road 

Parking lot 

930657 

35590 

3374 

6701 

262 

30395 

400240 

697 

6984 

644 

3599 

8587 

243902 

51041 

28974 

7919 

3275 

6966 

246458 

19587 

1705 

1967 

51631 

76816 

235271 

95.5 

89.0 

79.6 

63.5 

82.6 

Prod’s 

Acc.(%) 

95.3 91.2 72.6 86.7 64.1  

 Overall Accuracy: 85.6%        Kappa Coefficient : 0.80    Z Statistic: 2731  
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(a) 

 

(b) 

 

Figure  3.6 Hierarchical object-based classification results of (a) QB and (b) IK Test 

images. 
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3.5 Discussion 

As mentioned, the segmentation parameters and classification rule-set of the QB Pilot 

image is identical to those used for QB Test image. A small discrepancy of 3% and 0.04 

of overall accuracy and kappa coefficient, respectively, between the QB Pilot and Test 

images demonstrates the great potential of the transferability of the rule-set to other areas 

of the same VHR imagery. This suggests that for a large dataset, the rule-set needs to be 

developed using a small portion of the image and then can be applied directly to the 

entire dataset.  

For IK Test image, however, segmentation is conducted independently of QB Pilot 

image. Indeed, FbSP optimizer needs to be trained for each VHR image separately. 

Nonetheless, the segmentation parameters of a portion of the VHR image are identical to 

those of the entire VHR image. For classification, the rule-set developed using the QB 

Pilot image is very similar to the one used for IK Test image. In other words, all the rules 

and features are the same but some thresholds (see figure 3) are slightly different. The 

discrepancy of overall accuracy and kappa coefficient between QB Pilot image and IK 

Test image is about 9% and 0.12, respectively. These discrepancies are not surprising as 

the misregistration between SH layer and IK image is significantly larger (about 10 

meters) than that between SH layer and QB image (see figure 2). Checking the confusion 

metrics of QB Pilot and IK test images shows that the largest discrepancy is between the 

producers’ accuracies for parking lots in two matrices (about 25%). In addition, SH layer 

plays a critical role in classifying parking lots and thus larger misregistration between SH 
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layer and the VHR image leads to worse classification result for parking lots than for any 

other classes. 

Regardless of the misregistration effect, morphological features (e.g. density, area, etc.) 

prove to be more effective for standardization (transferability) of the rule-set. Most of the 

morphological features in the developed rule-set use the same threshold in QB and IK 

images. Therefore, for the general applicability of the rule-set to other images, more 

attention should be directed to the use of morphological features rather than spectral 

and/or textural features, especially for classifying impervious land cover types. However, 

spectral and textural features play an important role in classifying vegetation areas. 

This study demonstrates the usefulness of ancillary data in conjunction with object-based 

image analysis for urban land cover classification of VHR imagery. The ancillary data 

that was used is a Spot Height data layer, which was employed for separating parking lots 

from buildings and roads. This layer, however, may not be available for many urban 

areas. Alternatively, the SH layer can be created from a relatively inaccurate digital 

elevation/surface model (DEM/DSM)(e.g. from stereo satellite imagery) of an urban area 

since the proposed method only uses the locations of Spot Height points in the rule-set 

but not the elevation of points. Therefore, an accurate DEM/DSM of the area which is 

often acquired by LiDAR data, and thus is expensive, is not required. Moreover, most 

VHR satellites offer stereo imagery from which DEM/DSM information can be extracted. 

This is a topic for future research. 

3.6 Conclusion 

A multisource object-based rule-based hierarchical classification approach was developed 
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to classify a complex urban environment. The multisource data include VHR imagery 

and Spot Height vector data. The rule-based classification method was first developed 

using a small subset of the QB imagery and then it was tested on larger areas of QB and 

IK imagery to assess the transferability of the rule-set to classify different areas and 

different images.  

The method offers a practical, fast, and easy to use (within eCognition) framework for 

classifying VHR imagery of small urban areas.  Overall accuracies of about 92% and 86 

% for QB and IK are very promising, since distinguishing spectrally (buildings, roads, 

and parking lots) and spatially (buildings and parking lots) similar classes in urban areas 

is very challenging. Further, the method shows that it is applicable to different areas of 

the same image and different VHR images with no change in the rule-set (for the same 

VHR image) or slight changes in the thresholds (for different VHR images). The method 

also demonstrates that the impact of possible misregistration between different datasets 

(which is inevitable in multisource classification) on classification can be mitigated 

through employing object-based classification, as the basic processing unit is the object 

rather than the individual pixel.  

The proposed framework, though it is not applicable to all urban areas, provides 

guidelines on the types of features (e.g. texture, shape, size, brightness) and ranges of 

thresholds which are suitable for classifying specific land cover types. However, ancillary 

data used in this study (Spot Height) may not be available for many urban areas. Utilizing 

more available ancillary data such as DEM/DSM is especially desirable and will be the 

focus of our future research.   
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Chapter 4 : A COMBINED OBJECT- AND PIXEL-BASED IMAGE 

ANALYSIS FRAMEWORK FOR URBAN LAND COVER 

CLASSIFICATION OF VHR IMAGERY
1
 

 

Abstract 

Pixel-based classification approaches do not yield promising results when applied to very 

high spatial resolution (VHR) imagery of urban areas. This is because of the high spectral 

variations of pixels within the same class and the high spectral similarities between 

different classes (e.g., buildings and transportation areas). Object-based classification 

mitigates these problems by segmenting the image into groups of spectrally/spatially 

similar pixels called objects followed by the classification of the objects. However, the 

major problem associated with object-based approaches is the lack of automation and its 

dependency to different images and applications. In this paper a combined pixel-based 

and object-based method exploiting the advantages of both approaches is proposed. The 

method starts with segmenting the image resulting in several spectral, textural, and 

morphological features of segments. To overcome the "curse of dimensionality", a 

wavelet-based feature extraction is proposed to reduce the number of features. The 

wavelet-based method is automatic and fast and can preserve local variations in objects’ 

                                                 
1
 This paper has been submitted to Photogrammetric Engineering and Remote Sensing (PE&RS): 

Salehi, B., Zhang,Y., Zhong,M., 2012. A combined object- and pixel-based image analysis framework for 

urban land cover classification of VHR imagery, Photogrammetric Engineering and Remote Sensing (under 

review). 
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spectral/spatial signatures. Finally, the extracted features together with the original bands 

of the image are classified using the conventional pixel-based Maximum Likelihood 

classification. The proposed method was tested on the WorldView-2 (WV-2), Quickbird 

(QB), and IKONOS (IK) images of the same urban area for comparison purposes. Results 

show up to 17%, 10%, and 11% improvement in kappa coefficients compared to the case 

in which only the original bands of the image are used for WV-2, QB, and IK, 

respectively. Furthermore, objects’ spectral features contribute more to increasing 

classification accuracy than spatial features.  

 

4.1 Introduction 

Urban land cover classification using satellite imagery has gained increasing attention in 

the remote sensing community since the launch of the first very high spatial resolution 

(VHR) satellite (i.e., IKONOS) in 1999. Unfortunately the conventional spectral-based 

classifiers do not offer promising results when applied to VHR imagery. The reason is 

that these classifiers mainly rely on the spectral information of individual pixels within 

the image. However, in an urban environment, the spectral heterogeneity of pixels within 

the same land cover type and the spectral similarity between different land cover types 

(e.g., buildings, roads, and parking lots) are too high making the spectral information 

insufficient for classification [Lu et al., 2010; Huang at al., 2011].  

Object-based image analysis takes into consideration the spectral and spatial (e.g., 

texture, shape, and size) correlation of neighboring pixels by partitioning the image into 

groups of spectrally/spatially similar pixels called objects. Thus, not only the spectral 
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properties of objects but also the spatial properties such as textural, contextual, and 

morphological features of objects can be incorporated into the classification process. 

However, a major problem associated with object-based classification is its lack of 

automation. Object-based classification approaches are mainly rule-based relying on the 

analyst’s experience of a particular image and application, preventing the general 

applicability and transferability of the approach to different areas and applications.  

One way to tackle the aforementioned problems of pixel-based and object-based 

approaches is using a method which combines the advantages of both approaches. The 

method takes the spectral and spatial features of objects resulting from segmenting the 

image together with the original bands and classifies them using conventional pixel-based 

classifiers [Salehi et al., 2011]. By segmenting the image, several spectral (e.g., mean 

brightness, ratios of bands, NDVI, etc) and spatial features such as texture (e.g., grey 

level co-occurrence matrices) and morphology (e.g., geometry and extent) of objects can 

be extracted and used in classification. In fact, we are dealing with tens of spectral and 

spatial features for each object which can be stacked to the original bands of the image 

and utilized in classification. Moreover, some segmentation methods allow multilevel 

segmentation resulting in the same number of features for each level [Benz et al., 2004]. 

However, classifying this high dimensional data (spectral and spatial features) will lead 

to less accurate classification because of the Hugh phenomenon [Landgrebe, 2003] which 

was initially introduced for hyperspectral image analysis. Therefore, extracting (or 

selecting) proper features is a necessary step prior to the classification of such high 

dimensional spectral-spatial features of objects.  Several feature extraction and feature 
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selection methods have been introduced mainly for the analysis of hyperspectral imagery. 

Among them are discriminant analysis feature extraction (DAFE) [Fakunaga, 1990], 

decision boundary feature extraction (DBFE) [Lee and Landgrebe, 1993], and multiple 

discriminant analysis (MDA) [Duda et al., 2001]. These algorithms are all supervised 

(need to be trained) and are well-suited for classes with Gaussian-like distribution. 

However, for data with different characteristics (i.e., spectral, textural, and morphological 

features) the Gaussian-like assumption is hardly met. An alternative method is the well 

known Principal Component Analysis (PCA). PCA computes orthogonal projections that 

maximize the amount of data variance, and yield a new set of un-correlated image bands 

called components. However, for classification, these components are not always 

appropriate, since it is not always the case that maximum of data variance is caused by 

the difference between classes [Chan et al., 2009]. Furthermore, PCA transformation is 

time consuming because of its global nature [Kaewpijit et al., 2002]. 

In this paper, a wavelet-based feature extraction (dimensionality reduction) method is 

presented. The principle of this method is to apply a discrete wavelet transform to each 

set of spectral, textural, and morphological features of the segmented image. The wavelet 

is applied to the spectral/spatial signature of each individual object resulting in a new 

signature with significantly fewer features. The extracted features are then employed in 

conventional pixel-based classification. The paper also demonstrates which set of 

features (spectral, textural, and morphological) and which level of segmentation 

contributes more to increasing the classification accuracy. The method was tested on 
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images from different VHR satellites, WorldView-2 (WV-2), Quickbird (QB), and 

IKONOS (IK), acquired over the same urban areas.  

The remainder of this paper is organized as follows. Section 2 presents a description of 

study area and VHR images used. In section 3 the methods are described. This section 

includes a detailed description of the segmentation of the image, spectral and spatial 

features extracted from segmentation, wavelet-based feature extraction, and finally the 

classification. Section 4 presents results and discussion. Both wavelet-based feature 

extraction and the corresponding classification results for different sets of data are 

presented and discussed. Finally, section 5 gives the conclusion of this work. 

 

4.2 Study Area and Datasets  

The study area is a part of the City of Fredericton, a typical small city in North America 

and the capital of the Province of New Brunswick in Canada. Five major land cover 

classes were defined in this study including buildings (large buildings and small houses), 

roads (highways, roads and streets), parking lots, grass, and trees. Classification of this 

area is very challenging, due to spectral and spatial complexity of land cover types. There 

are buildings with various roof colors and sizes. Some small houses and minor roads are 

partly covered by foliage. The class of parking lots is also diverse in terms of color, 

texture, and size (e.g., parking lots with and without cars). For comparison purposes, the 

images of three different VHR sensors, IKONOS, QuickBird, and WorldView-2, 

acquired from the same area but in different dates, were used. 
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The IKONOS (IK) and QuickBird (QB) images were acquired on June 19 and August 31, 

2002, respectively. Both QB and IK images possess a panchromatic band (Pan) and four 

multispectral (MS) bands including blue (B), green (G), red(R), and near infrared (NIR). 

The middle wavelengths of QB multispectral bands are 487.5, 543, 650, and 816.5 nm for 

B, G, R, NIR bands, respectively, while those of IK are 480.5, 550, 665, and 805 nm. The 

spatial resolution of Pan is 0.65 m (QB) and 0.82 m (IK) at nadir, while for MS bands, it 

is 2.62 m for QB and 3.28 m for IK [DigitalGlobe, 2009; GeoEye, 2009]. 

WorldView2 (WV-2), launched October 2009, is the first VHR 8-band multispectral 

satellite which collects imagery with the highest spatial resolutions (together with 

GeoEye) among all commercially-available VHR satellite images. A subset of a 

geometrically corrected WV-2 image, acquired on July 20, 2011, was used in this study. 

WV-2 imagery comprises a panchromatic (Pan) band and eight multispectral (MS) bands. 

The spatial resolution of the Pan and MS bands are 0.46 m and 1.84 m at nadir, 

respectively. However, the image used in this study has the resolutions of 0.5 m and 2 m 

in the Pan and MS modes. The MS contains the four conventional bands (i.e., B, G, R, 

NIR1) as well as four newly added bands, which are coastal (C), yellow (Y), red edge 

(RE), and near infrared-2 (NIR2). The centre wavelengths of eight MS bands are at 425, 

480, 545, 605, 660, 725, 835, and 950 nm for C, B, G, Y, R, RE, NIR1, and NIR2, 

respectively [DigitalGlobe, 2009].  

In order to exploit the full spectral and spatial potential of images, the Pan band was 

fused with MS bands, for each image, resulting in Pan-sharpened images of IK, QB, and 
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WV-2. The fusion was carried out using the Pan-sharpening algorithm developed by 

Zhang (2004). Figure 4.1 shows the pan-sharpened WV-2 image of the study area. 

 

 

Figure  4.1 Pan-sharpened WorldView-2 image of the  study area 

 

4.3 Methods 

Our proposed methodology consists of three major parts. First, the VHR image is 

segmented into different levels of segmentation resulting in several spectral and spatial 

features of objects. Second, discrete wavelet transform is applied to each set of spectral 

and spatial features at each object location to reduce the number of spectral and spatial 

features. Finally, the features extracted by the wavelet algorithm are classified using the 
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well-known maximum likelihood (ML) classification algorithm. The flowchart of the 

proposed method is shown in Figure 4.2. The remainder of this section describes each 

step involved in the proposed method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

              

Figure  4.2 Flowchart of the proposed method 

 

4.3.1 Image Segmentation 

Image segmentation is the first step in object-based image analysis. One of the widely-

used segmentation techniques for the analysis of urban areas is multiresolution 
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segmentation. This technique partitions the image into objects at different levels of 

segmentation. At higher levels, the size of objects increases and different classes of land 

cover can be better represented according to their size and spectral homogeneity at 

different levels. In this study, the multiresolution segmentation available in eCognition 

software was used. To avoid the trial and error process of selecting three parameters of 

multiresolution segmentation, namely scale, shape, and compactness [eCognition, 2011], 

the Fuzzy-based Segmentation Parameter optimizer (FbSP optimizer) [Tong et al., 2012] 

was employed to get the optimal parameters for different levels of segmentation. FbSP 

optimizer is a supervised method which needs to be trained by selecting a few 

representative objects for each class at each level of segmentation. Then, taking into 

consideration the spatial and spectral features of training objects, FbSP gives the optimal 

parameters for each level [Zhang et al., 2010; Tong et al., 2012]. 

To use the FbSP optimizer, the first level of segmentation (L1) is carried out by manually 

selecting the three parameters. Often, the eCognition default values are used for shape 

and compactness, and the scale parameter is set in such a way that the resulting objects 

are smaller than the real world objects [Zhang et al., 2010; Tong et al., 2012]. 

Considering the spatial resolution of each image, the scale parameter was set to 20, 30, 

and 40 for WV-2, QB, and IK respectively. For the second level of segmentation (L2), 

the FbSP optimizer calculates the optimal parameters using objects in L1 and target 

(training) objects. This process is repeated until the desired number of segmentation 

levels is achieved. In this work, segmentation was stopped at the third level (L3) where 

the largest classes (e.g., large buildings and parking lots) are best outlined by objects. 
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Obviously in this level under-segmentation occurs for smaller classes (e.g., houses and 

single trees).  Table 4.1 shows the parameters for three levels of segmentation of images. 

As mentioned, parameters in L1 were selected manually, but for L2 and L3 parameters 

were calculated by FbSP optimizer.  

Table  4.1 Segmentation parameters for the three VHR images used in our study 

Image Level Scale Shape Compactness No. of objects 

IK 

L1 

L2 

L3 

40 

82 

142 

0.10 

0.57 

0.60 

0.50 

0.80 

0.80 

69,102 

10,810 

2,908 

QB 

L1 

L2 

L3 

30 

78 

131 

0.10 

0.64 

0.50 

0.50 

0.81 

0.81 

64,481 

7,634 

2,793 

WV-2 

L1 

L2 

L3 

20 

64 

121 

0.10 

0.60 

0.60 

0.50 

0.80 

0.80 

249,402 

19,870 

6,338 

 

4.3.2 Spectral and Spatial Features   

Having segmented the image, a large number of spectral and spatial features can be 

calculated for each object in eCognition. Three main feature types, spectral, textural, and 

morphological features, were investigated in this study. Table 4.2 shows the features 

calculated for each image. The description of all of these features can be found in 

eCognition [2011]. Due to the importance of spectral features for classification [Salehi et 

al., 2012a], almost all spectral features available in eCognition are used in this study. 

These are 32 features for the WV-2 image and 19 features for QB and IK images for each 

level of segmentation. 

Textural features calculated from the grey level statistics, especially those of grey level 

co-occurrence matrix (GLCM) have been used for a long time to improve classification 
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accuracy [Carleer et al., 2006]. Among the fourteen GLCM texture measures, originally 

proposed by Haralick [1979], Entropy, Angular Second Moment, Homogeneity, and 

Contrast are the most frequently used texture features for urban land cover classification 

of VHR imagery in the literature [Salehi et al., 2012b]. In this study, these four features 

are calculated for each band resulting in 32 features for WV-2 and 16 features for QB and 

IK in each level of segmentation. Morphological features (also known as Geometry in 

eCognition) are important for distinguishing spectrally similar classes such as buildings, 

parking lots, and roads. In eCognition these features are calculated based on the shape, 

extent, polygon, and skeleton of objects. For each image, 16 different morphological 

features were calculated for each level of segmentation (Table 4.2). Figure 4.3 shows 

examples of spectral, textural, and morphological features calculated for the objects in L3 

of the WV-2 image.  
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Figure  4.3 (a): pan-sharpened image, (b): Brightness, (c): Ratio R, (d): Standard 

deviation of RE, (e): Skewness of N2, (f): Entropy, (g): Homogeneity, (h): ASM, (i): 

Contrast, (j): Length/Width of skeleton, (k): Asymmetry, (l): Rectangular Fit. 

 

Table  4.2 Three types of features calculated for each level of segmentation. The numbers 

in parentheses show the number of features for wv-2, QB, and IK images in turn (QB and 

IK have the same numbers). 

Spectral                                

32 Features for WV-2           

19 Features for QB and 

IK 

Brightness(1)(1), Maximum difference(1)(1), Mean of all 

bands(8)(4) , Ratio of all bands(8)(4),  Normalized difference 

vegetation index(NDVI)for N1and N2(2)(1), Standard 

Deviation of all bands (8)(4), Skewness of C, Y, RE, and  N2 

for WV-2 and of B, G, R, N for QB, and IK (4)(4) 

Textural-GLCM                     

32 Features for WV-2            

16 Features for QB and 

IK 

Entropy(8)(4), Homogeneity(8)(4), Angular 2
nd

  Moment (8)(4), 

Contrast(8) (4) of all bands 

Morphological                     

16 Features for WV-2, 

QB, and IK 

Area, Length, Width, Asymmetry, Border Index, Density, 

Elliptic Fit, Radius of Largest Enclosed Ellipse, Radius of 

Smallest Enclosing Ellipse, Rectangular Fit, Roundness, Shape 

index, Average Length of Edges(polygon), Perimeter(polygon), 

Compactness(polygon), Length/Width(skeleton) 
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4.3.3 Wavelet-based Feature Extraction 

Combining the total number of features for each type (spectral, textural, and 

morphological) creates high dimensional datasets. The dimensionality further increases 

when these features are combined with the original pan-sharpened bands of VHR 

imagery. For example, the combination of 32 spectral features of WV-2 (Table 4.2) with 

the 8 pan-sharpened bands of WV-2 results in a 40-dimension dataset. Because of the so-

called “curse of dimensionality” [Bellman, 1961; Bishop, 1996], classification of such a 

high dimensional dataset will lead to inaccurate results. Curse of dimensionality arises 

when the data dimension (e.g. the number of objects’ features forming a high 

dimensional dataset) increases resulting in a sparse dataset. Consequently, in order to 

have a reliable and sound statistically analysis (e.g. classification), the amount of data 

needed to estimate the statistics (e.g. training data) often increases exponentially.  

Therefore, feature reduction (or extraction) is a necessary step before the classification of 

such high dimensional datasets. The feature extraction employed in this study is based on 

discrete wavelet transforms.  

Wavelet transforms are being used in the remote sensing community for applications 

such as registration, fusion, and compression. It has also been used for dimensionality 

reduction of hyperspectral data [e.g., Bruce et al., 2002; Kaewpijit et al., 2002]. In this 

study, wavelet transforms are employed to reduce the number of object features resulting 

from segmenting the image. Wavelet transform of a signal f(x), or an image f(x,y), is the 

inner product of the dilated and translated version of a basic function, also known as the 

"mother wavelet", with f(x): 
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Where )(xψ and )(, xbaψ  are the mother wavelet and its dilated and translated version, 

also known as the "daughter wavelet", respectively. The < > sign denotes inner product 

and ),(
~

baf  is the wavelet coefficient. In discrete wavelet transform, the dilation (a) and 

translation (b) values are a discrete lattice of points (Embrechts et al., 1995). A standard 

choice of a and b is by dyadic sampling such that ja −
= 2  and )20( jkkb <≤= , where 

j and k are integers. 

The mother wavelet is regarded as a high pass filter which covers the high frequencies in 

the signal. In this paper, the multiresolution algorithm [Mallat, 1989] is utilized to 

compute wavelet transforms. For multiresolution wavelets, a low pass filter is needed to 

cover the low frequencies. This low pass filter, denoted by )(xϕ , is called the "father 

wavelet" and its dilated and translated version )(, xbaϕ  is known as the "son wavelet" 

[Amolins et al., 2007]. In a 1-D multiresolution wavelet transform, the daughter and son 

wavelets are applied to the signal, decomposing it into the high frequency (details) and 

low frequency (approximation) parts. This is done recursively by reapplying the same 

procedure to the low frequency part (Figure 4.4). Because of the dyadic sampling, the 

size of signal becomes half at each level of decomposition resulting in a smoother signal 

at higher levels. 
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Figure  4.4 1-D multiresolution wavelet transform for two levels of decomposition. F(x)  

is the original signal and Ai and Di denote the approximation and detail parts of the 

signal at ith level of decomposition. 

 

 

In this paper, a 1-D wavelet transform is applied to each object’s signature for each set of 

spectral, textural, and morphological features. This procedure is repeated in the second 

level of decomposition and the approximation part is regarded as the new signature of the 

object. This process is done for all objects and the results are combined forming the 

extracted features of the image. Figure 4.5 provides a general illustration of the method.   

In order to keep the local characteristics of each set of features, only two decomposition 

levels of db2, one of the simplest and most localized members of the Daubechies family 

[Daubechies, 1992], were used.  
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Figure  4.5 Workflow of the proposed wavelet-based feature extraction method 

 

Figure 4.6 shows an example of the original spectral signature (32 features) of a building 

object in WV-2 image and its corresponding approximation for two levels of 

decompositions. In level 2, the number of features is reduced to eight from its original 32 

features. Nevertheless, as can be seen, the overall structure (main peaks and valleys) is 

preserved. It should be noted that the 1-D wavelet transform is applied to the spectral/ 

spatial signature of objects rather than pixels. By doing that, the computation cost is 

hugely reduced since the total number of objects is considerably less than that of pixels in 

the image. 



 

113 

 

                  (a)                                                (b)                                              (c) 

Figure  4.6 Example of the original spectral signature of a building object (a) and its 

corresponding signature after the first (b) and second level (c) of wavelet decomposition. 

The number of features in the second level is four times less than that of the original 

signature. Nonetheless, the overall structure of the signature is still preserved. 

 

4.3.4 Classification  

After the application of wavelet-based dimensionality reduction to each set of features, 

the extracted features together with the original bands of the image are employed in the 

classification process. To assess the effectiveness of each individual set of spectral, 

textural, and morphological features, the classification was performed on each set 

separately. That is, for each image, the extracted features of each type (spectral, textural, 

and morphological) are stacked to the original pan-sharpened bands creating three 

different datasets for each level of segmentation (L2 and L3) followed by classification. 

Maximum Likelihood (ML) classification, is the most commonly classifier with remote 

sensing data [Riachrds and Jia, 2006], and are served as the reference classifier in most 

related literature [Chini et al., 2008]. 
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4.4 Results 

4.4.1 Feature Extraction Results 

Table 4.3 reports the number of spectral, textural, and morphological features extracted 

by wavelet transforms for the three VHR images. For each of WV-2, QB, and IK, two 

levels of decomposition of the 1-D wavelet transform were applied to the spectral and 

spatial (i.e., textural and morphological) signature of each individual object. To 

demonstrate the effect of objects’ size (segmentation levels) on classification accuracy, 

feature reduction was carried out on objects in L2 and L3 independently. The result for 

each level was then used in the subsequent classification.  For the N number of original 

features, the number of extracted features at the L
th

 level of wavelet decomposition is 

N/2
L
 because of the dyadic sampling of the algorithm. For example, for 32 spectral 

features of WV-2 (Table 4.2), wavelet transform results in 8 features in the second level 

of decomposition. The extracted features are linear and weighted combinations of the 

original features. Multiresolution wavelet works perfectly when the number of input 

features is an integer power of two or at least even. Since the number of spectral features 

for IK and QB is 19, I simply repeated the 19
th

 feature to increase the number of features 

to 20. For these 20 features wavelet transforms extract five features at the second 

decomposition level. 

Table  4.3  Numbers of features resulting from wavelet feature extraction at the second 

level of decomposition 

Feature name          WV-2 QB   IK 

Spectral 8 5 5 

Textural-GLCM                     8 4 4 

Morphological              4 4 4 
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4.4.2 Classification Results 

The results of ML classification in the form of the conventional error matrix [Congalton 

and Green, 2009] and its elements including the overall accuracy (OA), kappa coefficient 

(KC), producer’s accuracy (PA), and user’s accuracy (UA) are presented and discussed in 

this section. In some cases the average PAs of buildings, roads, and parking lots are 

presented as the PA of impervious classes (Imp.). Similarly, the average PAs of grass and 

trees demonstrates the PA of vegetation (Veg).The results are summarized in four groups. 

First, the classification accuracies of all datasets are presented and discussed. Secondly, 

the effectiveness of wavelet feature extraction is demonstrated and compared with the 

conventional principal component analysis (PCA). Then, lastly, the effects of types of 

features and levels of segmentation on classification are investigated. 

All the three VHR images with their corresponding spectral and spatial features are 

employed in each test. ML classification is a supervised method and needs to be trained 

by sample data. To evaluate the performance of the proposed framework on the limited 

number of training samples, only about 5% of the study area of in each image is used for 

training the classifier. On the other hand, for more reliable validation of results, a large 

part of the study area (about 60%) of each image is used to test the classification results. 

Table 4.4 shows the details of training and test areas for each image. Although the 

number of training and testing pixels is different among the three images, the training and 

testing areas are close for them. This is because of the different in pixel size between the 

three images.   
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Table  4.4 Number of training and test pixels used in classification and Accuracy 

assessment, respectively 

Class 

Name 

WV-2 QB IK 

Training 

data: No.  

of pixels 

Testing 

data: No. 

of pixels 

Training 

data: No. 

of pixels 

Testing 

data: No. 

of pixels 

Training 

data  No. 

of pixels 

Testing 

data No. 

Of pixels 

Road 72748 1302755 42583 553883 19993 284495 

Building 141802 1604169 88428 638052 43823 336127 

Parking 

lot 

154384 2020212 94333 657978 45190 372773 

Grass 287480 3114281 147548 1254572 63829 489789 

Tree 183560 3812203 144584 2113810 61998 976584 

Total 839974 11853620 517476 5218295 234833 2459768 

% of the 

image 

4.7% 66.5% 5.7% 57.4% 5.3% 55.2% 

 

 

4.4.2.1 Classification Accuracies of All Datasets 

As mentioned earlier, the extracted spectral, textural, and morphological features by 

wavelet transforms in both levels of segmentation were stacked to the original pan-

sharpened bands of each image and ML classification is applied to each dataset. The 

classification accuracies for each dataset corresponding to WV-2, QB, and IK are listed 

in Table 4.5, 4.6, and 4.7, respectively. Each table contains the classification accuracies 

provided by the original pan-sharpened bands (PS), and the stacked set of PS bands and 

spectral, textural , and morphological  features of objects in L2, L3, and the combination 

of L2 and L3 (L2+L3).  
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Table  4.5 ML classification accuracies of the WV-2 image for different sets of objects’ 

features and for two levels of segmentation extracted by wavelet. The number in 

parentheses represents the number of features which are stacked to the 8 PS bands for 

classification. 

 

 

 

Table  4.6  ML classification accuracies of the QB image for different sets of objects’ 

features and for two levels of segmentation extracted by wavelet. The number in 

parentheses represents the number of features which are stacked to the 4 PS bands for 

classification. 

Class Name 

8PS 

8PS+Spectral 8PS+ Textural  8PS+ Morphological 

L2 

(8) 

L3 

(8) 

L2+L3 

(16) 

L2 

(8) 

L3 

(8) 

L2+L3 

(16) 

L2 

(4) 

L3 

(4) 

L2+L3 

(8) 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

Road 
38.8 

46.2 

54.7 

60.9 

58.8 

67.1 

63.5 

62.1 

54.6 

45.7 

61.7 

65.2 

61.4 

53.2 

83.9 

70.2 

69.9 

83.8 

83.3 

68.8 

Building 
52.7 

63.4 

79.4 

66.8 

85.4 

74.2 

79.2 

76.3 

42.2 

84.9 

52.2 

71.1 

44.4 

79.6 

68.1 

63.4 

79.2 

54.1 

57.1 

68.1 

Parking lot 
57.8 

41.2 

64.0 

70.9 

71.0 

75.7 

70.7 

78.3 

68.6 

25.0 

66.5 

51.3 

66.1 

37.1 

68.2 

80.4 

69.1 

78.2 

80.3 

74.2 

Grass 
85.5 

71.2 

94.1 

83.2 

94.7 

78.5 

95.3 

79.4 

93.8 

85.2 

94.2 

81.9 

94.0 

84.1 

69.1 

73.1 

86.3 

66.7 

66.7 

71.8 

Tree 
80.2 

91.3 

89.4 

96.2 

86.3 

97.0 

87.4 

97.1 

91.0 

95.5 

89.3 

95.4 

91.4 

94.8 

93.3 

93.0 

77.1 

92.1 

92.8 

94.5 

OA 68.7 80.7 82.2 82.7 74.0 77.8 75.7 78.2 77.0 77.9 

KC 59.6 74.8 76.7 77.4 66.3 71.1 68.4 71.1 69.9 71.1 

Class Name 

4PS 

4PS+Spectral 4PS+ Textural 4PS+ Morphological 

L2 

(5) 

L3 

(5) 

L2+L3 

(10) 

L2 

(4) 

L3 

(4) 

L2+L3 

(8) 

L2 

(4) 

L3 

(4) 

L2+L3 

(8) 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

Road 
43.0 

78.6 

53.5 

74.3 

77.5 

77.5 

56.8 

69.8 

50.9 

79.0 

50.0 

83.1 

48.8 

81.7 

80.0 

84.8 

75.1 

88.0 

78.7 

87.4 

Building 
72.7 

63.8 

63.8 

80.9 

84.2 

84.2 

67.4 

85.4 

77.1 

59.1 

78.2 

60.7 

73.6 

60.2 

62.1 

72.8 

60.5 

63.4 

59.6 

66.9 

Parking lot 
53.1 

26.9 

65.7 

36.7 

50.5 

50.5 

67.7 

51.9 

53.7 

48.9 

51.9 

46.0 

53.2 

46.4 

60.4 

53.4 

59.7 

60.0 

59.1 

59.7 

Grass 
85.7 

86.2 

94.1 

90.6 

92.3 

92.3 

93.6 

89.8 

96.1 

89.9 

93.0 

89.4 

94.1 

87.9 

86.6 

86.7 

83.7 

88.0 

83.2 

87.4 

Tree 
94.0 

91.2 

97.6 

95.3 

93.8 

93.8 

98.5 

94.2 

97.0 

96.1 

98.2 

93.6 

97.8 

81.7 

94.6 

91.5 

95.1 

88.1 

95.0 

87.4 

OA 77.2 82.8 85.1 84.2 82.3 81.4 80.9 82.5 80.8 80.7 

KC 69.9 76.8 79.9 78.7 76.1 75.0 74.3 76.4 74 74.1 
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Table  4.7  ML classification accuracies of the IK image for different sets of objects’ 

features and for two levels of segmentation extracted by wavelet. The number in 

parentheses represents the number of features which are stacked to the 4 PS bands for 

classification. 

Class Name 

4PS 

4PS+Spectral 4PS+ Textural 4PS+ Morphological 

L2 

(5) 

L3 

(5) 

L2+L3 

(10) 

L2 

(4) 

L3 

(4) 

L2+L3 

(8) 

L2 

(4) 

L3 

(4) 

L2+L3 

(8) 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

UA 

PA 

Road 
42.0 

70.0 

51.9 

66.9 

59.6 

57.1 

64.1 

55.4 

60.2 

65.8 

55.2 

72.2 

68.9 

62.7 

55.8 

80.5 

80.0 

79.9 

77.9 

82.6 

Building 
69.4 

65.3 

76.0 

70.6 

64.9 

72.9 

63.9 

76.0 

75.0 

70.0 

66.9 

72.4 

63.1 

68.2 

39.9 

56.0 

65.7 

64.1 

74.0 

60.5 

Parking lot 
56.1 

26.3 

66.3 

53.0 

74.0 

66.2 

71.9 

64.3 

62.2 

61.9 

58.4 

48.3 

61.5 

69.7 

25.8 

60.8 

62.7 

61.2 

63.5 

68.4 

Grass 
73.5 

95.9 

83.1 

97.0 

83.5 

97.7 

83.9 

97.6 

82.9 

95.8 

81.6 

93.1 

78.9 

92.7 

57.1 

96.3 

76.2 

96.0 

78.0 

95.6 

Tree 
96.6 

84.6 

97.9 

91.3 

98.3 

90.9 

98.2 

91.6 

98.2 

90.3 

99.0 

86.9 

99.0 

85.1 

72.8 

87.3 

97.4 

86.5 

97.3 

87.8 

OA 73.7 81.0 82.2 82.3 81.5 78.6 79.4 80.4 80.7 82.1 

KC 65.4 74.8 76.3 76.5 75.5 71.8 72.9 74.0 74.5 76.2 

 

 

As expected, incorporating additional spectral and spatial features significantly increases 

the overall classification accuracy and the accuracy of individual classes for all three 

images. For example, for WV-2, adding 8 spectral features of objects in L3, extracted by 

the wavelet-based feature extraction method, increases the KC by about 17% compared 

with the case when only 8 PS bands are utilized in classification. Similarly, the additional 

5 spectral features of objects in L3 increase the KC of QB and IK by 10% and 11%, 

respectively.  Incorporating additional features of objects into classification makes a 

greater contribution to increasing the PA of three impervious land cover types (roads, 

buildings, and parking lots) than the PA of vegetation (grass and trees). Utilizing the 

extracted spectral features of objects in L3 increases the average PA of impervious 

classes by 20% for WV-2, and about 14% and 12% for QB and IK, respectively. For 
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vegetation, this increase is only about 6%, 4%, and 4% in WV-2, QB, and IK data. 

Figures 4.7, 4.8, and 4.9 show the classification results of the PS bands only and PS 

bands together with extracted spectral features of objects in L3 for WV-2, QB, and IK. 

As seen, in all three figures, the addition of object features into classification has 

significantly reduced misclassification of similar classes such as buildings, roads, and 

parking lots.  The majority of impervious land cover classes in the image including small 

houses in the south-east part of the image have been correctly classified, especially for 

the WV-2 image. In addition, as seen in these figures, the incorporation of object features 

avoids the so-called salt and pepper effect, caused by the spectral heterogeneity of 

classes, which is clearly seen for when only PS bands are utilized.  
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Figure  4.7 ML classification result of (a) 8 PS bands and (b) 8 PS+8 Spectral features for 

the WV-2 image. R: roads; B: buildings; P: parking lots; G: grass; T: trees. 

R B P G T 
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Figure  4.8  ML classification result of (a) 4 PS bands and (b) 4 PS+5 Spectral features 

for the QB image. R: roads; B: buildings; P: parking lots; G: grass; T: trees. 

R B P G T 



 

122 

 

 

Figure  4.9 ML classification result of (a) 4 PS bands and (b) 4 PS+5 Spectral features for 

the IK image. R: roads; B: buildings; P: parking lots; G: grass; T: trees. 

R B P G T 
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4.4.2.2 Type of Features 

To examine the usefulness of each type of feature (spectral, textural, and morphological) 

in classification results provided by each type are plotted in graphs and shown in Figure 

4.10. Despite the difference in spatial resolution of the three VHR images and the 

difference in number of spectral bands between WV-2 and the two other images, very 

similar trends are seen in these three graphs, especially for WV-2 and QB. This shows 

there is little dependency of our method on the input VHR imagery.  

For all the three images, spectral features give the highest OA among all the three types 

of features. This confirms the importance of incorporating the spectral information, rather 

than spatial information, of neighboring pixels (in the form of objects) into the 

classification of VHR imagery. Spectral information particularly has a more significant 

impact on in increasing the classification accuracy of vegetation which in turn increases 

the overall accuracy of the image. 

 Morphological features provide comparable (for WV-2 and QB) or better (for IK) 

average PA of impervious class (Imp) compared to textural and spectral features. This 

result is not surprising as buildings, roads, and parking lots have very similar texture and 

spectral information, but they are distinguishable by their morphological features such as 

size, shape, and skeleton. On the other hand, looking at Tables 4.5, 4.6, and 4.7, 

incorporating morphological features into classification lowers the PA of vegetation 

compared to using only PS bands. Grass and tree areas are normally very diverse in terms 

of their shape and size and thus morphological features are not suitable representatives of 

these classes.  
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Textural features make the least contribution to increasing the accuracy of impervious 

classes, while for vegetation texture plays an important role. This is because of not only 

the textural similarity between buildings, roads, and parking lots, but also the textural 

diversity within each impervious land cover. For example, there are parking lots with cars 

(commercial) and without cars (residential) creating different textural characteristics for 

the same class of parking lots.      
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Figure  4.10 Comparison of classification accuracies achieved by each set of spectral, 

textural, and morphological features extracted by wavelet transforms. 
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4.4.2.3 Level of Segmentation 

To demonstrate the role of the level of segmentation, classification accuracies of each 

individual level as well as the combination of both levels are considered. Figure 4.11 

summarizes the classification accuracy of different types of features in different levels of 

segmentation for all the three images. Three sets of classification accuracies are plotted 

for each of OA, Imp, and Veg. One set is for the case when objects in the second level of 

segmentation are utilized (L2). The second set is for the objects in the third level of 

segmentation (L3), and the last set is the combination of objects in both levels (L2+L3).  

As can be seen, the combination of two levels does not yield significant improvement 

over the case when only one level of segmentation is utilized. This suggests the use of 

features from only one level of segmentation instead of both levels. Consequently, the 

computation costs decrease significantly if only one level, instead of two, is utilized. 

 Of L2 and L3, the latter results in a better classification accuracy for impervious land 

covers for almost all 9 cases shown in Figure 4.11. This result can be explained by the 

fact that the three impervious land cover types are better represented by larger objects 

(L3) than small ones (L2) and the FbSP segmentation method results in more meaningful 

objects for these three classes in L3 rather than in L2. However, for the class of 

vegetation, L2 slightly outperforms L3. Grass and tree areas typically do not possess 

specific shape and thus over-segmentation, which occurs in the lower level of 

segmentation (e.g., L2), does not have a significant effect on classification of them. 

Further, for vegetation, the classifier mainly relies on the spectral information of 

individual pixels which are better preserved in the lower level of segmentation. In other 
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words, the spectral information of objects in lower levels, rather than higher levels, is 

closer to the original spectral information of the individual pixels.      

 

 

Figure  4.11 Comparison of the classification accuracies achieved by objects’ feature in 

L2, L3, and the combination of L2 and L3. 

 

4.4.2.4 Wavelet vs. PCA 

A standard method for dimensionality reduction is PCA. To compare the performance of 

PCA and wavelet feature extraction, the classification results of PCA and wavelet 
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methods are compared. PCA is applied to the spectral features of objects in L3 for all 

three images. Then, for the WV-2 image, the first 8 PCs, corresponding to 8 wavelet-

based extracted features, are stacked to the 8 PS bands creating 16 features. Similarly, for 

the QB and IK, the first 5 PCs are stacked to the PS bands creating 9 features for each of 

QB and IK images. ML classification is carried out on each dataset and the results are 

compared to the corresponding results achieved by wavelet. Figure 4.12 shows the 

accuracy provided by PCA and wavelet transforms.  As can be seen from Figure 4.12, 

wavelet and PCA basically provide similar results in terms of classification accuracy. 

However, this study shows that wavelet transforms have a much higher computing 

efficiency when compared to PCA.  Unlike the wavelet approach which is applied to each 

individual object, PCA takes into consideration all the individual pixels and performs 

pixel-by-pixel transformation of the image. Since the number of objects is significantly 

lower than the number of pixels in VHR imagery, especially in higher levels of 

segmentation (e.g., L3), the object-based wavelet feature extraction is much faster than 

the pixel-based PCA. By comparing the computational complexity of wavelet and PCA, 

it is found, in this study, that wavelet is dramatically less complex than PCA as the 

number of pixels is far greater than the number of objects forming the images, especially 

for VHR imagery. For N number of original features, the wavelet-based feature extraction 

method yields   computations per unit [Daubechies et al., 1992] resulting in a total 

complexity of  where M is the number of an image’s objects. For PCA the total 

estimated time complexity is   where L is the number of an image’s 
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pixels and R is the number of formed component [Kaewpijit et al., 2003; Chen and Qian, 

2011].  For example, for 32 spectral features of WV-2, the computation complexity of 

wavelet transforms is on the order of , where 6338 is the 

number of objects in L3 (Table 4.1). For PCA, the computational complexity of 32 

spectral features is on the approximate order of .   
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Figure  4.12 Comparison of classification results achieved by PCA- and Wavelet- based 

extraction of spectral features in L3. OA: overall accuracy; Imp: average producer’s 

accuracies of impervious land covers; Veg: average producer’s accuracies of grass and 

trees.  

 

4.5 Conclusion 

This study demonstrates a combined pixel- and object-based image analysis framework 

for urban land cover classification of VHR imagery. The method is tested on the 

WorldView-2, QuickBird, and IKONOS images of the same area and similar results are 

achieved for all of these three images. The proposed framework takes advantage of both 

approaches (pixel-based and object-based) by incorporating the spectral and spatial 

features of objects, resulting from segmentation, into automatic pixel-based classification.  

After automatic segmentation of the image using FbSP optimizer, tens of spectral, 

textural, and morphological features of objects are available. However, utilizing all these 

features creates huge computational costs and more importantly results decline in 

classification accuracy due to the “curse of dimensionality.” To conquer the problem of 

dimensionality, a 1-D wavelet-based feature reduction/ extraction method was proposed 

and applied to each set of spectral, textural, and morphological features of objects. 

Finally, the conventional Maximum Likelihood classification was used to classify the 

combination of the original bands of the image and the wavelet extracted features. 

Regardless of the type of features and level of segmentation, the classification results 

confirm that incorporation of additional spectral and spatial features of objects 

significantly improves the classification results, especially for the WV-2 image.  

Furthermore, the results demonstrate the usefulness of the wavelet-based feature 
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reduction method in terms of both the accuracy and computational complexity in contrast 

to the conventional pixel-based feature extraction algorithms such as PCA, the wavelet 

method is applied to each individual object (a group of pixels) rather than individual 

pixels, and thus the computation cost is dramatically reduced. Further, since wavelet 

transforms preserve the local characteristics of objects’ signatures in lower dimension, 

they are more desirable for dimensionality reduction of larger numbers of features than 

are conventional feature extraction methods. 

Of three types of objects’ features, spectral features prove to be more effective for 

increasing the overall classification accuracy and the classification accuracy of individual 

classes of all the three images. In addition, for impervious land cover types such as 

buildings, roads, and parking lots, the morphological features show results comparable to 

those of spectral features. Impervious land covers normally possess specific shape and 

size and thus the morphological features (shape, size, skeleton, etc) of objects represent 

them well. On the other hand, impervious land covers are very diverse in terms of their 

textural properties. Consequently, textural features do not yield promising results for such 

classes as the quantitative results of this study indicate.  

The multiresolution segmentation yields objects with different sizes in each level of 

segmentation which is well suited to urban areas containing classes with different sizes.  

Consequently, the same number of features can be extracted in each level of 

segmentation, and incorporated into classification. It has been found, in this study that 

utilizing the features of only one level of segmentation is sufficient. In other words, the 

combination of features from two levels does not increase the classification accuracy 
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compared to the use of only one level. Further, of L2 and L3, the latter shows better 

classification results. Utilizing objects in higher level of segmentation (L3) also requires 

much less computation time in the wavelet-based feature extraction method as the 

number of objects is significantly less in L3 compared to L2. 

In this study only the spectral and spatial information of the image are extracted and 

incorporated in the classification process. Incorporation of ancillary data such as digital 

surface/elevation model data extracted from stereo VHR imagery would help the 

classifier to better distinguish between different impervious land cover types. This will be 

the direction of our future research.  
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Chapter 5 : AUTOMATIC MOVING VEHICLES INFORMATION 

EXTRACTION FROM SINGLE-PASS WORLDVIEW-2 IMAGERY
1
 

 

Abstract 

Because of the sub-meter spatial resolution of very high resolution (VHR) optical satellite 

imagery, vehicles can be identified in this type of imagery. Further, because there is a 

time lag in image collection between the panchromatic (Pan) and multispectral (MS) 

sensors onboard VHR satellites, a moving vehicle is observed by the satellite at slightly 

different times. Consequently, its velocity information including speed and direction can 

be determined.  The higher spatial resolution and more spectral bands of WorldView-

2(WV2) imagery, compared to those of previous VHR satellites such as QuickBird and 

GeoEye-1, together with the new sensors’ configuration of WV2, i.e., 4 bands on each 

side of the Pan sensor (MS1 and MS2), adds an opportunity to improve both moving 

vehicles extraction and the velocity estimation. In this paper, a novel processing 

framework is proposed for the automatic extraction of moving vehicles and determination 

of their velocities using single-pass WV2 imagery. The approach contains three major 

components: a) object-based road extraction, b) moving vehicle extraction from MS1 and 

MS2, and c) velocity estimation. The method was tested on two different areas of a WV2 

                                                 
1
 This paper has been published in IEEE Journal of Selected Topic in Earth Observation and Remote 

Sensing: 

Salehi, B., Y. Zhang, M. Zhong, 2012. Automatic moving vehicle information extraction   from single-pass 

WorldView-2 imagery, IEEE Journal of Selected Topic in Earth Observation and Remote Sensing, 5(1): 

135-145. 
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image, a high speed and a low speed traffic zone. Using a means of accuracy assessment, 

the method resulted in a "correctness" of 92% and a "completeness" of 77% for the 

extraction of moving vehicles. Furthermore, the estimated speeds and directions are very 

realistic and are consistent with the speed limits posted on the roads. The results 

demonstrate a promising potential for automatic and accurate traffic monitoring using a 

single image of WV2. 

Keywords: WorldView-2, moving vehicle extraction, speed determination, time lag 

5.1 INTRODUCTION  

The high population growth and therefore high growth in road traffic volume over the last 

decades has increased road traffic to its congestion level [Campell, 2007]. This poses 

great challenges for today’s road traffic research and planning. Vehicle monitoring is one 

of the important issues for modelling and planning of traffic and transportation 

management for both terrestrial and maritime areas. Traditionally, traffic monitoring has 

been conducted using ground-based equipment such as radar systems and video cameras 

[Munno et al., 1993; Castellano et al., 1999; Nag and Barnes, 2003]. These systems, 

however, have very narrow coverage area and are not able to observe global traffic 

situations. The use of remote sensing data for traffic monitoring has emerged as an 

alternative in recent years. Traffic monitoring using remote sensing data has the 

advantages of being fast and providing a wider coverage area over a long period of time. 

A number of studies have utilized high resolution aerial imagery (with resolution better 

than 0.3 m) [Ruskone et al., 1996; Hinz and Baumgartner, 2001; Moon et al., 2002; Toth 

and Grejner-Brzezinska, 2006; Hinz et al., 2008; Yamazaki and Liu, 2008; Yao et al., 
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2011] and LiDAR data [Toth and Grejner-Brzezinska, 2006; Yao et al., 2011] for vehicle 

detection. Most of these studies are limited to vehicle detection and a very few attempts 

have been made to estimate the vehicle’s velocity including speed and direction 

[Yamazaki and Liu, 2008; Yao et al., 2011]. Aerial imagery and LiDAR data, however, 

are relatively expensive and not available for many areas.   

Because of the sub-meter spatial resolution, very high spatial resolution (VHR) optical 

satellite images such as those of Ikonos (IK) and QuickBird (QB) have been utilized for 

vehicle detection, in recent years. Examples of vehicle detection using the Panchromatic 

(Pan) band of VHR imagery are [Sharma et al., 2006; Zheng et al., 2006; Jin and Davis, 

2007; Zheng and Li, 2007; Eikvil et al., 2009; Larsen et al., 2009; Leitloff et al., 2010; 

Larsen and Salberg, 2011]. Furthermore, some recent studies have estimated the velocity 

of vehicles using the small time lag between the Pan and multispectral (MS) sensors of 

QB [Leitloff et al., 2010; Xiong and Zhang, 2008; Pesaresi et al., 2008; Liu et al., 2010]. 

The major challenge in moving vehicle information (position and velocity) extraction 

using VHR imagery is to extract the vehicle in two images (e.g., Pan and MS). Once the 

location of the vehicle is extracted the velocity is determined using the shift between two 

locations and the time lag between the two images. However, vehicle extraction using 

VHR imagery, particularly in MS bands, is a difficult task due to the relatively small size 

of vehicles. Most of the studies in this area have extracted the target vehicles either 

manually [Xiong and Zhang, 2008; Pesaresi et al., 2008]or by incorporating ancillary 

data such as manually-digitized roads [Zheng et al., 2006; Zheng and Li, 2007; Liu et al., 

2010] and existing road layers [Jin and Davis, 2007; Eikvil et al., 2009; Larsen et al., 
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2009; Leitloff et al., 2010; Larsen and Salberg, 2011]. Furthermore, the aforementioned 

studies have detected vehicles in the Pan image and for those, in which the objective is 

the velocity estimation, the corresponding vehicle in MS image has been identified by 

utilizing a matching technique which is a computation-intensive process. Incorrect 

detection of the vehicle in MS image during the matching process is also a potential 

failure of matching methods. For example, [Leitloff et al., 2010] observed a typical 

failure during the matching of Pan and MS images in their experimental results.      

WorldView2 (WV2), launched October 2009, is the first VHR 8-band multispectral 

satellite which collects imagery with the highest spatial resolutions among all 

commercially-available VHR satellites. These unique spatial and spectral resolutions of 

WV2 along with its new sensors’ configuration (Fig. 5.1) have added the opportunity for 

the improvement of moving vehicles information extraction. The WV2 satellite carries a 

Pan and two MS (MS1 and MS2) sensors onboard. The Pan sensor is located between the 

MS1 and MS2 and the sequence of collected images is MS1, Pan, and MS2 with 

approximately 0.13 seconds time lag between each MS and the Pan image and 0.26 

seconds between the MS1 and MS2 [Smiley, 2011]. Consequently, a moving target is 

observed at three different positions by the satellite. The comparison of each pair of 

positions will result in velocity estimation. We believe that the velocity estimation by 

using the MS1 and MS2 images results in a higher accuracy than that by using the Pan 

and MS bands of QB imagery. This is because a) the MS1 and MS2 have the same spatial 

resolution and this ensures a more accurate comparison of the moving vehicle’s positions 

in MS1 and MS2, which is a necessary step in velocity estimation, than that between the 
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Pan and MS bands of QB imagery, and b) the time lag between MS1 and MS2 of WV2 is 

about twice that between the Pan and MS bands of QB imagery which consequently 

results in more accurate velocity estimation. In addition, the new MS bands of WV2 (i.e., 

MS2 bands) have added the opportunity for road extraction, which is a necessary step in 

moving vehicle extraction, and also moving vehicle change extraction.  

 

 

Figure  5.1 Time lags between WV2’s sensors 

 

In this study, we investigated a novel method for automatic moving vehicles’ information 

extraction using WV2 imagery. In the proposed method, roads were first extracted using 

a hierarchical object-based image analysis framework of WV2 Pan-sharpened bands. 

Then, the changes in vehicles’ locations in MS1 and MS2 images were enhanced 

(detected) using standardized principal component analysis (PCA) followed by an object-

based change extraction (classification) of the areas within the boundary of roads 

(moving vehicles). Finally, the ground coordinates of vehicles’ positions in MS1 and 

MS2 images were determined using the rational polynomial coefficients (RPCs) of the 

sensor followed by the calculation of vehicles’ velocity using the change in the vehicle’s 

positions and the time lag between MS1 and MS2 images.   
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The rest of the paper is structured as follows: Section 5.2 describes the methodology of 

this work which includes road extraction, moving vehicle detection, and velocity and 

direction determination. In section 5.3, the dataset is presented followed by the 

experimental results. Discussion of the results is presented in section 5.4.  Finally, the 

conclusion of this work is presented in section 5.5.  

 

5.2 METHODOLOGY 

In this section, the method for moving vehicles information extraction is described. After 

a short overview, the specific parts of the extraction workflow are described in detail in 

the following subsections. Our proposed approach consists of three major parts: a) object-

based road extraction (classification), b) moving vehicle extraction using PCA-based 

change detection of MS1 and MS2 images followed by object-based extraction of 

changes within the boundary of roads and c) Determining the ground positions of the 

vehicle in MS1 and MS2 images using the sensor model parameters, provided by the 

satellite, and finally, estimating the velocity of the vehicle using the time lag between two 

MS images. The flowcharts of the first two components are illustrated in Fig. 5.2 while 

that of the third component is shown in Fig. 5.3. 
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Figure  5.2 Flowchart of the proposed object-based moving vehicle extraction 

 

5.2.1 Road Extraction  

Vehicles move along roads and, thus, the search area for moving vehicle detection can be 

restricted to roads. However, road extraction from VHR imagery is not an easy task due 

to the spectral similarity of roads to parking lots and buildings. Most of the studies for 
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vehicle extraction using VHR imagery have extracted roads either manually [Zheng et 

al., 2006; Zheng and Li, 2007; Liu et al., 2010] or by using archived GIS road layers [Jin 

and Davis, 2007;; Eikvil et al., 2009; Leitloff et al., 2010; Larsen and Salberg, 2011]. In 

this work, however, we developed a semi-automatic object-based road extraction 

framework using the Cognition Network Language available in eCognition® software 

package. The flowchart of object-based road extraction is illustrated in the left part of 

Fig. 5.2.  The process starts with Pan-sharpening of the image followed by segmenting 

the Pan-sharpened image and the process ends by classifying the segmented image into 

roads and non-roads. The following discusses each step in the flowchart in detail.  

In order to take advantage of both the spectral information of eight MS bands and the 

high spatial resolution of the Pan band in the road extraction procedure, the Pan and eight 

MS bands of the WV2 image were fused using the UNB Pansharp algorithm [Zhang, 

2004] resulting in eight Pan-sharpened bands. 

 The first step in object-based image analysis is segmentation, which is the process of 

partitioning the image into a set of discrete non-overlapping regions (image objects) on 

the basis of internal homogeneity criteria [Devereux et al., 2004] . In the second step, 

image objects are assigned to a class based on the fuzzy membership function of objects’ 

features such as spectral (e.g., mean brightness value, ratio of bands) and morphological 

(shape, size, etc) features. 

 For road extraction, due to the presence of roads with different widths (from wide 

highways to narrow city streets) in typical urban environments, the multiresolution 

segmentation is preferred. The multiresolution segmentation is a bottom up procedure 
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based on the Fractal Net Evolution Approach (FNEA) [Baatz and Schape, 2000], which 

is embedded in eCognition software package. It starts from pixel level and grows up 

based on a pair-wise region merging technique [eCognition, 2010a]. The results are 

objects with different sizes and shapes in different levels. Lower levels represent smaller 

objects while higher levels represent larger objects. Three key parameters, namely shape, 

compactness, and scale need to be set up in multiresolution segmentation. Usually the last 

two parameters, which control the homogeneity of objects, are set as eCognition default. 

Scale, which is considered as the most crucial parameter of multiresolution segmentation 

[Myint et al., 2011], controls the objects’ size. Higher values for scale parameter result in 

larger image objects (higher levels) and lower values in smaller image objects. The 

details of the steps involved in multiresolution segmentation can be found in [eCognition, 

2010b]. 

Following the segmentation, a hierarchical rule-based classification schema was 

developed to classify the road areas. The rule-based approach allows the analyst to 

combine spectral and morphological features of objects to assign a class membership 

degree (between 0 and 1) to each object based on a fuzzy membership function. 

Furthermore, it has hierarchical capability meaning that the approach begins to classify 

the entire image into general classes (e.g., traffic areas and non-traffic areas) and then, by 

utilizing other features, each class is split to more detailed subclasses (e.g., roads and 

parking lots) 

In this work, the image was segmented into four levels and objects in the fourth level 

were utilized in the rule-set for the subsequent classification. We experienced the Ratio Y 
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and the Brightness value in band NIR2 of objects are two very helpful spectral features in 

separating traffic areas (including roads and parking lots) from other areas in the image 

[Salehi et al., 2011]. The Ratio Y describes the amount that band Y contributes to the 

total brightness for an object and is calculated as the ratio between the brightness value of 

band Y over the summation of brightness values of all bands [eCognition, 2010b]. The 

last step in the rule-set hierarchy is to separate roads from parking lots. Roads are 

elongated objects and they can be distinguished from parking lots by a Length threshold. 

Length has high value for road and low value for parking lot objects.  

5.2.2 Moving Vehicle Extraction 

To determine the velocity of a vehicle, its relative displacement in two images needs to 

be determined. The conventional method is to extract the vehicle in one image (i.e., the 

PAN image) and then to determine the corresponding vehicle in the other image (i.e., the 

MS image) using a matching technique and then comparing the positions of the vehicle in 

each image. However, in this article, to restrict the vehicle extraction to the moving ones 

that are of interest (not the stationary ones), a different strategy was employed. The 

strategy begins with detecting (enhancing) the change areas between the MS1 and MS2 

images, which are moving vehicles, followed by extracting the change areas. 

 A moving vehicle has different positions in MS1 and MS2 images. Consequently, if a 

change detection procedure is applied to the stacked set of the MS1 and MS2, the change 

areas will represent moving vehicles. Indeed, the result of change detection for a moving 

vehicle will be two neighbor objects which each represent the vehicle in each image (Fig. 

5.6, PC4). These neighbor objects are then extracted using the classification of the change 
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image. The flowchart of the proposed moving vehicle extraction is presented in the right 

part of Fig. 5.2. The flowchart includes two steps: a) moving vehicle detection 

(enhancement) by applying change detection to all eight MS bands; and b) extracting the 

changes (moving vehicles) using the object-based classification. Principal Component 

Analysis (PCA) was employed for change detection because of its simplicity and 

capability of enhancing the information on change [Deng et al., 2008]. 

5.2.2.2 PCA-based Change Detection of Moving Vehicles 

Here, we are encountering a change detection problem in which the targets of interest are 

moving vehicles and the multi-temporal images are the MS1 and MS2 images. The PCA 

is a commonly used statistical method for many aspects of remote sensing including 

change detection. Basically, PCA is an orthogonal transformation which converts a set of 

possibly correlated variables (image bands) into a set of uncorrelated bands called 

principal components (PCs).  A new set of coordinate axes is calculated from the 

eigenvectors which in the unstandardized form are calculated from the covariance matrix, 

and in standardized form are calculated from the correlation matrix. The first new axis or 

principal component is oriented in the direction of maximum variance, with subsequent 

axes sequentially rotated in the direction of the largest remaining variance. Studies 

indicate that the standardized PCA appears to be more effective than the unstandardized 

one [Deng et al., 2008]. For this reason, and also based on our experimental results, 

standardized PCA was utilized in this work. While the first PCs, corresponding to large 

eigenvalues, reflect the unchanged part of the image, the last PCs reflect the changed 

part. The difficulty in PCA-based change detection, however, is automatically 
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determining which PC represents change areas [Radke et al., 2005]. In the present study, 

we performed this task by visual inspection (see Fig. 5.6). We refer to this PC as PC 

change. 

5.2.2.3 Object-based Moving Vehicle Extraction 

 Having enhanced the changes in moving vehicles by the PCA, the change areas will be 

extracted from the PC change image. Similar to the road extraction method, an object-

based image analysis framework was developed to extract the enhanced moving vehicles 

from the PC change image. As the roads were already extracted, moving vehicle 

extraction is restricted to the road areas of PC change image.  

Similar to road extraction, the multiresolution segmentation was utilized for vehicle 

extraction. In contrast to the road extraction step, in which the entire Pan-sharpened 

image was segmented, for moving vehicle extraction only the road areas of PC change 

were segmented into three levels. Level one represents small objects (smaller than a 

normal vehicle size) while objects in level three are more meaningful [Tian and Chen, 

2007] for representing vehicles size and shape (see Fig.5.7).  In the PC change image, for 

each moving vehicle there are two neighboring objects with very dark and very bright 

gray values. Each object represents the vehicle in one of the MS images (MS1 or MS2). 

Therefore, if two such neighboring objects are extracted, the center of each object 

represents the centroid of the moving vehicle. Having tested several spectral and 

morphological features of the objects in third level (Fig. 5.6c), we learned that very dark 

and very bright objects are well extracted using their morphological features including 

shape and area. In other words, vehicle’ objects possesses a specific shape and area 
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(number of pixels) and thus are distinguishable from the rest of the road by applying 

certain thresholds to the shape and area of all objects. Compactness, as a shape feature, is 

defined as the area of smallest rectangle enclosing the image object (bounding box) 

divided by the total area of the object [eCognition, 2010b], was used in this study.  

5.2.3 Determining the Ground Positions and Velocity of Moving Vehicles  

From the previous section, the centroids (image position) of moving vehicles in both 

MS1 and MS2 images were extracted. The next step is to determine the respective 

positions of those centroids in ground space.  

Fortunately, VHR satellites such as QB and WV2 provide a set of sensor model 

parameters or rational polynomial coefficients (RPCs), which describe the image-to-

object space transformation. The transformation can be given as: 

                           

                       (1) 
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In the above equations, x, y are the normalized (offset and scaled) image coordinates 

(row, column) and X, Y, Z are the corresponding ground coordinates.  are 

coefficients which are supplied with WV2 image products.  

According to WV2 sensor specifications [DigitalGlobe, 2009], the positional accuracy of 

well-identified objects in the image  (circular error with the confidence level of 90%) of 

the sensor model is in the range of 4.6 to 10.7 m (excluding terrain and off-nadir effects) 

without using ground control points (GCPs), and 2.0 m with using GCPs. Obviously, this 

level of positional accuracy does not  meet the requirements for speed determination (as it 

produces an error of speed determination that may range  63 km/h to 148 km/h).  The 

objective of this research is to determine the moving vehicles’ velocity. Therefore, 

relative positions of the vehicles in MS1 and MS2 are of major interest and the above 

mentioned absolute geo-positioning error can be neglected if the topography around the 

moving vehicles is changing smoothly. This is a feasible condition for vehicles as the 

road networks in general do not show very steep height gradients [Pesaresi et al., 2008].  

Fig. 5.3 illustrates the steps involved in the moving vehicles’ information extraction 

workflow. Having determined the ground positions of moving vehicles’ centroids in MS1 

and MS2 using RPCs, the displacement vector of changes in vehicle’s position is  
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determined. This vector represents the distance between two positions of the vehicle in 

MS1 and MS2 as well as its moving direction. Consequently, using this distance and the 

time lag between MS1 and MS2 (0.26 s), the vehicles’ speeds are calculated.  

 

 

 

 

 

 

 

 

Figure  5.3 Flowchart of the moving vehicles information (position, speed and direction) 

extraction. 

 

5.3 EXPERIMENTAL RESULTS AND DISCUSSION 

5.3.1 Dataset 

The test area is a part of the City of Moncton in New Brunswick, Canada. A subset of a 

geometrically corrected WV2 image, acquired on October 5, 2010, was used in this 

study. The WV2 imagery includes a Pan band and two sets of multispectral bands (MS1 

and MS2). The spatial resolution of the Pan and MS bands are 0.46 m and 1.84 m at 

nadir, respectively. However, the image used in this study has the resolutions of 0.5 m 

and 2 m in the Pan and MS modes. The MS1 contains the conventional multispectral 

bands (i.e., blue: B, green: G, red: R, and near infrared: NIR1), and the MS2 possesses 

four newly added bands which are coastal (C), yellow (Y), red edge (RE) and near 

infrared-2 (NIR2) [34]. The sequence of images collected by WV2 is MS1, Pan and MS2. 
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The time lag between MS1 and MS2 is about 0.26 seconds [Smiley, 2011]. This feature 

of the satellite is the basis for extracting the moving vehicle information from single-pass 

WV2 imagery. The image contains different traffic areas including a highway, a large 

traffic circle, a road intersection, and many parking lots. This variety of traffic areas is 

good for testing our proposed approach for different traffic conditions. Fig. 5.4 shows a 

true color composite of the Pan-sharpened WV2 image used in this study. Rectangles A 

and B represent two different areas in terms of vehicle velocity (i.e., high speed (A), and 

moderate speed (B) zones). These two areas will later be used to show the final results of 

the proposed method. 

 

 

Figure  5.4 The true color composite of the Pan-sharpened WV2 image of the Test area. 

Rectangles A and B represent the areas which will be used later to show the final result of 

the proposed method. 

 

B 
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5.3.2 Road Extraction Results 

The object-based road extraction results can be seen in Fig. 5.5. As it is observed, the 

entire highway, the roundabout, and most of the minor roads/streets were extracted. Two 

new spectral bands of WV2 (Y and NIR2) make the major contribution in distinguishing 

traffic areas (roads and parking lots) from the rest of the image.  Moreover, the capability 

of object-based classification in utilizing spatial features as well as the spectral features 

of objects, resulting from the segmentation step, helps the classifier to separate roads and 

parking lots. As mentioned, in the previous section, we utilized the length of objects as a 

shape feature to separate roads from parking lots. Roads are elongated features and can 

be separated from parking lots if a proper length threshold is set up in the classification 

rule-set.  Although commission error exists in the classification of roads (some parking 

lots are misclassified as roads), this will not affect the final result of the moving vehicle 

extraction. This is because the vehicles in parking lots are mostly stationary and there is 

no change in their positions in two images. Consequently, the PCA change detection 

algorithm, in the next step, will not detect them as moving vehicles. 
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Figure  5.5 The result of the proposed object-based road extraction overlaid on the Pan-

sharpened image. The extracted roads are the blue areas. 

  

5.3.3 Moving Vehicle Extraction Results 

The PCA technique for change detection requires the separate images first be stacked in a 

multi-temporal composite image [Sunar, 1998]. In this work, the MS1 and MS2 of the 

WV2 are considered as two images. Since WV2 MS bands have a spatial resolution of 2 

meters, small vehicles are not represented clearly in the image. Subsequently, the PCA 

does not yield a clear change of the moving vehicle. Therefore, MS1 and MS2 bands 

were first resampled to the spatial resolution of the Pan band (0.5 m) using the cubic 

convolution resampling and then the PCA was applied to the resampled eight 

multispectral bands. The first five components of PCA are depicted in Fig. 5.6. Although 

the first component (PC1) represents the major part of the information, the changes (i.e., 

moving vehicles) are well detected in PC4 (PC change). The moving cars in the highway 
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are detected as two neighboring black and white objects, while surprisingly the queue of 

the stationary cars (in front of stoplights) in the road intersection on the top-left corner of 

the PC4 is not detected as moving cars. These cars are represented as a row of black 

objects in the top arm of intersection (see also Fig. 5.8 (a)). 

 

  
                     (Pan-sharpened image)                                                             (PC1) 

  
                               (PC2)                                                                              (PC3)          

  
                              (PC4)                                                                               (PC5) 

 

Figure  5.6 The Pan-sharpened image along with the first five components of PCA 

applied to the resampled 8 multispectral bands of WV2. Moving vehicles can be clearly 

seen in PC4 (PC change). 

 

 

Fig. 5.7 shows the first and third levels of segmentation as well as the classification result for a 

portion of a road in the image. Segments in the third level are more meaningful for representing 
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the vehicles and the classification result shows that all vehicles in this sample image were 

extracted.  

      

    
(a)                                                                                  (b) 

       
(c)                                                                               (d) 

Figure  5.7 The segmentation and classification results of a portion of a road in PC4 

image .(a) Extracted road from the previous step, (b) first, and (c) third level of road 

segmentation and (d) classified (extracted) moving vehicles.  The two neighboring 

objects in (d) represent the vehicle’s location in MS1 and MS2 images. 

 
 

 

  

The final results of our moving vehicle extraction for two larger subsets of the study area 

are depicted in Fig. 5.8. The extracted moving vehicles are red objects overlaid on the 

Pan-sharpened image of WV2. As can be seen, most of the moving cars have been 

extracted in both images. Interesting results can be seen in this Figure where the stopped 

cars in the roads’ intersection (top-left corner of Fig. 5.8 (a)) and those parked in the 

parking lot have not been extracted as moving vehicles, since the PCA had not detected 

them in the previous step. In Fig. 5.8 (b), almost all cars in motion have been extracted by 



 

155 

 

the classifier. Furthermore, the cars parked in the parking lots located in the bottom-

middle of this figure were not extracted as moving cars. An enlarged version of the 

extracted vehicles is depicted in Fig. 5.10. In this figure, the centroids of each pair of 

neighboring polygons represent the location of the vehicle in the MS1 and MS2 images.  

          

(a) 

 

(b) 

Figure  5.8 The results of the proposed moving vehicle extraction approach overlaid on 

the Pan-sharpened image for two different parts of the study area. (a) low speed zone, and 

(b) high speed zone. The extracted vehicles are red objects. 
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In order to validate the moving vehicle extraction results, a numerical accuracy 

assessment was conducted by comparing the number of vehicles found by manual 

inspection to that found by our proposed approach. The following three categories can be 

defined by comparing the automatically extracted and manually found vehicles. (See also 

Fig. 5.9).  

True Positive (TP): the number of correctly extracted moving vehicles 

False Positive (FP): the number of incorrectly extracted moving vehicles 

False Negative (FN): the number of missing moving vehicles 

In these categories, vehicles are counted in both MS1 and MS2 images, since moving 

vehicles have two different positions in MS1 and MS2. For instance, if both positions of 

a moving vehicle (in MS1 and MS2) are correctly extracted, the TP value for the vehicle 

is two. Similarly, if only one position of the vehicle is extracted, the TP and FN values 

are both one. Fig. 5.9 illustrates the three categories defined for a small part of a road in 

the study area. Based on these three categories the following statistical measures are 

computed [Agouris et al., 2004; Nie, 2006]. 

        (2) 

       (3) 

           (4) 

 

Correctness and completeness are the converse of commission and omission errors, 

respectively. These two measures are complementary and need to be interpreted 
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simultaneously. Quality is the normalized measures between correctness and 

completeness, which shows the overall accuracy of the extraction approach. Table 5.1 

reports the three calculated measures for the two different parts of the study area shown 

in Fig. 5.8. 

 

  
 

Figure  5.9 Moving vehicles and their extracted polygons: (cross) True positive, (circle) 

false positive, and (asterisk) false negative 

 

 

 

Table  5.1 Accuracy assessment for the moving vehicle extraction: Results were reported 

for low speed and high speed zones shown in Fig. 5.8 

Area TP FP FN Correctness Completeness Quality 

Fig.5.8 (a) 114 11 34 91.2% 77.0% 71.7% 

 

Fig.5.8 (b) 96 8 28 92.3% 77.4% 72.7% 

 

Total 210 19 62 91.7% 77.2% 72.2% 

 

 

Most of the studies in the field of velocity estimation using VHR imagery (i.e., using the 

time lag between the PAN and MS bands) have reported the vehicle extraction results 

from only the PAN band but not from the MS bands. For example, [18] reported the 

correctness, completeness, and quality measures of 95.3%, 82.5%, and 79.2%, 

respectively for the vehicle extraction in the PAN band of QB. Another example is [22] 
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where the authors obtained the user accuracy (correctness) and producer’s accuracy 

(completeness) of 89% and 94% using the Pan band of QB [Liu et al., 2010]. These 

accuracy measures are slightly higher than those achieved in our work (Table 5.1). 

However, as mentioned, they were achieved only on the Pan band but not on the MS 

bands. For the velocity estimation, the vehicle in both Pan and MS imagery is required. 

Vehicle extraction from the MS bands leads to worse results, due to the coarser resolution 

of MS bands compared to the PAN band. The accuracies achieved in this article (Table 

5.1), however, show the vehicle extraction results in both MS1 and MS2 images.  

Furthermore, these studies have used the GIS road layer [Leitloff et al., 2010] or 

manually extracted roads [Liu et al., 2010] in their vehicle extraction algorithms, while in 

this article road extraction is a part of the proposed method.  

 

5.3.4 Moving Vehicles Information Extraction Results 

Moving speed and direction of the vehicles for two different subsets of WV2 imagery 

were determined using the approach described in Fig. 5.3. We tried to pick two different 

areas (in terms of vehicles’ speed). These two areas (Area A and Area B) are shown with 

red rectangles in Fig. 5.4. The enlarged versions of Area A and Area B are depicted in 

Fig. 5.10. Vehicles in Area A are either approaching (vehicles 1-8) or just have passed 

the traffic circle (vehicles 9-13) and thus should have relatively low speeds. Vehicles in 

Area B, however, are running on the highway and thus should have higher speeds 

compared with vehicles in Area A. Using the "Street View" capability of Google Maps 
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(http://maps.google.ca), we checked the posted speed limit for routes shown in Fig. 5.10 

and they were 60 km/h and 100km/h for route A and route B, respectively. 

The calculated moving speed and direction of the extracted vehicles shown in Fig. 5.10 

are reported in Table 5.2 and Table 5.3. As expected, vehicles in Area A have relatively 

low speeds ranging from 46 km/h to 100 km/h except vehicle 13 which is moving at 119 

km/h. Although the calculated speeds are relatively higher than the posted speed limit, 

the results represent realistic speeds, as the image has been acquired around 3:40 pm 

when the traffic flow is light and drivers run faster. Vehicle 13 is running almost twice 

the speed limit! The moving azimuth for this vehicle is about 303 degrees which is larger 

than that of the vehicle behind (vehicle 12). It shows that vehicle 13 just over took 

vehicle 12 and is moving from the high speed lane to the low speed lane (see also Fig. 

5.10 A) and therefore should have higher speed compared to vehicle 12. 

As can be observed in Table 5.3, vehicles in Area B have relatively high speed ranging 

from 72 km/h to 128 km/h. These speeds are also realistic as the vehicles are running on a 

faster highway as compared to those in Area A. An interesting result in Table 5.3 is that 

all vehicles moving east to west (vehicles 16-26) have speeds below 110 km/h, while 

vehicles 14 and 15 are running at 122 and 128 km/h, respectively. The reason is that 

vehicles 16-26 are coming from a low speed zone and also the traffic is heavy on this 

route while for vehicles 14 and 15 the traffic is light enough to run at a high speed.    
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Figure  5.10 The extracted polygons and centroid of moving vehicles’ position in MS1 

and MS2 overlaid on the Pan-sharpened image for two different parts of the study areas 

(A is a relatively low speed and B is relatively high speed route). 
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Table  5.2 The positions (in MS1 and MS2), speed and moving direction of moving 

vehicles shown in Fig. 5.10 (A), determined using the proposed approach 

       
  MS1 MS2 

Speed  

(km/h) 

Moving 

Azimuth(º) Vehicle 

# 
X(m) Y(m) X(m) Y(m) 

1 362,846.5 5,106,437.1 362,852.6 5,106,434.9 90 109.9 

2 362,959.7 5,106,390.7 362,966.1 5,106,389.2 92 102.8 

3 362,982.4 5,106,385.0 362,988.5 5,106,383.7 87 101.9 

4 363,008.1 5,106,380.3 363,014.4 5,106,379.4 88 98.3 

5 363,044.8 5,106,373.5 363,051.6 5,106,373.1 95 93.1 

6 363,057.5 5,106,376.1 363,063.4 5,106,375.0 83 100.6 

7 363,080.3 5,106,365.5 363,085.3 5,106,365.4 69 92.1 

8 363,091.9 5,106,368.3 363,096.4 5,106,367.6 62 99.4 

9 363,058.1 5,106,386.4 363,051.8 5,106,386.4 87 270.0 

10 363,022.4 5,106,394.0 363,016.1 5,106,394.8 88 276.7 

11 362,962.6 5,106,404.6 362,959.3 5,106,405.1 46 279.4 

12 362,919.5 5,106,418.6 362,912.9 5,106,421.6 100 293.9 

13 362,894.6 5,106,428.6 362,887.4 5,106,433.3 119 303.1 

              

 

Table  5.3 The positions (in MS1 and MS2), speed and moving direction of moving vehicles shown in Fig. 

5.10 (B), determined using the proposed approach 

              

  MS1 MS2 
Speed  

(km/h) 

Moving 

Azimuth(º) Vehicle 

No. 
X(m) Y(m) X(m) Y(m) 

14 361,686.2 5,106,950.6 361,693.1 5,106,945.1 122 128.2 

15 361,702.6 5,106,929.6 361,710.5 5,106,924.7 128 122.1 

16 361,830.6 5,106,842.4 361,823.8 5,106,847.0 113 304.5 

17 361,812.1 5,106,864.3 361,807.1 5,106,868.9 92 312.5 

18 361,811.1 5,106,857.3 361,805.9 5,106,862.4 102 314.5 

19 361,796.3 5,106,872.2 361,791.0 5,106,877.4 102 314.4 

20 361,773.9 5,106,889.5 361,768.3 5,106,895.0 110 315.0 

21 361,748.6 5,106,911.3 361,745.4 5,106,915.4 72 322.4 

22 361,728.2 5,106,933.1 361,722.9 5,106,937.2 92 307.9 

23 361,720.6 5,106,933.2 361,715.2 5,106,937.8 98 310.7 

24 361,698.6 5,106,950.4 361,692.5 5,106,954.8 104 313.8 

25 361,666.9 5,106,982.1 361,661.3 5,106,987.4 107 313.8 

26 361,658.3 5,106,981.4 361,652.0 5,106,986.3 110 307.5 
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5.4 DISCUSSION 

This study demonstrates the very high potential of WV2 imagery when used in 

conjunction with object-based image analysis for the extraction and velocity estimation 

of moving vehicles. The very high spatial resolution, along with eight multispectral bands 

and the relatively large time lag between the MS1 and MS2 bands of WV2 imagery 

(compared to that between the PAN and MS bands of QB) have increased the opportunity 

for accurate extraction and velocity estimation of the moving vehicles. Furthermore, the 

ability of object-based image classification in employing both spectral and spatial 

information (including shape, texture, and context) of the image has increased the 

accuracy of extracting the roads and moving vehicles.  

The proposed object-based road extraction shows success with the extraction of major 

roads and most of the minor roads (Fig. 5.5). The presented hierarchical rule-based 

method begins to classify the image as traffic (including parking areas and roads) and 

non-traffic areas. Because of their spectral similarity, the separation of built-up from 

traffic areas using the conventional bands of VHR imagery is a challenging task. 

However, the new bands available in WV2, particularly bands Y and NIR2, proves a 

great aid to distinguishing traffic areas from the rest of image including built-up areas. 

The next step in the object-based rule-set hierarchy is to separate roads from parking 

areas. This is also challenging because these two classes are very similar in terms of their 

spectral values. Unlike pixel-based classification approaches, which rely mainly on the 

spectral information of individual pixels, in object-based approaches, both the spectral 

and spatial information of objects (e.g., shape and size), resulting from the segmentation 
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step, are utilized. The use of shape measures, including the length of objects, is 

particularly effective for the separation of roads from parking lots due to the 

distinguished morphological properties of roads (i.e., roads are elongated features). 

Fig. 5.5 shows some minor roads that have not been completely extracted. The main 

reason is that these roads are partially covered by tree branches and thus they have been 

missed during the classification. Also, as mentioned in the result section, some parking 

lots have been misclassified as "roads" in Fig. 5.5. This will not affect the final moving 

vehicle extraction results, as the vehicles in parking lots are stationary and thus the 

change detection algorithm in the next step will not detect them. 

 Applying the PCA to the stacked set of the MS1 and MS2 images provides a very 

satisfactory result in enghancing the changes occuring on the roads (i.e., the moving 

vehicles). The object-based moving vehicle extraction method uses the PC change image 

as the input. In the PC change image, a moving vehicle is presented as two nighboring 

objects with bright and dark brightness values (Fig. 5.7a). As a consequence, the contrast 

of the vehicle to background road is enhanced. Morover, the low contrast caused by the 

colour of vehicles is avoided. Consequently, the segmentation and the following 

classification of moving vehicles in the PC change image is more reliable  than in the 

original MS images. 

The proposed moving vehicle exctaction method resulted in a correctness and 

completeness of about 92% and 77%, respectively.  Some vehicles were not extracted 

(false negative), which causes the relative low completeness value. The missed vehicles 

are mainly large size vehicles (e.g., trucks). This is mainly because the classification 
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decision rule is based on the shape and size of objects, and any object greater than the 

threshold remains unclassified. This mis-classification can be reduced by the 

incorporation of other spatial features of objects such as textural feature into the 

classification rule, particularly for traffic areas contaning moving vehicles with different 

sizes. 

Considering the moving directions and traffic conditions, the estimated velocities are 

realistic and are consistent with the speed limits posted on the roads. The accuracy of 

speed estimation largely depends on the determined centriod positions, which, in turn,  

rely on the performance of segmentation. More meaningful segments for vehicles (i.e., 

segments that are closer to the real outline of vehicles) result in a more accurate 

estimation of centroids and, consequently, a better estimation of speeds and moving 

directions. The focus of our future work will be to improve the segmentation part of the 

method. Another factor that affects the estimation of speeds is the time lag between the 

two images. A larger time lag would result in a better estimation of speeds, as speed 

estimation is less affected by the possible error in the positions of the vehicle . The time 

lag between MS1 and MS2 images is about twice that between the PAN and MS bands of 

QB imagery and,therefore, it leads to a more accurate estimation of speeds.  

5.5 CONCLUSION 

A new method for automatic moving vehicle information (position and velocity) 

extraction using WV2 imagery was presented. The method starts with a hierarchical rule-

based object-based road extraction (classification) using the Pan-sharpened bands of the 

WV2 imagery. Then, a standardized PCA is applied to the MS bands to enhance (detect) 
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the changes in vehicle locations in MS1 and MS2 images. A rule-based object-based 

classification is then developed to extract the enhanced changes within the boundary of 

roads (moving vehicles). The result of this step is individual polygons representing 

vehicle locations and their corresponding centroids in MS1 and MS2 images.  Finally, the 

ground coordinates of the centroids are determined using the image-to- ground space 

transformation given by the sensor’s RPCs, followed by calculating the moving direction 

and speed using the shift in vehicle positions and the time lag between the MS1 and MS2 

images. The experimental result shows that the proposed method can effectively extract 

roads and moving vehicles within the boundary of roads and estimate their velocities and 

moving directions. Further, the method is automatic and can be transferred to WV2 

imagery of other areas. This promises a very high potential of WV2 imagery in automatic 

and cost effective monitoring of moving targets.   

We recognize that there is still potential for improvement in the object-based extraction 

of enhanced changes (moving vehicle).  Any improvement in segmentation (to get more 

meaningful objects for vehicles) and classification of PC change image can increase the 

accuracy of vehicle’s centroid extraction. This will be the focus of our future research. 
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Chapter 6 : SUMMARY AND CONCLUSIONS 

 

This chapter summarizes the research presented in this dissertation. It begins with the 

summary of each chapter (chapters 2 to 5). The achievements of this research are then 

presented. Finally, recommendations for future work are provided.  

6.1 Summary of Research 

In this dissertation the great potential of VHR imagery in urban planning/management is 

exploited for the following two important applications: land cover classification and 

moving vehicle extraction. Chapters 2-4 focus on reviewing current techniques and 

developing new techniques for urban land cover classification, while chapter 5 presents a 

novel framework for moving vehicle extraction based on the special image characteristics 

of the newest VHR satellite (WorldView-2). 

Chapter 2 presents a comprehensive review of the current literature in the field of urban 

land cover classification of VHR imagery. Two groups of spatial information that are 

used for classification are studied, and their usefulness in both pixel-based and object-

based classification is discussed. The first group consists of textural, contextual, and 

morphological (shape, size, extent, etc) measures extracted from the image and the 

second group includes information from ancillary data such as LiDAR data (height 

information) and GIS vector data. The review is conducted to assess the usefulness and 

importance of such measures for urban land cover classification of VHR imagery. An 

exhaustive list of major publications for each type of information, used in both pixel-
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based and object-based approaches, is presented and discussed. In addition, for each type 

of information, the most frequently used measures (e.g., GLCM texture measures) are 

presented. The findings of this review provide direction for and justification of research 

conducted in the subsequent chapters (chapters 3-5) 

One of the findings described in Chapter 2 is that, despite the wide availability of GIS 

vector data of urban areas, such information has not been well utilized in conjunction 

with VHR imagery for urban land cover classification. Therefore, Chapter 3 investigated 

an object-based image analysis framework combining VHR images and GIS height point 

data. The object-based classification framework is rule-based and is developed using the 

Cognition Network Language available in the eCognition® software package. In order to 

test the applicability of the rule-set to different areas and different VHR images, it was 

developed using a small portion of a QuickBird image and then tested on different and 

larger QuickBird and IKONOS images. The overall accuracy for QuickBird and 

IKONOS test images is about 92% and 86%, respectively. Despite the geometric 

misregistration between VHR images and height point data, these levels of accuracy are 

very promising for classification of the urban areas with spectrally similar classes such as 

buildings, roads, and parking lots. This confirms the very high potential of using 

multisource data in conjunction with object-based image analysis for classification of 

VHR imagery of urban areas. 

Although multisource object-based classification offers promising results for urban land 

cover classification, its performance depends largely on the availability of ancillary data. 

In Chapter 4, a combined object- and pixel-based image analysis framework is 
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developed using VHR imagery exclusively.  The method starts with segmenting the 

image using the multiresolution segmentation algorithm, which results in objects with 

different sizes in different scales (levels of segmentation). Then, for each level of 

segmentation, several spectral, textural, and morphological features of objects are 

extracted. To deal with the large number of features, the so-called curse of 

dimensionality, a novel wavelet-based feature extraction (reduction) method is 

developed. The wavelet-based feature extraction considerably reduces the number of 

features, while preserving the dominant information available in the objects’ features. 

Finally, the extracted features together with the original bands of VHR imagery are 

classified using the Maximum Likelihood algorithm. Results show up to 17%, 10%, and 

11% improvement in kappa coefficients compared to the case in which only the original 

bands of the image are used for WorldView-2, QuickBird, and IKONOS, respectively. 

For comparison purposes, the method is tested on WorldView-2, QuickBird, and 

IKONOS images of the same area acquired on different dates. The wavelet-based feature 

extraction method is also compared with the conventional PCA-based feature extraction 

method. In addition, the effects of level of segmentation and type of features on 

increasing the classification accuracies are quantitatively evaluated.    

Chapter 5 presents a novel object-based method for the automatic extraction of moving 

vehicles (with their speed and direction) using a single WorldView-2 image. The method 

comprises three major steps: road extraction, moving vehicle extraction, and velocity 

(speed and direction) estimation. First, roads are extracted using an object-based image 

analysis framework. Then, the moving vehicles running along the roads are detected and 
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extracted by combining a PCA-based change detection and object-based image analysis. 

Finally, the ground positions of moving vehicles were determined using RPC parameters 

supplied by the satellite, and the velocity and direction of the vehicles are calculated from 

the difference in the vehicle positions. 

6.2 Achievements of the Research 

Based on the four main chapters of this dissertation, a summary of the achievements in 

each chapter is presented as follows: 

6.2.1 Review of the Effectiveness of Spatial Information 

Until now, no comprehensive study has been performed on the effectiveness of spatial 

information extracted from the image and from the ancillary data for urban land cover 

classification of VHR imagery. Chapter 2 presents a comprehensive review of recent 

related literature (more than 100 publications including book chapters and peer-reviewed 

journal papers). Different aspects of the spatial information used for VHR image 

classification are examined. This chapter (chapter 2) can serve as a comprehensive 

reference for related studies in the field of VHR image analysis. The major findings of 

the chapter are: 

• The object-based approach generally results in higher classification accuracy than 

pixel-based approaches when applied to VHR imagery of urban areas. This is because 

this particular approach takes into consideration the spatial and spectral correlation of 

a group of neighboring pixels in classification.   
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• Among all types of spatial information, texture (extracted from the image) and GIS 

vector data are the most and the least used information in the literature, respectively. 

• Textural information is more commonly used in pixel-based classification, while 

morphological information such as shape and size are is meaningful in object-based 

classification. 

• Contextual information has rarely been used as the only source of spatial information 

for classification. It has been used in conjunction with textural and/or morphological 

information. The most commonly used contextual information in the literature is the 

shadow of high-rise targets such as buildings and trees (e.g., shadow is used for 

distinguishing buildings from transportation areas). 

• In decreasing order, entropy, angular second moment, homogeneity, and contrast of 

GLCM are the most commonly used textural features in the literature for urban land 

cover classification of VHR imagery. 

• The combination of GIS vector data and VHR images has a great potential for object-

based classification of impervious surfaces. The basic processing unit of object-based 

classification is a group of aggregating pixels which forms an object’s polygon and 

thus can effectively be integrated with vector data. Nevertheless, the integration of 

vector data and VHR imagery for urban land cover classification is in an early stage 

and needs further investigation.  
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6.2.2 Multisource Object-Based Classification  

A novel multisource object-based classification method is proposed in Chapter 3. The 

method offers a practical, fast, and easy to use (within eCognition) framework for 

classifying VHR imagery of small urban areas.  

Current literature often ignores two important issues of multisource object-based 

classification: the transferability of the rule-set to different areas and different VHR 

images (e.g., transferring a rule-set developed using a QuickBird image to an IKONOS 

image) and the possible misregistration between different data layers (e.g., between VHR 

images and vector data). The proposed method mitigates issues mentioned above, while it 

results in an overall accuracy of up to 92%, which is higher than that reported in the 

literature.  The method also mitigates the effect of possible misregistration between 

different datasets (which is inevitable in multisource classification) on classification by 

incorporating objects of higher levels of segmentation into classification. Further, the 

method shows that it is applicable to different areas of the same image and different VHR 

images with no change in the rule-set (for the same VHR image) or slight changes in the 

thresholds (for different VHR images).  

Distinguishing spectrally (buildings, roads, and parking lots) and spatially (buildings and 

parking lots) similar classes in urban areas is very challenging and has not been 

considered extensively in the current literature. The proposed framework, though it is not 

applicable to all urban areas, provides guidelines on the types of features (e.g., texture, 

shape, size, brightness) which are suitable for classifying specific land cover types.  
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6.2.3 Combined Object- and Pixel-Based Image Analysis 

By incorporating the spectral and spatial information of a group of pixels into 

classification, object-based approaches prove to be effective for urban land cover 

classification of VHR imagery. However, object-based approaches are not generic and 

different rules must be developed for different applications. On the other hand, pixel-

based approaches are more automatic and generic, but do not consider the information of 

neighboring pixels. In order to exploit the advantages of object-based and pixel-based 

approaches, a combined object- and pixel-based image analysis framework is proposed in 

Chapter 4.  

The achievements of chapter 4 are as follows: 

• A novel and automatic wavelet-based feature extraction method is developed. Current 

feature extraction techniques are pixel-based and are global in scope. In other words, 

they consider all the pixels of the image simultaneously and transform the feature 

space based on a specific criterion (e.g., class separability). Therefore, the 

computational complexity depends directly on the number of an image’s pixels, 

which is very high in VHR images. As a result, they are not efficient in terms of 

computational complexity and processing time. As opposed to current techniques, the 

proposed wavelet-based feature extraction is local in scope and works on the basis of 

objects not pixels. It takes each object’s signature in high dimensional space and 

transforms it to a lower dimensional space. Therefore, computational complexity 

depends directly on the number of an image’s objects and thus is very efficient in 

computation and processing time for VHR image analysis (see section 4.4.2.4).   



 

176 

 

• The chapter demonstrates that additional spectral bands of WorldView-2 (compared 

to the conventional bands of VHR imagery) do not have a significant effect on 

improving urban land cover classification.  

• It is quantitatively shown that, of spectral, textural, and morphological features of 

objects, the spectral features have the greatest contribution to distinguishing 

impervious land cover classes (i.e., buildings, roads, and parking lots). This finding 

implies that for improving urban land cover classification of VHR imagery, more 

effort should be directed on using spectral features than using textural or 

morphological features. 

• Incorporating objects of all levels of segmentation into classification is 

computational-intensive. The chapter investigates the effect of object size (level of 

segmentation) on classification. It demonstrates that only one level of segmentation is 

sufficient. It also finds that larger objects (higher levels) are preferred to smaller 

objects (lower levels) for classifying impervious land cover types. These two last 

findings have an important impact on improving urban land cover classification of 

VHR imagery. 

6.2.4 Moving Vehicle Extraction  

Since 2008, few studies have used the small time lag between the panchromatic and 

multispectral bands of conventional VHR images, such as QuickBird, IKONOS, and 

GeoEye-1, to estimate moving vehicle velocity. In these studies, vehicles are either 

selected manually or semi-automatically using the ancillary road data layer. Thus, the 

methods are not automatic. In Chapter 5 the special characteristics of WorldView-2 
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imagery are exploited, for the first time, to develop a novel and automatic extraction of 

moving vehicles together with the estimation of the velocity and direction. The method 

has the following characteristics: 

• It uses a single WorldView-2 image exclusively, and road ancillary data, which are 

often used in the current literature, are not required. Both roads and moving vehicles 

are automatically or semi-automatically extracted in the proposed method. This 

achievement has a great impact on automation of moving vehicle extraction using 

satellite imagery.   

• For velocity estimation, the vehicle displacement in panchromatic and multispectral 

images is required. Current studies often select the vehicle manually in the 

panchromatic image and then they find the corresponding vehicle in the multispectral 

image using matching techniques. Then, the vehicle displacement is calculated by 

subtracting the two positions. Matching, however, is computation-intensive and 

includes mismatching errors. Our proposed method directly finds the positions of the 

vehicle in two multispectral sets of a WorldView-2 image (MS1 and MS2) by a 

change detection technique followed by the object-based extraction of changes. Thus, 

it avoids computation-intensive matching and its possible errors. 

• The time lag between MS1 and MS2 bands of WorldView-2 is almost twice that 

between QuickBird panchromatic and multispectral bands. As a result, for the same 

amount of error in a vehicle’s positions, the error of speed estimation using 

QuickBird imagery is twice that of using WorldView-2 imagery.   
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The method demonstrates a promising potential for automatic and accurate traffic 

monitoring using a single image of WorldView-2. 

6.3 Recommendations for Future Work 

Based on the results and contributions discussed in the previous sections, suggestions for 

future research include the following:  

• Although the proposed multisource object-based classification framework provides 

promising results for urban land cover classification, its performance depends largely 

on the availability of height point data. This data, however, may not be available for 

many urban areas. With the availability of stereo VHR imagery in recent years, 

generating high resolution DEM/DSM for such urban areas is now feasible. 

Therefore, developing a 3-D object-based classification framework which exclusively 

uses stereo VHR imagery would be an interesting field of research for the future. 

• The combined object- and pixel-based image analysis framework proposed in this 

research uses the conventional Maximum Likelihood algorithm for classification. 

Further experiments should be conducted to test the performance of the framework 

using other classifiers such as Random Forest which has been shown to be effective 

for classifying VHR imagery.   

• For moving vehicle extraction, further research is required to quantitatively evaluate 

the accuracy of a moving vehicle’s positions (i.e., polygons’ centroids resulting from 

segmentation). Since a vehicle’s velocity depends on its extracted positions, such 

research will lead to a quantitative determination of the errors included in the 



 

179 

 

estimated speeds and directions. Consequently, a more reliable velocity estimation 

using a single VHR WorldView-2 image could be achieved.  
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