
RAY-TRACING OPTIONS TO 
MITIGATE THE NEUTRAL 

ATMOSPHERE DELAY IN GPS

FELIPE GEREMIA NIEVINSKI

January 2009

TECHNICAL REPORT 
NO. 262



 
 
 
RAY-TRACING OPTIONS TO MITIGATE THE 

NEUTRAL ATMOSPHERE DELAY IN GPS 
 
 
 
 
 
 

Felipe Geremia Nievinski 
 
 
 
 
 
 
 
 
 
 
 

Department of Geodesy and Geomatics Engineering 
University of New Brunswick 

P.O. Box 4400 
Fredericton, N.B. 

Canada 
E3B 5A3 

 
 
 

January 2009 
 
 

© Felipe G. Nievinski 2009 



 
 
 

PREFACE 
 
 
 

 This technical report is a reproduction of a thesis submitted in partial fulfillment of 

the requirements for the degree of Master of Science in Engineering in the Department of 

Geodesy and Geomatics Engineering, January 2009.  The research was supervised by Dr. 

Marcelo Santos, and support was provided by the Canadian International Development 

Agency, the Geomatics for Informed Decisions Network Centres of Excellence and by 

the Natural Sciences and Engineering Research Council of Canada. 

 As with any copyrighted material, permission to reprint or quote extensively from this 

report must be received from the author.  The citation to this work should appear as 

follows: 

 
Nievinski, Felipe G. (2009).  Ray-tracing Options to Mitigate the Neutral Atmosphere 

Delay in GPS.   M.Sc.E. thesis, Department of Geodesy and Geomatics 
Engineering Technical Report No. 262, University of New Brunswick, 
Fredericton, New Brunswick, Canada, 232 pp. 

 



Dedication

To Giovana.

ii



Abstract

As the radio signals emanating from GPS satellites propagate through the Earth’s electri-

cally neutral (i.e., un-ionized) atmosphere, they suffer refraction. The effect of refraction

on GPS timing measurements is a delay compared to what would be measured had the sig-

nal propagated in a vacuum. Equivalently, assuming vacuum speed of propagation, refrac-

tion makes the apparent distance measured with GPS larger than the geometric distance

between receiver and satellite. If not adequately mitigated, that delay corrupts estimates,

such as receiver position, obtained from GPS observations. One way of quantifying the

neutral atmosphere radio propagation delay is supposing the signal to be a ray, and tracing

that ray along its path, from satellite to receiver, through a model for the atmosphere; we

call such a procedure ray-tracing, and it constitutes our main interest in this work. Ray-

tracing has connections to many different subject areas. Among those, we see the present

work falling under the umbrella of geodesy. More specifically, we see it situated along

the thread of developments of the so-called mapping functions for radio space geodetic

applications.

The main research contribution from this work is the identification, classification, and

comparison of alternative models for the ray-path and the atmospheric structure employed

in ray-tracing. It is a three-part contribution, parts that we now discuss. First we distin-

guished among the ray-tracing options known as atmospheric source, atmospheric struc-

ture, and ray-path model. Such distinction classifies the myriad of options available in
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ray-tracing in separate groups, disentangling aspects that are typically (sometimes ar-

guably conveniently) lumped together. For example, a sentence such as “this ray-tracer

assumes spherical symmetry” actually makes separate statements about the assumed ray-

path and the atmospheric structure models. Secondly, we identified model alternatives

within each of the three options above, namely, spherical concentric, spherical osculating,

ellipsoidal, gradient, and 3d atmospheric structures; and zenith, straight-line, bent-2d, and

bent-3d ray-path models. Thirdly, we compare experimentally different models. More

specifically, we quantified the discrepancy in delay between different models and we also

assessed their impact in GPS positioning. In addition to the three-part main contribu-

tion above, a secondary contribution is a classification of the delay mitigation techniques

available in GPS, developed to support the design of the GPS experiments.

The findings of this work are as follows. (i) Regarding the ray-path, the bent-2d model,

albeit not strictly valid in a 3d atmosphere, introduces only negligible errors, compared to

the more rigorous bent-3d model (in a 15km horizontal resolution atmospheric model).

Regarding atmospheric structures, we found that (ii) the oblateness of the Earth cannot be

neglected when it comes to predicting the neutral atmosphere delay, as demonstrated by

the poor results of a spherical concentric atmosphere; (iii) the spherical osculating model is

the only one exhibiting azimuthal symmetry; (iv) the oblateness of the Earth is adequately

accounted for by a spherical osculating model, as demonstrated by the small discrepancy

between a spherical osculating and a more rigorous ellipsoidal model; (v) a gradient at-

mosphere helps in accounting for the main trend in azimuthal asymmetry exhibited by a

3d atmosphere, but there remains secondary directions of azimuthal asymmetry that only

a full 3d atmosphere is able to capture. Furthermore, (vi) we found experimental evidence

confirming the theoretical expectation that gradient and especially 3d atmospheric struc-

tures offer promising benefits for GPS positioning. Finally, beyond the comparison of at-

mospheric structures above, an interesting side conclusion regarding atmospheric sources
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was that (vii) atmospheric models of higher resolution might offer significant improve-

ments in mapping functions.
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Chapter 1

Introduction

1.1 Overview

As the radio signals emanating from GPS1 satellites propagate through the Earth’s elec-

trically neutral (i.e., un-ionized) atmosphere, they suffer refraction. Refraction affects the

signal velocity in two ways: the signal speed is retarded and the signal direction gets bent.

At any point along the signal path the amount of retardation and bending are given by the

gradient of the index of refraction — more specifically, by the components of the gradient

tangent to the ray and perpendicular to it, respectively.

The effect of refraction on GPS timing measurements is a delay compared to what

would be measured had the signal propagated in a vacuum. Equivalently, assuming vac-

uum speed of propagation, the apparent distance measured with GPS is larger than the

geometric distance between receiver and satellite. This effect typically reaches 2.3m for a

receiver at sea-level and a satellite in the zenith direction, and is approximately ten times

larger for a satellite near the horizon. If not adequately mitigated, that delay corrupts

estimates, such as receiver position, obtained from GPS observations.

1For an introduction to GPS, we recommend Kleusberg and Teunissen [1998]; Leick [2003]; Blewitt
[2007].
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One way of quantifying the neutral atmosphere radio propagation delay is supposing

the signal to be a ray, and tracing that ray along its path, from satellite to receiver, through

a model for the atmosphere; we call such a procedure ray-tracing. Ray-tracing constitutes

our main interest in this work; more specifically, the present work was developed based

on the following proposition:

One can find significant discrepancies in ray-traced neutral atmosphere de-

lays, due to reasonable variations in the ray-tracing procedure.2

1.2 Scope

Before we proceed, we would like to set the scope of the phenomenon of interest under this

work. In the present section we set the scope broadly; then, in Chapter 2, after introducing

the necessary background and vocabulary, we refine that scope.

Even though we mention only GPS and speak of GPS satellites and receivers, this work

applies equally well to other satellite navigation constellations (e.g., Galileo, GLONASS)

and to other space geodetic techniques. The applicability is greatest for techniques em-

ploying similar microwave radiation or electromagnetic signal as GPS, such as in VLBI

and InSAR; this work is also applicable, albeit to a smaller extent, to techniques employing

radiations other than microwave, such as optical in satellite and lunar laser ranging.

We are interested in the refraction due to the Earth’s electrically neutral atmosphere,

as opposed to the ionosphere, the ionized portion of the atmosphere. The fact that the

ionosphere refracts radio signals of different frequencies to different degrees (i.e., it is

dispersive) allows one to use simultaneous measurements at two or more frequencies to

eliminate most of this effect. Indeed, that was the very reason for the introduction of a

2Of course, there is always the actual, true value of the delay, as experienced by a GPS receiver, but that
is usually unknown; therefore the proposition compares only ray-traced delays among themselves, not with
respect to the actual, true delay.
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second frequency in the design of GPS. The neutral atmosphere, on the other hand, is non-

dispersive for radio waves employed in GPS, preventing us from mitigating its effects in

GPS in the same way as for the ionosphere.

In this work we disregard the use of atmospheric models in geodesy for purposes other

than delay mitigation, such as deformations of the crust due to atmospheric pressure load-

ing and variations in the Earth rotation (as quantified by, e.g., length-of-day, polar motion)

due to atmospheric mass redistribution and exchanges with the solid Earth [Salstein et al.,

1993].

In this work we also neglect the effect of the atmosphere on the signal amplitude (i.e.,

attenuation) or polarization. That is because in radiometric space geodetic techniques one

rarely employs measurements other than the signal’s phase itself (or measurements closely

related to it).

Finally, in this work we adopt the framework of classical geometric optics, which

allows us to speak about the electromagnetic signal as a ray. It implies that we assume

the wavelength of the radiation under study to be negligibly small compared to the extent

of the perturbations in the medium of propagation. In other words, we assume that the

atmosphere is nearly uniform at spatial distances comparable to that wavelength, roughly

speaking. Consequently, under that theory we are unable to account for effects such as

diffraction and scattering.

1.3 Contributions from this work

The main research contribution from this work is the identification, classification, and

comparison of alternative models for the ray-path and the atmospheric structure employed

in ray-tracing (below we briefly introduce those concepts and indicate the sections where

a more detailed explanation can be found). Now we discuss the three parts of that main
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Figure 1.1: Diagram of options available in ray-tracing.

contribution.

The first part is the distinction among the ray-tracing options known as atmospheric

source, atmospheric structure, and ray-path model, each represented as an axis in Fig-

ure 1.1. It classifies the options available in ray-tracing in separate groups, disentan-

gling aspects that are typically (sometimes arguably conveniently) lumped together (sec-

tion 2.6). For example, a sentence such as “this raytracer assumes spherical symmetry”

actually makes separate statements about the assumed ray-path and the atmospheric struc-

ture models. Luckily, the aspects of three groups — ray-path, atmospheric structure, and

atmospheric data source — are mutually orthogonal. That orthogonality, shown in Fig-

ure 1.1, implies that alternative models compete only within the same group and not with

models from a different group.

The second part is the identification of model alternatives within each group (sec-
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tion 2.7 and Chapter 3) or along each of the axes in Figure 1.1. The taxonomy above helps

one to appreciate the range of options available. In fact, the ordering of the models in a

crescendo within each group — from simpler to more complicated or realistic — was es-

pecially fruitful in model identification. For example, the ellipsoidal atmospheric structure

model was only identified as a result of that particular ordering.

The third part is the experimental comparison of different models (Chapter 5). We

quantified the discrepancy in delay between different models (section 5.1) and we also

assessed their impact in GPS positioning (sections 5.2 and 5.3).

Besides the main contribution above, a secondary contribution is a classification for the

delay mitigation techniques available in GPS (section 4.2) We developed it to support the

design of the above-mentioned GPS experiments: that classification helped us in finding

prospect applications, in which there is still room for improvement in positioning due to a

possibly better delay model. The reader might find that classification helpful in designing

how best to deal with the neutral atmosphere delay in his or her own GPS experiments.

Finally — if not original research itself, still useful for doing research —-, we provide

a detailed description of the ray-tracing technique (Appendix I), entailing its numerical

and practical aspects. We hope that it might facilitate the introduction of the technique to

new researchers interested in studying trans-atmospheric signal propagation — it certainly

would have been of help for ourselves when we first started working on this topic.

1.4 Review of previous related work

Ray-tracing has connections to many different subject areas. Among those, we see the

present work falling under the umbrella of geodesy. More specifically, we see it situated

along the thread of developments in mapping functions for radio space geodetic applica-

tions. In Appendix VII we quickly skim through the secondary connections. In section 2.8
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we delve into that thread, reviewing its historical development; we decided to postpone

that review to the end of the background chapter (2) because we need the terminology and

definitions only introduced throughout that chapter.

1.5 Structure of this document

We start with Chapter 2, in which we (i) introduce the definitions and terminology nec-

essary to discuss the subject in a precise manner and (ii) further restrict the scope of this

work, which we broadly set in section 1.2. Chapter 3 is the main focus of this work, in

which we describe the options available for the ray-path and the atmospheric structure em-

ployed in ray-tracing. In Chapter 4 we make a pause in the discussion of the delay itself

and discuss its effects and mitigation in GPS positioning. Finally, in Chapter 5 we pro-

vide experimental evidence to compare and assess the performance of the different models

discussed in Chapter 3. In Chapter 6 we summarize the work developed throughout this

document. In parallel to the body of this document, the appendices provide essential de-

tails for the reader intending to replicate or build upon the results presented in this work.
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Chapter 2

Background

The objective of the present chapter is twofold: (i) to introduce the definitions and termi-

nology necessary to discuss the subject in a precise manner and (ii) to further restrict the

scope of this work, something that we already started in section 1.2.

The reminder of this chapter is organized as follows. In section 2.1 we briefly show

how to quantify the electromagnetic speed of propagation in the neutral atmosphere. In

section 2.2 we define and contrast the various types of electromagnetic propagation delay,

resulting from the presence of the atmosphere, as opposed to vacuum. In section 2.3 we

introduce the independent variables of the delay and we scan through the complex varia-

tion exhibited by the delay over those variables. The aim with section 2.3 is to motivate

the need for modeling the delay, if we wish to mitigate its effects on GPS measurements.

The manner in which the delay is modeled is essentially to decompose and separate it into

different components, based on different rates of change for each component; we explore

two modeling techniques in sections 2.4 and 2.5. Among the various delay components

defined below we choose to focus on the so-called slant factors, whose models are known

as mapping functions. At section 2.6 we delve into the process of developing such map-

ping functions, at which point we further restrict our scope to only one of the three main
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tasks involved in that development. The section that follows, 2.7, in principle could be in-

cluded in Chapter 3, because it is one of the options available in ray-tracing; nevertheless

we chose to include it in the present background chapter because we do not see it as part

of our contributions. Finally, in section 2.8 we summarize the scope refined throughout

the present chapter, and try to justify it in terms of the historical evolution of the process

of developing mapping functions.

2.1 Index of refraction

The index of refraction nof a medium is defined as:1

n≡ c
vphase

, (2.1)

where c is the speed of light in vacuum and vphase is called the phase velocity (or, more

precisely, phase speed) in that medium. There is one formulation of n for each media and

type of radiation traveling through it. We call non-dispersive a medium in which the phase

velocity is the same for all frequencies in a given band. That is the case (to a very good

approximation) of the Earth’s neutral atmosphere in the radio band used in GPS. In such a

case, the phase velocity equals the group velocity, so we may drop the subscript in vphase,

obtaining:

v = c/n.

It is useful to define also the refractivity N:

N = 106(n−1), (2.2)

which describes the deviation of refraction in the medium, compared to vacuum. The 106

1For a derivation from first principles, we recommend Davis [1986, Sections 1.2.ii–1.2.iv, p. 24–33].
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factor is used because the deviation in the Earth’s atmosphere is at most just a few parts per

thousand. Both N and n are unitless quantities. N has typical values of 260 on the geoid

and decreases with increasing height mainly because of the rapid decrease in density.

For the Earth’s neutral atmosphere and microwave radiation, N is formulated as:

N = k1
Pd

T
+ k2

Pw

T
+ k3

Pw

T 2 , (2.3)

where Pd and Pw are, respectively, the partial pressures due to dry gases and water vapor

(both in Pa), and T is temperature (in K). The constants k1, k2, k3 are coefficients deter-

mined empirically in laboratory. In Appendix VI we discuss en passant the discrepancy in

delay among different determinations of those coefficients.

In section 2.5.1 we compare two different ways in which total refractivity can be sep-

arated into components, and in section 2.5.4 we provide motivation for those separations

in terms of their benefits for modeling the corresponding delay components.

2.2 Defining delay

Whereas the delay itself is only defined in section 2.2.3, its definition is streamlined by

the prior definition of path lengths (section 2.2.2), which, in their turn, follow naturally

once we clarify the consequences of the presence and absence of the atmosphere on the

ray propagation (section 2.2.1).

2.2.1 Integrands and integration paths

The delay is defined below in terms of line integrals, running from the satellite to the

receiver. Those line integrals have the same independent variable, the along-path distance,

denoted `, and the same element of infinitesimal arc-length, d`. Yet those line integrals
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differ in two parts: in their integrand and in their integration path. We employ those

two mathematical parts to model the consequences of the presence and absence of the

atmosphere on the ray propagation.

In the absence of the atmosphere — i.e., in a vacuum — the integration path is for-

mulated as a straight-line joining receiver and satellite,2 and the integrand is unity, corre-

sponding to a ray speed constant and equal to the vacuum speed of light:

∫
straight

line

1 d`. (2.4)

The presence of the atmosphere — as opposed to a vacuum — brings two changes to

the ray velocity: the ray speed is retarded and the ray direction gets bent. Speed retardation

is modeled by the integrand n(`), where the index of refraction n is allowed to vary as

function of the along-path distance `. Direction bending is accounted for by the integration

path, which now changes from the straight-line to a model for the actual, bent ray-path:

∫
bent

ray-path

n(`) d`. (2.5)

So we notice that the presence and the absence of the atmosphere are modeled in two

parts: in the integration path (bent and straight-line) and in the integrand (n(`) and unity).

Those options make up four different combinations. We have seen two combinations in

the two equations above; the remaining two combinations we discover in the next section.3

2See discussion in Appendix I.1.1.
3The numerical evaluation of such integrals is discussed in Appendix I.
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2.2.2 Path lengths

The two integration paths defined above (bent and straight-line), along with the two inte-

grands (n(`) and unity), make up four different combinations, summarized in Table 2.1.

Each combination corresponds to a different path length, denoted by an upper-case letter

in Table 2.1, that now we define and discuss.

Table 2.1: Four combinations of integrand and integration path.
Integration path

Atmospheric Vaccum

Integrand
Atmospheric L L′

Vaccum G D

Below, the adjectives “apparent” and “geometric” act as reminders for the type of

integrand employed: n(`) and unity, respectively. “Apparent” corresponds to the length as

it would be experienced by the ray, considering its variable speed along the path (either

bent or straight-line). “Geometric” corresponds to the length as measured by a ruler,

roughly speaking.

The first combination is called apparent bent ray-path length (or simply apparent ray-

path length):4

L≡
∫

bent
ray-path

n(`) d`, (2.6)

Equation (2.6) is a model for what the ray experiences in reality, under the presence of the

atmosphere.

The second combination is the geometric straight-line length (or simply geometric

distance):

D≡
∫

straight
line

1 d`. (2.7)

4Also known as optical or radio path length, depending on the type of radiation employed.
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Equation (2.7) is a model for what the ray would experience ideally, under the absence of

the atmosphere.

The first and second combination above (eqs. (2.6) and (2.7)) are extreme cases, in the

sense that they correspond to the complete presence or absence of the atmosphere. The two

remaining combinations, presented below, are physically impossible. They correspond to

fictitious intermediary states of semi-presence and semi-absence of the atmosphere, as

you can notice inspecting the mixture of types (Table 2.1) in their integrands and integra-

tion paths. However physically implausible those combinations are, they prove useful in

defining and understanding the delay, as done in the section that follows.

The third combination is the geometric bent ray-path length (or simply geometric ray-

path length):

G≡
∫

bent
ray-path

1 d`. (2.8)

Please note that G≥ D, because the straight-line is geometricly the shortest path.

Finally, the fourth combination is the apparent straight-line length:

L′ ≡
∫

straight
line

n(`) d`. (2.9)

A remarkable fact about refraction is that, in spite of the bent ray-path being geomet-

rically longer than the straight-line (G ≥ D), the bent ray-path is apparently shorter than

the straight-line (L ≤ L′), considering the actual speed of propagation in that medium.

Moreover, L is not only smaller but it is also least among all possible paths between re-

ceiver and satellite. In other words, in a space metricized by the index of refraction n,

the actual, bent, ray-path represents the geodesic between two points — analogously to

the straight-line being the geodesic in a space of unity metric. That is Fermat’s least time
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principle.

2.2.3 Total, along-path, and geometric delays

Having defined the path lengths above, now it is straightforward to define the delays. The

total delay5 is:

d ≡ L−D =
∫

bent
ray-path

n(`) d`−
∫

straight
line

1 d`, (2.10)

expressed in units of length, not of time. In words, the total delay is the discrepancy

between the apparent ray-path length and the geometric distance. In yet other words,

the total delay equals what happens in reality (L) minus what would happen ideally (D).

Please note that d ≥ 0.

We can rewrite the total delay d as:

d = da +dg, (2.11)

where da is the newly defined along-path delay:

da ≡ L−G =
∫

bent
ray-path

n(`) d`−
∫

bent
ray-path

1 d` = 10−6
∫

bent
ray-path

N(`) d`, (2.12)

which is evaluated along the actual, bent, ray-path, and dg is the geometric delay:

dg ≡ G−D =
∫

bent
ray-path

1 d`−
∫

straight
line

1 d`, (2.13)

which can be stated in words as the discrepancy between the geometric length of the actual,

5This is only the total neutral atmosphere delay, only one among numerous other delays making up the
total delay experienced by a GPS signal, such as ionospheric delays, hardware delays, etc; see, e.g., Leick
[2003].
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bent, ray-path and the geometric length of the straight-line joining receiver and satellite.

Re-phrasing the statement about refraction in terms of delays instead of path lengths,

it is remarkable that the total delay d is least along the actual, bent, ray-path. On the

contrary, if we force the ray to follow a straight-line, we will decrease the geometric delay

to zero, but only at the expense of increasing the along-path delay by a greater extent,

attaining a net increase in total delay as a result.

2.2.4 Geometric delay vs. bending delay

The along-path delay da and the geometric delay dg are not the separate results of each

speed retardation and direction bending. Especially, direction bending has an effect not

only on dg but also on da, because da (eq. (2.12)) is evaluated along the actual, bent,

ray-path.

It seems legitimate, therefore, to define a “bending delay” db, distinct from the geo-

metric delay dg, encapsulating the net effect of bending (both the increase in geometric

delay and the decrease in along-path delay):

db ≡ L−L′ =
∫

bent
ray-path

n(`) d`−
∫

straight
line

n(`) d`. (2.14)

Consequently, the total delay d is not the sum of the along-path delay da and the above-

defined bending delay db, i.e.:

d = da +dg 6= da +db. (2.15)

The distinction between the geometric delay dg and the bending delay db is not just a

curious theoretical aspect; it is useful in practice, too. Say that we were given a “straight-
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Figure 2.1: Diagram of definitions of delays in terms of path lengths.

line total delay” d′ that was computed neglecting ray bending:

d′ ≡ L′−D =
∫

straight
line

n(`) d`−
∫

straight
line

1 d` = 10−6
∫

straight
line

N(`) d`, (2.16)

and we wish to correct it to obtain the actual total delay d. The correction to be added,

then, is the negative bending delay (db ≤ 0 because L ≤ L′), not the positive geometric

delay:

d = d′+db. (2.17)

The corrective bending delay having negative sign reminds us one last time that bending

is beneficial, meaning that without bending the total delay would be even greater.

Figure 2.1 summarizes the definitions of delays in terms of path lengths, as an exten-

sion to Table 2.1.

2.3 Independent variables and rates of changes

The neutral atmosphere delay, in its most general form, is a function of date and time,

receiver position, and satellite direction. That translates into six variables: epoch t, latitude
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ϕ , longitude λ , height h, elevation angle ε6, and azimuth α:

d = f(t, ϕ,λ ,h, ε,α) . (2.18)

Just like the delay itself, its rates of change are also a function of those same independent

variables. In other words, the partial derivatives of the delay depend upon the point at

which they are evaluated along all independent variables (t, ϕ,λ ,h, ε,α), regardless of

the one variable v with respect to which the partial is being taken:

∂d
∂v

= f′ (t, ϕ,λ ,h, ε,α) ,

where v can be substituted by any of t,ϕ,λ ,h,ε,α .

For example, the delay changes much more rapidly — over any variable v — for a

receiver near the ground than aloft, i.e:

abs
(

∂d
∂v

∣∣∣∣
h=0

)
� abs

(
∂d
∂v

∣∣∣∣
h=1km

)
;

(which is simply another way of saying that the atmosphere is smoother aloft). As another

example, the delay at a lower elevation angle (say, ε = 10◦) varies over any variable (not

only over ε itself) more rapidly than at zenith. That is because the portion of the ray-path

within the atmosphere is greater at a lower elevation angle, therefore putting that delay

subject to the influence of a greater portion of the atmosphere.7 As one last example, the

delay varies more rapidly in a humid region than in an arid region, because the presence

of greater humidity in the air, itself highly variable in both time and space, leads to greater

variability in the delay. The complexity of the variation of the delay involved in such a

6Elevation angle is sometimes replaced by its complement, the zenith angle (sometimes called zenith
distance) z = 90◦− ε .

7The same fact also makes the delay greater at a lower elevation angle, but our point here is variability,
not magnitude.
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six-dimensional space (t,ϕ,λ ,h,ε,α) must start to be apparent.

2.3.1 On the need for modeling to mitigate the delay

If the ultimate goal is to mitigate the effect of the delay in GPS positioning, that can be

achieved basically in two ways: through prediction or estimation. Here we distinguish

between the two on the basis of whether GPS observations are employed to obtain the de-

lay or parameters modeling it. When GPS observations are employed — especially when

redundant observations are involved in a least-squares sense — we speak of estimation. In

contrast, when the delay is obtained using only observations and models external to GPS,

such as pressure measurements, then we speak of prediction.8

The purpose of modeling is to make the delay easier to predict and to estimate. The

motivation is, on one hand, the sheer complexity of the variation exhibited by the delay

over its independent variables and, on the other hand, our limited theoretical and obser-

vational knowledge about that variation. The technique for modeling is basically to de-

compose, separate, and approximate the underlying variation of the delay with simpler yet

satisfactory models. Below, in sections 2.4 and 2.5, we discuss those techniques.

2.4 Decomposing the delay: zenith delay and slant factors

Elevation angle ε is by far the independent variable over which the delay changes the most.

Consequently, it is standard practice to isolate that variation, decomposing the delay as:

d = dz× k, (2.19)

8A more elaborate classification is introduced in section 4.2.
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where dz, the so-called zenith delay, is defined as:

dz ≡ d(t, ϕ,λ ,h, ε =90◦,α) , (2.20)

for any azimuth α . From eqs. (2.19) and (2.20), the so-called slant factor, denoted k,

follows as:

k ≡ d/dz. (2.21)

Likewise, sometimes we might call d slant delay, to emphasize the distinction with the

zenith delay, dz. We therefore postulate dz the same for all satellites observed at the same

epoch (t) from the same receiver (ϕ,λ ,h):

dz = f(t, ϕ,λ ,h) ; (2.22)

in this way, the variation of the delay with respect to the satellite direction (ε,α) stays

confined to the slant factor k:

k = f(t, ϕ,λ ,h, ε,α) . (2.23)

We decided to keep the azimuth α in the definition of slant factor; the variation of k over α

is not nearly as significant as that over ε , therefore it is not uncommon to see α neglected

entirely.

Sometimes we also speak of a mapping function, which we define as a model for the

variation of the slant factor values with respect to its independent variables. In other words,

sometimes we wish to distinguish the slant factor model or mapping function (denoted k)

from a particular slant factor value (denoted k), the latter resulting from the evaluation of
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the former at a particular epoch, position, and direction:

k = k(t, ϕ,λ ,h, ε,α) . (2.24)

However subtle might seem the distinction between k and k, it will prove necessary to

discuss the subject in a precise manner.

The decomposition in eq. (2.19) brings enormous advantages. For prediction (see sec-

tion 2.3.1) it offers zenith delays that are simpler than slant delays because they depend

upon fewer independent variables. Moreover, slant factors can be predicted with less un-

certainty than either slant or zenith delays separately. That is a consequence of the fact that

d and dz share the same epoch and receiver position; thus a major part of their individual

uncertainty gets canceled out by their significant correlation, upon propagation to k.9

For estimation, a predicted slant factor — that can be assumed known beforehand,

somehow — turns the zenith delay into a parameter that is redundant over the GPS ob-

9A few examples. At zenith, the slant delay happens to equal the zenith delay, d = dz, thus the slant
factor equals unity, k = dz/dz = 1, a perfectly known constant whose uncertainty is therefore null:

σk(ε = 90◦) = 0.

As the ratio of uncertainty to expected value of the zenith delay approaches zero, σdz/µdz → 0, the zenith
delay approaches a constant, and the slant factor approaches a normal distribution. The general case re-
quires a little care as, e.g., the ratio of two independent standard normally distributed variates follows a
Cauchy distribution, whose variance is not even defined. Under certain conditions, though, it can be shown
[Hayya et al., 1975] that the ratio w = y/x of two normally distributed random variables x ∼ N(µx,σ

2
x ),

y∼ N(µy,σ
2
y ), x,y not necessarily independent, is approximately normally distributed:

w∼ N
(
µw = wµx−µy,σ

2
w = σ

2
y −2wσxσyρxy +w2

σ
2
x
)
,

where ρxy is the correlation coefficient between x and y. The above approximation for the uncertainty σw
of the ratio w is valid over a wider range of conditions than the typical approximation below, based on a
first-order Taylor expansion of the non-linear w, in terms of x and y:

σ
2
w =

(
∂w
∂y

)2

σ
2
y +
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∂w
∂x
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2
x +2
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(
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See Hayya et al. [1975] for conditions of applicability of each of the two approximations above.
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Figure 2.2: Diagram of scope concerning prediction and estimation of zenith delays and
slant factors.

servations collected from all satellites visible from the same receiver, thus allowing its

estimation. And an estimated zenith delay will always be more accurate than its predicted

counterpart.10 Finally, in estimating a zenith delay, one accounts for the bulk of the slant

delay, and such a de-trending of the observation residuals is a pre-requisite for any attempt

to estimate slant delays from GPS observations through the stochastic exploitation of their

correlations.

2.4.1 Scope: slant factors in, zenith delays out

Our interest in this work concerns slant factors; more specifically, their prediction via

ray-tracing (not as much in the attempts to estimate them or, equivalently, to estimate

residual slant delays). To maintain a reasonable focus it seems therefore required that we

put outside the scope a large body of research dealing with zenith delays. Before moving

on, though, let us briefly sketch what was left out in that regard, following Figure 2.2.

The estimation of slant factors from GPS observations is a very hard problem. The

10As a caveat, we have to admit that zenith delay prediction models are still a valuable product for GPS
applications in which the zenith delay estimation is not possible or desired [Schüler, 2006]; see further
discussion in section 4.2.
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challenge is, on one hand, the separation of other co-existing and poorly accounted for

error sources, such as multipath, and on the other hand, to overcome the poor redundancy,

poor sky coverage, and poor precision (due to, e.g., antenna gain, atmospheric attenuation)

of GPS observations at lower elevation angles. Of course, it is not an entirely unattainable

enterprise, it is just hard — after all, we do expect the existence of some correlation across

nearby satellite directions that one could take advantage of.

The problem of predicting zenith delays is solved assuming the availability of a reliable

atmospheric model, describing the variation of the underlying atmospheric parameters

upon which the delay depends [Krueger et al., 2004; Gutman et al., 2003a; Collins, 1999];

see section 2.8 for further discussion. The problem of estimating zenith delays can be

attacked splitting it in two, each considering the variation with respect to only epoch or

receiver position.

The position part can be ignored in the case of a single stationary receiver, i.e., with

ϕ,λ ,h = const.; in the case of a network there is some redundacy due to correlations across

nearby receivers [Stoew and Elgered, 2005; Eresmaa and Jarniven, 2005] that could be ex-

ploited to increase the degree of freedom in the GPS estimation; the case of a single mov-

ing receiver requires extra care, especially for airborne receivers, as the delay varies very

rapidly with height; nevertheless one can still find nearly constant parameters describing

a height-varying zenith delay [Colombo, 2006].

The epoch part can be neglected provided the tracking session is short enough. There-

fore the simplest model for estimating dz corresponds to a short session of a stationary

receiver: dz = const. More generally, the variation with respect to epoch can be modeled

in either functional or stochastic estimation models. Functionally, one would estimate co-

efficients of constant, linear, or higher-order polynomial pieces of arbitrary duration (say,

30min, 1h). Stochastically, one would leave the zenith delay free to vary from epoch to

epoch under a specific variance. Either approach can be tuned in by setting the duration
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of the pieces or the variance of the process, respectively [van der Wal, 1995].

2.5 Separating the delay: larger and more stable vs. smaller

and more variable components

In the present section we introduce a separation reflecting the contribution of different

gas constituents of the Earth’s atmosphere. In sections 2.5.1, 2.5.2 and 2.5.3 we intro-

duce that separation for refractivity, slant delays, and slant factors, respectively; then, in

section 2.5.4, we provide motivation for that separation.

2.5.1 Refractivity components

Total refractivity eq. (2.3) can be separated as:

N = Nd +Nw. (2.25)

The first term:

Nd ≡ k1
Pd

T
, (2.26)

is called dry refractivity and the second one:

Nw ≡ k2
Pw

T
+ k3

Pw

T 2 , (2.27)

is called wet refractivity, named after the partial pressures employed in each (Pd,Pw).

There exists a different separation for the same total refractivity:

N = Nh +Nnh, (2.28)
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where:

Nh ≡ k1Rdρ, (2.29)

and:

Nnh ≡ k′2
Pw

T
+ k3

Pw

T 2 . (2.30)

In eqs. (2.29) and (2.30), ρ is the total mass density,11 and k′2 ≡ k2−k1Rd/Rw is a derived

coefficient.12 Following Mendes [1999], we call eq. (2.29) hydrostatic and eq. (2.30) non-

hydrostatic refractivity.

Both are a bit of misnomers, not to be taken literally. In 1985, Davis et al. suggested

the name “hydrostatic”, fittingly arguing that it would be inaccurate to name “dry” a term

that depends on the total density of the mixed humid air. But they were suggesting a

name for the zenith delay component, not the corresponding refractivity component. More

specifically, they were referring to a model for that zenith delay component, model which

makes use of the assumption of hydrostatic equilibrium — hence the name.13 Eventually,

somewhere in the literature, the name was carried back from the zenith delay model to

the corresponding refractivity component, which is not unreasonable. The misnaming

becomes clear, though, when we realize that one can validly obtain a “zenith hydrostatic

delay” integrating numerically a profile of “hydrostatic refractivity” without ever buying

11ρ can be expressed in at least two equivalent ways; the first way is in terms of the individual densities:

ρ = ρd +ρw =
Pd

RdT
+

Pw

RwT
,

and the second one is in terms of virtual temperature, Tv≡ T/
(
1−(Pw/P)(1−Mw/Md)

)
(where P = Pd +Pw

is total pressure):

ρ =
P

RdTv
.

12For Rd and Rw, please see Appendix IV, p. 214.
13That particular zenith hydrostatic delay model, due to Saastamoinen [1972], assumes hydrostatic equi-

librium to be able to relate the vertical integral of total density (the only variable in Nh) to the easy-to-
measure pressure exerted by the overhead column of mixed humid air. That model was revised in 1986 by
Davis and in 2007 by Bosser et al..
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into the assumption of hydrostatic equilibrium!14 Davis [1986] continued to call “wet”

the complement to hydrostatic. Even though that is accurate (as eq. (2.30) depends on the

partial pressure of water vapor only) it is also ambiguous with respect to the other wet,

that complements the dry. Therefore, for the sake of clarity, in 1999, Mendes fittingly

suggested the name “non-hydrostatic” instead. But, again, “non-hydrostatic” has nothing

to do with a possible deviation from the assumed condition of hydrostatic equilibrium; it is

just the complement to hydrostatic in making up total refractivity or the along-path delay.

2.5.2 Slant delay components

Recall that the total (slant) delay, as given by eq. (2.11), is divided in the along-path delay

da and the geometric delay dg:

d = da +dg.

Following the separation introduced for refractivity (section 2.5.1), we can introduce a

corresponding separation in the along-path delay:

da = dh +dnh, (2.31)

where:

dh = 10−6
∫

bent
ray-path

Nh(`) d` (2.32)

and:

dnh = 10−6
∫

bent
ray-path

Nnh(`) d`. (2.33)

14We have to admit that such a profile is seldom available. In other words, the assumption of hydrostatic
equilibrium is pervasive. Most state-of-art atmospheric models have that assumption built-in. Even the
height values provided by radiosondes are not measured, rather derived under that same assumption, given
the measurements of pressure, temperature, and humidity. Exceptions are, e.g., radiosondes equipped with
both GPS and pressure sensors, and non-hydrostatic atmospheric models.
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Likewise, we call dh and dnh hydrostatic and non-hydrostatic delay, respectively. A similar

separation in delay also exists for dry/wet, of course. Care should be exercised when

comparing results from different authors, to assure that they all follow the same separation,

dh +dnh or dd +dw.

Please notice that the separation in refractivity stays confined to the integrand and

does not carry over to the integration path (borrowing from the terminology discussed in

section 2.2.1). In other words, the actual, bent, ray-path is unique and defined by the field

of total index of refraction. In yet other words, the ray-path along which the integrals

eqs. (2.32) and (2.33) are evaluated is one and the same. The alternative — two different

ray-paths, each defined by the hydrostatic and non-hydrostatic indices of refraction —

besides being physically wrong, would bring the highly undesirable consequence of the

hydrostatic and non-hydrostatic delays not summing up to the along-path delay.

The fact that we do not separate the contribution of hydrostatic and non-hydrostatic

components to the definition of the ray-path implies that we are unable to separate the

geometric delay:

dg =
∫

bent
ray-path

1 d`−
∫

straight
line

1 d`,

into its hydrostatic and non-hydrostatic components. Therefore we express the total slant

delay no further detailed than:

d = dh +dnh +dg. (2.34)

Please see caveat below (p. 27) regarding practice in mapping functions, though.
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2.5.3 Zenith delay and slant factor components

The extension to zenith delays is trivial, as the zenith delay is a type of slant delay (whose

direction happens to be that of zenith):

dz
h ≡ dh (t, ϕ,λ ,h, ε =90◦,α) ,

dz
nh ≡ dnh (t, ϕ,λ ,h, ε =90◦,α) ,

for any azimuth α , following the definition of zenith delay (eq. (2.20)). The extension to

slant factors would be straightforward too (e.g., knh ≡ dnh/dz
nh), were it not for the fact that

the geometric delay dg is zero at zenith,15 what prevents us from defining a slant factor for

geometric delay (kg).

Yet we wish to maintain consistency with the definition of total delay: the sum of delay

components should always make up the same total delay. One first possible approach is to

define an additive geometric delay, i.e.:

d = kh dz
h + knh dz

nh +dg; (2.35)

a second approach is to define a compound factor, kh+g, accounting for both dh and dg:

kh+g ≡
(
dh +dg

)
/
(
dz

h +dz
g
)

=
(
dh +dg

)
/dz

h, (2.36)

knh ≡ dnh/dz
nh, (2.37)

(where dz
g happens to be zero), so that, from eqs. (2.11), (2.19) and (2.31):

d = kh+g
(
dz

h +dz
g
)
+ knh dz

nh = kh+g dz
h + knh dz

nh; (2.38)

15The zenith geometric delay is exactly zero in the most common model for the ray-path (bent-2d); for
the more general bent-3d ray-path model, albeit it is not exactly zero, it is so to very good approximation;
see Appendix I.3.4.1 for details.
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a third approach is to define a similar compound factor, knh+g, involving instead the non-

hydrostatic delay, and leave the hydrostatic delay alone in kh; the resulting expressions are

analogous to eq. (2.36).

The second approach (kh+g,knh) is favoured in the recent literature [Niell, 1996; Boehm

et al., 2006b]. The reasons are as follows. The second approach is preferred over the third

one (that of kh,knh+g) because the slant non-hydrostatic delay, free of geometric delay (but

still under the influence of ray bending, as per section 2.2.4), is more similar to the delay

determined by water vapor radiometers [Davis, 1986]. The second approach is preferred

over the first one (that of kh,knh and an additive dg) because it requires one fewer quantity

to be provided for end-users (i.e., two quantities in the second approach instead of three

quantities in the first approach).

To unclutter the notation, it is common practice to call the combination of hydrostatic

and geometric delays simply “hydrostatic delay”, in which case we would have:

d = kh dz
h + knh dz

nh, (2.39)

where the assignment dh ← (dh + dg) is taking place implicitly — without this caveat,

eq. (2.39) would be slightly misleading.

We could define similar zenith delay and slant factor components following the dry/

wet separation.

2.5.4 Motivation

Dry gases constitute the major part of the atmosphere; furthermore, they are homoge-

neously mixed. Water vapor, in contrast, is not only a minor constituent, but is also highly

variable both in space and in time, tending to exist in lumps in the atmosphere [AGU,

1995]. Therefore the delay component due to dry gases is larger and more stable than the
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smaller yet far more variable component due to water vapor.

The dry/wet separation represents those different characteristics directly. The hydro-

static/non-hydrostatic separation, in contrast, combines the whole contribution from dry

gases with a small part of the contribution from water vapor to provide a new compo-

nent dependent on the total mass density of the mixed humid air. That new component

(hydrostatic) has a tremendous advantage, namely, the fact that its corresponding zenith

delay can be reliably predicted in terms of the pressure exerted by the overhead column

of air, dismissing (under the assumption of hydrostatic equilibrium) the need for knowing

the actual atmospheric vertical distribution. That advantage in terms of prediction, in its

turn, leads to an advantage in terms of estimation: one needs then to estimate only the

non-hydrostatic delay — otherwise, one would have a little trouble trying to estimate both

simultaneously, as they are very highly correlated. Yet another advantage is that the non-

hydrostatic component, contrary to the wet one, corresponds to the delay determined by

water vapor radiometers [Davis et al., 1985]. We speculate, though, that it should have

a minor disadvantage, namely, that the hydrostatic component is not as stable as the dry

one; in other words, we speculate that the water vapor included in the hydrostatic delay

should manifest itself as increased variability, as compared to the purely dry delay.

2.6 Developing a mapping function

In section 2.4 we have seen that what makes possible the estimation of zenith delays

from GPS observations is the assumption that the mapping function is somehow known

beforehand.16 But how do we fulfill that assumption? In other words, how do we develop

a mapping function? That is the subject of the present section.

16Whereas the development of mapping functions in earlier contributions was generally part of an effort
aiming at predicting total slant delays, most later contributions in the literature focused on offering mapping
functions to aid in the estimation of zenith delays.
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Figure 2.3: Diagram of development of mapping functions.

Figure 2.3 depicts the tasks and intermediary products (as boxes and parallelograms,

respectively) involved in the process of developing a mapping function. In the sub-sections

that follow, we discuss each task individually. We also take on the opportunity to refine

the scope of this work, putting certain tasks or parts of tasks outside the scope, which can

only be done after we at least define all the tasks.

Before we proceed, though, let us make the caveat that we describe the process of

developing mapping functions as carried out in this work. But the way described is not

the only one possible. In section 2.8 we discuss how that process evolved historically,

and why we believe that the version of that process adopted here represents the current

state-of-art.

2.6.1 Atmospheric modeling

On one hand, the delay depends on the state of the atmosphere along the entire ray-path,

from satellite to receiver. On the other hand, it is impractical to measure that state directly.

Therefore, the development of a mapping function requires the creation or adoption of

29



an atmospheric model (leftmost box in Figure 2.3). Pragmatically, an atmospheric model

can be interpreted as a function, having as argument or input an epoch t and a position

ϕ,λ ,h (corresponding to a point along the ray-path), and returning as output a description

of the atmospheric state at that point. Among the numerous quantitative descriptions of

the atmospheric state, we are interested specifically in knowing pressure P, temperature

T , and humidity (expressed in any of numerous ways; see Appendix IV) or, equivalently,

refractivity N or index of refraction n.

We distinguish between two aspects making up a more comprehensive atmospheric

model: structure and source. Atmospheric structure is a label for the arrangement of

the iso-indicials17 in a given atmospheric model. For example, if the index of refraction

is constant along spherical shells, we speak of a spherical atmospheric structure. Atmo-

spheric source, on the other hand, denotes the origin of the data making up the atmospheric

model (such as radiosondes) or the purpose in generating that atmospheric model (such as

weather or climate modeling).

Atmospheric sources and structures are further discussed in sections 2.7 and 3.2, re-

spectively. In the rest of this work, beyond the present background chapter, we put at-

mospheric source outside the scope; atmospheric structure remains inside. The reasons

for putting source outside are discussed in section 2.8 — in a nutshell, we see it as an

atmospheric modeler’s job, not a geodesist’s.

In the subsequent tasks (sections 2.6.2 and 2.6.3), all part of the process of developing

a mapping function, we take for granted the availability of an atmospheric model; i.e., we

assume that it is possible to obtain the atmospheric parameters at any epoch and position

needed.
17An iso-indicial is a surface of constant refractivity or index of refraction.
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2.6.2 Delay modeling

The objective of the present task, delay modeling, is to provide values of slant delays that

would be observed at a particular epoch, receiver position, and satellite direction, given an

atmospheric model resulting from the previous task, atmospheric modeling (section 2.6.1).

There are a few key ingredients in the present task. One of the ingredients is a refractivity

formulation; as seen in section 2.1, it relates a particular atmospheric state to the elec-

tromagnetic speed of propagation. Another ingredient is a ray-path model; it dictates the

path, from satellite to receiver, of a ray arriving at a particular epoch, position, and direc-

tion. As we shall see later, in Chapter 3, there is a whole range of ray-path models, from

simpler to more complicated and realistic.

In the rest of this work, beyond the present background chapter, we keep ray-path

models inside the scope; the refractivity formulation is put outside, because even though

it might still require further research (Appendix VI), it can be pursued independently from

the aspects elected to form the scope of this work.

2.6.3 Slant factor modeling

The previous task, delay modeling (section 2.6.2), results in individual slant delays at sev-

eral particular epochs, positions, and directions. The corresponding slant factors can be

obtained as per their definition, eq. (2.19). The objective of the present task, slant factor

modeling, hence, is to provide end-users with a convenient, usually compact, representa-

tion of slant factors.

The present task presupposes that it is impractical or undesirable to have users inter-

acting directly with the delay model and obtaining slant factors as per their definition,

eq. (2.19). Otherwise, there would be no need for an explicit mapping function — in

fact, such an approach was put into practice by several authors, as will be discussed in
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section 2.8.

In the rest of this work, beyond the present background chapter, we adopt the approach

of an implicit mapping function, putting slant factor modeling (but not slant factors, of

course) entirely outside the scope.

Current practice

Before moving on, let us briefly sketch how slant factor modeling is performed currently.

Please keep in mind the independent variables of slant factors: t, ϕ,λ ,h, ε,α . Hydrostatic

(including geometric, see p. 27) and non-hydrostatic components are treated separately.

The variation with respect to satellite direction (elevation angle ε and azimuth α) is

accounted for first, individually at each different epoch and receiver position. The vari-

ation with respect to elevation angle is modeled with Marini’s [1972] continued fraction

expansion in 1/sinε , normalized to yield unity at zenith, as given by Herring [1992]:

k(ε) =

1+
a

1+
b

1+
c

· · ·

sinε +
a

sinε +
b

sinε +
c

· · ·

. (2.40)
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The result is made of coefficients a,b,c, . . . for each epoch and receiver position.18 The

variation with respect to azimuth is, most of the time, neglected, and sometimes accounted

for with a single main direction of asymmetry:

k(ε,α) = k0 (ε)+δk(ε,α) , (2.41)

where k0 and δk accounts for the azimuthally symmetric and asymmetric parts, respec-

tively; the former is as in eq. (2.40); the latter is [Davis et al., 1993]:

δk(ε,α) = k0 (ε)cotε (ZN cosα +ZE sinα) , (2.42)

where ZN ≡ ΞN/dz and ZE ≡ ΞE/dz are, respectively, north and east coefficients describ-

ing the direction and magnitude of asymmetry exhibited by slant factors, defined in terms

of the asymmetry exhibited by slant delays, ΞN and ΞE, normalized by the zenith delay

dz.

The variation with respect to receiver position (latitude ϕ , longitude λ , height h) is ac-

counted for secondly, with geographical maps describing the variation of some of Marini’s

elevation coefficients and Davis et al.’s azimuth coefficients vs. latitude and longitude, at a

specific height (usually constant zero or the variable ground’s height). The variation with

respect to height is accounted for as a rate of change of the coefficients, valid only near the

specific height at which the maps above are given. (Some coefficients are assumed con-

18Yan and Ping [1995] offer an alternative expression for the elevation-angle dependence, also in the
form of a continued fraction, related to the complementary error function. Does Yan and Ping’s [1995] fit
experimental ray-tracing results beter (i.e., with fewer terms in the expansion) than Marini’s [1972], given
the same atmospheric model? Mendes [1999] did include in his extensive comparisons a mapping function
based on Yan and Ping’s [1995], but it is not clear how much of its performance is due to the mathematical
expression per se or the atmospheric model upon which the mapping function was fit. Yan et al. [2002,
Fig. 2–3] presents results showing general better convergency in very low elevation angles, with worse
convergency for a few geographical locations. Definitive conclusion would require a larger dataset and also
homogeneity in the ray-tracing results upon which one is to fit Marini’s [1972] and Yan and Ping’s [1995]
expressions. Bear in mind, though, that “if the observation elevation angles are constrained above 5◦, the
choice of the continued fraction of the mapping function is not a critical problem” [Yan et al., 2002, p. 573].
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stant.) Those maps are represented either analytically, as an expansion in surface spherical

harmonics [Boehm et al., 2006a], or numerically, discretized in grids (Kouba [2008] or

Niell [1996] for higher and lower resolution grids, respectively).

The variation with respect to epoch (t) is accounted for last, as a time series for each

grid node making up the map discretization or for each coefficient in the map’s expansion

in spherical harmonics. The time series, in their turn, can be represented numerically,

as a discretization in snapshots at specific epochs (say, four times daily — Boehm et al.

[2006b], Kouba [2008]), or analytically, fitting an empirical model (say, seasonal — Niell

[1996], Boehm et al. [2006a]).

At last, let us list a few open problems regarding the modeling of the variation of slant

factors with respect to its independent variables:

– variation with respect to azimuth: beyond a single main direction of azimuthal asym-

metry (e.g., secondary directions [Seko et al., 2004]; arbitrary spherical harmonics

[Böhm and Schuh, 2001]);

– variation with respect to elevation angle: negative elevation angles;

– variation with respect to any independent variable at positions far from the ground

(e.g., airplanes, radiosondes, dropsondes, the Space Shuttle) — see Thessin [2005]

and Yan et al. [2002, Fig. 1].

2.6.4 Validation and assessment

The present task, validation and assessment, runs in parallel to all previous tasks (sec-

tions 2.6.1 to 2.6.3) in the process of developing a mapping function. Here, in sec-

tion 2.6.4, we distinguish between the tasks of validation and assessment. The former

in a measure of internal consistency; it seeks to guarantee that an implementation con-

forms to its specification, i.e., to its intended design. The latter compares the performance
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of a given model to that of competing models; the crux in such comparisons is to find a

reliable benchmark, preferably external to the models being compared.

Both tasks apply to each individual model: atmospheric (source and structure), delay

(refractivity and ray-path), and slant factor. In other words, validation and assessment can

be done not only with the final product but also with the intermediary ones. Let us give a

few examples illustrating the description above.

Validation usually does its job through “sanity checks”, i.e., checks on whether a given

quantity indeed behaves as expected. Trivial examples are if pressure is always positive

and decreases with height; if total refractivity is the same regardless of how it is separated

(Nd +Nw or Nh +Nnh); if the total delay along the actual ray-path is smaller than that along

a forced straight-line (d < d′).

Assessment can be done directly, in terms of the modeled quantity itself. An example

is comparing modeled pressure, temperature, and humidity to their observed counterparts

(provided by, e.g., radiosondes). It can also be done indirectly, in terms of the impact

on the performance of a particular use of that model. An example is assessing the atmo-

spheric model by comparing the resulting non-hydrostatic slant delay predictions to those

measured by a water-vapor radiometer. The ultimate impact assessment involves employ-

ing a given model in GPS positioning and checking either or both observation residuals

and estimated parameters (e.g., estimated receiver position).

We validate the models developed in this work in Appendix I.4. We also assess their

performance in GPS positioning, in sections 5.2 and 5.3.

2.7 Atmospheric sources

In section 2.6.1 we introduced the distinction between two aspects making up a more com-

prehensive atmospheric model: structure and source. Then we put atmospheric source out-
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side the scope, and kept atmospheric structure inside. In the present section, atmospheric

sources, we give a minimal background on that subject, before moving on; atmospheric

structures are further discussed in section 3.2.

2.7.1 Radiosondes

The source constituted of radiosondes [Dabberdt et al., 2002] is the closest to reality,

as they are (mostly — see next paragraph) actual observations. Usually the sensors are

released from the ground hanging off a balloon, but sometimes they are dropped during

special flights hanging off a special parachute, in which case they receive the special name

dropsondes. Their measurements have large vertical resolution (Figure 2.4) but have very

small horizontal and time resolution: they are usually released from approximately 800

sites worldwide, twice daily.

It is interesting to notice that radiosondes, as used for predicting slant delays or slant

factors, are not purely observations — they do require some modeling. First, height is

not measured but rather derived, under the assumption of hydrostatic equilibrium, from

the actual measurements of pressure, temperature, and humidity. Second, it requires in-

terpolation among the vertically scattered measurements, for which one has to postulate

a (linear, quadratic, log-linear, hydrostatic, etc.) model. Third, it requires interpolation

for horizontal positions other than the launching sites’ [Ghoddousi-Fard and Dare, 2007;

Ifadis and Savvaidis, 2001], and even more dangerous, extrapolation beyond the coverage

area of the ensemble of launching sites. Fourth, it requires interpolation and/or extrapola-

tion at epochs other than the release epoch (which, by the way, is just a nominal value —

the balloon takes up to a few hours to finish its course). Fifth, it requires a supplementary

atmospheric model after the balloon bursts at its maximum height.

Radiosondes remain as the most important observation type in atmospheric model-

ing, since they provide vertical profiles throughout the troposphere; in contrast, vertically
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Figure 2.4: Sample radiosonde: vertical profile collected at a single site and epoch.

integrated observations, such as GPS-estimated zenith delay or satellite images, cannot

be inverted meaningfully without careful constraints (as in any tomography problem, in

general).

2.7.2 Numerical weather models

Another source is that of numerical weather models (NWM, hereafter) or, more precisely,

their output [Lorenc, 2002; Buizza, 2002; Golding, 2002]; see Figure 2.5. When that

model output refers to a future epoch, one speaks of prediction; otherwise, analysis; which

is the reason why we prefer to speak in general of a numerical weather model, regardless of

whether it refers to a future or past epoch. Its output is a representation of the atmospheric

fluid at specific instantaneous epochs. The representation includes a 3d field snapshot for
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Figure 2.5: Sample numerical weather model: refractivity field (unitless) over North
America on Aug 16, 2004 at 22:45 UTC, as given by the Canadian Regional Model [Côté
et al., 1998] (vertical scale exaggerated 100x).

each atmospheric parameter — pressure, temperature, humidity, amongst many others.

It usually takes the form of either an expansion in (volumetric) spherical harmonics or a

discretization on a grid. Its main advantage over radiosondes is its much larger horizontal

and time resolution. On the other side of the same coin there is the disadvantage of its large

size (in bytes) requiring above-average digital equipment for storage and computations.19

19For use in ray-tracing, a NWM usually needs to be supplemented with a climatology, because a NWM
does not extend vertically as high as necessary.
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Figure 2.6: Sample climatology: temperature, as given by the CIRA86 model [Chandra
et al., 1990; Fleming et al., 1988].

2.7.3 Climatologies

Yet another atmospheric source is that of climate models [Hartmann, 2002]; see Figure 2.6.

As the saying goes, climate is what we expect and weather is what we get.20 Consequently,

a climatology will never be as good a source as a NWM, concerning the actual atmospheric

conditions affecting GPS observations. Compared to radiosondes, climatologies are less

accurate, but radiosondes have a rather sparse area of coverage. The amount of discrep-

ancy expected and the accuracy requirements for the intended GPS application will dictate

which atmospheric source is better suited. Yet one particular climatology might be bet-

ter than others. (For a good discussion, please see Mendes [1999, p. 48], Johnson et al.

[2002], and Thessin [2005].)
20The definition of climate can be worded in a few slightly different ways: climate comprises the slowly

varying components of the weather [Glickman, 2000]; climate, more rigorously, is the statistical description
of the weather, in terms of its expected value (e.g., average) and variability (e.g., standard deviation, empir-
ical probability distribution functions, etc.) [IPCC, 2007, Annex I]. In any case, a critical concept in any of
those definitions is the averaging period, as the so-defined climate will be different for different averaging
periods. The classical value is 30 years, as defined by the World Meteorological Organization [IPCC, 2007,
Annex I].
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Figure 2.7: Diagram of scope of this work.

2.8 Our scope in the historical context

The objective of the present section is to justify and motivate the scope for this work; the

scope is summarized in the next paragraph; the justification and motivation is presented in

the rest of the present section.

The scope of this work was broadly set in section 1.2: it is the study of the neutral

atmosphere delay in space geodetic observations, under the theory of classical geomet-

ric optics. That scope was further refined throughout the background chapter, after we

introduced the necessary concepts and terminology. The refined scope is summarized in

Figure 2.7, which we now briefly review. From top to bottom, we see how slant delays

come about from the definition of delay (section 2.2), on one hand, and from its indepen-
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dent variables and corresponding rates of change (section 2.3), on the other hand. Then we

split slant delays into slant factors and zenith delays (section 2.4). At that point we refined

the scope (section 2.4.1). Zenith delays were entirely put outside, both their estimation

and their prediction. As for slant factors, their estimation (or, equivalently, the estimation

of slant delays) from GPS observations was put outside the scope, while their prediction

(based on models and observations external to GPS) was kept inside. Then we proposed a

process for developing mapping functions (section 2.6), involving three modeling tasks —

atmospheric, delay, and slant factor — each of which is made of more elementary models;

for example, the atmospheric model is made of a source and a structure; a delay model

is made of a refractivity formulation and a ray-path model. The introduction of that pro-

cess of developing mapping functions allowed us to further refine our scope: we elected

to focus, beyond the present background chapter, on atmospheric structure and ray-path

model, effectively putting outside the scope atmospheric source, refractivity formulation,

and all of slant factor modeling.

The decision about the scope taken at section 2.4.1 needs not be justified, as it is based

on a decomposition (eq. (2.19)) that is standard and commonplace. It is the decision

concerning the process of developing mapping functions, taken at sections 2.6.1 to 2.6.3,

that we see the need to justify and motivate now. That need exists because, even though

that process is not innovative (in the sense that other researchers have pursued it before),

we understand that it is not consensual either (in the sense that it is still common to see

researchers pursuing alternative approaches).

The justification and motivation for the scope is presented below in the form of a list

of individual remarks. Our intention with such a form was to facilitate for the reader to

agree or disagree with only parts of our whole reasoning or argument. At best, we try

to convince the reader that the version of the process of developing mapping functions

adopted in this work represents the current state-of-art; at least, we provide some food-
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for-thought concerning the historical evolution of that process.21

(1) We can choose the primary modeling realm: The variation of slant factors with

respect to their independent variables — epoch, receiver position, and satellite direction

— can be accounted for either directly in the slant factor model itself (section 2.6.3) or

indirectly in the underlying atmospheric model (section 2.6.1).

In the past, in the absence of a better atmospheric model, one would obtain samples

of slant factors at scattered epochs, positions, and directions, and then try to fit an explicit

model to them. Consequently we say that the slant factor model was the primary modeling

realm. The availability of a satisfactory atmospheric model already implicitly accounting

for that variation causes a shift in the primary modeling realm, from the slant factor model

to the atmospheric model.

Examples of the latter practice are all the contributions based on numerical weather

models, e.g., Boehm et al. [2006b]; an example of the previous practice is Mendes [1999].

(2) The atmosphere is the best primary modeling realm: Given the choice in re-

mark (1), it is better to choose to account for the variation of slant factors in terms of the

underlying atmospheric state, than directly in terms of the slant factor itself. (Even though

we admit that it is more complicated.)

The first reason is that the atmospheric state is a more fundamental quantity than the

highly processed slant factor. Therefore there are certain behaviours exhibited by slant fac-

tors that can only be explained in terms of the underlying atmospheric state (e.g., passing

of weather fronts, occurrence of droughts or hurricanes, etc.).

The second reason is that there are many more research areas other than geodesy and

astrometry interested in general atmospheric quantities such as pressure, temperature, and

21Herring [1992]; Niell [1996]; Sovers et al. [1998]; Mendes [1999]; Yan et al. [2002] present good
reviews of past contributions to the development of mapping functions, up to their publication dates.
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humidity than in the neutral atmosphere delay. Consequently there are more resources

invested in understanding the variation of general atmospheric quantities than in under-

standing the delay. It seems sensible, therefore, to leverage on those resources already

invested instead of trying to model delay or slant factors from scratch.

(3) Atmospheric modeling is better done by experts: Atmospheric modeling is bet-

ter done by expert atmospheric scientists than by, say, geodesists.

At hindsight, the sheer complexity of modern atmospheric models warrants that it

would be futile to expect non-experts to be able to improve upon them. In other words,

we advocate that a mapping function developer adopt an atmospheric model designed,

implemented, validated, and operated by expert atmospheric scientists, instead of naı̈vely

trying to develop a possibly better atmospheric model of their own. Otherwise, one must

admit that he or she would be entering in the business of atmospheric modeling, and

therefore should judge his or her atmospheric models by the stricter standards of the expert

atmospheric science. Also the painstaking job of running and quality-controlling such

systems on a daily basis has costs that any single user community, such as the geodetic

one, probably could not afford alone.

In summary: we see such a division of labor as liberating geodesists and astrometrists

from the burden of atmospheric modeling. Our rationale is that, to build a good atmo-

spheric model, is not an easy task!

(4) NWM are the state-of-art in atmospheric modeling: The shift in the modeling

realm discussed in remark (2) was made possible by the availability of models providing

a continuous, higher resolution representation of the atmospheric state.

A continuous model is able to readily provide pressure, temperature, and humidity

at any reasonable epoch and position, even unsampled ones. That is in contrast with

partitioned atmospheric models, valid here and there at scattered locations. Examples of
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continuous models are NWM and climatologies; radiosonde-based atmospheric models

usually start as partitioned models, upon which one can build a continuous model, after

postulating an interpolating procedure [Leandro et al., 2006b].

By resolution we mean not simply the spacing between nodes making up the model

discretization, but the scale of atmospheric features that it accounts for, either explicitly

through the model dynamics or implicitly through the model physics [COMET-UCAR,

1999]. Typical temporal resolutions are a few minutes internally (for numerical integration

of the atmospheric equations) and a few hours externally (for model output). Typical

spatial resolution is a few tens of kilometers along horizontal coordinates and variable

along the vertical (from tens of metres near the ground to kilometres far aloft).

The improvement in resolution is rather astonishing when we compare NWM to clima-

tologies previously used for mapping functions. Temporal and spatial resolution were one

month and a thousand kilometres, respectively. Furthermore, time was modeled modulo

one year (i.e., only intra-annual variations considered, inter-annual variations neglected);

spatial variation was modeled only along latitude (variations with longitude were ne-

glected).

In summary: the current state-of-art in atmospheric modeling is embodied in the so-

called numerical weather models; we refer to Thorpe [2005] for an excellent overview.

(5) How NWM came to be used as an atmospheric source for mapping functions:

Zenith delays, being simpler than slant delays, were naturally tried before [Bevis et al.,

1996; Vedel et al., 2001; Jensen, 2005; Cove, 2005]. One could obtain zenith delays from

scratch, integrating a vertical profile of refractivity, or more easily and less error-prone,

plugging in surface proxies (such as pressure or integrated water vapor — see remarks (9)

and (11)), into an appropriate zenith delay model (e.g., Saastamoinen’s [1972]).

From zenith to slant delays there is a huge jump in complexity in the way that NWM
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can be employed, at which point the remarkable versatility of NWM is revealed. One

simpler way is to extract upper-air proxies (see remarks (9) and (11)) from the NWM

[Niell, 2003]. Another way is to extract a single vertical profile from the NWM and build

a spherical atmosphere around it, just like radiosonde profiles have been used previously

[Boehm et al., 2006b; Rocken et al., 2001]. Yet another way is to extract two profiles,

each describing mean and gradient conditions, corresponding to zero-th and first order

terms of a Taylor expansion around a base point [Hulley and Pavlis, 2007; Boehm and

Schuh, 2007; MacMillan and Ma, 1998]. A more elaborate way would be fitting a higher-

order polynomial over a desired vicinity and using that polynomial as a surrogate for the

full 3d NWM [Chen and Herring, 1997]. The ultimate way is to use the full 3d NWM in

its plenitude, without simplifications [Hobiger et al., 2008a; Nievinski et al., 2005; Pany

et al., 2001].

It seems fitting to conclude that any attempt to directly predict slant delays necessarily

implies a level of distrust towards the state-of-art mapping functions — otherwise one

could predict instead only simpler zenith delays and then couple those zenith delays with

a state-of-art mapping function. In other words, we should recognize that, when predicting

slant delays directly, one is entering in the business of mapping functions.

(6) Future prospects for the usage of NWM in mapping functions: It is sensible to

say that NWM are here to stay. They have recently made their way into the IERS Con-

ventions [McCarthy and Petit, 2004] (more specifically, in its updated version, currently

under development22), therefore having their usage endorsed in the geodetic/astrometric

community. The trend into the foreseeable future is for NWM to improve continuously,

pushed by advances in computer processing, by increased data availability, and by the so-

cietal needs for better weather and climate forecasts. That will continue to happen even

22http://tai.bipm.org/iers/convupdt/convupdt.html
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without additional effort from the geodetic community.

At last, fortunately the future advances in NWM will be useful not only for geodetic

datasets collected in the future, but also for those collected in the past. That is possible

thanks to the so-called re-analysis projects, that run current state-of-art NWM retroactively

with historical data, going back the last few decades [Uppala et al., 2005; Kalnay et al.,

1996].

(7) Slant factor models: from primary modeling realm to surrogate optional repre-

sentation: The shift in the primary modeling realm (discussed in remark (1)), from the

slant factor model to the atmospheric model, implies a diminishment in the importance of

the former.

In an extreme case, the slant factor model becomes absent entirely; the end-user in-

teracts directly with the delay model and obtains slant factors as per its very definition

(eq. (2.21)), in terms of slant and zenith delays. In a mild case, the slant factor model

is retained, but its role is relegated to that of a surrogate for the variation of slant factors

already implicitly modeled by the atmospheric model.

One might argue that a slant factor model is no longer a driving force in the devel-

opment of mapping functions, because even if it is wasteful is terms of computer storage

and processing, it would not affect the accuracy of the results. Nevertheless, that task

is still relevant, because even though computing is relatively cheap nowadays, there will

always be constrained computing environments (such as on-board miniaturized receivers)

in need of more convenient representations (i.e., less demanding in terms of computing re-

sources). This concern applies especially to real-time applications [Collins, 1999; Krueger

et al., 2004], like those covered by GNSS navigation augmentation systems, such as the

American WAAS or the European EGOS.

Examples of the extreme case are provided by Rocken et al. [2001]; Pany et al. [2001];
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Hobiger et al. [2008b];23 examples of the mild case are given Boehm et al. [2006a,b].

(8) Slant factor modeling as a data compression problem: Remark (7) implies that

the task of slant factor modeling is simplified from what it used to be in the past — it is no

longer atmospheric modeling in disguise.

We find it fruitful to think of slant factor modeling as a data compression problem

[Salomon, 2007]. I.e., one wishes to find a suitable basis upon which to expand the slant

factor values, so that the one can still obtain a satisfactory approximation after truncating

the expansion at a few leading terms. Surely knowledge about the atmospheric models

provides insights about good bases, e.g., Marini’s [1972] expansion in 1/sin(ε); see also

Yan and Ping [1995].

(9) Proxy vs. intrinsic variables: In the light of limited observational or theoretical

prior knowledge about the atmosphere, one might be unable to accurately account for

the variation of slant factors with respect to their independent variables (epoch, receiver

position, satellite direction) — let’s call those intrinsic variables. A solution often sought

in the past would be to delegate that modeling to what we call proxy variables. Those

proxies provide the link to the actual conditions at time and location of usage. The solution

involving proxy variables requires the augmentation of the model parametrization:

k(t, ϕ,λ ,h, ε,α) = k(t, ϕ,λ ,h, ε,α, P∗,T ∗, . . .) ; (2.43)

23We must mention that all of those aim at providing slant delays, not slant factors; we cite them here
nevertheless because one can always obtain slant factors from slant delays.
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where each of the proxies P∗,T ∗, . . . (say, surface pressure, surface temperature, tempera-

ture lapse rate, etc.) depends, in their turn, on time and location:

P∗ = f(t, ϕ,λ ,h)

T ∗ = f(t, ϕ,λ ,h)

...

(10) Ready-to-use vs. provisional vs. on-demand slant factor models: If a given

model requires as input only its intrinsic independent variables (as defined in remark (9)),

we call it a ready-to-use model.24 In contrast, if the model requires as input additional

proxy variables, we call it a provisional model, as those additional variables provide a sort

of calibration to the model prior to its use. Finally, if the model is developed automatically

from scracth (i.e., from slant and zenith delays, and those delays are obtained by ray-

tracing in an atmospheric model) every time a user requests slant factor values, then we

call it an on-demand model.25

Examples of provisional models are Ifadis [1986] and most of those studied in Mendes

[1999]; of ready-to-use, Niell [1996] and Boehm et al. [2006a]; and of on-demand, Pany

et al. [2001]; Hobiger et al. [2008b]; Rocken et al. [2001]; Iwabuchi et al. [2003]. It seems

that the turning point between provisional and ready-to-use models was the work of Niell

[1996]; between ready-to-use and on-demand, we could cite Rocken et al. [2001].

(11) Surface vs. upper-air proxies: To understand the history of mapping functions,

it helps to distinguish between surface-only and upper-air proxy variables. In general,

provisional models based on surface proxy variables have limited success, because surface

conditions are not necessarily representative of the conditions aloft. For example, the

24Our “ready-to-use” seems equivalent to “empirical” in Boehm et al. [2006a].
25Our “on-demand” seems equivalent to “dynamic” in Iwabuchi et al. [2003].
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amplitude of diurnal temperature changes is much larger near the ground than aloft, where,

in contrast, changes happen mostly seasonally. As Niell [1996] pointed out, we need

to distinguish between warm winter days and cold summer days. In spite of that non-

representativeness, the recourse to surface proxies is perfectly understandable: such values

are relatively common and easy to obtain. In contrast, provisional models based on upper-

air proxy variables have great potential, not always fulfilled, though. The reason for that

we discuss in the next remark, (12).

(12) Values for proxy variables: measured in situ vs. provided by auxiliary mod-

els: The obvious way to obtain values for the proxy variables (remark (9)) is to measure

them in situ (e.g., with a radiosonde for upper-air proxies). Unfortunately, measurement

devices are not always available, especially for upper-air variables. The consequence of

that unavailability is that users of provisional mapping functions (see remark (10)) would

employ nominal values for those proxy variables, achieving thus only sub-optimal results.

In the lack of in situ observations, a better alternative for obtaining values for proxy

variables is to provide an auxiliary model. In that way, one would couple the provisional

model requiring the proxy variables with an auxiliary model for those proxies.26 Cou-

pled models are especially fruitful because they foster collaboration among researchers

— in other words, it needs not to be the same researcher developing both the provisional

and auxiliary models. On the down side, with the information needed to build an auxil-

iary model for upper-air proxies, one could probably achieve better results dropping the

provisional model altogether and building a stand-alone ready-to-use model directly.

Examples of auxiliary models are the numerous ones developed by Mendes [1999] for

previously developed provisional models.

26The auxiliary model, in its turn, could be provisional itself (if it related upper-air proxies to more
commonly available surface measurements) or it could be ready-to-use (if it depended only on intrinsic
variables). The latter case is more useful, because the resulting coupled model becomes ready-to-use as a
whole.

49



(13) Hypothetical vs. statistical models: How does one establish the relationship be-

tween proxy variables and the resulting delay or slant factors?

In early contributions (e.g., Saastamoinen [1972]), the relationship would be estab-

lished through an analytical hypothetical model (which is not to say that it would be un-

reasonable). It would be based on the expected mean behaviour of the atmosphere, such

as the prevalent stratification in layers of constant or linear (in height) temperature, and

hydrostatic equilibrium for pressure.

Another way is through statistical methods (e.g., Mendes [1999]), in which one builds a

large set of results covering a variety of conditions, and then seeks empirical relationships.

Ideally, the dataset would cover uniformly the range of independent variables intended for

use (e.g., from pole to pole, if it is intended as a global model).

(14) Analytical vs. numerical methods: The development of a mapping function can

be carried out, up to varying degrees, in analytical or numerical form. We recognize a

historical evolution from purely analytical to mixed analytical/numerical methods. That

shift occurred more markedly in the realm of atmospheric models, which we discuss in

the next paragraph. In the realm of slant factor models, a similar shift is underway (Kouba

[2008] is a prime example), but analytical models are still preferred and we expect them to

remain preferred in niches such as computing-constrained environments (see remark (7)).

First let us recall that numerical solutions are usually computationally more expensive

than equivalent analytical ones. Second, cheap, powerful computing resources is a modern

luxury that was simply not available decades ago. Therefore it is easy to understand why

convenient closed-form analytical solutions were preferred in early efforts: one would

build the atmospheric model aiming at a fast and easy way to compute the delay later.

There is a price to pay for that convenience, though: the underlying models (atmosphere,

delay, slant factor — see section 2.6) end up entangled in a single composite model that is
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hard to modify. Consequently, in early contributions (e.g., Saastamoinen [1972]) it might

not be clear-cut where each task in process of developing a mapping function (section 2.6)

ends and another one begins.

As modern computing matured and alleviated the burden of more demanding numer-

ical solutions, analytical models would be replaced with profiles, tables, and grids dis-

cretizing the atmospheric state. It allows the original underlying models (atmospheric,

delay, slant factor) to be kept intact and separate. That is advantageous for a number of

reasons: in validation, when something goes wrong it is easier to identify the culprit; in

assessment, it is easier to isolate the individual contributions of each of the underlying

models and improve only one at a time. Nonetheless, the existence of both analytical and

numerical solutions allows their cross-validation, as they should agree within a certain

tolerance.

In this context, we call the computation of slant factor values by a (predominantly)

numerical procedure by the name ray-tracing.
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Chapter 3

Ray-tracing options

In Chapter 2 (p. 51) we have defined ray-tracing as the computation of slant factors by

a (predominantly) numerical procedure. Whereas the essential how-to knowledge is pre-

sented in detail in Appendix I, here we would like to bring awareness to the options avail-

able in ray-tracing.

The options form three groups, each depicted as one axis in Figure 3.1. The axes

are mutually orthogonal, meaning that options compete only within the same group and

not among different groups. Along each axis, the options are ordered from the simplest,

closer to the origin, to more rigorous, farther away from the origin. The simpler options

approximate the more rigorous ones sufficiently well over common and useful special

cases, as we shall see later.

The main feature of that diagram is the recognition of the orthogonality between ray-

path and atmospheric models. It disentangles two aspects that are typically lumped to-

gether. For example, a remark such as “this raytracer assumes spherical symmetry” en-

compasses distinct concepts: it makes separate statements about each ray-path and atmo-

spheric models. Certainly, there are some combinations that provide a better match be-

tween the two, but we propose that such a choice of options be made and communicated

52



Atm.
Structure

Spherical
concentric

Ray-path
model

Bent-2d

Bent-3d

Straight-line

Zenith

Atm.
Source

Radio-

sondes

NW
M

Climatology 3dSpherical
osculating

GradientEllipsoidal

Figure 3.1: Diagram of options available in ray-tracing.

more explicitly. Furthermore, the possibility of mixing and matching different options is

a good opportunity to validate more complicated models comparing them to simpler ones

at the cases for which we expect no discrepancy; we explore that in Appendix I.4.

A secondary feature of Figure 3.1 is the orthogonality in the aspects of source and

structure, making up a more comprehensive atmospheric model. Recalling briefly from

section 2.6.1, atmospheric structure is a label for the arrangement of the iso-indicial sur-

faces, while source denotes the origin or purpose in generating an atmospheric model. It

is interesting that we can take any source and arbitrarily postulate a structure for it.

In the next sections of the present chapter we detail the options in regard to ray-path

and atmospheric structure; atmospheric source was already discussed in section 2.7.

Hereafter, we make use of the following concepts: geodetic coordinates (latitude ϕ ,
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longitude λ , ellipsoidal height h), global Cartesian coordinates (roughly speaking1, having

origin at the center of mass of the Earth, X axis pointing towards the intersection of the

Greenwich meridian with the equator, Z axis pointing towards the north pole, and Y axis

in such a way that it completes a right-handed system), and local Cartesian coordinates (x

axis pointing towards the east direction, y axis pointing towards the north direction, and

z axis pointing upwards, along the ellipsoidal normal). The function denoted as XYZ←−−
ϕλh

()

converts from geodetic to global Cartesian coordinates. Position vectors such as rrr are

assumed expressed in global Cartesian coordinates, i.e., rrr = XÎ̂ÎI +YĴ̂ĴJ +ZK̂̂K̂K; when we need

position vectors in local Cartesian coordinates we will indicate that as rrrxyz = xı̂̂ı̂ı+ yjjĵ̂̂ + zk̂̂k̂k.

Elevation angle ε is always reckoned from the ellipsoidal horizon or, equivalently, zenith

angles are always reckoned from the ellipsoidal normal.

3.1 Ray-path models

In this section we discuss different model for the ray-path, more specifically its shape,

scale, position, and orientation.

First of all we must recognize that when we speak about the electromagnetic signal as a

ray we have implicitly adopted the framework of classical geometric optics. It implies that

we assume the wavelength of the radiation under study to be negligibly small compared to

the extent of the perturbations in the medium of propagation. In other words, we assume

that the atmosphere is nearly uniform at spatial distances comparable to that wavelength,

roughly speaking. Consequently, under that theory we are unable to account for effects

such as diffraction and scattering.

The rest of this section is organized as follows. The ray-path, in its general form,

is a 3d curve, as described in section 3.1.1. In propagation media with special structure

1The precise definition is laid down in McCarthy and Petit [2004].
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(section 3.2), though, it assumes simpler shapes. For example, in a spherical atmosphere

(sections 3.2.1 and 3.2.2), the ray-path degenerates into a plane curve, i.e., it is contained

on a plane, as shown in section 3.1.2. As another example, if the ray’s tangent direction

always coincides with the gradient of refraction in a medium, then the ray degenerates

further, into a straight-line, as described in section 3.1.4; the straight-line case, albeit not

always rigorously valid, is a good approximation for most of the sky, as we discuss in

section 3.1.3.

3.1.1 Bent-3d

The most general ray-path model is defined by the fundamental equation of classical geo-

metric optics, the Eikonal equation [Born and Wolf, 1999]:

d
d`

(
n

drrr
d`

)
= ∇∇∇n. (3.1)

This differential equation describes the change in the ray position vector rrr along the ray-

path. We see that it depends critically on the propagation medium: n is the (scalar) field

of index of refraction and ∇∇∇n is its gradient (vector) field.2 The actual position rrr(`) at any

given distance ` along the ray-path depends on both the propagation medium and a set

of conditions. A common choice of initial conditions are an initial position and an initial

direction, in which case the final position is determined from eq. (3.1). A common choice

of boundary conditions are initial and final positions, in which case the initial direction is

determined from eq. (3.1). The Eikonal is discussed in detail in Appendix I.

2By field we mean that n and ∇∇∇n associate a value (scalar and vector, respectively) to any position in
space, not only to positions along the ray-path.
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3.1.2 Bent-2d

In an atmosphere with spherical structure the gradient of refractivity ∇∇∇n always points to

the center of the sphere:

∇̂̂∇̂∇n =
∇∇∇n
|∇∇∇n|

=−r̂̂r̂r′ =− rrr′

|rrr′|
, (3.2)

where rrr′ = rrr +rrrc is the position vector with respect to the center of the (possibly osculat-

ing) sphere (section 3.2). The consequence of a null horizontal component in the gradient

of refractivity is the absence of any out-of-plane bending in the ray-path. Another way of

stating the same is saying that in an atmosphere exhibiting spherical structure the ray-path

is rigorously a plane curve (hence the suffix “2d” in the name).

This model is embodied in the widely used Bouguer’s formula [Born and Wolf, 1999,

p. 131]:

nr′ sinz = const., (3.3)

where z = 90◦− ε is the zenith angle and r′ is the distance to the center of the (possibly

osculating) sphere. Following Young [2006, p. 99–100] we can recast eq. (3.3) in the form

of a differential equation:

dr′ =− tan(z) dn/n. (3.4)

Equation (3.4) can be interpreted as a generalization of Snell’s law:

nsinθ = (n+dn)sin(θ +dθ), (3.5)

where θ is the ray’s angle of incidence with respect to the normal at the interface of two

media.

In the actual Earth’s atmosphere, the horizontal component, though not exactly null,

is always much smaller than its vertical counterpart, making the bent-2d a satisfactory

approximation most of the time. In section 5.1 we describe experiments quantifying that
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discrepancy.

3.1.3 Straight-line

This model neglects any bending in the ray-path. It is defined:

rrr = rrr0 + ` ŝ̂ŝs0, (3.6)

where rrr0
XYZ←−−
ϕλh

(ϕ0,λ0,h0) is the receiver position vector; ŝ̂ŝs0 is the direction (a unit vector)

from receiver to satellite; ` is the usual along-path distance, except that now we postu-

late it to be equal to zero at the receiver and increasingly positive towards the satellite

(equivalently, we could define the ray-path from the satellite to the receiver, instead).

The fact that the along-path distance incidentally equals the straight-line distance brings

a tremendous advantage over preceding models (bent-3d, bent-2d), namely, that the entire

(postulated straight-line) ray-path is known in advance. That is in contrast with models

that allow for bending, in which the ray-path needs to be discovered step-by-step or itera-

tively. Although the straight-line may seem a crude approximation, it is satisfactory for a

large portion of the sky, from zenith down to 30◦ in elevation angle.3 It was very common

in early contributions [Saastamoinen, 1972; Hopfield, 1969].

3.1.4 Zenith

This is a special case of both straight-line and bent-2d models, when the ray direction

happens to coincide with the local vertical direction:

rrr XYZ←−−
ϕλh

(ϕ0,λ0,h0 + `) . (3.7)

3We exploit that fact in Appendix I.5.3.1 to develop a fast solver for bent ray-paths based on the pertur-
bation of a straight-line ray-path.
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It is rigorously valid in an atmosphere with spherical osculating or ellipsoidal structure,

and an excellent approximation in any structure. It is a very convenient form when one

is interested in zenith delays only, because it allows one to simplify the path integrals

(section 2.2) to ordinary integrals having limits expressed in terms of height.

3.2 Atmospheric structures

In the present section we discuss the following atmospheric structures (from simplest to

more elaborate): spherical concentric (section 3.2.1), spherical osculating (section 3.2.2),

ellipsoidal (section 3.2.3), gradient (section 3.2.4), and 3d (section 3.2.5). Just like for

the ray-path models, under atmospheric structure we have a general case (3d) and the

remaining ones are simplifications of that general case, warranted by common and useful

special cases.

The first four structures are profile-based, meaning that all the data they need is stored

in the form of a single vertical profile, assumed the same for any horizontal position. In

other words, vertical variation is modeled and horizontal variation is neglected. That is

a good approximation to the Earth’s atmosphere, in which, e.g., pressure decreases expo-

nentially with increasing height. The differences among those four profile-based atmo-

spheric structures lie in their subtle differences in the definition of horizontal coordinates,

or, equivalently, of vertical coordinates. We make those definitions more clear and precise

in the reminder of the present section.

Throughout this section, we will be using the form:

v = f(· · ·) ,

where v stands for any of pressure, temperature, or humidity, and “· · ·” will be replaced
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Figure 3.2: Sample spherical concentric iso-indicial (in red).

by the variables upon which the atmospheric parameters depend in each structure.4

3.2.1 Spherical concentric

In this model, illustrated in Figure 3.2, the vertical direction is defined coinciding with

the radial direction of a sphere centered at the Earth’s center of mass (or, more precisely,

centered at the origin of the global Cartesian coordinate system (X ,Y,Z), [McCarthy and

Petit, 2004]):

v = f(r) , (3.8)

where r = |rrr|.
4“Iso-indicial”, used below, is a surface of constant refractivity or index of refraction.
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3.2.2 Spherical osculating

This model takes the vertical direction as the radial direction of a sphere that osculates the

ellipsoid at a particular base point. In such a case:

v = f
(
r′
)
, (3.9)

where r′ = |rrr′| is the length of an eccentric position vector rrr′:

rrr′ ≡ rrr−rrrc,

The center of the osculating sphere, rrrc, is defined as:5

rrrc
XYZ←−−
ϕλh

(ϕ0,λ0,h =−R) ;

the latitude ϕ0 and longitude λ0 specify the base point at which the sphere’s radial di-

rection coincides with the ellipsoid’s normal direction; R =
√

MN is the Gaussian radius

of curvature;6 M,N are the radii of curvature along the meridian and prime vertical, re-

spectively; the negative sign in h =−R implies that the center of the osculating sphere is

located downward with respect to the ellipsoid’s surface (Figures 3.3 and 3.4).

3.2.3 Ellipsoidal

This last profile-based atmospheric structure (Figure 3.5) takes the vertical direction as the

ellipsoidal normal:

v = f(h) , (3.10)

5Please notice that rrrc
XYZ←−−
ϕλh

(ϕ0,λ0,−R) 6= rrr0
XYZ←−−
ϕλh

(ϕ0,λ0,h0) .
6“An intrinsic property of the surface independent of the coordinate system used to describe that surface”

[Weisstein, 2008].
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Figure 3.3: Sample spherical osculating iso-indicial (in red).

which obviously yields a simple expression in terms of ellipsoidal height h.

3.2.4 Gradient

The next approximation in terms of atmospheric structure may be described as a double-

profile based model: we take the single profile exactly as defined for the ellipsoidal at-

mosphere (denoted here v0) and augment it with a second profile (∇∇∇Hv0). Both profiles,

v0 and ∇∇∇Hv0, refer to a base location, which is specified by ϕ0,λ0 (hence the subscript

0). The scalar profile v0 describes the mean conditions, whereas the vector profile ∇∇∇Hv0

describes the horizontal gradient, both at the base location. We define the gradient atmo-
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r' = r - rc

rc

φ0

R

Figure 3.4: Angles, distances, and vectors involved in a spherical osculating atmosphere.

sphere in such a way that there are possibly different values of mean v0 and horizontal

gradient ∇∇∇Hv0 for each different height h, but at any particular height h, v0 and ∇∇∇Hv0 are

the same for any horizontal position ϕ,λ , i.e.:

v0 = f(h) ,

∇∇∇Hv0 = f(h) .

The resulting integrated v still depends on horizontal coordinates, though:

v = f(ϕ,λ ,h) = f0 (h)+ f∇∇∇H (ϕ,λ ,h) . (3.11)

The functions f0 (h) and f∇∇∇H (ϕ,λ ,h) represent, respectively, the contribution from mean

conditions and the horizontal gradient of the atmospheric parameter v. The former is

exactly the same as the function defined for a single profile in an ellipsoidal atmosphere
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Figure 3.5: Sample ellipsoidal iso-indicial (in red).

(section 3.2.3). The latter is:

f∇∇∇H (ϕ,λ ,h)≡
∫ rrr

rrr0,h

∇∇∇Hv0(rrr) . drrr. (3.12)

where rrr XYZ←−−
ϕλh

(ϕ,λ ,h) is the point of interest, at which the atmospheric parameter v is

sought; rrr0,h
XYZ←−−
ϕλh

(ϕ0,λ0,h) is a point lying along the normal passing through the base

location, corresponding to the point of interest: i.e., it has the same vertical coordinate h

as the point of interest rrr but horizontal coordinates equal to the base location’s (ϕ0,λ0)7;

“.” denotes dot product.

The integral above can be performed along any path. There is one particular path,

though, that simplifies the integral to a closed-form expression: it is the path of constant

7Contrast:

rrr XYZ←−−
ϕλh

(ϕ,λ ,h) ,

rrr0
XYZ←−−
ϕλh

(ϕ0,λ0,h0) ,

rrr0,h
XYZ←−−
ϕλh

(ϕ0,λ0,h) ;

see also Figure 3.7 on p. 65.
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Figure 3.6: Sample gradient iso-indicial (in red) in the vicinity of a base point (marked as
a cross).

azimuth, called a loxodrome. The resulting closed-form expression is:

f∇∇∇H (ϕ,λ ,h) = l
(

sina
∂v0

∂x

∣∣∣∣
h
+ cosa

∂v0

∂y

∣∣∣∣
h

)
, (3.13)

where ∂v0/∂x and ∂v0/∂y are directional derivatives of v along, respectively, east and

north directions (thus making up the horizontal gradient), defined at the base location

(ϕ0,λ0) and evaluated at a particular h; l is the loxodrome length (which is not the same as

the along-path distance ` nor the straight-line distance), and a is the loxodrome azimuth

(which is not the same as the azimuth of the initial ray direction, α). For details, please

see Appendix V.8 Figures 3.6 and 3.7 illustrate the gradient atmospheric structure.

8This is similar to the work presented by Gardner [1976], in the sense that v0, ∇∇∇Hv0 are postulated con-
stant with respect to horizontal coordinates but can change with height. The main difference is that, whereas
Gardner employs a gradient for total refractivity, here we employ instead a gradient for each atmospheric
parameter. Also Gardner builds his gradient atmosphere upon a spherical concentric atmosphere, whereas
here we build it upon an ellipsoidal atmosphere. Finally, Gardner simplifies the equivalent of integral in
eq. (3.12) evaluating it along a geodesic (a spherical great circle in his spherical atmosphere), whereas we
evaluate it along a loxodrome, the only path in which the horizontal gradient is rigorously constant.
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Figure 3.7: Angles, distances, and vectors involved in a gradient atmosphere.

3.2.5 Three-dimensional (3d)

This is the most general case: one makes no assumption about the variation of the atmo-

spheric parameters, neither in the vertical nor horizontal directions. In other words, one

takes as-is whatever the atmospheric source is able to represent (Figure 3.8).

With this, we close the description of the main options available in ray-tracing: ray-path

models and atmospheric structures. In Chapter 5, the most important combinations of

ray-path and atmospheric structure are compared in terms of slant delay and assessed in

terms of their impact in GPS positioning. Just before that, in Chapter 4, we take a detour

to recapitulate the role of the neutral atmosphere delay in GPS positioning.
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Figure 3.8: Sample 3d iso-indicial.
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Chapter 4

The neutral atmosphere delay in GPS

positioning

The present chapter exists to support the design of some of the experiments reported in

Chapter 5. Here we are interested in selecting prospective GPS applications that could

benefit from a possibly better slant factor model, to be assessed in an experiment. The

rationale is that, for a GPS application in which the delay is already satisfactorily mit-

igated, even a much better slant factor model would give only marginally or negligibly

better results.

4.1 Vulnerabilities

GPS positioning applications have three general vulnerabilities, that are aggravated by the

presence of the neutral atmosphere delay.

(a) Linear dependency: In the estimation of unknown parameters, common terms of

different error sources cannot be separated if they are linearly dependent. One example

is the case of receiver clock error and carrier-phase ambiguity when observing a single
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satellite (which is resolved observing several satellites). Another example is given by

Leick [2003, p. 277]:

Whereas the propagation media effects on satellite signals, indeed, show a variation with
azimuth and elevation angle, there is a station average that can be considered common to all
signals.

So the slant delay d j
i (t) from a receiver i to a satellite j at an epoch t can be split up in

a common term, d̄i(t1 < t < t2), valid for all satellites over the period t1 < t < t2, and a

variation over it, δd j
i (t):

d j
i (t) = d̄i(t1 < t < t2)+δd j

i (t). (4.1)

If t1 = t2, then the common term di(t1 < t < t2) cannot be estimated separately but rather is

absorbed by the estimate of the receiver clock error. Leick further concludes that modeling

of troposphere is useful only if it reduces the variability with respect to the common term.

The common term d̄i(t1 < t < t2) is not to be confused with the zenith delay dz. The

two are obviously related, because the same slant delay d j
i (t) can be expressed as:

d j
i (t) = k j

i (t)×dz
i (t),

where k is the slant factor. From the two expressions above for the same slant delay d j
i (t)

we see that, for a single epoch t1 = t2 = t, the common term d̄i equals the zenith delay dz

times an average slant factor k̄i:

d̄i = k̄i×dz
i ,

where k̄i is:

k̄i =
Ni

∑
j=1

k j
i /Ni,

and Ni is the number of visible satellites at the receiver i. If t2 > t1, then the common

term d̄i(t1 < t < t2) corresponds to an average slant delay over all satellites j in the period
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t1 < t < t2:

d̄i(t1 < t < t2) =

∫ t2

t1
k j

i (t)×dz
i (t)dt

t2− t1
.

In fact, it is exactly this averaging over time that helps to decorrelate receiver clock error

(modeled as white noise) and zenith NAD (modeled as a polynomial piece over time or as

a stochastic process auto-correlated in time); see more discussion about it on p. 73. Which

brings us to the next vulnerability.

(b) Nearly linear dependency or strong correlation: Certain parameters are not com-

pletely linearly dependent yet are nearly so; in other words, they are strongly correlated.

In the absence of additional observations or constraints, we are prevented from separating

those parameters clearly, leading to either a bias in one by the unaccounted for effects of

the other or poor resolution (e.g., large standard deviations) when we try to estimate both

simultaneously.

That strong correlation is usually the case between zenith delay and receiver height.

Treuhaft [1992] illustrated the correlation between a change in relative height (∆h) and

a change in zenith delay (dz) due to change in the (VLBI equivalent of a) GPS ranging

measurement (ρ) at a particular elevation angle (ε):

∂ρ(ε)≈ sinε∂∆h,

∂ρ(ε)≈ 1
sinε

∂dz.

Figure 4.1 demonstrates that the signatures of a shift in zenith delay and in receiver height

(in the presence of a typical clock error) can be very similar, especially at higher elevation

angles. In other words, it is the ranging measurements from satellites at lower elevation
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Figure 4.1: Shift in ranging, for different elevation angles, due to (i) a 1cm shift in zenith
delay (1cm/sinε) and (ii) a −2cm shift in receiver antenna height, combined with an
usual 3cm clock error (−2cmsinε +3cm).

angles that help decorrelate dz and ∆h. At such lower elevation angles (ε ≈ 0):

∂ρ

∂∆h

∣∣∣∣
ε≈0
≈ 0,

∂ρ

∂dz

∣∣∣∣
ε≈0
≈ ∞.

Another, even more dramatic case of the vulnerabilities inherent in strong correla-

tions in GPS is that between receiver height and receiver clock error. For the GPS practi-

tioner accustomed to expect worse results for vertical positioning compared to horizontal,

it might come as a surprise the fact that, were it not for the receiver clock error, height

would be even better determined than horizontal position. Misra [1996, p. 60,62] states:

The problem . . . is not simply that the estimation of the clock bias “uses up” a measurement,
but that it alters the basic structure of the position estimation problem in a negative way.
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. . . the price for estimation [or elimination] of the clock bias is being paid for almost entirely
by loss of accuracy in the vertical dimension.

Kuang et al. [1996, p. 42] reaches similar conclusions, for both absolute and relative posi-

tioning:

Estimating the receiver clock error or eliminating the bias by differencing the measurements
[across satellites] . . . degrade the information in the average direction of the measurements,
which would be the best observed component of the position if the receiver clock error were
known.

The connection between heights and the average direction between receiver and satellites

is explained next.1

(c) Geometric weakness of height: While generally we are able to observe GPS satel-

lites at all azimuth quadrants, we can obviously observe satellites only in the less than half

a hemisphere above the ground [Spilker, 1996, p. 545]. That makes the vertical direc-

tion to coincide approximately with the average direction between receiver and satellites,

exactly the direction which will be most deteriorated by receiver clock error, as we saw

previously.2 A secondary deterioration comes from the fact that, while a uniform sam-

pling across azimuths allows one to effectively average out many systematic effects on

estimated horizontal coordinates, the same benefit is unavailable for heights.

1This analysis considers only observation geometry and neglects all other error sources, most danger-
ously atmospheric delays, antenna gain, and multipath. But even in the presence of those error sources, the
absence of receiver clock error would still dramatically improve vertical positioning, though not necessarily
making it better than horizontal positioning.

2On the other side of the same coin, were we able to keep the receiver clock error under tighter control,
this same negative vulnerability would become a positive strength [Kuang et al., 1996, p. 42]:

Should good a priori information about the receiver clock bias be available, point positioning solutions, especially the
height component, may be signicantly improved. The height component of baselines should also be improved . . . For
the global network, this implies that . . . quantities dependent upon the orientation of the coordinate polyhedron such
as the geocenter and Earth orientation parameters may be improved.
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4.2 Mitigation techniques

In the present section we propose a classification of all the techniques available for the

mitigation of the neutral atmosphere delay in GPS positioning. First we enumerate the

techniques on p. 72. The names given for each technique were chosen as mnemonics,

not to be taken literally; for example, when we say “eliminate” we mean that such a

technique eliminates some, hopefully most — certainly never all — of the delay. Then

we enumerate the requirements of each technique — requirements in the sense that, if

not met, the corresponding mitigation technique becomes less effective, not necessarily

completely ineffective. Again, the descriptions in the list are intentionally brief; please

see text for detailed explanations. Finally, we discuss the pros and cons of each mitigation

technique vis-à-vis the intended GPS application. The ultimate objective is to select a GPS

application that could possibly benefit from a better delay model, to be later evaluated in

experiments.

(0) no mitigation technique;

(1) avoiding the delay by discarding lower-elevation observations;

(2) eliminating the delay by across-receiver differencing;

(3) estimating the delay from the GPS observations;

(4) predicting the delay with ready-to-use models;

(5) determining the delay with in situ external observations;

(6) interpolating the delay from estimates at nearby stations.

Requirements for each mitigation technique:

(0) none:

(0.a) estimation of receiver clock error;

(0.b) no interest in the parameters of receiver clock error or zenith delay, or

(0.c) no constraint on zenith delay parameter, making it auto-correlated.
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(1) avoiding the delay by discarding lower-elevation observations:

(1.a) abundant simultaneously visible satellites;

(1.b) no estimation of both zenith delay and receiver height.

(2) eliminating the delay by across-receiver differencing:

(2.a) relative positioning;

(2.b) small baseline length;

(2.c) small height offset;

(2.d) homogeneous weather, with no local anomalies.

(3) estimating the delay from the GPS observations:

(3.a) carrier-phase observations;

(3.b) initialization time (first 1h);

(3.c) no estimation of actual vertical movement correlated with zenith delay.

(4) predicting the delay with ready-to-use models:

(4.a) dm-level accuracy suffices.

(5) determining the delay with in situ external observations:

(5.a) funds to purchase and maintain additional equipment.

(6) interpolating the delay from estimates at nearby stations:

(6.a) receiver within network extents;

(6.b) sufficiently dense network of stations.

(0) None: Even when we are not employing any mitigation technique, we might ben-

efit from the absorption of an average delay by the receiver clock error estimate (see vul-

nerability (a) on p. 67). Leick [2003] states that the part of the delay in common among all

satellites does not affect the position, but merely changes the estimated clock parameter.

Spilker [1996, p. 544] makes a similar statement: “Clearly, a constant bias for four pseu-

doranges to four different satellites would not affect position error at all but would cause

a user clock time bias error.”
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At first sight, it might seem that the leaking of tropospheric delay into the receiver

clock error should be a nuisance for GPS applications interested in either of those two

parameters — applications such as time transfer/frequency exchange and meteorology/

climate monitoring. That would be true only if we were estimating tropospheric delay

independently every epoch. In such a case, the zenith delay parameter would vary from

epoch to epoch as much as the receiver clock error varies — i.e., as a white noise random

process.

At closer look, though, we realize the importance of a functional or stochastic con-

straint on the zenith delay, that introduces some auto-correlation for that parameter. Such

a constraint makes the average delay d̄i(t1 < t < t2) encompass more than one epoch, effec-

tively decorrelating it from the numerous independent receiver clock errors at each epoch.

As a consequence, both estimated parameters (receiver clock error and zenith delay) be-

come less biased and thus still useful for time/frequency and weather/climate applications

of GPS.

The present technique applies specially for point positioning. In contrast, the present

technique does not apply for relative positioning. That is because in relative positioning

usually one does not estimate receiver clock error: such an error is canceled out by differ-

encing observations across satellites simultaneously in view. (Across-satellite differencing

is distinct from the across-receiver differencing employed in technique (2).)

(1) Avoiding the delay by discarding lower-elevation observations: In this tech-

nique the delay is still present in the observations; we just avoid most of it by discarding

the observations most affected by it (i.e., the ones at lower elevation angles). A common

variation of this technique is to keep in the estimation procedure the observations at lower

elevation angles yet significantly downweight them.

The present technique (1) is not desirable in environments where sky visibility is poor
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thus DOP is large, such as in urban canyons. In other words, when the number of visible

satellites is close to the minimum (four), discarding observations might be an unfeasible

luxury. That situation should be ameliorated in the future with the greater availability

of satellites from, e.g., the European Galileo system or the revitalization of the Russian

GLONASS system.

If technique (1) is used alone, vulnerability (b) tells us that height will be biased, due

to the absorption of unaccounted for delay. Yet the height standard deviation will be

unaffected, as the discarded observations at lower elevation angles would contribute very

little to the determination of height alone
(

∂ρ

∂h |ε≈0 ≈ 0
)

. (That would be different were

technique (1) to be used in conjunction with technique (3).)

One must also realize that (1) is employed to mitigate not only the delay but also

other error sources that predominate at lower elevation angles, mainly multipath and poor

antenna gain off-zenith.

(2) Eliminating the delay by across-receiver differencing: The delay affecting two

receivers is the more similar the closer the receivers are. Provided that the baseline joining

them is not excessively long (say, less than 30km) and that their height offset is small (say,

less than 100m) — as the delay varies very rapidly with respect to height —, differencing

observations across the two receivers will eliminate most of the delay. That technique is

obviously unavailable in point positioning.

Technique (2) is so powerful to mitigate the delay that relative positioning applications

can be designed having baselines short enough so that the delay is satisfactorily mitigated.

Indeed, the classification of short and medium-distance baselines can be based partially

on the residual delay itself [Bock, 1998, p. 483]:

One can define, however, a lower limit [for medium-distance baselines] as the shortest dis-
tance at which residual ionospheric refraction, tropospheric refraction, and/or orbital errors
between sites are greater than total high-frequency site and receiver-specific errors.
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Figure 4.2: Zenith distance of the same satellite at two different receivers.

Conversely, the more homogeneous is the weather between the two ends of a baseline, the

longer one can extend that baseline. In contrast, local weather anomalies, such as passing

fronts, will make the present technique less effective.

Technique (1) is beneficial to (2), in the sense that the latter is less effective the lower

is the satellite in common view. That fact can be understood recalling that the elevation

angle (ε1,ε2) of the same satellite at two different receivers (1,2) is different (ε1 6= ε2),

because the ellipsoidal normals from which (the complement to) the elevation angles are

reckoned is different (see Figure 4.2). In fact, the elevation angles at each receiver are the

more different the longer is the baseline between the receivers. At higher elevation angles

(ε ≈ 90◦), such a discrepancy in elevation angle (ε1− ε2) yields a small discrepancy in

delay (d(ε1)− d(ε2) ≈ 0), because the delay varies very little with respect to elevation

angle near zenith
(

∂d
∂ε
|ε≈90◦ ≈ 0

)
. But at lower elevations (ε� 90◦) the delay varies much

more rapidly with respect to elevation angle
(

∂d
∂ε
|ε�90◦� 0

)
, so even a small discrepancy

in elevation angle (ε1− ε2 ≈ 0) yields a much greater discrepancy in the delay (d(ε1)−

d(ε2)� 0). Precisely for that reason, when differencing observations across receivers, the

elimination of the delay affecting a given satellite’s observations is less effective the lower
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is that satellite at any receiver.

(3) Estimating the delay from GPS observations: The fact that the GPS observations

are affected by the delay allows one to invert those very observations to estimate param-

eters modeling the delay. One follows the decomposition introduced in section 2.4: the

slant factor model is assumed known (or more, precisely, predicted from external models

and observations) and the zenith delay is estimated, as it becomes a parameter redundant

over the observations to all visible satellites.

The present technique (3) relies on the availability of carrier-phase observations, as

pseudorange observations are not precise enough. Which implies in the second require-

ment for technique (3), namely, the need for some time to initialize carrier-phase ambigu-

ities after the receiver is turned on.

In contrast with technique (1), the present technique (3) yields less biased heights, as

it prevents the otherwise unaccounted for delay from leaking into height. But the height

standard deviation will be worse in (3) than in (1), because heights and zenith delay are

highly correlated. Furthermore, technique (1) is detrimental to technique (3) if both are

used in conjunction, because one way of decorrelating height and zenith delay thus im-

proving their individual standard deviations would be lowering the cut-off elevation angle,

exactly the opposite of what (1) does.

Finally, care should be exercised in applications where (i) the receiver height is esti-

mated independently every epoch and (ii) the receiver is subject to vertical displacements

varying similarly to the zenith delay itself, because that could lead to some aliasing of

the vertical displacements onto zenith delay and vice-versa [Dach and Dietrich, 2000; Vey

et al., 2002]. Examples of applications are given in Dodson et al. [2001]; Urschl et al.

[2005].
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(4) Predicting the delay with ready-to-use models: Please recall from section 2.8

(p. 48) that ready-to-use models require as input only the intrinsic independent variables

upon which the delay depends: epoch, receiver position, and satellite direction. A prime

example are the UNB models [Leandro et al., 2006a].

In the present technique (4), the delay effects on GPS estimates are due to the discrep-

ancy between predicted and actual delay. It is important to recognize that (4) will never

be as good a mitigation technique as (3) or (5). That is because (4) relies only on prior

observations, while (3) and (5) exploit observations (GPS or external) available exactly at

or near to the epoch and location at which one wishes to mitigate the delay.

Therefore (4) taps into the applications for which (3) and (5) are not possible or de-

sired [Schüler, 2006]. An example is during the ambiguity initialization time of systems

for real-time kinematic surveying. Another example are applications for which dm-level

accuracies suffice, such as navigation in general. Technique (4) is especially useful in

validating other mitigation techniques, since it is independent.

(5) Determining the delay with in situ external observations: This technique is a

type of prediction (section 2.3.1), as it does not rely on GPS observations. Yet it is dis-

tinct from technique (4), in that it relies on in situ observations. Examples are the use of

radiometers to measure sky brightness temperature, barometers to measure surface pres-

sure, and radiosondes to measure profiles of pressure, temperature, and humidity. Such

observations are coupled to prior models that allow one to convert the measured quantities

to the delay (usually only components of the total delay).

The present technique (5) relies on additional equipment, sometimes costly and bulky.

That may not always be available nor desirable. Even in cases for which it applies, such

as permanent tracking stations, technique (5) is usually replaced by the inexpensive (3).
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(6) Interpolating the delay from values at nearby stations: This technique exploits

the availability of delay values at nearby locations, obtained through techniques (3) or (5).

We expect the error to be due to the interpolation itself plus errors in obtaining the original

values at nearby locations [Dai et al., 2003; Zhang and Lachapelle, 2001].

The present technique (6) is becoming increasingly more popular, as part of services

offered commercially by companies with networks of tracking stations for real-time kine-

matic surveying applications. The greater the distance between interpolation point and

nearby stations, the greater will be the interpolation error, therefore the denser the net-

work the better (6) will perform, obviously.

It must have become apparent that any mitigation technique is rarely employed alone.

A good example of the synergy among different techniques is that involving (3), (4), and

(5): only the non-hydrostatic portion of the delay is estimated through (3), the hydrostatic

component being part of the modeled counterpart to the observations (i.e., as a correction

to the computed geometric range between receiver and satellite), after being predicted

through (4) or determined through (5); furthermore, techniques (3) and (4) might provide

only zenith delays, in which case the slant delay requires a slant factor predicted through

technique (4).

Another general aspect regarding the classification above is that certain examples have

characteristics of multiple mitigation techniques. For example, at first sight a numerical

weather model (NWM) might be considered a ready-to-use prediction model, thus an in-

stance of technique (4) (predicting the delay with ready-to-use models). At closer look,

if the NWM assimilated observations collected nearby the location and epoch at which

delay predictions are sought, then the NWM might be considered an instance of technique

(5) (determination of delay using in situ observations). Finally, if the NWM has assim-

ilated GPS-estimated zenith delays, it might be considered as instance of technique (6)
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(interpolating the delay from nearby stations).

Based on the analysis above and also on expert advice, we selected precise point posi-

tioning to be later evaluated at experiments, because it is very vulnerable to the neutral

atmosphere delay.

80



Chapter 5

Experiments

Let us start by recalling the ray-path and atmospheric models presented in Chapter 3; their

diagram is repeated in Figure 5.1. In the present chapter, the above-mentioned models are

assessed in experiments. In the first experiment (section 5.1) we assess those models in

terms of slant delays. In the second and third experiments (section 5.2 and section 5.3) we

assess the same models in terms of their impact in GPS positioning, more specifically, in

terms of GPS precise point positioning (PPP), a decision based on discussion in Chapter 4.

The last two experiments differ between themselves by the way that the delay is mitigated

in PPP: following the classification introduced in section 2.3.1, in the second experiment

(section 5.2) the delay is only predicted; in the third one (section 5.3), it is estimated.
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Figure 5.1: Diagram of options available in ray-tracing.

5.1 Delay

There are numerous combinations of ray-path and atmospheric structure. Some combi-

nations, albeit different, are expected to give the same result. For example, the more

complicated combination of a bent-3d ray-path model and a spherical atmospheric struc-

ture (either concentric or osculating) shall give the same result as the simpler combination

of a bent-2d ray-path model and the same spherical atmospheric structure. In contrast, for

most other combinations, we do expect some discrepancy. Is the experiment reported in

the present section, we have quantified that discrepancy in integrated neutral atmosphere

delay due to different models for the ray-path and the atmosphere.

We make pair-wise comparisons between combinations that are equal in all but one

aspect; in such a way we can isolate the contribution of that single aspect. First we keep

82



Atm.
Structure

Spherical
concentric

Ray-path
model

Atm.
Source

Radio-

sondes

NW
M

Climatology 3dSpherical
osculating

GradientEllipsoidal

Bent-2d

Bent-3d

Straight-line

Zenith

Figure 5.2: Diagram of sequence of pair-wise comparisons.

the ray-path model fixed to the bent-2d case, and then we vary the atmospheric structure,

one step at a time. Once we have reached the most realistic atmospheric structure, we

keep it fixed and then we vary the ray-path model. Such a sequence is summarized in

Figure 5.2, where each arched arrow represents a pair-wise comparison.

The atmospheric source is always fixed to NWM; therefore we are not analyzing the

discrepancy between different atmospheric sources — say, a weather model and a clima-

tology. We used the Canadian regional weather model, which has a horizontal resolution

of 15km. We do expect the results to depend upon that resolution.

The delay discrepancies represent a snapshot, taken at a single epoch and location.

The exact epoch and location (indicated in Table 5.1) were chosen to correspond to a near

worst case scenario. That scenario is given by a category 4 hurricane, the 2004 Hurricane
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Charley; it was the strongest hurricane that we could find within the spatial and time

extents of the NWM archive that we were using. The rationale for that choice was the

understanding that, if we did not find significant discrepancies in such a scenario, then we

should not expect anything worse under typical conditions.

Table 5.1: Epoch and location of first experiment.
Epoch: August 14th, 2004, 12 h UTC

Latitude: +33◦49′ 01′′

Longitude: −76◦06′ 28′′

We show the delay discrepancies in the form of a skyplot (e.g., Figure 5.3) — north is

to the top, south is to the bottom, east to the right, and west to the left. Samples were taken

at directions regularly spaced in azimuth (every 45◦) and regularly spaced in 1/sin(ε) (at

90◦,14◦,8◦,6◦,4◦,3◦), which is approximately the way that the delay grows with elevation

angle ε (see, e.g., Figure 5.6, on p. 90). Please be aware that those skyplots do not cover

the entire sky, contrary to what they might suggest at first sight. They were intention-

ally distorted to emphasize the region near the horizon — if they were drawn to scale,

the chosen elevation angles would form only a thin band near the horizon. (Due to that

intentional distortion, the center of each skyplot is not exactly at zenith, only close to it.)

The discrepancy in each of the delay components (namely, hydrostatic, non-hydrostatic,

and geometric), in addition to the total, is shown separately in different skyplots. The sign

of the discrepancies is depicted in different hues (blue for negative and red for positive),

while the magnitude of the discrepancies is depicted both as the intensity of the color and

the radius of the balls at each sampled direction. Bear in mind that, even though we always

sample all 8× 6 = 48 directions, sometimes the sample at a particular direction happens

to be invisible in the skyplot because its value is too small, when depicted as balls of pro-

portional radius (see, e.g., E-W direction in Figure 5.3, or NE, SE, SW, NW directions in

Figure 5.10).
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Details about the ray-tracing procedure are given in Appendix I; results reported here

were obtained with a tolerance of 0.1mm.

The first comparison is between a spherical concentric and a spherical osculating at-

mosphere. The first thing to notice in the resulting discrepancy (Figure 5.3) is its large

magnitude, reaching meters and decimeters in the hydrostatic (Figure 5.3(a)) and non-

hydrostatic (Figure 5.3(b)) components, respectively. The second aspect is a clear trend,

in the north–south direction.

Figure 5.3 has important consequences with regard to azimuthal symmetry, i.e., whether

a given atmospheric model yields the same delay values at the same elevation angle but

different azimuths. At this point it should be apparent that at least one of the two spherical

atmospheres is not azimuthally symmetric. In other words, a spherical atmosphere does

not necessarily imply azimuthal symmetry. That is in contrast with the usage of those

two expressions in the literature — it is not uncommon to find them being used inter-

changeably. Having checked both individually (see next paragraph), we can assert that the

spherical osculating one is azimuthally symmetric, while the spherical concentric one is

not.

Let us make a quick digression to demonstrate the azimuthal symmetry in a spherical

osculating atmosphere. In Figures 5.4 and 5.5 we show, respectively, the spherical os-

culating delay itself and the discrepancy between the delay along each azimuth and the

delay along the north azimuth. In Figures 5.6 and 5.7 we inspect the total delay, the same

one shown in Figures 5.4(d) and 5.5(d), at this time in a more detailed view. We can

notice that the total delay itself is practically the same for the same elevation angle but

different azimuths (Figure 5.6). Furthermore, the discrepancy in total delay along each

azimuth with respect to the delay along the north azimuth (Figure 5.7) — a measure of the

azimuthal asymmetry in the spherical osculating atmosphere — is almost zero, and well
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Figure 5.3: Results of first comparison: spherical concentric minus spherical osculating.
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explained considering the tolerance set for the ray-tracing procedure, which was 0.1mm.1

Albeit negligible, the self-discrepancy in spherical osculating total delay is not random.

We interpret the patterns in azimuthal asymmetry exhibited by the computed spherical os-

culating atmosphere as mere numerical artifacts without physical meaning. Furthermore,

we specultatively attribute the cause of the patterns to the loss of floating-point precision

after the numerous coordinate transformations involved in ray-tracing. For example, no-

tice in Figure 5.7 (top panel) the discrepancy along the line of different azimuths at the

same 90◦ elevation angle: one could expect that line to be perfectly horizontal, because,

mathematically, the zenith direction is exactly the same for any azimuth; that mathematical

equivalence, though, is not necessarily valid in numerical computations performed at finite

precision, the reason why the delay at zenith is slightly different for different azimuths.

Returning to the first comparison, betweeen spherical concentric and spherical oscu-

lating, we attribute the magnitude and trend of the discrepancy shown in Figure 5.3 to the

tilting of the spherical concentric horizon with respect to the spherical osculating hori-

zon. Recall that the elevation angle ε is typically reckoned from the ellipsoidal horizon

(at least in GPS practice, that is always the case). On one hand, the horizon of the oscu-

lating sphere coincides with the ellipsoidal horizon at the base point. That coincidence of

horizons follows directly from the definition of osculating sphere, in which its radial direc-

tion is postulated coincident with the ellipsoidal normal direction. On the other hand, the

horizon of the concentric sphere in general does not coincide with the ellipsoidal horizon.

The two coincide only at the poles and along the equator; at such latitudes the ellipsoidal

normal and the geocentric radial direction coincide.

At this point we would like to put forth a peculiar conclusion regarding the adoption of

either concentric or osculating spherical atmospheres by authors of mapping functions. To

explain that conclusion, we have to recollect a few facts first. In the process of developing

10.1mm is the tolerance for a single ray-trace; the tolerance for the discrepancy between two ray-traces,
assuming them uncorrelated, is thence

√
(0.1mm)2 +(0.1mm)2 ≈ 0.14mm.
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Figure 5.4: Additional results of first comparison: spherical concentric delay (itself).
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Figure 5.5: Additional results of first comparison: spherical concentric delay (self-
discrepancy with respect to north azimuth).
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Figure 5.6: Additional results of first comparison: spherical concentric total delay (itself).

a mapping function, typically, the center of the spherical atmosphere is postulated to lie

along the direction from which zenith angles are reckoned; in other words, the radial di-

rection of such a spherical atmosphere is postulated to coincide with the zenith direction.

But the connection between that zenith direction and the real world is not made at the time

of development of a mapping function, only at the time of its usage. Let us give a few

examples. Figure 5.9 illustrates two different usage scenarios: in the first scenario a user

inputs to a mapping function a zenith angle z reckoned from the ellipsoidal normal (always

the case in GPS practice); in a second, distinct, scenario, the user inputs instead zenith an-

gles z′ reckoned from the geocentric radial direction. Each of the two scenarios leads to a

different orientation of the mapping function’s underlying spherical atmosphere: an oscu-
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Figure 5.7: Additional results of first comparison: spherical concentric total delay (self-
discrepancy with respect to north azimuth).

lating sphere in the first case, and a concentric sphere in the second case. The conclusion,

then, is: whether a particular mapping function’s underlying spherical atmosphere is con-

centric or osculating, that is dictated by the usage of that mapping function — regardless

of the author’s intention or awareness when developing it.

We offer the conclusion above as a way to reconciliate the following two facts. On one

hand, to the best of our knowledge, nowhere in the literature of mapping functions is made

the distinction between concentric and osculating spherical atmospheres.2 Furthermore, it

is not uncommon to find authors calling “geocentric” the zenith angles involved in their

2In contrast, this distinction is well-known in the literature of radio occultation, ever since the earlier
studies of Jupiter’s atmosphere from Pioneer spacecraft occultations in the mid-1970’s [Syndergaard, 1998].
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Figure 5.8: Horizons of each concentric (thick blue line) and osculating (thin red line)
spheres — base point is at ϕ = 45◦.

mapping functions (e.g., Mendes [1999, p. 274], Boehm and Schuh [2003, p. 141], Hul-

ley and Pavlis [2007, Fig. 1], Chen and Herring [1997, Fig. A1]), which we interpret as

an intention to employ a spherical concentric atmosphere (or a gradient atmosphere aug-

menting a spherical concentric one). On the other hand, typical results from GPS practice

(see sections 5.2 and 5.3) are not consistent with a mapping function based on a spherical

concentric atmosphere. Restating our conclusion: mapping functions used in GPS are typ-

ically of type spherical osculating, not spherical concentric — if not by design, by virtue

of their usage.

The next comparison is that between a spherical osculating atmosphere and an ellip-
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Figure 5.9: Radial directions of each concentric (thick blue lines) and osculating (thin red
lines) spheres — base point is at ϕ = 45◦.

soidal atmosphere. Their discrepancies, shown in Figure 5.10, have much smaller magni-

tude than in the previous comparison; in fact, it is negligibly small in all but the hydrostatic

component (Figure 5.10(a)). We also notice a clear trend in all components: it reaches its

maximum along the north–south direction, its minimum along the east–west direction, and

zero at the mid-directions.

We attribute that trend to the fact that, whereas the radius of the osculating sphere is

constant:

R =
√

MN,
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Figure 5.10: Results of second comparison: spherical osculating minus ellipsoidal.
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the radius of curvature of the ellipsoid varies with azimuth:

Rα =
(

cos2 α

M
+

sin2
α

N

)-1

.

More specifically, in Figure 5.11 we show that the ellipsoidal shell is inside the spherical

osculating shell along the north–south rhumb (R < Rα = M), but it is outside along the

east–west rhumb (R > Rα = N), and the two surfaces intersect in between.

However small is the magnitude of the azimuthal asymmetry exhibited by an ellip-

soidal atmosphere, the danger in neglecting it lies in the fact that it is a systematic effect.

Therefore it will not be canceled out by data randomization (e.g., processing numerous

days of GPS observations); rather, we expect it to persist thus biasing position estimates

in an inescapable way. Niell [1996] illustrates that danger:

. . . if a set of mapping functions has on average a positive bias, then the estimated positions
of the stations will be too far from the center of the earth, and a comparison of the reference
frame determined by that solution to one using the ‘correct’ mapping function will indicate a
scale factor greater than 1.0.

At the risk of being repetitive, let us stress that such a bias would be the spherical osculat-

ing atmosphere’s fault, not the ellipsoidal’s — i.e., the latter being more faithful to reality,

any discrepancy between the two is due to a deficiency in the former.

The next comparison is that between the ellipsoidal atmosphere and a gradient atmo-

sphere (Figure 5.12). Please recall from section 3.2.4 that we allow for one indepen-

dent horizontal gradient for each pressure, temperature, and humidity atmospheric field.

Consequently, the azimuthal asymmetry exhibited in terms of delay by a gradient atmo-

sphere may be more complex than a single main direction (e.g., SW–NE in Figure 5.12(a))

and may have different direction and magnitude in each delay component (contrast Fig-

ures 5.12(a) and 5.12(b)).

It is important to realize that the discrepancy shown in Figure 5.12 is not all of the

azimuthal asymmetry of a gradient atmosphere: it is only the contribution from a gen-
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(a) Frontal view.

(b) Side view (see Figure 3.3, on p. 61, for the corre-
sponding cross-section).

Figure 5.11: Constant radius of osculating sphere (transparent blue shell) vs. azimuth-
varying radius of ellipsoid (yellow opaque shell); base point is at ϕ = 45◦, λ = 45◦; arrows
represent axes of global Cartesian coordinate system (X ,Y,Z).
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Figure 5.12: Results of third comparison: ellipsoidal minus gradient.
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uine horizontal gradient acting locally in the atmosphere. To obtain the full azimuthal

asymmetry one must add the large-scale characteristics of the ellipsoidal atmosphere upon

which the gradient atmosphere is based. We show that in Figure 5.13 (contrast, e.g., Fig-

ures 5.12(a) and 5.13(a)).

Following the sequence summarized in Figure 5.2, the last comparison among the

comparisons of different atmospheric structures is that between the gradient atmosphere

and the 3d atmosphere (Figure 5.14). First we notice that the discrepancy (Figures 5.14(a)

to 5.14(d)) tends to be smallest along the main direction previously represented by the

gradient atmosphere (e.g., SW–NE in Figure 5.12(a)). That fact implies that the gradient

atmosphere does a good job modeling the main direction of azimuthal asymmetry present

in the 3d atmosphere. Nonetheless there remains non-negligible, secondary, directions of

azimuthal asymmetry present in the 3d atmosphere that the gradient atmosphere is simply

not able to capture.

The good agreement between gradient and 3d atmospheres along the main direction of

azimuthal asymmetry intriguingly fails at the south portion of the skyplot. I.e., notice how

the south portion is significant in the gradient atmosphere (Figure 5.12(a) and does not

cancel out in the discrepancy between gradient and 3d atmospheres (Figure 5.14(a)). That

might be an indication that a local gradient taken at the base point might not be representa-

tive of the conditions too far away from the base point — at such low elevation angles the

ray travels several hundred kilometers before exiting the neutral atmosphere (i.e., before it

reaches a height of roughly 80km, as per definition discussed in Appendix I.3.2, p. 166).

Finally, let us say that we expect the discrepancy between gradient and 3d atmospheres

to be strongly dependent on the resolution of the NWM. I.e., the lower the resolution is, the

smoother the representation of the atmosphere is, and the more similar a 3d atmospheric

model is to a gradient one.

Having finished the sequence of comparisons among different atmospheric structures,
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Figure 5.13: Additional results of third comparison: spherical osculating minus gradient.
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Figure 5.14: Results of fourth comparison: gradient minus 3d.
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now we keep the atmospheric structure fixed to the most realistic one (3d), and then we

compare the bent-3d and bent-2d ray-path models. What is most striking about their dis-

crepancy, shown in Figure 5.15, is the fact that the sum of the two along-path delays,

hydrostatic (Figure 5.15(a)) and non-hydrostatic (Figure 5.15(b)), has nearly the same

magnitude and opposite sign as the geometric delay (Figure 5.15(c)). As a consequence,

when we add them together to make up the total (Figure 5.15(d)), they nearly cancel each

other out.

But the discrepancy in total delay is not exactly zero. At first sight, Figure 5.15(d)

may seem completely random. Indeed, it is partially random, due to numerical noise,

because the discrepancy values are close to the tolerance set for the numerical integration

routine (namely, 0.1mm). But if we inspect it in detail (Figure 5.16), we realize that the

discrepancy in total delay is always positive, within the above tolerance. The discrepancy

(in the order bent-2d minus bent-3d) being always positive means that the total delay given

by the bent-2d ray-path model is always greater than the delay given by the bent-3d ray-

path model. Therefore the ray always travels faster with the bent-3d model, a model that

allows the ray to bend in whatever way the gradient of refraction directs, instead of forcing

the ray to be a plane curve, as the bent-2d model does. In yet another words, the bent-3d

model follows more closely Fermat’s least time principle, in a 3d atmosphere.

We conclude that the small magnitude of the discrepancies between bent-3d and bent-

2d ray-path models, shown in Figure 5.15, warrants the use of the simpler bent-2d ray-path

model instead of the more complicated bent-3d one, even if used in conjunction with a 3d

atmosphere that does contain horizontal gradients. As a caveat, that conclusion may not be

valid with a NWM of higher horizontal resolution than the one we were using (15km) and

for ray-tracing studies interested in products other than the delay (e.g., bending angle).
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Figure 5.15: Results of fifth comparison: bent-2d minus bent-3d.
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Figure 5.16: Additional results of fifth comparison: bent-2d minus bent-3d (total delay).

5.2 GPS positioning: delay mitigation via prediction only

Having concluded the first experiment (section 5.1), we wished to assess the performance

of the same delay models in GPS positioning. For this assessment, we designed two

experiments: a preliminary one, in which the delay is mitigated by predicting it only; and

a more thorough experiment, in which the delay is mitigated by estimating it.3 We shall

describe the preliminary experiment in the present section; the thorough one is described

in the next section.

We were specially interested in corroborating or refuting the hypothesis that the spher-

3We use the names “preliminary” and “thorough” to recall the fact that prediction is less accurate a
mitigation technique than estimation, as discussed in section 2.3.1 and section 4.2, p. 77.
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ical concentric atmosphere is a poor model; the discrepancies with respect to a more real-

istic spherical osculating atmosphere, obtained in section 5.1, were so large (metre-level)

that they should be evident in the GPS observation residuals. Contrarily, the difference

among some of the other models was so subtle that we did not expect it to be detectable in

this preliminary experiment. Therefore, we set aside the ellipsoidal and gradient models

and kept only the spherical concentric, spherical osculating, and 3d models.

All of the slant delay models above share the same zenith delay; they differ only in

the slant factor model. Therefore we may say that we are assessing different mapping

functions. As a reference for comparison, we included a state-of-art mapping function

(Boehm et al.’s [2006a] GMF), coupled with the same zenith delay model (NWM) used

in our mapping functions.

We wanted any mis-modeled delay to be reflected, as much as possible, directly in the

observation residuals; in other words, we wanted to prevent as much as possible extrane-

ous parameters from soaking up any mis-modeled delay. Therefore we did not estimate

receiver position (we kept it fixed to its IGS determination) nor zenith tropospheric delay;

we estimated only receiver clock error and satellite ambiguities. Ionospheric delay was

taken care of through the use of dual-frequency observations. Since the delay is the harder

to model the lower is the elevation angle, we lowered the cut-off elevation angle, from the

usual 10–15◦ to zero. That does not artificially exacerbate the impact of mis-modeled tro-

pospheric delay, because we weighted the observations’ standard deviation by the factor

1/sinε .

We selected an IGS station within the spatial extents of the NWM we were using, with

low multipath, and collecting data below 10 degrees of elevation angle: station ALGO,

located in Algonquin Park, Canada. We processed only one day of data at the sampling

interval of 15min; the date was chosen arbitrarily as July 28, 2007. The processing mode is

precise point positioning (as implemented in the GAPS software [Leandro et al., 2007]);
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the estimation procedure is carried out sequentially, epoch-by-epoch in a forward-only

filter; therefore observations at subsequent epochs are not exploited in the estimation of

current epoch’s parameters.

The final results are residuals binned by elevation angle; more specifically, their mean

and standard deviation per bin. We operated on carrier-phase residuals only, because

pseudo-range residuals are inherently too noisy for our purposes here. Before we show

final results, though, we would like to briefly describe how they were obtained, includ-

ing the important decision of whether to discard any data. We will illustrate intermediary

results for only one mapping function; rest assured that the final results include all map-

ping functions. We started with individual residuals for each satellite, at each epoch; Fig-

ure 5.17(a) shows the residuals versus time, while Figure 5.17(b) shows the same residuals

versus elevation angle. It is apparent the occurrence of larger residuals for setting satel-

lites, both as lines branching off in time (Figure 5.17(a)) and the fan-shaped tail at lower

elevation angles (Figure 5.17(b)).

Why we do not notice rising satellites, too, in the carrier-phase residuals? The answer,

in a nutshell, is because a satellite ambiguity is initially allowed by its a priori standard

deviation to soak up all of that satellite’s misclosure, leaving almost nothing of the mis-

closure to be left as residual. In equations: starting with `, x̃, Cx, and A (respectively,

the vector of observations, the vector of approximate parameters, the a priori covariance

matrix of the parameters, and the design matrix), then we define w = Ax̃− ` as the mis-

closure, part of which is absorbed by the estimated parameters x̂ = (ATA + C-1
x )-1ATw.

The rest of the misclosure w, unaccounted for by the estimated parameters x̂ (notice that

x̂ is not the same as x̃), is left over as estimated residual r̂ = −(Ax̂ + w). The ambigui-

ties a priori standard deviation is very large initially (i.e., at the beginning of the tracking

session or just after a satellite rises or a cycle slip occurs), but it gets smaller and smaller

as the session elapses and the estimated parameters decorrelate. The decorrelation occurs
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(a) Residuals vs. time (h).

(b) Residuals vs. elevation angle (degrees).

Figure 5.17: Raw residuals (spherical concentric atmosphere).
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due to the accumulation of additional observations (especially, observations collected in

different receiver–satellite directions) and also because of constraints applied to some of

the parameters.

For the statistics shown below, we decided to discard the residuals before ambigui-

ties have converged, as those residuals are unrealistically small. Ideally, we would have

adopted as a cut-off criterion the ambiguities’ standard deviation. As such an information

was not readily available, we adopted instead the following criterion: discard residuals

up to one hour after the occurrence of a zero-valued residual (which marks an ambigu-

ity start or reset). The period of one hour usually provides sufficient variation in the

receiver–satellite geometry for ambiguities to converge [Leandro, 2008]. Figures 5.18(a)

and 5.18(b) show, respectively, the number of residuals per elevation angle bin, before and

after the discard; most discarded residuals occur at lower elevation angles. The residuals

remaining after the discard are shown in Figures 5.19 to 5.21, for all mapping functions.

Figure 5.23 shows the main result of the present assessment, namely, the standard

deviation of residuals binned by elevation angle (each bin spans 10◦ in elevation angle),

as well as the limits
⌊
σ2⌋ < σ2 <

⌈
σ2⌉ of a 95% confidence interval for the standard

deviation of each bin, shown as error bars. The lower
⌊
σ2⌋ and upper

⌈
σ2⌉ limits are

computed according to:

⌊
σ

2⌋= s2
ν/P-1

χ2 (blc ,ν) , (5.1a)⌈
σ

2⌉= s2
ν/P-1

χ2 (dle ,ν) , (5.1b)

where σ2 is the unknown population variance (expected to be between the computed lim-

its), s2 is the sample variance, P-1
χ2() is the χ2 inverse cumulative distribution function,

ν is the degrees-of-freedom (ν = n− 2, where n is the number of residuals in a bin and

2 comes from the fact that we are estimating both the mean and variance from the sam-
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(a) Before discard (see text).

(b) After discard (see text).

Figure 5.18: Number of observations per bin.
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(a) vs. time (h).

(b) vs. elevation angle (degrees).

Figure 5.19: Remaining residuals after discard (spherical concentric atmosphere).
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(a) vs. time (h).

(b) vs. elevation angle (degrees).

Figure 5.20: Remaining residuals after discard (spherical osculating atmosphere).
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(a) vs. time (h).

(b) vs. elevation angle (degrees).

Figure 5.21: Remaining residuals after discard (3d atmosphere).
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(a) vs. time (h).

(b) vs. elevation angle (degrees).

Figure 5.22: Remaining residuals after discard (GMF).
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Figure 5.23: Standard deviation of residuals per bin, as well as their respective 95% con-
fidence interval (shown as error bars).

ple), and blc = s, dle = 1− s are, respectively, the lower and upper limits of a two-tailed

confidence interval with confidence level c = 95% and significance level s = (1− c)/2.

It stands out clearly in Figure 5.23 that the spherical concentric atmospheric model is

significantly worse than the other models. We interpret those results as strong evidence

that the Earth’s oblateness — from which the distinction between spherical osculating and

spherical concentric atmospheres originates — has a significant impact in mapping func-

tions. The distinction among the other models is not detectable in the present experiment;

that is certainly the case between our spherical osculating model and GMF, and to a lesser

extent also between those two and the 3d model — notice how their error bars greatly
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overlap. In section 5.3 we describe a more thorough attempt to detect the subtle difference

among those other models.

With that we end the main results for the present experiment. In the reminder of the

present section we discuss a secondary result for the present experiment. Even though we

do not expect that secondary result to provide further evidence of the distinction among

the mapping functions, we show it for completeness and also as a check on the experiment

as a whole. The secondary result is the mean of residuals binned by elevation angle, shown

in Figure 5.24, as well as the limits bµc < µ < dµe of a 95% confidence interval for the

mean of each bin, shown as error bars. The lower bµc and upper dµe limits are computed

according to:

bµc= x̄−
√

s2/nP-1
t (blc ,µ) (5.2a)

dµe= x̄+
√

s2/nP-1
t (dle ,µ) (5.2b)

where µ is the unknown population mean (expected to be between the computed limits),

x̄ is the sample mean, P-1
t () is Student’s inverse cumulative distribution function, and the

rest is as in eq. (5.1).

The first aspect to notice in Figure 5.24 is the non-zero value for the mean residuals at

most bins. At first sight, non-zero mean residuals might seem contrary to what is expected

for residuals — after all, the principle of least squares guarantees zero-mean residuals. At

closer look, though, we realize that the condition of zero-mean residuals applies only to

all residuals as a whole, not to subsets of them, like the subsets we form after binning

residuals by elevation angle.

Nonetheless, it remains intriguing the existence of an almost linear trend in the mean

residuals per bin shown in Figure 5.24; one might even suspect that such a trend is a con-

sequence of unaccounted for systematic error sources. In the reminder of this section, we
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Figure 5.24: Mean of residuals per bin, as well as their respective 95% confidence interval
(shown as error bars).

would like to explain how that trend can be replicated. We will be speaking of misclosures

and residuals, as defined on p. 105, as well as error, especially (tropospheric) slant delay

error, here defined as modeled slant delay (predicted or estimated) minus true or actual

slant delay (usually unknown).

Assume that the observations are affected by a slant delay error (i.e., a slant delay

unaccounted for by the prediction or estimation model). The slant delay error could be

either due to a zenith delay error or a slant factor error (or both, obviously); when we do

not estimate a zenith delay parameter, as in the present experiment, the zenith delay error

tends to dominate over the slant factor error; so we will consider only zenith delay errors

here. Let us further assume a typical zenith delay error of 1cm. The corresponding slant
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delay error, obtained by multiplying 1cm by the slant factor, is shown in Figure 5.25.

Comparing the mean residuals that we wish to replicate (Figure 5.24) with the assumed

slant delay error that we intend to serve as a replica (Figure 5.25), we notice the following

matches and mismatches:4 (i) the absolute value of both mean residuals and slant delay

errors increase with decreasing elevation angle; (ii) direction is reversed in the two plots:

slant delay errors “go up”, mean residuals “go down”; (iii) slant delay error has constant

sign, while mean residuals are both positive and negative (the zero crossing is near 55

degrees); (iv) trend in errors is 1/sinε; trend in mean residuals is close to linear between

90 and 30 degrees, then decreases more rapidly up until 20 degrees. Now let us see how we

can correct each of the mismatches above to obtain a better replica for the mean residuals

per bin.

The mismatch mentioned under (ii) is easily taken care of by reversing the sign of the

assumed zenith delay error (−1cm); see Figure 5.26: now slant delay errors “go down”,

just like the mean residuals (Figure 5.27) do.

Mismatch (iii) can be explained mainly by the estimation of receiver clock error: any

non-zero mean slant error across all satellites at the same epoch will be estimated as part

of receiver clock error, as discussed in section 4.1, p. 69. If we take the mean of the

slant delay errors (Figure 5.26), weighted by the number of observations per elevation bin

(Figure 5.18(b)), we obtain the value −2.08cm; the leaking of that mean slant delay error

into the receiver clock error pushes up the plot in Figure 5.26, bringing to zero the bin with

most observations. So now there are both negative and positive values in our replica, just

like in the original mean residuals per bin (Figure 5.27).

Mismatch (iii) can be further improved by considering the weighting applied to the

observations; the observations’ standard deviation was multiplied by the factor 1/sinε .

Computing the weighted mean of slant delay errors (weighted at this time by both the

4We ignore the two lowest elevation bins because their extremely large uncertainty disallow any mean-
ingful analysis.
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Figure 5.25: Slant delay error due to nominal zenith delay error (1cm).

Figure 5.26: Slant delay error due to nominal zenith delay error (−1cm).
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number of observations per bin (Figure 5.18(b)) and their standard deviation) we obtain the

value −1.31cm for the receiver clock error. That pushes up the plot in Figure 5.26 a little

differently, so that now the intersection between the zero line and the plot in Figure 5.28

matches better with that intersection in Figure 5.24.

Mismatch (iv) is more laborious to be accounted for. We take a number of measures

to make the replica more realistic: instead of assuming a nominal zenith delay error, we

take the zenith delay error as equal to the difference between its estimated value (obtained

from a separate GPS processing) and its predicted value (used in the present experiment)

— see Figure 5.29; instead of taking the slant factors at the mid-elevation angle per bin,

we take the slant factors at the exact elevation angle at which observations were made —

the resulting slant delay errors are shown in Figure 5.30; instead of estimating a single

clock error throughout the session, we will estimate a different clock error per epoch —

then we obtain the replica of individual residuals shown in Figure 5.31.

Figure 5.32 shows the final replica of mean residuals per bin, obtained from the replica

of individual residuals shown in Figure 5.31. Figure 5.32 is a good match for the origi-

nal Figure 5.24, especially considering that we have neglected all but one possible error

source: zenith delay error. The fact that we were able to explain the perhaps intriguing

trend in the secondary results (Figure 5.24), represents an extra assurance on the main

results (Figure 5.23) and on the present experiment as a whole.
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Figure 5.27: Replicated residuals (see text for details).

Figure 5.28: Replicated residuals (see text for details).
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Figure 5.29: Estimated and predicted zenith delay.

Figure 5.30: Slant delay error due to realistic zenith delay error.
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Figure 5.31: Replicated residuals (see text for details).

Figure 5.32: Replicated residuals (see text for details).
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5.3 GPS positioning: delay mitigation via estimation

In the experiment described in section 5.2 we have mitigated the delay only by predicting

it. In the present experiment we mitigate the delay mainly by estimating it. As discussed

in section 2.4, the latter is a superior mitigation technique (provided its requirements are

fulfilled, as discussed in section 4.2). That superiority is the reason why we called the

previous experiment preliminary and the present one “more thorough”.

We follow the delay separation motivated in section 2.5: we predict the large, well-

behaved component of delay (the hydrostatic one), both its zenith delay and slant factors;

as for the more variable component (non-hydrostatic), we predict only its slant factors and

estimate its zenith delay.

The prediction of zenith hydrostatic delay was performed using the UNB3m model

[Leandro et al., 2006a, 2008]. This models employs a look-up table, based on a low-

resolution climatology, to obtain the pressure value at the receiver position, which is then

input into Saastamoinen’s [1972] model (as revised by Davis [1986]), to obtain the cor-

responding zenith hydrostatic delay. The estimation of zenith non-hydrostatic delay was

modeled stochastically, letting that parameter free to vary from epoch to epoch, under a

prescribed arbitrary yet reasonable (based on practice) variance rate of (5mm)2 per hour.

The tacit assumption underlying the handling of zenith delays described above is that

the zenith hydrostatic delay is sufficiently well predicted so that the remaining zenith delay

is mostly non-hydrostatic; in the event of that assumption breaking down, the estimated

zenith delay parameter would represent all of the non-hydrostatic delay plus some of hy-

drostatic delay, corresponding to the error in the hydrostatic zenith delay prediction model;

that unwanted mixing of both components in a single parameter would lead to an error in

slant delay, due to the fact that one would be inconsistently multiplying a portion of the

hydrostatic delay with a non-hydrostatic mapping function [Tregoning and Herring, 2006].
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Another difference with the experiment described in section 5.2 is that, instead of

constraining the receiver position to its IGS solution, in the present experiment we estimate

it. In total, we estimate receiver clock, satellite ambiguities, receiver position, and zenith

non-hydrostatic delay. The estimation procedure is still carried out sequentially, epoch-

by-epoch in a forward-only filter. The receiver position solution that we take for analysis

is the one given at the end of the session, obtained after accumulating the entire session’s

data; hence we speak of static, instead of kinematic, positioning.

A few more processing details. We processed data collected at 30s sampling interval,

decimated to 15min (to reduce the processing load), over the course of a day (chosen

arbitrarily as July 28, 2007), at the IGS station ALGO (which is within the spatial extents

of the NWM we were using, suffers low multi-path, and logs data below 10 degrees of

elevation angle). Ionospheric delay was taken care of through the use of dual-frequency

observations, forming the so-called iono-delay-free combination. The cut-off elevation

angle was set to zero, and the observations’ standard deviation were weighted by the factor

1/sinε . The processing mode is precise point positioning (as implemented in the GAPS

software [Leandro et al., 2007]).

It is important to realize that, if on one hand the estimation of additional parameters

certainly yields a reduction in the observation residuals, on the other hand it might inad-

vertently result in biased parameter estimates. In other words, surely additional parameters

represent an additional opportunity for effects embedded in the misclosures to be absorbed

by parameters before being left over as residuals (see similar discussion on p. 105). But

the danger lies in that absorption taking place in extraneous parameters, unrelated to the

error source affecting the observations. For example, a genuine vertical displacement due

to ocean or atmospheric loading, if not corrected with prediction models nor allowed to be

reflected in the receiver position, will end up corrupting estimates of parameters correlated

with vertical position, such as zenith delay.
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To assess the impact of different mapping functions, instead of inspecting the residuals

as done in the previous experiment, we will be inspecting the estimated position and zenith

delay; more specifically, the bias in those estimated parameters. The definition of a bias

requires a benchmark or reference solution; ideally such a reference should be significantly

more accurate than any of the test solutions (against which it is being compared), so that

it is safe to attribute any discrepancy between the two to an error in the less accurate test

solution. We have strived to find such a reliable reference, but we have to admit that, at

the accuracy levels we are discussing in this experiment (from tenths to tens of mm), that

is no easy task.

The reference solution for the receiver position is the IGS weekly solution, which itself

is a combination of individual solutions submitted by several processing groups (more or

less independent — some share common stations and the same software in their solutions).

The IGS also offers a weekly cumulative solution, which is a combination of the (non-

cumulative) weekly solution with the long-term, historic solution. Why did we choose

the weekly solution, instead of the cumulative one? The reason lies in the well known

fact that estimated positions of IGS stations exhibit variations at, e.g., annual, seasonal

periods. The cumulative solution filters out most of that variation; the resulting stability

is highly desirable if the objective is the establishment of a reference frame. Yet if the

objective is to make a comparison with test solutions that are expected to be affected by

the same variations, we better choose a reference solution that intentionally includes those

same systematic variations. That was the rationale for our preference for the IGS (non-

cumulative) weekly solution.

We were unable to find a reliable external reference solution for the zenith delay. The

options considered were radiosondes and water vapor radiometers. Radiosondes have ex-

cellent vertical resolution, but poor temporal and horizontal resolution: they are launched

only every 12 hours, at scattered locations, hundreds of kilometers apart. Radiometers

124



have their own limitations, such as contamination due to liquid water (i.e,. they do not

work reliably when it rains) and noisy data. Surely one could try harder to get more reli-

able values from a radiometer, but much research has already been devoted to that topic

without definitive solutions — otherwise radiometers would be more widely used. Also,

in case we had opted for an external reference solution for the zenith delay, we would have

to deal with the fact that the estimated zenith delay, contrary to the predicted zenith delay,

is not meant to be equal to the slant delay in the zenith direction. Instead, the estimated

zenith delay is more correctly interpreted as a weighted average of the slant delays affect-

ing the observations collected [Wolfe and Gutman, 2000; Gutman et al., 2003b].5 Given

the lack of an external reference for the delay, we looked at the discrepancies among so-

lutions, without attributing that discrepancy to any one solution alone. Such a simpler

comparison still allows us to draw useful conclusions, as presented below.

We have included in the present experiment combinations of the bent-2d ray-path with

each of the atmospheric structures discussed in section 5.1, namely, spherical concentric,

spherical osculating, ellipsoidal, gradient, and 3d. Based on the theory laid down in Chap-

ter 3 and also on the results from prior experiments (sections 5.1 and 5.2), our expectation

was that the 3d mapping function would give the best results, and the spherical concentric

one the worst results; we also expected that the spherical concentric and the ellipsoidal

ones would be indistinguishable.

For comparison, we have also included the following mapping functions from other

authors: NMF [Niell, 1996], GMF [Boehm et al., 2006a], and VMF1 Site [Boehm et al.,

2006b]. All of the them, to the best of our knowledge, employ a bent-2d ray-path model

5Were the sky covered uniformly by satellites, that weighted average would comprise the portion of
the atmosphere contained in an inverted cone, having tip at the receiver and aperture given by the cut-
off elevation angle. In actuality, the weighted average is biased because the characteristics of the GPS
constellation yield a non-uniform sampling of the sky (e.g., northern hole in the sky of high latitude stations).
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and a spherical atmospheric structure6; their main difference, therefore, lies in the at-

mospheric source. NMF uses as atmospheric source the Supplements to U.S. Standard

Atmosphere; it is perhaps the most widely used mapping function, due to both its accu-

racy and convenience for not depending on actual surface atmospheric conditions7 GMF

is intended as an update to NMF, based on a more accurate atmospheric source: the state-

of-art global NWM developed at the European Centre for Medium-Range Weather Fore-

casts (ECMWF); to keep GMF as a convenient replacement for NMF and a backup for

VMF1 Site, its final temporal and spatial resolution is intentionally not as high as its at-

mospheric source would allow. Finally, VMF1 Site uses the same atmospheric source as

GMF (ECMWF), but at this time at full resolution; the final mapping function was devel-

oped specifically at a fixed set of pre-defined sites. Bear in mind that, although VMF1

Site and the mapping functions developed in this work employ state-of-art NWM at full

resolution, the NWM employed by VMF1 Site is a global one, whose resolution is not as

high as that of the regional NWM used in this work (15km).

Results from this experiment are summarized in Table 5.2 (position parameters) and

in Figure 5.33 (zenith delay parameter). Regarding the position results, the values in Ta-

ble 5.2 are discrepancies of the final estimated position (static positioning mode) with re-

spect to the reference position solution. As for the zenith delay, the values in Figure 5.33(a)

are the total zenith delay itself (the sum of the estimated non-hydrostatic and predicted hy-

drostatic components), while in Figure 5.33(b) we have the discrepancies of each solution

with respect to the 3d solution.

The first thing to notice in Table 5.2 is the very large bias in the north component

for the spherical concentric model. That is yet another manifestation of the tilting of the

6More specifically, a spherical osculating atmospheric structure, following our usage of those mapping
functions, in which we input elevation angles reckoned from the ellipsoidal horizon — see discussion on
p. 91.

7Using the terminology introduced in section 2.8, NMF is a ready-to-use mapping function, as it does
not depend on proxy variables.
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(a) Zenith delay itself (non-hydrostatic estimated portion plus hydrostatic predicted portion).

(b) Discrepancy in zenith non-hydrostatic delay with respect to that estimated using 3d model.

Figure 5.33: Zenith delay.
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Table 5.2: Bias in static position estimates using various mapping functions.
Model North (mm) East (mm) Up (mm)

NMF (10◦) 2.2 -3.0 21.7
NMF 2.4 -2.3 17.5
GMF 2.4 -2.3 18.1

VMF1 Site 2.4 -2.3 18.2
spherical osculating 2.5 -1.9 2.5

ellipsoidal 2.5 -1.9 2.5
gradient -0.1 -1.3 4.3

3d 0.3 -0.5 4.9
spherical concentric 33.0 -1.6 -3.0

spherical concentric horizon with respect to the ellipsoidal horizon (from which elevation

angles are reckoned). We have already seen its nasty consequences in terms of slant delays

in section 5.1 (metre-level discrepancies) and in terms of GPS observation residuals in

section 5.2. The east component is not as badly affected, which is expected according to

the way that the spherical concentric horizon is tilted: the east–west direction acts as an

axis of rotation for the tilting along the north–south direction (see Figures 5.8 and 5.9 on

p. 92 and 93). The up component is surprisingly not as bad as one might expect, which

might seem highly suspicious at first sight. At closer look, though, we have to recall

the vulnerability inherent in any estimation of correlated parameters (section 4.1). I.e.,

even though the vertical position is not too bad, its correlated cousin, the zenith delay,

is severely biased: inspecting Figure 5.33(b), it is apparent that the zenith delay solution

from a spherical concentric atmosphere deviates significantly from any other solution.

A second result to highlight in Table 5.2 is that denoted as “NMF (10◦)”. It is a solution

processed with a cut-off elevation angle of 10◦, which is more usual than the one we have

adopted in all the other cases (zero degrees). Our intention with the inclusion of NMF (10◦)

is to demonstrate that our processing settings do not unrealistically deteriorate the results,

so as to, e.g., artificially exacerbate the difference among different mapping functions.

That is demonstrated by the fact that the results from NMF (zero degrees) are no worse
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than those from NMF (10◦).8

A third point to discuss is the likeness among results of NMF, GMF, and VMF1 Site,

both in positioning (Table 5.2) and zenith delay (Figure 5.33). We expected that at least

VMF1 Site would stand out from the other mapping functions, as it is generated specif-

ically for the receiver location analyzed. We speculate that the difference among these

models might clear up with sessions longer than the single day we have analyzed.

A fourth point shown in Table 5.2 is the improvement in the up component, by almost

one order of magnitude, of the spherical osculating model over NMF, GMF, and VMF1

Site. Accordingly, their respective zenith delay solutions have a consistent 1cm bias.

What difference between these two groups of mapping functions could explain the im-

provement found in the up component? Recalling from p. 125, both groups share the same

ray-path model (bent-2d) and atmospheric structure (spherical osculating); their main dif-

ference lies in the atmospheric source: even though both use a NWM, in this work we use

a regional, high-resolution NWM (15km horizontal resolution), while VMF1 Site uses

a global, mid-resolution NWM (ECMWF). Therefore we are tempted to conclude that

higher resolution NWM have the potential to offer significant improvements in mapping

functions. A definite conclusion would require an analysis involving longer periods and

more numerous stations; we strongly recommend further comparisons in that regard, as

future work.

A fifth point concerns the ellipsoidal model. Even though we expect it to be more

realistic than the spherical osculating one, the reality is that the smallness of the Earth’s

oblateness makes their difference insignificant, as shown in both Table 5.2 and Figure 5.33.

A more positive way of wording the same conclusion is saying that the spherical osculat-

ing case does an excellent job as a surrogate for the more rigorous ellipsoidal case, in the

8At hindsight, it also demonstrates that our slight misuse of NMF, GMF, and VMF1 — developed for
observations down to 3◦ in elevation angle, but employed here down to 0◦— has no impact, probably due to
lack of actual observations between 0 and 3◦.
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vicinity of a specific base point. Again, even though the short observation period in this

experiment prevents us from dismissing that possibility, we would be surprised if analyses

of longer periods revealed the ellipsoidal model significantly different than the spherical

osculating one. Of course, the ellipsoidal model might still be useful in planetary atmo-

spheres other than the Earth’s (e.g., Saturn’s flattening is 30 times that of the Earth).

A sixth remark is the improvement in horizontal position, from the spherical osculat-

ing model to the 3d one: the horizontal bias is reduced from the few-mm level to sub-mm

(Table 5.2). That is a very encouraging, although very preliminary, result about the bene-

fits of the most rigorous 3d atmospheric structure over the simpler, profile-based, spherical

osculating atmosphere, typically employed in mapping functions. Again, a definite con-

clusion would require an analysis involving longer periods and more numerous stations;

we strongly recommend further comparisons in that direction, as future work.

A seventh point concerns the lack of improvement in the vertical position, from the

spherical osculating model to the 3d one, expected to accompany the improvement found

in the horizontal position. That unexpected result made us cast a doubt over the reference

or benchmark solution, upon which all the biases shown in Table 5.2 are defined. That

doubt is reasonable because there remains an unaccounted for error source known to cause

variations in the vertical position at the few-mm level:9 that error source is atmospheric

and oceanic loading, which we now consider with some detail. The displacement caused

by loading of the Earth’s enveloping fluids upon the Earth’s crust has tidal and non-tidal

components. The tidal component, albeit larger than the non-tidal one, tends to average

out over the course of a day, as the greatest tidal frequencies are daily and twice-daily.

Between atmospheric and oceanic non-tidal loading, the former is greater. Therefore, for

our day-long observation session, we expect a bias mostly from non-tidal atmospheric

pressure loading [Tregoning and van Dam, 2005; Steigenberger et al., 2008]. Figure 5.34

9We expect that the current reference solution is still reliable for the comparisons in points first to sixth
above.
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shows the vertical displacement due to non-tidal atmospheric pressure loading, over the

course of the week of July 22–28, 2007 (recall that our reference solution is computed

with a week of data), at station ALGO.10 The peak-to-peak variation is 6.8mm; the cor-

responding correction would shift all solutions up or down with respect to the reference

solution, possibly decreasing and increasing what we now see as larger and smaller biases

in the test solutions. For example, if the true reference height is actually 6.8mm upwards

of where we have it currently, then the bias of the 3d solution would decrease, from the

current 4.9mm to a smaller value of −1.9mm; in contrast, the bias of the spherical os-

culating solution would increase, from the current 2.5mm to a greater value of −4.3mm

(greater in absolute value). Please note that we are not actually correcting our test solution

for loading; that would require great care in, e.g., defining the zero-loading epoch and also

accounting for the geocenter motion, as loading displacements are given with respect to

the center of mass of the entire Earth, solid plus fluids. What we are doing is suggesting

that a variation of this order of magnitude plays a role in explaining why the expected

best model (3d) does not show results with the smallest bias in the vertical position. For

the horizontal position, results are as expected: 3d model shows the smallest bias; not

coincidentally, loading does not affect horizontal positions as severely.

The eighth and last remark concerns the gradient atmosphere. As expected, its results

show biases with values in between those of spherical osculating and 3d atmospheres,

both in positioning (Table 5.2) and zenith delay (Figure 5.33). This is consistent with

the fact that the gradient atmosphere has intermediary complexity, between the single

profile-based atmospheres (of which the spherical osculating is an example), and the full

3d model. In other words, a gradient atmosphere — whose formulation is based on a pro-

file of horizontal gradients obtained at a particular base location and thereafter postulated

the same everywhere else — is better than neglecting horizontal gradients entirely, as the

10Provided by the Goddard VLBI group at http://gemini.gsfc.nasa.gov/aplo
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Figure 5.34: Vertical displacement due to non-tidal atmospheric pressure loading, over the
week July 22–28, 2007, at station ALGO.

single profile-based atmospheres do, and is worse than allowing for a possibly different

horizontal gradient at every position, as the 3d atmosphere does. It is important to stress

that the discrepancy between the gradient and 3d atmospheres is dependent upon the res-

olution of the 3d model, because the lower that resolution is, the smoother the 3d model

is, and the easier it is for a gradient atmosphere to act as a decent surrogate for the 3d

model. More work is needed to assess at a which resolution full 3d atmosphere starts to

be significantly better than simpler gradient atmospheres.

To sum up the conclusions from this experiment: spherical concentric is a poor model

(or, in other words, the Earth’s oblateness cannot be neglected); a spherical osculating

atmosphere accounts sufficiently well for the Earth’s oblateness; high-resolution NWM are

promising, even if only extracting a single profile from it; non-tidal atmospheric pressure
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loading should be accounted for; more research is needed to assess the benefits of full 3d

atmospheres over simpler profile-based atmospheres.
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Chapter 6

Conclusions

To close this work we summarize it, answering the following questions:

– What are the findings of the present work?

– What are the shortcomings of the present work?

– What remains to be learned?

– What are the fruits of the present work?

– How does this research fit in a wider context?

What are the findings of the present work? Following our working proposition (sec-

tion 1.1, p. 2), we learned that there is more than one reasonable way of performing ray-

tracing, sometimes with significantly different results.

On the theoretical side, we introduced the distinction among atmospheric source, at-

mospheric structure, and ray-path model. We reviewed the existing atmospheric sources,

namely, climatologies, radiosondes, and numerical weather models. We systematized the

full range of atmospheric structures and ray-path models, from simplest to most rigorous.

More specifically, we examined the atmospheric structures called spherical concentric,

spherical osculating, ellipsoidal, gradient, and 3d; and the ray-path models bent-3d, bent-

2d, straight-line, and zenith.

134



On the experimental side, we learned that the bent-2d ray-path model, albeit not strictly

valid in a 3d atmosphere, introduces only negligible errors, compared to the more rigor-

ous bent-3d ray-path model (in a 15-km horizontal resolution atmospheric model). After

completing the comparison of the two main ray-path models above, we turned to the atmo-

spheric structures: we learned that the oblateness of the Earth cannot be neglected when

it comes to predict the neutral atmosphere delay, as demonstrated by the poor results of

a spherical concentric atmosphere; we learned that the spherical osculating model is the

only one exhibiting azimuthal symmetry; we learned that the oblateness of the Earth is

adequately accounted for by a spherical osculating model, as demonstrated by the small

discrepancy between a spherical osculating and a more rigorous ellipsoidal model; we

learned that a gradient atmosphere helps in accounting for the main trend in azimuthal

asymmetry exhibited by a 3d atmosphere, but there remains secondary directions of az-

imuthal asymmetry that only a full 3d atmosphere is able to capture; furthermore, we

found experimental evidence confirming the theoretical expectation that gradient and es-

pecially 3d atmospheric structures offer promising benefits for GPS positioning. Finally,

beyond the comparison of atmospheric structures above, an interesting side conclusion re-

garding atmospheric sources was that atmospheric models of higher resolution might offer

significant improvements in mapping functions.

Concerning the GPS technique itself, we offered a classification of the numerous ways

in which the neutral atmosphere delay can be mitigated, which helped us in designing the

GPS experiments in this work; we also recalled the importance of non-tidal atmospheric

pressure loading when analyzing vertical position GPS solutions at the few-mm level.

What are the shortcomings of the present work? The main shortcoming in the present

work is the somewhat small session duration and small number of stations involved in the

assessment. Surely one can never prove a hypothesis right, but an analysis involving
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longer sessions and a greater number of stations would corroborate — or refute — the

conclusions offered here.

What remains to be learned? A major missing theme is the impact of atmospheric

models of increasingly higher resolutions — both spatial and temporal. On one hand, we

expect our conclusions about the validity of the bent-2d ray-path model in a 3d atmosphere

and also about the discrepancy between a gradient and 3d atmospheres to be strongly

dependent upon that resolution. On the other hand, we find higher resolution atmospheric

models promising, even if used following simpler atmospheric structures based on a single

vertical profile extracted from the full 3d NWM.

The missing theme above is in addition to the open problems identified in the back-

ground chapter but immediately put outside the scope of this work, namely, the represen-

tation of slant factors in a convenient form and the statistical exploitation of correlations

in the delay, across nearby stations and nearby satellite directions.

What are the fruits of the present work? This being an exploratory work, it was not

our intention to leave the reader with a practical product at hand. We will be satisfied

if the reader leaves this work with a greater awareness regarding the different ways of

performing ray-tracing, a more critical view about the shortcomings and potentials of the

technique, and a sense of scrutiny towards uses of ray-tracing in the literature. The take-

home message is: “There is more than one way of doing ray-tracing!”

How does this research fit in a wider context? Ever since the beginning of space

geodesy, in the aftermath of the space race fifty years ago, efforts have been put into

mitigating the effects of the neutral atmosphere in space geodetic measurements. Great

progress has been made over that period, to the point that atmospheric scientists nowadays

can rely on GPS for estimates of integrated water vapor on a routine basis. Which is not
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to say that the neutral atmosphere delay is a solved case in space geodesy. Into the future,

as the computation and communication machinery continues to improve, more abundant

space geodetic observations and higher resolution atmospheric models will become avail-

able. That availability, in its turn, will surely pose new challenges, because every time we

are able to improve upon the modeling of the current major error sources, a new level of

smaller yet more difficult error sources is unveiled. Whereas in astrometry it might be well

accepted that “To obtain higher accuracies, one must get rid of refraction completely by

observing from space [as opposed to observing from the Earth’s surface].” [Kovalevsky

and Seidelmann, 2004, p. 129], that option does not apply to geodesy and geophysics,

whose phenomena of interest lie under the atmosphere. Ultimately, whether the neutral

atmosphere delay will be a curse or a blessing for space geodetic techniques, that will be

measured by our own creativity in discovering opportunities for what otherwise would be

a nuisance.
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“The Truth is in the details.”
— (anonymous)
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Appendix I

Ray-tracing

In the present chapter we discuss the “nuts and bolts” of calculating the neutral atmosphere

propagation delay. We aim at providing enough detail so that the interested reader may

replicate the results presented throughout this work.

I.1 Delay formulation

The total delay can be formulated in two mathematically equivalent ways: eqs. (2.10)

and (2.11). That mathematical equivalence does not necessarily carry over to the realm

of numerical calculations performed at finite precision, though. In the two subsections

that follow, we discuss the numerical calculation of the total delay according to each of

eqs. (2.10) and (2.11).
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I.1.1 Calculating the total delay as apparent ray-path length minus

geometric distance

Following section 2.2, the total delay is defined as eq. (2.10):

d =
∫

bent
ray-path

n(`) d`−
∫

straight
line

1 d`, (2.10)

Let’s see how to calculate each term in eq. (2.10).

The second term in eq. (2.10) is much easier to calculate than the first one, because

(i) it is an integral whose integrand is unity and (ii) its entire integration path is known

beforehand; therefore the integral simplifies to the difference in its limits:

∫
straight

line

1 d` = `max,sl− `min,sl. (I.1)

If we arbitrarily set the lower limit as zero:

`min,sl ≡ 0, (I.2)

then the upper limit becomes, very conveniently, the straight-line distance between re-

ceiver and satellite, which (assuming that the bent ray-path does contain both receiver and

satellite) can be readily calculated as:

`max,sl =
∣∣∣rrrinertial

sat (ttrans)−rrrinertial
rec (trec)

∣∣∣ , (I.3)

where rrrinertial
rec and rrrinertial

sat are the position vectors of receiver and satellite, respectively.

Two notes need to be put in place regarding eq. (I.3). The first one is that, even under

Newtonian physics, the model of the ray-path in vacuum as a straight-line requires that
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the position vectors be expressed in an inertial reference frame. That is opposed to com-

mon practice in GPS, in which one employs a non-inertial — Earth-centered, Earth-fixed

(i.e., co-rotating) — frame. Here we assume that a suitable coordinate transformation was

performed.1 Otherwise, e.g., the straight-line ray-path would become a spiral when repre-

sented in a rotating reference frame. The second note concerns the fact that the receiver’s

and satellite’s positions are to be taken at different epochs, ttrans 6= trec. More specifically,

the satellite’s position is to be taken at the signal’s transmission epoch ttrans, which is ob-

viously earlier than the receiver’s reception epoch, trec. The bulk of the propagation time

trec−ttrans is due simply to the physical distance between satellite and receiver, and also, to

a minor extent, due to numerous atmospheric and electric delays and advances. However

small might be the propagation time, it is more than enough for the orbiting satellite to dis-

place significantly. In what follows, we assume that the two notes above have been either

properly taken care of whenever relevant or that the need for them has been avoided other-

wise (see Appendix I.1.2). Therefore we may unclutter the notation in eq. (I.3) rewriting

it as:

`max,sl = |rrrsat−rrrrec| . (I.4)

Going back to eq. (2.10), its first term is much harder to calculate than the second one,

because of primary and secondary difficulties. The primary difficulty is that the integrand

in the first term, n(`) is unknown beforehand; in other words, we make no assumption

about the variation of the index of refraction n over the along-path distance (other than

the assumption that n(`) is continuous). Therefore, that integral cannot be simplified to

a closed-form expression and requires numerical methods to be evaluated. A secondary

difficulty, different yet closely related to the primary one, is the fact that the path over

which the integral is to be evaluated is generally unknown beforehand. In other words, in

1Considering the magnitude of the velocities and masses involved, the transformation is more rigorously
obtained according to the theory of general relativity [McCarthy and Petit, 2004, Chapter 10].
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general we do not know the position rrr (`) of a point along the ray-path at a given distance

`; in its turn, that position rrr (`) is required before we can obtain the refractivity n at the

given distance `. That difficulty will require numerical methods to solve the differential

equations describing the ray evolution, subject to specified boundary conditions. In Ap-

pendices I.2 and I.3 we discuss, respectively, how to overcome the primary and secondary

difficulties related to the first term in eq. (2.10).

I.1.2 Calculating the total delay as along-path delay plus geometric

delay

Still following section 2.2, the same total delay eq. (2.10) can be formulated as eq. (2.11):

d = da +dg, (2.11)

where da is the along-path delay:

da = 10−6
∫

bent
ray-path

N(`) d`, (2.12)

and dg is the geometric delay:

dg =
∫

bent
ray-path

1 d`−
∫

straight
line

1 d`, (2.13)

There are similarities between eqs. (2.10) and (2.11). The along-path delay da suffers

the same difficulties as the first term in eq. (2.10), namely, the lack of prior knowledge

about the integrand variation and about the integration path; therefore da shares the same

remedies for those two difficulties, namely, numerical methods for integrals and for differ-
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ential equations. The geometric delay dg is similar to the second term in eq. (2.10), in the

sense that it is expressed in integrals whose integrands are unity; therefore, such integrals

can be simplified to the difference in their limits:

∫
straight

line

1 d` = `max,sl− `min,sl, (I.5)

∫
bent

ray-path

1 d` = `max,rp− `min,rp. (I.6)

Notice that the integral limits are different for different integration paths; in other words,

even if we set both lower limits to zero:

`min,sl ≡ 0,

`min,rp ≡ 0,

the upper limits will still be different, in general; in fact:

`max,rp ≥ `max,sl,

as discussed in section 2.2.2. Notice also that the path over which the first integral in

the geometric delay dg is evaluated is the actual, bent ray-path, more complicated than

the straight-line path over which the second integral in dg is evaluated. That does not

represent any additional effort, though, because we can readily reuse the same bent ray-

path previously obtained for use in the along-path delay da (see Appendix I.5.2).

There are also dissimilarities between eqs. (2.10) and (2.11). To discuss them, it helps

to realize that the actual, bent ray-path can be split up into two parts, each lying in the

atmosphere and in outer space. That splitting is possible and desirable because the Earth’s
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neutral atmosphere eventually vanishes for all practical purposes at a certain height, far

below the GPS satellites (not to mention far below the quasar sources employed in VLBI,

at practically infinite distances from the Earth). Therefore, with some care, we may avoid

having to explicitly integrate over the outer space portion of the ray-path.

Recall from section 2.1 that in outer space (near vacuum), the index of refraction is

virtually unity, n = 1, while refractivity is zero, N = 0. Consequently, while the apparent

ray-path length in eq. (2.10) includes a potentially very large part due to the outer space

portion of the ray-path, the along-path delay in eq. (2.11) intentionally neglects that part

(or, more correctly, leaves it to be taken care of by the geometric delay, as per the rear-

ranging of terms in eq. (2.11)). Such a rearranging brings significant benefits in terms

of the numerical calculations involved: if our ultimate interest is the delay, not the path

lengths upon which it is defined, then integrating the tiny delay is much more numerically

stable than it would be to integrate the huge path length. By numerical stability we mean

whether the integration algorithm is able to provide a sufficiently accurate approximate

solution, given a tolerance as stop criterion. Equation (2.10) also suffers from a secondary

numerical malady, namely, the loss of precision after subtracting two very large quantities,

which is also avoided in the along-path delay in eq. (2.11).

Now turning to the geometric delay dg, at first sight it might seem that it suffers from

the same loss of precision due to a subtraction, as eq. (2.10); at closer look, though, we

realize that in outer space both index of refraction and refractivity are uniform or, in other

words, their gradients are null. Consequently, the outer space portion of the bent ray-

path is a straight-line segment, which we may avoid having to calculate explicitly. The

subtraction in dg can involve, after reasonable assumptions, much smaller operands than

the ones involved in eq. (2.10), namely, only the portion of the bent ray-path not in outer

space and a suitable corresponding portion of the straight-line path; see Appendix I.5.2 for

details.
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Figure I.1: Along-path delay as the area under the curve of refractivity vs. along-path
distance.

I.2 Solver

In the present section we would like to discuss how the options available for ray-tracing

are used together in practice, as part of a general procedure for the computation of the

along-path delay. Let us start recalling that the along-path delay (eq. (2.12)) represents

the area under the curve of refractivity N versus along-path distance `, between upper and

lower limits, as shown in Figure I.1. The numerical integration routine therefore requires

as input (i) a function representing the integrand N(`) and (ii) the integration limits. Given

those inputs, the numerical integration routine would construct the curve by requesting to

the integrand function N(`) for samples of refractivity N at specific along-path distance

values `, i.e., Ni = N(`i). The sampling strategy is discussed in Appendix I.5.1. The choice

of integration limits is discussed in Appendix I.3.1. Below we would like to discuss how

the integrand function N(`) can be implemented.

The job of the integrand function N(`) is to provide a refractivity value N at an arbi-

trary along-path distance `. But N and ` are only the input and output — there are other
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Figure I.2: Diagram of steps in delay solver.

intermediary results involved, as shown in Figure I.2. Let us see how to go from ` to N,

but backwards (i.e., from output to input).

An individual refractivity value N is calculated from the respective atmospheric pa-

rameters pressure P, temperature T , and humidity q, corresponding to a common location.

The calculation is done according to the refractivity formulation introduced in section 2.1,

eq. (2.3). This step is depicted as arrow number 3 in Figure I.2.

The atmospheric parameters P,T,q at a particular location, in their turn, are provided

by the atmospheric model. Please note that we require the atmospheric model to be able

to provide atmospheric parameters at any reasonable location. If the atmospheric model is

made available as a discretization in profiles, tables, or grids, then to fulfil that requirement

we would interpolate among the nodes making up the discretization. If the atmospheric

model is made available in analytical form (e.g., as an expansion in volumetric spherical

harmonics), then one would simply evaluate those harmonics at the desired location. This

step is depicted as arrow number 2 in Figure I.2.
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Surely one could try to merge steps 3 and 2, pre-computing refractivity for the whole

atmospheric model and then interpolating directly refractivity instead of the underlying

atmospheric parameters upon which it depends; that would bring the benefit of a reduced

number of interpolations (one N or two Nh,Nnh, instead of three P,T,q); on the downside,

unless the discretization of the atmospheric model is sufficiently dense, it is more accurate

to interpolate separately in the underlying atmospheric parameters.

To interpolate in or evaluate the atmospheric model, we need the location at which

the atmospheric parameters are sought. Such a location must be expressed in the same

coordinate space in which the atmospheric model itself is provided. It is at this step that

the atmospheric structures, introduced in section 3.2, are implemented. Recall that if the

atmospheric structure is profile-based, then its coordinate space is simply a vertical coor-

dinate, different for spherical concentric (r), spherical osculating (r′), and ellipsoidal (h)

atmospheres; if the atmospheric structure is of the so-called gradient type, then its coor-

dinate space is expressed with a vertical coordinate h as well as with special coordinates

l,a describing the loxodrome joining the sought-after location and the vertical profile at

a base point; finally, if we make no assumption about the atmospheric structure, a case

which we call “3d”, then the location is expressed in whatever coordinate space that atmo-

spheric model is provided (e.g., a vertical coordinate h plus horizontal coordinates x,y in

a particular map projection). It is interesting to realize that, in spite of some atmospheric

structures being uni-variate (i.e., parametrized in terms of a single variable), all atmo-

spheric models are three-dimensional, in the sense that they are embed in a real-world

space. This step is depicted as arrow number 1b in Figure I.2.

The initial step is to convert from the along-path distance ` to a position in the real-

world, expressed in either geodetic coordinates ϕ,λ ,h or global Cartesian coordinates

X ,Y,Z. It is at this step that the ray-path models, introduced in section 3.1, are imple-

mented. The zenith and straight-line ray-path models are significantly simpler than the
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bent-2d or bent-3d models, because they reveal us the entire ray-path beforehand. In con-

trast, in the bent models, to know the path, we must proceed step-by-step or iteratively.

This step is depicted as arrow number 1a in Figure I.2.

It helps to distinguish among the three different coordinate spaces involved in ray-

tracing: the integration space (`), the real-world space ({ϕ,λ ,h} or {X ,Y,Z}), and the

atmospheric model space ({r},{r′},{h},{l,a,h}, or {x,y,h}). Surely one could try to

convert directly from the integration space to the atmospheric space; that seems sensible

at least for the popular combination of a zenith ray-path model with a spherical osculating

atmosphere structure, for which the direct conversion would be simply, e.g., r = r0 + `. In

general, though, it helps to convert to the intermediary real-world space first; that allows

us to freely combine any ray-path model with any other atmospheric structure. In fact,

each ray-path and atmospheric structure implementation need not be aware of the details

in any other — all they need to work together is to honour a set of input and output values.

I.3 Bent ray-path

I.3.1 Integration limits and orientation

Whereas in reality the ray travels from the transmitting satellite to the receiver, we adopt

a reversed orientation for the ray-path, i.e., from receiver to satellite. That reversal is

permitted because the neutral atmosphere is passive to the microwave radiation employed

in GPS; otherwise, the atmosphere would possibly change due to the radiation’s energy.

That reversal is desired mainly for two reasons, which we now discuss.

In Appendix I.1.2 we have seen that it is beneficial to integrate only the portion of the

ray-path not in outer space. If we set the integration lower limit to the receiver, then it does

not matter much where exactly we set the integration upper limit, because a change of up

to a few km in the location of the interface between neutral atmosphere and outer space
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will not affect the integrated along-path delay at all, as refractivity N is certainly already

sufficiently close to zero at such heights. In contrast, if we do not reverse the integration

limits, then the value for the integration upper limit becomes important: it must correspond

exactly to the receiver position, and that value is very hard to know beforehand, at least on

a bent ray-path.

In Appendix I.3.2 we will see that most of the bending happens close to the receiver,

near the ground, and that the bent ray-path naturally converges to a straight-line aloft.

Therefore it is easier to reach the satellite starting from the receiver than the other way

around. Furthermore, the consequence of missing the satellite by 1km yields a much

smaller discrepancy in delay than if we miss the receiver by the same 1km; that is simply

because the satellite lies in outer space (near) vacuum, whereas close to the receiver, near

the ground, the gradient of the atmospheric parameters is strongest.

By the reasons stated above, we will set the integration lower limit to zero, correspond-

ing to the receiver position, and the integration upper limit to the approximate distance at

which the ray pierces through a nominal interface between neutral atmosphere and outer

space, which we define more precisely in the next section.

I.3.2 Notable points and directions

In Figure I.3 we see (i) the origin of the global Cartesian coordinate system (close to the

Earth’s center, roughly speaking); (ii) the receiver and its position vector, rrrrec; (iii) the

satellite and its position vector, rrrsat; (iv) the direction from receiver to satellite, ∆rrrsat ≡

rrrsat−rrrrec. The direction ∆rrrsat is expressed in global Cartesian coordinates; upon a suitable

rotation in the coordinate system, the same direction can be expressed in local Cartesian

coordinates (north, east, up), which we can convert from Cartesian to polar coordinates to

obtain the elevation angle, azimuth, and distance to the satellite, as seen from the receiver.

The bent ray-path model introduces a few more notable points and directions, shown

165



Figure I.3: Receiver–satellite geometry.

respectively in Figures I.4 and I.5. In those figures we see a sample bent ray-path reaching

the receiver. Following Appendix I.3.1, we adopt the reversed orientation for the ray-path,

i.e., from receiver to satellite, instead of the other way around, as it happens in reality.

Notice that most of the bending occurs close to the receiver, because near the ground

the gradient of the atmospheric parameters is strongest (both the vertical and horizontal

components of the gradient), and that the bent ray approaches an asymptote as the ray

reaches less dense and smoother air parcels aloft.

It is convenient to define rrrexit, known as pierce point: it is the point along the bent

ray-path at which the ray exits the neutral atmosphere, corresponding to the along-path

distance `exit. To obtain `exit, we assume that the neutral atmosphere vanishes at an ap-

proximate height H,2 and that the ray-path is approximately a straight-line, and that the

2We follow the recommendation from Mendes [1999, p. 166–167], who found that “The contribution
of the [neutral] atmosphere above 75km can be ignored, even though we kept the 100km boundary as the
upper limit in our ray-trace computations.” As a middle ground, we adopted the value of H = 80km.
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Figure I.4: Notable positions in a bent ray-path.

solid Earth is approximately a sphere with radius R. The assumptions above simplify

considerably the calculations below; however gross these assumptions might seem, they

are harmless as per discussion in Appendix I.3.1. We calculate `exit applying the law of

cosines to the triangle with vertices at the origin of the global Cartesian coordinate system,

at the receiver rrrrec, and at the (unknown) approximate pierce point, as shown in Figure I.6

and formulated as:

(R+H)2 = R2 + `2
exit +−2R`exit cosθ , (I.7)

where the factor cosθ is known from:
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Figure I.5: Notable relative directions in a bent ray-path.

cosθ =
−rrrrec . ∆r̂̂r̂rsat

|rrrrec| |∆rrrsat|
. (I.8)

Finally, we solve the quadratic eq. (I.7) and pick the positive root for `exit. Please note

that such an approximate pierce point, given simply by rrrrec + `exit∆r̂̂r̂rsat, is different than

the rigorous point along the bent ray-path corresponding to the same distance `exit, rrrexit =

rrr0 +
∫ `exit

0 ŝ̂ŝs(`)d` (see eq. (I.15) on p. 174).

We also define the ray’s notable tangent directions ŝ̂ŝs, shown in Figure I.7. They are

distinct from the relative directions ∆rrr reckoned from the receiver, shown in Figure I.5.

The notable tangent directions are: ŝ̂ŝs0, the initial ray direction, also known as apparent

direction because it is the direction at which the satellite would be seen (if it were visible

and if the ray did); ŝ̂ŝsexit, the tangent direction at the pierce point; and ŝ̂ŝsmiss, the tangent

direction at the point of closest approach (point which is defined in the next paragraph

below). The angle arccos(ŝ̂ŝs0 . ŝ̂ŝsexit) is the so-called bending angle.

Notice that the tangent directions ŝ̂ŝsmiss = ŝ̂ŝsexit, i.e., beyond the pierce point rrrexit the
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Figure I.6: Definition of maximum along-path distance.
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Figure I.7: Notable tangent directions in a bent ray-path.

ray ceases to change direction. In other words: the portion of the bent ray-path beyond

the pierce point rrrexit — i.e., in outer space — is a straight-line segment. Notice further

that the ray does not necessarily reach the satellite. Therefore we define rrrmiss, the point

of closest approach between the bent ray-path and the satellite. The working definition

for rrrmiss is the orthogonal projection of the satellite position rrrsat onto the ray-path’s outer

space straight-line segment, segment which is defined as rrrexit + dŝ̂ŝsexit for any distance d.

The exact distance dmiss corresponding to the position rrrmiss can be calculated as dmiss ≡

(rrrsat−rrrexit) . ŝ̂ŝsexit, from which rrrmiss itself is calculated as rrrmiss ≡ rrrexit +dmissŝ̂ŝsexit.

At last, to help in calculating the geometric delay (Appendix I.5.2), we define rrrexit2,

the orthogonal projection of the pierce point rrrexit onto a straight-line passing through the

receiver and parallel to the ray-path’s outer space straight-line segment (not necessarily

parallel to the receiver–satelite direction, ∆rrrsat), segment which is defined as rrrrec + dŝ̂ŝsexit

for any distance d and represented as a dotted line in Figure I.5. The exact distance dexit2
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corresponding to the position rrrexit2 can be calculated as dexit2 ≡ (rrrexit− rrrrec) . ŝ̂ŝsexit, from

which rrrexit2 itself is calculated as rrrexit2 ≡ rrrrec +dexit2ŝ̂ŝsexit.

In the next section (Appendix I.3.3) we see how the notable points and directions above

are employed as boundary conditions for the ray evolution.

I.3.3 Boundary conditions

The differential equations for the bent-3d eq. (3.1) and bent-2d eq. (3.4) ray-path models

describe nothing but the evolution of the ray. A second, essential, ingredient for the actual

bent ray-path is a set of initial or, more generally, boundary conditions that the ray must

satisfy. Those conditions are readily expressed in terms of the notable points and directions

defined in Appendix I.3.2. Let us see a few examples of boundary conditions.

In the simplest case we would specify an initial position rrr0 and an initial tangent di-

rection ŝ̂ŝs0. The remaining notable points and directions cannot be specified as conditions

— they are determined by the ray’s evolution. Therefore when we set the ray’s initial

direction ŝ̂ŝs0 there is no guarantee that the ray will reach the satellite. Furthermore, in

the practice of GPS usually we do not know the satellite’s apparent direction, only the

satellite’s relative direction ∆r̂̂r̂rsat. The initial position would be set equal to the receiver

position, rrr0 = rrrrec. Although this simplest case of initial conditions might seem useless in

the practice of GPS (since there is no guarantee that the ray will reach the satellite), it is

useful in solving the more complicated case of boundary conditions.

In a more complicated case we would like to specify an initial position rrr0, again equal

to the receiver position rrrrec, and a final position, equal to the satellite position rrrsat. A final

position is ill-defined, though, because there is nothing stopping the ray from progressing

indefinitely, increasingly farther away. It is for this reason that in Appendix I.3.2 we have

introduced the point of closest approach, rrrmiss, which can always be defined precisely.

The second condition above gets therefore restated as requiring that the point of closest
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approach rrrmiss be equal to the satellite position rrrsat. An equivalent condition is requiring

that the point of closest approach’s relative direction ∆r̂̂r̂rmiss equal the satellite’s relative

direction ∆r̂̂r̂rsat. This boundary condition problem can be solved in terms of the initial

value problem above, finding among the numerous solutions for the initial value problem

(rrr0, ŝ̂ŝs0) the one solution that also satisfies the present boundary value problem (rrr0 and rrrmiss,

or rrr0 and ∆r̂̂r̂rmiss); see Appendix I.5.3.2.

We can simplify the rigorous case above under the assumption of a satellite or trans-

mitting source lying at a practically infinite distance, which is completely appropriate in

VLBI and a very good approximation in GPS. In such a case the definition of a point of

closest approach rrrmiss and respective relative direction ∆r̂̂r̂rmiss and tangent direction ŝ̂ŝsmiss

becomes unnecessary. Therefore, as boundary conditions, in addition to a start position

equal to the receiver position, rrr0 = rrrrec, it suffices to require that the exit tangent direc-

tion ŝ̂ŝsexit equals the satellite (or transmitting source) relative direction ∆r̂̂r̂rsat — the non-

overlapping yet parallel straight-lines (expressed as rrrexit + dŝ̂ŝsexit and rrrrec + d∆r̂̂r̂rsat for any

distance d) will eventually meet at an infinite distance, d = ∞. Under such a simplification,

we may call ŝ̂ŝsexit = ∆r̂̂r̂rsat the satellite’s geometric direction, in contrast with the satellite’s

apparent direction ŝ̂ŝs0 (in the general case, an unqualified “geometric direction” would be

ambiguous).3

3The difference between the relative directions to the point of closest approach ∆rrrmiss and to the exit
point ∆rrrexit — or, equivalently, between the corresponding elevation angles — has been recognized previ-
ously by at least the following authors. Marini [1972, p. 225] mentions en passant that “it has been assumed
that the satellite height is great enough to permit the upper limit [in the bending integral] to be extended to
infinity”. Yan [1996, section 5] gives an expression, function of the distance receiver–satellite, to correct for
that difference. Yan and Wang [1999, p. 610] quote some numerical values for that correction and conclude
that “This term might be considerable for satellites with heights of several hundred km or less that are to
be observed at lower elevation angles”. It seems, therefore, negligible in GPS. Indeed, Ifadis [2000, Tab. 3]
agrees that “for radio sources at GPS height or greater the difference [in delay] is less than 1cm at elevations
greater than 3◦.”
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I.3.4 Ray evolution

Now we finally discuss the evolution of the ray. The numerical details of each initial and

boundary value problems are discussed in Appendices I.5.3.1 and I.5.3.2. We recall once

again the Eikonal equation eq. (3.1):

d
d`

(
n

drrr
d`

)
= ∇∇∇n, (3.1)

which can be expanded as:
dn
d`

drrr
d`

+n
d2rrr
d`2 = ∇∇∇n. (I.9)

Here we define, based on the position vector rrr, the tangent vector ŝ̂ŝs:

ŝ̂ŝs≡ drrr
d`

, (I.10)

which is a unit vector (in other words, |drrr| = d`), and the curvature vector aaa (usually

denoted KKK):

aaa≡ dŝ̂ŝs
d`

=
d2rrr
d`2 . (I.11)

Isolating the curvature vector aaa in the expanded Eikonal eq. (I.9) we obtain:

aaa =
1
n

(
∇∇∇n− dn

d`
ŝ̂ŝs
)

. (I.12)

Equation (I.12) tells us that what makes the ray direction ŝ̂ŝs change (aaa 6= 000) is the compo-

nent of the gradient of refractivity ∇∇∇n perpendicular to the current ray direction [Kursinski

et al., 2000, eq. (9)]: notice that dn/d` = ∇∇∇n . ŝ̂ŝs is the directional derivative of refractiv-

ity along the ray, which is subtracted from the full gradient ∇∇∇n, thus leaving only the
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component of ∇∇∇n perpendicular to ŝ̂ŝs:

∇∇∇⊥ŝ̂ŝs n≡∇∇∇n−∇∇∇n . ŝ̂ŝs, (I.13)

with which we can rewrite eq. (I.12) compactly as:

aaa =
∇∇∇⊥ŝ̂ŝs n

n
. (I.14)

Given initial conditions rrr0, ŝ̂ŝs0, the ray position corresponding to any along-path dis-

tance ` is obtained as:

rrr(`) = rrr0 +
∫ `

0
ŝ̂ŝs(`)d`, (I.15)

where ŝ̂ŝs = sss/ |sss|, and sss is:

sss(`) = ŝ̂ŝs0 +
∫ `

0
aaa(`)d`, (I.16)

so

rrr(`) = rrr0 + `ŝ̂ŝs0 +
∫ `

0

∫ `

0
aaa(`)d`d`. (I.17)

What makes the integrals above specially difficult is the fact that the position rrr at a given

along-path distance ` depends on the curvature aaa up to `, but the curvature itself depends

on the position rrr; to get past this difficulty we need to proceed step-by-step or iteratively;

see details in Appendix I.5.3.

I.3.4.1 Special cases

In a propagating medium of uniform refractivity the gradient is null, ∇∇∇n = 000, thus the

curvature eq. (I.14) is null, aaa = 000, and the integrated tangent eq. (I.16) is always equal to

the initial direction, ŝ̂ŝs(`) = ŝ̂ŝs0, for any `; therefore, in a medium of uniform refractivity,

the ray-path is rigorously a straight-line.
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In a spherical osculating or ellipsoidal atmosphere, there is no bending for a ray di-

rected at zenith, because ∇∇∇⊥ŝ̂ŝs n = ∇∇∇Hn≡ 000, i.e., the component of the gradient perpendic-

ular to the ray direction (zenith) equals the horizontal component of the gradient, which is

postulated zero in such atmospheric structures. In contrast, in a gradient or 3d atmosphere,

there is a non-zero horizontal component that in principle may yield some bending; there-

fore the geometric delay may be non-zero at zenith under such atmospheric structures (and

a bent-3d ray-path model, of course). The bending at zenith is usually small, though.

In a spherical atmosphere, the ray-path is rigorously a plane curve; in other words, in

a spherical atmosphere, there is no out-of-plane bending. First we have to realize that in a

spherical atmosphere the gradient of refractivity points to the center of the sphere:

∇̂̂∇̂∇n =
∇∇∇n
|∇∇∇n|

=−r̂̂r̂r′ =− rrr′

|rrr′|
, (3.2)

To demonstrate that the ray-path is a plane curve, following Born and Wolf [1999, p. 130]

we demonstrate that (rrr×nŝ̂ŝs), which represents (a multiple of) the normal to plane spanned

by rrr and ŝ̂ŝs, is constant throughout the ray-path:

d
d`

(rrr×nŝ̂ŝs) =
drrr
d`
× ŝ̂ŝs+rrr× d(nŝ̂ŝs)

d`
; (I.18)

from the Eikonal eq. (3.1), d(nŝ̂ŝs)/d` = ∇∇∇n, which from eq. (3.2) equals ∇∇∇n = −|∇∇∇n| r̂̂r̂r′;

therefore:
d
d`

(rrr×nŝ̂ŝs) = ŝ̂ŝs× ŝ̂ŝs+rrr× (−|∇∇∇n| r̂̂r̂r) , (I.19)

which equals zero because the cross-product of a vector with (a multiple of) itself is a

zero vector. The derivative of a (rrr×nŝ̂ŝs) being zero implies such a quantity being constant,

which finishes the demonstration.
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Figure I.8: Diagram of options available in ray-tracing.

I.4 Cross-validation

The diagram of options available in ray-tracing, repeated in Figure I.8 for convenience,

shows that there are several different combinations of ray-path and atmospheric struc-

tures. In general we expect different combinations to give different results. In the present

section, we would like to explore the different combinations for which we expect the same

results. That redundancy is a terrific opportunity to validate more complicated combina-

tions against simpler ones.

The condition expected to be satisfied in such comparisons is usually equality in the

delay given by different combinations. Please note that the comparison conditions must be

evaluated considering the precision of the results. For example, if each of two delays was

integrated under an absolute tolerance of ε = 1mm, then their equality should be evaluated
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numerically as abs(d1−d2) < ε ′, where the tolerance ε ′ equals ε ′ =
√

2ε , assuming d1,d2

uncorrelated.

I.4.1 Cross-validating ray-path models

Table I.1 summarizes the comparisons among different ray-path models; they correspond

to horizontal lines in the diagram of options (Figure I.8), starting from the bottom and

advancing to the top. Now we take the time to briefly discuss each comparison.

a1 If the ray direction happens to be the zenith direction, then the more general straight-

line ray-path model should give the same result as the specialized zenith ray-path model,

as the zenith ray-path is a special case of the straight-line ray-path model. That is true for

any atmospheric structure and receiver location.

a2 In the zenith direction, the bent-2d ray-path degenerates into a straight-line; as dis-

cussed in Appendix I.3.4.1, that is because there is no component of the gradient of refrac-

tivity perpendicular to the zenith direction. That is true even when the bent-2d ray-path

model is used in conjunction with atmospheric structures which do allow for a non-zero

horizontal component in the gradient of refractivity; in this case, the magnitude of the hor-

izontal component will be mis-attributed by the bent-2d ray-path model as an increase in

the magnitude of the vertical component of the gradient, since the bent-2d ray-path model

assumes that the direction of the full gradient is always completely vertical.

a3 Even though ray bending obviously increases the geometric delay, it also decreases

even more the along-path delay; the net result is a decrease in total delay due to bending.

Therefore the total delay given by a bent-2d ray-path model should always be smaller than

that given by the straight-line ray-path (and equal at zenith).
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a4 The magnitude of the discrepancy in delay between bent-2d and straight-line ray-path

models should be the greater the lower the elevation angle is.

a5 Even though the bent-3d ray-path model allows for out-of-plane bending, if such a

ray-path model is used in conjunction with an atmospheric structure that postulates zero

horizontal gradients, then the results from the more complicated bent-3d should equal

those given by the simpler bent-2d ray-path model. That is the case for both spherical

atmospheric structures, but not for an ellipsoidal atmosphere (as the up direction does not

always coincide with the radial direction), nor in a gradient or 3d atmosphere (of course).

a6 For the same reasons as in comparison a4, the total delay given by a bent-3d ray-path

model should be smaller than or equal to the total delay given by a bent-2d ray-path model.

a7 This comparison tells us that we expect the same result when we make a correct

assumption about the direction of the gradient of refractivity, compared to obtaining ∇∇∇n

numerically, with no prior assumption; see Appendix I.5.3.4.

a8 The bent-2d ray-path should yield a plane curve. That property can be checked in

the following way. Starting with the position vector rrri of each point discretizing the bent

ray-path:

– obtain the relative directions with respect to the receiver rrr0:

∆rrri ≡ rrri−rrr0;

– obtain the orientation of the initial plane, spanned by the ray initial direction ŝ̂ŝs0,

the receiver position rrr0, and the center rrrc of the particular spherical atmospheric
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structure employed:4

p̂̂p̂p0 ≡ ŝ̂ŝs0× r̂̂r̂r′0;

where r̂̂r̂r′0 = rrr′0/
∣∣rrr′0∣∣ and rrr′0 = rrr0 +rrrc; p̂̂p̂p0 is the normal to the initial plane.

– finally, the out-of-plane component of ∆rrri is obtained as:

∆⊥ri ≡ ∆rrri . p̂̂p̂p0,

∆⊥ri is a scalar with units of length, which we expect to be zero.

I.4.2 Cross-validating atmospheric structure models

Table I.2 summarizes the comparisons among different atmospheric structures; they cor-

respond to vertical lines in the diagram of options (Figure I.8), starting from the left and

advancing to the right.

b1 At the poles and along the equator, the ellipsoidal normal coincides with the radial

direction, towards the origin of the coordinate system. Consequently, the osculating sphere

coincides with the concentric sphere.

b2 A spherical osculating atmosphere should give the same delay for different azimuths

but same elevation angle and receiver position. That is true for any ray-path model.

b3 The spherical osculating atmosphere is a perfect local approximation for the ellip-

soidal atmosphere. As long as the ray remains in the vicinity of the base point or point

of osculation, results from both atmospheric structures are expected to be the same. In

4rrrc = {X=0,Y=0,Z=0} for the concentric atmosphere; rrrc
XYZ←−−
ϕλh

(ϕ0,λ0,h =−R) for an osculating at-

mosphere.
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other words, the discrepancy between results from ellipsoidal and spherical osculating

atmospheres should be greater the lower the elevation angle is.

b4 This comparison is somewhat artificial: if we force to zero the horizontal gradient

employed in a gradient atmosphere, then we expect the more complicated gradient atmo-

sphere to give the same result as the simpler ellipsoidal atmosphere.

b5 Similar rationale as for comparison b3, only different atmospheric structures in-

volved.

I.5 Further numerical aspects

I.5.1 Along-path delay

Whereas the implementation of the integrand N(`) involved in the definition of along-path

delay da (eq. (2.12)):

da = 10−6
∫

bent
ray-path

N(`) d`, (2.12)

was discussed in Appendix I.2, a pending issue was how best to discretize the curve of

refractivity N versus along-path distance `.

Surely the value of the definite integral in eq. (2.12) and the path over which the same

integral is evaluated are just two slightly different aspects of the same, more fundamental,

differential equation problem. Nevertheless we still find it useful to tackle each of the

two problems one at a time. Therefore in the present section we assume that the ray-path

is known beforehand (even in the case of a bent ray-path, which we deal with in Ap-

pendix I.5.3). The quadrature problem, then, can be stated as follows: given an unknown

integrand N(`), integration limits `min, `max, and a tolerance for the resulting definite inte-
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gral, at which locations `i should we sample the integrand N, so as to fulfill the tolerance?

One could proceed as follows: sample N at arbitrary locations `i and calculate the

resulting definite integral; then densify the sampling and calculate an updated value for

the integral; finally, if the absolute discrepancy between the two integral values is smaller

than a prescribed tolerance, stop, otherwise, sample yet more.

The question, then, would be where to locate the samples. One simple approach would

be sampling N at at regularly spaced `; then densifying it simply dividing each segment

in two. Ideally, though, we would like to avoid two situations: (i) undersampling thus

missing relevant regions and (ii) oversampling thus wasting evaluations of the sometimes

computationally costly integrand function N(`).

The solution to this problem is under the name “adaptive quadrature”, more specifically

“global adaptive quadrature”. It is able to automatically find the sub-intervals `i < ` < ` j

that require denser or less dense samplings vis-à-vis the tolerance set for the integral;

furthermore, in contrast with “local adaptive quadrature”, the global one is able to choose

the next most relevant sub-interval that needs densification amongst all the current sub-

intervals within the original limits `min, `max (for example, near the ground vs. aloft). The

best implementation that we could find was that of Espelid [2007], which we have adopted

in this work; we refer to that publication for details.

I.5.2 Geometric delay

Recall that the geometric delay dg is defined (eq. (2.13)):

dg ≡ G−D, (2.13)
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where G is the geometric ray-path length:

G≡
∫

bent
ray-path

1 d`, (2.8)

and D is the geometric distance:

D≡
∫

straight
line

1 d`. (2.7)

In Appendix I.1.1 we discussed that it is helpful to split the actual, bent ray-path into two

parts, each lying in the atmosphere and in outer space. Therefore we split G as:

G = Gin +Gout, (I.20)

where each Gin,Gout are defined as (see Figure I.4, repeated here for convenience as Fig-

ure I.9):

Gin ≡
∫ rrrexit

rrrrec
bent

ray-path

1 d`, (I.21)

Gout ≡
∫ rrrmiss

rrrexit
bent

ray-path

1 d`; (I.22)

and calculated as:

Gin = `exit− `0 = `exit, (I.23)

Gout = |rrrmiss−rrrexit| . (I.24)
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Figure I.9: Notable positions in a bent ray-path.

In contrast, D is generally more easily calculated in its entirety:

D = |rrrmiss−rrrrec| . (I.25)

Under the assumption of a transmitting source at practically infinite distances, the geomet-

ric delay eq. (2.13) can be approximated as:

dg
D→∞−−−→ Gin−Din, (I.26)
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where Din = |rrrexit2−rrrrec|= (rrrexit−rrrrec) . ŝ̂ŝsexit, as discussed in Appendix I.3.2. Notice that

the operands involved in the subtraction in eq. (I.26) have much smaller magnitude than

the ones in the original eq. (2.13).

I.5.3 Bent ray-path

I.5.3.1 Initial value problem

Recalling, the initial value problem is that in which we are given an initial position rrr0,

corresponding to the receiver position, and an initial ray tangent direction ŝ̂ŝs0, hopefully

corresponding to a satellite’s apparent direction, and we are asked for the ray path until it

exits the neutral atmosphere. The bent ray-path will be discretized in several straight-line

segments; however crude such an approximation might seem, it can be made as accurate

as needed simply by decreasing the length of the each segment.

Before we discuss the method that we have employed, it is insightful to quickly review

a more basic method, which we call step-by-step. In the step-by-step method, one would

obtain refractivity n0 at the initial location; then, given an arbitrary step length ∆`, one

would obtain the next ray’s position as rrr1 = rrr0 +∆`ŝ̂ŝs0, at which location the refractivity n1

would be obtained. One would obtain the gradient of refractivity ∇∇∇n0–1 between locations

rrr0 and rrr1 (more about that in Appendix I.5.3.4), which would be used, together with n, to

calculate the (constant) curvature aaa0–1 along the same interval, which, finally, would be

used to update the direction vector, sss1 = ŝ̂ŝs0 +∆`aaa0–1. The updated direction ŝ̂ŝs1, in its turn,

would give the next position rrr2 = rrr1 + ∆`ŝ̂ŝs1, and the cycle would be repeated, until the

upper limit `max is reached or exceeded.

A more elaborate method would use information about the curvature aaa itself to find the

optimal step length ∆`; the so-called Runge-Kutta methods are a prime example; see an

example of use in ray-tracing in Thessin [2005].
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The method employed in this work is based on a perturbation of the straight-line ray-

path.5 Its rationale is that the straight-line ray-path is a model of sufficient accuracy for

most of the sky; therefore it seemed too cautious to proceed step-by-step when in fact the

ray-path did not deviate much from a straight-line. The second key aspect of the method is

that we alternate between using the original, rigorous, atmospheric model and a surrogate,

simplified, source, as given by a linear probe through the original atmospheric model.

That is beneficial because the interpolation in the original atmospheric model can be very

costly (computationally), a cost which we avoid using the linear surrogate; for example, if

the original model follows a 3d atmospheric structure, then it requires 3d interpolations,

more expensive than the linear interpolations required in the surrogate.

The procedure is as follows:

0. obtain the total delay d (along-path da + geometric dg) according to a straight-line

ray-path model. The use of a global adaptive quadrature routine will automatically

sample more densely where the refractivity field is less smooth. Collect and save

the (slant) profile of index of refraction n versus along-path distance `, as a dis-

cretization in terms of pairs {`i,ni}; keep as well the straight-line ray-path itself,

discretized as {rrri}.

1. update the total delay, according to a bent ray-path model, using the previous results

as a surrogate for the rigorous atmospheric model:

5We first came in contact with this idea in the article of Stam and Languénou [1996]; a detailed descrip-
tion can be found in the comprehensive book of Kravtsov [2005, section 2.9]. The form presented here is
less general but hopefuly more straightforward.
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(a) keep the latest previously determined delay, ray-path, and index of refraction:

dprev← d,

{rrrprev
i }← {rrri},

{nprev
i }← {ni};

(b) obtain the gradient of refractivity ∇∇∇nprev
i at each of the previously determined

positions rrrprev
i , as detailed in Appendix I.5.3.4;

(c) obtain a new ray-path {rrri}, based on ∇∇∇nprev
i , nprev

i , and `i, besides the initial

conditions rrr0 and ŝ̂ŝs0, employing eq. (I.17):

rrr(`) = rrr0 + `ŝ̂ŝs0 +
∫ `

0

∫ `

0
aaa(`)d`d`; (I.17)

(notice that the previous ray-path rrrprev
i is not used directly to obtain the new

one, rrri);

(d) obtain a new index of refraction ni, using the previous results as a first-order

probe into the rigorous atmospheric model:

ni = nprev
i +∇∇∇nprev

i
. (rrri−rrrprev

i );

(e) obtain a new along-path da and geometric delays dg, thus new total delay d,

according to Appendices I.5.1 and I.5.2;

(f) compare the current total delay d with the previous determination dprev: if

|d−dprev|< ε , for a user-prescribed tolerance ε (in meters), then stop;

2. update the total delay, according to a bent ray-path, using the rigorous atmospheric

model:
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(a) keep the latest previously determined delay dprev← d and ray-path {rrrprev
i } ←

{rrri};

(b) obtain a new index of refraction ni, interpolating in the original atmospheric

model, at each rrrprev
i ;

(c) obtain a new along-path delay da, thus new total delay d (the geometric delay

dg remains the same, because the ray-path {rrri} remains the same at this step);

(d) compare the current total delay d with the previous determination dprev: if

|d−dprev|< ε , for a user-prescribed tolerance ε (in meters), then stop.

3. return to step 1.

I.5.3.2 Boundary value problem

As discussed in Appendix I.3.3, given initial conditions, the boundary conditions cannot

be specified — they are a consequence of the atmospheric conditions along the ray-path.

In other words, given an initial position rrr0 and an initial direction ŝ̂ŝs0, both the relative

direction to the point of closest approach ∆r̂̂r̂rmiss and the tangent direction at the pierce

point ŝ̂ŝsexit cannot be specified. The way to honour such boundary conditions depends on

whether we wish to obtain the delay in a single satellite direction or in multiple satellite

directions, as reckoned from the same receiver location.

To honour the boundary conditions at a single direction, we employ the so-called

shooting method:

1. solve the initial value problem (Appendix I.5.3.1);

2. calculate the discrepancy between actual and desired values for the boundary con-

ditions;

3. if the discrepancy is smaller than tolerance, stop;
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4. correct the initial condition;

5. return to step 1.

Without loss of generality, let us be more specific, considering only the elevation angle ε

of the directions involved:

1. solve the initial value problem for an approximate initial or apparent elevation angle

ε0;

2. calculate the discrepancy between the elevation angle of the point of closest ap-

proach εmiss and the satellite’s elevation angle εsat: δε = εmiss− εsat; (under the

assumption of a transmitting source at practically infinite distances, we would cal-

culate instead the discrepancy between the elevation angle corresponding to the exit

tangent direction εexit and the satellite’s elevation angle εsat: δε = εexit− εsat);

3. if the discrepancy is smaller than the tolerance (δε < εε ), then stop;

4. correct the approximate initial elevation angle: ε0← ε0−δε ∂ε0/∂ε , where ∂ε0/∂ε

converts a change in the final elevation angle ε to a change in the initial elevation

angle ε0;

5. return to step 1.

In contrast, to honour the boundary conditions at multiple directions, we would solve

the initial value problem for several different initial or apparent directions, collecting both

the delay and the final direction resulting from each ray-trace. Then, the delay at any un-

sampled (final) direction would be obtained interpolating among the samples. Better yet,

one would fit a model to the samples (e.g., Marini’s [1972] for the variation with elevation

angle and Davis et al.’s [1993] for the variation with azimuth — see section 2.6.3), and

then obtain the delay at any unsampled direction evaluating the fitted model, followed by

an interpolation in the model residual delay (rather than interpolating in the delay itself).
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I.5.3.3 Tolerance for boundary conditions

We need not require that the boundary conditions are met exactly — it suffices that the

discrepancy between the approximate and desired solutions be negligible. Therefore we

set a tolerance for the boundary conditions. What would be the tolerance for the point

of closest approach, or for the exit tangent direction? To find that tolerance, we convert

the discrepancies in the boundary conditions to the corresponding discrepancies in the

resulting delay. The latter is more meaningful than the former; e.g., 1mm is a reasonable

tolerance for the delay, given the precision of GPS measurements, but would 1km be a

reasonable tolerance for the point of closest approach?

The desired conversion is easiest when the boundary conditions are specified in terms

of directions (∆r̂̂r̂r or ŝ̂ŝs) instead of positions (rrr), and these directions are expressed in local

polar coordinates (elevation angle ε and azimuth α) instead of global Cartesian coor-

dinates (X ,Y,Z) or local Cartesian coordinates (north x, east y, up z). Without loss of

generality, let us consider only the elevation angle ε . Given the discrepancy between the

exit elevation angle εexit and the satellite’s elevation angle εsat:6

δε = εexit− εsat, (I.27)

the corresponding discrepancy in delay is obtained as:

δd =
∂d
∂ε

δε. (I.28)

The question, then, is how to obtain the rate of change ∂d/∂ε .

6The elevation angles εexit and εsat are to be reckoned from the same ellipsoidal normal passing through
rrrrec. In other words, even though the directions ŝ̂ŝsexit and ∆r̂̂r̂rsat are shown in Figures I.7 and I.5 (on p. 170
and p. 168) at different positions (rrrexit and rrrsat, respectively), in actuality such direction vectors have no
base position defined. Upon conversion from global to local coordinates, both direction vectors must be
converted to the same local coordinate system, defined by the same ellipsoidal normal, if their discrepancy
is to have any meaning.
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An approximate rate of change can be obtained from two samples of delay at slightly

different elevation angles:
∂d
∂ε

u
d1−d2

ε1− ε2
. (I.29)

But that would require at least two ray-traces before we are able to decide if the approxi-

mation is good enough. We may employ, instead, a nominal rate of change:

∂d
∂ε

u−dz cosε/sin2
ε, (I.30)

where the units of ε are radians (otherwise, ∂d
∂ε
← ∂d

∂ε

π

180◦); eq. (I.30) follows from a nomi-

nal slant delay, d = dz/sinε . However crude the nominal rate above might seem, we found

it of sufficient accuracy because (i) it tends to super-estimate the converted error δd, which

is less harmful than sub-estimating it, and (ii) the raw discrepancy δε is always calculated

rigorously, regardless of the rate of change ∂d/∂ε (nominal or actual) employed. If we

end up having to iterate more than two times, we may replace the nominal rate of change

eq. (I.30) with the actual rate of change eq. (I.29).

I.5.3.4 Gradients and partial and directional derivatives

Here we discuss how to obtain the gradient of refractivity ∇∇∇n.

We can always obtain ∇∇∇n numerically, i.e., numerically evaluating the partial deriva-

tives involved in its definition:

∇∇∇n =
∂n
∂X

Î̂ÎI +
∂n
∂Y

Ĵ̂ĴJ +
∂n
∂Z

K̂̂K̂K, (I.31)

e.g.:
∂n(rrr)
∂X

u
n(rrr +δ Î̂ÎI)−n(rrr−δ Î̂ÎI)

2δ
. (I.32)

That is very costly, because the numerical derivative along each direction requires two in-
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terpolations, in a total of six interpolations for each point at which we require the gradient

∇∇∇n.

The general case above is valid in any atmospheric structure. It is the only solution

available in a 3d atmospheric structure, for which we make no assumption about the gra-

dient ∇∇∇n. But we can do better in other atmospheric structures, especially when we have

prior knowledge about the direction ∇̂̂∇̂∇n of the gradient ∇∇∇n. Given the assumed gradient

direction ∇̂̂∇̂∇n we can obtain the gradient magnitude |∇∇∇n| from the directional derivative

dn/d` as:

∇∇∇n . ŝ̂ŝs = dn/d`, (I.33)

|∇∇∇n|∇̂̂∇̂∇n . ŝ̂ŝs = dn/d`, (I.34)

|∇∇∇n|= dn/d`

∇̂̂∇̂∇n . ŝ̂ŝs
. (I.35)

In fact, when the direction of the gradient of refractivity is known beforehand (i.e., for

atmospheric structures other than 3d), a bent-3d ray-path model can be processed with no

greater computational cost (in terms of number of interpolations) than a bent-2d ray-path

model.

In a spherical atmosphere, the gradient of refractivity points to the center of the (oscu-

lating or concentric) sphere:7

∇̂̂∇̂∇n =−r̂̂r̂r′. (3.2)

In an ellipsoidal atmosphere, the direction of the gradient of refractivity is also known:

∇̂̂∇̂∇n =−k̂̂k̂k, (I.36)
7We implemented the bent-2d ray-path model fixing the direction of the gradient of refractivity accord-

ing to eq. (3.2) and integrating the 3d Eikonal eq. (3.1); that is is equivalent to evaluating the 2d differential
eq. (3.4) (closely related to Bouguer’s formula eq. (3.3) and to Snell’s law eq. (3.5)); in fact, eq. (3.4) is a
simplification of eq. (3.1) exactly when eq. (3.2) holds, as we demonstrated in Appendix I.3.4.1.
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where k̂̂k̂k is the local up direction, along the ellipsoidal normal.

The directional derivative dn/d` can be obtained numerically from the refractivity sam-

ples already needed to compute the definite integral involved in the definition of the along-

path delay (Appendix I.5.1). I.e., given pairs {`i,ni}, we can obtain dn/d` as:

dn
d`i

u
ni+1−ni−1

`i+1− `i−1
. (I.37)

With that we reduce the number of numerical derivatives from six to only one and we need

not to interpolate refractivity values at points other than {rrri}.

As for the gradient atmosphere, we do have some prior knowledge about it (sec-

tion 3.2.4). That can be shown expressing the gradient of refractivity in terms of local

Cartesian coordinates (x,y,z):

∇∇∇n = ∇∇∇
XYZn = J∇∇∇

xyzn, (I.38)

(where J is a suitable rotation matrix — see Appendix V), which, in its turn, is expressed

in terms of the directional derivatives in the local Cartesian coordinates:

∇∇∇
xyzn =

∂n
∂x

ı̂̂ı̂ı+
∂n
∂y

jjĵ̂̂ +
∂n
∂ z

k̂̂k̂k (I.39)

As per definition of gradient atmosphere, the derivatives in local coordinates are function

of height only. So, in principle, such a prior knowledge about the gradient of refractivity

is an advantage over the general case explained at the beginning of the present section. In

practice, though, the fact that we have defined the gradient atmosphere in terms of atmo-

spheric parameters (pressure, temperature, humidity) instead of refractivity itself, makes

the advantage above less attractive, in terms of reduction in the number of interpolations.
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Appendix II

Geopotential height

In the interest of keeping the discussion about atmospheric structures (section 3.2) to the

point, we have intentionally skipped a necessary topic, which we now cover. In atmo-

spheric models, the vertical coordinate is not a geometric quantity such as radius or height,

identified in section 3.2. For atmospheric scientists, it seems more natural to take pres-

sure as the independent vertical coordinate over which all other atmospheric parameters

vary. It is so much so that, e.g., typically a NWM is provided in layers of constant pres-

sure (the so-called isobars), and in the assimilation of radiosonde observations, pressure is

treated as a vertical coordinate, not as an observation itself. Fortunately there is a param-

eter bridging the gap between pressure and geometric heights: the so-called geopotential.

Geopotential or, more specifically, its derived geopotential height, is a very convenient

bridge, because it can be calculated independently based upon only atmospheric or only

geodetic quantities.

To define geopotential height we start defining increments in geopotential height, de-

noted dZ:

dZ ≡ gdz/gc, (II.1)

where dz is an increment in geometric height (e.g., as would be measured by a ruler), g
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is the actual gravity (function of position, mainly height), and gc is a nominal, constant,

value of gravity. If we integrate the increments in geopotential height dZ we obtain relative

geopotential height, denoted ∆Z:

∆Z ≡
∫ Z

Zref

dZ. (II.2)

To obtain absolute geopotential heights, denoted Z, we need to specify as well a datum:

Z ≡ Zref +
∫ h

href

dZ = Zref +∆Z. (II.3)

The datum comprises two parts: (i) the location of the reference surface from which rel-

ative heights ∆Z are reckoned (expressed in a precise, unambiguous way, such as the

ellipsoidal height of that surface, href), and (ii) the postulated value of absolute geopo-

tential height at that reference surface, Zref (which can be quite arbitrary and need not be

necessarily physically consistent with the definition of increments in geopotential height

dZ).

What makes geopotential height so convenient is that it can be obtained independently

with only atmospheric quantities or only geodetic quantities. That is extremely convenient

in the practice of ray-tracing, in which we are given an atmospheric model including

geopotential heights, and we wish to obtain the atmospheric parameters at an arbitrary

position inside the atmospheric model, given a position in the real world. Consequently,

as part of the delay solver (Appendix I.2), there is a hidden step (let us call it 1c in the

diagram of steps in the delay solver, Figure I.2, p. 162), in which we perform one further

coordinate conversion, before interpolating the atmospheric parameters.

What is the order of magnitude of possible errors in the relative heights ∆Z and in

the datum Zref,href? Figure II.1 shows a typical profile of (hydrostatic) refractivity versus

geopotential height, as well as profiles representing the two types of errors (greatly exag-
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Figure II.1: Distortion in a refractivity profile due to errors in the datum and in relative
geopotential heights.

gerated), as compared to the true profile. An error in relative height ∆Z implies that the

true profile is going to be stretched; an error in the datum Zref,href implies that the true

profile is going to be shifted.

What is the impact of those two types of errors in the delay? In other words, how much

area is lost or gained under the curve of refractivity versus along-path distance due to the

stretching and shift in the refractivity profile illustrated in Figure II.1? Without loss of

generality, let us consider the impact in zenith hydrostatic delay. Errors in relative height

∆Z have little impact (sub-mm), because the product of refractivity and relative height

error is always small. More specifically, Figure II.2 shows that near the ground (on the

left side of the figure), refractivity is largest but the relative height error is small; aloft
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Figure II.2: Refractivity versus error in relative geopotential height in a vertical profile.

(on the right side of the figure), relative height errors are larger (the exact value shown

in the figure is hypothetical), but refractivity is already very small anyway, following an

exponential decrease. Errors in the datum Zref,href, in contrast, have the potential to cause

much greater damage, roughly 3.5mm in zenith delay per 10m of error in the reference

height, for a receiver near the ground. Figure II.3 shows a nominal rate of change in the

zenith hydrostatic delay with respect to height, ∂dz/∂Z, along a profile; near the ground

the zenith delay varies much more rapidly than aloft. An error in the datum corresponds to

misplacing the receiver inside the atmospheric model, putting it a little higher or lower than

it should be. Such a positioning error will lead to an error in the interpolated atmospheric

parameters, especially pressure, because it decays exponentially with height.

In Appendices II.1 and II.2 we discuss relative geopotential heights from the perspec-
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Figure II.3: Nominal rate of change of zenith hydrostatic delay with respect to height,
along a vertical profile.

tive of atmospheric sciences and geodesy, respectively. Then, in Appendix II.3, we discuss

the datum Zref,href necessary to define absolute geopotential heights Z. In Appendix II.3

we also give practical details about how the conversion to geopotential heights was per-

formed in this work.1,2

1Please notice that in this work we have no need for a conversion from geopotential heights; following
the diagram of steps in the delay solver (Figure I.2, p. 162), we obtain the geopotential height Z only to obtain
the atmospheric parameters P,T,q only to obtain the refractivity N, which is finally kept — the remaining,
intermediary, quantities are usually discarded.

2A few words about previous related work. COESA [1962, section I.2.3–I.2.4] contains an excellent,
self-contained discussion about geopotential heights (which is much too shortened in the newer COESA
[1976]). List [1951, section IV] describes a particularly successful geopotential model, due to Lambert
[1949], that allows one to retain a simple inverse-square relation to account for both the height-decreasing
gravitation and the height-increasing centrifugal potential, through the introduction of a fictitious radius.
Ge [2006, Appendix A] compares several simplified formulations for the geopotential. Vedel [2000] was,
to the best of our knowledge, the first to recognize the need for a datum to define unambiguous absolute
geopotential heights, which we seek to clarify and generalize in here.
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II.1 Increments in geopotential height in atmospheric sci-

ences

In atmospheric sciences, the equation:

gdz =−dP
ρ

(II.4)

models the so-called hydrostatic equilibrium: a parcel of air is held static by the balance

of its downward weight and the upward pressure of the underlying atmosphere (neglecting

the presence of other vertical forces acting upon the parcel, as might happen during, e.g.,

a hurricane); dP is an increment in pressure, ρ is density of the mixed, humid air, dz 6= dZ

is an increment in geometric height, and g is actual gravity.

We may expand the density ρ based on the gas state equation for mixed humid air:

P = ρRdTv, (II.5)

where Rd is the gas constant for dry gases, and Tv is virtual temperature.3 Replacing the

density ρ (eq. (II.5)) in the hydrostatic equilibrium equation (eq. (II.4)) we obtain:

gdz =− dP
P/(RdTv)

; (II.6)

now making use of the well-known definition of natural logarithm from calculus, d lnP≡

dP/P, we obtain:

gdz =−dln(P)RdTv. (II.7)

3“. . . rather than use a gas constant for moist air, the exact value of which would depend on the amount
of water vapor in the air (which varies considerably), it is convenient to retain the gas constant for dry air
and use a fictitious temperature (called virtual temperature) in the ideal gas equation.” [Wallace and Hobbs,
2006, p. 66].
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The definition of geopotential height is particularly useful for obtaining the pressure

P above or below a given point where pressure P0 is known, because it allows us to sim-

plify (under certain assumptions) an integral to a closed-form expression. Integrating an

increment of natural logarithm of pressure d lnP:

∫ lnP

lnP0

dlnP = lnP− lnP0 = ln
P
P0

(II.8)

and also: ∫ lnP

lnP0

dlnP =
∫ z

z0

−g/(RdTv)dz, (II.9)

Combining the two equations above we obtain:

P = P0 exp
(
−
∫ z

z0

g/(RdTv)dz
)

, (II.10)

where the actual gravity g varies with geometric height z. From the definition of an incre-

ment in geopotential height (eq. (II.1)), we can replace dz by gc dZ/g:

P = P0 exp
(
−gc

∫ Z

Zref

(RdTv)
-1 dZ

)
. (II.11)

where the constant gc can be taken out of the integral, a fact from which derives all the

convenience in the definition of increments in geopotential heights (eq. (II.1)).

The last equation can be simplified to a closed-form expression based upon assump-

tions for the variation of virtual temperature (which itself is function of actual temperature

and humidity) over geopotential height (not over geometric height), β ≡ dTv/dZ, the so-

called (virtual temperature) lapse-rate; if we assume Tv = const., then:

P = P0 exp
(
−gc(Z−Zref)/(RdTv)

)
; (II.12)
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if β = const. 6= 0, then:

P = P0

(
Tv,0 +β (Z−Zref)

Tv,0

)
∧
(
− gc

Rdβ

)
, (II.13)

where the symbol ∧ denotes the power operation.

Such simplifications would not be possible had we not got rid of the height-dependent

actual gravity g. The best that we could achieve without the introduction of increments

in geopotential height dZ, based upon assumptions for the variation of virtual temperature

over geometric height (not geopotential height), β ′ ≡ dTv/dz 6= β = dTv/dZ, would be the

following: if we assume Tv = const., then:

P = P0 exp
(
−gm(z− zref)/(RdTv)

)
; (II.14)

if β ′ = const. 6= 0, then:

P = P0

(
Tv,0 +β (z− zref)

Tv,0

)
∧
(
− gm

Rdβ

)
; (II.15)

where the integral persists in the newly-defined gm:

gm ≡
∫

gdlnTv∫
dlnTv

=
∫

g/Tv dTv∫
1/Tv dTv

, (II.16)

which can be interpreted as a “mean gravity weighted by the reciprocal of virtual tem-

perature”. However similar eqs. (II.14) and (II.15) are to eqs. (II.12) and (II.13), the ones

employing the constant gc remain more convenient than ones employing the integrated gm.
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II.2 Increments in geopotential height in geodesy

Let us start by defining geopotential, denoted W : it is the Earth’s gravity potential at a

particular point on or above the Earth’s surface. Gravity includes both gravitation, whose

potential is denoted V , due to mass attraction, pointing inward,4 as well as the centrifugal

force, whose potential is denoted Φ, due to the Earth’s rotation, pointing away from the

rotation axis.5,6 It has units of (specific) work (m2/s2). Geopotential difference, known

as geopotential number in geodesy, is simply the difference in geopotential between two

positions:

∆W ≡
∫ rrr2

rrr1

dW = W (rrr2)−W (rrr1) = W2−W1, (II.17)

where the integral is path-independent.

The link between increments in geopotential height and increments in geopotential

comes from the very definition of the gravity vector ggg as the gradient of the gravity poten-

tial:

ggg≡∇∇∇W. (II.18)

which we can express in scalar terms as:

gdz = dW. (II.19)

where g is the magnitude of the vector ggg, and the increments in geometric height dz are

aligned with the plumb-line, which is the curve whose tangent is ĝ̂ĝg. Consequently, incre-

4One might pose the question of whether we should consider the mass of the atmosphere itself, in
addition to the mass of the solid Earth and oceans, when calculating gravitation; we ignore that because the
resulting discrepancy is negligible for our purposes here.

5The addition of the centrifugal potential for calculations of gravity affecting a parcel of air is due to the
observation that the atmosphere is co-rotating with the solid Earth. If that was not true, then we would be
experiencing a strong, constant, east–west wind, strongest along the equator and null at the poles. (Which is
not to say that the solid Earth is continuously forcing the atmosphere; they happen to be co-rotating because
of the way that the atmosphere was formed.)

6Here we neglect tidal variations in gravity.
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ments in geometric height dz corresponds to increments in the quantity known as ortho-

metric height in geodesy, denoted H, and thence also to increments in ellipsoidal heights

h, because of their well-known relationship, h = H +N, where N is geoidal undulation or

separation.7,8,9 Notice that the correspondence is valid only for increments (dz = dH = dh)

and relative heights (∆z = ∆H = ∆h), not absolute heights (z,H,h); in other words, an un-

qualified “[absolute] geometric height” z is ambiguous in geodesy, because it could refer

to either or none of orthometric heights H or ellipsoidal heights h.

Relative geopotential heights ∆Z can be expressed simply as the geopotential differ-

ence ∆W scaled by a nominal, constant, value of gravity, so as to have a result in units of

length (m):

∆Z = ∆W/gc. (II.20)

In geodesy such a quantity is called dynamic height. In spite of its units, geopotential

height represents only approximately a geometric length, as would be measured by a ruler.

It is common to define new units, the so-called “geopotential metre”, to emphasize that

distinction.10

In geodesy, models for the gravity potential W , at various accuracy levels, are com-

monplace. We review a few in the next section.

7The geoid is the geopotential surface coinciding with mean-sea-level, roughly speaking.
8Geoidal undulation N which is calculated as described in Lemoine et al. [1998, section 11] or, more

easily, interpolated in pre-calculated grids available at http://earth-info.nga.mil/GandG/wgs84/
gravitymod/egm96/binary/binarygeoid.html.

9Strictly speaking, the relationship between h and H through N is only approximately — not exactly
— equal because, whereas h increases along the ellipsoidal normal, H increases along the plumb-line;
the ellipsoidal normal remains a satisfactory model for the actual plumb-line in current geodetic practice,
though.

10We would argue that such practice should be deprecated, in favour of encouraging the proper qualifi-
cation of ∆Z as scaled geopotential — still more of a gravity potential than a length.
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II.3 Conversion to geopotential height

In the present sub-section we are interested in obtaining the absolute geopotential height

Z, as employed in an atmospheric model, corresponding to a position in the real-world,

expressed in either global Cartesian coordinates X ,Y,Z or geodetic coordinates ϕ,λ ,h.

In the introduction above, we saw that absolute geopotential heights Z have two parts: a

datum Zref,href and a relative height ∆Z above or below a reference surface (eq. (II.3)):

Z ≡ Zref +
∫ h

href

dZ. (II.3)

Before we tackle each part, let us state upfront the conclusions from the experiments

described below: (i) with regard to the datum, relative heights ∆Z are to be reckoned from

the geoid (i.e., href = N, where N is the geoidal undulation) and absolute geopotential

height is to be zero on the geoid (i.e., Zref = 0); (ii) with regard to the relative height ∆Z,

the discrepancy among different geopotential models is quite negligible for our purposes

here.

Starting with the calculation of relative geopotential heights ∆Z, from Appendix II.2

we learned that it may be expressed in terms of geopotential W (eq. (II.20)). The nominal,

constant, gravity value is gc ≡ 9.80665 m/s2, “a value decided upon by the WMO [World

Meteorological Organization] and used by all meteorological offices [world-wide]” [Vedel,

2000, p. 3]. So the problem now becomes how to calculate the geopotential W . We have

compared the following geopotential models:

– normal gravity, in three implementations: closed formula in ellipsoidal coordinates

(which are different from geodetic coordinates); infinite series in spherical coordi-

nates; and first two terms of the series in spherical coordinates [Torge, 2001];

– EGM96 expansion of the actual gravitation potential V in spherical harmonics, up
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Figure II.4: Discrepancy in geopotential height due to different gravity formulations.

to degree and order 360 [Lemoine et al., 1998], plus normal centrifugal potential Φ

(model which we denote “actual gravity” in Figure II.5);

– formula as given by OFCM [2007, Appendix D] (which gives directly geopotential

height, not the geopotential itself).

Whereas the discrepancy among those different gravity models in terms of geopotential

height reaches almost a meter at 35km of height (Figure II.4), the corresponding dis-

crepancy in zenith hydrostatic delay (Figure II.5) reaches only µm-level (10-6 m) — quite

negligible.

Regarding the datum Zref,href, it is important to stress that here we are not trying to

find an optimal datum, only trying to adopt a datum consistent with the one employed for

the generation of the atmospheric model we were using. In that regard, matters are a little
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Figure II.5: Discrepancy in zenith hydrostatic delay due to different gravity formulations.

complicated, because it seems that each atmospheric model employs an ad hoc, arbitrary,

reference. For example, Vedel [2000] reports that the Danish NWM adopted as reference

surface the ground, as represented by a digital elevation model (DEM), presumably ex-

pressed in orthometric heights, thus href = Hground + N, and that the postulated reference

absolute geopotential height is calculated from the DEM as Zref = Hground g′c/gc, where gc

is as before, and g′c = 9.81 m/s2 (as an approximation to the actual gravity near the ground).

We compared the following options for the reference Zref,href:

1. the ellipsoid as reference surface, href = 0, and zero absolute geopotential height at

such a reference surface, Zref = 0;

2. the geoid as reference surface, href = N, and absolute geopotential height equal to the

orthometric height at such a surface, Zref = Hgeoid, where Hgeoid is zero by definition
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of orthometric height, thus Zref = 0.

The comparison was done as follows: we obtained the ellipsoidal height as well as mea-

sured pressure (at a single, arbitrary epoch) in each of the IGS stations inside the horizontal

extents of the NWM that we were using (17 stations in total). Then we (i) interpolated the

atmospheric model’s geopotential height corresponding to the measured pressure (in ray-

tracing we do the inverse interpolation) and independently (ii) converted the ellipsoidal

height to geopotential height according to each of the two options listed above. Finally,

we checked the discrepancy between (i) and (ii). Table II.1 shows the root-mean-square

error of the discrepancies in geopotential height. Notice that the option in which the el-

lipsoid is taken as reference surface yields much worse RMS than the option in which the

geoid is taken instead. Therefore we adopted the latter option.

Table II.1: RMS of discrepancy in geopotential height due to different references.
Option 1 Option 2

35.0cm 12.5cm

As one last remark, notice that the conversion to geopotential heights is a function not

only of ellipsoidal height h, but also of latitude ϕ and, to a minor extent, longitude λ ,

depending on the adopted gravity model. Therefore the conversion to geopotential heights

has the potential to create some spurious azimuthal asymmetry in the delay, undesired in

all atmospheric structures but the 3d one. To understand the source of such an azimuthal

asymmetry, it might be easier to think in terms of the simpler straight-line ray-path: unless

some care is exercised, points at the same along-path distance ` and same elevation angle

ε but different azimuth α (thus geometrically symmetrical around the base point) will

be attributed different geopotential heights, which in its turn will lead to different values

for the interpolated atmospheric parameters. To avoid that, we adopted the following

procedure: given the position of the point of interest in the real world space, we take
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only its vertical coordinate (h, r, r′) and append it to the base point’s (i.e., the receiver’s)

horizontal geodetic coordinates ϕ0,λ0, to only then input those three coordinate into the

routine of conversion to geopotential heights.
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Appendix III

Pressure interpolation

In developing the ray-tracer employed in this work, one of the validations that we per-

formed was comparing the zenith hydrostatic delay, as integrated numerically, with that

given by Saastamoinen’s [1972] model, which requires as atmospheric parameter input

only the surface (station) pressure. In early developments we found a very systematic

discrepancy (meaning a discrepancy with very small standard deviation), amounting to

1cm, which we eventually tracked down to an inappropriate interpolation algorithm for

pressure. The present chapter is a quick note documenting that issue and its solution.

In Appendix II.1 we discussed how pressure decays exponentially with height, a decay

which is modulated by the virtual temperature lapse rate β . Therefore, given a profile of

pressure versus height discretized at several nodes, if one is to apply a linear interpolation

algorithm, it is more correct to do so in the logarithm of pressure rather than directly in

pressure itself (see below). The exact logarithm base (e.g., base 10, natural logarithms,

etc.) is not as important. Of course, if the original profile is already provided at a suffi-

ciently dense discretization (i.e., at sufficiently small node spacing), then the interpolator

does not matter much.

The consequence of a sub-optimal linear interpolator, as compared to a better log-linear
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Figure III.1: Consequence of linear versus log-linear interpolation of pressure.

interpolator, is illustrated in Figures III.1 and III.2. Notice how the linear interpolator sys-

tematically over-estimates pressure at all heights but those at which a node exists; that

over-estimation, in its turn, creates an excess area under the curve of refractivity versus

along-path distance, amounting to the 1cm bias between numerically integrated and Saas-

tamoinen’s zenith hydrostatic delay, that we reported before. Applying the more correct

log-linear interpolator, the above-mentioned bias is reduced by one order of magnitude.

In fact, such a bias can be decreased even more if pressure is obtained integrating it

hydrostatically from the nearest node discretizing the original profile (through the evalu-

ation of eq. (II.11) or its special cases, eqs. (II.12) and (II.13)). That bias reduction is a

consequence of the fact that the assumption of hydrostatic equilibrium is built-in in both
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Figure III.2: Consequence of linear versus log-linear interpolation of pressure (zoom).

eq. (II.11) and Saastamoinen’s [1972] model.1

1Obtaining pressure as per eq. (II.11) usually would not imply any additional assumption, since hydro-
static equilibrium is already built-in in most atmospheric sources — see footnote on p. 24.
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Appendix IV

Humidity conversion

There are many ways to express humidity values. For example, the refractivity formulation

eq. (2.3) or eq. (2.28) asks for partial pressure of water vapor; radiosondes usually measure

relative humidity [Dabberdt et al., 2002] but are required to report dew point temperature,

following international convention [Brettle and Galvin, 2003]; in the Canadian regional

NWM [Côté et al., 1998] as well as in the CIRA86aQ UoG climatology [Kirchengast

et al., 1999], specific humidity is preferred. The present section aims at serving as a handy

primer on converting among different yet equivalent forms of expressing humidity.1

Tables IV.1 and IV.2 summarize the expressions to convert from any humidity variable

to any other (in a total of 62 combinations), using partial pressure of water vapor Pw as an

intermediary variable; pressure P and temperature T are assumed available; details can be

found in the derivations that follow in the rest of the present section.

Let us start considering a volume V of humid air at temperature T and total pressure

P. Its constituents are mass md of dry air and mass mw of water vapor. Its total mass m is

therefore:

m = md +mw. (IV.1)
1Useful general references are Guyot [1998]; Wallace and Hobbs [2006]; Glickman [2000]; Curry

[2002a,b].
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Table IV.1: Conversion to partial pressure of water vapor.
Humidity variable Input Output Expression

Partial pressure of water vapor P,T,Pw Pw Pw = Pw
Specific humidity P,T,q Pw Pw = qP/

(
ε +(1− ε)q

)
Mixing ratio P,T,r Pw Pw = rP/(r + ε)
Relative humidity P,T,RH Pw Pw = (RH/100)Ps

w,Ps
w = Ps

w (T )
Dew point temperature P,T,Td Pw Pw = Ps

w (T = Td)
Virtual temperature P,T,Tv Pw Pw = P(1−T/Tv)/(1− ε)

Table IV.2: Conversion from partial pressure of water vapor.
Humidity variable Input Output Expression

Partial pressure of water vapor P,T,Pw Pw Pw = Pw
Specific humidity P,T,Pw q q = Pwε/(Pwε +Pd),Pd = P−Pw
Mixing ratio P,T,Pw r r = (Pw/Pd)ε,Pd = P−Pw
Relative humidity P,T,Pw RH RH = 100Pw/Ps

w,Ps
w = Ps

w (T )
Dew point temperature P,T,Pw Td Td = (Ps

w)-1 (Ps
w = Pw)

Virtual temperature P,T,Pw Tv Tv = T/
(
1− (Pw/P)(1− ε)

)
Specific humidity q is defined as:

q≡ mw

m
. (IV.2)

Mixing ratio r is defined as

r ≡ mw

md
. (IV.3)

The two are obviously closely related:

q =
r

r +1
, r =

1
1−q

.

To have a sense for the magnitude of such variables, we quote Guyot [1998], who states

that “In the atmosphere, the magnitude of r is a few grams per kilogram in the middle

latitudes, but in the tropics it can reach approximately 20g/kg.”

The relationship between partial pressure of water vapor Pw and either q or r requires

a bit or theory. The partial pressure of a particular gas in a mixture of gases is the pressure
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that such a gas would exert if it were to occupy alone the volume occupied by the whole

mixture, at the same temperature. Assuming that the constituent gases do not interact

chemically, Dalton’s law of partial pressures states that

P = Pd +Pw. (IV.4)

Each gas constituent is assumed to obey the state equation of ideal gases,

Pd = ρdT Rd, (IV.5)

Pw = ρwT Rw, (IV.6)

where the same temperature T is shared by the two gases, following the assumption that

they are in equilibrium. ρd and ρw are the gases densities (ρw is sometimes called absolute

humidity or volumetric humidity),

ρd = md/V, (IV.7)

ρw = mw/V ; (IV.8)

Rd, Rw are, respectively, the specific gas constants for dry gases and water vapor:

Rd ≡ R∗/Md,

Rw ≡ R∗/Mw,

defined in terms of the universal gas constant

R∗ ≡ 8.316963×103 J/kmol×K,
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and the molar masses of dry air and water vapor,

Md ≡ 28.9644 kg/kmol,

Mw ≡ 18.0152 kg/kmol.

(The numerical values are taken from Glickman [2000].) With that, the mixing ratio r can

be rewritten as

r =
mw

md

=
ρwV
ρdV

=
ρw

ρd

=
Pw/(T Rw)
Pd/(T Rd)

=
Pw/Rw

Pd/Rd

=
PwMw/R∗

PdMd/R∗

=
PwMw

PdMd

=
Pw

Pd
ε,

(IV.9)

where

ε ≡ Mw

Md
. (IV.10)
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Similarly, specific humidity q can be expressed as

q =
mw

mw +md

=
ρwV

ρwV +ρdV

=
ρw

ρw +ρd

=
Pw/(T Rw)

Pw/(T Rw)+Pd/(T Rd)

=
Pw/Rw

Pw/Rw +Pd/Rd

=
PwMw/R∗

PwMw/R∗+PdMd/R∗

=
PwMw

PwMw +PdMd

=
PwMw

PwMw +PdMd

1/Md

1/Md

=
Pwε

Pwε +Pd
.

(IV.11)

The inverse relationships require some care in their derivation: we shall never try to sim-

plify expressions dividing them by q or Pw, because those quantities might assume the

zero value:

r =
Pw

Pd
ε

r =
Pw

P−Pw
ε

r− rPw−Pwε = 0

−Pw(r + ε) =−rP

Pw =
rP

r + ε

216



and

q =
Pwε

Pwε +Pd

q =
Pwε

Pwε +P−Pw

qPwε +qP−qPw−Pwε = 0

Pw(qε−q− ε) =−qP

Pw =
−qP

qε−q− ε

Pw =
qP

ε +q−qε

Pw =
qP

ε +(1− ε)q
.

In the remaining conversions below, we will need the so-called saturation water vapor

pressure Ps
w. It is important to realize that Ps

w itself is not a way of expressing humidity

values, just an auxiliary quantity involved in the conversion. It is defined as the partial

pressure at which water vapor is in equilibrium with a flat surface of liquid water, at a

given temperature (equilibrium meaning that evaporation and condensation are both oc-

curring — at the same rate, though). There are numerous formulas in use for Ps
w. Murphy

and Koop [2005] provide a recent throughly review and comparison of both old and new

formulations against experimental data, from which we quote:

All of the commonly used parametrizations for the vapor pressure of supercooled water are
extrapolations that were not originally intended for use below the freezing point. In addition,
the World Meteorological Organization definition of the vapor pressure of supercooled water
contains an easily overlooked typographical error. Recent data on the molar heat capacity of
supercooled water are used [by us] to derive its vapor pressure.

217



We therefore adopt their formulation:

ln(Ps
w)≈+54.842763

−6763.22/T

−4.210ln(T )

+0.000367T

+ tanh(0.0415(T −218.8))

× (53.878−1331.22/T −9.44523ln(T )+0.014025T ) ,

(IV.12)

valid for 123K < T < 332K. Below we denote Ps
w = Ps

w (T ) the function that returns the

value of Ps
w at a particular value of T . We also need the inverse function, which we denote

T = (Ps
w)-1 (Ps

w), returning the value of T at a particular value of Ps
w.2

With Ps
w at hand, we define relative humidity RH as the ratio

RH ≡ 100
Pw

Ps
w

, (IV.13)

and dew point temperature Td as the temperature to which the air must be lowered, at

constant pressure, for the water vapor to saturate:

Td | Pw = Ps
w (T = Td) . (IV.14)

To have a sense for such variables, we quote Wallace and Hobbs [2006, p. 83]:

2Equation (IV.12) cannot be inverted analytically, so we resort to the Newton–Raphson numerical
method; a good approximate solution upon which to start and improve iteratively is given by Bolton [1980,
eq. (10)]:

x = ln
(
(Ps

w/1000)/0.6112
)
/17.67,

T = 273.15+243.5x/(1− x).
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At the earth’s surface, the pressure typically varies by only a few percent from place to place
and from time to time. Therefore, the dew point [temperature] is a good indicator of the mois-
ture content of the air. In warm, humid weather the dew point is also a convenient indicator of
the level of human discomfort. (. . . ) In contrast to the dew point, relative humidity depends
as much upon the temperature of the air as upon its moisture content.

Finally, virtual temperature Tv is defined such that

Tv | P = ρTvRd, (IV.15)

where P = Pd + Pw and ρ = ρd + ρw refer to the moist air as a whole, even though

eq. (IV.15) employs the constant of dry gases Rd, as explained by Wallace and Hobbs

[2006, p. 66]:

Moist air has a lower apparent molecular weight than dry air. Therefore, the gas constant for
1kg of moist air is larger than that for 1kg of dry air. However, rather than use a gas constant
for moist air, the exact value of which would depend on the amount of water vapor in the air
(which varies considerably), it is more convenient to retain the gas constant for dry air and
use a fictitious temperature (called the virtual temperature) in the ideal gas equation.

To express Tv in terms of Pw, first we re-write ρ as

ρ = Pd/(T Rd)+Pw/(T Rw)

= PdMd/(T R∗)+PwMw/(T R∗)

=
PdMd +PwMw

T R∗

=
PdMd +PwMw

T R∗
Md

Md

P
P

=
PMd

T R∗
(1− (Pw/P)(1− ε)) ,

(IV.16)
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then we isolate Tv and substitute ρ , obtaining

Tv = P/(ρRd)

= P/(ρR∗/Md)

= PMd/(ρR∗)

= PMd
(
R∗

PMd

T R∗
(1− (Pw/P)(1− ε))

)
=

T
1− (Pw/P)(1− ε)

.

(IV.17)
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Appendix V

Loxodrome in a gradient atmospheric

structure

In section 3.2.4 we met the following integral eq. (3.12):

f∇∇∇H (ϕ,λ ,h)≡
∫ rrr

rrr0,h

∇∇∇Hv0(rrr) . drrr, (3.12)

According to the gradient theorem, also known as the fundamental theorem of calculus

for line integrals, we have:

Φ(rrr2)−Φ(rrr1) =
∫

L
∇∇∇Φ(rrr) . drrr; (V.1)

in words: a line integral through a gradient field is path-independent (i.e., depends only on

the path end-points, rrr1 and rrr2).1 Therefore, we are free to choose at will the integration

path in eq. (3.12). There is one path, though — called the loxodrome — over which the

1That is true for any gradient field, i.e., for any vector field that is the gradient of a scalar field.
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integral eq. (3.12) rigorously simplifies to the following closed-form expression eq. (3.13):

f∇∇∇H (ϕ,λ ,h) = l
(

sina
∂v0

∂x

∣∣∣∣
h
+ cosa

∂v0

∂y

∣∣∣∣
h

)
, (3.13)

Now we demonstrate how to proceed to achieve the simplification above.

First recall that when we write rrr we imply that the position vector is expressed in

global Cartesian coordinates, rrr = XÎ̂ÎI +YĴ̂ĴJ + ZK̂̂K̂K. When we need the same vector ex-

pressed in local Cartesian coordinates, then we denote it as rrrxyz = xı̂̂ı̂ı + yjjĵ̂̂ + zk̂̂k̂k, instead.

The transformation from rrrxyz to rrr involves a translation and a rotation; the Jacobian of that

transformation relates increments in x,y,z to increments in X ,Y,Z:

J(rrr) =
∂ (X ,Y,Z)
∂ (x,y,z)

∣∣∣∣
rrr
;

J is a 3-by-3 matrix containing the partial derivatives of each global Cartesian coordinate

X ,Y,Z with respect to each other local Cartesian coordinate x,y,z. Furthermore, J is a

rotation matrix,2 therefore it is an orthogonal matrix, whose inverse equals its transpose,

J-1 = JT.

Local Cartesian coordinates is a very convenient coordinate basis for use with a gra-

dient atmosphere, because we postulate for such an atmosphere the horizontal gradient

vector ∇∇∇Hv0 to be constant (for different positions rrr yet same height h) under such a basis:

∇∇∇
xyz
H v0(rrr) = ∇∇∇

xyz
H v0(h) =

∂v0

∂x

∣∣∣∣
h
ı̂̂ı̂ı+

∂v0

∂y

∣∣∣∣
h

jjĵ̂̂ +0k̂̂k̂k.

In contrast, the same horizontal gradient is not constant when expressed in a global Carte-

2The translation contained in the transformation itself is absent in the Jacobian, since the derivative of a
constant term is zero.
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sian coordinate basis:

∇∇∇Hv0(rrr) = J(rrr)∇∇∇
xyz
H v0(h) =

∂v0

∂X

∣∣∣∣
rrr
Î̂ÎI +

∂v0

∂Y

∣∣∣∣
rrr
Ĵ̂ĴJ +

∂v0

∂Y

∣∣∣∣
rrr
K̂̂K̂K.

That non-constancy is caused by the position-dependent Jacobian J(rrr). The transforma-

tion of the gradient vector between global and local Cartesian coordinate bases is allowed

because the gradient is invariant under orthogonal transformations.

The vector increment drrr can also be expressed in the same way:

drrr = J(rrr)drrrxyz.

Now let us rewrite eq. (3.12) expressing the vectors in local Cartesian coordinates:

f∇∇∇H (ϕ,λ ,h)≡
∫ rrr

rrr0,h

(
J(rrr)∇∇∇

xyz
H v0(h)

) . (J(rrr)drrrxyz); (V.2)

expanding the spatial vectors as linear algebra vectors, we get:

f∇∇∇H (ϕ,λ ,h)≡
∫ rrr

rrr0,h

[
∂v0

∂x

∣∣∣∣
h
,

∂v0

∂y

∣∣∣∣
h
, 0

]
JTJ


dx

dy

dz

 , (V.3)

where the transpose on the first operand is required to guarantee dimensional consistency,

when the spatial dot-product is expressed as a linear algebra matrix/vector product.

With the form above (eq. (V.3)), we can perform the simplification to achieve the de-

sired closed-form expression eq. (3.13) in four steps. First, the Jacobian J being orthogo-

nal, the product JTJ cancels out to an identity matrix:

f∇∇∇H (ϕ,λ ,h) =
∫ rrr

rrr0,h

(
∂v0

∂x

∣∣∣∣
h
ı̂̂ı̂ı+

∂v0

∂y

∣∣∣∣
h

jjĵ̂̂ +0k̂̂k̂k
)

.
(

dxı̂̂ı̂ı+dyjjĵ̂̂ +dzk̂̂k̂k
)

. (V.4)

223



Second, the partial derivatives with respect to local Cartesian coordinates being constant

for the same height h, they can be taken out of the integral if we evaluate the integral along

a path of constant height:

f∇∇∇H (ϕ,λ ,h) =
(

∂v0

∂x

∣∣∣∣
h
ı̂̂ı̂ı+

∂v0

∂y

∣∣∣∣
h

jjĵ̂̂ +0k̂̂k̂k
)

.
∫ rrr

rrr0,h
h=const.

(
dxı̂̂ı̂ı+dyjjĵ̂̂ +dzk̂̂k̂k

)
. (V.5)

Third, if we evaluate the integral along a path of constant azimuth a — the so-called

loxodrome — (in addition to constant height h), then the increment:

dxı̂̂ı̂ı+dyjjĵ̂̂ +dzk̂̂k̂k =
(

sin(a)ı̂̂ı̂ı+ cos(a) jjĵ̂̂ +0k̂̂k̂k
)

dl,

becomes constant, which allows us to take the vector factor out the integral

f∇∇∇H (ϕ,λ ,h) =
(

∂v0

∂x

∣∣∣∣
h
ı̂̂ı̂ı+

∂v0

∂y

∣∣∣∣
h

jjĵ̂̂ +0k̂̂k̂k
)

.
(

sin(a)ı̂̂ı̂ı+ cos(a) jjĵ̂̂ +0k̂̂k̂k
) ∫ rrr

rrr0,h
h=const.
a=const.

dl. (V.6)

Fourth, replacing the remaining integral,
∫

dl, for the loxodrome length, l, we obtain,

finally, the desired closed-form expression eq. (3.13):

f∇∇∇H (ϕ,λ ,h) = l
(

sina
∂v0

∂x

∣∣∣∣
h
+ cosa

∂v0

∂y

∣∣∣∣
h

)
. (3.13)

And that concludes the derivation.

Apart from the derivation above, the loxodrome azimuth a and length l can be calcu-

lated as per Alexander [2004].3 Were the Earth plane, the azimuth and length would be

simply the straight-line azimuth and distance, and the simplification of the integral would

be trivial. But recall that the ray at a low elevation angle travels several hundred kilome-

3In Alexander’s [2004] expressions, the height must be added to the spherical radius, to obtain the
loxodrome at the desired height.
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tres before exiting the neutral atmosphere; at distances of this extent, the Earth’s curvature

plays a role.
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Appendix VI

Refractivity coefficients

There is some controversy around the refractivity coefficients for radio waves in the neutral

atmosphere. See Thessin [2005, sec. 2.3, p. 38–42.], Rüeger [2002], Mendes [1999, p. 59–

60], and Bevis et al. [1994] for discussions. Especially Rüeger [2002] provides a recent,

thorough, review.

Mendes [1999, sec. 5.1.3, p. 163–164] reports negligible, sub-mm, discrepancies in

zenith hydrostatic delay due to four different determinations of those coefficients. In ad-

dition to the determinations compared by Mendes [1999], we wanted to compare two

determinations, Bevis et al. [1994] and Rüeger [2002], that recognized the controversy

and aimed at providing best average coefficients, an alternative to best available values

that “provides a certain robustness against unmodeled systematic errors and increases the

reliability of the values” [Rüeger, 2002, p. 6]. The two other determinations (included in

Mendes [1999]) that we compared were IUGG and Thayer [1974]. IUGG is a slight sim-

plification of Essen and Froome [1951]; it was endorsed by a resolution of the International

Union of Geodesy and Geophysics (IUGG) in 1963, a resolution which is still officially in

effect.1 Thayer’s [1974] is disputed by both Rüeger [2002] and Bevis et al. [1994], on the

1The 1963 resolution is in effect regarding radio refractivity coefficients; in contrast, regarding optical
refractivity coefficients, it was recently superseded by a newer resolution.
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grounds that it is biased compared to other determinations and unrealistically precise. In

fact, its claimed (optimistic) precision is probably the reason why Thayer’s [1974] is still

widely in use, contrary to advice from both Rüeger [2002] and Bevis et al. [1994]. All

refractivity values are reported in Table VI.1.

We performed the comparison for a single profile, at a single epoch; that was suffi-

cient for our objective here, namely, to check the order of magnitude of the discrepancies

involved. We compared zenith delays, slant delays, and slant factors. The discrepancies,

taken with respect to IUGG (chosen as the reference because it is the one determination

still officially endorsed by the IUGG), are shown in Tables VI.3, VI.4, and VI.5 for zenith

delays, slant delays, and slant factors, respectively. Slant quantities correspond to a direc-

tion at 3◦ elevation angle. Discrepancies in slant factors are reported multiplied by IUGG’s

zenith delay, for a more intuitive interpretation (i.e., in metre rather than unitless). IUGG’s

zenith and slant delays themselves are shown in Table VI.2. The delays were integrated

setting a tolerance of 0.1mm for the ray-tracer.

Our results are in agreement with Mendes [1999, Table 5.2, p. 164]: sub-mm discrep-

ancy in zenith hydrostatic delay between IUGG and Thayer [1974]. The second thing to

notice in Tables VI.3 to VI.5 is that the results based on Rüeger [2002] stand out from the

others; in fact, it is the only determination in the comparison which shows non-negligible

discrepancies with respect to IUGG, both in zenith and slant delays. The very thorough

review presented in Rüeger [2002] — including results of comparisons between the rela-

tively simple closed-form expression usually employed (eqs. (2.3) and (2.28)) and more

rigorous, non-analytical formulations — gives credit to his determination (more correctly,

to his recommendations, based on determinations made by other authors). In other words,

the non-negligible discrepancies found with respect to IUGG cast doubt over the IUGG

resolution still officially in effect.

Finally, the discrepancy most relevant for the present work is that in terms of slant
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factors (Table VI.5): it is very negligible, but not quite zero. That is as expected: on one

hand, we do expect slant factors to be less affected than slant delays, because factors are a

ratio of two delays, both affected by the same refractivity coefficients; on the other hand,

we do not expect factors to be completely unaffected, because even though refractivity N

(eq. (2.3)) is linear in the coefficients k1,k2,k3, the slant delay d is slightly non-linear in

refractivity N (because of ray bending).

In this work, we employed Thayer’s [1974] determination — we were unaware of

Rüeger’s [2002] and Bevis et al.’s [1994] when we started. Luckily, results for slant fac-

tors, which constitute the bulk of this work, are unaffected.

Table VI.1: Refractivity coefficient values.

Coefficient k1 (×10−2 K/Pa) k2 (×10−2 K/Pa) k3 (×10+3 K2/Pa)

Rüeger [2002] 77.6890 71.2952 3.75463
Bevis et al. [1994] 77.60 70.4 3.739

Thayer [1974] 77.60 64.8 3.776
IUGG 77.624 64.700 3.71897

Table VI.2: Zenith and slant delays based on refractivity coefficients from IUGG.
Delay component Zenith delay (m) Slant delay (m)

Total 2.3562 34.6093
Geometric 0.0000 0.4920
Hydrostatic 2.3406 33.8675
Non-hydrostatic 0.0154 0.2498

Table VI.3: Discrepancy (with respect to IUGG) in zenith delay (in m) due to different
determinations of the refractivity coefficients.

Component Rüeger [2002] Bevis et al. [1994] Thayer [1974]

Total 0.0022 -0.0006 -0.0005
Geometric 0 0 0.0000
Hydrostatic 0.0020 -0.0007 -0.0007
Non-hydrostatic 0.0002 0.0001 0.0002
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Table VI.4: Discrepancy (with respect to IUGG) in slant delay (in m) due to different
determinations of the refractivity coefficients.

Component Rüeger [2002] Bevis et al. [1994] Thayer [1974]

Total 0.0319 -0.0081 -0.0067
Geometric 0.0009 -0.0002 -0.0001
Hydrostatic 0.0274 -0.0103 -0.0104
Non-hydrostatic 0.0035 0.0023 0.0038

Table VI.5: Discrepancy (with respect to IUGG) in slant factor (multiplied by a nominal
zenith delay, thus in m) due to different determinations of the refractivity coefficients.

Component Rüeger [2002] Bevis et al. [1994] Thayer [1974]

Total -0.0001 0.0004 0.0005
Geometric+Hydrostatic -0.0004 0.0002 0.0002
Non-hydrostatic -0.0000 0.0000 0.0000
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Appendix VII

Related work in secondary areas

In section 1.4 we stated that ray-tracing has connections to many different subject areas.1

We further acknowledged that among those areas, we see the present work falling under

the umbrella of geodesy, more specifically along the thread of developments in mapping

functions for radio space geodetic applications. Whereas in section 2.8 we delved into

that thread, in the present section we would like to quickly skim through the secondary

connections. Secondary areas are relevant because they might offer innovative solutions

to the shared problem of ray-tracing — after all, sometimes a piece of knowledge that is

well-known in one area might be considered an innovation in a different area.

In astronomy, more specifically in astrometry [Kovalevsky and Seidelmann, 2004],

exactly the same phenomena of interest in this work has been studied under the name as-

tronomical refraction for millennia, literally [Lehn and van der Werf, 2005]. One main

difference between the two application areas is that, while we are interested in the refrac-

tion delay, they are interested in the refraction angle. See, for example, Yatsenko [1995];

Wittmann [1997]; Auer and Standish [2000]; Young [2004]. There is a beneficial overlap

between astrometry and geodesy; for example, VLBI serves equally well the two areas

1See Kravtsov [2005] for a general treatment.
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[Sovers et al., 1998]. That overlap in matters of refraction started with the birth of space

geodesy and remains to the present day.

In surveying there is a related topic under the name of terrestrial refraction, sometimes

also called geodetic refraction [Brunner, 1984; Ingensand, 2002]. Surveying itself has a

wide overlap with geodesy, under terrestrial geodesy (in contrast with space geodesy), as

well as with metrology, under applied or industrial metrology. Refraction is studied in

surveying to correct distances and angles measured with, e.g., electronic distance meters

(EDM), theodolites, leveling instruments, etc. In that case, receiver and transmitter are

usually co-located and one employs additionally a reflective target; in terrestrial refraction

they are all within the Earth’s atmosphere.

In radio science, a remote sensing technique known as radio occultation (RO) has been

used since the early 1970’s for measuring the physical properties of planetary atmospheres.

In the last decade we have seen its application to the Earth’s atmosphere, employing GPS

signals (thus GPS radio occultation — Kursinski et al. [1997]). Ray-tracing is embedded

in the so-called data assimilation operators (see Syndergaard et al. [2006] and references

therein) that provide the model counterparts to the RO measurements, allowing their ex-

ploitation in weather and climate forecasting.

In computer science, more specifically computer graphics, there is a rich technique

under the same name [Rademacher, 1997; Pharr and Humphreys, 2004]. The application

intended is, in a nutshell, the computerized synthesis of images depicting virtual scenes.

It differs from our usage primarily because it seeks to quantify radiance instead of phase.

It differs also because usually it allows for refraction only at the surface of objects or

at the interface of media, each of which is assumed to have uniform index of refraction.

There are exceptions, though, under the key-word ray-tracing in inhomogeneous media;

see Gutierrez et al. [2006]; Seron et al. [2005].

In optics, ray-tracing is a century-old technique employed in the design of systems of
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lenses, for instruments such as telescopes and microscopes, not necessarily restricted to

the visual band [Spencer and Murty, 1962]. Like in computer graphics, usually the index

of refraction is not allowed to vary gradually. The exceptions fall under the key-words

gradient-index optics [Marchand, 1978]. Also periodicals dedicated to applied optics of-

ten serve as vehicles for publications related to our subject area, e.g., van der Werf [2003];

Hase and Höpfner [1999]; Nener et al. [2003].

In seismology, geophysicists use ray-tracing to aid in earthquake location, measuring

plate tectonic processes, etc. [Rawlinson et al., 2008; Červený, 2001]. Their application is

more complicated than ours because the Earth’s interior can be much more heterogeneous

a medium than the Earth’s atmosphere. It is further complicated by the fact that the trans-

mitter is contiguous to the media, instead of being far away, as in the case of GPS satellites

or VLBI sources. On the other hand, in their case at least the receiver and transmitter are

at rest with respect to the propagation medium, in contrast to our case.
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