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ABSTRACT 

 

High resolution satellite sensors, like QuickBird, have increased the dynamic grey-

value variety and spatial detail in satellite imagery.  New features can be distinguished 

that could not be discriminated in lower resolution imagery, such as that of Landsat TM.  

Object-oriented classification has shown significant promise as a method for the analysis 

and classification of objects in very high resolution imagery.  This approach allows 

researchers to analyze pixel groups rather than individual pixels.  Consequently, other 

features, such as texture and shape, can be applied to analysis.  Object-oriented 

classification, however, is highly dependent upon successful image segmentation. 

  

This research proposes to investigate segmentation methods -- through algorithmic 

approaches -- for the purpose of reducing operator dependency, fragmentation, parameter 

complexity and improving other segmentation problems and restrictions.   This research 

is conducted over a variety of high resolution satellite image scenes.  The focus of this 

research will be region-based, unsupervised segmentation methods on very high 

resolution satellite imagery.   
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CHAPTER 1                                                                                          

INTRODUCTION 

 

Presented is the development of segmentation methods for very high resolution 

(VHR) satellite imagery.  These methods incorporate segmentation theories, remote 

sensing principles, fuzzy logic and object oriented programming.  This body of work is 

presented through the following papers which comprise this thesis: 

 

Paper 1 (peer reviewed): 
 
Wuest, B., and Y. Zhang (2008). “Region Based Segmentation of QuickBird 

Multispectral Imagery through Band Ratios and Fuzzy Comparison.” ISPRS 
Journal of Photogrammetry and Remote Sensing, (Accepted for publication, July, 
2008) 

 
Paper 2 (peer reviewed): 
 
Wuest, B., and Y. Zhang (2008). “Region Based Segmentation of QuickBird 

Multispectral Imagery through Fuzzy Integration.” Proceedings of the ISPRS XXI 
Congress,  Beijing, China, 3-11 July, pp. 491-496. 

 
Paper 3 (peer reviewed): 
 
Wuest, B., and Y. Zhang (2008). “Supervised Region Based Segmentation of QuickBird 

Multispectral Imagery” Proceedings of the 2008 IEEE International Geoscience 
& Remote Sensing Symposium (IGARSS 2008), Boston, USA, 6-11 July. 

 
 

The subsequent chapter will bridge together the above publications using the 

following approach by including the following: 

 

1. An outline of the structure of the article-based thesis; 
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2. A background discussion of satellite imagery; 

3. The definition of image segmentation along with descriptions of key existing 

approaches; 

4. A discussion of the importance of this research; 

5. Identification of segmentation problems and restrictions; 

6. A description of Research Objectives; 

7. Proposed strategies to reach these Objectives; and 

8. A brief overview of the publications in this thesis. 

 

1.1 Thesis Structure 

 

For all of the publications presented in this thesis, the first author conducted the 

primary research while the second author provided advice on structure and content.  The 

software design for this research is included in Appendix I.  The structure of this thesis is 

presented in Table 1.1.  In addition to the information provided in this chapter, bridging 

chapters have been included between publications for further clarification. 
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Table 1.1: Thesis Structure 

Chapter Content 

1 Introduction 

2 Paper 1 

3 Bridging between Paper 1 and 2 

4 Paper 2 

5 Bridging between Paper 2 and 3 

6 Paper 3 

7 Conclusions 

8 Appendices 

 

1.2 Background 

 

With the upcoming launch of the GeoEye-1 satellite, remote sensing imagery (RSI) 

will achieve another advance in spatial resolution.  The proposed spatial resolution of 

GeoEye-1 is to be as high as 0.41 m on the Panchromatic Band and, more importantly, 

1.65 m on the Multi-Spectral (MS) bands of  red ( R ), green ( G ), blue ( B ) and near 

infrared ( NIR ).  This launch will surpass the current spatial resolution held by 

DigitalGlobe’s QuickBird satellite since 2001 which has offered 61 cm – 71 cm on the 

Panchromatic Band and 2.44 – 2.88m on the MS bands.  QuickBird imagery has been the 

standard for very high resolution (VHR) satellite imagery for the last five years and been 
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subject to numerous research endeavors [Hu et al., 2005;  Hagner and Reese 2007; 

Mallinis et al., 2008].  

 

VHR resolution imagery is unique because of its spatial resolution properties.  The 

high spatial resolution gives operators the ability to map earth surface areas at a new 

level.  Older satellite imagery, such as that provided by Landsat TM, does not provide 

capabilities to this extent.  This is illustrated in Figure 1.1, which shows the considerable 

difference between low and high resolution satellite imagery.  Some characteristics of 

VHR imagery include: 

 

1. The increased spatial detail that leads to highly textured areas; 

2. Spatial feature representation which causes linear objects to be represented 

by complex polygons; and 

3. The presence of small objects such as houses and vehicles. 
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Figure 1.1: Spatial detail from low and high resolution sensors (512x512 

images). [a] Landsat TM 30m MS and [b] QuickBird 2.44m MS. 
 

These characteristics are some of the areas that have been the subject of research 

investigations since the release of the QuickBird satellite in 2001.   Pixel-based 

classifications methods have been successful within lower resolution satellite imagery 

such as that from Landsat ™.  These methods are based upon statistical measurements of 

individual pixel digital number (DN) values. and are implemented using mechanisms 

such as Maximum Likelihood and the ISODATA clustering algorithm.  For example, 

Hagner et al. [2007] produced a successful forest type classification approach using a 

calibrated Maximum Likelihood method.  A comparison of Maximum Likelihood and 

ISODATA to Linear Spectral Mixture Modeling (LSMM) on Landsat TM data is 

presented by Shanmugam et al. [2006] in their study on classifying wetland 

characteristics. These methods, however, seldom take into account the full use of land 

cover characteristics such as shapes, structure information and spatial distribution in very 

[a]            [b] 
[

a] 
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high resolution satellite imagery [Liu et al., 2006]. In response to the birth of VHR 

imagery, academic and private sector research endeavors have turned to the object 

oriented paradigm. 

 

Object oriented (OO) classification asserts that regions/segments of an image are 

classified rather than individual pixels.  In this method, topology information in an image 

can be analyzed.  Groups of pixels, rather than individual pixels, are analyzed.  This 

provides the ability to include shape and complex texture measurements in image 

analysis rather than individual pixel statistics.  Figure 1.2 provides a visual representation 

of the advancement in attribute selection provided by OO classification techniques.  

Figure 1.2a shows an object outlined in orange which can be described by shape, spectral 

and textural measurements.  It can also be related to other objects that exist in its 

proximity.  Figure 1.2b displays one pixel that can have statistics measure on it based on 

a localized window.   

 

 
Figure 1.2: Difference between Object Based and Pixel Based Measurements.  

[a] Object Based representation and [b] Pixel Based representation. 

 

[b] 

1.  Shape (circularity, compactness)   
2.  Spectral (r,g,b,nir) 
3.  Texture 

[a] [

b] 

Localized Pixel  
Statistics 
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The OO approach increases the analytical ability of classification algorithms to 

classify objects within an image.  As stated by Maxwell and Zhang [2006], there are 

generally two steps needed in object-oriented classification: (1) segmentation, and (2) 

classification.  Objects cannot be classified if they are not isolated as segments from 

within a given image.   Image segmentation is the mechanism in which an image is 

partitioned into homogeneous segments and directly affects the accuracy of analytical 

results. 

 

1.2 Definition of Segmentation 

 

Image segmentation is the partitioning of an image into related sections or regions 

[Tilton, 2003].  Segmentation has existed for years in pattern recognition fields.  For 

technical details of traditional segmentation techniques, readers can refer to Pal and Pal 

[2003]. From an algorithmic perspective, image segmentation is generally divided into 

four categories [Schiewe, 2002]:  

 

1. Point-based; 

2. Edge-based; 

3. Region-based; and 

4. Hybrid/Combined 
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1.2.1 Point-based 

 

Point-based segmentation methods are generally performed by applying a global 

threshold(s) on individual pixels within an image.  Thresholds categorize a pixel into two 

or more clusters according to the given threshold function.  The choice of a threshold can 

be quite difficult in VHR imagery due to the dynamic variety of spectral information.  

Figure 1.3a shows a point based segmentation of the image in Figure 1.1b using 

thresholds based on known band ratios in remote sensing. 

 

1.2.2 Edge-based 

 

Edge-based methods attempt to use an edge detection filter to obtain the 

edges/contours of segments in a given image.  The tracing of these contours can be quite 

complex and, as Figure 3b indicates, the contours can be broken and incomplete.  This 

method is generally not applied to VHR imagery because of its complex features. 

 

 



 

 

 

9 

 
Figure 1.3: Results of point-based segmentation and contour tracing of 

QuickBird 2.44m MS Imagery.  [a] Point based segmentation [b] Sobel contour tracing. 
 

 

1.3.3 Region-based  

 

Region-based methods are either performed by either a) Growing regions from 

individual pixels or b) Splitting the image into individual sets of pixels and merging them 

back together.  Region growing involves growing pixels from one pixel in the image until 

certain specified threshold or conditions are met.  Split-Merge procedures involve 

splitting the image into smaller segments and then grouping them back together, 

according to specified measures of homogeneity.  Tilton [2003] offers an analysis of 

hierarchically related segmentations building on work presented by Beaulieu and 

Goldberg [1989].   

[a] [b] 
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Region based methods are the most popular method of VHR image segmentation.  

They are the foundation of the Fractal Net Evolution Approach (FNEA) developed for 

Definiens’ eCognition™ software (currently the most advanced commercial software for 

OO classification).  A detailed explanation of this approach can be found in Baatz and 

Scape [2002]. 

 

1.3 Importance of Segmentation 

 

Segmentation, as indicated earlier, is a necessary precursor to object-based 

classification.  The classification of objects can only be successful if the segmentation of 

the image is successful.  Geo-related applications for fields such as forestry, mapping, 

change detection and agriculture are depending more and more on segmentation for 

information extraction.  It is not practical for this process to be performed manually.  The 

amount of satellite imagery for most applications renders manual segmentation inefficient 

in that it is very time consuming. 

 

Segmentation, is therefore, directly significant to many applications in remote 

sensing such as urban planning, agriculture, land use mapping, and forestry. In forestry, 

Wang and Boesch [2007] demonstrate the results of segmentation on a key-issue of 

Forest delineation.  This is very important in aerial image interpretation.  Hu et al. [2005] 

demonstrate the success of image segmentation on the segmentation of land coverage 
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areas.  This type of segmentation is important to urban planning because land cover 

features can be cross referenced with census and other population related data.   

 

1.4 Problems and Restrictions 

 

This section presents some of the primary problems and restrictions in the 

segmentation of VHR imagery.  These are issues that require attention in the search for 

automatic segmentation techniques.  There are five designated points: 

 

1. Parameter Complexity; 

2. Operator Dependency; 

3. Consistency of Results; 

4. Fragmentation; and 

5. Time Complexity 

 

1.5.1 Parameter Complexity 

 

Most VHR image segmentation solutions are accompanied by a set of parameters.  In 

some cases these parameters can be quite complex and the number of parameters can be 

large.  The process by which parameters are chosen can at times be a process of trial and 

error.  As indicated in Moller et al, [2006], the wide range of variables to manipulate for 

segmentation can provide the user with drastically different results.  In that article, the 
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authors demonstrate a method to evaluate segmentations to resolve an optimal 

segmentation and thus reduce parameter complexity for the user.  Maxwell and Zhang 

[2006] introduced research for dynamically estimating parameters on a localized basis.  

Both of the above papers are examples of research into how to reduce the parameter 

complexity of segmentation.  This is a major challenge in the segmentation of VHR 

satellite imagery. 

 

1.5.2 Operator Dependency 

 

Operator dependency is directly related to other issues in segmentation such as 

parameter complexity.  Segmentation is generally more successful if the operator has 

previous experience with the imagery.  If the user is familiar with the segmentation 

system and parameters used to obtain proper segmentation results, the process can be less 

time consuming and produce desirable segmentations.  To reduce this dependency, 

segmentation must be more automatic and not be dependent on the prior knowledge of 

the operator. 

 

 

1.5.3 Consistency of Results 

 

One of the most serious problems in the segmentation of VHR imagery is the 

consistency of results from one scene to the next.  An algorithm may work on one image 
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scene and be completely inaccurate on the next.  Parameters set for one scene may have 

drastically different effects when applied to another scene.  This is shown in Figure 1.4 in 

an HSMR segmentation of two different urban scenes for land coverage.  Figure 1.4a 

shows the successful segmentation of a Boston suburban scene, while Figure 1.4b shows 

unsuccessful segmentation (over segmentation) as the same algorithm has problems 

segmenting the river from the other land coverage segments. 

 

 
Figure 1.4: Example of segmentation inconsistency using the same 

segmentation methodology with a static set of parameters.  [a] successful segmentation of 
land coverage in a suburban Boston, USA scene, and [b] unsuccessful (over) 

segmentation of land coverage in the city of Fredericton, NB Canada. 
 

1.5.4 Fragmentation 

 

Fragmentation is a key problem that exists in VHR image segmentation.  Artifacts or 

small pieces of information can be leftover from segmentation.  Fragmentation can also 

[

a] 

[

b] 

[a]              [b] 
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cause undesirable holes in regions.  This problem exists more predominately in some 

solutions than in others and can cause difficulties for successful classification.  Examples 

of fragmentation are shown in Figure 1.5. 

 

 
Figure 1.5: Fragmentation in segmentation of VHR satellite imagery. 

 

 

1.5.5 Time Complexity 

 

The performance of segmentation algorithms depends on the characteristics of the 

image under investigation [NG et al., 1996].  As indicated previously there is incredible 

amount of spatial detail in VHR imagery which leads to complex textures.  There have 

been a variety of texture measurements proposed in digital image processing and each 

measurement has a tradeoff between performance and feature discrimination.  Ojala and 

[a] [b] 
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Pietikainen [1996] proposed a computationally efficient texture measure using local 

binary patterns.  Texture can also be measured using entropy measures defined by 

Shannon and Weaver [1949].  Entropy and other measures like Grey Level Co-

Occurrence Matrices (see Parker [1996]) can provide efficient results but are 

computationally costly.  The choice and definition of texture is a major subject of 

research in image segmentation and, as indicated, can have effects on the computational 

complexity of the algorithm.  Chen et al [2006] provide and in-depth discussion on 

reducing the computational complexity for texture based segmentations. 

 

In addition, the time complexity of any given segmentation algorithm can be affected 

by mechanisms incorporated into the segmentation algorithm itself.  Whether these 

mechanisms are Neural Networks, Fuzzy Logic, Least Squares, or any other type of 

approach, they may introduce some time concerns into the algorithm.  A balance must be 

found according to the image content.  These mechanisms sometimes have their own set 

of parameters which can introduce more time complexity into the segmentation 

algorithm.  Fan et al [2008] detail the effects of a Support Vector Machine (SVM) on the 

segmentation of bacteria images. 

 

Finally, the size of an image can have effect of the time it takes to computationally 

process an image.  Given the bit depth of VHR imagery, the size of images can become 

quite large.  Depending on the machine, this can become quite cumbersome for any 

segmentation algorithm or application. 
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 1.6 Objectives 

 

The research goal of this research is to improve the segmentation of Very High 

Resolution (VHR) satellite imagery by addressing issues (consistency, fragmentation, 

etc.) outlined in section 1.5.  This HSMR framework for unsupervised segmentation is 

the basis for all of this research and the subject of improvement.  For this goal, a number 

of supporting objectives are identified: 

 

a. Create a method of a) reducing fragmentation; and b) improving consistency in 

the unsupervised HSMR segmentation approach; 

b. Create new methods of region description and region comparison that improve 

consistency, user dependency and time performance in the unsupervised HSMR 

framework; and 

c. Create a supervised HSMR segmentation algorithm that improves consistency and 

reduces parameter complexity. 

 

1.7 Methodology 

 

This section outlines the research that will be performed to meet the outlined 

objectives.  This research will be performed on QuickBird 2.44m MS imagery.  All 

algorithmic processes will be implemented using C++ programming language.  The five 

primary sections of the research are outlined as follows: 
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a. Review and implement the existing HSMR unsupervised image segmentation 

solution; 

b. Propose and implement methods for improving sections of the algorithm with 

regard to consistency and fragmentation; 

c. Propose and implement new methods of region description and comparison 

through Band Ratio development and Fuzzy Integration; 

d. Design and implement a supervised version of the HSMR algorithm; and 

e. Evaluate results. 

 

1.7.1 Review of Existing Solution 

 

For the purpose of understanding the limitations and restrictions of existing 

segmentation solutions, a version of the Hierarchical Split Merge Refinement (HSMR) 

framework for unsupervised segmentation will be implemented and tested.  There have 

been different implementations of the HSMR algorithmic framework for unsupervised 

region-based segmentation.  It was first introduced by Ojala and Pietikainen [1999] in 

their study of texture based segmentation.  It has been employed by Chen and Chen 

[2002] and more recently Hu et al. [2005] in the field of remote sensing.     In this task, 

the adaptive algorithm presented by Hu et al. [2005] will be implemented.  This adaptive 

algorithm has proven to be successful in the segmentation of land coverage categories. 
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1.7.2 Improvement of Existing Solution 

 

From the experience obtained in reviewing an implementation of the HSMR 

framework, two tasks will be performed: 

 

a. Revise the HSMR algorithm to improve the fragmentation in segmentation 

results; and 

b. Revise the HSMR algorithm to improve the consistency of segmentation 

results. 

 

1.7.3 New HSMR Solutions 

 

Using Fuzzy Logic as a basis for region comparison, two new HSMR solutions will 

be produced.  The first will use band ratios to introduce a certain prior knowledge to 

image segmentation.  It is hypothesized that this process will produce consistent land 

coverage segmentation results.  In the second implementation, the band ratio class 

development will be replaced by Fuzzy-ART.  In this version, certain knowledge will be 

obtained, dynamically, from the Fuzzy-ART clustering mechanism.  Figure 1.6 details an 

overview of these two new solutions. 
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Figure 1.6: Overview of Fuzzy Band Ratio (FBR) and Fuzzy-ART 

augmentations of the HSMR Framework. 

 

1.7.4 Supervised HSMR Solution 

 

A supervised HSMR solution will be developed for VHR image segmentation.  The 

building blocks for this solution will be: 

a. Knowledge gained from unsupervised region based research (detailed in the 

previous sections); 

b. Previous research proposed by Maxwell and Zhang [2006] on supervised 

segmentation; and 

c. The Fractal Net Evolution Approach (FNEA) that is the basis of Definiens’ 

eCognition™ Software’s solution for image primitives. 

 

     HSMR 
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Result 
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representation (FBR-HSMR) 
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The research detailed in sections 1.7.1 and 1.7.2 is based on unsupervised 

segmentation solutions.  This is the general practice of segmentation solutions.  The 

methodology proposed by Maxwell and Zhang [2006] is heavily dependent upon 

Definiens’ Software and MathLab.  The Maxwell and Zhang [2006] research developed a 

supervised method using fuzzy logic to merge image primitives, segmented by Definiens’ 

eCognition™, into objects.  The Maxwell and Zhang [2006] research proposed a method 

for dynamic parameter estimation.  It, however, is for localized objects and estimations 

for one object may or may not be successful for all objects in a given scene.  For details 

of the procedure, readers can refer to Maxwell and Zhang [2006].   

 

In the new solution of the present research, the author will work first with a 

supervised solution that combines the knowledge of a, b, and c above.  It is hypothesized 

that a supervised solution can be developed to improve segmentation of all objects in a 

scene rather than just individual objects. 

 

1.7.5 Evaluation of Results 

 

Regardless of any quantitative data, the results of segmentation are not successful 

unless they are pleasing to the eye.  Visual analysis will be the primary method of 

evaluation. If required, a method of segmentation evaluation will be developed to 

compare different approaches.  The results will be evaluated based on the following 

criteria: 
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a. Fragmentation; 

b. Consistency; 

c. Time; and 

d. Operator Dependency 

 

1.8 Overview of Each Chapter 

 

As stated above Chapter 1 gives information on VHR satellite imagery, 

segmentation, and problems associated with segmentation.  In addition the structure of 

this thesis is outlined to provide the reader with addition information to the bridging 

chapters. 

 

The paper in Chapter 2 addresses the methodology outlined in section 1.7.2 and 

1.7.3.  A review of the existing solution is presented in this paper with respect to the 

merging and refinement processes of the algorithm.  Through these investigations and 

developments, a solution is presented for improving fragmentation and consistency in the 

HSMR algorithm by: 

 

1. An improved refinement algorithm. 

2. An improved method of halting the merging processes of the HSMR. 
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The primary focus of the paper in Chapter 2, however, is the introduction of a prior 

knowledge to segmentation through Band Ratios and Fuzzy Logic.  This paper 

demonstrates how Band Ratios can be applied to the segmentation of VHR images to 

improve segmentation results.  Chapter 3 bridges the research presented in Chapter 2 to 

the research in Chapter 4. 

 

The paper in Chapter 4 is an expansion of the work presented in Chapter 2.  In this 

research Fuzzy Adaptive Resonance Theory (ART) is presented to replace the work of 

Band Ratios.  These experiments attempt to validate the use of an unsupervised clustering 

of the input image to further automate and improve the research presented in Chapter 2.  

This work is part of the methodology discussed in section 1.7.3.  Chapter 5 bridges the 

research of Chapters 2 and 4 to the new supervised approach presented in Chapter 6. 

 

The paper in Chapter 6 is the presentation of the supervised HSMR solution 

developed and discussed in section 1.7.4.  This research presents a supervised solution 

that demonstrates how user parameter complexity is reduced to enable more control to 

the segmentation of VHR images. 

 

A final summary chapter (Chapter 7) contains the conclusions of all the papers 

presented in this thesis.  Recommendations for further research are discussed.  The 

software design is included in the Appendices. 
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CHAPTER 2                                                                                            

REGION BASED SEGMENTATION OF QUICKBIRD 

MULTISPECTRAL IMAGERY THROUGH BAND RATIOS AND 

FUZZY COMPARISON 

 
 
This chapter contains a journal paper which was originally published as: 
 
Wuest, B., and Y. Zhang (2008). “Region Based Segmentation of QuickBird 

Multispectral Imagery through Band Ratios and Fuzzy Comparison.” ISPRS 
Journal of Photogrammetry and Remote Sensing, (Accepted for publication, July, 
2008) 

 

The first author developed the algorithm and methodologies for the research presented in 
this paper.  The second author gave advice in the research and journal paper writing.  For 
the sake of clarity, the paper included in this chapter has been slightly edited. 
 

 

 

Abstract 

 

 The continued advancements in satellite sensor technologies have increased the 

number of objects that can be discriminated within satellite imagery.  Effective 

segmentation of high resolution satellite imagery is currently a hot topic of research.  

Existing segmentation algorithms and applications contain many parameters and options 

which require the operator to select a proper set of parameters for a given data set.  The 

setting of these parameters can be quite tedious and the same set of parameters may or 
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may not work from one high resolution satellite image scene to the next.  This paper 

presents a modification of a region based approach for unsupervised segmentation of high 

resolution satellite imagery as a solution to segmentation of land use coverage in 

QuickBird multispectral 2.44m imagery.  This type of segmentation is important to a 

variety of applications such as land use classification and urban planning.   

 

 All region based segmentation approaches require a method for representing 

image regions/segments and judging the similarity between two given image 

regions/segments.  In the proposed modification of this paper, region description is 

provided through the integration of band ratios.  Region similarity measures are 

performed using Fuzzy Logic.  The Hierarchical Split Merge Refinement (HSMR) 

algorithmic framework for unsupervised image segmentation is the foundation for this 

modification.  In addition, this paper improves upon the merging and refinement 

processes of the HSMR algorithm.  Test results demonstrate stable segmentation of land 

use areas across a variety of high resolution satellite images.    

 

2.1 Introduction 

 

 Traditionally, remote sensing image classification has employed pixel-based 

procedures.  These methods generally do not segment a given input image.  Pixel based 

methods look to classify individual pixels through supervised or unsupervised classifiers 

such as Maximum Likelihood, K-Means, Multi-Layered Perceptrons and Fuzzy Adaptive 
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Resonance Theory (ART) [Liu et al, 2006].  Statistical measurements on individual pixel 

digital numbers (DNs) form inputs to these classifiers to classify individual pixels into 

pre-defined classes.  It can be quite time consuming to obtain high levels of classification 

accuracy, using certain pixel based methods such as neural networks or fuzzy based 

classifiers, even on lower resolution imagery.   This is shown by Aitkenhead and Dyer 

[2007] in their neural network based approach for improving land cover classification in 

Landsat TM imagery.  Although pixel based methods have proven to be a generally 

successful method for classification of lower resolution satellite imagery, the 

advancements in image spatial resolutions have placed limitations on pixel based 

approaches and inadvertently led to new research activities for classification of high 

resolution satellite imagery.  The object oriented paradigm is the basis for a majority of 

this research. 

 

 Object oriented classification asserts that regions/segments of an image are 

classified rather than individual pixels.  The main advantage of object oriented methods is 

that researchers can analyze groups of pixels rather than individual pixels.  As indicated 

by Benz et al. [2004], the close relationship between real-world objects and image objects 

provides a meaningful advantage to object-based methods.  The object oriented paradigm 

can be combined with pixel based methods to form hybrid classification methods.  

Shackelford and Davis [2003] used Maximum Likelihood classification to partition pixels 

into broad categories and then employ a Fuzzy Classifier to provide refined object 

classification.  A precursor to object oriented classification, however, is image 

segmentation.  Objects cannot be classified if they are not isolated from within a given 
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image.  Segmentation represents the first step of any object based image analysis 

[Conchedda et al, 2008] and directly affects the quality of results.    

 

 There are many different approaches to the segmentation of high resolution 

imagery.  Definiens eCognition™ software has emerged as a useful tool to experiment 

with parameters for segmentation within the object oriented paradigm.  The segmentation 

approach employed by Definiens is detailed in Baatz and Schape [2000] and Benz et al. 

[2004].  A number of research endeavors have employed either the Definiens software or 

the underlying segmentation approach employed by Definiens.  Examples can be found 

in Conchedda et al. [2008],  Hay et al. [2003], Mallinis et al. [2008] and Xie et al. [2008] 

(to name a few).  Image segmentation, from an algorithmic perspective, is generally 

divided into four categories: a) point-based, b) edge-based, c) region-based and d) 

combined [Schiewe, 2002].  For technical details of segmentation techniques, readers can 

refer to Pal and Pal [2003].  In this paper, the authors will focus on the modification and 

improvement of an unsupervised, region based, segmentation algorithmic framework, 

known as the Hierarchical Split Merge Refinement (HSMR) segmentation framework.   

 

 The HSMR framework was first introduced by Ojala and Pietikainen [1999].   It 

has been employed by Chen and Chen [2002] and more recently by Hu et al. [2005] in 

the field of remote sensing.  Ojala and Pietikainen [1999] presented this framework to 

demonstrate the separation of textured regions in an image.  Chen and Chen [2002] 

expanded on this work by introducing color measurements with slightly different 

algorithmic merging parameters.  Hu et al. [2005] offered a thorough expansion of this 
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framework by combining the textural ideas of Ojala and Pietikainen [1999] and color 

concepts of Chen and Chen [2002] in an adaptive approach.  The methodology by Hu et 

al. [2005] does not limit measurements to a single feature but rather adaptively decides 

how to compare regions depending on their properties.   

 

      As stated by Hu et al. [2005], there are two key ingredients to the HSMR 

algorithmic framework for image segmentation, 

• Region Representation; and 

• Region Comparison. 

Region representation is the method in which an image segment/region is 

represented mathematically.  A region can be represented by any kind of measurement on 

the pixel digital numbers (DNs) within the image region such as color, texture, and area.  

A region can also be represented by shape characteristics such as compactness, 

smoothness and circularity.  A histogram distribution has been the popular approach to 

region representation for integration with the HSMR algorithmic framework.  Ojala and 

Pietikainen [1999] presented a texture-based region descriptor using a two-dimensional 

distribution of Local Binary Pattern and Contrast (LBP/C).  Hu et al. [2005] also 

presented region representation as one and two-dimensional distributions of regions 

features.  They employed saturation and hue as the features for a two-dimensional 

histogram representing the color of a given image region.  A comprehensive review of 

other methods of region representation can be found in Trias-Sanz et al. [2008]. 
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Region comparison is the method in which two image regions are compared based 

on their representation.  There have been different methods for which region comparison 

has been presented for integration with the HSMR algorithmic framework.  Ojala and 

Pietikainen [1999] employed a log-likelihood-ratio (G-Statistic) for judging region 

similarity.  The G-Statistic indicates the probability that the information from two image 

regions come from the same population.  Hu et al. [2005] used the correlation between 

feature histograms from two regions as a basis for their adaptive region similarity 

measure.  Histogram correlation is dependent upon the resolution and dimensionality of 

the data.   

 

 This paper presents a Fuzzy Band Ratio (FBR) HSMR solution.  This is a new 

HSMR modification which integrates band ratios and a fuzzy based similarity measure.   

In the new HSMR modification, region representation is calculated using the density of 

common land cover classes, such as vegetation, water, and urban features in a given 

region.  Land cover information is calculated through band ratios.  Using these methods 

for region representation, a Fuzzy Logic system is presented for region comparison.  The 

purpose of this approach is to segment land cover categories in QuickBird 2.44 MS 

satellite imagery.  With the integration of band ratios, this approach brings certain prior 

knowledge of image content to segmentation to provide consistent land cover 

segmentation in high resolution satellite imagery.  In addition, this paper proposes 

modifications to HSMR merging and refinement processes to improve the overall 

segmentation result.   Results of the Fuzzy Band Ratio (FBR) solution and generic 
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HSMR modifications demonstrate a viable solution for land cover segmentation of 

QuickBird multispectral 2.44m imagery.   

 

 

2.2 Background  

 

 The Hierarchical Split Merge Refinement (HSMR) segmentation framework was 

first proposed by Ojala and Pietikainen [1999].  As Figure 2.1 indicates, the framework 

consists of three essential stages in which i) the input image is split into a set of objects 

where uniformity measures fail, ii) resulting objects are merged into a set of approximate 

objects under a Merge Importance (MI) criterion and  iii)  the approximated objects are 

refined using localized border measures. All sections of this segmentation framework 

operate under the restrictions of a predetermined approach for region description and 

comparison.    

 

 
Figure 2.1: The three essential stages of Hierarchical Split Merge Refinement 

(HSMR)   - an unsupervised segmentation framework. 

  

ii) Agglomerative Merging  
 

 

 

 

 

 

iii) Localized Refinement   i) Hierarchical Splitting  
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 The following sub-sections will discuss the HSMR merging and refinement 

processes for further understanding the proposed algorithmic modifications to be 

discussed in the methodology section of this paper.  For complete details of the HSMR 

decision processes, including hierarchical splitting (not discussed here), readers can refer 

to Ojala and Pietikainen [1999]. 

 

2.2.1 Agglomerative Merging 

 

 Agglomerative merging is an iterative process, introduced by Ojala and 

Pietikainen [1999].  Ojala and Pietikainen [1999] define a Merger Importance (MI) value 

on a possible merge between two image regions/segments.  The process can be viewed as 

a global best fitting approach in which all possible merges, at a given merge iteration, are 

evaluated by their MI.  Equation (2.1) is the original definition of MI defined by Ojala 

and Pietikainen [1999] which uses the distance G between the two image regions.  

Equation (2.2) is the MI definition proposed by Chen and Chen [2002] which uses the 

similarity H between the two image regions.  In both equations, p is the area of pixels of 

the smaller of the two given image regions.   

 

                                                                      (2.1) 

                                                                         (2.2) 
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 Table 2.1 tabulates the optimal selection method, merging stop condition and 

corresponding thresholds for each definition of MI.  In Table 2.1,  is the MI 

optimally selected for a given merge iteration. As shown in Table 2.1, the optimal 

selection depends on the definition of MI.   and  are the maximum and 

minimum MI found up to the current merge iteration. ,  and  are predefined 

thresholds set on the agglomerative merging process.  These thresholds are set by the user 

prior to segmentation. 

 

  

Table 2.1: Optimal selection methods and stop conditions for different MI 
definitions. 

MI Definition Optimal Selection Merge Stop Condition (MSC) 

Equation (2.1) MIN(MI)  

Equation (2.2) MAX(MI)  

 

2.2.3 Localized Border Refinement 

 

      Localized border refinement was originally proposed by Ojala and Pietikainen 

[1999] in their study of unsupervised texture segmentation.  The iterative process is 

detailed by the following steps, 

• All boundary pixels  are found and marked; 
• Each  is then inspected by placing a disc of radius  around the pixel; 
• The distance  between the disc and any connected region is calculated; and 
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• The body containing the smallest distance  is recorded.  If this body is not 
the body to which  is currently assigned to and there is at least one 4-
connected pixel in the neighborhood of the boundary to the new body 
assignment then the pixel is moved. 

 

This process is repeated iteratively on pixels in the neighborhood of pixels that were 

relabeled on the previous sweep.  Ojala and Pietikainen [1999] proposed that sweeps are 

continued until no pixels are re-labeled or until a set maximum number of iteration is 

reached.  Chen and Chen [2002] expanded this by proposing that the distance  be 

replaced by a score measure .  In this measure, is the similarity of 

the regions while  represents the number of 4 neighbors of  which are labeled to 

the ath region.  The Chen and Chen [2002] score measure reduces fragmentation in 

segmentation results. 

 

2.3 Methodology 

 

 This section outlines the proposed Fuzzy Band Ratio (FBR) HSMR solution along 

with the proposed HSMR algorithmic modifications.  As stated earlier, the HSMR 

segmentation framework requires a method of region description and region comparison 

to make unsupervised decisions in splitting, merging, and refining image regions.  The 

proposed approach to region description employs band ratios as a foundation to bring 

certain prior knowledge into the segmentation decision processes.  Using this region 

representation, a Fuzzy system is presented to perform region comparison for HSMR 

processes.  Figure 2.2 outlines an overview of the integration presented. 
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Figure 2.2: Overview of Fuzzy Band Ratio (FBR) HSMR solution and generic 

HSMR algorithmic modifications. 
 

2.3.1 Integration of Band Ratio to Region Description 

 

 Five classes of interest: Forest (F), Grass (G), Soil (S), Water (W), and Urban (U) 

corresponding to general land cover classes found in remote sensing imagery are used in 

this integration.  The Normalized Difference Vegetation Index (NDVI) proposed by 

Tucker (1979), a Water Ratio Index (WRI) from discussion in Navulur (2007) and the 

blue/red ratio are employed to identify suspected pixels belonging to each class. 

 

             (2.3)  

                         (2.4) 

                                (2.5) 
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 In addition, entropy is employed as a texture measurement to separate the classes 

of Grass (G) and Forest (F) (see Figure 2.3).  Figure 2.3.b is the NDVI ratio image where 

Forest (F) and Grass (G) are spectrally separable as a group.  In Figure 2.3.c, the entropy 

ratio image demonstrates the separation of the two land cover classes isolated by the 

NDVI.  Equation (2.6) is Shannon and Weaver’s entropy equation [Shannon and Weaver, 

1949].  This equation calculates the entropy of a given green pixel (G) using the 

probability distribution function (PDF) of the 3x3 localized window. 

 

                                   (2.6) 

 

 In Equation (2.6), [M,N] is dynamically determined from the PDF of the green 

image band.  This range encompasses the majority of the information in the green PDF 

and is used to avoid including noise in the local entropy calculations. In Equation (2.6), 

 is the probability associated with  in the given local window. 

 

 
Figure 2.3: NDVI ratio and green band entropy image demonstrating the 

separation of Forest (F) and Grass (G).  (a) Original (b) NDVI ratio image and c) Green 
entropy image. 

(a) (c) (b) 
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 Each class is represented by a band ratio function (BRF) which defines a class 

membership condition (see Table 2.2). The band ratio functions (BRFs) produce a value 

of 1 if a given pixel meets the conditions of the function for the class. 

Table 2.2: Band Ratio Function Class Membership Conditions 
CLASS ( c ) Band Ratio Function Class Membership Condition 

 

Forest (F) 

 

NDVI > 0.55 AND H(G) >= 0.1 

 

Grass (G) 

 

NDVI > 0.55 AND H(G) < 0.1 

 

Water (W) 

 

WRI <= 2.5 

 

Soil (S) 

 

(NDVI <= 0.55 AND NDVI >= 0.2) AND 

 (B/R) <= 1.5 

 

Urban (U) 

 

(NDVI < 0.2) AND (WRI > 2.5) 

 

        Using the band ratio functions, image regions can be described by their class 

densities.  For any given region, the density d for a class c is obtained by the ratio of the 

sum of the BRF for that class within the region’s pixels over the region’s total area (in 

pixels).   
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                                (2.7) 

 

 In Equation (2.7),  c represents the pre-defined class and r represents the image 

region.  is the band ratio function corresponding to class c.  Using the densities of 

all predefined classes, a class density vector (CDV) is produced to describe a given image 

region.  Equation (2.8) outlines the CDV for an image region r. 

 

          (2.8) 

 

 Figure 2.4 displays some example image regions and their corresponding density 

vectors.  While Figure 2.4.b shows a region with approximately 28% forest, 20% grass, 

10% soil, 0% water and 10% urban, Figure 2.4.a shows a region containing 

approximately all water. 

 

 
Figure 2.4: Sample regions and their corresponding class density vectors. 

 

 Image Region r 

[a] 

[b] 

{ 0.00, 0.00, 0.00, 0.94, 0.00 } 

{ 0.28, 0.20, 0.10, 0.00, 0.10 } 
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2.3.2 Fuzzy integration in HSMR decision processes 

 

 

 The processes of the HSMR algorithmic framework require a method of 

comparing regions.  For more in-depth details of HSMR processes, readers can refer to 

Ojala and Pietikainen [1999].  In this research, a Fuzzy System is presented to evaluate 

the similarity of two image regions.  The Fuzzy Similarity System (FSS) produces a 

value in the range [0, 1], where 0 indicates that there is no similarity between the two 

image regions and 1 indicates extreme similarity.  There are three fuzzy input variables 

(introduced in Table 2.3) employed by the proposed Fuzzy Similarity System (FSS).  The 

first two variables in Table 2.3 are measurements on the class density vectors (CDV) of 

two given image regions.  These variables measure the common class density (Common 

Density) and the difference in class density (Density Dissimilarity).  The equations for 

Common Density (CD) and Density Dissimilarity (DD) are presented in Equations (2.9) 

and (2.10).  In both equations, and  are the two image regions for comparison.  

 

                                                 (2.9) 

 

      In Equation (2.9), the fuzzy min intersection operator is applied to the 

corresponding class density vectors elements from each image region.  The sum of the 

resulting vector yields the common class density between the two regions in question. 
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        (2.10) 

 

As indicated in Equation (2.10), DD is the Euclidean distance between the class 

density vectors for the two given image regions.  The third variable, Area Ratio (AR), is 

the ratio of the minimum region area over the maximum region area.  

 

                                        (2.11) 

 

 In Equation (2.11), and  are the image regions being compared.  A(x) is the 

area in pixels of region x.   

Table 2.3: Fuzzy System Input Variables (Graphical Details in Figure 2.5) 

Variable Fuzzy Number Set Linguistics 

Common 

Density (CD) 

{ (0.0,0.0,0.05,0.1), (0.05,0.1,0.25,0.30), 

(0.25,0.30,0.60.0.65), (0.6,0.65,0.8,0.85), 

(0.8,0.85,1.0,1.0) } 

 

{ no cd, low cd, medium 

cd, high cd, full cd } 

 

Density 

Dissimilarity 

(DD) 

 

{ (0.0,0.0,0.20,0.25),(0.20,0.25,0.45,0.50), 

(0.45,0.50,0.70,0.75), (0.70,0.75,1.0,1.1), 

(1.0,1.1,1.5,1.5)} 

 

{ no dd, low dd, medium 

dd, high dd, full dd }   

Area Ratio 

(AR) 

{ (0.0,0.0,0.1,0.15), (0.1,0.15,1.0,1.0) } { low ar, high ar} 
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 A graphical representation of FMS inputs and outputs is provided in Figure 2.5.  

The universal discourse of FMS system output Similarity (S) is defined as S = { no 

similarity, low similarity, medium similarity, high, similarity, full similarity }  = { ns, ls, 

ms, hs, fs } and is illustrated graphically in Figure 2.5.d.  S is represented by the set of 

fuzzy numbers α  = { (0.0,0.0,0.10,0.20), (0.1,0.30,0.30,0.50), (0.30,0.50,0.50,0.70), 

(0.50,0.70,0.70,0.90), (0.80,0.90,1.0,1.0) }.  The complete rule base for the FMS is 

displayed in Table 2.4. 

 

 
Figure 2.5: Fuzzy membership functions for FMS input and output variable(s). 

a) Common Density, b) Density Dissimilarity, c) Area Ratio and d) Similarity. 
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Table 2.4: Fuzzy Similarity System (FSS) Rules 

Rule Condition 

1 IF (ncd OR fdd) OR (lcd AND hdd) THEN ns 

 

2 IF (lcd and mdd) OR (mcd AND hdd) OR (mcd AND mdd and har) OR (hcd 

AND hdd AND har) THEN ls 

 

3 IF (lcd AND lar AND (ndd OR ldd)) OR (mcd AND lar AND mdd) OR (hcd 

AND lar AND hdd) OR (hcd AND har AND mdd) OR (fcd AND hdd) THEN 

ms 

 

4  IF (lcd AND ldd AND lar) OR (mcd AND har AND (ndd OR ldd)) OR (hcd 

AND mdd AND lar) OR (hcd AND ldd AND har) OR (fcd AND mdd) THEN 

hs 

 

5 IF ( NOT(ncd) AND lar AND ndd) OR ( NOT(ncd OR lcd) AND lar AND ldd) 

OR ( (hcd OR fcd) AND ndd)  OR (fcd AND ldd) THEN fs 

 

2.3.3 Agglomerative Merging Modifications 

 

 As illustrated in Table 2.1, definitions of MI are accompanied by a corresponding 

merging stop condition.  In this modification, a merging stop condition is proposed for 
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both definitions of Merger Importance (MI).   The basis of this approach is the measure 

of distance (D) between all remaining objects and their neighbors at a given merge 

iteration.  It is observed that when merging is approaching an optimal solution, a) the 

average distance between neighboring objects is substantially increasing and b) the 

variance of distance between neighboring objects is substantially decreasing.  This is 

shown graphically in Figure 2.6.  As the optimal merging solution is approached (in this 

case iteration 2383), is increasing and is decreasing substantially. 

 

 
Figure 2.6: The graphical representation of  and   as merging is 

approaching optimal merging result (2383) 

 

  

It is impossible to set a hard threshold on  or on  because of the 

considerable variety in satellite image scenes.   What can be measured, however, is the 

ratio of  at the current merge iteration over  at the previous iteration.  
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                                                                             (2.12) 

 

In Equation (2.12),   is the current iteration and  and  are the 

standard deviation of the distances between neighboring objects at the current and 

previous merge iterations.  Figure 2.7 graphs  over the iterations shown in 

Figure 2.6.  As the optimal merging solution is approached (iteration 2383) the sigma 

ratio is decreasing drastically. 

 

 
Figure 2.7: The graphical representation of   over the iterations 

shown in Figure 2.6.  There is a steep decrease as the optimal merging is approached. 

  

  In the proposed modification, a merging threshold (MT) is defined on 

 as a merging stop condition. The setting of MT is dependent upon the 

similarity measure employed by the HSMR algorithm.  For the FBR integration, 

presented in this paper, it was empirically determined that 0.9 was a good measure for 

MT.   
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2.3.4 Pixel-wise Refinement Modifications 

 

 In this study, two problems were observed in the pixel wise refinement process, 

• Non-contiguous Regions; and 

• Similar Neighbors. 

 

 When a region becomes non-contiguous it should be viewed as two regions 

instead of one.   The existing refinement algorithm does not account for this refinement 

behavior.  This is represented in Figure 2.8.  In Figure 2.8.a the regions for refinement (A 

and B) are close to one another.  In Figure 2.8.b it is demonstrated how region B refines 

itself through region A.  This causes region A to be non-continuous.  The desired 

refinement result of A is presented in Figure 2.8.c. 

 

 
Figure 2.8: Non-contiguous and similar regions and the desired result.  [a]  

Example region scenario.  [b] Refinement result using traditional refinement algorithm.  
[c]  The desired result. 
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 When two neighboring regions are very similar, they should be merged together.   

If they are not merged together they will continue to fight for border pixels and cause the 

number of iterations required for refinement to increase dramatically.  Figure 2.8.b 

demonstrates this issue, showing region B and C next to each other fighting for boundary 

pixels.  The desired result is represented in Figure 2.8.c where region C is merged into 

region B. 

 

To combat these problems with segmentation the following iterative process is 

proposed: 

• Process the image using the improved score measure by Chen and Chen 
[2002] in the algorithmic approach presented by Ojala and Pietikainen [1999]; 

• Collect all the continuous regions in the image determined by this process; 
• Count the regions collected.   Stop if over 5 iterations or if the number of 

regions is equal to that of the previous iteration; 
• Identify all the boundary pixels; and 
• Return to step 1. 

 

    This process is repeated until the number of continuous regions collected is equal 

to the number collected at the previous iteration or a maximum number of iteration has 

been reached.  Through empirical observation, it was determined that most scenes will 

reach a common region count within 5 iterations.   

 

    The above iterative process addresses the problem of non-contiguous regions.  In 

addition, during border pixel inspection, the similarity between bordering regions is 

calculated.  If the similarity between the regions is over a Threshold T, the regions in 
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question are immediately merged.  A similarity threshold of 0.85 is employed to ensure 

that there is strong similarity between two adjacent regions.  If two regions are merged in 

this procedure, the border of this new region is marked for further inspection. 

 

2.4 Experiments  

 

 The proposed Fuzzy Band Ratio (FBR)  HSMR solution and generic HSMR 

modifications were tested using QuickBird multispectral 2.44m imagery.  The test 

imagery presented here contains scenes with a variety of land cover classes.  This 

includes areas containing water features, urban development, and a variety of vegetation 

and soil areas.   The image size employed for all test scenes is 512 x 512 pixels.   

 

 A number of parameters were set on the FBR HSMR algorithmic framework.  

Unless otherwise indicated, the hierarchical splitting parameters for maximum window 

size (  ) and minimum window size (  ) were set to 64 and 8 respectively.  The 

splitting trigger X for hierarchical splitting used by these tests is 1.1.  The splitting trigger 

X is a parameter to the hierarchical splitting processes of the HSMR.  For more in-depth 

details regarding hierarchical splitting or any of the mentioned HSMR parameters, 

readers can refer to Ojala and Pietikainen [1999].  In agglomerative merging, MT is set to 

0.9 for all FBR results. Within pixel-wise refinement, the maximum number of iterations 

is 300 and refinement is stopped when no more border pixels are available for inspection.    
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2.4.1 Multispectral Image Segmentation 

 

 The results of the Fuzzy Band Ratio (FBR) HSMR on QuickBird multispectral 

2.44m imagery are displayed in Figure 2.9.  The results demonstrate the segmentation of 

land cover classes.  Figure 2.9.a demonstrates the ability to distinguish tree areas, mixed 

tree and grass areas from the more urban cover in a suburban scene.  In Figure 2.9.b the 

FBR HSMR performs quite well on a very difficult suburban scene.  For the result in 

Figure 2.9.b,   is set to (8, 32) because of the scene complexity.  Figure 2.9.c 

presents another scene similar to Figure 2.9.a.  Figure 2.9.d is a port scene with a large 

amount of water.  The urban features are separated from the vegetation and water 

correctly. 
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Figure 2.9: Automatic segmentation of QuickBird 2.44m multi-spectral 

imagery using the proposed FBR HSMR with generic algorithm modifications. 
  

 

 

[a] [b] 

[c] [d] 
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2.4.2 Comparison with Color Based Segmentation 

 

 Figure 2.10 shows a comparison between FBR and RGB based segmentation.   

The distance measure for this RGB segmentation is the average of the correlation 

between the three color bands (a simple approach).  Because the RGB measure is based 

on correlation, a dynamic range for  of (16, 64) is employed.  As is indicated 

in Figure 2.10.b, the RGB based segmentation has difficulty in several places.  The 

algorithm settles on multiple water regions because of the color variation in the water.  

The small island region in the top right is over merged into the water and a large scale 

urban feature in the bottom right is segmented as part of a water region.  This example 

demonstrates how the prior knowledge introduced by the FBR HSMR enables 

segmentation to collect the proper regions for identifying land cover. 
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Figure 2.10: FBR comparison with RGB based segmentation of scene Figure 

2.9.d.  a) FBR Segmentation with MT = 0.90.  b) RGB based segmentation using 
proposed HSMR modifications with MT = 0.95.  Problems circled from top to bottom 
identify: i) an over merged island, ii) over segmented water areas and iii) inclusion of 

urban features with water regions. 
 

2.4.3 Modified Agglomerative Merging  

 

 The proposed modifications implement a method for halting the agglomerative 

merging process.  As indicated earlier, the merging threshold (MT) was set to 0.90 for all 

FBR HSMR experiments.  Experiments were performed to determine if the proposed 

modifications would be successful and consistent on different MI definitions.  These 

results were compared against the previously defined merge stop conditions for different 

MI definitions (see Table 2.1).  Figure 2.11 displays these results, which demonstrate that 

[a] [b] 



 

 

 

50 

the modified merging is able to perform consistently on different MI definitions in FBR 

segmentation.   

 

 For the MI defined in Equation (2.2), the thresholds for  and  were set to 0.68 

and 0.09 in accordance with the published parameters (see Chen and Chen [2002]).  The 

threshold for the MI defined in Equation (2.1) was set to 1.5.  Figure 2.11 displays two 

images.  For each image there are four segmentation results displayed (a, b, c and d).  

These results, explained by letter are:  a) Proposed merging with MI definition from 

Equation (2.2); b) Proposed merging with MI definition from Equation (2.1); c) MI 

defined in Equation (2.2) and its corresponding merging method; and d) MI defined in 

Equation (2.1) and its corresponding merging method.  Through FBR HSMR testing, the 

proposed merging modifications were found to be as successful as the Chen and Chen 

[2002] merging approach and more consistent than Ojala and Pietikainen [1999] merging 

approach.  This is apparent in Figure 2.11. The images in Figure 2.11.1.d and 2.11.2.d are 

both under segmented. 
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Figure 2.11: Results of FBR HSMR Segmentation with modified agglomerative 

merging.   
 

[2c] [2d]
] 

[2b] [2a] [2] 
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[1d] [1c] 

[1b] 



 

 

 

52 

2.4.4 Modified Pixel-wise Refinement 

 

Figure 2.12 demonstrates the effects of our improved pixel-wise refinement, which 

addresses non-contiguous regions and similar neighboring regions.  In Figure 2.12.a and 

Figure 2.12.b the original specifications proposed by Ojala and Pietikainen [1999] and 

the proposed Fuzzy Band Ratio solution are employed.  The distance measure proposed 

by Ojala and Pietikainen [1999] is employed in Figure 2.12.a and the score measures, 

proposed by Chen and Chen [2002] are employed in Figure 2.12.b.  Fragmentation 

(indicated in Figure 2.12.a) in this scene is removed but there is still a small redundant 

region that really belongs to the region of mixed grass and soil.  In Figure 2.12.c the 

results of the Fuzzy Band Ratio HSMR using the score measures of Chen and Chen 

[2002] and the refinement modifications are displayed.  Fragmentation and the redundant 

region are not present in Figure 2.12.c. 

 

 
Figure 2.12: Results of the proposed Fuzzy Band Ratio (FBR) HSMR solution 

with different refinement parameters.  a) distance measure from Ojala and Pietikainen 
[1999], b) score measures from Chen and Chen [2002], c) proposed refinement 

modifications with score measures from Chen and Chen [2002]. 
 

[c] [b] Redundancy [a]  Fragmentation 
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2.5 Discussion and Conclusions 

 

 This paper presents a Fuzzy Band Ratio (FBR) HSMR solution for segmentation 

which involves, i) the integration of band ratios to region description and ii) Fuzzy Logic 

based similarity measure.  The experiments demonstrate that the proposed FBR HSMR 

solution presents another promising method for high resolution image segmentation using 

the HSMR framework.  The proposed band ratio integration for region representation 

provides a means for this unsupervised segmentation framework to identify objects of the 

same categories consistently.  It provides the framework with a certain prior knowledge 

of the content in a given image.  Decisions for splitting, merging and refinement are 

made using this knowledge through the proposed fuzzy similarity system. 

 

The proposed fuzzy similarity system for region comparison is not as prone to 

inaccuracy in smaller region sizes as other similarity measures (such as correlation).  As a 

result, the initial block sizes (the minimum and maximum window sizes  

used by the initial splitting component of the HSMR algorithm) employed by the 

proposed integration are in a greater dynamic range than past research. A = 

(8, 64) is employed by the proposed integration, whereas the majority of other HSMR 

research has reported  [Hu et al., 2005, Chen and Chen, 2002].   

The proposed integration is able to operate using  for some imagery 



 

 

 

54 

but overall consistency was observed to occur using .   This 

increased dynamic range leads to more optimal region approximation.   

 

 The proposed modifications to HSMR merging and refinement processes improve  

the existing HSMR algorithmic foundation. As demonstrated in the experiments section, 

the refinement modifications produce a more consistent refinement by removing the 

possibility for non-continuous regions and region redundancy.  Without these 

modifications, the refinement process can be time consuming and produce variable 

results depending on slight adjustments in the merging process.  The integration of the 

proposed agglomerative merging modifications with both the MI definitions (Ojala and 

Pietikainen [1999] and Chen and Chen [2002]) is demonstrated successfully.  These 

merging modifications are found to be more consistent over a variety of imagery in 

reducing undesired segmentation results. 

 

 The wide range of scenes in high resolution satellite imagery may inhibit the 

proposed algorithm from performing perfectly every time.  However, as has been 

demonstrated, the method is quite capable of segmenting regions into rough land 

coverage classes.  Although there is still room for future improvements, such as 1) 

dynamic category/class determination, 2) simplification of Fuzzy System Inputs, and 3) 

dynamic parameter selection, we conclude that the experiments presented here are viable. 
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CHAPTER 3                                                                                         

DYNAMIC CLASS DEVELOPMENT 

 

The research presented in Chapter 2 (the FBR HSMR solution) works of the premise 

that classes of interest are statically defined.  The statically defined land cover classes 

introduce a prior knowledge to segmentation but they also restrict segmentation to the 

confines of these classes.  For example, the land cover classes of Forest, Grass, Soil and 

Water do not fare very well in dense urban environments which contain many 

concrete/impervious features. Thus, the FBR HSMR is a good solution to the 

segmentation of land coverage in smaller urban environments but it can prove to be 

restrictive for some other types of satellite image scenes.  This research is expanded in 

the paper presented in Chapter 4 in attempt to reduce this restriction and improve the 

automation of the FBR HSMR. 

 

In the following chapter, an experiment is presented to augment the FBR HSMR 

solution to one that dynamically estimates the classes in a given image based on a set of 

features.  The features for class development can be any localized measure on a given 

pixel (i.e. intensity, red value, etc).  Fuzzy Adaptive Resonance Theory (ART) is 

employed to cluster these measurements into a set of classes automatically.  This self 

organizing clustering mechanism allows the classes in the image to be estimated 

dynamically.  When the clustering conditions change (i.e. Fuzzy ART uses a different 

feature set), the number of determined classes is subject to change.  These experiments 
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were performed in the hopes of further automating the FBR HSMR processes and 

reducing the restrictions of the statically defined land cover classes. 
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CHAPTER 4                                                                                             

REGION BASED SEGMENTATION OF QUICKBIRD IMAGERY 

THROUGH FUZZY INTEGRATION 

 
This chapter contains a conference paper which was originally published as: 
 
Wuest, B., and Y. Zhang (2008). “Region Based Segmentation of QuickBird 

Multispectral Imagery through Fuzzy Integration.” Proceedings of the ISPRS XXI 
Congress,  Beijing, China, 3-11 July, pp. 491-496. 

 

The first author developed the algorithm and methodologies for the research presented in 
this paper.  The second author gave advice on structuring the paper.  For the sake of 
clarity, the paper included in this chapter has been slightly edited. 

 

 

Abstract 

 

The automatic segmentation of land cover features, within very high resolution 

(VHR) satellite imagery, is a complex task which is important to geo-spatial applications 

such as urban planning, crop monitoring and change detection.  The dynamic grey-value 

variety of VHR imagery, along with environmental interference factors, such as cloud 

cover and poor lighting, impede the automation of land cover segmentation.   The Fuzzy 

Band Ratio Hierarchical Split Merge Refinement (FBR HSMR) algorithm [Wuest and 

Zhang, 2008] presents a successful method for land cover segmentation through well 

known Band Ratios and Fuzzy Logic based comparison measures using the region-based 

Hierarchical Split Merge Refinement (HSMR) algorithmic framework.  This paper is the 



 

 

 

61 

presentation of an attempt to improve the automation of the FBR HSMR.  In this 

approach, class development for region description and comparison is dynamically 

determined in contrast to static class development through Band Ratios.  Fuzzy Adaptive 

Resonance Theory (ART) is employed for dynamic class development because of its 

unsupervised self-organizing capabilities and ability to estimate classes without initial 

estimates.  In addition, users can control input to class development through input vector 

type selection.  It is hypothesized that this approach will: i) improve the automation of the 

FBR HSMR segmentation methodology; and ii) expand the capabilities of the FBR 

HSMR to provide land cover segmentation to a wider range of satellite image scenes. 

 

4.1 Introduction 

 

The Fuzzy Band Ratio (FBR) HSMR, presented in Wuest and Zhang [2008], 

introduces a prior knowledge to land cover segmentation through five statically defined 

land cover classes: i) Forest, ii) Grass, iii) Water, iv) Soil and v) Urban.  Through Band 

Ratios, the FBR HSMR segmentation method identifies pixels in a given image that 

potentially belong to these land cover classes.  This information then guides segmentation 

to form image segments that are either homogeneous to one of these classes or a mix of 

two or more of these classes.  For instance, a suburb bordering a large patch of forest 

would be identified as a region because of its consistent mixture of grass, soil and urban 

while the large patch of forest would be identified as another region.  
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The FBR HSMR employs the HSMR algorithm framework as a basis for 

segmentation.  The HSMR algorithmic framework is one of many region based 

segmentation methods that have been the focus of segmentation research of VHR 

imagery due to their close relationship with the object oriented paradigm.  Region based 

methods, such as the HSMR algorithmic framework, are dependent on methods for 

describing regions and comparing similarity between image regions [Schiewe, 2002].  

Regions can be described by a single feature like color, texture, and shape or by a 

combination of features.  Region comparison is a method by which the descriptions of 

two regions are compared mathematically.  An example of an adaptive method for 

combining features for region comparison and description is presented in Hu et al. 

[2005].   

 

 

Image regions, in the FBR HSMR, are described by the density of the statically 

defined land cover classes.  A Fuzzy Logic system provides a means for region 

comparison.  Although the FBR HSMR introduces a prior knowledge of image content to 

image segmentation, it enforces a restriction/dependency that the static land cover classes 

exist in a given image and conform to the Band Ratio based function conditions defined 

for each class.  In this paper, the restriction/dependency enforced by the statically defined 

land cover classes is the subject of improvement.  The approach introduces dynamic class 

approximation to the FBR HSMR using Fuzzy ART.  The introduction of dynamic class 

determination is expected to allow segmentation to involve more classes than the FBR 
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HSMR and therefore introduce more flexibility into the land cover segmentation 

methodology.  It is hypothesized that this approach will improve the automation of the 

FBR HSMR methodology and produce successful land cover segmentation on a wider 

range of satellite image scenes. 

 

 

4.2 Background 

4.2.1 Hierarchical Split Merge Refinement (HSMR) 

 

The Hierarchical Split Merge Refinement (HSMR) algorithmic framework is a 

region based approach to unsupervised image segmentation.  As portrayed in Figure 1, 

this algorithmic framework performs a three-step process of: i) splitting; ii) merging; and 

iii) refining image segments.  For a more complete description of these processes, readers 

can refer to Ojala and Pietikainen [1999].  The HSMR algorithmic framework is 

dependent on a method of describing and comparing image regions.  In this approach, the 

methods developed by Wuest and Zhang [2008] for region description and comparison 

are employed for HMSR integration. 
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Figure 4.1: The three essential HSMR processes: (i) Hierarchical Splitting, (ii) 
Agglomerative Merging and (iii) Localized Pixel Refinement 

 

 

4.2.2 Region Description and Comparison 

 

As previously noted, the FBR HSMR detects information corresponding to a fixed 

set of land cover classes for every input image.  In this approach the conditions for class 

development and the number of classes are dynamic.  Thus, the calculations change 

slightly.  In this section, the minor changes to the region description equations of Wuest 

and Zhang [2008] are detailed along with a short review of the important inputs to Fuzzy-

based region comparison. 

 

4.2.2.1  Region Description through Class Density  

 

Class density for a class c in a region R is defined as the percentage of pixels in R 

that belong to class c (see Equation (4.1)). 

 

  (i)                            (ii)                             (iii) 
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                          (4.1) 

 

In Equation (4.1), the == operator tests to see if the value in the produced class map 

( ) at the given position is equal to the given class index c and will return 1 or 0.   

The class map details are discussed in section 3.  As a result, the equation sums the 

number of pixels in region R belonging to class c over the area of region R to give the 

density of class c in region R.  A density vector for a given region R is formed by 

combining the densities of all classes. (see Equation (4.2)). 

 

                                   (4.2)      

 

In Equation (4.2), it is shown that the class density vector (CDV) is dynamically 

sized to the number of class (NC). 

 

4.2.2.2 Fuzzy Based Region Comparison 

 

A Fuzzy Logic system for region comparison [Wuest and Zhang, 2008] compares 

regions to evaluate high similarity in region pairs with similar common class density and 

a low similarity to region pairs with a high difference in class density.  The critical inputs 

to their Fuzzy based region comparison are Common Density (CD) and Difference in 
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Density (DD).  These are shown in Equations (4.3) and (4.4) below [Wuest and Zhang, 

2008].  

 

           (4.3)  

 

In Equation (4.3), and  are the image regions being compared.  The fuzzy min 

intersection operator is applied to each element of the class density vectors from each 

image region and the results are summed to obtain a total common density. 

 

                                      (4.4) 

 

 

Equation (4.4) is the Euclidean distance between the class density vectors (CDV) of 

the two regions in question.  It represents the difference in class density between two 

given regions.  For more details regarding the Fuzzy Logic system for region comparison, 

readers can refer to Wuest and Zhang [2008]. 

  

4.2.3 Fuzzy Adaptive Resonance Theory (ART)  

 

Fuzzy Adaptive Resonance Theory (ART) provides a foundation for which all 

descriptive measurements on regions are calculated.  Fuzzy ART is an expansion of the 
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first Adaptive Resonance Theory (ART-1) introduced in 1976 [Carpenter et al., 1992].  It 

provides the ability to categorize analog input patterns using the MIN operator of 

fuzzy set theory [Carpenter et al. 1991].   The appealing nature of this approach is the 

minimal user input to the algorithm.  The algorithm relies on a few parameters, the most 

significant of those being the vigilance parameter. Vigilance  governs the resulting 

number of classes.  A high  value will result in a large number of fine classes, while a 

low will result in a small number of broad classes.   

 

4.3 Proposed Approach 

 

In the proposed approach, Fuzzy ART organizes the image into a set of classes using 

a selected input vector type .  The selection of is user determined and, as indicated 

in Figure 4.2, is the first step of this approach.  The selection of also decides, as will be 

discussed in 4.3.1, the type of measurement vector for the unsupervised clustering 

provided by Fuzzy ART.  Once a set of input vectors based on the chosen  is produced, 

clustering is performed.   In the second step, a class map is produced from the Fuzzy 

ART clustering result.   As detailed previously in Equation (4.1), the class map is an 

essential component to calculating region class densities.  The last steps to this approach 

are executed according to the FBR HSMR methodology in which image regions are split, 

merged and refined according to their class density properties.  Ultimately, the results of 

this approach are highly dependent upon the clustering result of Fuzzy ART. 
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Figure 4.2: Overview of Proposed Approach 

 

4.3.1 Input Vector Type Selection 

 

In detail, the Input Vector Type  decides which pixel based measurements are 

made on a given input image.   There are numerous pixel based measurements such as 

color, intensity, and texture features for pixels.  The  options chosen for this study, are 

detailed in Table 4.1.  The experimentation did include other input vector types but, due 

to the scope of this paper, only the following (see Table 4.1) are discussed.   

 

A Vigilance  is part of the selection of .  The setting of  is dependent upon 

the size and distribution of .  As indicated in section 4.2.3,  controls the size and the 

granularity of the resulting class set.   More details on the selection process of and  

are presented in section 4.1.  

Input Vector Type Selection 

Class Map Production (Fuzzy ART) 

HSMR Segmentation 

Segmentation Result 
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Table 4.1: Input Vector Type  Options 

  Input Vector Type  Description 

{r,g,b} Visual Color Bands (Red,Green,Blue) 

{r,g,b,nir} All available MS Bands 

(Red,Green,Blue,Near Infrared) 

{i} Average Intensity  

{hue} Hue  

{pca1} Principle Component 1 

{pca2} Principle Component 2 

{pca1,pca2} Principle Component 1 and 2 

    

 

4.3.2 Class Map Production 

 

 The Fuzzy Adaptive Resonance Theory (ART) clustering algorithm provides an 

unsupervised method to reduce an input image into a set of classes according to the input 

vectors.   Each pixel in the input image is assigned to a class.   In this approach, a class 

map is defined as a matrix of equal dimensions to the image in question.  Each 

entry is a class index assignment for each pixel in the given image.  As indicated in 

Equation (4.1), the class map is an integral component to the class density calculation.  It 

is important to note that there can only be one class assignment per pixel. 
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4.3.3 HSMR Segmentation 

 

The region description methods (see section 4.2.2) and the Fuzzy logic systems 

presented in Wuest and Zhang [2008] are integrated with the HSMR algorithmic 

segmentation framework to perform image segmentation.  Readers can refer to Wuest 

and Zhang [2008] for further understanding of these methods.  Using the given properties 

for region description and comparison HSMR processes are able to split, merge, and 

refine a given image into a set of image segments according to the distribution of classes 

within the input image.  Accordingly, the final segmentation result is dependent upon the 

input to the Fuzzy ART component of this approach.  This will be further discussed in 

section 4.4.3. 

 

4.4 Experiments 

 

These experiments utilized QuickBird MS 2.44m imagery having a size of 512 x 512 

pixels.   Many images were selected to include a variety of land cover scenes.  A 

representative sample of these scenes is presented in Figure 4.3.  Image size was selected 

in accordance with memory limitations on the Fuzzy ART and HSMR algorithms 

developed in C++.  The Fuzzy ART and the HSMR algorithmic framework were 

developed according to the specifications in Carpenter et al. [1991] and Ojala and 

Pietikainen [1999] respectively.   All measurements, with the exception of Principle 
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Component Analysis (PCA), are performed by algorithms developed in C++.  PCA 

analysis is performed in PCI Geomatica Focus.   

 

These experiments tested  input pairs in attempt to find one pair that would 

consistently provide desirable land cover segmentation results and thus improve the 

automation of the existing FBR HSMR method.  The initial focus of these experiments 

was to emulate the current FBR HSMR segmentation.  In this sense, determine whether 

Fuzzy ART could dynamically produce classes in imagery similar to that of the FBR 

HSMR methodology and replicate the segmentation results.  If this was successful, the 

experiments would test other imagery to see if the dynamic class development could 

expand the flexibility of the FBR HSMR. 

 

4.4.1 Fuzzy ART Parameters 

 

 Fuzzy ART clustering is controlled by a number of parameters.  With respect to 

time performance, the Fuzzy ART clustering was set up with “One Shot Fast Learning”, 

described in Carpenter et al. [1991].  In this type of Fuzzy ART clustering, the algorithm 

has its learning rate ( ) set to 1.0 and its choice parameter ( ) set to close to 0.  In this 

fashion the clustering algorithm is said to be in a conservative limit and recoding is 

minimized [Carpenter et al. 1991].   All input vectors were normalized to the range [0, 1] 

using the minimum and maximum range of each attribute.  They were also complement 

coded to prevent class proliferation.  For more details, readers can refer to Carpenter et al. 
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[1991].  It is important to note that the performance of the Fuzzy ART algorithm in 

modes other than this can be quite time consuming.  This, of course, is also dependant on 

the size of the given input image. 

 

The setting of the parameter pair were the subject of empirical investigations.  

The choice of was initially made by inspecting resulting classes found when different 

were applied to various scenes.  The clustering result, for a given , was compared 

visually to classes produced by the FBR HSMR.   Through empirical investigation, it was 

found that the visual color bands (r, g, b) with or without the near-infrared band could 

approximately emulate the class development provided by the band ratio based approach.  

This was dependent, however, on the land cover content in the given image and is further 

discussed in 4.4.3.  Other  options were chosen to test their ability to detect land cover 

classes.  For all options, it was empirically determined that the Vigilance must be 

set differently for the optimal segmentation results.  These observations are presented 

below in Table 4.2. 

 

4.4.2 HSMR Parameters 

 

 The HSMR algorithmic framework, outlined by Ojala and Pietikainen [1999], is 

controlled by a number of parameters.  For consistency, we will detail the parameters 

used by this experimentation (see Table 4.3).  It is important to note that these parameters 

did not change for any of the presented segmentation results.  It is also noted that the 
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HSMR modifications proposed by Wuest and Zhang [2008] were part of this 

experimentation.  For more details on HSMR parameters and their effects on image 

segmentation, readers can refer to Ojala and Pietikainen [1999]. 

 

Table 4.2: Vigilance   by  Input Vector Type  

Input Vector Type  Vigilance  

{r,g,b} 0.98 

{r,g,b,nir} 0.92 

{i} 0.98 

{hue} 0.98 

{pca1} 0.95 

{pca2} 0.95 

{pca1,pca2} 0.95 

   

 

Table 4.3: HSMR Parameters 

Parameter Value 

Splitting Threshold 1.1 

S Max 64 

S Min 8 

Merging Stop Threshold 0.98 

Refinement Window Size 5 
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4.4.3 QuickBird 2.44m MS Image Segmentation 

 

The experiments performed with the QuickBird 2.44m MS imagery for this paper 

found that, for any given image, a  pair can be found that produces a desirable land 

cover segmentation solution.   This empirical search process for an optimal  pair 

can be very time consuming.  However, once an optimal pair is determined, results 

are comparable to the original FBR HSMR approach.  A pair could not be isolated 

that produced desirable segmentation results in all test images. 

 

 

Successful segmentations results are displayed in Figure 4.3.  Figure 4.3.a and 4.3.b  

show segmentation of urban scenes using all available multi-spectral bands and only 

visual color bands respectively.  Figure 4.3.c illustrates the results of using PCA1 and 

PCA2 clustering on the San Francisco downtown.  Figure 4.3.d shows segmentation of a 

suburban scene using the intensity vector type. 
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Figure 4.3: Region-based Segmentation of QuickBird 2.44m MS Imagery 
through Fuzzy Integration: (a) segmentation of an urban scene using all available 

multispectral bands; (b) segmentation of an urban scene using only color (r,g,b); (c) 
segmentation of downtown San Francisco using principle components 1 and 2 (The 

rectangle applied on this image relates to information in Figure 4.4); and (d) 
segmentation of an urban scene using intensity only. 

(c)   = 0.95    = (pca1,pca2) 

(a)   = 0.92    = (r,g,b,nir) (b)   = 0.98    = (r,g,b) 

(d)   = 0.98   = (intensity) 
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4.4.3.1 Input Vector Type Selection 

 

 From the experimentation, it was impossible to automate which should be 

applied in which situations for successful segmentation.  Automation of that kind may or 

may not be possible. Even though a consistency in results was not determined, a number 

of observations were made between  selection and the land cover types found in a 

given image.  These observations are detailed in Table 4.4.  As shown in Table 4.4, it was 

found that scenes with no water features were estimated using either a color, color with 

near-infrared, or the intensity input vector.  Scenes containing water features are required 

to include the near-infrared band in class determination.  However, when the water 

becomes cloudy or in a heavy urban environment (i.e. Port), all input vector selections 

have very limited segmentation results.  In an urban city environment, results are not very 

successful using this method due to the dynamic grey-value variety in urban features.  

This type of land cover content requires the most trial and error for selection.  

However, in a suburban environment there is not as much variety and results are more 

successful as long as water features are not present.  
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Table 4.4: Image Content and Input Vector Type Options 

Image Content Description   Options 

No Water Features {r,g,b} {r,g,b,nir} {intensity} 

Water Features {r,g,b,nir} 

Port Water Features Limited Success  

Urban (City) Limited Success 

Suburban Environment  {r,g,b} {r,g,b,nir} {intensity} 

  

 

 Figure 4.4 displays an example of some of the resulting problems with 

selection in an image containing city features. The selection of has a significant 

effect on the resulting segmentation. In Figure 4.4.a segmentation results are displayed 

using all available multi spectral bands for segmentation.  As circled in the image (from 

top to bottom) a) part of the bridge is missed, b) part of the port is merged with the water, 

c) multiple shadows are extracted, and d) the large port feature becomes extracted into 

many polygons.   As demonstrated in Figure 4.4.b, that PCA based segmentation is a 

better solution in this case.  However, the PCA solution still contains shadows and this 

contributes to the limited success of this solution in urban environments (indicated in 

Table 4.4).  
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Figure 4.4: Problematic images containing city features:  (a) segmentation 
using all available bands; and (b) segmentation using Principle Components 1 and 2. 

 

 

 

4.5 Conclusion 

 

This paper has presented an attempt to further automate the FBR HSMR land cover 

segmentation solution for QuickBird MS 2.44m imagery.  The proposed approach 

provides the ability to dynamically estimate classes of information in a given image.  As 

indicated previously, this replaces the static class development of the FBR HSMR.   As 

shown in the experiments section, the approach provides a flexible segmentation 

algorithm that allows the user to change the input parameters based on the land cover 

types present in any given image.  This approach also inherits the benefits of having a 

similarity measurement that can work at small area sizes from the FBR HSMR. 

 

(b) = (pca1, pca2) (a) = (r,g,b,nir) 
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The experiments, performed for this expansion, also show that this methodology 

does not improve the automation of the FBR HSMR because the solution requires a lot of 

empirical parameter searching.  The empirical parameter setting is transferred from the 

HSMR algorithmic framework to the choice of the input pair for Fuzzy ART 

clustering.  The  input pair selection is more important to successful segmentation 

results than the actual HSMR algorithmic parameters.  This is shown in the experiments 

section.  Different scenes require different values of  while the HSMR parameters 

remain the same (see Table 3) to produce desirable segmentation results.  A method of 

automatically determining  from a given image would improve the automation of 

this approach considerably.  As indicated earlier, this may or may not be possible and 

could be the focus of future research. 

 

This research, however, has increased the flexibility of the FBR HSMR approach in 

the respect that class development conditions can be changed by the user when 

undesirable segmentation results are produced.  Accordingly, some suggestions of how 

this method can be applied successfully, based on the land cover types contained in a 

given image, were presented.  This was not possible within the FBR HSMR and is unique 

to the HSMR integration presented in this paper. 
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CHAPTER 5                                                                                                          

A SUPERVISED METHODOLOGY 

 

All the research presented to this point has operated in an unsupervised 

methodology.  Certain knowledge has been introduced but the user’s input has been 

restricted to numeric parameters on the HSMR algorithm.  For example, the user is 

required to set the appropriate Merge Threshold (MT) to decide when merging of image 

blocks will be stopped (examples were shown in Figure. 2.11).   

 

It can be quite an empirical process to set this.  This is an example of how an 

unsupervised approach can be limiting from a user’s perspective.  A supervised approach 

that can give the user a visual input parameter (i.e. the ability outline areas in the image 

that are considered homogenous from their perspective) could bring more benefit to the 

segmentation process.  Therefore, the final piece of research presented in this thesis 

moves the HSRM algorithmic framework from an unsupervised to a supervised 

methodology. This requires the algorithmic processes to be augmented. 

 

For the research presented in the Chapter 6, a considerable amount of application 

interface development was required to allow the user to interact with a given image.  This 

is detailed in Appendix I.  The segmentation approach was modified to allow the user to 

select regions of a given image as training regions.  These training regions are used by 

the supervised solution as homogeneity indicators.  The modified segmentation approach 
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estimates homogeneity based on the user defined regions; hence the segmentation process 

can be conducted in a supervised fashion.   Through this modification, the user’s input is 

visual and thus allows the user to empirically test segmentation results through the 

selection of different training regions.  This research was performed to introduce more 

control to the HSMR segmentation process. 
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CHAPTER 6                                                                                   

SUPERVISED REGION-BASED SEGMENTATION OF QUICKBIRD 

MULTISPECTRAL IMAGERY 

 

This chapter is © 2008 IEEE. It is reprinted with permission from: 
 
Wuest, B., and Y. Zhang (2008), “Supervised Region Based Segmentation of QuickBird 

Multispectral Imagery” Proceedings of the 2008 IEEE International Geoscience 
& Remote Sensing Symposium (IGARSS 2008), Boston, USA, 6-11 July. 

 

The first author developed the algorithm and methodologies for the research presented in 
this paper.  The second author gave advice on structuring the paper.  For the sake of 
clarity, the paper included in this chapter has been slightly edited. 

 

Abstract 

 

The segmentation of very high resolution (VHR) satellite imagery (such as 

DigitalGlobe® QuickBird) is becoming increasingly important to geo-related 

applications.  New sensors provide the ability to discriminate large scale objects (small 

ground objects) that were not discernable with lower resolution satellite imagery such as 

LandSat TM.  VHR satellite images also exhibit an incredible dynamic grey-value 

variety.  These features, among others, impede existing algorithms developed for lower 

resolution satellite imagery to operate within the same degree of accuracy. 

 

This paper proposes a supervised approach to the segmentation of QuickBird 

multispectral imagery through the integration of the Hierarchical Split Merge Refinement 
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(HSMR) framework.  The HSMR framework was originally developed by Ojala and 

Pietikainen [1999] for unsupervised segmentation of textured areas.  In this approach, 

user identified regions are employed to guide HSMR algorithmic processes.  User 

knowledge is brought to segmentation and it is hypothesized that this will improve 

stabilization in HSMR segmentation across a variety of QuickBird 2.44m Multispectral 

satellite image scenes and improve the control of segmentation at different scales. 

 

6.1 Introduction 

 

The Hierarchical Split Merge Refinement (HSMR) algorithmic framework is an 

unsupervised region based approach to image segmentation.  The key ingredients to the 

algorithm are methods for describing and measuring the similarity of regions [Hu et al. 

2005].  In brief, region description defines how a region is described mathematically.  A 

region can be described by features such as color, texture, intensity and shape. A 

comprehensive discussion of features for region description is presented in Trias-Sanz 

[2008].  Region comparison is essentially how the descriptions of regions are compared 

to one another to evaluate their similarity.  A popular approach is to calculate the 

correlation of a feature between two regions.  The HSMR framework is also accompanied 

by a set of parameters that control segmentation splitting, merging and refinement 

processes.  The setting of these parameters can be a very empirical process.  For more 

details on these parameters, readers can refer to Ojala and Pietikainen [1999] or Chen and 

Chen [2002].   
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In this paper, the proposed supervised segmentation approach requires the user to 

define regions considered to be homogeneous with respect to the desired segmentation. 

These regions are segmentation (training) templates.  These templates and a Fuzzy Logic 

based system are the basis for the modifications presented by this paper to the HSMR 

algorithmic processes necessary to perform supervised segmentation. The user defined 

templates are described by the same region description method employed by the HSMR 

algorithm.  Similarity becomes a joint measurement through the likeness of two regions 

to the user templates in combination with likeness of two regions to each other.  It is 

hypothesized that this will allow the user to have more control over the quality and scale 

of segmentation.   

 

6.2 Background 

 

The HSMR algorithmic framework for image segmentation consists of three 

fundamental processes (Figure 6.1): i) Hierarchical Splitting, ii) Agglomerative Merging 

and iii) Local Pixel Border Refinement [Ojala and Pietikainen, 1999].  These processes 

all interact with a chosen similarity measure that evaluates the likeness of one region 

to another.   
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Figure 6.1: The three essential HSMR Processes: (a) Hierarchical Splitting; (b) 

Agglomerative Merging; and (c) Local Border Refinement.  A Similarity Measure (SM) 
is essential to these processes. 

 

In the first stage, an image is split into small blocks where it is evaluated as non-

uniform. Agglomerative merging joins adjacent regions iteratively until an approximate 

(blocky) solution is determined.  In the last HSMR stage segment borders are refined 

from blocks to delineate features properly.    

 

6.3 Methodology 

 

There are three key elements to the proposed supervised segmentation approach.  

Primarily, there are the user defined training templates ( ).  Templates are the key 

ingredient to augmenting the unsupervised algorithmic processes to a supervised 

methodology.  The two other elements are a modified splitting process and a fuzzy based 

similarity measure that are integrated into HSMR merging and refinement decisions.  An 

overview of this supervised approach illustrated in Figure 6.2.  This section will describe 

how templates are defined and discuss modified algorithmic processes that bring the 

HSMR framework to a supervised solution. 

 

(

i) 

(

ii) 

(

iii) 

(a)                          (b)                       (c) 
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Figure 6.2: Overview of the proposed approach. 

 

The sections below will describe how templates are defined and discuss modified 

algorithmic processes that bring the HSMR framework to a supervised solution. 

 

6.3.1 User Defined Templates 

 

The user define templates are critical to this supervised approach.  These templates 

identify areas of the image considered as homogeneous by the user/operator.  In Figure 

6.3, an example is shown where the user has identified two regions of interest, [a] 

Forested Area and [b] Urban area.  This identifies that segmentation should converge to a 

small scale solution for the given scene and present a land coverage segmentation.  As 

depicted in Figure 6.3, user templates are rectangular areas of the image.  They are rough 

approximations of information and not designed to be actually the desired segmented 

regions. 

 

HSMR Algorithmic 
Framework 

Supervised 
Similarity Measure 

TPL 

     Templates 

Supervised Approach 

Modified Splitting 



 

 

 

88 

 
Figure 6.3: Examples of user defined templates. [a] Forest Area and [b] Urban 

Area. 
 

6.3.2 Supervised Algorithmic Splitting 

 

The traditional algorithm for splitting -- as presented in Ojala and Pietikainen [1999] 

-- is designed to measure the uniformity of an image block based on a given similarity 

measure .  The algorithm splits an image from a maximum block size ( ) down to 

a minimum block size ( ).  and  are user defined parameters to the HSMR 

algorithm.  Starting at , the algorithm first quarters each block and measures six 

similarities ( ) between the four adjacent child blocks.  A ratio calculated through 

 is tested against a user defined split criterion threshold .  If the ratio 

exceeds the given threshold, the block is split into four child blocks.  This process is 

recursively performed on the child blocks until the minimum block size ( ) is reached 

or a child block is not split. 

 

The modified splitting process uses the user defined templates to 

alter splitting decisions.  The splitting threshold is maintained while a template voting 

[a] 

[b] 
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vector and a template score vector are added.  Both vectors are 

equal in length to the number of templates defined by the user for segmentation.  First, 

each of the four child blocks are compared to the user defined templates using the chosen 

similarity measure ( ).  For each child block, the best matching template is given a 

vote in .  The similarities of each child block to the given templates are 

accumulated in .  The maximum number of votes handed out is four.  The 

maximum score that a given template can be assigned is 4.0 due to the fact that the 

similarity measure is in the range [0,1].  In addition,  and are determined 

from all similarity measurements made between templates and child blocks that receive a 

vote.  From these measurements, two conditions are defined that will prevent an image 

block from splitting.  These are displayed in Equations (6.1) and (6.2). 

 

                                              (6.1)  

 

                     (6.2) 
 

 

In Equation (6.1), the condition implies that one of the user defined templates 

received all the votes and the user defined threshold  was not exceeded.  Equation (6.2) 

enforces that if any template accumulates a score of 3.6 or above the image block must be 

considered homogeneous and not split.  In all other situations the image block is split.  In 

this fashion, splitting decisions are made with the consideration of user defined templates. 
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6.3.3 Supervised Merging and Refinement Measure 

 

 

The merging and refinement processes, as originally defined by Ojala and 

Pietikainen [1999], employ the same chosen similarity measure from the splitting 

processes.  The critical element to the modifications presented here is the method in 

which a chosen is combined with the user defined templates to guide merging and 

refinement processes.  Traditionally, a is used to measure the similarity between two 

neighboring image regions.  In order to incorporate the user defined templates for two 

given image regions , the traditional measure is defined as .  In 

addition, two other measures on a user defined template  (see Equation (6.3) and 

Equation (6.4)) are employed. 

 

           (6.3) 
 

             (6.4) 
 

is defined in Equation (6.3) as the similarity between  and .   is defined 

in Equation (6.4) as the similarity between  and .  These three similarity 

measures are incorporated into a Fuzzy Logic system to make an overall decision of the 

similarity between  and .   
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The Supervised Similarity System (SSS) produces a fuzzy similarity measure .  

The model employs a variable for similarity that is the basis of the inputs  

and output of the system.  The universal discourse of Similarity is defined as = { 

low similarity, medium similarity, high similarity, full similarity} = {ls,ms,hs,fs} and is 

represented graphically in Figure 6.4.  is represented by the set of fuzzy numbers = { 

(0.0, 0.0, 0.25, 0.50), (0.25, 0.50, 0.70, 0.75),  (0.70, 0.75, 0.85, 0.90), (0.85, 0.90, 1.0, 

1.0) ).  This supervised similarity system has a total of sixty four rules and this 

has been condensed in Table 6.1 to four general rules.   

 

 
Figure 6.4: Fuzzy membership functions for input and output variable 

Similarity . 

 

As indicated previously,  incorporates one of the templates defined by the user 

into the evaluation of two given regions.  In order to accommodate all of the templates, 

the maximum  produced between the two regions and all user defined templates is 

chosen (see Equation (6.5)). 

 

       (6.5) 
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Equation (6.5) is the similarity choice function on the system.  For two given image 

regions , the supervised similarity system evaluates for every template.  The 

maximum  is the chosen similarity to be employed by HSMR processes for merging 

and refining.  Through this, these processes are supervised by the user defined templates 

and not entirely dependent on the chosen similarity measure ( ). 

 

Table 6.1: Supervised Similarity System (SSS) Rules 

Rule Condition 

1 IF ( OR ) OR ( AND ((  AND ) OR ( AND ) OR 

( AND )) THEN LS 

2 IF ((NOT ) AND (  AND )) OR (  AND ( ( AND ) OR 

( AND ) OR ( AND ) ) OR ( AND ((  AND ) OR 

(  AND )) ) THEN MS 

3 IF ((NOT ) AND ( AND ))  OR ( AND AND ) OR ( 

( OR ) AND ( ( AND ) OR ( AND ))) OR ( ( OR 

) AND ( ( AND ) OR ( AND ))) OR ( (NOT ) AND ( 

( AND ) OR ( AND ))) THEN HS 

4  IF  ( (NOT ) AND AND ) OR (( OR ) AND (( AND ) 

OR ( AND ))) THEN FS 
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6.4 Experiments 

 

The experiments performed for this paper are based on an implementation in C++ 

developed by the primary author.  The particular implemented for testing the 

supervised approach is the adaptive similarity measurement presented in Hu et al [2005].  

This measurement combines color, intensity and texture features into one adaptive 

measurement. These experiments only tested the approach on QuickBird 2.44m MS 

imagery selected from a variety of different land cover environments. A number of 

parameters were statically set on the HSMR framework for consistency.   and  

were set to 64 and 16 and the Splitting Threshold was set to 1.1.  Agglomerative 

merging was employed according to the specifications in Wuest and Zhang [2008] with 

the merge stop threshold  set to 0.95.  In localized pixel refinement, the window 

size was set to 9.   

 

These experiments tested the feasibility of controlling the scale of segmented 

objects.  This concept is presented graphically in Figure 6.5, where unsupervised results 

are presented (see Figure 6.5.b) and two different template sets are depicted (Figure 6.5.c 

and 6.5.d) with their corresponding results in Figure 6.5.e and Figure 6.5.f.  The results in 

Figure 6.5.e show a very detailed segmentation of smaller objects according to the 

templates defined.  In Figure 6.5.f the results of broader defined templates are presented.  

As expected the results produce a segmentation that allows a greater dynamic range of 

information to be included in one segment.  In Figure 6.6, the results of a complicated 
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urban scene using the proposed supervised approach are presented, in which the adaptive 

similarity measure defined by Hue et al. [1] was employed. 
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Figure 6.5: Supervised Segmentation. (a) test image; (b) unsupervised result; 

(c) large scale (more detail) templates; (d) small scale (less detail) templates; (e) result 
using large scale templates; and (f) result using small scale templates.  

 

(e)                                                       (f) 

(c)                                                       (d) 

(a)                                                       (b) 

(

ii) 
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Figure 6.6: Result of the proposed supervised segmentation in urban area. 

 

6.5 Discussion and Conclusions 

 

This paper has presented a method to augment the HSMR segmentation framework 

from an unsupervised to a supervised methodology.  The experiments have shown 

success through one particular similarity measure.  Due to the scope of this paper, other 

similarity measures were not discussed.  Results using this method were consistent with 

unsupervised results and there was considerable improvement in more complicated areas. 

(See Figure 6.6).  This method however, still experiences difficulties with atmospheric 

interference especially in situations where cloud cover exists on a land/water boundary. 
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However, the ability to add control to segmentation does play an important part in the 

successes of the proposed supervised methodology.  

 

It is concluded that this method can add more user control to segmentation.  There 

are a number of possibilities for future research including i) developing a model for 

applying templates defined for one image to another image and ii) testing the application 

of this methodology on higher resolution imagery than that presented in this paper.  The 

method does breed consistency to the unsupervised methodology in that definition of 

what is considered homogeneous in an image can be controlled more by the user.  With 

the considerable dynamic grey value range present in today’s satellite imagery, this type 

of control is critical. 
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CHAPTER 7                                                                                    

DISCUSSION AND CONCLUSIONS 

 

The main objective of this research was to devise improvements in the segmentation 

of Very High Resolution Satellite imagery with respect to consistency, fragmentation, 

parameter complexity, user dependency and time complexity.  This research extended the 

HSMR algorithmic framework for unsupervised image segmentation to achieve these 

goals.  Through Band Ratios and Fuzzy Logic a number of improvements have been 

introduced to the HSMR framework and a new supervised HSMR has been presented.  

The conclusions and findings of the research presented in this thesis are summarized in 

this chapter along with recommendations for further research. 

 

7.1 HSMR Improvements 

 

It was demonstrated that the algorithmic modifications presented in Chapter 2 were 

successful in improving fragmentation and consistency in HSMR segmentation.  In 

addition, the generic refinement improvement solves problems associated with non-

contiguous and similar regions (as depicted in Figure 2.8).  Fragmentation is a very 

prominent problem with respect to Object Oriented classification because fragmented 

regions are not representative of real-world objects.  The merging modifications 

presented in section 2.3.3 demonstrate a consistency in results regardless of the Merge 

Importance definition applied.  This modification introduces a consistency factor that has 
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demonstrated an improvement in reducing the presence of over- and under-

segmentations.  This, in turn, has improved the consistency of results using the HSMR 

framework. 

 

7.2 Fuzzy Band Ratio HSMR 

 

The FBR HSMR presented in Chapter 2 introduces a unique segmentation approach 

in that Band Ratios are introduced to provide segmentation with a prior knowledge of 

image content.  The Band Ratio Functions (see Table 2.2) develop five land cover classes 

of interest.  These classes are combined into a Fuzzy Logic based system to judge the 

similarity of regions based on their class densities.   

 

This approach introduces a consistency to segmentation because the same classes of 

interest will be retrieved every time.  This certain knowledge has shown to breed some 

consistency to the resulting segmentations.  In addition, the fuzzy logic system for 

judging similarity is computationally superior to other similarity measurements such as 

correlation.  The fuzzy based similarity measure also enables the HSMR algorithm to 

operate at a smaller block size than other similarity measurements.  This does improve 

the overall results of the segmentation algorithm. 

 

Further research in this area has been identified as: 1) dynamic category/class 

development (addressed in Chapter 4); 2) simplification of Fuzzy System inputs; and 3) 
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dynamic parameter selection.  Another area of interest is to estimate the Band Ratio 

functions in imagery from other high resolution satellite sensors (such as that of Ikonos). 

 

7.3 Fuzzy ART HSMR 

 

The research in Chapter 4 expanded on Chapter 2 through Fuzzy Adaptive 

Resonance Theory (ART).  This research presented experiments that were based on the 

recommendations for further research into dynamic class development.  These 

experiment showed that a flexible solution was obtained that could produce successful 

segmentations through empirically setting the  parameter set.  The drawback of 

this solution is that automation of the original FBR HSMR was not improved.  However, 

the solution does give the user the flexibility to change class development conditions and 

achieve more desirable results.  Future research could look at methods for optimal 

estimation of  and an alternative method to dynamic class development other than 

Fuzzy ART. 

 

7.4 Supervised HSMR 

 

A supervised HSMR solution has been developed.  This solution augments all 

algorithmic processes to work in a supervised mode.  The benefactor of this approach is 

the user.  Regardless of the similarity measure employed, the user is given the 
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opportunity to place further restrictions on homogeneity.  This, again, provides the 

segmentation with prior knowledge.  This solution has been tested using the adaptive 

similarity measure proposed by Hu et al. [2005].  The results presented are consistent 

with unsupervised results and were shown to allow the user to have control on the scale 

of resulting segmentation (see Figure 6.5).  This kind of control does not exist in the 

unsupervised HSMR.  In this solution, the parameter complexity is reduced; the user 

identifies regions visually and is not subjected to a set of numeric values.  

 

This supervised HSMR has shown promise and there are a number of areas that are 

identified for further research.  The prototype developed for this research only allows for 

rectangular areas.  It would be more advantageous that users be able to define polygons 

rather than rectangles.  In addition, a model for applying the user templates from one 

image to another might prove to reduce the parameter complexity substantially through 

multiple image scenes. 
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Appendix I                                                                                       

Software Design 

  

A considerable amount of programming was performed for this research.  This 

research required the development of a C++ object library and user interface.  This 

appendix outlines the details of this development for further clarification of the research 

presented in this thesis.  The main components of the software design are the GeoTIFF 

library, C++ Segmentation Library and a Microsoft Foundation Class (MFC) 

Segmentation application.  The GeoTIFF library provides functionality to the 

segmentation library and in turn the segmentation library provides functionality to the 

MFC segmentation.  In addition, many console applications were written on the 

segmentation library for testing purposes.  The structure of these developments is 

illustrated in Figure I.1. 

 

 
Figure I.1: Overview of C++ Development 

 
 

MFC Segmentation Research Application 

C++ Segmentation Library 

GeoTIFF Library 



 

 

 

104 

 

I.1 GeoTIFF Library 

 

The GeoTIFF library is publically free code base available at 

http://www.remotesensing.org/geotiff/geotiff.html.  This code is the result of numerous 

professionals who have worked to extend the Tagged Image File Format (TIFF).  This 

file format is a common format to image applications in remote sensing.  To adhere to 

these standards and to simplify development, this library was integrated into this 

research.  All results are present using the GeoTIFF image format.  This appendix will 

not elaborate on the TIFF file format.  Extensive TIFF file format information can be 

found at http://www.awaresystems.be/imaging/tiff.html. 

 

I.2 C++ Segmentation Library 

 

In a commercial environment, the C++ segmentation library should have been 

broken down into multiple libraries according to functionality.  For research purposes, all 

objects were included in one big library developed using Microsoft Visual C++ 6.0.  This 

library was developed in order to maintain small research applications and to promote 

code reuse.  The main sections of this library are outlined in Table I.1. 
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Table I.1: C++ Segmentation Library Object Categories 
Object Category Description 

Base Objects Fundamental Objects for Image Processing 

File Objects File Based Objects 

Processor Objects Various Processors for Pixel Based Measures 

Clustering Objects Objects for various clustering algorithms. 

Fuzzy Logic Objects Generic Objects to develop Fuzzy Systems. 

HSMR Objects Generic HSMR Algorithm Objects 

Tool Objects Tool Objects for Segmentation and Clustering 

 

I.2.1 Base Objects 

 

Base objects in the segmentation library include objects for matrices, histograms, 

arrays and other general functionality needed for image processing.  These objects are 

employed throughout the whole library to perform processing and measurements. 

 

I.2.2 File Objects 

 

The file based objects in this library are implemented for interfacing to three 

different file types.  Two of the file interfaces were designed solely for the purpose of this 

research, while the other was implemented as a wrapper on the GeoTIFF library.  These 

file interfaces are: 
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1. GeoTIFF File Interface 

2. HSMR  Segmentation Result File Interface 

3. User Template File 

 

I.2.2.1 GeoTIFF File Interface 

 

The GeoTIFF File Interface is an object wrapper on the publicly available GeoTIFF 

Library. (See section I.1).  These libraries are written in C and difficult to program in 

when using C++ objects.  The interfaces in this library provide an Object Oriented 

method to access GeoTIFF files.  This provided the ability for any research application to 

open, manipulate and save GeoTIFF files. 

 

I.2.2.2 HSMR Segmentation Result File Interface 

 

The HSMR segmentation framework, as indicated in Figure 2.2, performs 

segmentation in three stages (split, merge, refinement).  For research purposes; it was 

necessary to save the segmentation result and view the results of the intermediary 

processes of splitting and merging at a later time.  This led to the development of an 

HSMR file that allowed the programmer to store multiple HSMR segmentation results in 

a file.  Each result entry contains a splitting, merging and refinement result that can later 

be accessed by the user.  This will be demonstrated in section I.3 when the user interface 

is discussed. 
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I.2.2.3 User Template File Interface 

 

A simple file interface was designed to store the user templates defined on an image 

in the supervised HSMR research (presented in Chapter 6).  This enabled research to 

access templates already defined on a given image when testing the supervised 

segmentation algorithm.  This file is simply a list of rectangular positions relative to the 

offset of the given input image. 

 

I.2.3 Processor Objects 

 

Various pixel based processing was necessary for the research presented in this 

thesis.  A data processor object model was created for all the processing involved in this 

research.  The processors for this research are listed in Table I.2. 

 

I.2.4 Clustering Objects 

 

The clustering objects in C++ library are simply a set of lists and objects that 

facilitate the clustering algorithms developed for this research.  They allow the ability to 
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add and remove cluster elements.  In addition there is the flexibility to recalculate certain 

statistics measured on a given cluster. 

 

I.2.5 Fuzzy Logic Objects 

 

For the research presented in this thesis, a number of fuzzy systems were developed 

to test theories and possibilities.  Prior to this research, a set of base objects were 

developed to model a generic fuzzy system.  These base objects are detailed in Table I.3. 

 

Table I.2: Fuzzy Logic Base Objects 

Base Object Description 

Fuzzy System Object Base object for any given Fuzzy System. 

Fuzzy Variable Object Base object for any given Fuzzy Variable. 

Membership Function Object Membership Function Base Object. 
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Table I.3: Processor Objects 
Processor Object Description 

Forest Processor Band Ratio Function detailed in Table 2.2 for 

identifying forest pixels. 

Grass Processor Band Ratio Function detailed in Table 2.2 for 

identifying grass pixels. 

Earth Tone Processor Band Ratio Function detailed in Table 2.2 for 

identifying soil pixels. 

Water and Shadow Processor Band Ratio Function detailed in Table 2.2 for 

identifying water and shadow pixels. 

Urban Processor Band Ratio Function detailed in Table 2.2 for 

identifying urban pixels. 

Hue Processor Hue calculation based on Hu et al. [2005]. 

Saturation Processor Saturation calculation based on Hu et al. [2005] 

Intensity Processor Intensity calculation based on Hu et al. [2005] 

Local Binary Pattern Processor Texture measure calculation based on Ojala and 

Pietikainen [1997]. 

Channel Ratio Processor A processor that divides any given bands to produce 

a ratio result. 

Entropy Processor An entropy calculation based on Equation 2.6. 

Standard Deviation Processor A simple texture processor based on the local st. dev 

of a given pixel. 

NDVI Processor A NDVI Processor based on Equation 2.3. 
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The fuzzy logic base objects are designed to work with each other to allow for fuzzy 

systems to be easily created.  The basic concept is that a fuzzy system consists of one or 

more variables.  In turn each variable consists of one or more membership functions.  The 

C++ library implemented triangular, trapezoidal and linear membership functions.  For 

more details on membership functions, readers should refer to Bojadziev and Bojadziev 

[1995].  Figure I.2 presents the relation between the fuzzy logic base objects to produce a 

generic model for creating fuzzy systems.  A Fuzzy System contains one or more Fuzzy 

Variables.  A Fuzzy Variable contains one or more Membership Functions.  A 

Membership Functions may belong to zero or many Fuzzy Variables. 

 

 
Figure I.2: Fuzzy Object Relational Model 

 

I.2.6 HSMR Objects 

 

As presented in this research, the HSMR algorithmic framework involves a lot of 

image processing.  The HSMR objects developed in the C++ segmentation library allow 

for the algorithmic processes to operate with different similarity measures.  The 
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processing is performed through four main object classes.  These object classes are 

presented in Table I.4. 

Table I.4: HSMR Objects 
Object  Description 

Image Block Tree This is a spatial data structure designed to perform 

the splitting and merging elements of the HSMR 

algorithm. 

Image Block An image block is an element on a node of the image 

block tree.   

Image Object An image object contains multiple Image Blocks and 

is can be shared by multiple nodes on an Image 

Block Tree. 

Object Refiner The object refiner performs the localized border 

refinement of the HSMR algorithm 

 

I.2.6.1 Image Block Tree 

 

The Image Block Tree is a simple tree structure designed for the HSMR algorithm.  

It is a mixture of spatial data structures found in Samet [1999].  For the purposes of this 

research it was not necessary to implement the complex data structure of the RTree or 

QuadTree.  However, it was necessary to have a data structure that could quickly 

determine neighbors of square features within an image and have the ability to merge 
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them into larger objects.  Because the HSMR algorithm splits an image from a maximum 

block size down to a given minimum block size, this tree can assume a structure in which 

nodes represent blocks (square feature) of the image.  Figure I.3 shows an overview of 

the Image Block Tree structure. 

 

 
Figure I.3: Image Block Tree Overview 

 

I.2.6.2 Image Block 

 

All nodes on the Image Block tree that do not have children contain an image block.  

This image block contains the processors necessary for the measurements to be made on 

the type of image block.  For example an image block used for FBR HSMR segmentation 

(presented in Chapter 2) would contain pointers to processors on the given image that 

implement all the Band Ratio Functions listed in Table 2.2.  In this fashion, different 
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Image Blocks can be designed independently of objects for the HSMR algorithmic 

processes.   

 

In addition, all image blocks also implement a unique method for comparing 

themselves to an image block of their type.  This is important because different 

processors require different similarity measures.  For example one image block type may 

employ a fuzzy system for similarity while another will employ a histogram based 

correlation measure.  In this fashion the comparison measures and processors are kept 

separate from tree operations. 

 

I.2.6.3 Image Objects 

 

Image objects are objects which contain one or more image blocks and the combined 

data of all their contained image blocks (processor information).  They store this 

information in an Image Block Tree.  In this fashion multiple nodes can contain pointers 

to the same Image Object because as blocks are merged they form larger image objects.  

This allows neighbors of Image Blocks to be accessed quickly in the merging process of 

the algorithm. 
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I.2.6.4 Object Refiner 

 

The Object Refiner implements the localized border refinement of the HSMR 

algorithm.  This object is initialized from the result of a merged Image Block Tree.  The 

results are then accumulated into a set of image objects.  The iterative processing of this 

object inspects border pixels and moves pixels from one object to another where 

necessary.   

 

I.2.7 Tool Objects 

 

The C++ segmentation library contains two tool objects to perform the HSMR 

segmentation and Fuzzy ART clustering.  These objects are mother objects that 

encapsulate all the functionality needed to perform these two tasks.  They are designed to 

take an image and the required parameters and perform all the necessary processing.  

These tool objects simply development of test applications and the MFC Segmentation 

application presented in section I.3. 

 

I.3 MFC Segmentation Research Application 

 

The research application for this thesis was developed in Microsoft Visual C++ using 

in the MFC Document View model.  The application interfaces to all three of the file 

interfaces discussed I.2.2.  When an image is opened, the application will search the 
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current directory for a results file (section I.2.2.2) and a template file (section I.2.2.3) 

with the same corresponding file prefix.  A snapshot of the application is displayed in 

Figure I.4. 

 

 
Figure I.4: Segmentation Application Interface 

 

This application contains five main components: three panels, a tool bar and a 

display view.  These components work together to provide the user with the functionality 

to test, save and export segmentation results from GeoTIFF images.  These components 

are summarized in Table I.5. 
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Table I.5: Application Components 
Application Component  Description 

Tool Bar This component allows the user to access all the 

functionality of the application. 

Image Panel This panel allows the user to access image 

information and segmentation results. 

Segmentation Guides Panel This panel allows the user to access the user defined 

templates (if any) defined on the image. 

Message Panel The message panel is used by the application to 

notify the user of any important information or errors 

associated with their application use. 

Display View The display view displays the given image with any 

selected overlays. 

 

The following sections will go into the detail of the tool bar and the image panel.  

The other components do not require any more expansion than that displayed in Table 

I.5. 
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I.3.1 Application Toolbar 

 

The toolbar provides the user with the ability to access all the functionality of the 

segmentation application.  The main functionalities includes, 

 

1. Open/Save/Export Image; 

2. Add/Remove/Export User Template; 

3. Perform Segmentation; 

4. Delete Segmentation; 

5. Turn User Template Display On/Off; 

6. Turn Split, Merge, or Refinement Display On/Off; and 

7. Display image with different Histogram Stretching Modes. 

 

 

This section will not go into details of this functionality with the exception of the 

perform segmentation action.  The segmentation action allows the user to perform 

segmentation according to any of the research presented in this thesis.  The segmentation 

dialog is shown in Figure I.5. 
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Figure I.5: Segmentation Dialog 

 

As depicted in Figure I.5, the segmentation dialog allows the user to select and 

define all the required parameters to perform segmentation using the research developed 

for this thesis.   

 

I.3.2 Image Panel 

 

The Image Panel provides the user with the ability to view the band information on 

the given image and see the information regarding the saved segmentations for the image.  

The user can select a given segmentation in the panel and use the tool bar functionality 



 

 

 

119 

(section I.3.1) to turn the displays of this segmentation on/off.  The Image Panel is shown 

in Figure I.6. 

 

 
Figure I.6: Application Image Panel 

Image Band Information 

Segmentation Details 
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