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ABSTRACT 

 Linear regression has long been used to find relationships among various factors. 

However, when observations are spatially dependent or spatially heterogeneous the 

results from a linear regression model are distorted. Researchers developed 

Geographically Weighted Regression (GWR) to address these problems. It applies the 

linear regression model at a local level such that each data point has its own set of 

parameter estimates based on a distance-decay weighting of ‘neighbouring observations’. 

This model, however, is susceptible to the influence of ‘outliers’. A Bayesian approach of 

the GWR method (BGWR) was introduced to address the outlier problem by including 

various parameter smoothing strategies in the model. This approach provides an 

opportunity to incorporate the ‘community’ concept in social sciences to account for the 

community effect that cannot be addressed by the GWR or distance-based BGWR 

models. This thesis proposed a ‘community-based’ BGWR model that improves the 

prediction power by reducing the overall prediction errors. It also brings significant 

improvement in the estimation of regression parameters for certain local areas.  
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1.0 INTROUDCTION  

 

1.1 Background  

Linear regression has long been one of the powerful tools of social 

scientists for finding relationships among various factors. However, when 

observations (or sample data) have an areal or spatial component, the observed 

value of the data points from nearby areas may not be independent, which violates 

the assumption of the linear regression model. For example, observations can be 

spatially dependent, which means that the observed value at one point in space 

depends on the values observed at other locations. Also, data can be spatially 

heterogeneous; that is, the relationships among variables can vary depending on 

the area of interest. For example, the relationship between house prices and floor 

area can differ among urban, suburban, and rural areas. When a dataset possesses 

properties like spatial dependence and spatial heterogeneity, the results from a 

linear regression model are distorted. 

 

Spatially weighted local regression techniques are a relatively new 

approach proposed to address the effects of spatial dependence and spatial 

heterogeneity. One of these techniques, Geographically Weighted Regression 

(GWR), has attracted the attention of researchers from various fields including the 

social sciences (Fotheringham et al., 2001; Longley and Tobón, 2004; 

Malczewski and Poetz, 2005; Cahill and Mulligan, 2007), forestry (Zhang et al., 

2004; Wang et al., 2005), ecology (Kupfer and Farris, 2007; Osborne et al., 2007), 
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and the environmental sciences (Propastin et al., 2006). GWR applies the linear 

regression model at the local level so that local parameters, rather than global 

parameters, are estimated. For each point in the dataset, it uses a subset of the data 

surrounding the point of interest to estimate locally linear regression parameters. 

Therefore, each data point has its own set of parameter estimates based on the 

weighted values of its ‘neighbouring observations’. As a distance-decay 

weighting function is usually used, observations closer to the data point of interest 

have greater influence on the estimates.  

 

While GWR has advantages over ordinary linear regression methods, it 

has its own drawbacks. One of the drawbacks is that it is more susceptible to the 

influences of ‘outliers’ than ordinary linear regression. LeSage (2004) introduced 

a Bayesian approach of the GWR method, coined as the Bayesian Geographically 

Weighted Regression (BGWR), to deal with this problem. This approach allows 

various kinds of parameter smoothing strategies (such as distance-decay) to be 

included in the model to abate the effects of outliers.  

 

As these spatially weighted local regression techniques emphasize spatial 

relationships, they cannot account for complex concepts such as ‘community’, which 

comprise characteristics beyond geographical attributes. As a result, they are unable to 

account for the apparent local aberrant observations caused by localized effects such as 

a community effect. Below is an example that illustrates this situation. 
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In Figure 1.1, the polygons are DAs (Dissemination Areas1) and the red 

dots are their centroids. We can consider the green DAs to be areas with high 

socioeconomic status (SES) households while the yellow DAs are areas with low 

SES households. These two clusters of DAs are usually identified as two 

communities in social sciences research as people live in close proximity and 

share common characteristics, identities, or concerns tends to interact more, and 

hence form a community. As a result of more frequent interactions, the people 

from the same community are expected to share certain characteristics, more so 

association than the people from other communities.  

Yellow community

Green community

a 

Figure 1.1: Community effect and spatially weighted local regression 

                                                 
1 A Dissemination Area is a small, relatively stable geographic unit used by Statistics Canada to 

disseminate census data. It is composed of one or more neighbouring blocks. 
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  Consider the centroid a of the highlighted DA in Figure 1.1 to be the point 

of interest in a local spatial regression. The two circles serve as the reference lines 

to consider which DA centroids should be taken into account in two scenarios. In 

the inner circle, there is one neighbouring observation from the green community 

but two observations from the yellow community. If we are considering the other 

scenario, represented by the outer circle, there are two neighbouring observations 

from the green community but four from the yellow community. As discussed 

earlier, both GWR and distance-based BGWR (BGWR-Distance) models assign 

higher weights to closer neighbours. Since the number of closer neighbours from 

the yellow community is greater, observations from the yellow community would 

have greater influence than those from the green community which is contrary to 

the expected results. This illustrates that these spatially weighted local regression 

techniques fail to account for the community effect. Therefore, an alternative 

model is needed in order to incorporate concepts such as community that 

comprises both geographical and social characteristics in the model. The BGWR 

approach that allows for various kinds of parameter smoothing relationship 

provides such an opportunity. 

 

1.2 Research Objective 
 

The objective of this research is to first propose a statistical model that 

incorporates the concept of community in a local spatial regression model, and 

then to assess its performance. More specifically, this study asks whether 

incorporating the ‘community’ concept into the Bayesian Geographically 
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Weighted Regression (BGWR) model will improve its performance over the 

purely distance-based local spatial regression models.   

 

To achieve the objective, this research addresses the following questions: 

• How can the concept of ‘community’ be operationalized as measurable 

variables that can be incorporated in the BGWR model? 

• What are appropriate evaluation methods for assessing the performance of 

the proposed model (BGWR-Community) and the purely distance-based 

local spatial regression models (GWR and BGWR-Distance) under study? 

• Does the incorporation of the ‘community’ concept into the BGWR model 

improve its prediction power by reducing the prediction error over the 

purely distance-based local spatial regression models under study? 

 

1.3 Approaches to the Research 
 

The author has adopted the following approaches to achieve the research 

objective:    

• A Literature review pertaining to the following areas of interest has been 

conducted to inform the research: (i) the definitions of community and 

community effects as well as the techniques used in empirical studies of 

community effects; (ii) operationalization of the ‘community’ concept into 

measurable variables; and (iii) spatially weighted local regression methods 

with special emphasis on the GWR and Bayesian approach of the GWR 

methods.      
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• Experiment design and evaluation methods – The goal of the 

experiment is to assess whether incorporating the ‘community’ concept 

into the BGWR model can improve its prediction power over the purely 

distance-based local spatial regression models under study. The base 

model and the experiment dataset are selected based on previous research 

and availability of data. The base model is an ordinary least squares (OLS) 

regression model which serves as a baseline for assessment. The study 

area is selected according to the assumptions of the local spatial regression 

models. The other models under study are the GWR, BGWR-Distance, 

and the BGWR-Community models (i.e., the proposed model). In addition 

to regression statistics, three empirical evaluation methods are selected to 

assess the different aspects of the prediction power of the models.  

 

• Models Implementation – The OLS base model is implemented with 

SPSSTM statistical package2 while the local spatial regression models are 

implemented based on LeSage’s (2005) Spatial Econometric Toolbox, a 

host of spatial econometric estimation methods implemented with 

Matlab™ 3 . To implement the ‘community’ concept as a parameter 

smoothing relationship of the BGWR model, the concept is first 

operationalized into measurable variables based on Galster’s (2001) 

bundle of spatially-based attributes which capture both the physical and 

social characteristics of a community. Then, these measurable variables 
                                                 
2  SPSS is a registered product name of a statistical software package produced by SPSS Inc. 
3  Matlab is a registered product name of a numerical computations and graphics software package 

produced by The MathWorks, Inc. 
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are used to generate two weight matrices, a geographical distance-based 

weight matrix and a Mahalanobis distance-based matrix which are then 

combined to produce a normalized weight matrix, hence the community 

parameter smoothing relationship. 

 

• Evaluate the results of the experiment – The results of the experiment 

are evaluated using the above-mentioned evaluation methods and the 

outputs are presented as numerical indicators and charts. Further 

discussion of the trends and patterns of the local effects of the three local 

spatial regression models are illustrated with maps generated by Kriging 

interpolation of the prediction improvement results. These outputs are then 

compared and analyzed to determine whether the prediction power of the 

proposed model has improved over other models under study.    

 

1.4 Scope of the Research 

  This research attempts to incorporate the ‘community’ concept into a local 

spatial regression model in order to account for the community effects that cannot 

be addressed by the purely distance-based local spatial regression models under 

study. By doing so, the prediction power of the proposed model is expected to 

improve over the existing models. To assess whether the proposed model 

improves prediction by the incorporation of the ‘community’ concept, the 

experiment is designed to include only the GWR and the BGWR-Distance models 
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for comparison. Other non-distance-based local spatial regression models such as 

spatial autoregressive model or spatial expansion methods are not considered.  

 

  The purpose of this research is to determine whether the proposed model 

can improve the prediction power by accounting for the community effects. It will 

not identify or assess the impact of the community effects. 

 

 Furthermore, the following assumptions are made for the experiment: 

• The straight-line distances among the observations can approximate the 

real distances; and 

• The assigned locations (i.e., the centroids of DAs or randomly assigned 

postal codes) of the observations are adequate replacement of the actual 

locations of the observations. 

 

1.5  Significance and Contributions of the Research 

 The present research proposes a statistical model that incorporates the 

concept of ‘community’ in a local spatial regression model to account for 

community effect which cannot be addressed by purely distance-based local 

spatial regression models. By doing so, the model improves the prediction power, 

in comparison with the purely distance-based local spatial regression models by 

reducing the overall prediction errors and bringing significant improvement to 

certain local areas. 
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 During the implementation process, this study demonstrates a means to 

operationalize a concept that captures both the location-related and other non-

locational characteristics. This allows the model to address the localized effects, 

such as community effect, not only by geographical distance but also by other 

relevant attributes such as socio-economic factors. 

 

  Through the operationalization process, this research sets an example to 

other research areas on how to integrate concepts that are geographical in nature 

but have ill-defined boundaries into the local spatial regression model without 

pre-defining the boundaries. In other potential research areas such as forestry or 

ecology, these concepts may be land cover types, soil types or habitats where the 

boundaries are not always well-defined. The potential applications of the 

proposed approach are promising. 

 

1.6  Organization of the Thesis 

  This thesis consists of five chapters. Chapter 1 provides an overview of 

the research. It describes the research problem, the objectives and approaches to 

the research. The significance and contributions of the research and its scope are 

also discussed. Chapter 2 provides the background knowledge to two major areas, 

(1) definition of community and operationalization of the ‘community’ concept; 

and (2) technical background about the GWR and BGWR models. Previous 

methods applied in studying community effects are also reviewed. Chapter 3 

presents the design of the experiment and its considerations, including the choices 

 9



 10

of models, selection of dataset and study area. The development of the proposed 

model is also described in detail. The latter part of the chapter discusses the 

evaluation methods of the study. Chapter 4 evaluates the results of the experiment 

with the methods described in Chapter 3. The evaluation results between different 

models are compared to determine whether incorporating the ‘community’ 

concept into the BGWR model brings the expected improvement to the purely 

distance-based local spatial regression models, followed by a detail discussion of 

the local improvements brought by the proposed model. Chapter 5 provides a 

summary of the research, discusses its limitations, and suggests future research 

opportunities. 

 

 

 

 



2.0 Y EFFECTS AND SPATIALLY 
CAL REGRESSION 

  

2.1 C

pts in social 

efinitions of 

 review 

on the scientific literature at his time and found 94 different definitions of 

ion within a 

illery, 1955, 

ound that the 

chnology and 

een et al., 

2001; Wellman, 2001).  One example is the divorce of community and geography 

ommunities of place’ and ’communities of 

 

2.1

2.1

 COMMUNITY, COMMUNIT
WEIGHTED LO

oncepts of Community in Social Sciences Research 

Community has long been one of the fundamental conce

sciences research (Brint, 2001).  However, the diversity in the d

‘community’ is also well recognized. Hillery (1955) did a comprehensive

‘community’. Notwithstanding the diversity, he found that there was “a basic 

agreement that community consists of persons in social interact

geographic area and having one or more additional common ties” (H

p. 111). From time to time, researchers revisited the definition and f

concept of ‘community’ has been evolving to reflect changes in te

social compositions (Trojanowicz and Moore, 1988; Brint, 2001; MacQu

that leads to the distinction between ‘c

interest’. 

.1 Definitions of Community 

.1.1 Communities of Interest 

‘Communities of interest’ refers to groups of people whose members have 

something in common, such as political interest, hobbies, or expertise, but not 

necessarily conducting activities at a common place or location.  These include 

but are not limited to unions and associations of workers, associations of 
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businesses, sports groups, and international professional bodies. As technologies 

advance, this definition also covers virtual or online communities. These groups 

provide their members a sense of community or identity. 

2.1.1.2 Co

 

mmunities of Place 

‘Communities of place’ or geographic communities are ma

people who happen to live or take part in activities in a particular area o

de up of the 

r locality. 

They may or may not share a common interest but they always share certain 

characteristics, identities or concerns (Law, 2000). Neighbourhoods, school 

 are examples of geographic communities. 

2.1

districts and urban regions

 

.1.3 Working Definition of Community 

Although there is no universally accepted definition of community, in 

common interests and perspectives, as well 

et al., 2001). Given the focus of this research is about spatially w

regression, community in this research, unless stated otherwi

‘communities of place in a local setting’ that resembles the 

neighbourhood. Small and Supple (1998, p. 3) referred neighbou

physical place defined by socially shared boundaries which includes a population 

most research, the basic elements are still location or place, social interaction, 

as social ties (Brint, 2001; MacQueen 

eighted local 

se, refers to 

meaning of 

rhood as “a 

of people who usually share similar life chances, socio-economic status and 

physical proximity”. Galster (2001, p. 2112) specified neighbourhood as “a 

bundle of spatially-based attributes associated with cluster of residences”. These 
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attributes include physical and social characteristics of the neighbourhood, 

namely structural characteristics of the buildings, infrastructural characteristics, 

e residents, 

acteristics, 

ical characteristics, social-interactive 

characteristics and sentimental characteristics.  

2.1.1.4 Operationalize the ‘Community’ Concept in Social Sciences Research

demographic characteristics and class status characteristics of th

tax/public service package characteristics, environmental char

proximity characteristics, polit

 

 

perationalize it 

rated into a 

 is spatially-

s is only possible after a particular area has been 

specified or demarcated. Therefore, how space being delineated for measurement 

is part of the operationalization process. 

 

ngful spatial 

ealized that it 

hbourhood as 

 Given that it 

ost likely 

made arbitrarily, and may not coincide with the spatial patterns of the attributes, 

the best one can do is to use the smallest spatial unit of data available in order to 

get a ‘higher resolution image’ of the spatial patterns. This is in line with Dietz’s 

After defining the ‘community’ concept, it is necessary to o

as measurable attributes or variables so that they can be integ

statistical model. As Glaster (2001) pointed out that ‘community’

based, measurement of attribute

Small and Supple (1998) found that defining meani

boundaries for study is not a straightforward task. Glaster (2001) r

was very difficult to define a clear boundary of a community or neig

the attributes to be measured vary over space in different patterns.

has to demarcate an area to take measurement but the boundaries are m
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(2002) observation that space delineations in most research are constrained by the 

limitations of the available datasets.  

epresent the 

el framework 

 first level is 

institutions” upon the individuals in the community (Small and Supple, 1998, p. 8). 

 generated by 

e example is 

 schools and 

 in each 

setting are reinforced. Influences under the third level, such as community 

identity, only occur when a community reaches a critical mass. This framework 

co be easy to 

 measurable 

variables to represent the ‘community’ concept: (1) both physical and social 

aspects of community should be considered; (2) use appropriate boundaries for 

community under study; (3) reflect different relationships between individuals 

 

With respect to choices of measurable variable to r

‘community’ concept, Small and Supple (1998) proposed a three-lev

for conceptualizing communities in terms of community effects. The

“the direct aggregate influences of the universe of community settings and 

These community settings and institutions include schools, health care facilities, 

religious institutions, and so on. The second level is the influences

the relationships and linkages between settings in a community. On

cross-setting consistency which means if community settings such as

religious institutions share common goals and values, the influences

nsiders communities as complex systems which “will not 

operationalize or study” (Small and Supple, 1998, p. 20). 

 

Lupton (2003) suggested four guidelines for selecting the
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and community; and (4) reflect the relationships between neighbouring 

communities.  

rent patterns, 

 attributes of 

es among the 

found that more than two thirds of the studies (24 out of 39) select socio-

economic and demographic attributes as measurable variables. Only 15 studies 

us

cepted means 

based attributes” and Lupton’s (2003) guidelines, the common denominator is that 

the attributes should include both physical and social characteristics of the 

urther discussion about the operational definition of community for 

th

2.1

 

Considering that different attributes vary over space in diffe

Glaster (2001) suggested that researchers should choose only those

interest for a particular type of community to avoid the discrepanci

spatial patterns of the attributes. Dietz (2002) reviewed 39 previous studies and 

e research specific variables. 

 

The above discussion reveals that there is no universally ac

to operationalize community. Based on Glaster’s (2001) “bundle of spatially-

community. F

is research is presented in Section 3.1.5.2(d).  

 

.2 Community Effects 

In general, the term ‘community effects’ refers to the influences a 

community exerts on an individual’s behaviour or socioeconomic outcomes 

through social interaction within that community (Dietz, 2002). Other than the 

effects from direct social interaction, Dietz (2002) also referred to the correlation 
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between individual behaviour or outcomes with the characteristics of an 

individual’s neighbours and neighbourhood as a kind of community effect. This 

esses such as 

unity effects’ 

utcomes with 

ood. In this 

l spatial 

regression model is to account for the community effect. 

 

2.2

relationships 

properties of 

pointed out, are frequently found to be spatially dependent. Researchers studying 

community effects usually deal with this problem by modifying or extending the 

 (OLS) regression model. Dietz (2002) reviewed 39 

previous studies and found that most researchers used OLS, two-stage OLS or 

m onometric or 

The most common way to use OLS in dealing with spatially dependent 

data is to introduce a dummy variable for broad classes of spatial location, such as 

urban, suburban and rural. Another method is to use the multi-level modeling 

kind of community effect may be the result of certain social proc

population sorting. For the purpose of this research, the term ‘comm

refers to the latter, i.e., correlation between individual behaviour or o

the characteristics of an individual’s neighbours and neighbourh

research, the incorporation of the ‘community’ concept into a loca

 Techniques Used in Empirical Studies of Community Effects  

Although linear regression is a powerful tool for finding 

among various factors, it is not effective with data showing 

dependence such as spatial dependence. Geographical data, as Goodchild (2001) 

ordinary least squares

ulti-level regression models. Only four of them used spatial ec

spatial auto-regressive models. 
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techniques to include a pre-defined location or community as one of the 

hierarchical levels. A major criticism about these approaches is that a spatial 

e 

n the spatial hierarchical groupings is not 

 al., 1998; Dietz, 2002). 

eal data, 

simulate local spatial interaction by putting the spatially weighted dependent 

hich does not 

h this type of 

tionships in the data, the output is always 

a set of global parameter estimates (Fotheringham et al., 2002). No trend or 

spatial pattern of the parameters can be observed. 

 

ially adaptive 

on a ‘predictor-corrector’ mechanism to generate the 

eter ‘drift’ across space. Brunsdon et al. (1998) noted that a major drawback 

of n parameters 

 

Cassetti (1972) proposed a spatial expansion method that expands the 

coefficients in the regression model with the explicit function of the spatial 

hierarchy has to be pre-defined and incorporated into the model, but th

sensitivity of these models to changes i

investigated (Brunsdon et

 

Spatial autoregressive models, which are usually applied to ar

variable (with a spatial weight matrix) on the right side of the equation. The 

spatial weight matrix is typically a normalized contiguity matrix w

consider the size or shape or absolute location of the zones. Althoug

model addresses the impact of local rela

Gorr and Olligschlaeger (1994) used a technique called spat

filtering that based 

param

 this technique is that the validity of the assumption of variation i

cannot be tested statistically.  
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location of the cases. It is also the expansion method that restricts how the 

changes of the estimated parameters can be displayed over space. For example, 

xpanded from 

 of v can only 

) or the y-axis (using β2 

values); hence, no spatial pattern can be mapped out for exploration. 

 

2.3 Geographically Weighted Regression  

2.3

when x-y expansion is used, a parameter β for a variable v will be e

one term βv into three terms βov, β1xv, and β2yv. However, the trend

be displayed either along the x-axis (using β1 values

.1 Basic Concept 

To overcome the deficiencies of the techniques discussed abo

et al. (1998) proposed an alternative technique, Geographical

Regression (GWR). GWR is regarded as a non-parametric mode

defined spatial hierarchy is necessary. It attends to spatial depend

ve, Brunsdon 

ly Weighted 

l so no pre-

ence of data 

with a distance-decay weight function and tackles spatial heterogeneity using a 

subset of the observations for each prediction point estimation. The parameters 

obtained are at the local level, instead of the global level, and can be mapped 

sp xploration of 

Unlike OLS regression that uses all observations in the parameters estimation, 

GWR uses a subset of the observations to estimate the parameters for each 

prediction point. The subset used in each estimation is defined by a moving kernel 

atially with Geographical Information System (GIS) software for e

trends or patterns. 

 

The central idea of GWR is to apply an OLS regression model locally. 
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(Figure 2.1). It also applies a pre-defined weighting function to weight the 

observations around the prediction point. The weighting function (Figure 2.1) is 

First Law of 

ng is related to everything else, but near things are more 

related than distant things”.  

 

2.3.2 The Theory

usually a distance-decay one that reflects Tobler’s (1970, p. 236) 

Geography, “Everythi

 

ion model can be written as: 

(2.1)

y = the dependent variable 

k
ε = the error term whose distribution is N(0, σ2) 
 
 

In OLS, it is assumed that the parameter values (β) are constant across the 

study area. Any unexplained variations (including the spatial variations) are put in 

An OLS regress

∑ ++= ββ xy εkkk0  
 
where:  

xk = a vector of independent variables 
β0 = the intercepting constant 
β  = a vector of regression coefficients 

weighting 
functions 

moving 
kernels 

Figure 2.1: Distance-decay weighting function and moving kernel 
( 2.11]) After Fotheringham et al. [2002, Figure 
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the error term ε. The aim of OLS is to estimate the parameter values (β) for a 

regression model (which is also a statistical function) so that the function best fits 

st squares sense. The least squares estimates 

of the parameter values (β) can be obtained by: 

 
(2.2)

 n observations of the k independent variables 
XT  = transpose of  X 

 

Based on the OLS model represented in (2.1), the general form of a local 

ession can be written as (2.3). 

a set of data (or observations) in a lea

yXXX TT 1)( −
∧

=β  
 
where:  

X = a n by k matrix containing

∧
β  = estimated regression coefficients 

regr

∑ ++= iikiikkiii xvuvuy εββ ),(),(0  (2.3)

nt i 
xik = a vector of independent variables for prediction point i 

ave its own 

 is a spatially weighted local 

od, each prediction point also has its own weight matrix. The 

diction point 

i are written as (2.4), with subscript i replacing (ui,vi) in (2.3).  

Wiy = WiXβi + εi (2.4)
 
where:  

Wi =  a n by n weight matrix for prediction point i whose off-diagonal 
elements are zero 

 
where:  

iyi = the dependent variable of a prediction po

β0 = the intercepting constant for prediction point i 
βk = a vector of regression coefficients for prediction point i 
εi  = the error term for the estimation of prediction point i 
ui,vi = the coordinates (or location) of prediction point i 
 

This general form indicates that each prediction point would h

regression coefficients being estimated. As GWR

regression meth

compact form of the GWR model including the weight matrix for pre
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y = a n by 1 vector of dependent variable observations 
X = a n by k matrix containing n observations of the k independent variables 
βi = a vector of regression coefficients for prediction point i at location 

εi  = the error term for the estimation of prediction point i 

The least squares estimation scheme for (2.4) can be written as

(2.5)

t variables 
spos of  X 

f estimated regression coefficients for prediction point i at 
location )

 off-diagonal 
elements are zero 

 matrix Wi is 

i  (2.2). As 

discussed in section 2.3.1, GWR put more emphasis on the observations closer to 

Wi so that 

higher weights are assigned to observations closer to the prediction point. Wi is 

bservations to be used in the local regression. 

Th ling.  

 

2.3.3 Spatial Weighting Function and Bandwidth

),( ii vu containing β0 and βk in (2.3) 

 

: 

yWXXWX TT 1)( −
∧

=β  iii

 
where: 

y = a n by 1 vector of dependent variable observations 
X = a n by k matrix containing n observations of the k independen
XT = tran e 

i

∧
β = a vector o

,( ii vu  
Wi =  a n by n weight matrix for prediction point i whose

 
 

By comparing (2.2) and (2.5), it is obvious that the weight

central to GWR. If W  is an identity matrix, then (2.5) is equal to

the prediction point. A distance-decay function is used to generate 

also used to define the subset of o

erefore, obtaining a proper weight matrix is crucial to GWR mode

 

Obtaining a proper weight matrix requires an appropriate spatial weighting 

function and bandwidth. Spatial weighting functions can be implemented as 
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binary function, exponential distance-decay-based function, or kernel function 

(Brunsdon et al., 1998). 

ations whose 

wise zero. In this case, 

hting function defines a circular kernel of radiu .6). 

 1 if dij < b (2.6)

 
 where: 

wij = weight assigned to observation j for the estimation of prediction point i 

 

atural since it 

is weighted 1 

0.  An exponential distance-decay function like (2.7) or a distance-decay kernel 

function like (2.8) is considered more appropriate as the weight changes more 

gradually, depending on the bandwidth being selected. The crux of these 

functions is the ‘bandwidth’ b which defines the behaviour of these functions. 

(2.7)

ij ij  ij (2.8)

 

Figure 2.2 shows that a larger bandwidth (b2) results in a flatter weight 

distribution. Observation point a is assigned a lower weight (wt2) in the case of 

bandwidth b2 than b1. This in turn affects the goodness of fit of a GWR model. Hence, 

 

A binary function assigns a weight of 1 to all observ

distances from the prediction point i are less than b; other

th  spatial weige s b (2

wij =
wij = 0 otherwise 

 
 

dij = distance between observation j and prediction point i 
b = bandwidth 

However, a binary function like (2.6) is considered as unn

means that an observation which is b km from the prediction point 

while the other one which is b+0.00001 km from the prediction point is weighted 

wij = exp[ – ½(dij  / b)2]  
 
w  = [1 – (d / b)2] 2 if d < b 
wij = 0 otherwise 
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selecting an appropriate bandwidth is actually calibrating the spatial weighting 

function selected for the GWR model. The most common method used for the 

ham et al., 2002). Cross-

validation scores for different bandwidths are computed using (2.9):  

 

 (2.9)

 

 where: 

CV = cross-validation score 

= the predicted value of yi from the GWR model where the ith 
observation is omitted during the estimation process 

b = bandwidth 
 

calibration is a cross-validation approach (Fothering

∑
∧

−=
n

=
≠

i
ii

1
byyCV 2)]([  

 

)(by i≠

∧

Figure 2.2: Bandwidth and spatial weighting function 
(After Fotheringham et al. [2002, Figure 2.10]) 

b1

2 b

a

bandwidth 

wt1

wt1wt1

wt2
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The bandwidth that gives the least cross-validation score is considered as 

the most appropriate one because this indicates the model produces least 

prediction error at this bandwidth. 

2.3.4 O

 

utliers and Community Effects 

One of the major criticisms about GWR is that the presence o

would distort the results of the nearby prediction points greatly due to the nature 

Fotheringham et al. (2002) suggested that outliers can be detected using the 

externally Studentised residual. They recommended removing the 

the dataset and then re-fitting the model. While such ‘detect-and-rem

may be useful in dealing with ordinary outliers, it cannot handle l

observations or local influences caused by community effects as illus

f any outliers 

of local regression and the distance-decay weighting function (LeSage, 2004). 

outliers from 

ove’ strategy 

ocal aberrant 

trated in the 

example in Section 1.1. In the next section, an alternative approach that extends 

the GWR model is introduced to handle local aberrant observations. This 

pportunities to incorporate the 

‘c l. 

 

2.4 

problems about GWR. One is about the validity of inferences for the regression 

parameters by traditional least squares approaches and the other is the ‘weak data’ 

problem (i.e., the effective number of observations for each estimation may be too 

alternative approach also provides the o

ommunity’ concept into a spatially weighted local regression mode

Bayesian Geographically Weighted Regression Model 

Apart from the outlier problem, LeSage (2004) also identified two other 
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small). Thus, he proposed an alternative, a Bayesian approach of the GWR which 

he coined as Bayesian Geographically Weighted Regression (BGWR) to address 

tics, one may 

 (2001) and Goddard (2003) or Koch (2007) and Lynch (2007) for 

2.4.1 The Theory of BGWR

the deficiencies of GWR. For brief introduction to Bayesian statis

refer to Bullard

detailed discussions. 

 

 

parameter βi in (2.4) with an explicit statem

  LeSage (2004, p. 243) extended the GWR model by expanding the 

ent of what he called the “parameter 

smoothing relationship” such as the distance-based parameter smoothing 

relationship in (2.10) below. 

(2.10)

 

bination 

ter smoothing 

entric (i.e., concentric zones to a pre-

defined centre) are also possible (LeSage, 2004). The terms wij (such that j = 1 to 

n) hts such that the 

sum of the row vectors (wi1….win) are 1 while wii = 0.  

 

The distribution for the error terms εi in (2.4) and μi in (2.10) are added: 

(2.11)

i

n

kinkii IwIw μβ +
⎟
⎟

⎠

⎜

⎝

⊗⊗= MK1 )(  

  The parameter smoothing function in (2.10) is a locally linear com

of neighbours weighted by a distance-decay function. Other parame

relationships such as contiguity, and monoc

β

β
⎟
⎞

⎜

⎜
⎛ 1

 in (2.10) represent the normalized distance-decay-based weig

),,,(],,0[~ 21
2

nii vvvdiagViVN L=σε  
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])(,0[~ 1222 −XWXN i
T

i δσμ  (2.12)

2

 matrix with 

 are zero. In 

Sage (2004) 

rms using a 

hyperparameter r such that the mean of prior equals unity and the prior variance is 

2/r. This implies that when r is very large, the prior variance becomes very small 

e a constant 

r property of 

an down-weight aberrant 

tified if the difference between observed 

va

 

p. 

ariance based 

ble selection 

 variance is 

-1. The term 

is a scale factor that regulates the degree of adherence between the parameter 

estimates and the proposed smoothing relationship. That means when δ2 is very 

small like 1 or 0.5, the smoothing relationship would impose more influence on 

the regression coefficient estimation. On the other hand, when δ2 is very large 

where σ  is the variance of y. Vi is an unknown variance parameter introduced to 

accommodate spatial heterogeneity of variance. It is an n by n

diagonal elements, (v1, v2, …, vn), while the off-diagonal elements

order to estimate the n number of vi terms for n observations, Le

suggested to assign a prior distribution χ2(r) for the n2 te

and Vi become an identity matrix. Hence, the variance of εi becom

variance σ2In for all observations i (i.e., homoscedasticity). The othe

the hyperparameter r is that when it is small, say 4, it c

observations or outliers (which are iden

lues and predicted values are big) in a local regression estimation.  

The term μi is prior uncertainty about the parameter smoothing relationshi

It is assumed to follow a normal distribution with mean zero and a v

on Zellner’s g-prior, a commonly used prior in Bayesian varia

(Berger and Pericchi, 2000; Denison et al., 2002). This prior

proportional to the parameter variance-covariance matrix, σ2(XTWi
2X)

δ2 
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(e.g., approaching infinity), and Vi equals to identity matrix, BGWR would 

produce estimates very close to those by GWR.  

2.4.2 E

 

stimation with the BGWR Model 

  Like other Bayesian models, the estimates for the BGWR m

multivariate posterior probability density for all of the parameters 

LeSage (2004) used Gibbs sampling, a technique for generating random sa

odel are the 

in the model. 

mples 

from a distribution based on the Markov Chain Monte Carlo (MCMC) approach, 

to carry out the estim

cess described below are based 

on the parameter smoothing relationship in (2.10) (recapped below for ease of 

reference). A compact form of (2.10) can be written as (2.13). 

(2.10)

ation.   

 

  The procedures of the Gibbs sampling pro

i

n

kinkii IwIw μ
β

β +
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎛

⊗⊗= MK
1

1 )(  
β⎜⎝

iii J μγβ +=  

 where )( IwIwJ ⊗⊗= K , and 
⎟
⎟
⎟

⎠
⎜
⎜
⎜

⎝

=

nβ
γ M

1

 

The parameters to be estimated in this process are β , σ, δ, V, and 

(2.13)

i γ which come 

from (2.11), (2.12), and (2.13). Before the Gibbs sampling process starts, arbitrary 

values have to be assigned to the parameters βi, σ and γ. The bandwidth for the 

distance-decay function in the parameter smoothing relationship is obtained from 

the estimates of the initial analysis of an equivalent GWR model. The prior r 

1 kinkii

⎞⎛ β
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(which gives V) and δ are selected based on the considerations discussed in 

Section 2.4.1.  

 

0 or 1,000. In 

is drawn to compute and update certain 

i i δ0, Vi
0, and γ0, 

where the superscript 0 indicates the pass number and subscript i indicates 

0, Vi
0,  γ0);   

ple a value Vi
1 from P(Vi | σi

1, δ0, βi
1,  γ0);   

3.  Update γ  to γ with the sampled values of βi
1 , i = 1 to n from each of the n 

draws in Step 2. 

 Sample a value δ1 from P(δ | σi
1, Vi

1, βi
1,  γ1). 

sses. 

collection of samples of parameter values, from which the posterior probability 

density (or conditional posterior distribution) for the parameters can be 

constructed. Normally, the samples of the first 50 passes would not be used as the 

  The Gibbs sampling process comprises many passes, say 50

each pass, a sample of each observation 

parameters. The detailed procedures are as follows: 

1.  Initial values for the parameters are represented as β 0, σ 0, 

the observation number. 

2.  For each observation i = 1 to n, 

a. sample a value βi
1 from P(βi | σi

0, δ

b. sample a value σi
1 from P(σi | βi

1, δ0, Vi
0,  γ0);   

c. sam

0 1  

4. 

5.  Replace βi
0, σi

0, δ0, Vi
0, γ0 in Step 1 with βi

1, σi
1, δ1, Vi

1, γ1. 

6.   Steps 2 to 5 represent a single pass. Repeat for another 499 pa

  

  The output or estimates obtained from the Gibbs sampling process are a 
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initial sample values are not very stable. Therefore, for a collection of 500 

samples, the process needs 550 passes.  

2.4.3 O

 

utliers and Community Effects 

  BGWR adopts a different strategy in handling outliers. Inste

and-remove’, BGWR mitigates the influence of the outliers by dow

the outliers as well as smoothing any aberrant values in the param

relationship. The parameter smoothing relationship also provides an opportunity 

to incorporate the community concept into the BGWR model. A 

measures how likely observations ar

ad of ‘detect-

n-weighting 

eters of an 

observation with its neighbours with some pre-defined parameter smoothing 

function that 

e coming from the same community can be 

used in the parameter smoothing relationship to account for the community 

 (to be discussed in Section 3.1.5.2(d)). 

 

2.5 Summary

definitions of 

 interest and 

inition of the 

 setting that 

resembles the meaning of neighbourhood. In addition, the constraints (imposed by 

the available datasets) and considerations to operationalize ‘community’ into 

measurable variables are also discussed. Furthermore, the term ‘community 

effects

 

This chapter begins with a discussion on the diversity in the 

‘community’ as well as the distinction between community of

community of place. Given the focus of this research, a working def

term ‘community’ is set out as communities of place in a locality
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effects’ is also defined as the correlation of individual behaviour or outcomes to 

the characteristics of an individual’s neighbours and neighbourhood.  

 studies of 

and spatial 

uggested that 

ierarchy is 

required but the effects of different definitions of the spatial hierarchy on the 

ostly at a global 

eters are estimated at a local level, they are not 

ea . 

etric spatially 

weighted local regression model proposed by Brunsdon, Fotheringham and 

Charlton (1998), is introduced as it overcomes the above deficiencies. The central 

ally. It uses a 

them with a 

on point. Due 

stance-decay 

ates of GWR are susceptible to outliers. While the 

proposed ‘detect-and-remove’ strategy may be able to handle ordinary outliers, it 

cannot handle local aberrant observations or local influences caused by 

community effects. 

 

After reviewing the techniques used in some empirical

community effects -- such as OLS, multi-level regression, 

autoregressive model -- a brief discussion about these techniques s

their deficiencies might be threefold. Firstly, a pre-defined spatial h

models are not certain. Secondly, parameters estimated are m

level. Thirdly, even though param

sily mapped with GIS software for exploration of trends or patterns

 

Geographically Weighted Regression (GWR), a non-param

idea of this model is to apply an ordinary least squares regression loc

moving kernel to define a subset of the observations and weight 

distance-decay function to estimate the parameters for each predicti

to the nature of local regression and the properties of the di

weighting function, estim

 30
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 LeSage (2004) proposed a Bayesian approach of the GWR, coined as 

BGWR (Bayesian Geographically Weighted Regression), and introduced a 

luence of the 

em with its 

BGWR also 

to the model. 

munity’ as the parameter smoothing relationship will 

be described in the next chapter. 

 

  

parameter smoothing relationship into the model to mitigate the inf

local aberrant observations by down-weighting and smoothing th

neighbouring values. The parameter smoothing relationship of 

provides an opportunity to incorporate the concept of community in

A BGWR model with ‘com



3.0 EXPERIMENT DESIGN AND EVALUATION METHODS 
  

 

In Chapter 1, I argued that purely distance-based local spatial regression 

models cannot account for the ‘community’ effect in social sciences research. I 

also argued that by incorporating the ‘community’ concept into the local spatial 

regression model, its prediction power can be improved. A scientific experiment 

has been designed and implemented to support this argument. This chapter 

discusses the details of the design of the experiment including the data 

requirements, procedures, and the models that have been involved in the 

experiment. To enable the community concept to be expressed as measurable 

variables, it is necessary to derive an operational definition of community. A 

detailed discussion about the operational definition of community is therefore 

included. The latter part of this chapter discusses the evaluation criteria to be used 

in this research.   

 
 

3.1 Experiment Design 

3.1.1 Background  

The present experiment requires the datasets that demonstrate certain 

extents of spatial dependence. Therefore, it is developed on previous models that 

involved datasets that exhibit such properties. Combining this guideline with 

another key consideration, data availability, I have selected Dr. Douglas Willms’ 

research on adult literacy as the starting point. Willms and his colleagues have 

used multi-level modelling techniques in several research projects to account for 
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the spatial dependence of adult literacy data (Willms, Chan and Tang, 2007; 

Willms and Tang, 2007; Willms and Murray, 2007). The base model of this study 

is adapted after Willms and Murray (2007). 

 

3.1.2 Data  

 The dataset for this research is the International Adult Literacy and Skills 

Survey (IALSS). It is the same dataset that was used by Willms and Murray 

(2007). The IALSS studies four skills of adults from various countries, including 

Canada, at age 16 and older. The four skills are prose literacy, document literacy, 

numeracy, and problem solving. Like the research by Willms and Murray (2007), 

prose literacy – the knowledge and skills needed to understand and use 

information from text – is used in this study as the dependent variable. 

Proficiency of prose literacy in the IALSS is indicated on a scale ranging from 0 

to 500 points. Independent variables are gender, age, age-squared, years of 

education, and personal income. Details about these variables are discussed in 

Section 3.1.5.1. In addition, data at the DA (Dissemination Area) level from the 

2001 Canada Census are used as the source of spatial and community-level data 

(Statistics Canada, 2003a). Details about these data are discussed in Section 

3.1.5.2(d). 

 

3.1.3 Study Area 

 IALSS data for the Atlantic provinces, which comprise information on 

4,682 adults, were initially considered for this study. However, the area was 

 33



inappropriate because one of the basic assumptions of the local spatial regression 

models was violated. Most local spatial regression models take straight line 

distances between sample points as input for computation. This, however, is not 

applicable to the Atlantic provinces because many parts of the provinces are 

separated from their neighbouring provinces by various bays and straits (see 

Figure 3.1). Therefore, observations regarding the fit of the models tested may 

vary due to the fact that straight line distances were used, and this variation would 

be confounded with the introduction of community characteristics with the 

BGWR-Community model. This problem is less prominent in the selected study 

area in southern Ontario (see Figure 3.2) where there are 3,709 adults in the 

sample after cases with missing data are removed. This limitation is discussed in 

the final chapter.  

 

 

 

Figure 3.1: Problem of distance measurement for the four Atlantic provinces 
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Study area 

Figure 3.2: Southern Ontario as the study area 

3.1.4 Preliminary Data Preparation 

Firstly, the Prose Literacy scores for the adults between the age of 16 and 

65 surveyed in southern Ontario were extracted. Then, the records with missing or 

extreme values were removed to ensure the quality of subsequent analysis. Some 

variables were then ‘centred’ such that the constant of the regression model 

predicts the literacy score of a typical adult of age 40, with 12 years of education, 

and an annual income of $30,000. Details of the data preparation process are 

summarized in Appendix A, while key points are highlighted where appropriate in 

the explanation of the base model contained in the next section. 
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3.1.5 Models 

3.1.5.1 Base Model 

  The base model of this experiment is an ordinary least squares (OLS) 

regression model which serves as a baseline for comparison. It is represented as 

follows: 

      Prose = β0 + β1 Gender + β2 Age + β3 AgeSquared + β4 YearsEd + β5 Income 

where:  

Prose = the prose score of the subject, ranging from 0 to 500. 
Gender = re-centred value of the gender of the subject such that males 

were set to -0.5 and females to 0.5. 
Age =  re-centred value of the age of the subject. This experiment includes 

only adults between the age of 16 and 65. This variable was re-
centered such that age 40 was set to 0, 39 to -1, 41 to 1, and so on. 

AgeSquared = square of the subject’s re-centred age value; 
YearsEd = re-centred value of the number of years of education of the 

subject such that 12 years of education was set to 0, 11 to -1, 
13 to 1, and so on. 

Income =  re-centred value of the imputed personal annual income of the 
subject such that annual income of $30,000 was set to 0, 
$31,000 to 1, $29,000 to -1, and so on. 

 

As mentioned earlier, these data come from the IALSS. The model is 

implemented with the SPSS™ statistical package. 

 

3.1.5.2 Local Spatial Regression Models Under Study  

 The major goal of this experiment is to determine whether the 

incorporation of community concept into the local spatial regression model can 

lead to improved prediction power by means of comparing the proposed model 

with two distance-based local spatial regression models. The local spatial 

regression models under study are: 
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(1) the Geographically Weighted Regression (GWR) using exponential 

distance-decay function as the spatial weighting function by Brunsdon et 

al. (1998); 

(2) the Bayesian Geographically Weighted Regression using a distance-decay 

parameter smoothing relationship (BGWR-Distance) by LeSage (2004); and 

(3) the Bayesian Geographically Weighted Regression using a community 

parameter smoothing relationship (BGWR-Community) proposed by the 

author. 

  

The GWR model is selected as it is one of the most popular spatially 

weighted regression models that is distance-based. The BGWR-Distance model is 

selected as it is also a distance-based model. More importantly, it serves as a 

reference when comparing the results of the author’s BGWR-Community model 

with the GWR model because it is structured in a way that offer a transition 

between the GWR and the BGWR-Community models. As discussed in Section 

2.4, the BGWR models are a Bayesian approach of the GWR model that 

introduces various parameter-smoothing relationships to extend the GWR model. 

The major difference between the BGWR-Distance model and the GWR model is 

that it incorporates a normalized distance-based weight matrix in the parameter 

smoothing relationship. Since the ‘community’ concept in the BGWR-

Community model is represented by a weight matrix that is comprised of a similar 

distance-based weight matrix and another component (to be discussed in Section 

 37



3.1.5.2(d) below), the BGWR-Distance model serves as a good reference for the 

GWR and BGWR-Community models. 

 

  In this experiment, the implementation of these models is based on 

LeSage’s (2005) Spatial Econometric Toolbox which is a host of spatial 

econometric estimation methods implemented with Matlab™. In the following 

sections, the spatial data requirements for these models are discussed followed by 

detailed discussions about each model. 

 

 (a) Spatial Data Requirements and Distance Matrix  

 In order to generate the distance-based weight matrix mentioned above, a 

n by n distance matrix that captures the distance between any two sample points is 

required. It is used in all of the above models to determine the weight applied to 

each sample point during estimation. Therefore, it is pre-computed and imported 

into each model to avoid redundant computation. The spatial data required to 

generate the distance matrix includes the DA (Dissemination Area) file (which 

contains all the DA polygon data) of the 2001 Canada Census Spatial File (in 

ArcInfo™ 4  .e00 format) and the Postal Code Conversion File (PCCF) from 

Statistics Canada. The PCCF is a text file that provides a correspondence between 

the postal code and Statistics Canada’s standard geographical areas (such as DA) 

for which census data and other statistics are produced (Statistics Canada, 2003b). 

  

                                                 
4 ArcInfo is a registered product name of geographical information system software produced by ESRI, 

Redlands, CA, USA. 
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 To generate the distance matrix, each sample point has to be tied to a 

location using coordinates. In order to protect the identity of the surveyed samples, 

the only location information given in the IALSS dataset is the DAs where the 

subjects live. Hence, the coordinates of the centroid of the corresponding DA 

polygon of a given sample point are used. For DAs that have more than one 

sample point, an alternative method is applied to avoid using the same coordinates. 

This method randomly related each sample point to a postal code within the 

corresponding DA. The geographical coordinates (latitude and longitude) of the 

assigned postal code are then used as the location of a given sample point. Please 

see Appendix B for details of this procedure.  

 

 After relating each sample point to a pair of coordinates, corresponding 

distances between each pair of sample points are computed using a function 

adapted from vdist( ), a Matlab function implemented by Michael Kleder (2005). 

This function calculates the Great Circle distance of two points using their 

latitude/longitude coordinates. The distance matrix is then saved as a .mat file (a 

Matlab output file) as an input of the local spatial regression models. 

 

 (b) Geographically Weighted Regression Model (GWR) 

 As mentioned in Chapter 2, a GWR model produces locally linear 

regression estimates for every prediction point, using a spatial weighting function 

of a certain bandwidth to define the weights of the observations around the 

prediction point in the regression model. The spatial weighting function used in 
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this experiment is an exponential function as shown in (2.7) while the bandwidth 

is obtained through a calibration process using the cross-validation approach as 

described in Section 2.3.3.  

wij = exp[ – ½(dij  / b)2]  
 

(2.7)

  where: 
 wij = weight 
 dij = distance between an observation and the prediction point 
 b = bandwidth 
  

Figures 3.3a and 3.3b show the differences between the OLS and GWR 

models in terms of weights, where the ‘star’ is the prediction point and the size of 

the orange dots is proportional to the weight being assigned to all other 

observations. Figure 3.3a shows that the weights being assigned to all other 

observations are the same in the OLS model while the weights being assigned in 

the GWR model decrease as the distance between the prediction point and other 

observations increases (Figure 3.3b).  

 
 Prediction point 

Uniform weights 
regardless of distance 
from the prediction 
point 

1 

1 

1 

1 
Prediction point 

Weights decrease as the 
distance from the 
prediction point increases 
with an exponential 
decay function 

1.02 

.63 

1.02 

1.31 

Figure 3.3a: Weights in OLS model Figure 3.3b: Weights in GWR model 
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The implementation of the GWR model involves the following 

modifications of the codes from LeSage’s Spatial Econometric Toolbox to enable: 

• import of the pre-calculated distance matrix into the model; and 

• cross-validation, i.e., during the estimation of every point i in the dataset, 

uses all observations in the dataset except point i itself. 

 

(c) BGWR using a Distance-decay Parameter Smoothing Relationship 
(BGWR-Distance) 

 
 The BGWR-Distance model extends the GWR model with a distance-

decay parameter smoothing relationship based on the assumption that parameter 

estimates of the local regression models of observations located close together 

should be more similar than those farther away. Based on this assumption, the 

BGWR-Distance model includes a distance-decay parameter smoothing strategy 

that smoothes out (or reduces) the impact of any anomaly or outlier during the 

estimation process.  

 

The function for the distance-decay parameter smoothing relationship 

extends βi in (2.4) and is expressed as: 

i

n

kinkii IwIw μ
β

β
β +

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⊗⊗= MK

1

1 )(  (2.10)

where wij (such that i = 1 to n) represents the normalized distance-decay-based 

weights such that the sum of the row vectors (wi1….win) are 1 while wii = 0. The 

function used to compute the weights wij of the parameter smoothing relationship is 
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the same distance-decay function in (2.7) but the weights obtained are normalized. 

In order to optimize the model, a similar calibration process as discussed in Section 

2.3.3 is used to obtain the bandwidth for this distance-decay function.  

  

 Figures 3.4a and 3.4b illustrate the difference between the BGWR-Distance 

model and the GWR model in terms of parameter smoothing relationship. Figure 

3.4a shows that, if there were a parameter smoothing relationship for the  GWR 

model, all the values in the row vectors (wi1….win) in (2.10) would be 0 but wii = 1. 

Hence, only the prediction point itself would be used for parameter smoothing 

while the other observations were discarded. For the BGWR-Distance model, its 

parameter smoothing relationship is a distance-decay function, the weights assigned 

to the parameters of the other observations decrease as the distance from the 

prediction point (i.e., the ‘star’) increases (Figure 3.4b). 

Weights for distance 
parameter smoothing 
decrease as the distance 
from the prediction point 
increases with an 
exponential decay 
function  

Zero weights are 
assigned to the 
parameters of the 
surrounding 
observations 

Prediction point Prediction point 

0.68 

1.11 

1.11 

1.42 

0 

0 

0 

0 

Figure 3.4a: Weights for distance 
parameter smoothing relationship in 
GWR model

Figure 3.4b: Weights for distance 
parameter smoothing relationship in 
BGWR-Distance model
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 During the implementation of this model, modifications are made to 

LeSage’s Spatial Econometric Toolbox to enable: 

• import of the pre-calculated distance matrix into the model; 

• cross-validation; and 

• 550 passes are used in the Gibbs sampling process as discussed in Section 

2.4.2 where results of the first 50 passes are to be discarded. 

Additionally, the following default set up is retained:   

• the hyperparameter r (as discussed in Section 2.4.1) is set to 4, meaning 

that the restriction of constant variance is not imposed; and 

• the diffuse scale prior δ (as discussed in Section 2.4.1) is set to 1 to impose 

the influence of the smoothing relationship on the regression coefficient 

estimation. 

 

(d) BGWR using a Community Parameter Smoothing Relationship (BGWR-
Community) 

 
For the purpose of incorporating the community concept in the BGWR 

model, it is necessary to develop an operational definition of ‘community’ so that 

the concept can be expressed as measurable variables.  

 

Operational Definition of Community 

The objective of incorporating the concept of community into a BGWR 

model is to account for the community effects that observations from the same 

community have higher correlation than those from other communities. This is to 

be encapsulated in the estimation process so that observations from the same 
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community of the prediction point bear a relatively higher weight than those from 

other communities. Hence, the operational definition of community has to be able 

to tell how likely it is that two observations are in fact coming from the same 

community. Based on the discussion in Section 2.1.1.4, two decisions have to be 

made during the operationalization process of the community concept: (1) how to 

demarcate the area for measurement, and (2) what attributes are to be included in 

the measurement.  

 

However, it is difficult to demarcate the areas for measurement that fit the 

boundaries of communities. In fact, Dietz (2002) observed that space delineations 

in most research are constrained by the limitations of the available datasets. Since 

DA is the smallest spatial unit of Census data that is accessible through Statistics 

Canada, it is used as the basic spatial unit of measurement in this research. 

 

 Although the discussion in Section 2.1.1.4 reveals that there is no 

universally accepted methods to operationalize community, physical and social 

characteristics of the community are the common denominators of Glaster’s (2001) 

“bundle of spatially-based attributes” and Lupton’s (2003) guidelines. Since 

Glaster’s (2001) bundle of spatially-based attributes captures both the physical 

and social characteristics of a community, it is an appropriate candidate from 

which the operational variables can be derived.   
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The attributes described by Galster (2001) can be broadly grouped into 

location-related attributes and people-related attributes as summarized in Table 

3.1. Although these attributes provide a good framework, reliable quantitative 

data are not always available. For location-related attributes such as the quality of 

public administration is indeed quite difficult to quantify. As the objective of 

measuring these attributes is to obtain an indicator to tell how likely two 

observations are coming from the same community, this experiment uses 

geographical distance as a proxy for location-related attributes. This is based on 

two assumptions. Firstly, observations from the same community tend to be in 

proximity. Secondly, observations in close vicinity are likely to share similar 

location-related characteristics. For example, samples in vicinity are more likely 

to fall within the same public administrative district, hence possessing the same 

quality of public administration. This experiment thus uses the distance-decay 

value of the geographical distance between two observations as a proxy to 

indicate, on the location-related aspect, how likely it is for two observations to be 

coming from the same community. Details of how this proxy works are described 

in the next section. 
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Table 3.1: Bundle of spatially-based attributes (After Glaster [2001, p. 2112]) 

Location-related attributes People-related attributes 
• Structural characteristics of the 

residential and non-residential 
buildings: type, scale, material, 
design, state of repair, etc. 

• Infrastructural characteristics: 
road, sidewalk, utility services, 
etc. 

• Environmental characteristics: 
degree of land, air, water and 
noise pollution, topographical 
features, views, etc. 

• Proximity characteristics: access 
to major destinations of 
employment, entertainment, 
shopping, etc. 

• Tax/public service package 
characteristics: the quality of 
safety forces, public schools, 
parks and recreation, public 
administration etc., in relation to 
the local taxes assessed. 

• Demographic characteristics of 
resident population: age 
distribution, family composition, 
racial, ethnic, and religious types, 
etc. 

• Class status characteristics of 
the resident population: 
income, occupation and education 
composition 

• Political characteristics: the 
degree to which local political 
networks are mobilised 

• Social-interactive 
characteristics: local friend and 
kin networks, degree of inter-
household familiarity, resident’s 
perceived commonality, 
participation in locally based 
voluntary associations 

• Sentimental characteristics: 
residents’ sense of identification 
with place, historical significance 
of buildings or district. etc. 

 

Among the people-related attributes, relevant data for the last three 

characteristics are not available. For demographic and class status characteristics, 

the following variables are given in the 2001 Canada Census data by DAs and are 

used in the experiment.  

• Years Education: The average number of years of education in a DA;  

• Transience: The percentage of people who had moved in the previous 
five years;  

 
• Income: Average level of family income;  

• Unemployment Rate: The percentage of people who were unemployed; 
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• Percent Social Class 1 and 2: The percentage of people who were in 
professional or semi-professional occupations; 

 
• Percent Social Classes 4, 5, 6: The percentage of people who were in 

unskilled labour occupations, or unclassified occupations; and 
 
• Percent Recent Immigrants: The percentage of people who had 

immigrated in the previous five years. 
 

 

These variables are identical to those applied in the multi-level regression 

models in Willms’ research (Willms, Chan and Tang, 2007; Willms and Tang, 

2007). In this experiment, the Mahalanobis distance of these variables is used to 

indicate, on the people-related aspect, how likely two observations are coming 

from the same community. The reasons for using Mahalanobis distance are 

twofold. Firstly, Mahalanobis distance is being used frequently in cluster analysis 

problems in order to determine similarity among ‘clusters’ as it takes into 

consideration the correlations of the ‘clusters’ and is not dependent on the scale of 

measurement (Rapkin and Luke, 1993; Mimmack et al., 2001; Hagger-Johnson, 

2006). Secondly, using certain type of distance as a single indicator allows the 

model to use a distance-decay function to create the weight matrix for the 

parameter smoothing relationship. In this way, no community has to be pre-

defined. 

 

In short, the geographical distance and the Mahalanobis distance of the 

seven selected variables thus constitute the operational definition of community 

(Figure 3.5).  The next section will discuss the details about the implementation of 

the community concept. 
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Implementation 

Operational 
definition of 
community 
concept 

Galster’s (2001) 
bundle of spatially 
based attributes of 
community 

Geographical 
distance 

Mahalanobis 
distance of  

selected variables 

Community weight 
matrix 

Exponential 
distance-decay value 

 People-related 
weight matrix (PM) 

Exponential 
distance-decay value 

 Location-related 
weight matrix (LM) 

People-related 
attributes 

Location-related 
attributes 

Community concept 

Figure 3.5: Operational definition and implementation of ‘community’ concept 
 

Implementation of the Community Parameter Smoothing Relationship 

Similar to the operational definition of community, the weight matrix is 

comprised of two parts, namely the location-related weight matrix (LM) and the 

people-related weight matrix (PM), as shown in Figure 3.5. The LM is an 

intermediate weight matrix generated by the exponential distance-decay function 

using the bandwidth obtained during the calibration of the GWR model. The PM 

and the community weight matrices are generated in three steps: 
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(1) A Mahalanobis distance matrix of the seven variables among all 

observations is generated using a Matlab function written by the author. 

Every row vector captures the Mahalanobis distances between a 

prediction point and the rest of the sample points. 

(2) A row vector of weights for each prediction point is calculated by 

applying the exponential distance-decay function (as described in 

Section 2.3.3) to the corresponding row vector of Mahalanobis distances 

using several different bandwidths. The bandwidths are 0.5, 0.75 and 1.0 

standard deviation of the values of the corresponding row vector of 

Mahalanobis distances. Hence, three PMs are generated. 

(3) Multiply the LM by each of the three PMs to get three different 

community weight matrices which are then saved as .mat files for 

later use. 

 

As the community parameter smoothing relationship also takes into 

account the people-related attributes of DAs in terms of the seven selected 

variables, the weights that are assigned to the other observations may not 

simply decrease with distance from the prediction point. As shown in Figure 

3.6, some observations closer to the prediction point (the ‘star’) are weighted 

less because their people-related attributes are not similar to those of the 

prediction point. 
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Weights are determined by 
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not necessarily decrease as 
the distance increases 

Figure 3.6: Weights for community parameter smoothing relationship in 
BGWR-Community model

 

Similar to the previous two models, the implementation of this model is also 

based on LeSage’s Spatial Econometric Toolbox with modified set up to enable: 

• import of the pre-calculated normalized community weight matrix into the 

model; 

• cross-validation; and 

• 550 passes are used in the Gibbs sampling process as discussed in Section 

2.4.2 where results of the first 50 passes are to be discarded. 

Additionally, the following default set up is retained:   

• the hyperparameter r is set to 4; and 

• the diffuse scale prior δ is set to 1. 
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3.2 Evaluation Methods 

As indicated by Gao et al. (2006), spatial (local) regression models usually 

have more parameters and smaller sample sizes than ordinary linear regression 

models, so their degrees of freedom are reduced. Hence, even a very high R-

squared value obtained by the model does not necessarily indicate that it is a good 

model. Therefore, instead of using a single indicator to measure and compare the 

prediction powers of the models, the evaluation methods used in this study 

compare different aspects of the prediction power of the models in order to give a 

more comprehensive view of the performances of the models. These include the 

overall performance in terms of numerical measures of the prediction errors, 

visual evaluation of the amount and trend of extreme predictions, and 

performance (in terms of prediction errors) at different error tolerance levels. 

Hence, in addition to the regression statistics like the R-squared values, this study 

adopts the following three empirical methods introduced by Gao et al. (2006) to 

evaluate the results obtained from the local spatial regression models under study.  

 

3.2.1 Numerical Cross-Validation Criteria  

The criteria to be included in this method are:  

• the mean of squares of prediction errors, ∑ ≠− 2)ˆ(/1 ii yyn ;  

• the mean of absolute deviations, ∑ ≠− ii
yyn ˆ/1 ; and 

• average error rate, ∑ ≠−

i

ii

y
yy

n

ˆ1 . 
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where yi and  y≠i denote the observed and the predicted values at point i. It is 

called ‘cross-validation’ criteria as the ‘≠i’ symbol indicates that during the 

prediction of point i (that is the point of interest), the model uses all sample points 

except point i itself.  As these criteria measure different aspects of the prediction 

errors, relatively smaller values indicate better performance of the model. Table 

3.2 shows a sample output from the numerical cross-validation criteria.   

Table 3.2: Sample output from numerical cross-validation criteria 
(After Gao et al. [2006, Table 1]) 

 

3.2.2  Scatter Plots for Observed and Predicted Values 

Figure 3.7 depicts a sample scatter plot between the observed and 

predicted values. From the distribution of the points in the scatter plot and the 45-

degree diagonal (which indicates the perfect prediction), the prediction power of 

the models can be observed by comparing how spread out or how close these 

points are to the diagonal. A 97.5% density ellipse (which encloses 97.5% of the 

points) for each model can also be added to facilitate the comparison. When 

comparing the shapes of the ellipses, a narrower ellipse generally indicates a 

better model. The scatter plots also provide a good picture of the extent and 

pattern of the poorly predicted samples by showing how far from the diagonal and 

where they are. 
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Figure 3.7: Scatter plot for observed and predicted values 
(After Gao et al. [2006, Figure 2]) 

 

The drawback of this method is that visual comparison becomes 

overwhelming when more than two sets of results are showing in the same chart. 

Hence, comparisons across several models have to be done in pairs. 

 

3.2.3 Prediction Rate Curve 

A prediction rate curve is a graph showing the rate of samples against the 

prediction errors (Figure 3.8). In the vertical axis, the values are the accumulated 

rate of samples (i.e., 1/n, 2/n, …, (n-1)/n, 1; where n = total number of samples). In 

the horizontal axis, the values are the sorted prediction errors ( ii yy ≠− ˆ ) in 

ascending order. In other words, data points are sorted according to how ‘well-
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predicted’ they are. The area formed by the prediction rate curve and the vertical 

axis indicates the aggregation of the prediction errors. The smaller the area, the 

better the prediction power of a given model. As depicted in Figure 3.8a, one can 

say that Model 1 is a better model than Model 2 as the area formed by the 

prediction rate curve of Model 1 is smaller than that of Model 2. In Figure 3.8b, the 

areas formed by the two curves with the vertical axis are more or less the same 

indicating that the overall prediction powers of the two models are close. However, 

when a tolerance level e1 is set, 70% of the predicted values (or a prediction rate of 

70%) from Model 1 are below the tolerance level while only 60% from Model 2 are. 

For a higher tolerance level (e2), Model 2 has better performance. 

(b)(a)

Figure 3.8: Sample prediction rate curves 
(After Gao et al. [2006, Figure 3]) 

 

3.2.4 Summing Up 

While the numerical cross-validation criteria give an indication on the 

overall performance of the models, the prediction rate curves give more details 

about the performance of the models at various tolerance levels. The scatter plots 
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are good for visual examination of the overall performance of the models as well 

as identification of extreme predictions.  

 

3.3 Summary 

This chapter begins with a detailed discussion on the experiment design, 

starting with the considerations for the selection of dataset (International Adult 

Literacy and Skill Survey), study area (southern Ontario) and base model. The 

base model of this experiment is an ordinary least square (OLS) regression model 

which serves as a baseline for comparison with the three local spatial regression 

models under study: (1) GWR, (2) BGWR-Distance, and (3) BGWR-Community. 

 

Before getting into the details of the three models, the source and 

preparation of the required spatial data and the distance matrix are described. The 

three local spatial regression models are implemented by modifying a set of base 

programs from LeSage’s Spatial Econometric Toolbox, a host of spatial 

econometric estimation methods implemented with Matlab. By describing the 

characteristics of the spatial weighting function of GWR and the parameter 

smoothing relationship of the three BGWR models, the differences between the 

three models are highlighted. Modifications to LeSage’s base program and the 

model settings are also described. As the BGWR-Community model is a new 

model introduced by the author, the process of developing ‘community’ from a 

concept into an operational definition is explained in details, including the 

additional data requirements. 
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The latter part of this chapter described the evaluation criteria to be used 

in this study, namely (1) regression statistics; (2) numerical cross-validation 

criteria; (3) scatter plots of the observed and predicted values; and (4) prediction 

rate curve.  

 

 

 

 



4.0 SUMMARY AND ANALYSIS OF RESULTS  

 

In this chapter the results of the experiment are presented in two parts. The 

first part presents the results in the form of regression statistics to give a general 

idea about the relative performance of the models. Then, the results and findings 

of each evaluation method are presented, followed by the concluding remarks. 

 

4.1 Regression Statistics 

Table 4.1 below summarizes the beta values and estimates of R-squared of 

the models under study. R-squared is an indicator of how well a model fits the 

data. It is the proportion of the variance in the data that can be explained by a 

regression (Warner, 2008). The higher the R-squared value, the better the model. 

Table 4.1 shows that all of the selected local spatial regression models have 

higher R-squared values over the OLS base model. The BGWR-Distance model 

shows the least improvement (increased by 6.90%) while the BGWR-Community 

model shows the greatest improvement (increased by 10.63%). It is also noted 

that the R-squared value of the BGWR-Distance model is smaller than that of the 

GWR model, suggesting that using the BGWR approach does not guarantee a 

better R-squared result. 
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Table 4.1: Beta values and R-squared of the models under study 

  Beta* 

Parameters OLS GWR BGWR-
Distance 

BGWR - 
Community 

Constant 257.31 255.42 255.62 257.19 
GENDER 12.52 11.42 9.66 10.62 
AGE -0.84 -0.88 -0.88 -0.89 
AGE_SQ 0.00 0.00 0.00 0.00 
YRS_ED 6.84 7.05 7.32 7.22 
IMP_INC 0.46 0.47 0.47 0.46 
R-squared 0.4139 0.4453 0.4425 0.4579 
Improvement of R-squared
over base model (OLS) - 7.59% 6.90% 10.63% 

Note: *The beta values of the local spatial regression models (i.e., GWR, BGWR-
Distance and BGWR-Community models) are the means of the beta values 
obtained from the local regression equations. 

 

4.2 Numerical Cross-Validation Criteria 

Numerical cross-validation criteria give an indication of the overall 

performance of different models in terms of their prediction errors. The better 

model is the one with the lowest scores in all three criteria. Table 4.2 shows that 

the BGWR-Community model scores the lowest for all three criteria. While the 

scores of the BGWR-Distance and GWR models are smaller than those of the 

OLS model, the differences between the two local spatial regression models are 

very small. 

 
Table 4.2: Comparison of models with numerical cross-validation criteria 

Numerical cross-validation criteria 

Model ∑ ≠− 2)ˆ(/1 ii yyn ∑ ≠− ii
yyn ˆ/1  ∑ ≠−

i

ii

y
yy

n
ˆ1

 

OLS 2001.88 35.62 15.74 
GWR 1894.56 34.52 13.54 
BGWR-Distance 1904.00 34.39 13.70 
BGWR-Community 1851.34 33.53 13.33 
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To determine whether the differences in prediction errors (or residuals) 

among these models are statistically significant, F-tests for each pair of models 

were carried out and the results are summarized in Table 4.3. 

 
Table 4.3: Results of F-test of prediction errors among different models 

 p-value 

 OLS GWR BGWR- 
Distance 

BGWR- 
Community 

OLS - 0.0523 0.1254 0.0008 
GWR - - 0.6901 0.1499 
BGWR-Distance - - - 0.0678 

    

The alpha value for the F-test was set at 0.05. Therefore, if the p-value of 

the F-test is less than 0.05, the difference in the prediction errors of the two 

models under testing is considered to be statistically significant. The results 

indicate that the difference between the base model (OLS) and the BGWR-

Community model is statistically significant while other differences are not. This 

suggests that the improvement of the BGWR-Community model in the reduction 

of prediction errors is not random. It is also found that although the figures of the 

three numerical criteria of the BGWR-Distance and GWR models are very close, 

the p-value of the GWR model (i.e., 0.0523) is much smaller than the BGWR-

Distance model and close to the pre-defined alpha value of 0.05.  

 

From the above discussion, the following conclusions are drawn: 

• the relatively better results of the GWR model over the BGWR-Distance 

model confirms the suggestion that using the BGWR approach does not 

necessarily improve the performance; and 
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• the improvement made by the BGWR-Community model over the GWR 

and BGWR-Distance models suggests that incorporating the community 

concept into the BGWR model can improve the overall performance of the 

model by reducing the prediction errors. 

 

4.3 Scatter Plots 

For ease of comparison, only two models are compared at a time. The 

order of comparisons is as follows: 

(1) The three local spatial regression models compare with OLS one by one; 

(2) The two BGWR models compare with GWR model one by one; and 

(3) The two BGWR models compare with each other. 

 

In each scatter plot, the X-axis represents the predicted values (yhat) while 

the Y-axis represents the observed value (y). A 45-degree diagonal is included to 

give reference to perfect prediction. Each scatter plot contains two point sets. One 

in blue at the back acts as the baseline and one in red in the front for comparison. 

There are also two density ellipses, one in blue and one in red, covering 97.5% of 

the points of the corresponding point set.  

 

4.3.1 OLS Model as the Baseline 

 Figures 4.1 to 4.3 show the OLS model in blue and the others for 

comparison in red. It is noticed that the long axis of all the ellipses are forming 

angles with the diagonal, while that of the blue ellipse (for the OLS model) forms 
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a larger angle than the other models. This indicates that the OLS model under-

predicts when y-values are larger than the mean (roughly 250) but over-predicts 

when y-values are smaller than the mean. Smaller angles between the long axes of 

the red ellipses (Figures 4.1 to Figure 4.3 refer) and the pink diagonals indicate 

that the local spatial regression models have less degree of over- and under-

prediction problems. It is evident that the red points at the lower score regions are 

closer to the diagonal than the corresponding blue points (Figures 4.1 to Figure 

4.3 refer). In general, the red points are tighter and located closer to the diagonal 

than the blue points meaning that the local spatial regression models fit better than 

the OLS model. 

 

 

Red points are closer to 
the diagonal than the 
blue points

Red points are closer to 
the diagonal than the 
blue points 

Figure 4.1: Scatter plot of OLS vs. GWR Figure 4.2: Scatter plot of OLS vs. 
BGWR-Distance  

 

 

 

 61



 
Red points are closer to 
the diagonal than the 
blue points

 

 

 

 

 

 

 

Figure 4.3: Scatter plot of OLS vs. 
BGWR-Community  

 

4.3.2 GWR Model as the Baseline 

When the GWR model is acting as the baseline to compare with the two 

BGWR models (see Figures 4.4 and 4.5), it is found that the long axis of the 

GWR ellipse (the blue one) forms a slightly larger angle with the diagonal than 

the two BGWR models although the differences between the GWR and the two 

BGWR models are much less than that between the OLS and the others. Visually, 

the distribution of the red points and the blue points does not show much 

difference. The number of extreme prediction points is also very close. 
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Figure 4.5: Scatter plot of GWR vs. 
BGWR-Community 

Figure 4.4: Scatter plot of GWR vs. 
BGWR-Distance 

 

4.3.3 Comparison of the Two BGWR Models 

When comparing the density ellipses of the two BGWR models in Figure 

4.6, it is found that they are almost identical, although the density ellipse for the 

BGWR-Community model is slightly slimmer than the BGWR-Distance model. 

The distribution of the red and blue points is very similar and the number of 

extreme prediction points is also very close. 
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Figure 4.6: Scatter plot of BGWR-Distance vs. BGWR-Community 

 

4.3.4 Summing up 

Major improvements of the local spatial regression models over the OLS 

model are evident from the scatter plots with less over-prediction and under-

prediction problems. The two BGWR models also have minor improvement on 

this aspect over the GWR model. The two BGWR models have little differences 

in terms of the shape of the ellipse and the distribution of the points. Visually, 

there is no apparent improvement of the BGWR-Community model over the 

GWR and the BGWR-Distance models in this evaluation. 
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4.4 Prediction Rate Curve 

The prediction rate curves of the models under study are shown in Figure 

4.7. Although the curves are quite close to each other, it is obvious that, in the 

range of prediction errors 5 to 50, the curve of the BGWR-Community (red line) 

models is at the top-left side of other curves. This means that the area formed by 

the curve of this model and the vertical axis is smaller than other models; hence, 

the BGWR-Community model has better prediction power in this range. 

 

In order to get a closer look at these curves, the prediction rate curve of 

the OLS model is used as the baseline. The difference between the prediction 

rate curve of a local spatial regression model and that of the OLS model is 

regarded as the prediction rate improvement. The prediction rate improvement 

of the three local spatial regression models are plotted against the prediction 

error and shown in Figure 4.8. It is found that there is a large gap between the 

BGWR-Community model and the GWR model between the prediction errors of 

5 and 50 (which corresponds to 12% to 76% prediction rates in Figure 4.7). 

Then, the gap starts to narrow. Around prediction error of 80 (or 94% prediction 

rate in Figure 4.7), the two curves cross. That means the BGWR-Community 

model has better prediction power than the GWR model up to the 94% 

prediction rate (or prediction error of 80).  
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  Figure 4.7: Comparing the prediction curves of the models 
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Figure 4.8: Prediction improvements of the local spatial regression models over the base model (OLS model) 



A very similar pattern is observed between the BGWR-Community and 

the BGWR-Distance models although the gap between them is relatively smaller 

(Figure 4.8). When comparing the BGWR-Distance model with the GWR model, 

the former has greater improvement over the latter up to the prediction error of 40 

(or 65% prediction rate) and then the two lines are very close and cross each other 

from time to time. In short, the BGWR-Distance model has better prediction 

power than the GWR model only up to the 65% prediction rate (or prediction 

error of 40). 

 

From the above discussion, it is noted that the BGWR-Community model 

maintains a higher prediction rate up to a very high tolerance level while the 

BGWR-Distance model performs a little bit better than the GWR model at low 

tolerance level. 

 

4.5 Discussion 

From the results of the numeric cross-validation criteria and prediction 

rate curves and in comparison with the two other models, the BGWR-Community 

model has a better overall prediction power and maintains a higher prediction rate 

up to a very high tolerance level. The results in the scatter plots show that the 

BGWR-Community model does not generate more extreme prediction points than 

the other models. These results lead to the conclusion that by incorporating the 

‘community’ concept into the BGWR model, the prediction power of the model 

improves over the purely distance-based local spatial regression models. 
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Nevertheless, from the results in Table 4.1, it is also noted that the 

improvement (in terms of R-squared values) made by the BGWR-Community 

model over the GWR model (which is about 3%) is not as large as that made by 

the GWR model over the OLS model (which is 7.6%). This is in line with the 

expectation that the impact of community effect is localized and lesser than the 

impact of Tobler’s First Law of Geography (Section 2.3.1 refers), or the First Law 

of Geography, to certain extent, has accounted for the community effect. 

 

In order to visualize the local improvement brought by the BGWR-

Community model, a series of maps have been prepared using a spatial 

interpolation method called Ordinary Kriging (Fotheringham et al., 2000) to 

generate the gradient surfaces of the prediction improvement of the local spatial 

regression models over the OLS model as shown in Figures 4.9 to 4.11. 

 

The prediction improvement of a prediction point i is the difference 

between the prediction errors of i obtained by the OLS model and that of the local 

spatial regression models divided by the observed value of i and multiplied by 

100 to express as a percentage (4.1). A positive value indicates that the local 

spatial regression model has a smaller prediction error than the OLS model and 

vice versa. 

prediction error of OLS – prediction error of local spatial regression model  
                             observed value 

(4.1)x 100
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GGWWRR  MMaapp  

Figure 4.9: Prediction improvement of GWR model over OLS by percentage 

BBGGWWRR--DDiissttaannccee  MMaapp  

Figure 4.10: Prediction improvement of BGWR-Distance model over OLS 
by percentage 
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Ordinary Kriging is an interpolation method that predicts the value at a 

certain location using the observed values around it. It weights the surrounding 

observed values by considering their distances from the prediction point as well as 

the spatial correlation of the observations. The maps in Figures 4.9 to 4.11 were 

created with ArcGISTM Ordinary Kriging function that uses the prediction 

improvements of the local spatial regression models as input. On these maps, 

improvements in estimation appear as areas shaded in green, with darker green 

areas indicating greater improvement. To facilitate discussion, the GWR, BGWR-

Distance, and BGWR-Community Maps are shown side by side in Figure 4.12 

with areas highlighted by boxes that are numbered. Figure 4.13 shows the 

distribution of the observations with the BGWR-Community Map as the backdrop. 

PPrreeddiiccttiioonn  IImmpprroovveemmeenntt  ooff  BBGGWWRR--CCoommmmuunniittyy  
oovveerr  OOLLSS  bbyy  PPeerrcceennttaaggee  

Figure 4.11: Prediction improvement of BGWR-Community model over 
OLS by percentage 

BBGGWWRR--CCoommmmuunniittyy  MMaapp  
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Figure 4.12: Comparison of the local prediction improvement of the three local spatial 
regression models 

(a) GWR Map 
(Source: Figure 4.9) 
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(b) BGWR-Distance Map 
(Source: Figure 4.10) 

(c) BGWR-Community Map
(Source: Figure 4.11) 
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 Figure 4.13: Distribution of observations with BGWR-Community Map as 
the backdrop 

5 

  

By cross-referencing Figures 4.12 and 4.13, the following results are 

observed: 

• In the GWR Map, the proportion between the areas of positive values 

(green areas) and negative values (yellow, orange and red areas) are 

generally the same (Figure 4.12(a)). In the BGWR-Distance Map, there 

are relatively more green areas such as Areas 1, 2, 4 and 8 (Figure 4.12(b)). 

In the BGWR-Community Map, most parts of the study area are green 

(Figure 4.12(c)). It also has larger green areas and higher positive 

prediction improvement than the BGWR-Distance Map in Areas 1, 2, 4 

and 8 (Figure 4.12(b)). 
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• When comparing Figure 4.12(a) the GWR Map with Figure 4.12(c) the 

BGWR-Community Map, major local improvements are found in Areas 3 

and 6 where the BGWR-Community model improves the prediction 

performance from the range of 0 to 2.5% less prediction error than the 

OLS model to the range of 5 to 10% less. 

 

• A close inspection of the corresponding location of Area 5 in Figure 4.13 

found that there is no observation in that area. The interpolated 

improvements at that area of the BGWR-Community map are mainly due 

to the prediction improvements of the observations to the left and right of 

that area. 

 

• Although the BGWR-Community model improves the local performance 

in most parts of the study area, it increases the prediction error in Area 7 

from the range of 0 to 2.5% more prediction error than the OLS in the 

GWR Map (Figure 4.12(a)) to the range of 2.5 to 10% in the BGWR-

Community Map (Figure 4.12(c)). Figure 4.14 shows a close-up of this 

location with the available observations around that area. It is found that 

only two observations are in the orange region and no observation is in the 

red region. The poor performance of the BGWR-Community model in this 

area may be due to insufficient neighbours, suggesting a potential 

limitation of this model. 
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Orange region 

 

The above observations reveal that even though the contribution of the 

BGWR-Community model to an indicator like R-squared are not great, it 

improves the prediction performance in most parts of the study area. More 

importantly, it has substantial impacts on certain local areas. Like any other 

models, the BGWR-Community model has its limitations. As it is a Bayesian 

model, it took relatively long time (around 2 hours on a computer with IntelTM 

XeonTM CPU5) to run. Besides, it needs sufficient data at the local level to deliver 

good prediction results; hence, this method is not suitable for dataset with sparse 

distribution of observations such as the northern Ontario (as shown in Figure 3.2), 

Nunavut and Northwest Territories.  

                                                 
5 The configuration of the computer is Microsoft Window XP Professional running on Dell Precision 

PWS690 Intel® Xeon® CPU 5160 at 3.00GHz, 8Gb Ram. 

Figure 4.14: A close-up of Area 7 in the BGWR-Community Map 

Observations 

Red region 
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In the next chapter, a summary of the works completed for the research 

will be presented, followed by the future research opportunities. 

 

 

 



5.0 CONCLUSIONS 

  

This chapter summarizes the work and findings presented in the previous 

chapters, followed by a discussion of the opportunities for future research and the 

concluding remarks. 

  

5.1 Summary of Work Completed 

The objective of this research was to first propose a statistical model that 

incorporated the concept of community in a local spatial regression model, and 

then to assess its performance. More specifically, the study asked whether 

incorporating the ‘community’ concept into the Bayesian Geographically 

Weighted Regression (BGWR) model would improve its performance over the 

purely distance-based local spatial regression models. The concept of community 

was introduced by including characteristics of local neighbourhoods using data 

from the Census. The following tasks have been carried out to accomplish this 

objective.  

 

5.1.1 Acquiring Background Knowledge About the Research  

 An extensive literature review was carried out on the following areas of 

interest to acquire background knowledge about the research: 

• the definitions of community and community effects as well as the 

techniques used in empirical studies of community effects; 

• operationalization of the ‘community’ concept into measurable variables; 
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• the Geographically Weighted Regression (GWR) model; and 

• the Bayesian approach of the GWR method (BGWR). 

 

An important finding in the literature is that the GWR model is susceptible 

to the influence of ‘outliers’. LeSage (2004) proposed the BGWR approach that 

allowed for various kinds of parameter smoothing relationships to tame the outlier 

problem. This also provided an opportunity to incorporate the ‘community’ 

concept into the BGWR model to account for the community effect that was not 

addressed by the purely distance-based local regression models. Therefore, this 

thesis proposed a ‘community-based’ Bayesian geographically-weighted 

regression model.   

 

5.1.2 Designing the Experiment and Finding Appropriate Evaluation Criteria 

A scientific experiment was designed to compare the prediction power of 

the proposed model with those of the distance-based local spatial regression 

models under study.  

 

The base model of the experiment was an ordinary least squares (OLS) 

regression model which served as a baseline for comparison. The dependent 

variable of the model was the prose literacy scores of adults aged 16 to 65, while 

the independent variables were gender, age, age-squared, years of education, and 

personal income. The data for these variables came from the International Adult 

Literacy and Skills Survey (IALSS). The selected study area was southern Ontario 
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(Figure 3.2 refers). Furthermore, the data for the measurable variables of the 

‘community’ concept and those for computing the distance matrix used in the 

local spatial regression models came from the Profile of Dissemination Areas, 

2001 Canada Census. The data at this level included the following variables 

measured at the level of the Dissemination Area: (a) the average number of years 

of education in a DA, (b) the percentage of people who had moved in the previous 

five years, (c) average level of family income, (d) the percentage of people who 

were unemployed, (e) the percentage of people who were in professional or semi-

professional occupations, (f) the percentage of people who were in unskilled 

labour occupations, or unclassified occupations, and (g) the percentage of people 

who had immigrated in the previous five years.  

 

The two distance-based local spatial regression models under study were 

the GWR and the BGWR model using a distance-decay parameter smoothing 

relationship (BGWR-Distance). The GWR model was selected as it was one of 

the most popular spatially weighted regression models that is distance-based. The 

BGWR-Distance model was selected as this model is structured in a way that 

offers a transition between the GWR model and the proposed model. The 

proposed model, called the BGWR-Community model, was a BGWR model 

using a community parameter smoothing relationship.  

 

Four specific evaluation methods were selected in order to give a broad 

view of the performance of the models. The methods included regression statistics, 
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numerical measures of the prediction errors to evaluate the overall performance, 

scatterplots for visual evaluation of the amount and trend of extreme predictions, 

and prediction rate curves to evaluate the performance (in terms of prediction 

errors) at different error tolerance levels.  

 

5.1.3 Implementing the Models 

The OLS base model was implemented with SPSSTM , while the local 

spatial regression models were implemented based on LeSage’s (2005) “Spatial 

Econometric Toolbox”, a host of spatial econometric estimation methods 

implemented with MatlabTM.  

 

To implement the ‘community’ concept as parameter smoothing 

relationship of the BGWR model, the concept was first operationalized into 

measurable variables based on Galster’s (2001) bundle of spatially-based 

attributes which captured both the physical and social characteristics of a 

community. Then, these measurable variables were used to generate two weight 

matrices. One was a geographical distance-based weight matrix that represented 

the physical characteristics of the community. The other was a Mahalanobis 

distance-based matrix that represented the community characteristics. Finally, the 

community parameter smoothing relationship was implemented as a normalized 

weight matrix that combined the above two matrices. 
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5.1.4 Analyzing Experiment Results 

The evaluation methods found that – compared with other models – the 

BGWR-Community model had a better overall prediction power and maintained a 

higher prediction rate up to a very high tolerance level. In addition, it did not 

produce more extreme prediction points than the other models. Therefore, it was 

concluded that by incorporating the ‘community’ concept into the BGWR model 

the prediction power of the model improved over the purely distance-based local 

spatial regression models. 

 

In order to visualize the local improvements brought by the BGWR-

Community model, the gradient surfaces of the prediction improvement of the 

local spatial regression models over the OLS model were created with a spatial 

interpolation method called Ordinary Kriging and presented as maps for visual 

comparison. It was observed that the BGWR-Community model could improve 

the prediction performance in wide range of areas and brought significant 

improvement at certain local areas. 

 

5.2 Opportunities for Future Research 

The present research demonstrated a means to incorporate concepts that 

are geographical in nature, even if the boundaries are ill-defined, into the 

parameter smoothing strategy of a local spatial regression model without pre-

defining the boundaries. This research demonstrated its applicability in 

accounting for the community effect on the adult literacy scores, but the approach 
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could potentially be applied to other branches of social sciences, as well as other 

research areas including forestry, environmental science and ecology where 

concepts like land cover types, habitats, soil types are geographical in nature but 

have ill-defined or ‘fuzzy’ boundaries.  

 

As discussed in Section 3.1.3, using straight line distance as distance 

measurement method may render the local spatial regression models not 

applicable in certain geographical areas. Another direction for future research that 

is worth examining is to compare the impact of using straight line distance with 

other distance measurement methods like the distance based on road networks, 

either in terms of the geographical distance or a cost function such as travel time. 

 

5.3 Concluding Remarks 

This research demonstrates that the incorporation of the ‘community’ 

concept into the local spatial regression model can improve the prediction power 

over the purely distance-based models by reducing the overall prediction errors. 

Furthermore, it shows that even though the contribution of the proposed model to 

an indicator like R-squared is not great, it can still bring significant prediction 

improvement to certain local areas. The research also sets an example to other 

research areas on how to integrate concepts that are geographical in nature but 

with ill-defined boundaries into the local spatial regression model to improve the 

prediction performance of the model. 
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Nevertheless, like any other models, the proposed model has its limitations. 

It was found that like other spatial models, the BGWR-Community model needs 

sufficient data at the local level to deliver good prediction results. Therefore, it is 

not suitable for datasets with a sparse distribution. As the proposed model is a 

Bayesian statistical model, it is computation intensive and takes a relatively long 

time to run. Exploring ways in which to optimize its performance under specific 

circumstances may also be a useful topic for future research.    
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APPENDIX A DATA PREPARATION 
 

 The data preparation process involved the IALSS, the Dissemination Area (DA) 

profile data (Statistics Canada, 2003a), the DA polygon files, and the postal code 

conversion file (PCCF) (Statistics Canada, 2003b) from Statistics Canada. Figure A.1 

below illustrates the details of the preparation process. 

IALSS data DA polygon data for 
Ontario 

PCCF data 

Extract Ontario data 

allsont 

allsont_cm 

Generate ‘community’  
weight matrix  

Generate distance 
matrix  

allsont_dm 

Reassign observations in DA 
with more than one sample to 
postal code coordinates (see 
Appendix B) 

allsontpcsel 

allsontda 

Export  
pccf_ont 

Import to MS Access and 
extract Ontario data 

Import into ArcGIS and 
compute the coordinates of 
centroids  

Clean data as described in 
the next page 

allsont_cln 
DA profile data

Merge and extract samples 
within study area (southern 
Ontario)

Extract  
Ontario 
data 

ontDA 

Merge  

allsontshp 

ontshp 

Figure A.1: Data preparation flow chart 
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After allsont.csv was imported into MS Excel, the following steps were carried 

out to clean, re-centre and/or scale the data: 

a. Gender: 

i. Re-centre gender (gender) to give rcgender such that male = -0.5, female = 
0.5 

b. Age: 

i. Select data of age 16-65 (age_resp). 

ii. Re-centre age to give rcage such that rcage = age_resp – 40 

c. Age square: 

i. Create new variable rcagesq = rcage*rcage 

d. Years of Education: 

i. Recode year of education (a3) such that  

• If (a3<= 6) a3 = 6 

• If(a3>=21) a3 = 21 

ii. Re-centre year of education (a3) such that rcyrsed = a3 – 12 

e. Personal income: 

i. Re-scale imputed personal income (K6i) such that pincome = (K6i/100000) 

ii. Recode pincome such that: 

• If (pincome > 150) pincome = 150 

iii. Re-centre pincome such that rcincome = pincome – 30 
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APPENDIX B RANDOM ASSIGNMENT OF POSTAL CODES TO 
SAMPLES 

 
 

For Census DAs with more than one observation, the method illustrated in Figure 

B.1 below was used to randomly assign postal codes to the observations.  

allsontda  
(see Appendix A) 

Extract a list of observations whose DAs 
have more than one observation 

allsont_pclist 
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Loop through the list. For each 
observation on the list, repeat the 
procedure below. 

A VBA program written by the author ran inside the MS Access environment 

DA of the 
observation 

Select unassigned postal 
codes in the DA 

A random 
number i 
generated 

by the 
program 

Observation assigned 
with the ith postal code  

pccf_ont 
(see Appendix A) 

Mark the ith 
postal code as 

‘assigned’ 

Figure B.1: Postal code assignment process  
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