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ABSTRACT

Linear regression has long been used to find relationships among various factors.
However, when observations are spatially dependent or spatially heterogeneous the
results from a linear regresson model are distorted. Researchers developed
Geographically Weighted Regression (GWR) to address these problems. It applies the
linear regression model at a local level such that each data point has its own set of
parameter estimates based on a distance-decay weighting of ‘ neighbouring observations'.
Thismodel, however, is susceptible to the influence of ‘outliers’. A Bayesian approach of
the GWR method (BGWR) was introduced to address the outlier problem by including
various parameter smoothing strategies in the model. This approach provides an
opportunity to incorporate the ‘community’ concept in social sciences to account for the
community effect that cannot be addressed by the GWR or distance-based BGWR
models. This thesis proposed a ‘community-based BGWR model that improves the
prediction power by reducing the overal prediction errors. It aso brings significant

improvement in the estimation of regression parameters for certain local areas.
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INTROUDCTION

Background

Linear regression has long been one of the powerful tools of social
scientists for finding relationships among various factors. However, when
observations (or sample data) have an areal or spatial component, the observed
value of the data points from nearby areas may not be independent, which violates
the assumption of the linear regression model. For example, observations can be
spatialy dependent, which means that the observed value at one point in space
depends on the values observed at other locations. Also, data can be spatialy
heterogeneous, that is, the relationships among variables can vary depending on
the area of interest. For example, the relationship between house prices and floor
area can differ among urban, suburban, and rural areas. When a dataset possesses
properties like spatial dependence and spatial heterogeneity, the results from a

linear regression model are distorted.

Spatially weighted local regression techniques are a relatively new
approach proposed to address the effects of spatial dependence and spatial
heterogeneity. One of these techniques, Geographically Weighted Regression
(GWR), has attracted the attention of researchers from various fields including the
social sciences (Fotheringham et al., 2001; Longley and Tobdn, 2004,
Malczewski and Poetz, 2005; Cahill and Mulligan, 2007), forestry (Zhang et al.,

2004; Wang et al., 2005), ecology (Kupfer and Farris, 2007; Osborne et a., 2007),



and the environmental sciences (Propastin et al., 2006). GWR applies the linear
regression model at the local level so that local parameters, rather than global
parameters, are estimated. For each point in the dataset, it uses a subset of the data
surrounding the point of interest to estimate locally linear regression parameters.
Therefore, each data point has its own set of parameter estimates based on the
weighted values of its ‘neighbouring observations. As a distance-decay
weighting function is usually used, observations closer to the data point of interest

have greater influence on the estimates.

While GWR has advantages over ordinary linear regression methods, it
has its own drawbacks. One of the drawbacks is that it is more susceptible to the
influences of ‘outliers’ than ordinary linear regression. LeSage (2004) introduced
a Bayesian approach of the GWR method, coined as the Bayesian Geographically
Weighted Regression (BGWR), to deal with this problem. This approach alows
various kinds of parameter smoothing strategies (such as distance-decay) to be

included in the modd to abate the effects of outliers.

As these spatidly weighted local regression techniques emphasize spatia
relationships, they cannot account for complex concepts such as ‘community’, which
comprise characteristics beyond geographica attributes. As aresult, they are unable to
account for the apparent loca aberrant observations caused by localized effects such as

acommunity effect. Below isan examplethat illustrates this Situation.



In Figure 1.1, the polygons are DAs (Dissemination Areas’) and the red
dots are their centroids. We can consider the green DASs to be areas with high
socioeconomic status (SES) households while the yellow DASs are areas with low
SES households. These two clusters of DAs are usualy identified as two
communities in social sciences research as people live in close proximity and
share common characteristics, identities, or concerns tends to interact more, and
hence form a community. As a result of more frequent interactions, the people
from the same community are expected to share certain characteristics, more so

association than the people from other communities.

Y ellow community

Green community

Figure 1.1: Community effect and spatially weighted local regression

! A Dissemination Area is a small, relatively stable geographic unit used by Statistics Canada to
disseminate census data. It is composed of one or more neighbouring blocks.
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Consider the centroid a of the highlighted DA in Figure 1.1 to be the point
of interest in alocal spatia regression. The two circles serve as the reference lines
to consider which DA centroids should be taken into account in two scenarios. In
the inner circle, there is one neighbouring observation from the green community
but two observations from the yellow community. If we are considering the other
scenario, represented by the outer circle, there are two neighbouring observations
from the green community but four from the yellow community. As discussed
earlier, both GWR and distance-based BGWR (BGWR-Distance) models assign
higher weights to closer neighbours. Since the number of closer neighbours from
the yellow community is greater, observations from the yellow community would
have greater influence than those from the green community which is contrary to
the expected results. This illustrates that these spatially weighted local regression
techniques fail to account for the community effect. Therefore, an aternative
model is needed in order to incorporate concepts such as community that
comprises both geographical and social characteristics in the model. The BGWR
approach that allows for various kinds of parameter smoothing relationship

provides such an opportunity.

Resear ch Objective

The objective of this research is to first propose a statistical model that
incorporates the concept of community in a local spatial regression model, and
then to assess its performance. More specificaly, this study asks whether

incorporating the ‘community’ concept into the Bayesian Geographically



Weighted Regresson (BGWR) model will improve its performance over the

purely distance-based local spatial regression models.

To achieve the objective, this research addresses the following questions:
How can the concept of ‘community’ be operationalized as measurable
variables that can be incorporated in the BGWR model ?

What are appropriate evaluation methods for assessing the performance of
the proposed model (BGWR-Community) and the purely distance-based
local spatial regression models (GWR and BGWR-Distance) under study?
Does the incorporation of the ‘ community’ concept into the BGWR model
improve its prediction power by reducing the prediction error over the

purely distance-based local spatial regression models under study?

1.3  Approachestothe Research

The author has adopted the following approaches to achieve the research

objective:

A Literature review pertaining to the following areas of interest has been
conducted to inform the research: (i) the definitions of community and
community effects as well as the techniques used in empirical studies of
community effects; (ii) operationalization of the ‘community’ concept into
measurable variables; and (iii) spatially weighted local regression methods
with special emphasis on the GWR and Bayesian approach of the GWR

methods.



e Experiment design and evaluation methods — The goa of the
experiment is to assess whether incorporating the ‘community’ concept
into the BGWR model can improve its prediction power over the purely
distance-based local spatial regression models under study. The base
model and the experiment dataset are selected based on previous research
and availability of data. The base model is an ordinary least squares (OLS)
regression model which serves as a baseline for assessment. The study
areais selected according to the assumptions of the local spatial regression
models. The other models under study are the GWR, BGWR-Distance,
and the BGWR-Community models (i.e., the proposed model). In addition
to regression statistics, three empirical evaluation methods are selected to

assess the different aspects of the prediction power of the models.

e Models Implementation — The OLS base model is implemented with
PSS™ satistical package® while the local spatial regression models are
implemented based on LeSage's (2005) Spatial Econometric Toolbox, a
host of gpatial econometric estimation methods implemented with
Matlab™ 3. To implement the ‘community’ concept as a parameter
smoothing relationship of the BGWR model, the concept is first
operationalized into measurable variables based on Gaster's (2001)
bundle of spatially-based attributes which capture both the physical and

socia characteristics of a community. Then, these measurable variables

2 gpSSisaregistered product name of a statistical software package produced by SPSS Inc.
3 Matlab is a registered product name of a numerica computations and graphics software package
produced by The MathWorks, Inc.
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are used to generate two weight matrices, a geographical distance-based
weight matrix and a Mahalanobis distance-based matrix which are then
combined to produce a normalized weight matrix, hence the community

parameter smoothing relationship.

e Evaluate the results of the experiment — The results of the experiment
are evaluated using the above-mentioned evaluation methods and the
outputs are presented as numerical indicators and charts. Further
discussion of the trends and patterns of the local effects of the three local
gpatia regression models are illustrated with maps generated by Kriging
interpolation of the prediction improvement results. These outputs are then
compared and analyzed to determine whether the prediction power of the

proposed model has improved over other models under study.

Scope of the Resear ch

This research attempts to incorporate the ‘ community’ concept into alocal
gpatial regression model in order to account for the community effects that cannot
be addressed by the purely distance-based local spatial regression models under
study. By doing so, the prediction power of the proposed model is expected to
improve over the existing models. To assess whether the proposed model
improves prediction by the incorporation of the ‘community’ concept, the

experiment is designed to include only the GWR and the BGWR-Distance models
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for comparison. Other non-distance-based local spatial regression models such as

gpatial autoregressive model or spatial expansion methods are not considered.

The purpose of this research is to determine whether the proposed model
can improve the prediction power by accounting for the community effects. It will

not identify or assess the impact of the community effects.

Furthermore, the following assumptions are made for the experiment:

e The straight-line distances among the observations can approximate the
real distances; and

e The assigned locations (i.e., the centroids of DAs or randomly assigned
postal codes) of the observations are adequate replacement of the actual

locations of the observations.

Significance and Contributions of the Resear ch

The present research proposes a statistical model that incorporates the
concept of ‘community’ in a local spatial regression model to account for
community effect which cannot be addressed by purely distance-based local
gpatial regression models. By doing so, the model improves the prediction power,
in comparison with the purely distance-based local spatial regression models by
reducing the overall prediction errors and bringing significant improvement to

certain local areas.
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During the implementation process, this study demonstrates a means to
operationalize a concept that captures both the location-related and other non-
locational characteristics. This allows the model to address the localized effects,
such as community effect, not only by geographical distance but also by other

relevant attributes such as socio-economic factors.

Through the operationalization process, this research sets an example to
other research areas on how to integrate concepts that are geographical in nature
but have ill-defined boundaries into the local spatial regression model without
pre-defining the boundaries. In other potential research areas such as forestry or
ecology, these concepts may be land cover types, soil types or habitats where the
boundaries are not always well-defined. The potential applications of the

proposed approach are promising.

Organization of the Thesis

This thesis consists of five chapters. Chapter 1 provides an overview of
the research. It describes the research problem, the objectives and approaches to
the research. The significance and contributions of the research and its scope are
also discussed. Chapter 2 provides the background knowledge to two major areas,
(1) definition of community and operationalization of the ‘community’ concept;
and (2) technical background about the GWR and BGWR models. Previous
methods applied in studying community effects are also reviewed. Chapter 3

presents the design of the experiment and its considerations, including the choices



of models, selection of dataset and study area. The development of the proposed
model is also described in detail. The latter part of the chapter discusses the
evaluation methods of the study. Chapter 4 evaluates the results of the experiment
with the methods described in Chapter 3. The evaluation results between different
models are compared to determine whether incorporating the ‘community’
concept into the BGWR model brings the expected improvement to the purely
distance-based local spatial regression models, followed by a detail discussion of
the local improvements brought by the proposed model. Chapter 5 provides a
summary of the research, discusses its limitations, and suggests future research

opportunities.

10



20 COMMUNITY, COMMUNITY EFFECTS AND SPATIALLY
WEIGHTED LOCAL REGRESSION

21  Conceptsof Community in Social Sciences Research

Community has long been one of the fundamental concepts in social
sciences research (Brint, 2001). However, the diversity in the definitions of
‘community’ is also well recognized. Hillery (1955) did a comprehensive review
on the scientific literature at his time and found 94 different definitions of
‘community’. Notwithstanding the diversity, he found that there was “a basic
agreement that community consists of persons in socia interaction within a
geographic area and having one or more additional common ties’ (Hillery, 1955,
p. 111). From time to time, researchers revisited the definition and found that the
concept of ‘community’ has been evolving to reflect changes in technology and
social compositions (Trojanowicz and Moore, 1988; Brint, 2001; MacQueen €t al.,
2001; Wellman, 2001). One example is the divorce of community and geography
that leads to the distinction between ‘communities of place’ and 'communities of

interest’.

2.1.1 Definitions of Community

2.1.1.1 Communities of Interest

‘Communities of interest’ refers to groups of people whose members have
something in common, such as political interest, hobbies, or expertise, but not
necessarily conducting activities at a common place or location. These include

but are not limited to unions and associations of workers, associations of

11



businesses, sports groups, and international professional bodies. As technologies
advance, this definition also covers virtual or online communities. These groups

provide their members a sense of community or identity.

2.1.1.2 Communities of Place

‘Communities of place or geographic communities are made up of the
people who happen to live or take part in activities in a particular area or locality.
They may or may not share a common interest but they aways share certain
characteristics, identities or concerns (Law, 2000). Neighbourhoods, school

districts and urban regions are examples of geographic communities.

2.1.1.3 Working Definition of Community

Although there is no universally accepted definition of community, in
most research, the basic elements are till location or place, social interaction,
common interests and perspectives, as well as socia ties (Brint, 2001; MacQueen
et a., 2001). Given the focus of this research is about spatially weighted local
regression, community in this research, unless stated otherwise, refers to
‘communities of place in a local setting’ that resembles the meaning of
neighbourhood. Small and Supple (1998, p. 3) referred neighbourhood as “a
physical place defined by socially shared boundaries which includes a population
of people who usualy share similar life chances, socio-economic status and
physical proximity”. Galster (2001, p. 2112) specified neighbourhood as “a

bundle of spatially-based attributes associated with cluster of residences’. These

12



attributes include physical and socia characteristics of the neighbourhood,
namely structural characteristics of the buildings, infrastructural characteristics,
demographic characteristics and class status characteristics of the residents,
tax/public service package characteristics, environmental characteristics,
proximity  characteristics, political characteristics,  social-interactive

characteristics and sentimental characteristics.

2.1.1.4 Operationalize the ‘Community’ Concept in Social Sciences Research

After defining the ‘community’ concept, it is necessary to operationalize it
as measurable attributes or variables so that they can be integrated into a
statistical model. As Glaster (2001) pointed out that ‘community’ is spatially-
based, measurement of attributes is only possible after a particular area has been
specified or demarcated. Therefore, how space being delineated for measurement

is part of the operationalization process.

Small and Supple (1998) found that defining meaningful spatial
boundaries for study is not a straightforward task. Glaster (2001) realized that it
was very difficult to define a clear boundary of a community or neighbourhood as
the attributes to be measured vary over space in different patterns. Given that it
has to demarcate an area to take measurement but the boundaries are most likely
made arbitrarily, and may not coincide with the spatial patterns of the attributes,
the best one can do is to use the smallest spatial unit of data available in order to

get a ‘higher resolution image’ of the spatial patterns. Thisisin line with Dietz's

13



(2002) observation that space delineations in most research are constrained by the

limitations of the available datasets.

With respect to choices of measurable variable to represent the
‘community’ concept, Small and Supple (1998) proposed a three-level framework
for conceptualizing communities in terms of community effects. The first level is
“the direct aggregate influences of the universe of community settings and
institutions’ upon the individuals in the community (Small and Supple, 1998, p. 8).
These community settings and institutions include schools, health care facilities,
religious ingtitutions, and so on. The second level is the influences generated by
the relationships and linkages between settings in a community. One example is
cross-setting consistency which means if community settings such as schools and
religious institutions share common goals and values, the influences in each
setting are reinforced. Influences under the third level, such as community
identity, only occur when a community reaches a critical mass. This framework
considers communities as complex systems which “will not be easy to

operationalize or study” (Small and Supple, 1998, p. 20).

Lupton (2003) suggested four guidelines for selecting the measurable
variables to represent the ‘community’ concept: (1) both physical and socia
aspects of community should be considered; (2) use appropriate boundaries for

community under study; (3) reflect different relationships between individuals

14
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and community; and (4) reflect the relationships between neighbouring

communities.

Considering that different attributes vary over space in different patterns,
Glaster (2001) suggested that researchers should choose only those attributes of
interest for a particular type of community to avoid the discrepancies among the
gpatial patterns of the attributes. Dietz (2002) reviewed 39 previous studies and
found that more than two thirds of the studies (24 out of 39) select socio-
economic and demographic attributes as measurable variables. Only 15 studies

use research specific variables.

The above discussion reveds that there is no universally accepted means
to operationalize community. Based on Glaster's (2001) “bundle of spatially-
based attributes’ and Lupton’s (2003) guidelines, the common denominator is that
the attributes should include both physical and socia characteristics of the
community. Further discussion about the operational definition of community for

thisresearch is presented in Section 3.1.5.2(d).

Community Effects

In genera, the term ‘community effects refers to the influences a
community exerts on an individual’s behaviour or socioeconomic outcomes
through social interaction within that community (Dietz, 2002). Other than the

effects from direct socia interaction, Dietz (2002) also referred to the correlation

15



2.2

between individual behaviour or outcomes with the characteristics of an
individual’s neighbours and neighbourhood as a kind of community effect. This
kind of community effect may be the result of certain social processes such as
population sorting. For the purpose of this research, the term ‘community effects
refersto the latter, i.e., correlation between individual behaviour or outcomes with
the characteristics of an individual’s neighbours and neighbourhood. In this
research, the incorporation of the ‘community’ concept into a local spatia

regression model is to account for the community effect.

Techniques Used in Empirical Studies of Community Effects

Although linear regression is a powerful tool for finding relationships
among various factors, it is not effective with data showing properties of
dependence such as spatial dependence. Geographical data, as Goodchild (2001)
pointed out, are frequently found to be spatialy dependent. Researchers studying
community effects usually deal with this problem by modifying or extending the
ordinary least squares (OLS) regression model. Dietz (2002) reviewed 39
previous studies and found that most researchers used OLS, two-stage OLS or
multi-level regression models. Only four of them used spatial econometric or

gpatial auto-regressive models.

The most common way to use OLS in dealing with spatially dependent

dataisto introduce a dummy variable for broad classes of spatial location, such as

urban, suburban and rural. Another method is to use the multi-level modeling

16



techniques to include a pre-defined location or community as one of the
hierarchical levels. A major criticism about these approaches is that a spatial
hierarchy has to be pre-defined and incorporated into the model, but the
sensitivity of these models to changes in the spatial hierarchical groupings is not

investigated (Brunsdon et al., 1998; Dietz, 2002).

Spatial autoregressive models, which are usually applied to areal data,
simulate local spatial interaction by putting the spatially weighted dependent
variable (with a spatial weight matrix) on the right side of the equation. The
gpatial weight matrix is typicaly a normalized contiguity matrix which does not
consider the size or shape or absolute location of the zones. Although this type of
model addresses the impact of local relationships in the data, the output is aways
a set of globa parameter estimates (Fotheringham et al., 2002). No trend or

gpatial pattern of the parameters can be observed.

Gorr and Olligschlaeger (1994) used a technique called spatially adaptive
filtering that based on a ‘predictor-corrector’ mechanism to generate the
parameter ‘drift’ across space. Brunsdon et al. (1998) noted that a major drawback
of this technique is that the validity of the assumption of variation in parameters

cannot be tested statistically.

Cassetti (1972) proposed a spatial expansion method that expands the

coefficients in the regression model with the explicit function of the spatial
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location of the cases. It is adso the expansion method that restricts how the
changes of the estimated parameters can be displayed over space. For example,
when x-y expansion is used, a parameter S for a variable v will be expanded from
one term Sv into three terms f,v, f;xv, and B,yv. However, the trend of v can only
be displayed either along the x-axis (using f; values) or the y-axis (using S

values); hence, no spatial pattern can be mapped out for exploration.

Geographically Weighted Regression
Basic Concept

To overcome the deficiencies of the techniques discussed above, Brunsdon
et a. (1998) proposed an alternative technique, Geographically Weighted
Regression (GWR). GWR is regarded as a non-parametric model so no pre-
defined spatial hierarchy is necessary. It attends to spatial dependence of data
with a distance-decay weight function and tackles spatia heterogeneity using a
subset of the observations for each prediction point estimation. The parameters
obtained are at the local level, instead of the global level, and can be mapped
gpatially with Geographical Information System (GIS) software for exploration of

trends or patterns.

The central idea of GWR is to apply an OLS regression model locally.
Unlike OLS regression that uses all observations in the parameters estimation,
GWR uses a subset of the observations to estimate the parameters for each

prediction point. The subset used in each estimation is defined by a moving kernel
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(Figure 2.1). It also applies a pre-defined weighting function to weight the
observations around the prediction point. The weighting function (Figure 2.1) is
usually a distance-decay one that reflects Tobler's (1970, p. 236) First Law of
Geography, “Everything is related to everything else, but near things are more

related than distant things”.

" weighting \
functions

kernels

X regression point
= data point

Figure 2.1: Distance-decay weighting function and moving kernel
(After Fotheringham et al. [2002, Figure 2.11])

2.3.2 TheTheory

An OL S regression model can be written as:
y:ﬂ0+2kﬂkxk+g (2.1)

where:
y = the dependent variable
xx = avector of independent variables
So = the intercepting constant
P = avector of regression coefficients
¢ = the error term whose distribution is N(0, %)

In OLS, it is assumed that the parameter values () are constant across the

study area. Any unexplained variations (including the spatial variations) are put in
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the error term &. The aim of OLS is to estimate the parameter values (5) for a
regression model (which is also a statistical function) so that the function best fits
a set of data (or observations) in aleast squares sense. The least squares estimates

of the parameter values (f) can be obtained by:

B=(X"X)"x"y (2.2)
where:

X =an by k matrix containing » observations of the & independent variables
X" =transpose of X

A

[ = estimated regression coefficients

Based on the OLS model represented in (2.1), the general form of a local

regression can be written as (2.3).
v =5 (ui'vi)+z Bl v)x, +€ (2.3

where:

y; = the dependent variable of a prediction point i

x;x = avector of independent variables for prediction point i

So = the intercepting constant for prediction point i

P = avector of regression coefficients for prediction point i

g; = the error term for the estimation of prediction point i

u;,v; = the coordinates (or location) of prediction point i
This general form indicates that each prediction point would have its own
regression coefficients being estimated. As GWR is a spatialy weighted local
regression method, each prediction point also has its own weight matrix. The

compact form of the GWR model including the weight matrix for prediction point

i are written as (2.4), with subscript i replacing (u;v;) in (2.3).

Wy =WXpi + e (2.4
where:
W;=an by n weight matrix for prediction point i whose off-diagona
elements are zero
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y =an by 1 vector of dependent variable observations

X =an by k matrix containing » observations of the & independent variables

pi = a vector of regression coefficients for prediction point i at location
(u,,v,) containing foand Sy in (2.3)

g; = the error term for the estimation of prediction point i

The least squares estimation scheme for (2.4) can be written as:

A

B=(X"WX) X TWy (25)
where:
y =an by 1 vector of dependent variable observations

X =an by k matrix containing » observations of the & independent variables
X" = transpose of X

A

S, = a vector of estimated regression coefficients for prediction point i at
location (u,,v,)

W;=an by n weight matrix for prediction point i whose off-diagona
elements are zero

By comparing (2.2) and (2.5), it is obvious that the weight matrix W; is

central to GWR. If W; is an identity matrix, then (2.5) is equal to (2.2). As

discussed in section 2.3.1, GWR put more emphasis on the observations closer to

the prediction point. A distance-decay function is used to generate #¥; so that

higher weights are assigned to observations closer to the prediction point. ; is

also used to define the subset of observations to be used in the local regression.

Therefore, obtaining a proper weight matrix is crucial to GWR modeling.

2.3.3 Spatial Weighting Function and Bandwidth

Obtaining a proper weight matrix requires an appropriate spatial weighting

function and bandwidth. Spatial weighting functions can be implemented as
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binary function, exponential distance-decay-based function, or kernel function

(Brunsdon et al., 1998).

A binary function assigns a weight of 1 to al observations whose
distances from the prediction point i are less than »; otherwise zero. In this case,
the spatial weighting function defines a circular kernel of radius » (2.6).

w;; = 0 otherwise

Whevrv?,-: = weight assigned to observation ; for the estimation of prediction point i
d; = distance between observation ; and prediction point i
b = bandwidth
However, a binary function like (2.6) is considered as unnatural since it
means that an observation which is » km from the prediction point is weighted 1
while the other one which is 5+0.00001 km from the prediction point is weighted
0. An exponential distance-decay function like (2.7) or a distance-decay kernel
function like (2.8) is considered more appropriate as the weight changes more
gradually, depending on the bandwidth being selected. The crux of these
functionsisthe *bandwidth’ » which defines the behaviour of these functions.
wy; = exp| —¥(dy; | b)’] (2.7)
wy =[1—(d, I b)Y ?if dy< b (2.8)
w;; = 0 otherwise
Figure 2.2 shows that a larger bandwidth (b,) results in a flatter weight

distribution. Observation point « is assgned a lower weight (wz,) in the case of

bandwidth 5, than b,. Thisin turn affects the goodness of fit of a GWR modd . Hence,
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selecting an appropriate bandwidth is actualy calibrating the spatia weighting
function selected for the GWR mode. The most common method used for the
caibration is a cross-validation approach (Fotheringham et a., 2002). Cross-

validation scoresfor different bandwidths are computed using (2.9):

X regression point w; is the weight of data point j at regression point i

@ data point d; isthe distance between regression point iand data point j

Figure 2.2: Bandwidth and spatial weighting function
(After Fotheringham et al. [2002, Figure 2.10])

CV =315, ., ) 29

where:
CV = cross-vaidation score

y.,(b) = the predicted value of y; from the GWR model where the i*

observation is omitted during the estimation process
b = bandwidth
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The bandwidth that gives the least cross-validation score is considered as
the most appropriate one because this indicates the model produces least

prediction error at this bandwidth.

Outliers and Community Effects

One of the mgjor criticisms about GWR is that the presence of any outliers
would distort the results of the nearby prediction points greatly due to the nature
of local regression and the distance-decay weighting function (LeSage, 2004).
Fotheringham et al. (2002) suggested that outliers can be detected using the
externally Studentised residual. They recommended removing the outliers from
the dataset and then re-fitting the model. While such ‘ detect-and-remove’ strategy
may be useful in dealing with ordinary outliers, it cannot handle local aberrant
observations or local influences caused by community effects as illustrated in the
example in Section 1.1. In the next section, an alternative approach that extends
the GWR model is introduced to handle local aberrant observations. This
alternative approach aso provides the opportunities to incorporate the

‘community’ concept into a spatially weighted local regression model.

Bayesian Geographically Weighted Regression Model

Apart from the outlier problem, LeSage (2004) also identified two other
problems about GWR. One is about the validity of inferences for the regression
parameters by traditional least squares approaches and the other is the ‘weak data

problem (i.e., the effective number of observations for each estimation may be too
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small). Thus, he proposed an alternative, a Bayesian approach of the GWR which
he coined as Bayesian Geographically Weighted Regression (BGWR) to address
the deficiencies of GWR. For brief introduction to Bayesian statistics, one may
refer to Bullard (2001) and Goddard (2003) or Koch (2007) and Lynch (2007) for

detailed discussions.

The Theory of BGWR

LeSage (2004, p. 243) extended the GWR model by expanding the
parameter f; in (2.4) with an explicit statement of what he called the * parameter
smoothing relationship” such as the distance-based parameter smoothing

relationship in (2.10) below.

By
B=w,®L.w,®L) | I |+4 (2.10)
B,

The parameter smoothing function in (2.10) isalocally linear combination
of neighbours weighted by a distance-decay function. Other parameter smoothing
relationships such as contiguity, and monocentric (i.e., concentric zones to a pre-
defined centre) are also possible (LeSage, 2004). The terms w;; (such that j = 1 to
n) in (2.10) represent the normalized distance-decay-based weights such that the

sum of the row vectors (w;1....w;,) are L while w; = 0.

The distribution for the error termse; in (2.4) and y; in (2.10) are added:

g, ~N[0,0%V ], Vi=diag(v,,v,,-,v,) (2.11)
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4, ~ N[0,62°8*(X"W?X)™] (212)
where ¢’ is the variance of y. ¥; is an unknown variance parameter introduced to
accommodate spatial heterogeneity of variance. It is an n by » matrix with
diagona elements, (v;, v,, ..., v,), While the off-diagonal elements are zero. In
order to estimate the » number of v; terms for n observations, LeSage (2004)
suggested to assign a prior distribution »’() for the »’ terms using a
hyperparameter » such that the mean of prior equals unity and the prior varianceis
2/r. Thisimplies that when r is very large, the prior variance becomes very small
and V; become an identity matrix. Hence, the variance of & become a constant
variance ¢°I, for all observations i (i.e., homoscedasticity). The other property of
the hyperparameter r is that when it is small, say 4, it can down-weight aberrant
observations or outliers (which are identified if the difference between observed

values and predicted values are big) in alocal regression estimation.

The term y;is prior uncertainty about the parameter smoothing relationship.
It is assumed to follow a normal distribution with mean zero and a variance based
on Zellner's g-prior, a commonly used prior in Bayesian variable selection
(Berger and Pericchi, 2000; Denison et al., 2002). This prior variance is
proportional to the parameter variance-covariance matrix, o°(X’ WiX)™. The term
&’ is a scale factor that regulates the degree of adherence between the parameter
estimates and the proposed smoothing relationship. That means when &° is very
small like 1 or 0.5, the smoothing relationship would impose more influence on

the regression coefficient estimation. On the other hand, when &” is very large
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(e.g., approaching infinity), and V; equals to identity matrix, BGWR would

produce estimates very close to those by GWR.

Estimation with the BGWR Model

Like other Bayesian models, the estimates for the BGWR model are the
multivariate posterior probability density for all of the parameters in the model.
LeSage (2004) used Gibbs sampling, a technique for generating random samples
from a distribution based on the Markov Chain Monte Carlo (MCMC) approach,

to carry out the estimation.

The procedures of the Gibbs sampling process described below are based
on the parameter smoothing relationship in (2.10) (recapped below for ease of

reference). A compact form of (2.10) can be written as (2.13).

By
B=(w,®1..w,®I) TH, (2.10)
B,
B.=Jy+u (2.13)
By
where J, =(w,; ®1I,...w, ®I,),and y=| :
B,

The parameters to be estimated in this process are g, o, 9, V, and y which come
from (2.11), (2.12), and (2.13). Before the Gibbs sampling process starts, arbitrary
values have to be assigned to the parameters f;, o and y. The bandwidth for the
distance-decay function in the parameter smoothing relationship is obtained from

the estimates of the initial analysis of an equivalent GWR model. The prior r
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(which gives V) and ¢ are selected based on the considerations discussed in

Section 2.4.1.

The Gibbs sampling process comprises many passes, say 500 or 1,000. In

each pass, a sample of each observation is drawn to compute and update certain

parameters. The detailed procedures are as follows:

1.

Initial values for the parameters are represented as g/, ¢/, ¢°, Vi, and y’,
where the superscript 0 indicates the pass number and subscript i indicates
the observation number.
For each observationi = 1ton,

a sampleavalue g/ from P(8;| o/, &°, V¢, 7°):;

b. sampleavaueas; from P(a:| B, &, V¥, ¥");

c. sampleavalue V;/ from P(V;| o/, &°, B, 7");
Update y’ to y' with the sampled values of g/ , i = 1 to n from each of the n
drawsin Step 2.
Sampleavaued’ from P(o| o/, Vi, B/, 7").
Replace g/, o/, o°, V¥, " in Step L with g/, o/, o', Vi, y'.

Steps 2 to 5 represent a single pass. Repeat for another 499 passes.

The output or estimates obtained from the Gibbs sampling process are a

collection of samples of parameter values, from which the posterior probability

density (or conditional posterior distribution) for the parameters can be

constructed. Normally, the samples of the first 50 passes would not be used as the
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inittal sample values are not very stable. Therefore, for a collection of 500

samples, the process needs 550 passes.

Outliers and Community Effects

BGWR adopts a different strategy in handling outliers. Instead of ‘ detect-
and-remove’, BGWR mitigates the influence of the outliers by down-weighting
the outliers as well as smoothing any aberrant values in the parameters of an
observation with its neighbours with some pre-defined parameter smoothing
relationship. The parameter smoothing relationship also provides an opportunity
to incorporate the community concept into the BGWR model. A function that
measures how likely observations are coming from the same community can be
used in the parameter smoothing relationship to account for the community

effects (to be discussed in Section 3.1.5.2(d)).

Summary

This chapter begins with a discussion on the diversity in the definitions of
‘community’ as well as the distinction between community of interest and
community of place. Given the focus of this research, a working definition of the
term ‘community’ is set out as communities of place in a locality setting that
resembl es the meaning of neighbourhood. In addition, the constraints (imposed by
the available datasets) and considerations to operationalize ‘community’ into

measurable variables are aso discussed. Furthermore, the term ‘community
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effects is aso defined as the correlation of individual behaviour or outcomes to

the characteristics of an individual’ s neighbours and neighbourhood.

After reviewing the techniques used in some empirical studies of
community effects -- such as OLS, multi-level regression, and spatial
autoregressive model -- a brief discussion about these techniques suggested that
their deficiencies might be threefold. Firstly, a pre-defined spatial hierarchy is
required but the effects of different definitions of the spatial hierarchy on the
models are not certain. Secondly, parameters estimated are mostly at a global
level. Thirdly, even though parameters are estimated at a local level, they are not

easily mapped with GIS software for exploration of trends or patterns.

Geographically Weighted Regression (GWR), a non-parametric spatially
weighted local regresson model proposed by Brunsdon, Fotheringham and
Charlton (1998), isintroduced as it overcomes the above deficiencies. The central
idea of this model isto apply an ordinary least squares regression locally. It usesa
moving kernel to define a subset of the observations and weight them with a
distance-decay function to estimate the parameters for each prediction point. Due
to the nature of local regresson and the properties of the distance-decay
weighting function, estimates of GWR are susceptible to outliers. While the
proposed ‘ detect-and-remove’ strategy may be able to handle ordinary outliers, it
cannot handle local aberrant observations or local influences caused by

community effects.
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LeSage (2004) proposed a Bayesian approach of the GWR, coined as
BGWR (Bayesian Geographically Weighted Regression), and introduced a
parameter smoothing relationship into the model to mitigate the influence of the
local aberrant observations by down-weighting and smoothing them with its
neighbouring values. The parameter smoothing relationship of BGWR also
provides an opportunity to incorporate the concept of community into the model.
A BGWR model with ‘community’ as the parameter smoothing relationship will

be described in the next chapter.
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3.0

3.1

3.1.1

EXPERIMENT DESIGN AND EVALUATION METHODS

In Chapter 1, I argued that purely distance-based local spatial regression
models cannot account for the ‘community’ effect in social sciences research. I
also argued that by incorporating the ‘community’ concept into the local spatial
regression model, its prediction power can be improved. A scientific experiment
has been designed and implemented to support this argument. This chapter
discusses the details of the design of the experiment including the data
requirements, procedures, and the models that have been involved in the
experiment. To enable the community concept to be expressed as measurable
variables, it is necessary to derive an operational definition of community. A
detailed discussion about the operational definition of community is therefore
included. The latter part of this chapter discusses the evaluation criteria to be used

in this research.

Experiment Design
Background

The present experiment requires the datasets that demonstrate certain
extents of spatial dependence. Therefore, it is developed on previous models that
involved datasets that exhibit such properties. Combining this guideline with
another key consideration, data availability, I have selected Dr. Douglas Willms’
research on adult literacy as the starting point. Willms and his colleagues have

used multi-level modelling techniques in several research projects to account for
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the spatial dependence of adult literacy data (Willms, Chan and Tang, 2007;
Willms and Tang, 2007; Willms and Murray, 2007). The base model of this study

is adapted after Willms and Murray (2007).

Data

The dataset for this research is the International Adult Literacy and Skills
Survey (IALSS). It is the same dataset that was used by Willms and Murray
(2007). The TALSS studies four skills of adults from various countries, including
Canada, at age 16 and older. The four skills are prose literacy, document literacy,
numeracy, and problem solving. Like the research by Willms and Murray (2007),
prose literacy — the knowledge and skills needed to understand and use
information from text — is used in this study as the dependent variable.
Proficiency of prose literacy in the IALSS is indicated on a scale ranging from 0
to 500 points. Independent variables are gender, age, age-squared, years of
education, and personal income. Details about these variables are discussed in
Section 3.1.5.1. In addition, data at the DA (Dissemination Area) level from the
2001 Canada Census are used as the source of spatial and community-level data
(Statistics Canada, 2003a). Details about these data are discussed in Section

3.1.5.2(d).

Study Area

IALSS data for the Atlantic provinces, which comprise information on

4,682 adults, were initially considered for this study. However, the area was
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inappropriate because one of the basic assumptions of the local spatial regression
models was violated. Most local spatial regression models take straight line
distances between sample points as input for computation. This, however, is not
applicable to the Atlantic provinces because many parts of the provinces are
separated from their neighbouring provinces by various bays and straits (see
Figure 3.1). Therefore, observations regarding the fit of the models tested may
vary due to the fact that straight line distances were used, and this variation would
be confounded with the introduction of community characteristics with the
BGWR-Community model. This problem is less prominent in the selected study
area in southern Ontario (see Figure 3.2) where there are 3,709 adults in the
sample after cases with missing data are removed. This limitation is discussed in

the final chapter.

o
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Figure 3.1: Problem of distance measurement for the four Atlantic provinces
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Study area

™

Figure 3.2: Southern Ontario as the study area

3.1.4 Preliminary Data Preparation

Firstly, the Prose Literacy scores for the adults between the age of 16 and
65 surveyed in southern Ontario were extracted. Then, the records with missing or
extreme values were removed to ensure the quality of subsequent analysis. Some
variables were then ‘centred’ such that the constant of the regression model
predicts the literacy score of a typical adult of age 40, with 12 years of education,
and an annual income of $30,000. Details of the data preparation process are
summarized in Appendix A, while key points are highlighted where appropriate in

the explanation of the base model contained in the next section.
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3.1.5 Models

3.1.5.1 Base Model

The base model of this experiment is an ordinary least squares (OLS)

regression model which serves as a baseline for comparison. It is represented as

follows:

Prose = fy + p1 Gender + f, Age + 3 AgeSquared + f4 YearsEd + fs Income

where:

Prose = the prose score of the subject, ranging from 0 to 500.
Gender = re-centred value of the gender of the subject such that males
were set to -0.5 and females to 0.5.
Age = re-centred value of the age of the subject. This experiment includes
only adults between the age of 16 and 65. This variable was re-
centered such that age 40 was set to 0, 39 to -1, 41 to 1, and so on.
AgeSquared = square of the subject’s re-centred age value;
YearsEd = re-centred value of the number of years of education of the
subject such that 12 years of education was set to 0, 11 to -1,
13 to 1, and so on.

Income = re-centred value of the imputed personal annual income of the
subject such that annual income of $30,000 was set to 0,
$31,000 to 1, $29,000 to -1, and so on.

As mentioned ecarlier, these data come from the IALSS. The model is

implemented with the SPSS™ statistical package.

3.1.5.2 Local Spatial Regression Models Under Study

The major goal of this experiment is to determine whether the

incorporation of community concept into the local spatial regression model can

lead to improved prediction power by means of comparing the proposed model

with two distance-based local spatial regression models. The local spatial

regression models under study are:
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(1) the Geographically Weighted Regression (GWR) using exponential
distance-decay function as the spatial weighting function by Brunsdon et
al. (1998);

(2) the Bayesian Geographically Weighted Regression using a distance-decay
parameter smoothing relationship (BGWR-Distance) by LeSage (2004); and

(3) the Bayesian Geographically Weighted Regression using a community
parameter smoothing relationship (BGWR-Community) proposed by the

author.

The GWR model is selected as it is one of the most popular spatially
weighted regression models that is distance-based. The BGWR-Distance model is
selected as it is also a distance-based model. More importantly, it serves as a
reference when comparing the results of the author’s BGWR-Community model
with the GWR model because it is structured in a way that offer a transition
between the GWR and the BGWR-Community models. As discussed in Section
2.4, the BGWR models are a Bayesian approach of the GWR model that
introduces various parameter-smoothing relationships to extend the GWR model.
The major difference between the BGWR-Distance model and the GWR model is
that it incorporates a normalized distance-based weight matrix in the parameter
smoothing relationship. Since the ‘community’ concept in the BGWR-
Community model is represented by a weight matrix that is comprised of a similar

distance-based weight matrix and another component (to be discussed in Section

37



3.1.5.2(d) below), the BGWR-Distance model serves as a good reference for the

GWR and BGWR-Community models.

In this experiment, the implementation of these models is based on
LeSage’s (2005) Spatial Econometric Toolbox which is a host of spatial
econometric estimation methods implemented with Matlab™. In the following
sections, the spatial data requirements for these models are discussed followed by

detailed discussions about each model.

@ Spatial Data Requirements and Distance Matrix

In order to generate the distance-based weight matrix mentioned above, a
n by n distance matrix that captures the distance between any two sample points is
required. It is used in all of the above models to determine the weight applied to
each sample point during estimation. Therefore, it is pre-computed and imported
into each model to avoid redundant computation. The spatial data required to
generate the distance matrix includes the DA (Dissemination Area) file (which
contains all the DA polygon data) of the 2001 Canada Census Spatial File (in
Arclnfo™ * .e00 format) and the Postal Code Conversion File (PCCF) from
Statistics Canada. The PCCEF is a text file that provides a correspondence between
the postal code and Statistics Canada’s standard geographical areas (such as DA)

for which census data and other statistics are produced (Statistics Canada, 2003b).

* Arclnfo is a registered product name of geographical information system software produced by ESRI,
Redlands, CA, USA.
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To generate the distance matrix, each sample point has to be tied to a
location using coordinates. In order to protect the identity of the surveyed samples,
the only location information given in the IALSS dataset is the DAs where the
subjects live. Hence, the coordinates of the centroid of the corresponding DA
polygon of a given sample point are used. For DAs that have more than one
sample point, an alternative method is applied to avoid using the same coordinates.
This method randomly related each sample point to a postal code within the
corresponding DA. The geographical coordinates (latitude and longitude) of the
assigned postal code are then used as the location of a given sample point. Please

see Appendix B for details of this procedure.

After relating each sample point to a pair of coordinates, corresponding
distances between each pair of sample points are computed using a function
adapted from vdist(' ), a Matlab function implemented by Michael Kleder (2005).
This function calculates the Great Circle distance of two points using their
latitude/longitude coordinates. The distance matrix is then saved as a .mat file (a

Matlab output file) as an input of the local spatial regression models.

(b)  Geographically Weighted Regression Model (GWR)

As mentioned in Chapter 2, a GWR model produces locally linear
regression estimates for every prediction point, using a spatial weighting function
of a certain bandwidth to define the weights of the observations around the

prediction point in the regression model. The spatial weighting function used in
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this experiment is an exponential function as shown in (2.7) while the bandwidth
is obtained through a calibration process using the cross-validation approach as
described in Section 2.3.3.

wy; = expl - Ya(dy / b)’] 2.7)
where:

w;; = weight

d;; = distance between an observation and the prediction point

b = bandwidth

Figures 3.3a and 3.3b show the differences between the OLS and GWR
models in terms of weights, where the ‘star’ is the prediction point and the size of
the orange dots is proportional to the weight being assigned to all other
observations. Figure 3.3a shows that the weights being assigned to all other
observations are the same in the OLS model while the weights being assigned in

the GWR model decrease as the distance between the prediction point and other

observations increases (Figure 3.3b).

*  Prediction point * Prediction point
L oo
o ©
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Uniform weights Weights decrease as the
®  regardless of distance distance from the
from the prediction prediction point increases
_ point __ with an exponential
oF o @ decay function
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@ . ; -
* ) m . . L]
Figure 3.3a: Weights in OLS model Figure 3.3b: Weights in GWR model
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The implementation of the GWR model involves the following

modifications of the codes from LeSage’s Spatial Econometric Toolbox to enable:
e import of the pre-calculated distance matrix into the model; and

e cross-validation, i.e., during the estimation of every point i in the dataset,

uses all observations in the dataset except point i itself.

(© BGWR using a Distance-decay Parameter Smoothing Relationship
(BGWR-Distance)

The BGWR-Distance model extends the GWR model with a distance-
decay parameter smoothing relationship based on the assumption that parameter
estimates of the local regression models of observations located close together
should be more similar than those farther away. Based on this assumption, the
BGWR-Distance model includes a distance-decay parameter smoothing strategy
that smoothes out (or reduces) the impact of any anomaly or outlier during the

estimation process.

The function for the distance-decay parameter smoothing relationship

extends f; in (2.4) and is expressed as:

B
B=w,®I ..w, &) | : |+4

(2.10)
an

where w; (such that i = 1 to n) represents the normalized distance-decay-based
weights such that the sum of the row vectors (w;;....w;,) are 1 while w; = 0. The

function used to compute the weights w;; of the parameter smoothing relationship is
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the same distance-decay function in (2.7) but the weights obtained are normalized.

In order to optimize the model, a similar calibration process as discussed in Section

2.3.3 is used to obtain the bandwidth for this distance-decay function.

Figures 3.4a and 3.4b illustrate the difference between the BGWR-Distance

model and the GWR model in terms of parameter smoothing relationship. Figure

3.4a shows that, if there were a parameter smoothing relationship for the GWR

model, all the values in the row vectors (wj;....w;;) in (2.10) would be 0 but w; = 1.

Hence, only the prediction point itself would be used for parameter smoothing

while the other observations were discarded. For the BGWR-Distance model, its

parameter smoothing relationship is a distance-decay function, the weights assigned

to the parameters of the other observations decrease as the distance from the

prediction point (i.e., the ‘star’) increases (Figure 3.4b).

Zero weights are
assigned to the \
parameters of the
surrounding
observations

P,I'é.diction point

Weights for distance
parameter smoothing
r decrease as the distance
__from the prediction point
¥ increases with an
| exponential decay
function

Figure 3.4a: Weights for distance
parameter smoothing relationship in
GWR model

Figure 3.4b: Weights for distance
parameter smoothing relationship in
BGWR-Distance model
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During the implementation of this model, modifications are made to
LeSage’s Spatial Econometric Toolbox to enable:
e import of the pre-calculated distance matrix into the model;
e cross-validation; and
e 550 passes are used in the Gibbs sampling process as discussed in Section
2.4.2 where results of the first 50 passes are to be discarded.
Additionally, the following default set up is retained:
e the hyperparameter r (as discussed in Section 2.4.1) is set to 4, meaning
that the restriction of constant variance is not imposed; and
e the diffuse scale prior d (as discussed in Section 2.4.1) is set to 1 to impose
the influence of the smoothing relationship on the regression coefficient

estimation.

(d) BGWR using a Community Parameter Smoothing Relationship (BGWR-
Community)

For the purpose of incorporating the community concept in the BGWR
model, it is necessary to develop an operational definition of ‘community’ so that

the concept can be expressed as measurable variables.

Operational Definition of Community

The objective of incorporating the concept of community into a BGWR
model is to account for the community effects that observations from the same
community have higher correlation than those from other communities. This is to

be encapsulated in the estimation process so that observations from the same

43



community of the prediction point bear a relatively higher weight than those from
other communities. Hence, the operational definition of community has to be able
to tell how likely it is that two observations are in fact coming from the same
community. Based on the discussion in Section 2.1.1.4, two decisions have to be
made during the operationalization process of the community concept: (1) how to
demarcate the area for measurement, and (2) what attributes are to be included in

the measurement.

However, it is difficult to demarcate the areas for measurement that fit the
boundaries of communities. In fact, Dietz (2002) observed that space delineations
in most research are constrained by the limitations of the available datasets. Since
DA is the smallest spatial unit of Census data that is accessible through Statistics

Canada, it is used as the basic spatial unit of measurement in this research.

Although the discussion in Section 2.1.1.4 reveals that there is no
universally accepted methods to operationalize community, physical and social
characteristics of the community are the common denominators of Glaster’s (2001)
“bundle of spatially-based attributes” and Lupton’s (2003) guidelines. Since
Glaster’s (2001) bundle of spatially-based attributes captures both the physical
and social characteristics of a community, it is an appropriate candidate from

which the operational variables can be derived.
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The attributes described by Galster (2001) can be broadly grouped into
location-related attributes and people-related attributes as summarized in Table
3.1. Although these attributes provide a good framework, reliable quantitative
data are not always available. For location-related attributes such as the quality of
public administration is indeed quite difficult to quantify. As the objective of
measuring these attributes is to obtain an indicator to tell how likely two
observations are coming from the same community, this experiment uses
geographical distance as a proxy for location-related attributes. This is based on
two assumptions. Firstly, observations from the same community tend to be in
proximity. Secondly, observations in close vicinity are likely to share similar
location-related characteristics. For example, samples in vicinity are more likely
to fall within the same public administrative district, hence possessing the same
quality of public administration. This experiment thus uses the distance-decay
value of the geographical distance between two observations as a proxy to
indicate, on the location-related aspect, how likely it is for two observations to be
coming from the same community. Details of how this proxy works are described

in the next section.
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Table 3.1: Bundle of spatially-based attributes (After Glaster [2001, p. 2112])

L ocation-related attributes People-related attributes
Structural characteristicsof the | ¢ Demographic characteristics of
residential and non-residential resident population: age
buildings: type, scale, material, distribution, family composition,
design, state of repair, etc. racial, ethnic, and religious types,
Infrastructural characteristics: cte.
road, sidewalk, utility services, e Classstatuscharacteristics of
etc. theresident population:
Environmental characteristics: L%iﬁrrgegigf);upatlon and education
degree of land, air, water and P
noise pollution, topographical e Political characteristics: the
features, views, etc. degree to which local political

. D networks are mobilised
Proximity characteristics: access

to major destinations of e Social-interactive
employment, entertainment, characteristics: local friend and
shopping, etc. kin networks, degree of inter-

household familiarity, resident’s
perceived commonality,
participation in locally based
voluntary associations

Tax/public service package
characteristics: the quality of
safety forces, public schools,
parks and recreation, public
administration etc., in relation to e Sentimental characteristics:

the local taxes assessed. residents’ sense of identification
with place, historical significance
of buildings or district. etc.

Among the people-related attributes, relevant data for the last three

characteristics are not available. For demographic and class status characteristics,

the following variables are given in the 2001 Canada Census data by DAs and are

used in the experiment.

Y ears Education: The average number of years of education in a DA;

Transience: The percentage of people who had moved in the previous
five years;

Income: Average level of family income;

Unemployment Rate: The percentage of people who were unemployed,;
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e Percent Social Class 1 and 2: The percentage of people who were in
professional or semi-professional occupations;

e Percent Social Classes 4, 5, 6: The percentage of people who were in
unskilled labour occupations, or unclassified occupations; and

e Percent Recent Immigrants: The percentage of people who had
immigrated in the previous five years.

These variables are identical to those applied in the multi-level regression
models in Willms’ research (Willms, Chan and Tang, 2007; Willms and Tang,
2007). In this experiment, the Mahalanobis distance of these variables is used to
indicate, on the people-related aspect, how likely two observations are coming
from the same community. The reasons for using Mahalanobis distance are
twofold. Firstly, Mahalanobis distance is being used frequently in cluster analysis
problems in order to determine similarity among ‘clusters’ as it takes into
consideration the correlations of the ‘clusters’ and is not dependent on the scale of
measurement (Rapkin and Luke, 1993; Mimmack et al., 2001; Hagger-Johnson,
2006). Secondly, using certain type of distance as a single indicator allows the
model to use a distance-decay function to create the weight matrix for the
parameter smoothing relationship. In this way, no community has to be pre-

defined.

In short, the geographical distance and the Mahalanobis distance of the
seven selected variables thus constitute the operational definition of community
(Figure 3.5). The next section will discuss the details about the implementation of

the community concept.
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Galster’s (2001)

Community concept

A 4

A

bundle of spatially Location-related People-related
based attributes of attributes attributes
community

Operational : Mabhalanobis
deﬁnltlop of Geographlcal distance of
community distance selected variables
concept

Implementation Exponential Exponential

distance-decay value
- People-related
weight matrix (PM)

distance-decay value
- Location-related
weight matrix (LM)

A 4

Community weight
matrix

Figure 3.5: Operational definition and implementation of ‘community’ concept

Implementation of the Community Parameter Smoothing Relationship

Similar to the operational definition of community, the weight matrix is
comprised of two parts, namely the location-related weight matrix (LM) and the
people-related weight matrix (PM), as shown in Figure 3.5. The LM is an
intermediate weight matrix generated by the exponential distance-decay function
using the bandwidth obtained during the calibration of the GWR model. The PM

and the community weight matrices are generated in three steps:
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(1) A Mahalanobis distance matrix of the seven variables among all
observations is generated using a Matlab function written by the author.
Every row vector captures the Mahalanobis distances between a
prediction point and the rest of the sample points.

(2) A row vector of weights for each prediction point is calculated by
applying the exponential distance-decay function (as described in
Section 2.3.3) to the corresponding row vector of Mahalanobis distances
using several different bandwidths. The bandwidths are 0.5, 0.75 and 1.0
standard deviation of the values of the corresponding row vector of
Mahalanobis distances. Hence, three PMs are generated.

(3) Multiply the LM by each of the three PMs to get three different
community weight matrices which are then saved as .mat files for

later use.

As the community parameter smoothing relationship also takes into
account the people-related attributes of DAs in terms of the seven selected
variables, the weights that are assigned to the other observations may not
simply decrease with distance from the prediction point. As shown in Figure
3.6, some observations closer to the prediction point (the ‘star’) are weighted
less because their people-related attributes are not similar to those of the

prediction point.
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Figure 3.6: Weights for community parameter smoothing relationship in
BGWR-Community model

Similar to the previous two models, the implementation of this model is also
based on LeSage’s Spatial Econometric Toolbox with modified set up to enable:
e import of the pre-calculated normalized community weight matrix into the
model;
e cross-validation; and
e 550 passes are used in the Gibbs sampling process as discussed in Section
2.4.2 where results of the first 50 passes are to be discarded.
Additionally, the following default set up is retained:
e the hyperparameter r is set to 4; and

e the diffuse scale prior 9 is set to 1.
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3.2

3.2.1

Evaluation M ethods

As indicated by Gao et al. (2006), spatial (local) regression models usually
have more parameters and smaller sample sizes than ordinary linear regression
models, so their degrees of freedom are reduced. Hence, even a very high R-
squared value obtained by the model does not necessarily indicate that it is a good
model. Therefore, instead of using a single indicator to measure and compare the
prediction powers of the models, the evaluation methods used in this study
compare different aspects of the prediction power of the models in order to give a
more comprehensive view of the performances of the models. These include the
overall performance in terms of numerical measures of the prediction errors,
visual evaluation of the amount and trend of extreme predictions, and
performance (in terms of prediction errors) at different error tolerance levels.
Hence, in addition to the regression statistics like the R-squared values, this study
adopts the following three empirical methods introduced by Gao et al. (2006) to

evaluate the results obtained from the local spatial regression models under study.

Numerical Cross-Validation Criteria

The criteria to be included in this method are:

e the mean of squares of prediction errors, 1/ ”Z = 3.7

e the mean of absolute deviations, 1/ n2| Y,=V,| ;and

1 ‘y i JA} #i |
® average crror rate, " Z v, .
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where y; and y, denote the observed and the predicted values at point i. It is
called ‘cross-validation’ criteria as the ‘#i’ symbol indicates that during the
prediction of point i (that is the point of interest), the model uses all sample points
except point 7 itself. As these criteria measure different aspects of the prediction
errors, relatively smaller values indicate better performance of the model. Table

3.2 shows a sample output from the numerical cross-validation criteria.

Table 3.2: Sample output from numerical cross-validation criteria
(After Gao et al. [2006, Table 1])

Comparizan of madels with numencal erenia
Model Mumerncal criteria

T:':.'. _.'.-:|: 't Po= N '_E_'-"'-- (%41 Correl, coel,
Basic mode] 00103 00805 10.40 0836
Spatial dependency model n.alml 0.0R06 10,430 0R335
GWER model IR0 00768 Q.87 0.851
Mixed model 000 3 N.07354 0.54 NAR%3

3.2.2 Scatter Plots for Observed and Predicted Values

Figure 3.7 depicts a sample scatter plot between the observed and
predicted values. From the distribution of the points in the scatter plot and the 45-
degree diagonal (which indicates the perfect prediction), the prediction power of
the models can be observed by comparing how spread out or how close these
points are to the diagonal. A 97.5% density ellipse (which encloses 97.5% of the
points) for each model can also be added to facilitate the comparison. When
comparing the shapes of the ellipses, a narrower ellipse generally indicates a
better model. The scatter plots also provide a good picture of the extent and
pattern of the poorly predicted samples by showing how far from the diagonal and

where they are.
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Figure 3.7: Scatter plot for observed and predicted values
(After Gao et al. [2006, Figure 2])

The drawback of this method is that visual comparison becomes
overwhelming when more than two sets of results are showing in the same chart.

Hence, comparisons across several models have to be done in pairs.

Prediction Rate Curve

A prediction rate curve is a graph showing the rate of samples against the
prediction errors (Figure 3.8). In the vertical axis, the values are the accumulated

rate of samples (i.e., 1/n, 2/n, ..., (n-1)/n, 1; where n = total number of samples). In

the horizontal axis, the values are the sorted prediction errors (| Vi— j/#|) in

ascending order. In other words, data points are sorted according to how ‘well-
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Rate of well-predicted samples

(a)

predicted’ they are. The area formed by the prediction rate curve and the vertical
axis indicates the aggregation of the prediction errors. The smaller the area, the
better the prediction power of a given model. As depicted in Figure 3.8a, one can
say that Model 1 is a better model than Model 2 as the area formed by the
prediction rate curve of Model 1 is smaller than that of Model 2. In Figure 3.8b, the
areas formed by the two curves with the vertical axis are more or less the same
indicating that the overall prediction powers of the two models are close. However,
when a tolerance level e; is set, 70% of the predicted values (or a prediction rate of
70%) from Model 1 are below the tolerance level while only 60% from Model 2 are.

For a higher tolerance level (e;), Model 2 has better performance.

100%

Model 2

of well-predicted sanples
o

Model 1

/ 3

™ Model 1

Prediction error

~
o
~

Prediction error

Figure 3.8: Sample prediction rate curves
(After Gao et al. [2006, Figure 3])

3.24

Summing Up

While the numerical cross-validation criteria give an indication on the
overall performance of the models, the prediction rate curves give more details

about the performance of the models at various tolerance levels. The scatter plots
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3.3

are good for visual examination of the overall performance of the models as well

as identification of extreme predictions.

Summary

This chapter begins with a detailed discussion on the experiment design,
starting with the considerations for the selection of dataset (International Adult
Literacy and Skill Survey), study area (southern Ontario) and base model. The
base model of this experiment is an ordinary least square (OLS) regression model
which serves as a baseline for comparison with the three local spatial regression

models under study: (1) GWR, (2) BGWR-Distance, and (3) BGWR-Community.

Before getting into the details of the three models, the source and
preparation of the required spatial data and the distance matrix are described. The
three local spatial regression models are implemented by modifying a set of base
programs from LeSage’s Spatial Econometric Toolbox, a host of spatial
econometric estimation methods implemented with Matlab. By describing the
characteristics of the spatial weighting function of GWR and the parameter
smoothing relationship of the three BGWR models, the differences between the
three models are highlighted. Modifications to LeSage’s base program and the
model settings are also described. As the BGWR-Community model is a new
model introduced by the author, the process of developing ‘community’ from a
concept into an operational definition is explained in details, including the

additional data requirements.
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The latter part of this chapter described the evaluation criteria to be used
in this study, namely (1) regression statistics; (2) numerical cross-validation
criteria; (3) scatter plots of the observed and predicted values; and (4) prediction

rate curve.
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4.0

4.1

SUMMARY AND ANALYSISOF RESULTS

In this chapter the results of the experiment are presented in two parts. The
first part presents the results in the form of regression statistics to give a general
idea about the relative performance of the models. Then, the results and findings

of each evaluation method are presented, followed by the concluding remarks.

Regression Statistics

Table 4.1 below summarizes the beta values and estimates of R-squared of
the models under study. R-squared is an indicator of how well a model fits the
data. It is the proportion of the variance in the data that can be explained by a
regression (Warner, 2008). The higher the R-squared value, the better the model.
Table 4.1 shows that all of the selected local spatial regresson models have
higher R-squared values over the OLS base model. The BGWR-Distance model
shows the least improvement (increased by 6.90%) while the BGWR-Community
model shows the greatest improvement (increased by 10.63%). It is also noted
that the R-squared value of the BGWR-Distance model is smaller than that of the
GWR model, suggesting that using the BGWR approach does not guarantee a

better R-squared result.
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4.2

Table 4.1: Betavalues and R-squared of the models under study

Beta*
Parameters oLS GWR BGWR- ECHYR
Distance Community

Constant 257.31 255.42 255.62 257.19
GENDER 12.52 11.42 9.66 10.62
AGE -0.84 -0.88 -0.88 -0.89
AGE_SQ 0.00 0.00 0.00 0.00
YRS ED 6.84 7.05 7.32 7.22
IMP_INC 0.46 0.47 0.47 0.46
R-squared 0.4139 0.4453 0.4425 0.4579
Improvement of R-squared

ng ol (Of_qS) - 7.59% 6.90% 10.63%

Note: *The beta values of the local spatial regression models (i.e., GWR, BGWR-
Distance and BGWR-Community models) are the means of the beta values
obtained from the local regression equations.

Numerical Cross-Validation Criteria

Numerical cross-validation criteria give an indication of the overal

performance of different models in terms of their prediction errors. The better

model is the one with the lowest scores in all three criteria. Table 4.2 shows that

the BGWR-Community model scores the lowest for al three criteria. While the

scores of the BGWR-Distance and GWR models are smaller than those of the

OLS model, the differences between the two local spatial regression models are

very small.

Table 4.2: Comparison of models with numerical cross-validation criteria

Numerical cross-validation criteria

Model A ~ 1<y -V
Uny (v, =9.)° | Uny |y -9.] EZ‘Iy—#'
OLS 2001.88 35.62 15.74
GWR 1894.56 34.52 13.54
BGWR-Distance 1904.00 34.39 13.70
BGWR-Community 1851.34 33.53 13.33

58




To determine whether the differences in prediction errors (or residuals)
among these models are statistically significant, F-tests for each pair of models

were carried out and the results are summarized in Table 4.3.

Table 4.3: Results of F-test of prediction errors among different models

p-value
BGWR- BGWR-
OLS GWR Distance Community
OLS - 0.0523 0.1254 0.0008
GWR - - 0.6901 0.1499
BGWR-Distance - - - 0.0678

The apha value for the F-test was set at 0.05. Therefore, if the p-value of
the F-test is less than 0.05, the difference in the prediction errors of the two
models under testing is considered to be statistically significant. The results
indicate that the difference between the base model (OLS) and the BGWR-
Community model is statistically significant while other differences are not. This
suggests that the improvement of the BGWR-Community model in the reduction
of prediction errorsis not random. It is also found that although the figures of the
three numerical criteria of the BGWR-Distance and GWR models are very close,
the p-value of the GWR model (i.e., 0.0523) is much smaller than the BGWR-

Distance model and close to the pre-defined alpha value of 0.05.

From the above discussion, the following conclusions are drawn:
e the relatively better results of the GWR model over the BGWR-Distance
model confirms the suggestion that using the BGWR approach does not

necessarily improve the performance; and
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4.3

43.1

e the improvement made by the BGWR-Community model over the GWR
and BGWR-Distance models suggests that incorporating the community
concept into the BGWR model can improve the overall performance of the

model by reducing the prediction errors.

Scatter Plots
For ease of comparison, only two models are compared at a time. The
order of comparisonsis as follows:
(1) Thethreeloca spatial regression models compare with OL S one by one;
(2) The two BGWR models compare with GWR model one by one; and

(3) The two BGWR models compare with each other.

In each scatter plot, the X-axis represents the predicted values (yhat) while
the Y-axis represents the observed value (y). A 45-degree diagonal is included to
give reference to perfect prediction. Each scatter plot contains two point sets. One
in blue at the back acts as the baseline and one in red in the front for comparison.
There are also two density ellipses, one in blue and one in red, covering 97.5% of

the points of the corresponding point set.

OLS Modd asthe Basdine

Figures 4.1 to 4.3 show the OLS model in blue and the others for
comparison in red. It is noticed that the long axis of al the ellipses are forming

angles with the diagonal, while that of the blue ellipse (for the OLS model) forms
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a larger angle than the other models. This indicates that the OLS model under-
predicts when y-values are larger than the mean (roughly 250) but over-predicts
when y-values are smaller than the mean. Smaller angles between the long axes of
the red ellipses (Figures 4.1 to Figure 4.3 refer) and the pink diagonals indicate
that the local spatial regression models have less degree of over- and under-
prediction problems. It is evident that the red points at the lower score regions are
closer to the diagonal than the corresponding blue points (Figures 4.1 to Figure
4.3 refer). In general, the red points are tighter and located closer to the diagonal
than the blue points meaning that the local spatial regression models fit better than

the OLS modd!.

450

OLS (blue) vs GYWR (red): density ellipse (97.5%)
Red points are closer to
| the diagonal than the
blue points

OLS (blue) vs BGWR-Distance (red): density ellipse (7.5%)
Red points are closer to
.| the diagonal than the
blue points
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Figure 4.1: Scatter plot of OLSvs. GWR Figure 4.2: Scatter plot of OLSvs.
BGWR-Distance

61



OLS (blue) vs BGWR-Carnmunity (red); density ellipse (97.5%)
Redpointsarecloserto

| the diagonal than the RN
blue points Pt Y00

450

400
380 -
300 - e

= 260+
200 -

180 - ot
et
s,
+

s
. "
rs

5
10 . iy
. 5

&0 L L L L L L L
a0 100 150 200 250 300 350 400 450

yhat

Figure 4.3: Scatter plot of OLSvs.
BGWR-Community

4.3.2 GWR Mode asthe Basdline

When the GWR model is acting as the baseline to compare with the two
BGWR models (see Figures 4.4 and 4.5), it is found that the long axis of the
GWR dllipse (the blue one) forms a dlightly larger angle with the diagonal than
the two BGWR models although the differences between the GWR and the two
BGWR models are much less than that between the OL S and the others. Visualy,
the distribution of the red points and the blue points does not show much

difference. The number of extreme prediction pointsis aso very close.
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Figure 4.5: Scatter plot of GWR vs.
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4.3.3 Comparison of the Two BGWR Models

480

When comparing the density ellipses of the two BGWR models in Figure

4.6, it is found that they are amost identical, although the density €ellipse for the

BGWR-Community model is dightly simmer than the BGWR-Distance model.

The distribution of the red and blue points is very similar and the number of

extreme prediction pointsis also very close.
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BGEWR-Distance (blue) vs BGWR-Caommunity (red): density ellipse (97.5%)
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Figure 4.6: Scatter plot of BGWR-Distance vs. BGWR-Community

4.3.4 Summing up

Major improvements of the local spatial regression models over the OLS
model are evident from the scatter plots with less over-prediction and under-
prediction problems. The two BGWR models also have minor improvement on
this aspect over the GWR model. The two BGWR models have little differences
in terms of the shape of the ellipse and the distribution of the points. Visualy,
there is no apparent improvement of the BGWR-Community model over the

GWR and the BGWR-Distance models in this evaluation.



4.4

Prediction Rate Curve

The prediction rate curves of the models under study are shown in Figure
4.7. Although the curves are quite close to each other, it is obvious that, in the
range of prediction errors 5 to 50, the curve of the BGWR-Community (red line)
models is at the top-left side of other curves. This means that the area formed by
the curve of this model and the vertical axis is smaller than other models; hence,

the BGWR-Community model has better prediction power in this range.

In order to get a closer ook at these curves, the prediction rate curve of
the OLS model is used as the baseline. The difference between the prediction
rate curve of a local spatial regression model and that of the OLS model is
regarded as the prediction rate improvement. The prediction rate improvement
of the three local spatial regression models are plotted against the prediction
error and shown in Figure 4.8. It is found that there is a large gap between the
BGWR-Community model and the GWR model between the prediction errors of
5 and 50 (which corresponds to 12% to 76% prediction rates in Figure 4.7).
Then, the gap starts to narrow. Around prediction error of 80 (or 94% prediction
rate in Figure 4.7), the two curves cross. That means the BGWR-Community
model has better prediction power than the GWR model up to the 94%

prediction rate (or prediction error of 80).
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Figure 4.7: Comparing the prediction curves of the models
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Improvement over base model
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Figure 4.8: Prediction improvements of the local spatial regression models over the base model (OLS model)
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4.5

A very similar pattern is observed between the BGWR-Community and
the BGWR-Distance models although the gap between them is relatively smaller
(Figure 4.8). When comparing the BGWR-Distance model with the GWR model,
the former has greater improvement over the latter up to the prediction error of 40
(or 65% prediction rate) and then the two lines are very close and cross each other
from time to time. In short, the BGWR-Distance model has better prediction
power than the GWR model only up to the 65% prediction rate (or prediction

error of 40).

From the above discussion, it is noted that the BGWR-Community model
maintains a higher prediction rate up to a very high tolerance level while the
BGWR-Distance model performs a little bit better than the GWR model at low

tolerance level.

Discussion

From the results of the numeric cross-validation criteria and prediction
rate curves and in comparison with the two other models, the BGWR-Community
model has a better overall prediction power and maintains a higher prediction rate
up to a very high tolerance level. The results in the scatter plots show that the
BGWR-Community model does not generate more extreme prediction points than
the other models. These results lead to the conclusion that by incorporating the
‘community’ concept into the BGWR model, the prediction power of the model

improves over the purely distance-based local spatial regression models.
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Nevertheless, from the results in Table 4.1, it is also noted that the
improvement (in terms of R-squared values) made by the BGWR-Community
model over the GWR model (which is about 3%) is not as large as that made by
the GWR model over the OLS model (which is 7.6%). This is in line with the
expectation that the impact of community effect is localized and lesser than the
impact of Tobler’s First Law of Geography (Section 2.3.1 refers), or the First Law

of Geography, to certain extent, has accounted for the community effect.

In order to visualize the local improvement brought by the BGWR-
Community model, a series of maps have been prepared using a spatia
interpolation method caled Ordinary Kriging (Fotheringham et al., 2000) to
generate the gradient surfaces of the prediction improvement of the local spatial

regression models over the OLS model as shown in Figures 4.9 to 4.11.

The prediction improvement of a prediction point i is the difference
between the prediction errors of i obtained by the OLS model and that of the local
gpatial regression models divided by the observed value of i and multiplied by
100 to express as a percentage (4.1). A positive value indicates that the local
gpatial regression model has a smaller prediction error than the OLS model and
viceversa.

prediction error of OLS— prediction error of local spatial regression model (4.2)
x 100
observed value
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Figure 4.9: Prediction improvement of GWR model over OLS by percentage
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Figure 4.10: Prediction improvement of BGWR-Distance model over OLS
by percentage

70



BGWR-Community Map
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Figure 4.11: Prediction improvement of BGWR-Community model over
OL S by percentage

Ordinary Kriging is an interpolation method that predicts the value at a
certain location using the observed values around it. It weights the surrounding
observed values by considering their distances from the prediction point aswell as
the spatial correlation of the observations. The maps in Figures 4.9 to 4.11 were
created with ArcGIS™ Ordinary Kriging function that uses the prediction
improvements of the local spatial regression models as input. On these maps,
improvements in estimation appear as areas shaded in green, with darker green
areas indicating greater improvement. To facilitate discussion, the GWR, BGWR-
Distance, and BGWR-Community Maps are shown side by side in Figure 4.12
with areas highlighted by boxes that are numbered. Figure 4.13 shows the

distribution of the observations with the BGWR-Community Map as the backdrop.
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Figure 4.12: Comparison of the local prediction improvement of the three local spatial
regression models

72



Percentage Difference
I -10t0-5%
B 5to-25%

-25t0 0%

010 2.5%
l 25105%

B Gt 0%

*  Cbservations

I:l Study Area

Figure 4.13: Distribution of observations with BGWR-Community Map as
the backdrop

By cross-referencing Figures 4.12 and 4.13, the following results are

observed:

In the GWR Map, the proportion between the areas of positive values
(green areas) and negative values (yellow, orange and red areas) are
generaly the same (Figure 4.12(a)). In the BGWR-Distance Map, there
arerelatively more green areas such as Areas 1, 2, 4 and 8 (Figure 4.12(b)).
In the BGWR-Community Map, most parts of the study area are green
(Figure 4.12(c)). It also has larger green areas and higher positive
prediction improvement than the BGWR-Distance Map in Areas 1, 2, 4

and 8 (Figure 4.12(b)).
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When comparing Figure 4.12(a) the GWR Map with Figure 4.12(c) the
BGWR-Community Map, major local improvements are found in Areas 3
and 6 where the BGWR-Community model improves the prediction
performance from the range of 0 to 2.5% less prediction error than the

OL S model to the range of 5to 10% less.

A close inspection of the corresponding location of Area 5 in Figure 4.13
found that there is no observation in that area. The interpolated
improvements at that area of the BGWR-Community map are mainly due
to the prediction improvements of the observations to the left and right of

that area.

Although the BGWR-Community model improves the local performance
in most parts of the study area, it increases the prediction error in Area 7
from the range of 0 to 2.5% more prediction error than the OLS in the
GWR Map (Figure 4.12(a)) to the range of 2.5 to 10% in the BGWR-
Community Map (Figure 4.12(c)). Figure 4.14 shows a close-up of this
location with the available observations around that area. It is found that
only two observations are in the orange region and no observation isin the
red region. The poor performance of the BGWR-Community model in this
area may be due to insufficient neighbours, suggesting a potentia

limitation of this model.
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Figure 4.14: A close-up of Area 7 in the BGWR-Community Map

The above observations reveal that even though the contribution of the
BGWR-Community model to an indicator like R-squared are not great, it
improves the prediction performance in most parts of the study area. More
importantly, it has substantial impacts on certain local areas. Like any other
models, the BGWR-Community model has its limitations. As it is a Bayesian
model, it took relatively long time (around 2 hours on a computer with Intel™
Xeon™ CPU®) to run. Besides, it needs sufficient data at the local level to deliver
good prediction results; hence, this method is not suitable for dataset with sparse
distribution of observations such as the northern Ontario (as shown in Figure 3.2),

Nunavut and Northwest Territories.

® The configuration of the computer is Microsoft Window X P Professional running on Dell Precision
PWS690 Intel® Xeon® CPU 5160 at 3.00GHz, 8Gb Ram.
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In the next chapter, a summary of the works completed for the research

will be presented, followed by the future research opportunities.
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5.0

5.1

5.1.1

CONCLUSIONS

This chapter summarizes the work and findings presented in the previous
chapters, followed by a discussion of the opportunities for future research and the

concluding remarks.

Summary of Work Completed

The objective of this research was to first propose a statistical model that
incorporated the concept of community in a local spatial regression model, and
then to assess its performance. More specificaly, the study asked whether
incorporating the ‘community’ concept into the Bayesian Geographically
Weighted Regression (BGWR) model would improve its performance over the
purely distance-based local spatial regression models. The concept of community
was introduced by including characteristics of local neighbourhoods using data
from the Census. The following tasks have been carried out to accomplish this

objective.

Acquiring Background Knowledge About the Research

An extensive literature review was carried out on the following areas of
interest to acquire background knowledge about the research:
e the definitions of community and community effects as well as the
techniques used in empirical studies of community effects;

e operationalization of the ‘community’ concept into measurable variables;
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5.1.2

e the Geographically Weighted Regression (GWR) model; and

¢ the Bayesian approach of the GWR method (BGWR).

An important finding in the literatureis that the GWR model is susceptible
to the influence of ‘outliers. LeSage (2004) proposed the BGWR approach that
allowed for various kinds of parameter smoothing relationships to tame the outlier
problem. This also provided an opportunity to incorporate the ‘community’
concept into the BGWR model to account for the community effect that was not
addressed by the purely distance-based local regresson models. Therefore, this
thesis proposed a ‘community-based” Bayesian geographically-weighted

regression model.

Designing the Experiment and Finding Appropriate Evaluation Criteria

A scientific experiment was designed to compare the prediction power of
the proposed model with those of the distance-based local spatial regression

models under study.

The base model of the experiment was an ordinary least squares (OLS)
regression model which served as a baseline for comparison. The dependent
variable of the model was the prose literacy scores of adults aged 16 to 65, while
the independent variables were gender, age, age-squared, years of education, and
persona income. The data for these variables came from the International Adult

Literacy and Skills Survey (IALSS). The selected study area was southern Ontario
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(Figure 3.2 refers). Furthermore, the data for the measurable variables of the
‘community’ concept and those for computing the distance matrix used in the
local spatial regression models came from the Profile of Dissemination Areas,
2001 Canada Census. The data at this level included the following variables
measured at the level of the Dissemination Area: (a) the average number of years
of education in aDA, (b) the percentage of people who had moved in the previous
five years, (c) average level of family income, (d) the percentage of people who
were unemployed, (e) the percentage of people who were in professional or semi-
professional occupations, (f) the percentage of people who were in unskilled
labour occupations, or unclassified occupations, and (g) the percentage of people

who had immigrated in the previous five years.

The two distance-based local spatial regression models under study were
the GWR and the BGWR model using a distance-decay parameter smoothing
relationship (BGWR-Distance). The GWR model was selected as it was one of
the most popular spatially weighted regression models that is distance-based. The
BGWR-Distance model was selected as this model is structured in a way that
offers a transition between the GWR model and the proposed model. The
proposed model, called the BGWR-Community model, was a BGWR model

using a community parameter smoothing relationship.

Four specific evaluation methods were selected in order to give a broad

view of the performance of the models. The methods included regression statistics,

79



5.1.3

numerical measures of the prediction errors to evaluate the overal performance,
scatterplots for visual evaluation of the amount and trend of extreme predictions,
and prediction rate curves to evaluate the performance (in terms of prediction

errors) at different error tolerance levels.

I mplementing the Models

The OLS base model was implemented with SPSS™ | while the local
gpatial regression models were implemented based on LeSage's (2005) “Spatial
Econometric Toolbox”, a host of spatial econometric estimation methods

implemented with Matlab™.

To implement the ‘community’ concept as parameter smoothing
relationship of the BGWR model, the concept was first operationalized into
measurable variables based on Galster's (2001) bundle of spatially-based
attributes which captured both the physical and social characteristics of a
community. Then, these measurable variables were used to generate two weight
matrices. One was a geographical distance-based weight matrix that represented
the physical characteristics of the community. The other was a Mahalanobis
distance-based matrix that represented the community characteristics. Finaly, the
community parameter smoothing relationship was implemented as a normalized

weight matrix that combined the above two matrices.
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5.1.4 Anayzing Experiment Results

5.2

The evaluation methods found that — compared with other models — the
BGWR-Community model had a better overall prediction power and maintained a
higher prediction rate up to a very high tolerance level. In addition, it did not
produce more extreme prediction points than the other models. Therefore, it was
concluded that by incorporating the ‘community’ concept into the BGWR model
the prediction power of the model improved over the purely distance-based local

gpatial regression models.

In order to visualize the local improvements brought by the BGWR-
Community model, the gradient surfaces of the prediction improvement of the
local spatial regression models over the OLS model were created with a spatial
interpolation method called Ordinary Kriging and presented as maps for visua
comparison. It was observed that the BGWR-Community model could improve
the prediction performance in wide range of areas and brought significant

improvement at certain local areas.

Opportunitiesfor Future Research

The present research demonstrated a means to incorporate concepts that
are geographical in nature, even if the boundaries are ill-defined, into the
parameter smoothing strategy of a local spatial regression model without pre-
defining the boundaries. This research demonstrated its applicability in

accounting for the community effect on the adult literacy scores, but the approach
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5.3

could potentially be applied to other branches of socia sciences, as well as other
research areas including forestry, environmental science and ecology where
concepts like land cover types, habitats, soil types are geographical in nature but

have ill-defined or ‘fuzzy’ boundaries.

As discussed in Section 3.1.3, using straight line distance as distance
measurement method may render the local spatial regression models not
applicable in certain geographical areas. Another direction for future research that
is worth examining is to compare the impact of using straight line distance with
other distance measurement methods like the distance based on road networks,

either in terms of the geographical distance or a cost function such as travel time.

Concluding Remarks

This research demonstrates that the incorporation of the ‘community’
concept into the local spatial regression model can improve the prediction power
over the purely distance-based models by reducing the overall prediction errors.
Furthermore, it shows that even though the contribution of the proposed model to
an indicator like R-sgquared is not great, it can still bring significant prediction
improvement to certain local areas. The research also sets an example to other
research areas on how to integrate concepts that are geographical in nature but
with ill-defined boundaries into the local spatial regression model to improve the

prediction performance of the model.
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Nevertheless, like any other models, the proposed model hasits limitations.
It was found that like other spatial models, the BGWR-Community model needs
sufficient data at the local level to deliver good prediction results. Therefore, it is
not suitable for datasets with a sparse distribution. As the proposed model is a
Bayesian statistical model, it is computation intensive and takes a relatively long
time to run. Exploring ways in which to optimize its performance under specific

circumstances may also be a useful topic for future research.
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APPENDIX A DATA PREPARATION

The data preparation process involved the IALSS, the Dissemination Area (DA)

profile data (Statistics Canada, 2003a), the DA polygon files, and the posta code

conversion file (PCCF) (Statistics Canada, 2003b) from Statistics Canada. Figure A.1

below illustrates the details of the preparation process.

IALSS data DA polygon data for
Ontario
Extract Ontario data
Import into ArcGIS and
allsont compute the coordinates of
centroids
Clean data as described in
the next page ontshp
alsont_cln
| DA profile data
Merge and extract samples Extract
within study area (southern Ontario
Ontario) data
allsontshp ontDA
Merge
PCCF data
allsontda

Import to MS Access and
extract Ontario data

Reassign observations in DA
with more than one sample to
posta code coordinates (see

pccf_ont

Export

Appendix B)

allsontpcsel

Generate distance
matrix

alsont_dm

Figure A.1: Data preparation flow chart

Generate ‘ community’
weight matrix

allsont_cm
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After allsont.csv was imported into MS Excel, the following steps were carried

out to clean, re-centre and/or scale the data:

a Gender:

i. Re-centre gender (gender) to give rcgender such that male = -0.5, female =
0.5

b. Age
i. Select data of age 16-65 (age_resp).
ii. Re-centre age to give rcage such that rcage = age resp —40

c. Agesquare:
i. Create new variable rcagesq = rcage*rcage

d. Yearsof Education:
i. Recode year of education (a3) such that
e If(a3<=6)a3=6
e |[f(a3>=21)a3=21
ii. Re-centre year of education (a3) such that rcyrsed = a3 —-12

e. Persona income:
i. Re-scaleimputed personal income (K6i) such that pincome = (K6i/100000)
ii. Recode pincome such that:
e |f (pincome > 150) pincome = 150
iii. Re-centre pincome such that rcincome = pincome — 30



APPENDIX B  RANDOM ASSIGNMENT OF POSTAL CODESTO
SAMPLES

For Census DAs with more than one observation, the method illustrated in Figure

B.1 below was used to randomly assign postal codes to the observations.

allsontda
(see Appendix A)

Extract alist of observations whose DAs
have more than one observation

alsont_pclist

Loop through the list. For each
observation on the list, repeat the

procedure below.
A VBA program written by the author ran inside the MS Access environment
pccf_ont DA of the
(see Appendix A) observation
Select unassigned postal
codesin the DA

A random

Observation assigned numbe i

with the ith postal code generated

by the
program
Mark theith
posta code as
‘assigned’

Figure B.1: Postal code assignment process

90



CURRICULUM VITAE
Candidate sfull name: Hon Shing (Richard) Chan

Universitiesattended: The Hong Kong Polytechnic University, Postgraduate Diploma
in Geo-information Systems, 2000
University of Hong Kong, M.Sc.(Urban Planning), 1996
University of Hong Kong, B.Sc.(Quantity Surveying), 1987

Conference Presentations:
Presenter, “Close Range GIS - A New Way of Visualizing Geographical Information”,

2003 Student Technical Conference, Geodesy and Geomatics Engineering, University of
New Brunswick, on 21 and 24 March 2003.



	TableOfContents_12Apr
	CH1v3
	CH2v6
	CH3v6
	CH4v5
	CH5v3
	References_11AprMar_rc
	Appendices_v3
	Vita



